WO2014171273A1 - Clutch control device for hybrid vehicle - Google Patents

Clutch control device for hybrid vehicle Download PDF

Info

Publication number
WO2014171273A1
WO2014171273A1 PCT/JP2014/058314 JP2014058314W WO2014171273A1 WO 2014171273 A1 WO2014171273 A1 WO 2014171273A1 JP 2014058314 W JP2014058314 W JP 2014058314W WO 2014171273 A1 WO2014171273 A1 WO 2014171273A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
torque
engine
torque capacity
motor
Prior art date
Application number
PCT/JP2014/058314
Other languages
French (fr)
Japanese (ja)
Inventor
芦沢 裕之
裕 ▲高▼村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014171273A1 publication Critical patent/WO2014171273A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a clutch control device for a hybrid vehicle.
  • Patent Document 1 discloses a first clutch torque capacity that is a cranking torque and a second clutch torque capacity that is a driving torque of a vehicle when the engine is started by connecting the first clutch as the driver depresses the accelerator.
  • a technique for preventing the motor torque from exceeding the upper limit torque by distributing within the motor upper limit torque range is disclosed. At this time, the acceleration of the vehicle by the early engine start is achieved by increasing the distribution of the first clutch torque capacity as the driver's accelerator depression speed increases.
  • An object of the present invention is to provide a clutch control device for a hybrid vehicle that can realize acceleration performance desired by a driver.
  • the transmission torque capacity of the first clutch when starting the engine as the accelerator is depressed, the transmission torque capacity of the first clutch is decreased and the transmission torque capacity of the second clutch is increased in accordance with the increase in the engine speed.
  • the driving torque of the vehicle increases with the increase of the engine speed, so that the stagnation of acceleration can be suppressed and the acceleration performance desired by the driver can be realized.
  • FIG. 1 is a system diagram of a hybrid vehicle to which a clutch control device of Embodiment 1 is applied.
  • 4 is a flowchart showing processing contents of an integrated controller 13. It is a drive torque command value calculation map according to a vehicle speed and an accelerator opening.
  • It is a flowchart which shows the 2nd clutch control mode setting method.
  • FIG. 1 is a system diagram of a hybrid vehicle to which the clutch control device of the first embodiment is applied.
  • a motor generator (hereinafter referred to as a motor) 1 is an AC synchronous motor that drives left and right drive wheels 21a and 21b by drive torque control and recovers vehicle kinetic energy to the high-voltage battery 9 by engine start and regenerative brake control.
  • the engine 2 is capable of lean combustion, and the engine torque is controlled to coincide with the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug.
  • the first clutch 3 is a dry clutch, and engages / releases between the engine 2 and the motor 1.
  • the second clutch 4 is a wet clutch, and generates transmission torque (clutch torque capacity) according to clutch hydraulic pressure (pressing force).
  • the transmission torque of the second clutch 4 is transmitted to the left and right drive shafts 20a and 20b via the transmission 5 and the final gear 19 from the motor 1 and the engine 2 (when the first clutch is engaged).
  • the transmission 5 is a stepped transmission and includes a plurality of planetary gears. Shifting is performed by changing the force transmission path by engaging / disengaging the clutch and brake inside the transmission.
  • the second clutch input shaft (motor) speed sensor 6 detects the current input speed of the second clutch 4.
  • the second clutch output shaft rotational speed sensor 7 detects the current output shaft rotational speed of the second clutch 4.
  • a high voltage inverter (hereinafter referred to as an inverter) 8 generates a drive current for the motor 1 by performing DC-AC conversion.
  • a high voltage battery (hereinafter referred to as a battery) 9 stores regenerative energy from the motor 1.
  • the accelerator position sensor 10 detects the accelerator opening.
  • the engine speed sensor (engine speed detection means) 11 detects the current engine speed.
  • the clutch oil temperature sensor 12 detects the oil temperature of the second clutch 4.
  • the integrated controller 13 calculates a drive torque command value from the battery state, the accelerator opening, and the vehicle speed (a value synchronized with the transmission output shaft speed). Based on the result, command values for the actuators (motor 1, engine 2, first clutch 3, second clutch 4 and transmission 5) are calculated and transmitted to the controllers 14-17.
  • the integrated controller 13 disconnects the first clutch 3 and travels by the torque of the motor generator 1. From the EV (electric vehicle) mode, the integrated controller 13 connects the first clutch 3 and travels by the torque of the engine 2 and the motor generator 1 (hybrid). When switching to (mode), the engine 2 is started using the torque of the motor generator 1 (engine starting means).
  • the transmission controller 14 performs shift control so as to achieve the shift command from the integrated controller 13.
  • the clutch controller 15 controls the current of the solenoid valve so as to realize a clutch hydraulic pressure (current) command value for each clutch hydraulic pressure command value from the integrated controller 13.
  • the engine controller 16 performs engine torque control so as to achieve the engine torque command value from the integrated controller 13.
  • the motor controller 17 performs motor torque control so that the motor torque command value from the integrated controller 13 is achieved.
  • the battery controller 18 manages the state of charge of the battery 9 and transmits the information to the integrated controller 13. Communication between the controllers 13 to 18 is performed via the communication line 22.
  • FIG. 2 is a flowchart showing the processing contents of the integrated controller 13. This processing content is executed at a constant sampling cycle.
  • step S1 the battery charge SOC, the shift position of the transmission 5, the input / output shaft rotational speed ⁇ cl2i , ⁇ o engine rotational speed ⁇ e of the second clutch 4, the engine operating state E sts , the vehicle speed Vsp, etc.
  • step S2 the accelerator opening Apo is measured from the accelerator position sensor 10.
  • step S3 drive torque command value calculating means
  • a drive torque command value T d * is calculated from the accelerator opening Apo and the vehicle speed Vsp.
  • the drive torque command value T d * is set so as to increase as the accelerator opening Apo increases, and to decrease as the vehicle speed Vsp increases.
  • step S4 the first clutch control mode is set (setting of the first clutch mode flag fCL1) from the vehicle state such as the battery charge amount SOC, the drive torque command value T d *, and the vehicle speed Vsp.
  • the vehicle state such as the battery charge amount SOC, the drive torque command value T d *, and the vehicle speed Vsp.
  • the second clutch control mode CL2MODE (engaged, released, slip) is set from the vehicle state such as the battery charge amount SOC, the drive torque command value Td * , the first clutch control mode flag fCL1, and the vehicle speed Vsp. The method for setting the second clutch control mode will be described later.
  • step S6 the driving torque command value T d * the basic engine torque command value T E_base on the basis of the control mode and the vehicle states of the clutches *, allocated to the basic motor torque command value T m_base *.
  • step S7 transmission torque capacity distribution means
  • the torque capacity command value T cl1_ENG_START of each clutch during engine start is determined from the control mode of each clutch, the engine speed ⁇ e , the drive torque command value T d *, and various vehicle states.
  • T cl2_ENG_START is calculated. A detailed calculation method will be described later.
  • step S8 determining a first clutch control mode flag fCL1, the second clutch input rotational speed .omega.c L2I, and whether or not the engine starting from the engine rotational speed omega e.
  • the first clutch control mode is the engagement mode and the engine speed is lower than the second clutch input speed, it is determined that the engine is starting and the start flag fENG_ST is set. It is judged that there is no and the flag is cleared.
  • step S9 it is determined whether or not the slip rotation speed control of the second clutch 4 is to be executed.
  • step S10 When the second clutch 4 is set in the slip state in S5 and the absolute value of the actual slip rotation speed (input shaft-output shaft) exceeds a predetermined value, the slip rotation speed control is turned ON and the process proceeds to step S10. If it is set to open or engaged, the rotational speed control is turned OFF and the process proceeds to step S14.
  • a basic second clutch torque capacity command value Tcl2_base * is calculated.
  • the input shaft rotation is determined from the first clutch control mode flag fCL1, the basic second clutch torque capacity command value T cl2_base * , the second clutch oil temperature Temp cl2 , the battery charge SOC, and the output shaft rotational speed measurement value ⁇ o.
  • the numerical target value ⁇ cl2i * is calculated. A detailed calculation method will be described later.
  • step S12 the rotational speed control motor torque command value Tm_FB_ON is calculated so that the input rotational speed target value ⁇ cl2i * and the input rotational speed measured value ⁇ cl2i coincide.
  • control control
  • K Pm Motor control proportional gain
  • K Im Motor control integral gain s: Differential operator
  • step S13 the basic second clutch torque capacity command value T cl2_base * a second clutch torque capacity command value T Cl_FB_ON rotation speed control from the rotational speed control motor torque command value T M_FB_ON and the engine torque command value T e_base * calculation To do. A detailed calculation method will be described later.
  • step S14 an internal state variable for calculating the above-described rotational speed control motor torque command value Tm_FB_ON and the rotational speed control second clutch torque capacity command value Tcl_FB_ON is initialized.
  • a clutch torque capacity command value Tcl2_FB_OFF is calculated when the rotational speed control is not performed, that is, until the second clutch 4 is engaged / disengaged or engaged from the engaged state to the rotational speed control (slip state).
  • T cl2_FB_OFF T cl2_zl * - ⁇ T cl2slp ...
  • K safe Second clutch safety factor (> 1)
  • ⁇ T cl2LU Slip (or release) ⁇ Torque capacity change rate at the time of fastening transition
  • T cl2slp Torque capacity change rate at the time of fastening ⁇ slip transition
  • T cl2_zl * Last value of the last second torque command value
  • step S17 it determines a first clutch torque capacity command value T CL1 * on the basis of the first clutch control mode flag fCL1. 1.
  • T CL1 * T cl1_ENG_START ... (9)
  • T CL1 * 0 (11)
  • step S18 current command values I CL1 * and I CL2 * are calculated from the clutch torque capacity command values T CL1 * and T CL2 * .
  • it is calculated with reference to the clutch torque capacity-clutch oil pressure conversion map shown in FIG. 4A and the clutch oil pressure-current conversion map shown in FIG.
  • step S20 the calculated command value is transmitted to each control controller.
  • FIG. 5 is a flowchart showing a second clutch control mode setting method.
  • the control mode CL2MODE of the second clutch 4 is set from the vehicle state such as the battery charge amount SOC, the drive torque command value T d * , the first clutch control mode flag fCL1 and the vehicle speed Vsp.
  • step S51 the first clutch control mode is determined.
  • the process proceeds to step S55.
  • the process proceeds to step S52.
  • step S52 it is determined whether or not the vehicle speed Vsp is zero (stop).
  • step S55 it is determined whether or not the vehicle speed Vsp is higher than a predetermined value Vth1 (for example, the lowest vehicle speed at which the engine can be started). When it is low, the process proceeds to step S56, and when it is high, the process proceeds to step S58.
  • Vth1 for example, the lowest vehicle speed at which the engine can be started
  • step S54 When the slip continuation condition is satisfied, the process proceeds to step S54 to start or continue the slip, and when not satisfied, the process proceeds to step S53 to end the slip and shift to the fastening mode.
  • the slip continuation conditions are as follows. ⁇ e ⁇ ⁇ cl2i (1st clutch disengagement or slip), or ⁇ cl2slp > ⁇ cl2slpth
  • f cl2_slp_cl1OP () is a function having the basic second clutch torque capacity command value T cl2_base * and the second clutch oil temperature Temp cl2 as inputs.
  • the second clutch slip rotational speed target value calculation map based on the basic second clutch torque capacity command value T cl2_base * and the second clutch oil temperature Temp cl2 as shown in FIG. .
  • the second clutch slip rotational speed target value ⁇ cl2_slp * in the EV mode is set so as to decrease as the second clutch oil temperature Temp cl2 increases, and the basic second clutch torque capacity command is set.
  • Set the value T cl2_base * to be smaller as it is larger.
  • the second clutch slip rotation speed target value ⁇ cl2_slp * is reduced to prevent the clutch oil temperature from rising. it can.
  • f cl2_slp_cl1OP (T cl2_base * , Temp cl2 ) + f cl2_ ⁇ slp (T eng_start )... (15)
  • f cl2_slp_cl1OP () is a function for calculating the amount of increase in slip rotation speed at the time of engine start, and the engine start distribution motor torque T eng_start is input.
  • a second clutch slip rotation speed target value calculation map based on the engine start distribution motor torque Teng_start as shown in FIG. 6B is used. As shown in FIG.
  • the second clutch slip rotational speed target value ⁇ cl2_slp * during engine torque start is set to increase as the engine start distribution motor torque Teng_start decreases.
  • the disturbance from the first clutch 3 cannot be completely cancelled, and even if the rotational speed decreases, sudden engagement can be prevented, and as a result, the engine 2 can be operated without any acceleration fluctuation. Can start. If slip control is to be continued even after the engine is started, the slip rotation speed is the same as during EV travel (the increment is not added).
  • the input rotational speed target value ⁇ cl2i * is calculated from the slip rotational speed target value ⁇ cl2_slp * and the output shaft rotational speed measured value ⁇ o based on the following equation.
  • ⁇ cl2i * ⁇ cl2_slp * + ⁇ o ... (16)
  • the upper and lower limits are applied to the input rotational speed target value ⁇ cl2i * calculated from the above equation to obtain the final input shaft rotational speed target value.
  • the upper and lower limit values are the upper and lower limit values of the engine speed.
  • FIG. 7 is a block diagram of feedback control for the second clutch.
  • This control system is designed with a two-degree-of-freedom control method consisting of feedforward (F / F) compensation and feedback (F / B) compensation.
  • F / F feedforward
  • F / B feedback
  • Various design methods can be considered for the F / B compensator, but this time PI control is an example.
  • the calculation method will be described.
  • phase compensation is applied to the basic second clutch torque capacity command value T cl2_base * based on the phase compensation filter G FF (s) shown in the following formula, and the F / F second clutch torque capacity command value T cl2_base * is obtained.
  • the actual calculation is calculated using a recurrence formula obtained by discretization by Tustin approximation or the like.
  • ⁇ cl2 Clutch model time constant
  • ⁇ cl2_ref Reference response time constant for clutch control
  • the second clutch torque capacity reference value Tcl2_ref is calculated based on the following equation.
  • the F / B second clutch capacity command value Tcl2_FB is calculated from the second clutch torque capacity reference value Tcl2_ref and the above-described rotation speed control motor torque command value Tm_FB_ON based on the following equation.
  • K Pcl2 Proportional gain for second clutch control
  • K Icl2 2nd clutch control integral gain
  • T Icl2_eST is an inertia torque estimated value, and is obtained, for example, by multiplying the input rotation speed change amount (differential value) by the moment of inertia around the input shaft. Then, the F / F second clutch torque capacity command value T cl2_FF and the F / B second clutch capacity command value T cl2_FB are added to calculate the final second clutch capacity command value T cl2_FB_ON for rotational speed control.
  • FIG. 8 is a flowchart showing a torque capacity command value calculation method for each clutch during engine start.
  • step S71 it is determined whether or not the first clutch control mode is the disengagement mode. If it is not the release mode (if it is the fastening mode), the process proceeds to step S72, and if it is the release mode, the process is terminated.
  • step S72 engine start lower limit torque calculating means
  • the engine start lower limit torque T required for cranking at the current engine speed from the engine speed ⁇ e and the engine operating state E sts (whether or not after the first explosion) is determined.
  • ENG_START the engine start lower limit torque calculation map (see FIG. 9) created with a value obtained by adding an amount necessary for increasing the engine rotation to the engine friction torque for each rotation speed obtained in advance through experiments or the like. Use to calculate.
  • the value is obtained by subtracting the torque output by the engine itself from the torque required for the engine start to be completed within a predetermined time (up to the second clutch input rotational speed).
  • step S73 the motor upper limit torque T m_HLMT is calculated from the battery charge SOC (or terminal voltage V B ) and the input shaft speed ⁇ cl2i .
  • step S74 second clutch torque capacity upper limit calculating means
  • the second clutch torque capacity upper limit T cl2_ENG_START_HLMT is calculated from the engine start lower limit torque T ENG_START and the motor upper limit torque T m_HLMT using the following equation.
  • T cl2_ENG_START_HLMT T m_HLMT -T ENG_START ... (24)
  • the second clutch torque capacity command value for engine starting T cl2_ENG_START is determined based on the following from the second clutch torque capacity upper limit value T cl2_ENG_START_HLMT and the drive torque command value T d * . 1.
  • T cl2_ENG_START T cl2_ENG_START_HLMT 2.
  • T cl2_ENG_START T d *
  • the engine starting first clutch torque capacity command value Tcl1_ENG_START is calculated from the motor upper limit torque Tm_HLMT and the engine starting second clutch torque capacity command value Tcl2_ENG_START based on the following equation.
  • T cl1_ENG_START T m_HLMT -T cl2_ENG_START ... (25)
  • FIG. 11 is a time chart when the conventional clutch control device shifts from EV traveling to HEV traveling as the driver depresses the accelerator.
  • the second clutch torque capacity which is the vehicle drive torque
  • the acceleration is stagnated and the acceleration performance desired by the driver cannot be obtained.
  • the second clutch torque capacity upper limit value T obtained by removing the engine start lower limit torque T ENG_START required for engine start from the motor upper limit torque T m_HLMT that is the torque that can be output by the motor 1.
  • the Cl2_ENG_START_HLMT a second clutch torque capacity command value T Cl2_ENG_START for starting the engine, the first clutch torque capacity command value for a value obtained by subtracting the second clutch torque capacity command value T Cl2_ENG_START for starting the engine from the motor upper limit torque T M_HLMT engine start T cl1_ENG_START .
  • the engine start lower limit torque T ENG_START decreases as the engine speed ⁇ e increases.
  • the cranking torque required for starting the engine is smaller than that before the first explosion.
  • the motor upper limit torque T M_HLMT as shown in FIG. 10, the engine speed omega e regions of high, although the smaller the engine rotational speed omega e becomes higher, the engine rotational speed such as during engine start omega e It is constant in the low region. That is, the second clutch torque capacity upper limit value Tcl2_ENG_START_HLMT increases as the engine speed ⁇ e increases.
  • Example 1 when starting the engine 2 with the accelerator pedal depression, depending on the increase in the engine rotational speed omega e while decreasing the first clutch torque capacity command value T Cl1_ENG_START for starting the engine, the second engine starting The clutch torque capacity command value Tcl2_ENG_START is increased.
  • FIG. 12 is a time chart when the vehicle travels from EV traveling to HEV traveling as the driver depresses the accelerator in the first embodiment.
  • the driving torque coincide with the driving torque command value T d * before the completion of engine start. Therefore, the acceleration stagnation can be significantly improved with respect to the above-described conventional technology, and the acceleration performance desired by the driver can be realized.
  • Example 1 since the lower limit of the first clutch torque capacity is limited by the engine start lower limit torque T ENG_START , the first clutch torque capacity decreases as the engine speed ⁇ e increases. Since the minimum cranking torque necessary for starting can be ensured, the engine 2 can be reliably started within a predetermined time.
  • Example 1 has the following effects. (1) Engine 2, motor generator 1, first clutch 3 for intermittent torque transmission between engine 2 and motor generator 1, and second clutch for intermittent torque transmission between motor generator 1 and drive wheels 21a, 21b 4 and the electric vehicle mode in which the first clutch 3 is disconnected and travels with the torque of the motor generator 1 to the hybrid mode in which the first clutch 3 is connected and the engine 2 and the motor generator 1 travel with the torque.
  • An integrated controller 13 for starting the engine 2 using the torque of the generator 1, an engine speed sensor 11 for detecting the engine speed ⁇ e , and a motor upper limit torque calculating means for calculating the motor upper limit torque T m_HLMT (step S73) If, when starting the engine 2 with the accelerator depression, the within the motor upper limit torque T m_HLMT 1 It includes a transmission torque capacity allocation means for allocating a latch torque capacity and the second clutch torque capacity (step S7), and the transmission torque capacity allocation means, when starting the engine 2 with the accelerator depression, engine speed omega e As the engine speed increases, the first clutch torque capacity is decreased and the second clutch torque capacity is increased. Therefore, since the driving torque of the vehicle increases as the engine speed ⁇ e increases, acceleration stagnation can be suppressed and the acceleration performance desired by the driver can be realized.
  • step S72 Engine start lower limit torque calculation means (step S72) that calculates the engine start lower limit torque T ENG_START required for engine start based on the engine speed ⁇ e and whether or not the engine is after the first explosion.
  • the distribution means limits the lower limit of the first clutch torque capacity with the engine start lower limit torque T ENG_START . Therefore, the engine 2 can be reliably started while suppressing the stagnation of acceleration.
  • step S3 (3) and the drive torque command value calculating means for calculating a driving torque command value T d * based on the accelerator opening degree (step S3), and the motor upper limit torque T M_HLMT by subtracting the engine starting limit torque T ENG_START, during engine start 2nd clutch torque capacity upper limit value calculating means (step S74) for calculating a second clutch torque capacity upper limit value Tcl2_ENG_START_HLMT that can be distributed to the second clutch 4, and the transmission torque capacity distributing means is a drive torque command value.
  • the value obtained by limiting the upper limit of T d * with the second clutch torque capacity upper limit value T cl2_ENG_START_HLMT is defined as the second clutch torque capacity
  • the value obtained by subtracting the second clutch torque capacity from the motor upper limit torque T m_HLMT is defined as the first clutch torque capacity.

Abstract

When an engine (2) is started following an accelerator being stepped on, transmission torque capacity of a first clutch (3) is reduced, and transmission torque capacity of a second clutch (4) is increased, in accordance with an increase in engine rotational frequency.

Description

ハイブリッド車両のクラッチ制御装置Clutch control device for hybrid vehicle
 本発明は、ハイブリッド車両のクラッチ制御装置に関する。 The present invention relates to a clutch control device for a hybrid vehicle.
 従来、エンジンおよびモータジェネレータ間のトルク伝達を断続する第1クラッチと、モータジェネレータおよび駆動輪間のトルク伝達を断続する第2クラッチを有するハイブリッド車両が知られている。
  特許文献1には、運転者のアクセル踏み込みに伴い第1クラッチを接続してエンジンを始動する際、クランキングトルクである第1クラッチトルク容量と車両の駆動トルクである第2クラッチトルク容量とを、モータ上限トルク範囲内で配分することで、モータトルクが上限トルクを超えるのを防止する技術が開示されている。このとき、運転者のアクセル踏み込み速度が高いほど、第1クラッチトルク容量の配分を大きくすることで、早期のエンジン始動による車両の加速を達成している。
Conventionally, a hybrid vehicle having a first clutch that interrupts torque transmission between the engine and the motor generator and a second clutch that interrupts torque transmission between the motor generator and the drive wheels is known.
Patent Document 1 discloses a first clutch torque capacity that is a cranking torque and a second clutch torque capacity that is a driving torque of a vehicle when the engine is started by connecting the first clutch as the driver depresses the accelerator. A technique for preventing the motor torque from exceeding the upper limit torque by distributing within the motor upper limit torque range is disclosed. At this time, the acceleration of the vehicle by the early engine start is achieved by increasing the distribution of the first clutch torque capacity as the driver's accelerator depression speed increases.
特開2009-227277号公報JP 2009-227277 JP
 しかしながら、上記従来技術にあっては、エンジン始動中は常に両クラッチトルク容量の配分が一定であるため、加速度が停滞し、運転者の所望する加速性能が得られないという問題があった。
  本発明の目的は、運転者の所望する加速性能を実現できるハイブリッド車両のクラッチ制御装置を提供することにある。
However, the above prior art has a problem that since the distribution of both clutch torque capacities is always constant while the engine is started, the acceleration is stagnant and the acceleration performance desired by the driver cannot be obtained.
An object of the present invention is to provide a clutch control device for a hybrid vehicle that can realize acceleration performance desired by a driver.
 本発明では、アクセル踏み込みに伴いエンジンを始動する際、エンジン回転数の上昇に応じて第1クラッチの伝達トルク容量を減少させると共に、第2クラッチの伝達トルク容量を増加させる。 In the present invention, when starting the engine as the accelerator is depressed, the transmission torque capacity of the first clutch is decreased and the transmission torque capacity of the second clutch is increased in accordance with the increase in the engine speed.
 よって、本発明にあっては、エンジン回転数の上昇と共に車両の駆動トルクが増大するため、加速度の停滞を抑制でき、運転者の所望する加速性能を実現できる。 Therefore, in the present invention, the driving torque of the vehicle increases with the increase of the engine speed, so that the stagnation of acceleration can be suppressed and the acceleration performance desired by the driver can be realized.
実施例1のクラッチ制御装置が適用されたハイブリッド車両のシステム図である。1 is a system diagram of a hybrid vehicle to which a clutch control device of Embodiment 1 is applied. 統合コントローラ13の処理内容を示すフローチャートである。4 is a flowchart showing processing contents of an integrated controller 13. 車速とアクセル開度に応じた駆動トルク指令値演算マップである。It is a drive torque command value calculation map according to a vehicle speed and an accelerator opening. (a)クラッチトルク容量-クラッチ油圧変換マップ、(b)クラッチ油圧-電流変換マップである。(a) Clutch torque capacity-clutch oil pressure conversion map, (b) Clutch oil pressure-current conversion map. 第2クラッチ制御モード設定方法を示すフローチャートである。It is a flowchart which shows the 2nd clutch control mode setting method. (a)基本第2クラッチトルク容量指令値と第2クラッチ油温とに基づく第2クラッチスリップ回転数目標値演算マップ、(b)エンジン始動配分モータトルクに基づく第2クラッチスリップ回転数目標値演算である。(a) Second clutch slip rotation speed target value calculation map based on basic second clutch torque capacity command value and second clutch oil temperature, (b) Second clutch slip rotation speed target value calculation based on engine start distribution motor torque It is. 第2クラッチ用フィードバック制御のブロック図である。It is a block diagram of the feedback control for 2nd clutches. エンジン始動中の各クラッチのトルク容量指令値演算方法を示すフローチャートである。It is a flowchart which shows the torque capacity command value calculation method of each clutch during engine starting. エンジン始動下限トルク演算マップである。It is an engine start lower limit torque calculation map. モータ上限トルク演算マップである。It is a motor upper limit torque calculation map. 従来のクラッチ制御装置において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートである。In the conventional clutch control apparatus, it is a time chart when changing from EV running to HEV running as the driver depresses the accelerator. 実施例1において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートである。In Example 1, it is a time chart when changing from EV driving | running | working to HEV driving | running | working with a driver | operator's accelerator depression.
1 モータジェネレータ
2 エンジン
3 第1クラッチ
4 第2クラッチ
5 変速機
6 第2クラッチ入力軸回転数センサ
7 第2クラッチ出力軸回転数センサ
9 高圧バッテリ
10 アクセルポジションセンサ
11 エンジン回転数センサ
12 クラッチ油温センサ
13 統合コントローラ
14 変速機コントローラ
15 クラッチコントローラ
16 エンジンコントローラ
17 モータコントローラ
18 バッテリコントローラ
19 ファイナルギヤ
20a,20b 左右ドライブシャフト
21a,21b 左右駆動輪
22 通信線
1 Motor generator
2 Engine
3 First clutch
4 Second clutch
5 Transmission
6 Second clutch input shaft speed sensor
7 Second clutch output shaft speed sensor
9 High voltage battery
10 Acceleration position sensor
11 Engine speed sensor
12 Clutch oil temperature sensor
13 Integrated controller
14 Transmission controller
15 Clutch controller
16 Engine controller
17 Motor controller
18 Battery controller
19 Final gear
20a, 20b Left and right drive shaft
21a, 21b Left and right drive wheels
22 Communication line
 〔実施例1〕
  [全体システム]
  図1は、実施例1のクラッチ制御装置が適用されたハイブリッド車両のシステム図である。
  モータジェネレータ(以下、モータ)1は交流同期モータであり、駆動トルク制御による左右駆動輪21a,21bの駆動およびエンジン始動や回生ブレーキ制御による車両運動エネルギーの高圧バッテリ9への回収を行うものである。
  エンジン2は、希薄燃焼可能であり、スロットルアクチュエータによる吸入空気量とインジェクタによる燃料噴射量と、点火プラグによる点火時期の制御により、エンジントルクが指令値と一致するように制御される。
  第1クラッチ3は、乾式クラッチであり、エンジン2およびモータ1間の締結/開放を行う。第1クラッチ3が完全締結状態である場合はモータトルク+エンジントルクが第2クラッチ4へと伝達され、開放状態である場合はモータトルクのみが第2クラッチ4へ伝達される。
  第2クラッチ4は、湿式クラッチであり、クラッチ油圧(押付力)に応じて伝達トルク(クラッチトルク容量)が発生する。第2クラッチ4の伝達トルクは、変速機5およびファイナルギヤ19を介し、モータ1およびエンジン2(第1クラッチが締結されている場合)から出力されたトルクを左右ドライブシャフト20a,20bに伝達される。
[Example 1]
[Overall system]
FIG. 1 is a system diagram of a hybrid vehicle to which the clutch control device of the first embodiment is applied.
A motor generator (hereinafter referred to as a motor) 1 is an AC synchronous motor that drives left and right drive wheels 21a and 21b by drive torque control and recovers vehicle kinetic energy to the high-voltage battery 9 by engine start and regenerative brake control. .
The engine 2 is capable of lean combustion, and the engine torque is controlled to coincide with the command value by controlling the intake air amount by the throttle actuator, the fuel injection amount by the injector, and the ignition timing by the spark plug.
The first clutch 3 is a dry clutch, and engages / releases between the engine 2 and the motor 1. When the first clutch 3 is in the fully engaged state, the motor torque + engine torque is transmitted to the second clutch 4, and when the first clutch 3 is in the released state, only the motor torque is transmitted to the second clutch 4.
The second clutch 4 is a wet clutch, and generates transmission torque (clutch torque capacity) according to clutch hydraulic pressure (pressing force). The transmission torque of the second clutch 4 is transmitted to the left and right drive shafts 20a and 20b via the transmission 5 and the final gear 19 from the motor 1 and the engine 2 (when the first clutch is engaged). The
 変速機5は、有段変速機であり、複数の遊星歯車から構成される。変速機内部のクラッチならびにブレーキをそれぞれ締結/開放して力の伝達経路を変えることにより変速を行う。
  第2クラッチ入力軸(モータ)回転数センサ6は、現在の第2クラッチ4の入力回転数を検出する。
  第2クラッチ出力軸回転数センサ7は、現在の第2クラッチ4の出力軸回転数を検出する。
  高電圧インバータ(以下、インバータ)8は、直流‐交流変換を行いモータ1の駆動電流を生成する。
  高電圧バッテリ(以下、バッテリ)9は、モータ1からの回生エネルギーを蓄積する。
  アクセルポジションセンサ10は、アクセル開度を検出する。
  エンジン回転数センサ(エンジン回転数検出手段)11は、現在のエンジン回転数を検出する。
  クラッチ油温センサ12は、第2クラッチ4の油温を検出する。
The transmission 5 is a stepped transmission and includes a plurality of planetary gears. Shifting is performed by changing the force transmission path by engaging / disengaging the clutch and brake inside the transmission.
The second clutch input shaft (motor) speed sensor 6 detects the current input speed of the second clutch 4.
The second clutch output shaft rotational speed sensor 7 detects the current output shaft rotational speed of the second clutch 4.
A high voltage inverter (hereinafter referred to as an inverter) 8 generates a drive current for the motor 1 by performing DC-AC conversion.
A high voltage battery (hereinafter referred to as a battery) 9 stores regenerative energy from the motor 1.
The accelerator position sensor 10 detects the accelerator opening.
The engine speed sensor (engine speed detection means) 11 detects the current engine speed.
The clutch oil temperature sensor 12 detects the oil temperature of the second clutch 4.
 統合コントローラ13は、バッテリ状態、アクセル開度、および車速(変速機出力軸回転数に同期した値)から駆動トルク指令値を演算する。そして、その結果に基づき各アクチュエータ(モータ1、エンジン2、第1クラッチ3、第2クラッチ4および変速機5)に対する指令値を演算し、各コントローラ14~17へと送信する。統合コントローラ13は、第1クラッチ3を切断しモータジェネレータ1のトルクにより走行するEV(電動車)モードから、第1クラッチ3を接続してエンジン2およびモータジェネレータ1のトルクにより走行するHEV(ハイブリッドモード)へ切り替わる際、モータジェネレータ1のトルクを利用してエンジン2を始動させる(エンジン始動手段)。
  変速機コントローラ14は、統合コントローラ13からの変速指令を達成するように変速制御を行う。
  クラッチコントローラ15は、統合コントローラ13からの各クラッチ油圧指令値に対してクラッチ油圧(電流)指令値を実現するようにソレノイドバルブの電流を制御する。
  エンジンコントローラ16は、統合コントローラ13からのエンジントルク指令値を達成するようにエンジントルク制御を行う。
  モータコントローラ17であり、統合コントローラ13からのモータトルク指令値を達成するようにモータトルク制御を行う。
  バッテリコントローラ18であり、バッテリ9の充電状態を管理し、その情報を統合コントローラ13へと送信する。
  各コントローラ13~18間の通信は、通信線22を介して行われる。
The integrated controller 13 calculates a drive torque command value from the battery state, the accelerator opening, and the vehicle speed (a value synchronized with the transmission output shaft speed). Based on the result, command values for the actuators (motor 1, engine 2, first clutch 3, second clutch 4 and transmission 5) are calculated and transmitted to the controllers 14-17. The integrated controller 13 disconnects the first clutch 3 and travels by the torque of the motor generator 1. From the EV (electric vehicle) mode, the integrated controller 13 connects the first clutch 3 and travels by the torque of the engine 2 and the motor generator 1 (hybrid). When switching to (mode), the engine 2 is started using the torque of the motor generator 1 (engine starting means).
The transmission controller 14 performs shift control so as to achieve the shift command from the integrated controller 13.
The clutch controller 15 controls the current of the solenoid valve so as to realize a clutch hydraulic pressure (current) command value for each clutch hydraulic pressure command value from the integrated controller 13.
The engine controller 16 performs engine torque control so as to achieve the engine torque command value from the integrated controller 13.
The motor controller 17 performs motor torque control so that the motor torque command value from the integrated controller 13 is achieved.
The battery controller 18 manages the state of charge of the battery 9 and transmits the information to the integrated controller 13.
Communication between the controllers 13 to 18 is performed via the communication line 22.
 [統合コントローラの制御]
  図2は、統合コントローラ13の処理内容を示すフローチャートである。なお、この処理内容は、一定のサンプリング周期で実行されることとする。
  ステップS1では、バッテリ充電量SOCや変速機5のシフト位置、第2クラッチ4の入出力軸回転数ωcl2ioエンジン回転数ωe、エンジンの動作状態Ests、車速Vsp等、他のコントローラが計測した車両状態を受信する。
  ステップS2では、アクセル開度Apoをアクセルポジションセンサ10から計測する。
  ステップS3(駆動トルク指令値演算手段)では、アクセル開度Apo、車速Vspから駆動トルク指令値Td *を演算する。実施例1では、例えば、図3に示すような車速Vspとアクセル開度Apoに応じた駆動トルク指令値演算マップを参照して演算する。図3において、駆動トルク指令値Td *は、アクセル開度Apoが高いほど大きくなるように設定し、車速Vspが高いほど小さくなるように設定する。
[Control of integrated controller]
FIG. 2 is a flowchart showing the processing contents of the integrated controller 13. This processing content is executed at a constant sampling cycle.
In step S1, the battery charge SOC, the shift position of the transmission 5, the input / output shaft rotational speed ω cl2i , ω o engine rotational speed ω e of the second clutch 4, the engine operating state E sts , the vehicle speed Vsp, etc. The vehicle state measured by the controller is received.
In step S2, the accelerator opening Apo is measured from the accelerator position sensor 10.
In step S3 (drive torque command value calculating means), a drive torque command value T d * is calculated from the accelerator opening Apo and the vehicle speed Vsp. In the first embodiment, for example, calculation is performed with reference to a driving torque command value calculation map corresponding to the vehicle speed Vsp and the accelerator opening Apo as shown in FIG. In FIG. 3, the drive torque command value T d * is set so as to increase as the accelerator opening Apo increases, and to decrease as the vehicle speed Vsp increases.
 ステップS4では、バッテリ充電量SOCや駆動トルク指令値Td *および車速Vsp等の車両状態から第1クラッチ制御モードの設定(第1クラッチモードフラグfCL1の設定)を行う。ここではその詳細は省略するが、例えば、低加速での発進のように比較的エンジン2の効率が良くない走行シーンではモータ単独走行する(EVモード)ため、第1クラッチ3は開放(fCL1=0)する。また、急加速やバッテリ充電量SOCが所定値SOCth1以下、あるいは車速Vspが所定値Vspth1以上(モータ回転速度が許容回転速度を超える)となった場合にはEV走行は困難なため、エンジン2およびモータ1で走行する(HEVモード)ために第1クラッチ3を締結(fCL1=1)する。
  ステップS5では、バッテリ充電量SOC、駆動トルク指令値Td *、第1クラッチ制御モードフラグfCL1および車速Vsp等の車両状態から第2クラッチ制御モードCL2MODE(締結、開放、スリップ)を設定する。なお、第2クラッチ制御モードの設定方法については後述する。
In step S4, the first clutch control mode is set (setting of the first clutch mode flag fCL1) from the vehicle state such as the battery charge amount SOC, the drive torque command value T d *, and the vehicle speed Vsp. Although the details are omitted here, for example, in a driving scene where the efficiency of the engine 2 is relatively low, such as starting at low acceleration, the motor runs alone (EV mode), so the first clutch 3 is released (fCL1 = 0) If the vehicle is suddenly accelerated or the battery charge SOC is less than the predetermined value SOC th1 or the vehicle speed Vsp is greater than or equal to the predetermined value Vsp th1 (the motor rotation speed exceeds the allowable rotation speed), EV driving is difficult. The first clutch 3 is engaged (fCL1 = 1) to travel with the motor 2 and the motor 1 (HEV mode).
In step S5, the second clutch control mode CL2MODE (engaged, released, slip) is set from the vehicle state such as the battery charge amount SOC, the drive torque command value Td * , the first clutch control mode flag fCL1, and the vehicle speed Vsp. The method for setting the second clutch control mode will be described later.
 ステップS6では、各クラッチの制御モードと車両状態に基づき駆動トルク指令値Td *を基本エンジントルク指令値Te_base *、基本モータトルク指令値Tm_base *に配分する。配分方法については様々な手法が考えられるが、詳細については省略する。
  ステップS7(伝達トルク容量配分手段)では、各クラッチの制御モード、エンジン回転数ωe、駆動トルク指令値Td *および各種車両状態から、エンジン始動中の各クラッチのトルク容量指令値Tcl1_ENG_START,Tcl2_ENG_STARTを演算する。なお、詳細な演算方法については後述する。
  ステップS8では、第1クラッチ制御モードフラグfCL1、第2クラッチ入力回転数ωcl2i、およびエンジン回転数ωeからエンジン始動中か否かを判定する。実際には、第1クラッチ制御モードが締結モードであり、エンジン回転数が第2クラッチ入力回転数よりも低い場合は始動中と判断し始動フラグfENG_STをセットし、それ以外であれば始動中ではないと判断しフラグをクリアする。
  ステップS9では、第2クラッチ4のスリップ回転数制御を実行するか否かの判断を行う。S5で第2クラッチ4がスリップ状態と設定され、かつ実際のスリップ回転数(入力軸-出力軸)の絶対値が所定値以上となった場合はスリップ回転数制御をONとしてステップS10へ進み、開放または締結と設定された場合は回転数制御をOFFとしてステップS14へ進む。
In step S6, the driving torque command value T d * the basic engine torque command value T E_base on the basis of the control mode and the vehicle states of the clutches *, allocated to the basic motor torque command value T m_base *. Various methods can be considered for the allocation method, but the details are omitted.
In step S7 (transmission torque capacity distribution means), the torque capacity command value T cl1_ENG_START of each clutch during engine start is determined from the control mode of each clutch, the engine speed ω e , the drive torque command value T d *, and various vehicle states. T cl2_ENG_START is calculated. A detailed calculation method will be described later.
In step S8, determining a first clutch control mode flag fCL1, the second clutch input rotational speed .omega.c L2I, and whether or not the engine starting from the engine rotational speed omega e. Actually, when the first clutch control mode is the engagement mode and the engine speed is lower than the second clutch input speed, it is determined that the engine is starting and the start flag fENG_ST is set. It is judged that there is no and the flag is cleared.
In step S9, it is determined whether or not the slip rotation speed control of the second clutch 4 is to be executed. When the second clutch 4 is set in the slip state in S5 and the absolute value of the actual slip rotation speed (input shaft-output shaft) exceeds a predetermined value, the slip rotation speed control is turned ON and the process proceeds to step S10. If it is set to open or engaged, the rotational speed control is turned OFF and the process proceeds to step S14.
 ステップS10では、基本第2クラッチトルク容量指令値Tcl2_base *を演算する。ここでは、例えば、駆動トルク指令値Td *と同値とする。
  ステップS11では、第1クラッチ制御モードフラグfCL1、基本第2クラッチトルク容量指令値Tcl2_base *、第2クラッチ油温Tempcl2、バッテリ充電量SOC、および出力軸回転数計測値ωoから入力軸回転数目標値ωcl2i *を演算する。なお、詳細な演算方法については後述する。
  ステップS12では、入力回転数目標値ωcl2i *と入力回転数計測値ωcl2iが一致するように回転数制御用モータトルク指令値Tm_FB_ONを演算する。演算(制御)方法は様々考えられるが、例えば、下式に基づき(PI制御)演算する。実際の演算はタスティン近似等で離散化して得られた漸化式を用いて算出する。
Figure JPOXMLDOC01-appb-M000001
   ただし、
 KPm:モータ制御用比例ゲイン
 KIm:モータ制御用積分ゲイン
 s:微分演算子
In step S10, a basic second clutch torque capacity command value Tcl2_base * is calculated. Here, for example, it is the same value as the drive torque command value T d * .
In step S11, the input shaft rotation is determined from the first clutch control mode flag fCL1, the basic second clutch torque capacity command value T cl2_base * , the second clutch oil temperature Temp cl2 , the battery charge SOC, and the output shaft rotational speed measurement value ω o. The numerical target value ω cl2i * is calculated. A detailed calculation method will be described later.
In step S12, the rotational speed control motor torque command value Tm_FB_ON is calculated so that the input rotational speed target value ωcl2i * and the input rotational speed measured value ωcl2i coincide. There are various calculation (control) methods. For example, calculation is performed based on the following formula (PI control). The actual calculation is calculated using a recurrence formula obtained by discretization by Tustin approximation or the like.
Figure JPOXMLDOC01-appb-M000001
However,
K Pm : Motor control proportional gain K Im : Motor control integral gain s: Differential operator
 ステップS13では、基本第2クラッチトルク容量指令値Tcl2_base *と回転数制御用モータトルク指令値Tm_FB_ONとエンジントルク指令値Te_base *から回転数制御用第2クラッチトルク容量指令値Tcl_FB_ONを演算する。なお、詳細な演算方法については後述する。
  ステップS14では、前述した回転数制御用モータトルク指令値Tm_FB_ONならびに回転数制御用第2クラッチトルク容量指令値Tcl_FB_ONを演算するための内部状態変数を初期化する。
  ステップS15では、回転数制御を行わない場合、すなわち第2クラッチ4を締結/開放状態もしくは締結状態から回転数制御を行う(スリップ状態にする)までのクラッチトルク容量指令値Tcl2_FB_OFFを演算する。
  1.締結する場合
  (1) Tcl2_zl *<Td *×Ksafeであれば
    Tcl2_FB_OFF=Tcl2_zl *+ΔTcl2LU …(2)
  (2)  Tcl2_zl *≧Td *×Ksafeであれば
    Tcl2_FB_OFF=Td *×Ksafe …(3)
  2.開放する場合
    Tcl2_FB_OFF=0 …(4)
  3.第2クラッチを締結→スリップ状態にする場合
    Tcl2_FB_OFF=Tcl2_zl *-ΔTcl2slp …(5)
  ただし、
Ksafe:第2クラッチ安全率係数(>1)
ΔTcl2LU:スリップ(または開放)→締結移行時のトルク容量変化率
ΔTcl2slp:締結→スリップ移行時トルク容量変化率
Tcl2_zl *:最終第2トルク指令値前回値
In step S13, the basic second clutch torque capacity command value T cl2_base * a second clutch torque capacity command value T Cl_FB_ON rotation speed control from the rotational speed control motor torque command value T M_FB_ON and the engine torque command value T e_base * calculation To do. A detailed calculation method will be described later.
In step S14, an internal state variable for calculating the above-described rotational speed control motor torque command value Tm_FB_ON and the rotational speed control second clutch torque capacity command value Tcl_FB_ON is initialized.
In step S15, a clutch torque capacity command value Tcl2_FB_OFF is calculated when the rotational speed control is not performed, that is, until the second clutch 4 is engaged / disengaged or engaged from the engaged state to the rotational speed control (slip state).
1. When fastening (1) If T cl2_zl * <T d * × K safe T cl2_FB_OFF = T cl2_zl * + ΔT cl2LU … (2)
(2) If T cl2_zl * ≧ T d * × K safe , T cl2_FB_OFF = T d * × K safe … (3)
2. To open T cl2_FB_OFF = 0 (4)
3. When the second clutch is engaged → slipped T cl2_FB_OFF = T cl2_zl * -ΔT cl2slp … (5)
However,
K safe : Second clutch safety factor (> 1)
ΔT cl2LU : Slip (or release) → Torque capacity change rate at the time of fastening transition ΔT cl2slp : Torque capacity change rate at the time of fastening → slip transition
T cl2_zl * : Last value of the last second torque command value
 ステップS16では、以下の条件に基づき最終第2クラッチトルク容量指令値Tcl2 *を決定する。
  1.スリップ回転数制御中において、
  (1) エンジン始動中(fENG_ST=1)の場合
    Tcl2 *=Tcl2_ENG_START …(6)
  (2) 上記以外の場合
    Tcl2 *=Tcl2_FB_ON …(7)
  2.スリップ回転数制御停止の場合
  Tcl2 *=Tcl2_FB_OFF …(8)
In step S16, the final second clutch torque capacity command value Tcl2 * is determined based on the following conditions.
1. During slip rotation speed control,
(1) When the engine is starting (fENG_ST = 1) T cl2 * = T cl2_ENG_START … (6)
(2) Other than above T cl2 * = T cl2_FB_ON … (7)
2. When slip speed control is stopped T cl2 * = T cl2_FB_OFF … (8)
 ステップS17では、第1クラッチ制御モードフラグfCL1に基づき第1クラッチトルク容量指令値TCL1 *を決定する。
  1.第1クラッチ制御モードが締結モードにおいて、
  (1) エンジン始動中(fENG_ST=1)の場合
    TCL1 *=Tcl1_ENG_START …(9)
  (2) 上記以外の場合
    TCL1 *=Tcl1_max …(10)
  ただし、
Tcl1_max:第1クラッチ最大トルク容量
  2.第1クラッチ制御モードが開放モードになっている場合
  TCL1 *=0 …(11)
In step S17, it determines a first clutch torque capacity command value T CL1 * on the basis of the first clutch control mode flag fCL1.
1. When the first clutch control mode is the engagement mode,
(1) When the engine is starting (fENG_ST = 1) T CL1 * = T cl1_ENG_START … (9)
(2) Other than above T CL1 * = T cl1_max … (10)
However,
T cl1_max : Maximum torque capacity of the first clutch 2. When the first clutch control mode is the disengagement mode T CL1 * = 0 (11)
 ステップS18では、クラッチトルク容量指令値TCL1 *,TCL2 *から電流指令値ICL1 *,ICL2 *を演算する。実際にはあらかじめ取得した特性に基づいて作成した図4(a)のクラッチトルク容量-クラッチ油圧変換マップと、図4(b)のクラッチ油圧-電流変換マップとを参照して算出する。これにより、油圧や電流に対してクラッチトルク容量が非線形な特性を有している場合でも、制御対象を線形としてみなすことができるため、前述したような線形制御理論を適用することができる。
  ステップS19では、以下の条件に基づき最終モータトルク指令値Tm *を決定する。
  1.スリップ回転数制御中の場合
  Tm *=Tm_FB_ON …(12)
  2.スリップ回転数制御停止の場合
  Tm *=Tm_base …(13)
  ステップS20では、算出された指令値を各制御コントローラへと送信する。
In step S18, current command values I CL1 * and I CL2 * are calculated from the clutch torque capacity command values T CL1 * and T CL2 * . Actually, it is calculated with reference to the clutch torque capacity-clutch oil pressure conversion map shown in FIG. 4A and the clutch oil pressure-current conversion map shown in FIG. Thereby, even when the clutch torque capacity has a non-linear characteristic with respect to the hydraulic pressure or current, the control target can be regarded as linear, and thus the linear control theory as described above can be applied.
In step S19, a final motor torque command value T m * is determined based on the following conditions.
1. When slip rotation speed control is in progress T m * = T m_FB_ON (12)
2. When slip speed control is stopped T m * = T m_base (13)
In step S20, the calculated command value is transmitted to each control controller.
 [第2クラッチ制御モード設定処理]
  図5は、第2クラッチ制御モード設定方法を示すフローチャートである。第2クラッチ4の制御モードCL2MODEは、バッテリ充電量SOC、駆動トルク指令値Td *、第1クラッチ制御モードフラグfCL1および車速Vsp等の車両状態から設定する。
  ステップS51では、第1クラッチ制御モードを判別する。第1クラッチ制御モードが締結(エンジン始動)の場合(fCL1=1)はステップS55へ進み、開放モード(エンジン停止)の場合(fCL1=0)はステップS52へ進む。
  ステップS52では、車速Vspがゼロ(停止)か否かを判定する。停止している場合はステップS53へ進み、それ以外はステップS54へ進む。
  ステップS53では、第2クラッチ制御モードを締結モード(CL2MODE=1)とする。
  ステップS54では、第2クラッチ制御モードをスリップモード(CL2MODE=2)とする。
  ステップS55では、車速Vspが所定値Vth1(例えば、エンジンが始動できる最低車速)より高いか否かを判定する。低い場合はステップS56へ進み、高い場合はステップS58へ進む。
[Second clutch control mode setting process]
FIG. 5 is a flowchart showing a second clutch control mode setting method. The control mode CL2MODE of the second clutch 4 is set from the vehicle state such as the battery charge amount SOC, the drive torque command value T d * , the first clutch control mode flag fCL1 and the vehicle speed Vsp.
In step S51, the first clutch control mode is determined. When the first clutch control mode is engaged (engine start) (fCL1 = 1), the process proceeds to step S55. When the first clutch control mode is the release mode (engine stop) (fCL1 = 0), the process proceeds to step S52.
In step S52, it is determined whether or not the vehicle speed Vsp is zero (stop). If it is stopped, the process proceeds to step S53, and otherwise, the process proceeds to step S54.
In step S53, the second clutch control mode is set to the engagement mode (CL2MODE = 1).
In step S54, the second clutch control mode is set to the slip mode (CL2MODE = 2).
In step S55, it is determined whether or not the vehicle speed Vsp is higher than a predetermined value Vth1 (for example, the lowest vehicle speed at which the engine can be started). When it is low, the process proceeds to step S56, and when it is high, the process proceeds to step S58.
 ステップS56では、駆動トルク指令値Td *の符号を判別し、正値の場合にはステップS54へ進み、負値の場合にはステップS57へ進む。
  ステップS57では、第2クラッチ制御モードを開放モード(CL2MODE=0)とする。
  ステップS58では、前回の第2クラッチ制御モードが締結モードか否かを判定する。締結モードの場合はステップS53へ進み、それ以外の場合はステップS59へ進む。
  ステップS59では、エンジン回転数計測値ωe、第2クラッチスリップ回転数計測値ωcl2slp、およびスリップ回転数しきい値ωcl2slpthから、スリップ継続条件が成立するか否かを判断する。スリップ継続条件が成立する場合はステップS54へ進んでスリップを開始または継続し、成立しない場合にはステップS53へ進んでスリップを終了し締結モードへ移行する。スリップ継続条件は、以下の通りである。
  ωe≠ωcl2i(第1クラッチ開放またはスリップ)、または、ωcl2slp>ωcl2slpth
In step S56, the sign of the drive torque command value T d * is determined. If the value is positive, the process proceeds to step S54. If the value is negative, the process proceeds to step S57.
In step S57, the second clutch control mode is set to the release mode (CL2MODE = 0).
In step S58, it is determined whether or not the previous second clutch control mode is the engagement mode. In the case of the fastening mode, the process proceeds to step S53, and in other cases, the process proceeds to step S59.
In step S59, it is determined from the engine speed measurement value ω e , the second clutch slip rotation speed measurement value ω cl2slp , and the slip rotation speed threshold value ω cl2slpth whether or not the slip continuation condition is satisfied. When the slip continuation condition is satisfied, the process proceeds to step S54 to start or continue the slip, and when not satisfied, the process proceeds to step S53 to end the slip and shift to the fastening mode. The slip continuation conditions are as follows.
ω e ≠ ω cl2i (1st clutch disengagement or slip), or ω cl2slp > ω cl2slpth
 [入力回転数目標値演算]
  次に、入力回転数目標値ωcl2i *の演算方法の詳細について説明する。
  まず、以下に基づき第2クラッチスリップ回転数目標値ωcl2_slp *を演算する。
  1.EVモードの場合(fCL1=0)
  ωcl2_slp *=fcl2_slp_cl1OP(Tcl2_base *,Tempcl2) …(14)
  ここで、fcl2_slp_cl1OP()は基本第2クラッチトルク容量指令値Tcl2_base *および第2クラッチ油温Tempcl2を入力とした関数である。実際には、例えば、図6(a)に示すような基本第2クラッチトルク容量指令値Tcl2_base *と第2クラッチ油温Tempcl2とに基づく第2クラッチスリップ回転数目標値演算マップによって設定する。図6(a)に示すように、EVモードにおける第2クラッチスリップ回転数目標値ωcl2_slp *は、第2クラッチ油温Tempcl2が高いほど小さくなるように設定し、基本第2クラッチトルク容量指令値Tcl2_base *が大きいほど小さくなるように設定する。第2クラッチ4の「油温が高い」場合、または「クラッチ容量指令値が大きい」場合には、第2クラッチスリップ回転数目標値ωcl2_slp *を小さくすることにより、クラッチ油温の上昇を防止できる。
[Input rotation speed target value calculation]
Next, details of a method of calculating the input rotation speed target value ω cl2i * will be described.
First, the second clutch slip rotation speed target value ω cl2_slp * is calculated based on the following.
1.In EV mode (fCL1 = 0)
ω cl2_slp * = f cl2_slp_cl1OP (T cl2_base * , Temp cl2 )… (14)
Here, f cl2_slp_cl1OP () is a function having the basic second clutch torque capacity command value T cl2_base * and the second clutch oil temperature Temp cl2 as inputs. Actually, for example, the second clutch slip rotational speed target value calculation map based on the basic second clutch torque capacity command value T cl2_base * and the second clutch oil temperature Temp cl2 as shown in FIG. . As shown in FIG. 6 (a), the second clutch slip rotational speed target value ω cl2_slp * in the EV mode is set so as to decrease as the second clutch oil temperature Temp cl2 increases, and the basic second clutch torque capacity command is set. Set the value T cl2_base * to be smaller as it is larger. When the oil temperature of the second clutch 4 is “high” or “the clutch capacity command value is large”, the second clutch slip rotation speed target value ω cl2_slp * is reduced to prevent the clutch oil temperature from rising. it can.
 2.エンジントルク始動中の場合
  ωcl2_slp *=fcl2_slp_cl1OP(Tcl2_base *,Tempcl2)+fcl2_Δωslp(Teng_start) …(15)
  ここで、fcl2_slp_cl1OP()はエンジン始動時のためのスリップ回転数増加量を演算する関数であり、エンジン始動配分モータトルクTeng_startを入力とする。実際には、例えば、図6(b)に示すようなエンジン始動配分モータトルクTeng_startに基づく第2クラッチスリップ回転数目標値演算マップを用いる。図6(b)に示すように、エンジントルク始動中における第2クラッチスリップ回転数目標値ωcl2_slp *は、エンジン始動配分モータトルクTeng_startが低下するほど高くなるように設定する。これにより、第1クラッチ3からの外乱を完全に打ち消すことができず、回転数が低下した場合であっても、急な締結を防止でき、その結果、加速度変動が生じることもなくエンジン2を始動できる。
  なお、エンジン始動後もスリップ制御を継続する場合、スリップ回転数はEV走行中同様とする(増加分は加算しない)。
2. When engine torque is starting ω cl2_slp * = f cl2_slp_cl1OP (T cl2_base * , Temp cl2 ) + f cl2_Δωslp (T eng_start )… (15)
Here, f cl2_slp_cl1OP () is a function for calculating the amount of increase in slip rotation speed at the time of engine start, and the engine start distribution motor torque T eng_start is input. Actually, for example, a second clutch slip rotation speed target value calculation map based on the engine start distribution motor torque Teng_start as shown in FIG. 6B is used. As shown in FIG. 6 (b), the second clutch slip rotational speed target value ωcl2_slp * during engine torque start is set to increase as the engine start distribution motor torque Teng_start decreases. As a result, the disturbance from the first clutch 3 cannot be completely cancelled, and even if the rotational speed decreases, sudden engagement can be prevented, and as a result, the engine 2 can be operated without any acceleration fluctuation. Can start.
If slip control is to be continued even after the engine is started, the slip rotation speed is the same as during EV travel (the increment is not added).
 次に、スリップ回転数目標値ωcl2_slp *と出力軸回転数計測値ωoから下式に基づき入力回転数目標値ωcl2i *を演算する。
  ωcl2i *=ωcl2_slp *+ωo …(16)
  最後に、上式から算出した入力回転数目標値ωcl2i *に上下限制限を施し、最終的な入力軸回転数目標値とする。なお、上下限制限値はエンジン回転数の上下限値とする。
Next, the input rotational speed target value ω cl2i * is calculated from the slip rotational speed target value ω cl2_slp * and the output shaft rotational speed measured value ω o based on the following equation.
ω cl2i * = ω cl2_slp * + ω o … (16)
Finally, the upper and lower limits are applied to the input rotational speed target value ω cl2i * calculated from the above equation to obtain the final input shaft rotational speed target value. The upper and lower limit values are the upper and lower limit values of the engine speed.
 [回転数制御用第2クラッチトルク容量指令値演算]
  次に、回転数制御用第2クラッチトルク容量令値Tcl_FB_ONの演算方法の詳細について説明する。
  図7は、第2クラッチ用フィードバック制御のブロック図である。本制御系は、フィードフォワード(F/F)補償とフィードバック(F/B)補償とからならなる2自由度制御手法で設計している。F/B補償部については様々な設計方法が考えられるが、今回はその一例としてPI制御としている。以下、その演算方法について説明する。
  まず初めに、下式に示す位相補償フィルタGFF(s)に基づいて基本第2クラッチトルク容量指令値Tcl2_base *に位相補償を施し、F/F第2クラッチトルク容量指令値Tcl2_base *を演算する。実際の演算はタスティン近似等で離散化して得られた漸化式を用いて算出する。
Figure JPOXMLDOC01-appb-M000002
  ただし、
τcl2:クラッチモデル時定数
τcl2_ref:クラッチ制御用規範応答時定数
[Second clutch torque capacity command value calculation for speed control]
Next, the details of the calculation method of the second clutch torque capacity command value T cl_FB_ON for rotation speed control will be described.
FIG. 7 is a block diagram of feedback control for the second clutch. This control system is designed with a two-degree-of-freedom control method consisting of feedforward (F / F) compensation and feedback (F / B) compensation. Various design methods can be considered for the F / B compensator, but this time PI control is an example. Hereinafter, the calculation method will be described.
First, phase compensation is applied to the basic second clutch torque capacity command value T cl2_base * based on the phase compensation filter G FF (s) shown in the following formula, and the F / F second clutch torque capacity command value T cl2_base * is obtained. Calculate. The actual calculation is calculated using a recurrence formula obtained by discretization by Tustin approximation or the like.
Figure JPOXMLDOC01-appb-M000002
However,
τ cl2 : Clutch model time constant τ cl2_ref : Reference response time constant for clutch control
 次に、以下に基づき第2クラッチトルク容量目標値Tcl2_tを演算する。
  1.EVモードの場合
  Tcl2_t=Tcl2_base * …(18)
  2.HEVモード(第1クラッチが締結状態)の場合
  Tcl2_t=Tcl2_base *-Te_est …(19)
  なお、HEVモードにおける第2クラッチトルク容量目標値は、全体(エンジン2およびモータ1)のトルク容量に対し、モータ分の容量を意味する。
  Te_estはエンジントルク推定値であり、例えば、下式に基づき演算する。
Figure JPOXMLDOC01-appb-M000003
  ただし、
τe:エンジン一次遅れ時定数
Le:エンジンむだ時間
Next, the second clutch torque capacity target value Tcl2_t is calculated based on the following.
1. In EV mode T cl2_t = T cl2_base * … (18)
2. In HEV mode (1st clutch is engaged) T cl2_t = T cl2_base * -T e_est (19)
Note that the second clutch torque capacity target value in the HEV mode means the capacity of the motor with respect to the torque capacity of the whole (engine 2 and motor 1).
Te_est is an estimated engine torque value, and is calculated based on the following equation, for example.
Figure JPOXMLDOC01-appb-M000003
However,
τ e : Engine primary delay time constant
L e : Engine dead time
 次に、下式に基づき第2クラッチトルク容量規範値Tcl2_refを演算する。
Figure JPOXMLDOC01-appb-M000004
  次に、第2クラッチトルク容量規範値Tcl2_refと前述した回転数制御用モータトルク指令値Tm_FB_ONから下式に基づきF/B第2クラッチ容量指令値Tcl2_FBを演算する。
Figure JPOXMLDOC01-appb-M000005
  ただし、
KPcl2:第2クラッチ制御用比例ゲイン
KIcl2:第2クラッチ制御用積分ゲイン
Next, the second clutch torque capacity reference value Tcl2_ref is calculated based on the following equation.
Figure JPOXMLDOC01-appb-M000004
Next, the F / B second clutch capacity command value Tcl2_FB is calculated from the second clutch torque capacity reference value Tcl2_ref and the above-described rotation speed control motor torque command value Tm_FB_ON based on the following equation.
Figure JPOXMLDOC01-appb-M000005
However,
K Pcl2 : Proportional gain for second clutch control
K Icl2 : 2nd clutch control integral gain
 また、下式のように入力回転数変化によって生じるトルク(イナーシャトルク)を考慮することにより、入力回転数が変化している場合にも精度よくトルク容量を制御できる。
Figure JPOXMLDOC01-appb-M000006
  ここで、TIcl2_eSTはイナーシャトルク推定値であり、例えば、入力回転数変化量(微分値)に入力軸周りの慣性モーメントを乗算して求める。
  そしてF/F第2クラッチトルク容量指令値Tcl2_FFとF/B第2クラッチ容量指令値Tcl2_FBとを加算し、最終的な回転数制御用第2クラッチ容量指令値Tcl2_FB_ONを演算する。
Further, by considering the torque (inert torque) generated by the change in the input rotational speed as in the following equation, the torque capacity can be accurately controlled even when the input rotational speed is changing.
Figure JPOXMLDOC01-appb-M000006
Here, T Icl2_eST is an inertia torque estimated value, and is obtained, for example, by multiplying the input rotation speed change amount (differential value) by the moment of inertia around the input shaft.
Then, the F / F second clutch torque capacity command value T cl2_FF and the F / B second clutch capacity command value T cl2_FB are added to calculate the final second clutch capacity command value T cl2_FB_ON for rotational speed control.
 [トルク容量指令値演算]
  次に、エンジン始動中の各クラッチのトルク容量指令値Tcl1_ENG_START,Tcl2_ENG_STARTの演算方法の詳細について説明する。図8は、エンジン始動中の各クラッチのトルク容量指令値演算方法を示すフローチャートである。
  ステップS71では、第1クラッチ制御モードが開放モードか否かを判定する。開放モードでなければ(締結モードであれば)ステップS72へ進み、開放モードであれば処理を終了する。
  ステップS72(エンジン始動下限トルク演算手段)では、エンジン回転数ωe、エンジン動作状態Ests(初爆後か否か)から現在のエンジン回転数においてクランキングに最低限必要なエンジン始動下限トルクTENG_STARTを演算する。実際には、初爆前であればあらかじめ実験などで求めた回転数毎のエンジンフリクショントルクにエンジン回転上昇に必要な分を加算した値で作成したエンジン始動下限トルク演算マップ(図9参照)を用いて演算する。また、初爆後についてはエンジン始動が所定の時間内に終了(第2クラッチ入力回転数まで上昇)するために必要なトルクにエンジン自体が出力しているトルクを差し引いた値となる。
[Torque capacity command value calculation]
Next, details of a calculation method of the torque capacity command values T cl1_ENG_START and T cl2_ENG_START of each clutch during engine start will be described. FIG. 8 is a flowchart showing a torque capacity command value calculation method for each clutch during engine start.
In step S71, it is determined whether or not the first clutch control mode is the disengagement mode. If it is not the release mode (if it is the fastening mode), the process proceeds to step S72, and if it is the release mode, the process is terminated.
In step S72 (engine start lower limit torque calculating means), the engine start lower limit torque T required for cranking at the current engine speed from the engine speed ω e and the engine operating state E sts (whether or not after the first explosion) is determined. Calculate ENG_START . Actually, before the first explosion, an engine start lower limit torque calculation map (see FIG. 9) created with a value obtained by adding an amount necessary for increasing the engine rotation to the engine friction torque for each rotation speed obtained in advance through experiments or the like. Use to calculate. Further, after the first explosion, the value is obtained by subtracting the torque output by the engine itself from the torque required for the engine start to be completed within a predetermined time (up to the second clutch input rotational speed).
 ステップS73(モータ上限トルク演算手段)では、バッテリ充電量SOC(または端子電圧VB)および入力軸回転数ωcl2iからモータ上限トルクTm_HLMTを演算する。実際には、例えば、図10に示すようなモータ上限トルク演算マップを用いて演算する。
  ステップS74(第2クラッチトルク容量上限値演算手段)では、エンジン始動下限トルクTENG_START、およびモータ上限トルクTm_HLMTから下式を用いて第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTを演算する。
  Tcl2_ENG_START_HLMT=Tm_HLMT-TENG_START …(24)
  ステップS75では、第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTと駆動トルク指令値Td *から以下に基づきエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTを決定する。
  1.Td *>Tcl2_ENG_START_HLMTの場合
  Tcl2_ENG_START=Tcl2_ENG_START_HLMT
  2.Td *≦Tcl2_ENG_START_HLMTの場合
  Tcl2_ENG_START=Td *
  ステップS76では、モータ上限トルクTm_HLMT、およびエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTから、下式に基づきエンジン始動用第1クラッチトルク容量指令値Tcl1_ENG_STARTを演算する。
  Tcl1_ENG_START=Tm_HLMT-Tcl2_ENG_START …(25)
In step S73 (motor upper limit torque calculating means), the motor upper limit torque T m_HLMT is calculated from the battery charge SOC (or terminal voltage V B ) and the input shaft speed ω cl2i . Actually, for example, calculation is performed using a motor upper limit torque calculation map as shown in FIG.
In step S74 (second clutch torque capacity upper limit calculating means), the second clutch torque capacity upper limit T cl2_ENG_START_HLMT is calculated from the engine start lower limit torque T ENG_START and the motor upper limit torque T m_HLMT using the following equation.
T cl2_ENG_START_HLMT = T m_HLMT -T ENG_START … (24)
In step S75, the second clutch torque capacity command value for engine starting T cl2_ENG_START is determined based on the following from the second clutch torque capacity upper limit value T cl2_ENG_START_HLMT and the drive torque command value T d * .
1. When T d * > T cl2_ENG_START_HLMT T cl2_ENG_START = T cl2_ENG_START_HLMT
2.When T d * ≤ T cl2_ENG_START_HLMT T cl2_ENG_START = T d *
In step S76, the engine starting first clutch torque capacity command value Tcl1_ENG_START is calculated from the motor upper limit torque Tm_HLMT and the engine starting second clutch torque capacity command value Tcl2_ENG_START based on the following equation.
T cl1_ENG_START = T m_HLMT -T cl2_ENG_START … (25)
 次に、作用を説明する。
  [トルク容量指令値演算作用]
  図11は、従来のクラッチ制御装置において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートである。
  従来技術では、エンジン始動中の各クラッチのトルク容量指令値が一定であるため、エンジン始動中は車両の駆動トルクとなる第2クラッチトルク容量が不変であり、駆動トルク指令値と乖離が生じている。これにより、加速度が停滞し、運転者の所望する加速性能が得られない。
  これに対し、実施例1では、モータ1が出力可能なトルクであるモータ上限トルクTm_HLMTからエンジン始動に必要なエンジン始動下限トルクTENG_STARTを除いた残りの全て(第2クラッチトルク容量上限値Tcl2_ENG_START_HLMT)をエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTとし、モータ上限トルクTm_HLMTからエンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTを差し引いた値をエンジン始動用第1クラッチトルク容量指令値Tcl1_ENG_STARTとしている。
Next, the operation will be described.
[Torque capacity command value calculation]
FIG. 11 is a time chart when the conventional clutch control device shifts from EV traveling to HEV traveling as the driver depresses the accelerator.
In the prior art, since the torque capacity command value of each clutch during engine start is constant, the second clutch torque capacity, which is the vehicle drive torque, remains unchanged during engine start, resulting in a deviation from the drive torque command value. Yes. As a result, the acceleration is stagnated and the acceleration performance desired by the driver cannot be obtained.
On the other hand, in the first embodiment, all of the remaining values (the second clutch torque capacity upper limit value T) obtained by removing the engine start lower limit torque T ENG_START required for engine start from the motor upper limit torque T m_HLMT that is the torque that can be output by the motor 1. the Cl2_ENG_START_HLMT) a second clutch torque capacity command value T Cl2_ENG_START for starting the engine, the first clutch torque capacity command value for a value obtained by subtracting the second clutch torque capacity command value T Cl2_ENG_START for starting the engine from the motor upper limit torque T M_HLMT engine start T cl1_ENG_START .
 ここで、エンジン始動下限トルクTENG_STARTは、図9に示したように、エンジン回転数ωeが高くなるほど小さくなる。特に、エンジン初爆後は、エンジン自身が燃焼トルクを発生するため、初爆前と比較してエンジン始動に必要なクランキングトルクはより小さくなる。一方、モータ上限トルクTm_HLMTは、図10に示したように、エンジン回転数ωeが高い領域では、エンジン回転数ωeが高くなるほど小さくなるものの、エンジン始動時のようにエンジン回転数ωeが低い領域では一定である。つまり、第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTは、エンジン回転数ωeが高くなるほど大きくなる。すなわち、実施例1では、アクセル踏み込みに伴いエンジン2を始動する際、エンジン回転数ωeの上昇に応じてエンジン始動用第1クラッチトルク容量指令値Tcl1_ENG_STARTを減少させると共に、エンジン始動用第2クラッチトルク容量指令値Tcl2_ENG_STARTを増加させている。 Here, as shown in FIG. 9, the engine start lower limit torque T ENG_START decreases as the engine speed ω e increases. In particular, since the engine itself generates combustion torque after the first engine explosion, the cranking torque required for starting the engine is smaller than that before the first explosion. On the other hand, the motor upper limit torque T M_HLMT, as shown in FIG. 10, the engine speed omega e regions of high, although the smaller the engine rotational speed omega e becomes higher, the engine rotational speed such as during engine start omega e It is constant in the low region. That is, the second clutch torque capacity upper limit value Tcl2_ENG_START_HLMT increases as the engine speed ω e increases. That is, in Example 1, when starting the engine 2 with the accelerator pedal depression, depending on the increase in the engine rotational speed omega e while decreasing the first clutch torque capacity command value T Cl1_ENG_START for starting the engine, the second engine starting The clutch torque capacity command value Tcl2_ENG_START is increased.
 これにより、第1クラッチトルク容量と第2クラッチトルク容量との和をモータ上限トルクTm_HLMTに制限しつつ、モータトルクを最大限に活用して踏み込み直後から車両の駆動トルクを増大させることができる。図12は、実施例1において、運転者のアクセル踏み込みに伴いEV走行からHEV走行へ移行するときのタイムチャートであり、実施例1では、図12に示すように、エンジン初爆後であってエンジン始動完了前の時点で駆動トルクを駆動トルク指令値Td *と一致させることが可能である。よって、上記従来技術に対して、加速停滞を大幅に改善でき、運転者の所望する加速性能を実現できる。
  このとき、実施例1では、第1クラッチトルク容量の下限をエンジン始動下限トルクTENG_STARTで制限しているため、エンジン回転数ωeの上昇に応じて第1クラッチトルク容量は減少するものの、エンジン始動に最低限必要なクランキングトルクは確保できるため、確実にエンジン2を所定時間内に始動できる。
As a result, it is possible to increase the drive torque of the vehicle immediately after depressing by making the maximum use of the motor torque while limiting the sum of the first clutch torque capacity and the second clutch torque capacity to the motor upper limit torque Tm_HLMT. . FIG. 12 is a time chart when the vehicle travels from EV traveling to HEV traveling as the driver depresses the accelerator in the first embodiment. In the first embodiment, as shown in FIG. It is possible to make the driving torque coincide with the driving torque command value T d * before the completion of engine start. Therefore, the acceleration stagnation can be significantly improved with respect to the above-described conventional technology, and the acceleration performance desired by the driver can be realized.
At this time, in Example 1, since the lower limit of the first clutch torque capacity is limited by the engine start lower limit torque T ENG_START , the first clutch torque capacity decreases as the engine speed ω e increases. Since the minimum cranking torque necessary for starting can be ensured, the engine 2 can be reliably started within a predetermined time.
 以上説明したように、実施例1にあっては以下に列挙する効果を奏する。
  (1) エンジン2と、モータジェネレータ1と、エンジン2およびモータジェネレータ1間のトルク伝達を断続する第1クラッチ3と、モータジェネレータ1および駆動輪21a,21b間のトルク伝達を断続する第2クラッチ4と、第1クラッチ3を切断し前記モータジェネレータ1のトルクにより走行する電動車モードから、第1クラッチ3を接続してエンジン2およびモータジェネレータ1のトルクにより走行するハイブリッドモードへ切り替わる際、モータジェネレータ1のトルクを利用してエンジン2を始動する統合コントローラ13と、エンジン回転数ωeを検出するエンジン回転数センサ11と、モータ上限トルクTm_HLMTを算出するモータ上限トルク演算手段(ステップS73)と、アクセル踏み込みに伴いエンジン2を始動する際、モータ上限トルクTm_HLMTの範囲内で第1クラッチトルク容量と第2クラッチトルク容量とを配分する伝達トルク容量配分手段(ステップS7)と、を備え、伝達トルク容量配分手段は、アクセル踏み込みに伴いエンジン2を始動する際、エンジン回転数ωeの上昇に応じて第1クラッチトルク容量を減少させると共に、第2クラッチトルク容量を増加させる。
  よって、エンジン回転数ωeの上昇と共に車両の駆動トルクが増大するため、加速度の停滞を抑制でき、運転者の所望する加速性能を実現できる。
As described above, Example 1 has the following effects.
(1) Engine 2, motor generator 1, first clutch 3 for intermittent torque transmission between engine 2 and motor generator 1, and second clutch for intermittent torque transmission between motor generator 1 and drive wheels 21a, 21b 4 and the electric vehicle mode in which the first clutch 3 is disconnected and travels with the torque of the motor generator 1 to the hybrid mode in which the first clutch 3 is connected and the engine 2 and the motor generator 1 travel with the torque. An integrated controller 13 for starting the engine 2 using the torque of the generator 1, an engine speed sensor 11 for detecting the engine speed ω e , and a motor upper limit torque calculating means for calculating the motor upper limit torque T m_HLMT (step S73) If, when starting the engine 2 with the accelerator depression, the within the motor upper limit torque T m_HLMT 1 It includes a transmission torque capacity allocation means for allocating a latch torque capacity and the second clutch torque capacity (step S7), and the transmission torque capacity allocation means, when starting the engine 2 with the accelerator depression, engine speed omega e As the engine speed increases, the first clutch torque capacity is decreased and the second clutch torque capacity is increased.
Therefore, since the driving torque of the vehicle increases as the engine speed ω e increases, acceleration stagnation can be suppressed and the acceleration performance desired by the driver can be realized.
 (2) エンジン回転数ωeとエンジンが初爆後か否かに基づき、エンジン始動に必要なエンジン始動下限トルクTENG_STARTを演算するエンジン始動下限トルク演算手段(ステップS72)を備え、伝達トルク容量配分手段は、第1クラッチトルク容量の下限をエンジン始動下限トルクTENG_STARTで制限する。
  よって、加速度の停滞を抑制しつつ、確実にエンジン2を始動できる。
(2) Engine start lower limit torque calculation means (step S72) that calculates the engine start lower limit torque T ENG_START required for engine start based on the engine speed ω e and whether or not the engine is after the first explosion. The distribution means limits the lower limit of the first clutch torque capacity with the engine start lower limit torque T ENG_START .
Therefore, the engine 2 can be reliably started while suppressing the stagnation of acceleration.
 (3) アクセル開度に基づいて駆動トルク指令値Td *を演算する駆動トルク指令値演算手段(ステップS3)と、モータ上限トルクTm_HLMTからエンジン始動下限トルクTENG_STARTを減じて、エンジン始動中に第2クラッチ4へ配分可能な第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTを演算する第2クラッチトルク容量上限値演算手段(ステップS74)と、を備え、伝達トルク容量配分手段は、駆動トルク指令値Td *の上限を第2クラッチトルク容量上限値Tcl2_ENG_START_HLMTで制限した値を第2クラッチトルク容量とし、モータ上限トルクTm_HLMTから当該第2クラッチトルク容量を減じた値を第1クラッチトルク容量とする。
  よって、モータ上限トルクTm_HLMTの範囲内で、エンジン2を確実に始動させつつ運転者が所望する駆動トルクを実現できるため、モータトルクを最大限に活用でき、加速性能が向上する。
(3) and the drive torque command value calculating means for calculating a driving torque command value T d * based on the accelerator opening degree (step S3), and the motor upper limit torque T M_HLMT by subtracting the engine starting limit torque T ENG_START, during engine start 2nd clutch torque capacity upper limit value calculating means (step S74) for calculating a second clutch torque capacity upper limit value Tcl2_ENG_START_HLMT that can be distributed to the second clutch 4, and the transmission torque capacity distributing means is a drive torque command value. The value obtained by limiting the upper limit of T d * with the second clutch torque capacity upper limit value T cl2_ENG_START_HLMT is defined as the second clutch torque capacity, and the value obtained by subtracting the second clutch torque capacity from the motor upper limit torque T m_HLMT is defined as the first clutch torque capacity. To do.
Therefore, since the driving torque desired by the driver can be realized while the engine 2 is reliably started within the range of the motor upper limit torque Tm_HLMT , the motor torque can be utilized to the maximum and the acceleration performance is improved.
 (他の実施例)
  以上、本発明を実施するための形態を、実施例に基づいて説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
(Other examples)
As mentioned above, although the form for implementing this invention was demonstrated based on the Example, the concrete structure of this invention is not limited to an Example, The design change of the range which does not deviate from the summary of invention And the like are included in the present invention.

Claims (3)

  1.  エンジンと、
     モータジェネレータと、
     前記エンジンおよび前記モータジェネレータ間のトルク伝達を断続する第1クラッチと、
     前記モータジェネレータおよび駆動輪間のトルク伝達を断続する第2クラッチと、
     前記第1クラッチを切断し前記モータジェネレータのトルクにより走行する電動車モードから、前記第1クラッチを接続して前記エンジンおよび前記モータジェネレータのトルクにより走行するハイブリッドモードへ切り替わる際、前記モータジェネレータのトルクを利用して前記エンジンを始動するエンジン始動手段と、
     エンジン回転数を検出するエンジン回転数検出手段と、
     モータ上限トルクを算出するモータ上限トルク演算手段と、
     アクセル踏み込みに伴い前記エンジンを始動する際、前記モータ上限トルクの範囲内で前記第1クラッチの伝達トルク容量と前記第2クラッチの伝達トルク容量とを配分する伝達トルク容量配分手段と、
     を備え、
     前記伝達トルク容量配分手段は、アクセル踏み込みに伴い前記エンジンを始動する際、前記エンジン回転数の上昇に応じて前記第1クラッチの伝達トルク容量を減少させると共に、前記第2クラッチの伝達トルク容量を増加させることを特徴とするハイブリッド車両のクラッチ制御装置。
    Engine,
    A motor generator;
    A first clutch for intermittently transmitting torque between the engine and the motor generator;
    A second clutch for intermittently transmitting torque between the motor generator and the drive wheel;
    When switching from the electric vehicle mode in which the first clutch is disengaged and traveling by the torque of the motor generator to the hybrid mode in which the first clutch is engaged and the engine and the motor generator are traveled, the torque of the motor generator Engine starting means for starting the engine using
    An engine speed detecting means for detecting the engine speed;
    Motor upper torque calculating means for calculating the motor upper torque;
    Transmission torque capacity distribution means for distributing the transmission torque capacity of the first clutch and the transmission torque capacity of the second clutch within the range of the motor upper limit torque when the engine is started as the accelerator is depressed;
    With
    The transmission torque capacity distribution means reduces the transmission torque capacity of the first clutch according to an increase in the engine speed and reduces the transmission torque capacity of the second clutch when the engine is started as the accelerator is depressed. A clutch control device for a hybrid vehicle, characterized by being increased.
  2.  請求項1に記載のハイブリッド車両のクラッチ制御装置において、
     前記エンジン回転数と前記エンジンが初爆後か否かに基づき、エンジン始動に必要なエンジン始動下限トルクを演算するエンジン始動下限トルク演算手段を備え、
     前記伝達トルク容量配分手段は、前記第1クラッチの伝達トルク容量の下限を前記エンジン始動下限トルクで制限することを特徴とするハイブリッド車両のクラッチ制御装置。
    The clutch control apparatus for a hybrid vehicle according to claim 1,
    Engine starting lower limit torque calculating means for calculating an engine starting lower limit torque required for starting the engine based on whether the engine speed and the engine are after the first explosion,
    The clutch control device for a hybrid vehicle, wherein the transmission torque capacity distribution means limits a lower limit of the transmission torque capacity of the first clutch with the engine start lower limit torque.
  3.  請求項2に記載のハイブリッド車両のクラッチ制御装置において、
     アクセル開度に基づいて駆動トルク指令値を演算する駆動トルク指令値演算手段と、
     前記モータ上限トルクから前記エンジン始動下限トルクを減じて、エンジン始動中に前記第2クラッチへ配分可能な第2クラッチトルク容量上限値を演算する第2クラッチトルク容量上限値演算手段と、
     を備え、
     前記伝達トルク容量配分手段は、前記駆動トルク指令値の上限を前記第2クラッチトルク容量上限値で制限した値を前記第2クラッチの伝達トルク容量とし、前記モータ上限トルクから当該第2クラッチの伝達トルク容量を減じた値を前記第1クラッチの伝達トルク容量とすることを特徴とするハイブリッド車両のクラッチ制御装置。
    The clutch control device for a hybrid vehicle according to claim 2,
    Driving torque command value calculating means for calculating a driving torque command value based on the accelerator opening;
    Second clutch torque capacity upper limit calculating means for subtracting the engine start lower limit torque from the motor upper limit torque and calculating a second clutch torque capacity upper limit value that can be distributed to the second clutch during engine startup;
    With
    The transmission torque capacity distribution means sets a value obtained by limiting an upper limit of the drive torque command value with the second clutch torque capacity upper limit value as a transfer torque capacity of the second clutch, and transmits the second clutch from the motor upper limit torque. A clutch control device for a hybrid vehicle, wherein a value obtained by subtracting the torque capacity is set as a transmission torque capacity of the first clutch.
PCT/JP2014/058314 2013-04-18 2014-03-25 Clutch control device for hybrid vehicle WO2014171273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-087252 2013-04-18
JP2013087252A JP2016112900A (en) 2013-04-18 2013-04-18 Clutch control device of hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2014171273A1 true WO2014171273A1 (en) 2014-10-23

Family

ID=51731226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058314 WO2014171273A1 (en) 2013-04-18 2014-03-25 Clutch control device for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP2016112900A (en)
WO (1) WO2014171273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526372A (en) * 2022-03-10 2022-05-24 雷沃工程机械集团有限公司 Method for calibrating electromagnetic valve of transmission control system and loader

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110718B2 (en) * 2018-05-17 2022-08-02 スズキ株式会社 Start control device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306207A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Engine start method for hybrid drive unit
JP2011031659A (en) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd Hybrid vehicle
WO2012053340A1 (en) * 2010-10-21 2012-04-26 日産自動車株式会社 Hybrid vehicle engine start control device
JP2012086701A (en) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306207A (en) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd Engine start method for hybrid drive unit
JP2011031659A (en) * 2009-07-30 2011-02-17 Nissan Motor Co Ltd Hybrid vehicle
JP2012086701A (en) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle
WO2012053340A1 (en) * 2010-10-21 2012-04-26 日産自動車株式会社 Hybrid vehicle engine start control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526372A (en) * 2022-03-10 2022-05-24 雷沃工程机械集团有限公司 Method for calibrating electromagnetic valve of transmission control system and loader

Also Published As

Publication number Publication date
JP2016112900A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP6070831B2 (en) Clutch control device for hybrid vehicle
JP5391654B2 (en) Control device for hybrid vehicle
JP5223603B2 (en) Control device for hybrid vehicle
JP5168600B2 (en) Control device
JP6019732B2 (en) Control device for hybrid vehicle
JP5195218B2 (en) Control device for hybrid vehicle
JP5402060B2 (en) Control device for electric vehicle
JP2012086701A (en) Control device of hybrid vehicle
JP5228810B2 (en) Control device for hybrid vehicle
US9592823B2 (en) Control device for hybrid electric vehicle clutch engagement
JP5387060B2 (en) Control device for electric vehicle
JP2017047733A (en) Start control method and start control apparatus for hybrid vehicle
JP5029561B2 (en) Vehicle control device
JP5293268B2 (en) Clutch control device for hybrid vehicle
JP2014061750A (en) Hybrid vehicle control device and hybrid vehicle control method
JP5257120B2 (en) Clutch control device
JP5407328B2 (en) Control device for hybrid vehicle
JP2018039317A (en) Control method and control device for hybrid vehicle
JP5104775B2 (en) Clutch control device
JP6044257B2 (en) Clutch control device
WO2014171273A1 (en) Clutch control device for hybrid vehicle
JP6070388B2 (en) Clutch control device for hybrid vehicle
JP2010188806A (en) Controller for hybrid vehicle
JP2010202115A (en) Control device for hybrid vehicle
JP6702085B2 (en) Electric vehicle control method and electric vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784818

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14784818

Country of ref document: EP

Kind code of ref document: A1