WO2014171290A1 - Lithium ion secondary battery and production method therefor - Google Patents

Lithium ion secondary battery and production method therefor Download PDF

Info

Publication number
WO2014171290A1
WO2014171290A1 PCT/JP2014/058934 JP2014058934W WO2014171290A1 WO 2014171290 A1 WO2014171290 A1 WO 2014171290A1 JP 2014058934 W JP2014058934 W JP 2014058934W WO 2014171290 A1 WO2014171290 A1 WO 2014171290A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ceramic separator
negative electrode
positive electrode
layer
Prior art date
Application number
PCT/JP2014/058934
Other languages
French (fr)
Japanese (ja)
Inventor
上羽悠介
澤田学
田中陽介
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014171290A1 publication Critical patent/WO2014171290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery, and more particularly, to a lithium ion secondary battery using a ceramic separator, which is excellent in economic efficiency and high in reliability, and a manufacturing method thereof.
  • a lithium ion secondary battery includes, for example, a positive electrode formed by applying a positive electrode active material (lithium composite oxide) to a sheet-like current collector foil (such as an aluminum foil or a copper foil), and a negative electrode active material.
  • a positive electrode active material lithium composite oxide
  • a sheet-like current collector foil such as an aluminum foil or a copper foil
  • a negative electrode active material such as an aluminum foil or a copper foil
  • An electricity storage element constituted by laminating a negative electrode formed by coating a substance (activated carbon, carbon, etc.) via a separator for preventing a short circuit due to contact between the positive and negative electrodes, and an electrolytic solution, It has a structure accommodated in the exterior body.
  • Patent Document 1 discloses a separator in which inorganic fine particles are dispersed in an organic polymer, instead of a conventionally used separator such as a polyolefin-based stretched film (hereinafter referred to as “polyolefin-based separator”).
  • a conventionally used separator such as a polyolefin-based stretched film (hereinafter also referred to as “ceramic separator”).
  • ceramic separator As schematically shown in FIG. 4, a nonaqueous electrolyte battery in which the ceramic separator 111 is disposed between the positive electrode 101 and the negative electrode 102 has been proposed. Yes.
  • the ceramic separator 111 used in Patent Document 1 described above does not deform and shrink even at high temperatures. Therefore, even when the ceramic separator 111 is exposed to an unintended high temperature, the positive electrode and the negative electrode are not short-circuited by the contraction, heat generation, smoke generation, ignition, and the like are prevented, and safety can be improved. For example, the safety that does not ignite in the nail cutting test is due to this feature.
  • a porous insulating layer (HRL) (substantially ceramic separator) 111 and a porous insulator (general) are provided between the positive electrode 101 and the negative electrode 102.
  • HRL substantially ceramic separator
  • a non-aqueous electrolyte battery has been proposed in which a polyolefin-based separator 112 is used.
  • the porous insulating layer 111 is formed of a mixture of insulating inorganic fine particles and a binder (binder) made of an organic polymer, and is substantially the same as a ceramic separator.
  • a porous insulating layer made of a mixture of a porous insulator 112, which is a polyolefin-based separator, and a binder (binder) made of insulating inorganic fine particles and an organic polymer.
  • 111 is interposed between the positive electrode 101 and the negative electrode 102, and by interposing a porous insulating layer (ceramic separator) 111 that does not shrink even at high temperatures, shorting, heat generation, and ignition of the positive electrode and the negative electrode are suppressed and prevented.
  • the porous insulator 112 which is a polyolefin-based separator excellent in electronic insulation, can ensure the electronic insulation between the positive and negative electrodes, but the porous insulator is a polyolefin-based separator. Since 112 is used in combination, there are the following problems.
  • the film thickness of the polyolefin-based separator is usually as thick as 20 to 30 ⁇ m, and there is a problem that the energy density per volume decreases, and a battery with a higher energy density can be designed as the separator film thickness decreases. It is very difficult to reduce the film thickness of the polyolefin separator due to handling problems.
  • Patent Document 3 As schematically shown in FIG. 6, (a) a first insulating layer (ion-permeable gel) 113 and (b) a second insulating layer (between the positive electrode 101 and the negative electrode 102 (A lithium ion secondary battery including a ceramic separator 111 having lithium ion permeability) and (c) a porous insulator (porous polyolefin separator) 112 has been proposed.
  • the present invention solves the above-described problems, and can achieve high energy density and high power density at low cost without using a polymer separator such as a porous polyolefin separator, and is excellent in safety.
  • Another object of the present invention is to provide a lithium ion secondary battery and a method for manufacturing the same.
  • the lithium ion secondary battery of the present invention is A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated With an exterior body,
  • the ceramic separator layer is made of a composite material containing insulating inorganic fine particles and an organic substance, has lithium ion permeability, and is disposed on at least one surface of the positive electrode and the negative electrode.
  • the lithium ion permeable gel-containing layer includes a gel having electronic insulation and lithium ion permeability, and is disposed on the surface of the ceramic separator layer.
  • a ceramic separator layer having lithium ion permeability and electronic insulation is used.
  • a layer containing a gel having an electronic insulating property while having lithium ion permeability is used as the lithium ion permeable gel-containing layer.
  • the lithium ion permeable gel-containing layer may contain an insulating inorganic powder such as ceramic.
  • the ceramic separator layer is provided on both surfaces of the positive electrode and the negative electrode, and the lithium ion permeable gel-containing layer is provided on the surface of the positive electrode. It is also possible to adopt a configuration in which the ceramic separator layer is disposed so as to be positioned between the ceramic separator layer provided on the surface of the negative electrode.
  • the ceramic separator layer is disposed on one surface of the positive electrode and the negative electrode, and a lithium ion permeable gel-containing layer is formed on the surface of the ceramic separator layer.
  • a ceramic separator layer is provided on both surfaces of the positive electrode and the negative electrode, and a lithium ion permeable gel-containing layer is provided on the surface of each ceramic separator layer or one of the ceramic separator layers.
  • lithium ion that can realize high energy density and high power density at low cost without using a polymer separator such as a porous polyolefin separator, and also has excellent safety.
  • a secondary battery can be obtained.
  • the gel contained in the lithium ion permeable gel-containing layer is a gel having a chemical crosslinking structure.
  • the gel having the chemically crosslinked structure is mechanically rigid. It is possible to provide a sufficient function of ensuring electronic insulation between the negative electrodes, and the present invention can be more effectively realized.
  • a gel having a chemical cross-linking structure is excellent in swelling property, it is possible to hold an electrolytic solution more and contribute to improvement in battery life.
  • the method for producing the lithium ion secondary battery of the present invention includes: A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated
  • a method for producing a lithium ion secondary battery comprising an exterior body, A step of forming a ceramic separator layer having a lithium ion permeability on a surface of at least one of a positive electrode and a negative electrode made of a composite material containing insulating inorganic fine particles and an organic substance; On the surface of the ceramic separator layer, a step of forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability; A positive electrode or a negative electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer, and a negative electrode or positive electrode not provided with the ceramic separator layer and
  • a method for producing a lithium ion secondary battery of the present invention is as follows.
  • a battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated
  • a method for producing a lithium ion secondary battery comprising an exterior body, A step of forming a ceramic separator layer made of a composite material containing insulating inorganic fine particles and an organic material on both surfaces of the positive electrode and the negative electrode and having lithium ion permeability; On the surface of the ceramic separator layer, a step of forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability; A positive electrode or a negative electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer, and a negative electrode or positive electrode provided with the ceramic separator layer and the lithium i
  • the lithium ion secondary battery of the present invention has a ceramic separator layer disposed on at least one surface of the positive electrode and the negative electrode, and a lithium ion permeable gel-containing layer is formed on the surface of the ceramic separator layer, For example, even when there are irregularities on the surface of the positive electrode or negative electrode and it is not easy to achieve sufficient reliability by securing sufficient electronic insulation with a ceramic separator layer alone, a porous polymer separator is used. It is possible to obtain a lithium ion battery that can realize high safety, high energy density, and high power density at low cost without requiring use.
  • the ceramic separator layer is basically composed of a ceramic and a binder, but as the ceramic ratio increases, the resistance to lithium ion permeation decreases, while the binder decreases, so the strength of the ceramic separator layer is It is easy to cause loss (powders) due to external factors.
  • the resistance of the ceramic separator layer and the ease of occurrence of chipping (powder falling) are in a trade-off relationship.
  • production of defects, such as powder fall can be suppressed by providing a lithium ion permeable gel content layer on the surface of a ceramic separator layer like this invention.
  • the surface of the positive electrode or the negative electrode has irregularities (protrusions) and the convex portions are exposed on the surface of the ceramic separator layer, and there is no lithium ion permeable gel-containing layer, Although a short circuit is caused by contact, a short circuit defect can be suppressed because the lithium ion permeable gel-containing layer disposed on the surface of the ceramic laminate reinforces the ceramic separator layer. Therefore, according to the present invention, a lithium ion secondary battery having sufficient characteristics and reliability can be realized without employing a porous polymer separator.
  • the lithium ion permeable gel-containing layer reinforces the ceramic separator layer, and the ceramic ratio is increased compared to the case where the ceramic separator layer is used alone, so that the low resistance design can be achieved. Therefore, it is possible to obtain a high-performance lithium ion secondary battery including a ceramic separator layer that has excellent electronic insulation, low resistance, and excellent lithium ion permeability.
  • the ceramic separator layer may be formed on either the positive electrode or the negative electrode, but may be formed on both the positive electrode and the negative electrode.
  • the lithium ion permeable gel-containing layer formed on the ceramic separator layer may contain an insulating inorganic powder such as ceramic.
  • porous polymer separator for example, a porous polyolefin separator
  • a porous polyolefin separator occupies a high proportion of the cost of battery constituent materials. Reduction can be achieved.
  • the lithium ion secondary battery is a laminated battery
  • a high-resistance polymer separator is not required, so the number of layers required to obtain the desired power characteristics can be suppressed. Therefore, the cost can be reduced also from this aspect.
  • the thickness of the porous polymer separator (for example, a porous polyolefin separator) is usually 20 to 30 ⁇ m. By eliminating the need for such a large polymer separator, energy per volume is obtained. The density can be increased (that is, since the presence of a porous polymer separator does not contribute to the development of energy (or capacity), the energy density can be improved by making this polymer separator unnecessary). .
  • the method for producing a lithium ion secondary battery according to the present invention includes forming a ceramic separator layer having lithium ion permeability on a surface of at least one of a positive electrode and a negative electrode, which is made of a composite material including insulating inorganic fine particles and an organic substance.
  • a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability was provided.
  • the positive electrode or the negative electrode is joined to the negative electrode or the positive electrode that does not include the ceramic separator layer and the lithium ion permeable gel-containing layer, a battery element including the positive electrode and the negative electrode as a pair is formed.
  • the surface is covered with a lithium ion permeable gel-containing layer Therefore, the lithium ion permeable gel-containing layer has lithium ion permeability and electronic insulation. Therefore, it is possible to manufacture a lithium ion secondary battery having sufficient characteristics and reliability without using a porous polymer separator.
  • a ceramic separator layer made of a composite material containing insulating inorganic fine particles and an organic substance is formed on both surfaces of the positive electrode and the negative electrode, and a lithium ion permeable ceramic separator layer is formed.
  • a lithium ion permeable gel-containing layer including a gel having lithium ion permeability a positive electrode or a negative electrode including the ceramic separator layer and the lithium ion permeable gel-containing layer, the ceramic separator layer, and the lithium ion permeable gel
  • a negative electrode or a positive electrode provided with a containing layer is joined so that a ceramic separator layer and a lithium ion-permeable gel-containing layer are interposed between the positive electrode and the negative electrode, so as to form a battery element comprising a positive electrode and a negative electrode as a pair.
  • the surface of the ceramic separator layer Since it is handled in a state covered with an ion-permeable gel-containing layer, it is possible to suppress or prevent the occurrence of powder falling, and the lithium-ion-permeable gel-containing layer is permeable to lithium ions. Therefore, it is possible to manufacture a lithium ion secondary battery having sufficient characteristics and reliability without using a porous polymer separator.
  • FIG. 1 shows typically the structure of the lithium ion secondary battery (battery element) concerning embodiment of this invention. It is a figure which shows typically the modification of the lithium ion secondary battery (battery element) concerning embodiment of this invention. It is a figure which shows typically the other modification of the lithium ion secondary battery (battery element) concerning embodiment of this invention. It is a figure which shows typically the structure of the conventional lithium ion secondary battery disclosed by patent document 1.
  • FIG. It is a figure which shows typically the structure of the conventional lithium ion secondary battery disclosed by patent document 3.
  • each weighed material was put into a 1000 mL pot, and PSG grinding media having a diameter of 1.0 mm and 200 g of N-methylpyrrolidone (hereinafter referred to as NMP) as a solvent were added. Then, the mixture was dispersed by mixing at 150 rpm for 24 hours using a rolling ball mill. As a result, the secondary particles of lithium manganate were crushed, and the average particle diameter D 50 was 2.1 ⁇ m.
  • NMP N-methylpyrrolidone
  • Step 2 Preparation of negative electrode active material slurry 91 g of lithium titanate (Ishihara Sangyo Co., Ltd., XA-105, median diameter 6.7 ⁇ m), 4 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., HS-100) Weighed.
  • lithium titanate Ishihara Sangyo Co., Ltd., XA-105, median diameter 6.7 ⁇ m
  • 4 g of acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd., HS-100
  • each weighed material was put in a 1000 mL pot, and 200 g of NMP was added as a PSZ grinding medium having a diameter of 1.0 mm and a solvent. Then, the mixture was dispersed by mixing at 150 rpm for 24 hours using a rolling ball mill. As a result, the secondary particles of lithium titanate were crushed, and the average particle diameter D 50 was 2.3 ⁇ m.
  • Step 3 Production of Positive Electrode
  • the positive electrode active material slurry produced in (Step 1) above was coated on a positive electrode current collector foil made of aluminum foil (manufactured by Tokai Toyo Aluminum Sales Co., Ltd., thickness 20 ⁇ m) and dried.
  • the positive electrode was produced by post-pressing. Further, an aluminum tab was attached to the exposed portion of the positive electrode current collector foil to produce a lead electrode.
  • Step 4 Production of Negative Electrode
  • the negative electrode active material slurry produced in the above (Step 2) was coated on a negative electrode current collector foil made of rolled copper foil (manufactured by Nippon Foil Co., Ltd., thickness 10 ⁇ m) and dried.
  • a negative electrode was produced by post-pressing. Further, a nickel tab was attached to the exposed portion of the negative electrode current collector foil to produce a lead electrode.
  • the prepared slurry for ceramic separator layer was coated on the negative electrode prepared in the above (Step 4) with a bar coater and then dried to form a ceramic separator layer having a thickness of 13 ⁇ m.
  • Step 6 Production of Lithium Ion-permeable Gel-Containing Layer (Precursor)
  • MEK methyl ethyl ketone
  • PBMA polybutyl methacrylate
  • Step 7 Production of Battery Cell
  • the positive electrode 1 produced in the above (Step 3), the ceramic separator layer 11 produced in the above (Step 6), and the lithium ion permeable gel-containing layer (precursor) The battery element 20 including a pair of electrodes (a positive electrode and a negative electrode) was manufactured by facing the negative electrode 2 provided with the body 12.
  • the produced battery element was sandwiched between two laminates, and three sides were subjected to thermocompression bonding with an impulse sealer to produce a laminate package (exterior body) having an opening on one side.
  • an electrolytic solution was injected into the inside of the opening of the laminate package.
  • an electrolytic solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 so as to be 1 M was used.
  • the lithium ion permeable gel-containing layer precursor
  • the electrolytic solution is impregnated with the electrolytic solution, whereby the original lithium ion permeable gel-containing layer is formed.
  • a lithium ion secondary battery battery was produced by vacuum-sealing the opening of the laminate package.
  • NMP N-methylpyrrolidone
  • Step 3 Production of Positive Electrode
  • the positive electrode active material slurry produced in (Step 1) above was coated on a positive electrode current collector foil made of aluminum foil (manufactured by Tokai Toyo Aluminum Sales Co., Ltd., thickness 20 ⁇ m) and dried.
  • the positive electrode was produced by post-pressing. Further, an aluminum tab was attached to the exposed portion of the positive electrode current collector foil to produce a lead electrode.
  • Step 4 Production of Negative Electrode
  • the negative electrode active material slurry produced in the above (Step 2) was coated on a negative electrode current collector foil made of rolled copper foil (manufactured by Nippon Foil Co., Ltd., thickness 10 ⁇ m) and dried.
  • a negative electrode was produced by post-pressing. Further, a nickel tab was attached to the exposed portion of the negative electrode current collector foil to produce a lead electrode.
  • Step 6 Preparation of lithium ion permeable gel-containing layer (precursor)
  • 1% by weight of benzophenone was dissolved to give 0.5% ethylene.
  • 2-ethylhexyl acrylate (manufactured by Nacalai Tesque) containing glycol diacrylate (manufactured by Aldrich) was applied with a bar coater after nitrogen bubbling for 10 minutes.
  • photopolymerization by UV was performed in a nitrogen atmosphere to form a lithium ion permeable gel-containing layer (precursor) having a chemical cross-linking structure with a film thickness of 2.1 ⁇ m.
  • Step 7 Production of Battery Cell
  • the positive electrode 1 produced in the above (Step 3) ie, the positive electrode in which neither the ceramic separator layer nor the lithium ion permeable gel-containing layer is formed
  • the negative electrode 2 provided with the ceramic separator layer 11 and the lithium ion permeable gel-containing layer (precursor) 12 produced in the above (Step 6) are opposed to each other from a pair of electrodes (positive electrode and negative electrode).
  • a battery element 20 was produced.
  • the produced battery element was sandwiched between two laminates, and three sides were subjected to thermocompression bonding with an impulse sealer to produce a laminate package (exterior body) having an opening on one side.
  • an electrolytic solution was injected into the inside of the opening of the laminate package.
  • an electrolytic solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 so as to be 1 M was used.
  • the lithium ion permeable gel-containing layer precursor
  • the electrolytic solution is impregnated with the electrolytic solution, whereby the original lithium ion permeable gel-containing layer is formed.
  • a lithium ion secondary battery battery was produced by vacuum-sealing the opening of the laminate package.
  • the short-circuit suppressing effect is particularly large when the lithium ion permeable gel-containing layer includes a gel having a chemical cross-linking structure.
  • a ceramic separator layer is formed on the surface of the negative electrode, and a lithium ion permeable gel-containing layer is formed on the ceramic separator layer.
  • the positive electrode and the negative electrode were joined to form a battery element without forming the conductive gel-containing layer (see FIG. 1).
  • a ceramic separator layer was formed on the surface of the positive electrode, A lithium ion permeable gel-containing layer is formed on the ceramic separator layer, and the positive electrode and the negative electrode are joined to the negative electrode without forming the ceramic separator layer and the lithium ion permeable gel-containing layer.
  • Le-containing layer 12 it is also possible to prepare a battery element 20 and a negative electrode 2. In this case as well, the same effects as those in the first and second embodiments can be obtained.
  • the positive electrode and the negative electrode are sandwiched between the ceramic separator layer and By bonding so that the lithium ion permeable gel-containing layer is interposed, as shown in FIG. 3, the positive electrode 1, the negative electrode 2, and the ceramic separator layer 11 (11 a, 11 a, 11 provided on the surfaces of the positive electrode 1 and the negative electrode 2).
  • 11b) and a battery element 20 having a structure including the lithium ion permeable gel-containing layer 12 positioned between the ceramic separator layers 11 (11a and 11b) can be formed.
  • the same effects as those in the first and second embodiments can be obtained.
  • the present invention is not limited to the above embodiment, and relates to specific constituent materials and forming methods such as a positive electrode and a negative electrode, a lithium ion permeable gel-containing layer, a ceramic separator layer, and the type of electrolytic solution.
  • specific constituent materials and forming methods such as a positive electrode and a negative electrode, a lithium ion permeable gel-containing layer, a ceramic separator layer, and the type of electrolytic solution.
  • Various applications and modifications can be made within the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are a lithium ion secondary battery which is superior in safety and enables the realization of high energy density and high power density at a low cost without using a polymer separator such as a porous polyolefin separator, and a production method therefor. A ceramic separator layer (11) which comprises a composite material including insulating inorganic microparticles and an organic material and which has lithium ion permeability is disposed on the surface of a positive electrode (1) and/or a negative electrode (2), and a lithium ion permeable gel-containing layer (12) which includes a gel having electron insulating properties and lithium ion permeability is disposed on the surface of the ceramic separator layer (11). The gel included in the lithium ion permeable gel-containing layer is a gel having a chemical crosslink structure. The ceramic separator layer is disposed on the positive electrode and/or the negative electrode, and the lithium ion permeable gel-containing layer is formed thereupon so as to prevent the occurrence of defects such as flaking in the ceramic separator layer.

Description

リチウムイオン二次電池およびその製造方法Lithium ion secondary battery and manufacturing method thereof
 本発明は、電池に関し、詳しくは、セラミックセパレータを用いた、経済性に優れ、かつ、信頼性の高い、リチウムイオン二次電池およびその製造方法に関する。 The present invention relates to a battery, and more particularly, to a lithium ion secondary battery using a ceramic separator, which is excellent in economic efficiency and high in reliability, and a manufacturing method thereof.
 リチウムイオン二次電池は、例えば、シート状の集電箔(アルミニウム箔または銅箔など)に、正極用活物質(リチウム複合酸化物)を塗工することにより形成された正極と、負極用活物質(活性炭、炭素など)を塗工することにより形成された負極を、正負極間の接触による短絡を防ぐためのセパレータを介して積層することにより構成された蓄電要素と、電解液とが、外装体内に収容された構造を有している。 A lithium ion secondary battery includes, for example, a positive electrode formed by applying a positive electrode active material (lithium composite oxide) to a sheet-like current collector foil (such as an aluminum foil or a copper foil), and a negative electrode active material. An electricity storage element constituted by laminating a negative electrode formed by coating a substance (activated carbon, carbon, etc.) via a separator for preventing a short circuit due to contact between the positive and negative electrodes, and an electrolytic solution, It has a structure accommodated in the exterior body.
 そのような電池として、特許文献1には、従来から用いられているポリオレフィン系延伸フィルムなどのセパレータ(以下、「ポリオレフィン系セパレータ」という)ではなく、有機高分子内に無機微粒子を分散させたセパレータ(以下、「セラミックセパレータ」ともいう)を用い、図4に模式的に示すように、このセラミックセパレータ111を、正極101と負極102の間に配置するようにした非水電解質電池が提案されている。 As such a battery, Patent Document 1 discloses a separator in which inorganic fine particles are dispersed in an organic polymer, instead of a conventionally used separator such as a polyolefin-based stretched film (hereinafter referred to as “polyolefin-based separator”). (Hereinafter also referred to as “ceramic separator”), as schematically shown in FIG. 4, a nonaqueous electrolyte battery in which the ceramic separator 111 is disposed between the positive electrode 101 and the negative electrode 102 has been proposed. Yes.
 上述の特許文献1において用いられているセラミックセパレータ111は、高温でも変形して収縮することがない。したがって、セラミックセパレータ111が意図せぬ高温にさらされても、その収縮による正極と負極のショートや発熱、発煙、発火などが生じることがなく、安全性を向上させることができる。例えば、釘さし試験においても発火しない安全性は、この特徴によるものである。 The ceramic separator 111 used in Patent Document 1 described above does not deform and shrink even at high temperatures. Therefore, even when the ceramic separator 111 is exposed to an unintended high temperature, the positive electrode and the negative electrode are not short-circuited by the contraction, heat generation, smoke generation, ignition, and the like are prevented, and safety can be improved. For example, the safety that does not ignite in the nail cutting test is due to this feature.
 しかしながら、表面凹凸の大きな電極を採用する場合に、セラミックセパレータのみで電子絶縁性を保持できないことから、セラミックセパレータ111のみで電子絶縁性を保持する構成で上市された電池はないのが実情である。 However, when an electrode having a large surface irregularity is employed, since the electronic insulation cannot be maintained only by the ceramic separator, there is actually no battery on the market in a configuration that maintains the electronic insulation only by the ceramic separator 111. .
 また、セラミックセパレータを採用し、低コストや低抵抗の要求に応えようとすると、その膜厚を薄くしなければならないが、表面凹凸の大きな電極を採用する場合、セラミックセパレータを薄くすると電子絶縁性を確保することができない。一方、電子絶縁性を確保するためにセラミックセパレータの膜厚を厚くすると電子絶縁性を確保することはできるが、膜厚を厚くすると、コストの増大や、抵抗の上昇を招くという問題点がある。このように、図4に示す構成の場合、低コスト、低抵抗、電子絶縁性の全てを満足することができないのが実情である。 In addition, if a ceramic separator is used to meet the demand for low cost and low resistance, the film thickness must be reduced. However, if an electrode with large surface irregularities is used, if the ceramic separator is thinned, the electronic insulating property Can not be secured. On the other hand, increasing the film thickness of the ceramic separator in order to ensure electronic insulation can ensure electronic insulation, but increasing the film thickness has the problem of increasing costs and increasing resistance. . As described above, in the case of the configuration shown in FIG. 4, the actual situation is that all of low cost, low resistance, and electronic insulation cannot be satisfied.
 また、特許文献2には、図5に模式的に示すように、正極101と負極102の間に、多孔質絶縁層(HRL)(実質的なセラミックセパレータ)111と、多孔質絶縁体(一般的に用いられるポリオレフィン系セパレータ)112とを設けるようにした非水電解質電池が提案されている。
 なお、多孔質絶縁層111は、絶縁性の無機微粒子と有機高分子からなる結着剤(バインダ)との混合物から形成されており、実質的に、セラミックセパレータと同じものである。
Further, in Patent Document 2, as schematically shown in FIG. 5, a porous insulating layer (HRL) (substantially ceramic separator) 111 and a porous insulator (general) are provided between the positive electrode 101 and the negative electrode 102. A non-aqueous electrolyte battery has been proposed in which a polyolefin-based separator 112 is used.
The porous insulating layer 111 is formed of a mixture of insulating inorganic fine particles and a binder (binder) made of an organic polymer, and is substantially the same as a ceramic separator.
 この特許文献2の構成の場合、ポリオレフィン系セパレータである多孔質絶縁体112と、絶縁性の無機微粒子と有機高分子からなる結着剤(バインダ)との混合物からなる多孔質絶縁層(セラミックセパレータ)111を、正極101と負極102の間に介在させ、高温でも収縮しない多孔質絶縁層(セラミックセパレータ)111を介在させることにより、正極と負極のショートや発熱、発火を抑制、防止して、安全性を向上させる一方、電子絶縁性に優れたポリオレフィン系セパレータである多孔質絶縁体112により、正負極間の電子絶縁性を確保できるようにしているが、ポリオレフィン系セパレータである多孔質絶縁体112を併用しているため、次のような問題点がある。 In the case of the configuration of Patent Document 2, a porous insulating layer (ceramic separator) made of a mixture of a porous insulator 112, which is a polyolefin-based separator, and a binder (binder) made of insulating inorganic fine particles and an organic polymer. ) 111 is interposed between the positive electrode 101 and the negative electrode 102, and by interposing a porous insulating layer (ceramic separator) 111 that does not shrink even at high temperatures, shorting, heat generation, and ignition of the positive electrode and the negative electrode are suppressed and prevented. While improving the safety, the porous insulator 112, which is a polyolefin-based separator excellent in electronic insulation, can ensure the electronic insulation between the positive and negative electrodes, but the porous insulator is a polyolefin-based separator. Since 112 is used in combination, there are the following problems.
 (a)ポリオレフィン系セパレータのコストは電池の原価の中で高い割合を占め、コスト増大の要因となる。
 (b)ポリオレフィン系セパレータは高抵抗でパワー特性の低下を招くため、その対策として、膜厚を薄くすることや、空隙率を高くすることが考えられるが、それらは容易ではなく、電池の高性能化を妨げる大きな要因となる。また、パワー特性を確保するために積層数を増加することが考えられるが、コストの増大を招く。
 (c)ポリオレフィン系セパレータの膜厚は通常、20~30μmと厚く、体積当たりのエネルギー密度が低くなるという問題点があり、また、セパレータの膜厚が薄くなるほど高エネルギー密度の電池を設計できるが、ポリオレフィン系セパレータの膜厚をハンドリング上の問題などから薄くすることは非常に困難である。
(A) The cost of the polyolefin separator occupies a high proportion of the cost of the battery, which causes an increase in cost.
(B) Polyolefin-based separators have high resistance and lead to deterioration of power characteristics. Therefore, as countermeasures, it is conceivable to reduce the film thickness or increase the porosity. This is a major factor that hinders performance. In addition, it is conceivable to increase the number of stacked layers in order to ensure power characteristics, but this causes an increase in cost.
(C) The film thickness of the polyolefin-based separator is usually as thick as 20 to 30 μm, and there is a problem that the energy density per volume decreases, and a battery with a higher energy density can be designed as the separator film thickness decreases. It is very difficult to reduce the film thickness of the polyolefin separator due to handling problems.
 また、特許文献3には、図6に模式的に示すように、正極101と負極102の間に、(a)第1絶縁層(イオン透過性ゲル)113、(b)第2絶縁層(リチウムイオン透過性を有するセラミックセパレータ)111、および(c)多孔質絶縁体(多孔質ポリオレフィン系セパレータ)112を備えるリチウムイオン二次電池が提案されている。 Further, in Patent Document 3, as schematically shown in FIG. 6, (a) a first insulating layer (ion-permeable gel) 113 and (b) a second insulating layer (between the positive electrode 101 and the negative electrode 102 ( A lithium ion secondary battery including a ceramic separator 111 having lithium ion permeability) and (c) a porous insulator (porous polyolefin separator) 112 has been proposed.
 この特許文献3の構成の場合、セラミックセパレータ(第2絶縁層)111と、多孔質ポリオレフィン系セパレータ(多孔質絶縁体)112を備えているので、上記特許文献2について上述した問題がそのままあてはまるばかりでなく、さらに、イオン透過性ゲル(第1絶縁層)113という構成要素が一つ加わることから、高コスト、高抵抗、エネルギー密度の低下、パワー密度の低下などの問題がより大きくなる。 In the case of the configuration of Patent Document 3, since the ceramic separator (second insulating layer) 111 and the porous polyolefin-based separator (porous insulator) 112 are provided, the above-described problem with respect to Patent Document 2 just applies. In addition, since one additional component of the ion-permeable gel (first insulating layer) 113 is added, problems such as high cost, high resistance, reduced energy density, and reduced power density become more serious.
特開2006-164761号公報JP 2006-164761 A 国際公開第2005-098997号パンフレットInternational Publication No. 2005-098997 Pamphlet 特開2010-267475号公報JP 2010-267475 A
 本発明は、上記問題点を解決するものであり、多孔質ポリオレフィン系セパレータなどのポリマーセパレータを用いずに、低コストで高エネルギー密度、高パワー密度を実現することが可能で、安全性に優れたリチウムイオン二次電池およびその製造方法を提供することを目的とする。 The present invention solves the above-described problems, and can achieve high energy density and high power density at low cost without using a polymer separator such as a porous polyolefin separator, and is excellent in safety. Another object of the present invention is to provide a lithium ion secondary battery and a method for manufacturing the same.
 上記課題を解決するために、本発明のリチウムイオン二次電池は、
 正極と、負極と、前記正極と前記負極の間に介在するように配設された、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層と、電解質とを含む電池要素と、前記電池要素を収容する外装体とを備え、
 前記セラミックセパレータ層は、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有し、前記正極と前記負極の少なくとも一方の表面に配設されており、
 前記リチウムイオン透過性ゲル含有層は、電子絶縁性と、リチウムイオン透過性を有するゲルを含み、前記セラミックセパレータ層の表面に配設されていること
 を特徴としている。
In order to solve the above problems, the lithium ion secondary battery of the present invention is
A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated With an exterior body,
The ceramic separator layer is made of a composite material containing insulating inorganic fine particles and an organic substance, has lithium ion permeability, and is disposed on at least one surface of the positive electrode and the negative electrode.
The lithium ion permeable gel-containing layer includes a gel having electronic insulation and lithium ion permeability, and is disposed on the surface of the ceramic separator layer.
 なお、本発明においては、セラミックセパレータ層として、リチウムイオン透過性を有し、かつ、電子絶縁性を有するものが用いられる。
 また、リチウムイオン透過性ゲル含有層として、リチウムイオン透過性を有する一方で、電子絶縁性を有するゲルを含むものが用いられる。
 また、リチウムイオン透過性ゲル含有層は、セラミックなどの絶縁性無機粉末を含んでいてもよい。
In the present invention, a ceramic separator layer having lithium ion permeability and electronic insulation is used.
Further, as the lithium ion permeable gel-containing layer, a layer containing a gel having an electronic insulating property while having lithium ion permeability is used.
The lithium ion permeable gel-containing layer may contain an insulating inorganic powder such as ceramic.
 また、本発明のリチウムイオン二次電池においては、前記セラミックセパレータ層は、前記正極および前記負極の両方の表面に設けられており、前記リチウムイオン透過性ゲル含有層は、前記正極の表面に設けられた前記セラミックセパレータ層と、前記負極の表面に設けられた前記セラミックセパレータ層の間に位置するように配設された構成とすることも可能である。 In the lithium ion secondary battery of the present invention, the ceramic separator layer is provided on both surfaces of the positive electrode and the negative electrode, and the lithium ion permeable gel-containing layer is provided on the surface of the positive electrode. It is also possible to adopt a configuration in which the ceramic separator layer is disposed so as to be positioned between the ceramic separator layer provided on the surface of the negative electrode.
 本発明のリチウムイオン二次電池においては、セラミックセパレータ層が正極と負極の一方の表面に配設され、そのセラミックセパレータ層の表面にリチウムイオン透過性ゲル含有層が形成されていることを要件としているが、セラミックセパレータ層を正極および負極の両方の表面に設けるとともに、各セラミックセパレータ層の表面、またはどちらか一方のセラミックセパレータ層の表面にリチウムイオン透過性ゲル含有層を配設した構成とすることも可能であり、その場合も、多孔質ポリオレフィン系セパレータなどのポリマーセパレータを用いずに、低コストで高エネルギー密度、高パワー密度を実現することが可能で、かつ安全性に優れたリチウムイオン二次電池を得ることができる。 In the lithium ion secondary battery of the present invention, the ceramic separator layer is disposed on one surface of the positive electrode and the negative electrode, and a lithium ion permeable gel-containing layer is formed on the surface of the ceramic separator layer. However, a ceramic separator layer is provided on both surfaces of the positive electrode and the negative electrode, and a lithium ion permeable gel-containing layer is provided on the surface of each ceramic separator layer or one of the ceramic separator layers. In such a case, lithium ion that can realize high energy density and high power density at low cost without using a polymer separator such as a porous polyolefin separator, and also has excellent safety. A secondary battery can be obtained.
 また、前記リチウムイオン透過性ゲル含有層に含まれるゲルが、化学架橋構造を有するゲルであることが好ましい。 Moreover, it is preferable that the gel contained in the lithium ion permeable gel-containing layer is a gel having a chemical crosslinking structure.
 リチウムイオン透過性ゲル含有層に含まれるゲルとして、化学架橋構造を有するゲルを用いた場合、化学架橋構造を有するゲルが力学的に剛直であることから、リチウムイオン透過性ゲル含有層に、正負極間の電子絶縁性を確保する機能を十分に持たせることが可能になり、本発明をより実効あらしめることができる。また一般に、化学架橋構造を有するゲルは膨潤性に優れることから、より電解液を保持することが可能となり、電池のライフの向上に寄与することができる。 When a gel having a chemically crosslinked structure is used as the gel contained in the lithium ion permeable gel-containing layer, the gel having the chemically crosslinked structure is mechanically rigid. It is possible to provide a sufficient function of ensuring electronic insulation between the negative electrodes, and the present invention can be more effectively realized. In general, since a gel having a chemical cross-linking structure is excellent in swelling property, it is possible to hold an electrolytic solution more and contribute to improvement in battery life.
 また、本発明のリチウムイオン二次電池の製造方法は、
 正極と、負極と、前記正極と前記負極の間に介在するように配設された、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層と、電解質とを含む電池要素と、前記電池要素を収容する外装体とを備えたリチウムイオン二次電池の製造方法であって、
 正極および負極の少なくとも一方の表面に、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有するセラミックセパレータ層を形成する工程と、
 前記セラミックセパレータ層の表面に、電子絶縁性と、リチウムイオン透過性を有するゲルを含むリチウムイオン透過性ゲル含有層を形成する工程と、
 前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えた、正極あるいは負極と、前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えていない負極あるいは正極とを接合して、正極と負極を対として備える電池素子を形成する工程と
 を具備することを特徴としている。
In addition, the method for producing the lithium ion secondary battery of the present invention includes:
A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated A method for producing a lithium ion secondary battery comprising an exterior body,
A step of forming a ceramic separator layer having a lithium ion permeability on a surface of at least one of a positive electrode and a negative electrode made of a composite material containing insulating inorganic fine particles and an organic substance;
On the surface of the ceramic separator layer, a step of forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability;
A positive electrode or a negative electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer, and a negative electrode or positive electrode not provided with the ceramic separator layer and the lithium ion permeable gel-containing layer are joined together; Forming a battery element comprising a pair of negative electrodes.
 また、本発明の他のリチウムイオン二次電池の製造方法は、
 正極と、負極と、前記正極と前記負極の間に介在するように配設された、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層と、電解質とを含む電池要素と、前記電池要素を収容する外装体とを備えたリチウムイオン二次電池の製造方法であって、
 正極および負極の両方の表面に、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有するセラミックセパレータ層を形成する工程と、
 前記セラミックセパレータ層の表面に、電子絶縁性と、リチウムイオン透過性を有するゲルを含むリチウムイオン透過性ゲル含有層を形成する工程と、
 前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えた、正極あるいは負極と、前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えた負極あるいは正極とを、前記正極と前記負極の間に前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層が介在するように接合して、正極と負極を対として備える電池素子を形成する工程と
 を具備することを特徴としている。
In addition, another method for producing a lithium ion secondary battery of the present invention is as follows.
A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated A method for producing a lithium ion secondary battery comprising an exterior body,
A step of forming a ceramic separator layer made of a composite material containing insulating inorganic fine particles and an organic material on both surfaces of the positive electrode and the negative electrode and having lithium ion permeability;
On the surface of the ceramic separator layer, a step of forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability;
A positive electrode or a negative electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer, and a negative electrode or positive electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer. And a step of forming a battery element including a positive electrode and a negative electrode as a pair, with the ceramic separator layer and the lithium ion permeable gel-containing layer interposed therebetween.
 本発明のリチウムイオン二次電池は、正極と負極の少なくとも一方の表面にセラミックセパレータ層を配設するとともに、セラミックセパレータ層の表面にリチウムイオン透過性ゲル含有層を形成するようにしているので、例えば、正極あるいは負極の表面に凹凸が存在し、セラミックセパレータ層だけでは、電子絶縁性を十分に確保して高い信頼性を実現することが容易でないような場合にも、多孔質のポリマーセパレータを用いることを必要とせずに、低コストで、高安全性、高エネルギー密度、高パワー密度を実現することが可能なリチウムイオン電池を得ることが可能になる。 Since the lithium ion secondary battery of the present invention has a ceramic separator layer disposed on at least one surface of the positive electrode and the negative electrode, and a lithium ion permeable gel-containing layer is formed on the surface of the ceramic separator layer, For example, even when there are irregularities on the surface of the positive electrode or negative electrode and it is not easy to achieve sufficient reliability by securing sufficient electronic insulation with a ceramic separator layer alone, a porous polymer separator is used. It is possible to obtain a lithium ion battery that can realize high safety, high energy density, and high power density at low cost without requiring use.
 なお、セラミックセパレータ層上にリチウムイオン透過性ゲル含有層を設けることにより、セラミックセパレータ層のハンドリング時などにおける欠落(いわゆる、粉落ち)や、セラミックセパレータ層のピンホールや欠落を原因とするショート不良などの発生を、抑制、防止することが可能になるが、これは、セラミックセパレータ層と他の部材との摩擦などの外的要因により生じるセラミックセパレータ層の欠落(粉落ち)がリチウムイオン透過性ゲル含有層により抑制され、あるいは、セラミックセパレータ層に生じた貫通ピンホールなどの欠陥がリチウムイオン透過性ゲル含有層により補完されることなどによるものである。 In addition, by providing a lithium ion permeable gel-containing layer on the ceramic separator layer, defects (so-called powder fall) during handling of the ceramic separator layer, or pinholes or defects in the ceramic separator layer are caused. It is possible to suppress or prevent the occurrence of such as, but this is because the lack of ceramic separator layer (powder falling) caused by external factors such as friction between the ceramic separator layer and other members is lithium ion permeable. This is because defects such as penetrating pinholes suppressed by the gel-containing layer or generated in the ceramic separator layer are complemented by the lithium ion-permeable gel-containing layer.
 なお、セラミックセパレータ層は基本的に、セラミックとバインダから構成されるが、セラミックの割合が増えるに伴い、リチウムイオンの透過に対する抵抗が小さくなる一方で、バインダが減少するためセラミックセパレータ層の強度は低下し、外的要因により欠落(粉落ち)を生じやすくなる。セラミックセパレータ層の上記抵抗と欠落(粉落ち)の生じやすさはトレードオフの関係にある。これに対し、本発明のように、セラミックセパレータ層の表面にリチウムイオン透過性ゲル含有層を設けることにより、粉落ちなどの欠陥の発生を抑制することができる。 The ceramic separator layer is basically composed of a ceramic and a binder, but as the ceramic ratio increases, the resistance to lithium ion permeation decreases, while the binder decreases, so the strength of the ceramic separator layer is It is easy to cause loss (powders) due to external factors. The resistance of the ceramic separator layer and the ease of occurrence of chipping (powder falling) are in a trade-off relationship. On the other hand, generation | occurrence | production of defects, such as powder fall, can be suppressed by providing a lithium ion permeable gel content layer on the surface of a ceramic separator layer like this invention.
 また、正極や負極の表面には、凹凸(突起)が存在し、その凸部がセラミックセパレータ層の表面に露出しているような場合において、リチウムイオン透過性ゲル含有層がない場合、対極に接触してショートを発生することになるが、セラミック積層体の表面に配設されたリチウムイオン透過性ゲル含有層がセラミックセパレータ層を補強するのでショート不良を抑制することができる。したがって、本発明によれば、多孔質のポリマーセパレータを採用することなしに、十分な特性と、信頼性を備えたリチウムイオン二次電池を実現することができる。 Further, when the surface of the positive electrode or the negative electrode has irregularities (protrusions) and the convex portions are exposed on the surface of the ceramic separator layer, and there is no lithium ion permeable gel-containing layer, Although a short circuit is caused by contact, a short circuit defect can be suppressed because the lithium ion permeable gel-containing layer disposed on the surface of the ceramic laminate reinforces the ceramic separator layer. Therefore, according to the present invention, a lithium ion secondary battery having sufficient characteristics and reliability can be realized without employing a porous polymer separator.
 また、本発明によれば、リチウムイオン透過性ゲル含有層が、セラミックセパレータ層を補強して、セラミックの割合をセラミックセパレータ層単体で用いる場合よりも多くして、低抵抗の設計とすることが可能になるため、電子絶縁性に優れ、かつ低抵抗で、リチウムイオンの透過性に優れたセラミックセパレータ層を備えた、高特性のリチウムイオン二次電池を得ることが可能になる。 In addition, according to the present invention, the lithium ion permeable gel-containing layer reinforces the ceramic separator layer, and the ceramic ratio is increased compared to the case where the ceramic separator layer is used alone, so that the low resistance design can be achieved. Therefore, it is possible to obtain a high-performance lithium ion secondary battery including a ceramic separator layer that has excellent electronic insulation, low resistance, and excellent lithium ion permeability.
 なお、本発明においては、セラミックセパレータ層は正極と負極のどちらか一方に形成すればたりるが、正極と負極の両方に形成することも可能である。
 またセラミックセパレータ層上に形成されるリチウムイオン透過性ゲル含有層は、セラミックなどの絶縁性無機粉末を含んでいてもよい。
In the present invention, the ceramic separator layer may be formed on either the positive electrode or the negative electrode, but may be formed on both the positive electrode and the negative electrode.
The lithium ion permeable gel-containing layer formed on the ceramic separator layer may contain an insulating inorganic powder such as ceramic.
 上述のように、本発明によれば、多孔質のポリマーセパレータを用いることが不要になることから、以下のような作用効果を得ることが可能になる。 As described above, according to the present invention, since it is not necessary to use a porous polymer separator, the following effects can be obtained.
 (1)多孔質のポリマーセパレータ(例えば、多孔質ポリオレフィン系セパレータ)のコストは電池の構成材料のコストの中で高い割合を占めるが、この多孔質のポリマーセパレータが不要になることにより、コストの低減を図ることができる。 (1) The cost of a porous polymer separator (for example, a porous polyolefin separator) occupies a high proportion of the cost of battery constituent materials. Reduction can be achieved.
 (2)また、リチウムイオン二次電池が積層型の電池である場合には、高抵抗のポリマーセパレータが不要であることから、所望のパワー特性を得るために必要な積層数を抑えることが可能になり、その面からもコストの削減を図ることができる。 (2) In addition, when the lithium ion secondary battery is a laminated battery, a high-resistance polymer separator is not required, so the number of layers required to obtain the desired power characteristics can be suppressed. Therefore, the cost can be reduced also from this aspect.
 (3)また、多孔質のポリマーセパレータ(例えば、多孔質ポリオレフィン系セパレータ)の膜厚は通常20~30μmと厚く、このように膜厚の大きいポリマーセパレータを不要にすることにより、体積当たりのエネルギー密度を高くすることができる(すなわち、多孔質のポリマーセパレータの存在は、エネルギー(あるいは容量)の発現に寄与しないので、このポリマーセパレータを不要にすることで、エネルギー密度を向上させることができる)。 (3) The thickness of the porous polymer separator (for example, a porous polyolefin separator) is usually 20 to 30 μm. By eliminating the need for such a large polymer separator, energy per volume is obtained. The density can be increased (that is, since the presence of a porous polymer separator does not contribute to the development of energy (or capacity), the energy density can be improved by making this polymer separator unnecessary). .
 また、本発明のリチウムイオン二次電池の製造方法は、正極および負極の少なくとも一方の表面に、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有するセラミックセパレータ層を形成するとともに、セラミックセパレータ層の表面に、電子絶縁性と、リチウムイオン透過性を有するゲルを含むリチウムイオン透過性ゲル含有層を形成した後、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層を備えた正極あるいは負極を、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層を備えていない負極あるいは正極と接合して、正極と負極を対として備える電池素子を形成するようにしているので、セラミックセパレータ層は、その表面がリチウムイオン透過性ゲル含有層により覆われた状態でハンドリングされることになるため、粉落ちなどが発生することを抑制、防止することが可能になるとともに、リチウムイオン透過性ゲル含有層がリチウムイオン透過性と電子絶縁性とを有していることから、多孔質のポリマーセパレータを採用することなしに、十分な特性と、信頼性を備えたリチウムイオン二次電池を製造することが可能になる。 The method for producing a lithium ion secondary battery according to the present invention includes forming a ceramic separator layer having lithium ion permeability on a surface of at least one of a positive electrode and a negative electrode, which is made of a composite material including insulating inorganic fine particles and an organic substance. In addition, after forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability on the surface of the ceramic separator layer, the ceramic separator layer and the lithium ion permeable gel-containing layer were provided. Since the positive electrode or the negative electrode is joined to the negative electrode or the positive electrode that does not include the ceramic separator layer and the lithium ion permeable gel-containing layer, a battery element including the positive electrode and the negative electrode as a pair is formed. The surface is covered with a lithium ion permeable gel-containing layer Therefore, the lithium ion permeable gel-containing layer has lithium ion permeability and electronic insulation. Therefore, it is possible to manufacture a lithium ion secondary battery having sufficient characteristics and reliability without using a porous polymer separator.
 また、正極および負極の両方の表面に、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有するセラミックセパレータ層を形成するとともに、セラミックセパレータ層の表面に、電子絶縁性と、リチウムイオン透過性を有するゲルを含むリチウムイオン透過性ゲル含有層を形成した後、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層を備えた正極あるいは負極と、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層を備えた負極あるいは正極とを、正極と負極の間にセラミックセパレータ層およびリチウムイオン透過性ゲル含有層が介在するように接合して、正極と負極を対として備える電池素子を形成するようにした場合にも、セラミックセパレータ層は、その表面がリチウムイオン透過性ゲル含有層により覆われた状態でハンドリングされることになるため、粉落ちなどが発生することを抑制、防止することが可能になるとともに、リチウムイオン透過性ゲル含有層がリチウムイオン透過性と電子絶縁性とを有していることから、多孔質のポリマーセパレータを採用することなしに、十分な特性と、信頼性を備えたリチウムイオン二次電池を製造することが可能になる。 Further, a ceramic separator layer made of a composite material containing insulating inorganic fine particles and an organic substance is formed on both surfaces of the positive electrode and the negative electrode, and a lithium ion permeable ceramic separator layer is formed. After forming a lithium ion permeable gel-containing layer including a gel having lithium ion permeability, a positive electrode or a negative electrode including the ceramic separator layer and the lithium ion permeable gel-containing layer, the ceramic separator layer, and the lithium ion permeable gel A negative electrode or a positive electrode provided with a containing layer is joined so that a ceramic separator layer and a lithium ion-permeable gel-containing layer are interposed between the positive electrode and the negative electrode, so as to form a battery element comprising a positive electrode and a negative electrode as a pair. Even when the ceramic separator layer is used, the surface of the ceramic separator layer Since it is handled in a state covered with an ion-permeable gel-containing layer, it is possible to suppress or prevent the occurrence of powder falling, and the lithium-ion-permeable gel-containing layer is permeable to lithium ions. Therefore, it is possible to manufacture a lithium ion secondary battery having sufficient characteristics and reliability without using a porous polymer separator.
本発明の実施形態にかかるリチウムイオン二次電池(電池素子)の構成を模式的に示す図である。It is a figure which shows typically the structure of the lithium ion secondary battery (battery element) concerning embodiment of this invention. 本発明の実施形態にかかるリチウムイオン二次電池(電池素子)の変形例を模式的に示す図である。It is a figure which shows typically the modification of the lithium ion secondary battery (battery element) concerning embodiment of this invention. 本発明の実施形態にかかるリチウムイオン二次電池(電池素子)の他の変形例を模式的に示す図である。It is a figure which shows typically the other modification of the lithium ion secondary battery (battery element) concerning embodiment of this invention. 特許文献1に開示された従来のリチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the conventional lithium ion secondary battery disclosed by patent document 1. FIG. 特許文献2に開示された従来のリチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the conventional lithium ion secondary battery disclosed by patent document 2. FIG. 特許文献3に開示された従来のリチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the conventional lithium ion secondary battery disclosed by patent document 3. FIG.
 以下に本発明の実施の形態を示して、本発明の特徴とするところを詳しく説明する。 Hereinafter, embodiments of the present invention will be shown, and features of the present invention will be described in detail.
 [実施形態1]
 <リチウムイオン二次電池の作製>
 (工程1)正極活物質スラリーの作製 
 マンガン酸リチウム(戸田工業(株)製、HPM-7051、平均粒子径D50=6.1μm)88g、黒鉛(ティムカル社製、KS-6)2g、黒鉛(ティムカル社製、Super P Li)6gを秤量した。
[Embodiment 1]
<Production of lithium ion secondary battery>
(Step 1) Preparation of positive electrode active material slurry
88 g of lithium manganate (manufactured by Toda Kogyo Co., Ltd., HPM-7051, average particle diameter D 50 = 6.1 μm), 2 g of graphite (manufactured by Timcal, KS-6), 6 g of graphite (manufactured by Timcal, Super P Li) Was weighed.
 そして、秤量した各材料を1000mLのポットに入れ、さらに直径1.0mmのPSZ製粉砕メディア、溶媒としてN-メチルピロリドン(以下NMP)を200g添加した。それから、転動ボールミルを用いて150rpmで24時間混合して分散を行った。これによりマンガン酸リチウムの二次粒子は解砕され、平均粒径D50は2.1μmとなった。 Then, each weighed material was put into a 1000 mL pot, and PSG grinding media having a diameter of 1.0 mm and 200 g of N-methylpyrrolidone (hereinafter referred to as NMP) as a solvent were added. Then, the mixture was dispersed by mixing at 150 rpm for 24 hours using a rolling ball mill. As a result, the secondary particles of lithium manganate were crushed, and the average particle diameter D 50 was 2.1 μm.
 上述のようにして各材料を分散させた溶液に、ポリフッ化ビニリデン((株)クレハ製、#7208)の10質量%NMP溶液を40g加えて、さらに転動ボールミルを用いて150rpmで4時間混合し、正極活物質用スラリーを作製した。 40 g of a 10% by mass NMP solution of polyvinylidene fluoride (manufactured by Kureha Co., Ltd., # 7208) is added to the solution in which each material is dispersed as described above, and further mixed at 150 rpm for 4 hours using a rolling ball mill. Then, a positive electrode active material slurry was prepared.
 (工程2)負極活物質スラリーの作製
 チタン酸リチウム(石原産業(株)製、XA-105、メジアン径6.7μm)91g、アセチレンブラック(電気化学工業(株)製、HS-100)4gを秤量した。
(Step 2) Preparation of negative electrode active material slurry 91 g of lithium titanate (Ishihara Sangyo Co., Ltd., XA-105, median diameter 6.7 μm), 4 g of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., HS-100) Weighed.
 そして、秤量した各材料を1000mLのポットに入れ、さらに直径1.0mmのPSZ製粉砕メディア、溶媒としてNMPを200g添加した。それから、転動ボールミルを用いて150rpmで24時間混合して分散を行った。これによりチタン酸リチウムの二次粒子は解砕され、平均粒径D50は2.3μmとなった。 Then, each weighed material was put in a 1000 mL pot, and 200 g of NMP was added as a PSZ grinding medium having a diameter of 1.0 mm and a solvent. Then, the mixture was dispersed by mixing at 150 rpm for 24 hours using a rolling ball mill. As a result, the secondary particles of lithium titanate were crushed, and the average particle diameter D 50 was 2.3 μm.
 上述のようにして各材料を分散させた溶液に、ポリフッ化ビニリデン((株)クレハ製、#7208)の10質量%NMP溶液50gを加えて、さらに転動ボールミルを用いて150rpmで4時間混合し、負極活物質用スラリーを作製した。 50 g of a 10% by mass NMP solution of polyvinylidene fluoride (manufactured by Kureha Co., Ltd., # 7208) is added to the solution in which each material is dispersed as described above, and further mixed at 150 rpm for 4 hours using a rolling ball mill. Thus, a slurry for negative electrode active material was prepared.
 (工程3)正極の作製
 上記(工程1)で作製した正極活物質スラリーをアルミ箔(東海東洋アルミ販売(株)製、厚さ20μm)からなる正極集電体箔上に塗工し、乾燥後プレスすることにより正極を作製した。さらに正極集電箔の露出した部分にアルミタブを取り付け、引き出し電極を作製した。
(Step 3) Production of Positive Electrode The positive electrode active material slurry produced in (Step 1) above was coated on a positive electrode current collector foil made of aluminum foil (manufactured by Tokai Toyo Aluminum Sales Co., Ltd., thickness 20 μm) and dried. The positive electrode was produced by post-pressing. Further, an aluminum tab was attached to the exposed portion of the positive electrode current collector foil to produce a lead electrode.
 (工程4)負極の作製
 上記(工程2)で作製した負極活物質スラリーを圧延銅箔(日本製箔(株)製、厚さ10μm)からなる負極集電体箔上に塗工し、乾燥後プレスすることにより負極を作製した。さらに負極集電箔の露出した部分にニッケルタブを取り付け、引き出し電極を作製した。
(Step 4) Production of Negative Electrode The negative electrode active material slurry produced in the above (Step 2) was coated on a negative electrode current collector foil made of rolled copper foil (manufactured by Nippon Foil Co., Ltd., thickness 10 μm) and dried. A negative electrode was produced by post-pressing. Further, a nickel tab was attached to the exposed portion of the negative electrode current collector foil to produce a lead electrode.
 (工程5)セラミックセパレータ層の形成
 500mLのポットに、球状アルミナ粉末(電気化学工業(株)製、平均粒子径D50=0.3μm)100gと、溶剤としてNMP80gを投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150rpmで16時間混合し、分散を行った。
(Step 5) Formation of ceramic separator layer A 500 mL pot was charged with 100 g of spherical alumina powder (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle diameter D 50 = 0.3 μm) and 80 g of NMP as a solvent. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
 その後、PVDF-HFP(アルケマ社製、Kynar#2850)のバインダ溶液(20質量%NMP溶液)を67.8g入れ、転動ボールミルを用いて150rpmで4時間混合し、PVC(顔料体積濃度)80%のセラミックセパレータ層用スラリーを作製した。 Thereafter, 67.8 g of a binder solution (20 mass% NMP solution) of PVDF-HFP (manufactured by Arkema Co., Ltd., Kynar # 2850) was added and mixed for 4 hours at 150 rpm using a rolling ball mill, and PVC (pigment volume concentration) 80 % Slurry for ceramic separator layer.
 作製したセラミックセパレータ層用スラリーを、上記(工程4)で作製した負極上にバーコーターで塗工した後、乾燥させて膜厚13μmのセラミックセパレータ層を形成した。 The prepared slurry for ceramic separator layer was coated on the negative electrode prepared in the above (Step 4) with a bar coater and then dried to form a ceramic separator layer having a thickness of 13 μm.
 (工程6)リチウムイオン透過性ゲル含有層(前駆体)の作製
 まず、ポリメタクリル酸ブチル(Aldrich製、以下PBMA)の20質量%メチルエチルケトン(以下MEK)溶液を作製した。作製したPBMAのMEK溶液を、上記(工程5)で、セラミックセパレータ層を形成した負極上にバーコーターで塗工した後、乾燥させることにより、負極上に、セラミックセパレータ層を介して、膜厚1.0μmのリチウムイオン透過性ゲル含有層(前駆体)を形成した。
(Step 6) Production of Lithium Ion-permeable Gel-Containing Layer (Precursor) First, a 20% by mass methyl ethyl ketone (hereinafter MEK) solution of polybutyl methacrylate (manufactured by Aldrich, hereinafter PBMA) was produced. The prepared PBMA MEK solution was coated with a bar coater on the negative electrode on which the ceramic separator layer was formed in the above (Step 5), and then dried, whereby the film thickness was formed on the negative electrode via the ceramic separator layer. A 1.0 μm lithium ion permeable gel-containing layer (precursor) was formed.
 (工程7)電池セルの作製
 図1に示すように、上記(工程3)で作製した正極1と、上記(工程6)で作製した、セラミックセパレータ層11とリチウムイオン透過性ゲル含有層(前駆体)12と備えた負極2とを対向させ、1対の電極(正極と負極)からなる電池素子20を作製した。
(Step 7) Production of Battery Cell As shown in FIG. 1, the positive electrode 1 produced in the above (Step 3), the ceramic separator layer 11 produced in the above (Step 6), and the lithium ion permeable gel-containing layer (precursor) The battery element 20 including a pair of electrodes (a positive electrode and a negative electrode) was manufactured by facing the negative electrode 2 provided with the body 12.
 それから、作製した電池素子を2枚のラミネートで挟み、3辺をインパルスシーラーにより熱圧着することにより、一辺に開口部を備えたラミネートパッケージ(外装体)を作製した。 Then, the produced battery element was sandwiched between two laminates, and three sides were subjected to thermocompression bonding with an impulse sealer to produce a laminate package (exterior body) having an opening on one side.
 次に、ラミネートパッケージの開口部からその内部に電解液を注液した。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の体積比3:7混合溶媒に、1Mになるように六フッ化リン酸リチウム(LiPF6)を溶解させた電解液を使用した。ここでリチウムイオン透過性ゲル含有層(前駆体)に電解液が含侵することで、本来のリチウムイオン透過性ゲル含有層が形成される。
 最後にラミネートパッケージの開口部分を真空シールすることによりリチウムイオン二次電池(電池セル)を作製した。
Next, an electrolytic solution was injected into the inside of the opening of the laminate package. As the electrolytic solution, an electrolytic solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 so as to be 1 M was used. . Here, the lithium ion permeable gel-containing layer (precursor) is impregnated with the electrolytic solution, whereby the original lithium ion permeable gel-containing layer is formed.
Finally, a lithium ion secondary battery (battery cell) was produced by vacuum-sealing the opening of the laminate package.
 <特性の評価>
 上述のようにして作製したリチウムイオン二次電池(電池セル)の特性を評価するため、10個のリチウムイオン二次電池について、ショート不良の発生の有無を確認した。ショート不良の判断は、2.2Vまでセルを充電後1週間放置し、セルの電圧を測定して、電圧が2.1V以上のセルを良品、2.1V未満のセルをショート不良とした。その結果を表1に示す。
<Evaluation of characteristics>
In order to evaluate the characteristics of the lithium ion secondary battery (battery cell) produced as described above, the presence or absence of occurrence of short-circuit failure was confirmed for 10 lithium ion secondary batteries. Judgment of short circuit was made by leaving the cell to 2.2V for 1 week and measuring the cell voltage, and the cell having a voltage of 2.1V or higher was regarded as a non-defective product, and the cell having a voltage of less than 2.1V was regarded as short circuit. The results are shown in Table 1.
 また、比較のため、上記(工程6)における、リチウムイオン透過性ゲル含有層の形成を行わない(すなわち、リチウムイオン透過性ゲル含有層を形成しない)こと以外、全く同一の方法で作製したリチウムイオン二次電池(正極と負極の間にセラミックセパレータ層のみを有するリチウムイオン二次電池)についても同様の評価を行った。その結果を表1に併せて示す。 For comparison, lithium prepared in exactly the same manner except that the formation of the lithium ion permeable gel-containing layer in (Step 6) is not performed (that is, the lithium ion permeable gel-containing layer is not formed). The same evaluation was performed on an ion secondary battery (a lithium ion secondary battery having only a ceramic separator layer between the positive electrode and the negative electrode). The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の実施形態1にかかるリチウムイオン二次電池の場合、評価に供した10個のリチウムイオン二次電池のうち1個についてのみショートの発生が認められた。 As shown in Table 1, in the case of the lithium ion secondary battery according to Embodiment 1 of the present invention, occurrence of a short circuit was observed in only one of the 10 lithium ion secondary batteries used for evaluation.
 一方、リチウムイオン透過性ゲル含有層を備えていない、比較用のリチウムイオン二次電池の場合、評価に供した10個のリチウムイオン二次電池のすべてにおいて、ショートの発生が認められた。 On the other hand, in the case of the comparative lithium ion secondary battery not provided with the lithium ion permeable gel-containing layer, occurrence of a short circuit was observed in all of the ten lithium ion secondary batteries used for evaluation.
 上記結果より、セラミックセパレータ層とリチウムイオン透過性ゲル含有層を組み合わせて用いた場合、ショート不良を抑制、防止できることがわかる。これは、リチウムイオン透過性ゲル含有層により、セラミックセパレータ層に生じた貫通ピンホールなどの欠陥が補完され、あるいは、セラミックセパレータ層と他の部材との摩擦などの外的要因により、セラミックセパレータ層の欠落(粉落ち)などが、リチウムイオン透過性ゲル含有層により抑制されることなどによるものである。 From the above results, it can be seen that short-circuit defects can be suppressed and prevented when a ceramic separator layer and a lithium ion permeable gel-containing layer are used in combination. This is because the lithium ion permeable gel-containing layer complements defects such as through pin holes generated in the ceramic separator layer, or due to external factors such as friction between the ceramic separator layer and other members. This is because, for example, the lack (powder omission) is suppressed by the lithium ion permeable gel-containing layer.
 [実施形態2]
 <リチウムイオン二次電池の作製>
 (工程1)正極活物質スラリーの作製
 リン酸鉄リチウム(三井造船(株)製、EF014-LCC、平均粒子径D50=13.2μm)84g、アセチレンブラック(電気化学工業(株)製、HS-100)12g、N-メチルピロリドン(以下NMP)100g、ポリフッ化ビニリデン((株)クレハ製、#7208)の10質量%NMP溶液40gを秤量し、プラネタリーミキサーで撹拌することにより、正極活物質用スラリーを作製した。
[Embodiment 2]
<Production of lithium ion secondary battery>
(Step 1) Preparation of positive electrode active material slurry Lithium iron phosphate (Mitsui Zosen Co., Ltd., EF014-LCC, average particle diameter D 50 = 13.2 μm) 84 g, acetylene black (Denki Kagaku Kogyo Co., Ltd., HS −100) 12 g, N-methylpyrrolidone (hereinafter referred to as NMP) 100 g, and 40 g of a 10% by mass NMP solution of polyvinylidene fluoride (manufactured by Kureha Co., Ltd., # 7208) were weighed and stirred with a planetary mixer to obtain a positive electrode active A material slurry was prepared.
 (工程2)負極活物質スラリーの作製
 グラファイト(三菱化学(株)製、GTR6、平均粒子径D50=11.0μm)85g、導電助剤(日立化成(株)製、SMSC10-4V3)15g、NMP100g、ポリフッ化ビニリデン((株)クレハ製、#7305)の10質量%NMP溶液53gを秤量し、プラネタリーミキサーで撹拌して負極活物質用スラリーを作製した。
(Step 2) Preparation of negative electrode active material slurry: 85 g of graphite (manufactured by Mitsubishi Chemical Corporation, GTR6, average particle diameter D 50 = 11.0 μm), 15 g of conductive additive (manufactured by Hitachi Chemical Co., Ltd., SMSC10-4V3), NMP 100g and polyvinylidene fluoride (manufactured by Kureha Co., Ltd., # 7305) 10 mass% NMP solution 53g were weighed and stirred with a planetary mixer to prepare a slurry for negative electrode active material.
 (工程3)正極の作製
 上記(工程1)で作製した正極活物質スラリーをアルミ箔(東海東洋アルミ販売(株)製、厚さ20μm)からなる正極集電体箔上に塗工し、乾燥後プレスすることにより正極を作製した。さらに正極集電箔の露出した部分にアルミタブを取り付け、引き出し電極を作製した。
(Step 3) Production of Positive Electrode The positive electrode active material slurry produced in (Step 1) above was coated on a positive electrode current collector foil made of aluminum foil (manufactured by Tokai Toyo Aluminum Sales Co., Ltd., thickness 20 μm) and dried. The positive electrode was produced by post-pressing. Further, an aluminum tab was attached to the exposed portion of the positive electrode current collector foil to produce a lead electrode.
 (工程4)負極の作製
 上記(工程2)で作製した負極活物質スラリーを圧延銅箔(日本製箔(株)製、厚さ10μm)からなる負極集電体箔上に塗工し、乾燥後プレスすることにより負極を作製した。さらに負極集電箔の露出した部分にニッケルタブを取り付け、引き出し電極を作製した。
(Step 4) Production of Negative Electrode The negative electrode active material slurry produced in the above (Step 2) was coated on a negative electrode current collector foil made of rolled copper foil (manufactured by Nippon Foil Co., Ltd., thickness 10 μm) and dried. A negative electrode was produced by post-pressing. Further, a nickel tab was attached to the exposed portion of the negative electrode current collector foil to produce a lead electrode.
 (工程5)セラミックセパレータ層の形成
 500mLのポットに、球状アルミナ粉末(電気化学工業(株)製、平均粒子径D50=0.3μm)100gと、溶剤としてNMP80gを投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150rpmで16時間混合し、分散を行った。
 その後、PVDF-HFP(アルケマ社製、Kynar#2850)のバインダ溶液(20質量%NMP溶液)を67.8g入れ、転動ボールミルを用いて150rpmで4時間混合し、PVC(顔料容積濃度)80%のセラミックセパレータ層用スラリーを作製した。
 作製したセラミックセパレータ層用スラリーを、上記(工程4)で作製した負極上にバーコーターで塗工した後、乾燥させて膜厚13μmのセラミックセパレータ層を形成した。
(Step 5) Formation of ceramic separator layer A 500 mL pot was charged with 100 g of spherical alumina powder (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle diameter D 50 = 0.3 μm) and 80 g of NMP as a solvent. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
Thereafter, 67.8 g of a binder solution (20 mass% NMP solution) of PVDF-HFP (manufactured by Arkema Co., Ltd., Kynar # 2850) was added, mixed for 4 hours at 150 rpm using a rolling ball mill, and PVC (pigment volume concentration) 80 % Slurry for ceramic separator layer.
The prepared slurry for ceramic separator layer was coated on the negative electrode prepared in the above (Step 4) with a bar coater and then dried to form a ceramic separator layer having a thickness of 13 μm.
 (工程6)リチウムイオン透過性ゲル含有層(前駆体)の作製
 上記(工程5)で負極上に形成したセラミックセパレータ層上に、ベンゾフェノンを重量比で1%溶解させ、0.5%のエチレングリコールジアクリレート(Aldrich製)を含む2-エチルヘキシルアクリレート(ナカライテスク(株)製)を、窒素バブリングを10分間行った後、バーコーターで塗工した。それから、窒素雰囲気中でUVによる光重合を行い、膜厚2.1μmの化学架橋構造を有するリチウムイオン透過性ゲル含有層(前駆体)を形成した。
(Step 6) Preparation of lithium ion permeable gel-containing layer (precursor) On the ceramic separator layer formed on the negative electrode in the above (Step 5), 1% by weight of benzophenone was dissolved to give 0.5% ethylene. 2-ethylhexyl acrylate (manufactured by Nacalai Tesque) containing glycol diacrylate (manufactured by Aldrich) was applied with a bar coater after nitrogen bubbling for 10 minutes. Then, photopolymerization by UV was performed in a nitrogen atmosphere to form a lithium ion permeable gel-containing layer (precursor) having a chemical cross-linking structure with a film thickness of 2.1 μm.
 (工程7)電池セルの作製
 図1に示すように、上記(工程3)で作製した正極1(すなわち、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層のいずれもが形成されていない状態の正極)と、上記(工程6)で作製した、セラミックセパレータ層11とリチウムイオン透過性ゲル含有層(前駆体)12とを備えた負極2とを対向させ、1対の電極(正極と負極)からなる電池素子20を作製した。
(Step 7) Production of Battery Cell As shown in FIG. 1, the positive electrode 1 produced in the above (Step 3) (ie, the positive electrode in which neither the ceramic separator layer nor the lithium ion permeable gel-containing layer is formed) ) And the negative electrode 2 provided with the ceramic separator layer 11 and the lithium ion permeable gel-containing layer (precursor) 12 produced in the above (Step 6) are opposed to each other from a pair of electrodes (positive electrode and negative electrode). A battery element 20 was produced.
 それから、作製した電池素子を2枚のラミネートで挟み、3辺をインパルスシーラーにより熱圧着することにより、一辺に開口部を備えたラミネートパッケージ(外装体)を作製した。 Then, the produced battery element was sandwiched between two laminates, and three sides were subjected to thermocompression bonding with an impulse sealer to produce a laminate package (exterior body) having an opening on one side.
 次に、ラミネートパッケージの開口部からその内部に電解液を注液した。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の体積比3:7混合溶媒に、1Mになるように六フッ化リン酸リチウム(LiPF6)を溶解させた電解液を使用した。ここでリチウムイオン透過性ゲル含有層(前駆体)に電解液が含侵することで、本来のリチウムイオン透過性ゲル含有層が形成される。最後にラミネートパッケージの開口部分を真空シールすることによりリチウムイオン二次電池(電池セル)を作製した。 Next, an electrolytic solution was injected into the inside of the opening of the laminate package. As the electrolytic solution, an electrolytic solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 so as to be 1 M was used. . Here, the lithium ion permeable gel-containing layer (precursor) is impregnated with the electrolytic solution, whereby the original lithium ion permeable gel-containing layer is formed. Finally, a lithium ion secondary battery (battery cell) was produced by vacuum-sealing the opening of the laminate package.
 <特性の評価>
 上述のようにして作製したリチウムイオン二次電池(電池セル)の特性を評価するため、10個のリチウムイオン二次電池について、ショート不良の発生の有無を確認した。ショート不良の判断は、3.5Vまでセルを充電後1週間放置し、1週間後にセルの電圧を測定して3.4V以上のセルを良品、3.4V未満のセルをショート不良とした。その結果を表2に示す。
<Evaluation of characteristics>
In order to evaluate the characteristics of the lithium ion secondary battery (battery cell) produced as described above, the presence or absence of occurrence of short-circuit failure was confirmed for 10 lithium ion secondary batteries. Judgment of a short circuit was made by leaving the cell to 3.5 V for 1 week, and measuring the voltage of the cell after 1 week, and determining a cell of 3.4 V or higher as a non-defective product and a cell of less than 3.4 V as a short circuit. The results are shown in Table 2.
 また、比較のため、上記(工程6)における、リチウムイオン透過性ゲル含有層の形成を行わない(すなわち、リチウムイオン透過性ゲル含有層を形成しない)こと以外、全く同一の方法で作製したリチウムイオン二次電池(正極と負極の間にセラミックセパレータ層のみを有するリチウムイオン二次電池)についても同様の評価を行った。その結果を表2に併せて示す。 For comparison, lithium prepared in exactly the same manner except that the formation of the lithium ion permeable gel-containing layer in (Step 6) is not performed (that is, the lithium ion permeable gel-containing layer is not formed). The same evaluation was performed for an ion secondary battery (a lithium ion secondary battery having only a ceramic separator layer between the positive electrode and the negative electrode). The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の実施形態2にかかるリチウムイオン二次電池の場合、評価に供した10個のリチウムイオン二次電池のすべてにおいて、ショートの発生は認められなかった。 As shown in Table 2, in the case of the lithium ion secondary battery according to Embodiment 2 of the present invention, no short circuit was observed in all of the 10 lithium ion secondary batteries used for evaluation.
 一方、リチウムイオン透過性ゲル含有層を形成していない、比較用のリチウムイオン二次電池の場合、評価に供した10個のリチウムイオン二次電池のうちのすべてにおいて、ショートの発生が認められた。 On the other hand, in the case of the comparative lithium ion secondary battery in which the lithium ion permeable gel-containing layer is not formed, occurrence of a short circuit is observed in all of the ten lithium ion secondary batteries used for evaluation. It was.
 上記結果より、セラミックセパレータ層とリチウムイオン透過性ゲル含有層を組み合わせて用いた場合、ショート不良を抑制、防止できることがわかる。これは、リチウムイオン透過性ゲル含有層により、セラミックセパレータ層に生じた貫通ピンホールなどの欠陥が補完され、あるいは、セラミックセパレータ層と他の部材との摩擦などの外的要因により、セラミックセパレータ層の欠落(粉落ち)などが、リチウムイオン透過性ゲル含有層により抑制されることなどによるものである。 From the above results, it can be seen that short-circuit defects can be suppressed and prevented when a ceramic separator layer and a lithium ion permeable gel-containing layer are used in combination. This is because the lithium ion permeable gel-containing layer complements defects such as through pin holes generated in the ceramic separator layer, or due to external factors such as friction between the ceramic separator layer and other members. This is because, for example, the lack (powder omission) is suppressed by the lithium ion permeable gel-containing layer.
 また、リチウムイオン透過性ゲル含有層が化学架橋構造を有するゲルを含むものである場合、特にショート抑制効果が大きいことが確認された。 In addition, it was confirmed that the short-circuit suppressing effect is particularly large when the lithium ion permeable gel-containing layer includes a gel having a chemical cross-linking structure.
 [変形例]
 上記実施形態1および2では、負極の表面に、セラミックセパレータ層を形成するとともに、該セラミックセパレータ層の上にリチウムイオン透過性ゲル含有層を形成し、正極には、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層を形成せずに、上記正極と負極を接合して電池素子を形成したが(図1参照)、これとは逆に、正極の表面に、セラミックセパレータ層を形成するとともに、該セラミックセパレータ層の上にリチウムイオン透過性ゲル含有層を形成し、負極には、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層を形成せずに、上記正極と負極を接合して、図2に示すように、正極1と、その表面に形成されたセラミックセパレータ層11と、さらにその表面に形成されたリチウムイオン透過性ゲル含有層12と、負極2とを備えた電池素子20を作製することも可能である。なお、この場合も、上記実施形態1および2の場合と同様の作用効果を得ることができる。
[Modification]
In the first and second embodiments, a ceramic separator layer is formed on the surface of the negative electrode, and a lithium ion permeable gel-containing layer is formed on the ceramic separator layer. The positive electrode and the negative electrode were joined to form a battery element without forming the conductive gel-containing layer (see FIG. 1). On the contrary, a ceramic separator layer was formed on the surface of the positive electrode, A lithium ion permeable gel-containing layer is formed on the ceramic separator layer, and the positive electrode and the negative electrode are joined to the negative electrode without forming the ceramic separator layer and the lithium ion permeable gel-containing layer. As shown, the positive electrode 1, the ceramic separator layer 11 formed on the surface thereof, and the lithium ion permeability formed on the surface thereof. And Le-containing layer 12, it is also possible to prepare a battery element 20 and a negative electrode 2. In this case as well, the same effects as those in the first and second embodiments can be obtained.
 また、正極と負極の両方の表面にセラミックセパレータ層を形成し、さらにそのセラミックセパレータ層上にリチウムイオン透過性ゲル含有層を形成した後、正極と負極とを、両者間に、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層が介在するように接合することにより、図3に示すように、正極1と、負極2と、正極1および負極2の表面に設けられたセラミックセパレータ層11(11a,11b)と、このセラミックセパレータ層11(11a,11b)間に位置するリチウムイオン透過性ゲル含有層12とを備えた構造を有する電池素子20を形成することも可能である。なお、この場合も、上記実施形態1および2の場合と同様の作用効果を得ることができる。 Moreover, after forming a ceramic separator layer on both surfaces of the positive electrode and the negative electrode, and further forming a lithium ion permeable gel-containing layer on the ceramic separator layer, the positive electrode and the negative electrode are sandwiched between the ceramic separator layer and By bonding so that the lithium ion permeable gel-containing layer is interposed, as shown in FIG. 3, the positive electrode 1, the negative electrode 2, and the ceramic separator layer 11 (11 a, 11 a, 11 provided on the surfaces of the positive electrode 1 and the negative electrode 2). 11b) and a battery element 20 having a structure including the lithium ion permeable gel-containing layer 12 positioned between the ceramic separator layers 11 (11a and 11b) can be formed. In this case as well, the same effects as those in the first and second embodiments can be obtained.
 なお、本発明は、上記実施形態に限定されるものではなく、正極や負極、リチウムイオン透過性ゲル含有層、セラミックセパレータ層などの具体的な構成材料や形成方法、電解液の種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment, and relates to specific constituent materials and forming methods such as a positive electrode and a negative electrode, a lithium ion permeable gel-containing layer, a ceramic separator layer, and the type of electrolytic solution. Various applications and modifications can be made within the scope of the invention.
 1   正極
 2   負極
 11(11a,11b)  セラミックセパレータ層
 12  リチウムイオン透過性ゲル含有層
 20  電池素子
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 11 (11a, 11b) Ceramic separator layer 12 Lithium ion permeable gel content layer 20 Battery element

Claims (5)

  1.  正極と、負極と、前記正極と前記負極の間に介在するように配設された、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層と、電解質とを含む電池要素と、前記電池要素を収容する外装体とを備え、
     前記セラミックセパレータ層は、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有し、前記正極と前記負極の少なくとも一方の表面に配設されており、
     前記リチウムイオン透過性ゲル含有層は、電子絶縁性と、リチウムイオン透過性を有するゲルを含み、前記セラミックセパレータ層の表面に配設されていること
     を特徴とするリチウムイオン二次電池。
    A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated With an exterior body,
    The ceramic separator layer is made of a composite material containing insulating inorganic fine particles and an organic substance, has lithium ion permeability, and is disposed on at least one surface of the positive electrode and the negative electrode.
    The lithium ion permeable gel-containing layer includes a gel having electronic insulation properties and lithium ion permeability, and is disposed on a surface of the ceramic separator layer.
  2.  前記セラミックセパレータ層は、前記正極および前記負極の両方の表面に設けられており、
     前記リチウムイオン透過性ゲル含有層は、前記正極の表面に設けられた前記セラミックセパレータ層と、前記負極の表面に設けられた前記セラミックセパレータ層の間に位置するように配設されていること
     を特徴とする請求項1記載のリチウムイオン二次電池。
    The ceramic separator layer is provided on the surfaces of both the positive electrode and the negative electrode,
    The lithium ion permeable gel-containing layer is disposed between the ceramic separator layer provided on the surface of the positive electrode and the ceramic separator layer provided on the surface of the negative electrode. The lithium ion secondary battery according to claim 1.
  3.  前記リチウムイオン透過性ゲル含有層に含まれるゲルが、化学架橋構造を有するゲルであることを特徴とする請求項1または2記載のリチウムイオン二次電池。 3. The lithium ion secondary battery according to claim 1, wherein the gel contained in the lithium ion permeable gel-containing layer is a gel having a chemical cross-linking structure.
  4.  正極と、負極と、前記正極と前記負極の間に介在するように配設された、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層と、電解質とを含む電池要素と、前記電池要素を収容する外装体とを備えたリチウムイオン二次電池の製造方法であって、
     正極および負極の少なくとも一方の表面に、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有するセラミックセパレータ層を形成する工程と、
     前記セラミックセパレータ層の表面に、電子絶縁性と、リチウムイオン透過性を有するゲルを含むリチウムイオン透過性ゲル含有層を形成する工程と、
     前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えた、正極あるいは負極と、前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えていない負極あるいは正極とを接合して、正極と負極を対として備える電池素子を形成する工程と
     を具備することを特徴とするリチウムイオン二次電池の製造方法。
    A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated A method for producing a lithium ion secondary battery comprising an exterior body,
    A step of forming a ceramic separator layer having a lithium ion permeability on a surface of at least one of a positive electrode and a negative electrode made of a composite material containing insulating inorganic fine particles and an organic substance;
    On the surface of the ceramic separator layer, a step of forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability;
    A positive electrode or a negative electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer, and a negative electrode or positive electrode not provided with the ceramic separator layer and the lithium ion permeable gel-containing layer are joined together; Forming a battery element comprising a negative electrode as a pair. A method for producing a lithium ion secondary battery, comprising:
  5.  正極と、負極と、前記正極と前記負極の間に介在するように配設された、セラミックセパレータ層およびリチウムイオン透過性ゲル含有層と、電解質とを含む電池要素と、前記電池要素を収容する外装体とを備えたリチウムイオン二次電池の製造方法であって、
     正極および負極の両方の表面に、絶縁性無機微粒子と有機物とを含む複合材料からなり、リチウムイオン透過性を有するセラミックセパレータ層を形成する工程と、
     前記セラミックセパレータ層の表面に、電子絶縁性と、リチウムイオン透過性を有するゲルを含むリチウムイオン透過性ゲル含有層を形成する工程と、
     前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えた、正極あるいは負極と、前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層を備えた負極あるいは正極とを、前記正極と前記負極の間に前記セラミックセパレータ層および前記リチウムイオン透過性ゲル含有層が介在するように接合して、正極と負極を対として備える電池素子を形成する工程と
     を具備することを特徴とするリチウムイオン二次電池の製造方法。
    A battery element including a positive electrode, a negative electrode, a ceramic separator layer and a lithium ion permeable gel-containing layer disposed so as to be interposed between the positive electrode and the negative electrode, and an electrolyte, and the battery element are accommodated A method for producing a lithium ion secondary battery comprising an exterior body,
    A step of forming a ceramic separator layer made of a composite material containing insulating inorganic fine particles and an organic material on both surfaces of the positive electrode and the negative electrode and having lithium ion permeability;
    On the surface of the ceramic separator layer, a step of forming a lithium ion permeable gel-containing layer containing a gel having electronic insulation and lithium ion permeability;
    A positive electrode or a negative electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer, and a negative electrode or positive electrode provided with the ceramic separator layer and the lithium ion permeable gel-containing layer. And a step of forming a battery element comprising a positive electrode and a negative electrode as a pair, with the ceramic separator layer and the lithium ion permeable gel-containing layer interposed therebetween. A battery manufacturing method.
PCT/JP2014/058934 2013-04-16 2014-03-27 Lithium ion secondary battery and production method therefor WO2014171290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085507 2013-04-16
JP2013-085507 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014171290A1 true WO2014171290A1 (en) 2014-10-23

Family

ID=51731242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058934 WO2014171290A1 (en) 2013-04-16 2014-03-27 Lithium ion secondary battery and production method therefor

Country Status (1)

Country Link
WO (1) WO2014171290A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324461A4 (en) * 2015-07-15 2019-03-27 Robert Bosch GmbH Separator for lithium-ion battery, manufacturing method therefor, and lithium-ion battery
CN110392949A (en) * 2017-03-22 2019-10-29 松下知识产权经营株式会社 Secondary battery cathode and its manufacturing method and secondary cell
CN113540694A (en) * 2020-04-13 2021-10-22 辉能科技股份有限公司 Composite isolation layer
CN113875060A (en) * 2019-05-14 2021-12-31 马自达汽车株式会社 Lithium ion secondary battery
CN114709370A (en) * 2022-04-19 2022-07-05 辽宁高登赛固态电池有限公司 Solid-state battery with gel-phase lithium metal cathode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149906A (en) * 1998-11-04 2000-05-30 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006120569A (en) * 2004-10-25 2006-05-11 Asahi Kasei Chemicals Corp Gelatinous lithium ion conductor and its manufacturing method
JP2007227301A (en) * 2006-02-27 2007-09-06 Nec Tokin Corp Lithium polymer battery
JP2011060481A (en) * 2009-09-08 2011-03-24 Panasonic Corp Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149906A (en) * 1998-11-04 2000-05-30 Mitsubishi Chemicals Corp Lithium secondary battery
JP2006120569A (en) * 2004-10-25 2006-05-11 Asahi Kasei Chemicals Corp Gelatinous lithium ion conductor and its manufacturing method
JP2007227301A (en) * 2006-02-27 2007-09-06 Nec Tokin Corp Lithium polymer battery
JP2011060481A (en) * 2009-09-08 2011-03-24 Panasonic Corp Nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324461A4 (en) * 2015-07-15 2019-03-27 Robert Bosch GmbH Separator for lithium-ion battery, manufacturing method therefor, and lithium-ion battery
CN110392949A (en) * 2017-03-22 2019-10-29 松下知识产权经营株式会社 Secondary battery cathode and its manufacturing method and secondary cell
CN113875060A (en) * 2019-05-14 2021-12-31 马自达汽车株式会社 Lithium ion secondary battery
CN113540694A (en) * 2020-04-13 2021-10-22 辉能科技股份有限公司 Composite isolation layer
JP2021170527A (en) * 2020-04-13 2021-10-28 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Composite material separation layer
JP7198559B2 (en) 2020-04-13 2023-01-04 輝能科技股▲分▼有限公司 Composite separation layer
CN114709370A (en) * 2022-04-19 2022-07-05 辽宁高登赛固态电池有限公司 Solid-state battery with gel-phase lithium metal cathode
CN114709370B (en) * 2022-04-19 2024-03-01 辽宁高登赛固态电池有限公司 Solid-state battery of gel phase metal lithium negative electrode

Similar Documents

Publication Publication Date Title
JP6288079B2 (en) Lithium ion secondary battery
JP2015191710A (en) Method for manufacturing lithium ion secondary battery and lithium ion secondary battery
KR101812824B1 (en) Electrode body for energy storage element, and energy storage element
JP6318882B2 (en) Nonaqueous electrolyte secondary battery
EP2717375A1 (en) Lithium secondary battery
CN106229447A (en) A kind of lithium ion battery
EP3113247B1 (en) Lithium ion secondary battery
WO2012033036A1 (en) Lithium ion secondary battery
WO2014171290A1 (en) Lithium ion secondary battery and production method therefor
JP4140517B2 (en) Lithium ion secondary battery and its construction method
KR20150135434A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2014171289A1 (en) Lithium ion secondary battery and production method therefor
KR102264546B1 (en) Electrode assembly for secondary battery
US11996583B2 (en) Separator for electrochemical cell
JP2008027879A (en) Lithium secondary battery and electrode therefor
KR20160027365A (en) Current collector for electrode of secondary battery
WO2015053177A1 (en) Non-aqueous electrolyte battery and method for producing same
JP7281402B2 (en) Electrodes and secondary batteries
US20190067735A1 (en) Lithium ion secondary battery
JP2006139918A (en) Cylinder-shaped nonaqueous electrolyte battery
JP3794283B2 (en) Non-aqueous electrolyte battery
EP4030498B1 (en) Graphite-based negative electrode active material
KR20190051252A (en) Electrode structure and secondary battery including the same
KR20160024088A (en) Electrode assembly for secondary battery
JP2020030924A (en) Lithium-ion battery and manufacturing method for lithium-ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP