WO2014171146A1 - Photovoltaic power generation module - Google Patents

Photovoltaic power generation module Download PDF

Info

Publication number
WO2014171146A1
WO2014171146A1 PCT/JP2014/002190 JP2014002190W WO2014171146A1 WO 2014171146 A1 WO2014171146 A1 WO 2014171146A1 JP 2014002190 W JP2014002190 W JP 2014002190W WO 2014171146 A1 WO2014171146 A1 WO 2014171146A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal silicide
power generation
polycrystalline metal
silicide layer
Prior art date
Application number
PCT/JP2014/002190
Other languages
French (fr)
Japanese (ja)
Inventor
亮人 佐々木
大図 秀行
好則 片岡
邦之 角嶋
洋 岩井
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to CN201480021625.4A priority Critical patent/CN105144400B/en
Priority to JP2015512318A priority patent/JP6359525B2/en
Publication of WO2014171146A1 publication Critical patent/WO2014171146A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • Solar cells that generate power using sunlight are attracting attention as clean electrical energy devices.
  • a solar cell a solar cell including a single crystal silicon substrate or a polycrystalline silicon substrate is mainly used because of its excellent power generation efficiency.
  • the use of a thin-film amorphous silicon solar cell including a thinned silicon substrate has been studied.
  • compound semiconductor solar cells using gallium, arsenic, phosphorus, germanium, indium, etc. have been proposed as solar cells other than silicon.
  • the above-mentioned silicon-based solar cells and compound semiconductor-based solar cells have a problem that they cannot be spread as expected because they are expensive due to the large size of the silicon substrate that receives sunlight and the complexity of the compound synthesis process. It was.
  • metal silicide layer as a semiconductor layer
  • a solar cell having a ⁇ -FeSi 2 layer as a semiconductor layer has been proposed.
  • Metal silicides such as iron silicide can produce both single crystals and polycrystals, and are expected to be lower in cost than silicon solar cells.
  • metal silicide solar cells are expected as solar cells having higher power generation efficiency than silicon solar cells because they generate power by sensing infrared rays that are not used in silicon solar cells.
  • metal silicide solar cells are not commercialized at present and are in the research stage. This is because stable power generation efficiency is not obtained.
  • the output of the metal silicide solar cell varies depending on the intensity of received light, there is anxiety about the use as a single power source.
  • the photovoltaic power generation module includes a polycrystalline metal silicide layer as a power generation layer.
  • the average crystal grain size A of the polycrystalline metal silicide layer is not less than the film thickness B of the polycrystalline metal silicide layer (A ⁇ B).
  • FIG. 1 is a schematic diagram showing a structural example of the photovoltaic power generation module 1 according to the first embodiment.
  • the photovoltaic power generation module 1 includes a polycrystalline metal silicide layer 2 provided on a substrate 5, a surface electrode portion 4 provided on the surface side (sunlight receiving surface side) of the polycrystalline metal silicide layer 2, a polycrystalline And an electrode layer 3 provided on the back side of the metal silicide layer 2 (opposite side of the sunlight receiving surface).
  • the polycrystalline metal silicide layer 2 has a function of receiving sunlight and generating electric power.
  • electricity generated by the polycrystalline metal silicide layer 2 using the surface electrode portion 4 and the electrode layer 3 can be taken out to the outside.
  • the polycrystalline metal silicide layer 2 has a function as a power generation layer.
  • the average crystal grain size A ( ⁇ m) and the film thickness B ( ⁇ m) of the polycrystalline metal silicide layer 2 satisfy A ⁇ B. That is, the average crystal grain size A of the polycrystalline metal silicide layer 2 is not less than the film thickness B of the polycrystalline metal silicide layer 2 (A ⁇ B).
  • the polycrystalline metal silicide layer 2 individual crystal particles contribute to power generation.
  • the electricity generated by the metal silicide crystal particles is taken out through the surface electrode portion 4 and the electrode layer 3 as described above. That is, electricity flows in the thickness direction of the polycrystalline metal silicide layer 2.
  • the grain boundaries between the metal silicide crystal particles become trap sites.
  • the grain boundary trap site serves as an internal resistance that hinders carrier conduction. For this reason, if there is a grain boundary trap site, it becomes difficult to take out the electricity generated by the polycrystalline metal silicide layer 2, and as a result, the power generation efficiency tends to be lowered.
  • the average crystal grain size A of the polycrystalline metal silicide layer 2 is set to be not less than the film thickness B of the polycrystalline metal silicide layer 2 (A ⁇ B), so that the thickness direction of the polycrystalline metal silicide layer 2 is increased. In contrast, the number of grain boundaries can be reduced (including zero). At this time, it is most preferable that there is no grain boundary of the metal silicide crystal grains so as to cross the thickness direction of the polycrystalline metal silicide layer 2.
  • an enlarged photograph of an arbitrary cross section in the thickness direction of the polycrystalline metal silicide layer 2 is acquired.
  • the maximum diameter of each individual metal silicide crystal particle in the obtained enlarged photograph is defined as the crystal particle diameter of the crystal particle, and the average crystal grain diameter (maximum diameter) of any 30 metal silicide crystal particles is the average crystal grain diameter.
  • the thickness of arbitrary 10 places is measured and the average value of the measured thickness of 10 places is set to the film thickness B.
  • the magnification of the enlarged photograph is such a magnification that the grain boundary between the metal silicide crystal grains can be seen.
  • a plurality of enlarged photographs are used so that the photograph images are continuous.
  • FIG. 2 is a schematic view showing a structural example of the polycrystalline metal silicide layer 2.
  • the film thickness B of the polycrystalline metal silicide layer 2 is shown.
  • FIG. 2 is a schematic diagram showing a state in which five metal silicide crystal particles are arranged as an example.
  • the shape of the grain boundary between the metal silicide crystal grains is not particularly limited, and may be, for example, linear or curved.
  • the particle diameter of each metal silicide crystal particle is the maximum diameter of each metal silicide crystal particle shown in the enlarged photograph.
  • the particle diameters of the metal silicide crystal particles shown in FIG. 2 are a particle diameter A1, a particle diameter A2, a particle diameter A3, a particle diameter A4, and a particle diameter A5, respectively.
  • the average crystal grain size A of the polycrystalline metal silicide layer 2 is preferably 0.01 ⁇ m or more (10 nm or more). When the average crystal grain size A is less than 10 nm, it is difficult to control the average crystal grain size A and the film thickness B of the polycrystalline metal silicide layer 2 so that the crystal grain size is too small and A ⁇ B. There is.
  • the upper limit of the average crystal grain size A is not particularly limited, but is preferably 3 ⁇ m or less, for example. If the average crystal grain size A exceeds 3 ⁇ m, it may be difficult to produce a uniform crystal. Further, the average crystal grain size A is more preferably 0.05 to 1.2 ⁇ m (50 to 1200 nm).
  • the film thickness B of the polycrystalline metal silicide layer 2 is preferably 1 ⁇ m or less.
  • the film thickness B exceeds 1 ⁇ m, it may be difficult to produce a homogeneous crystal. Moreover, even if it is a case exceeding 1 micrometer, there exists a possibility that electric power generation efficiency may not improve.
  • the metal silicide contained in the polycrystalline metal silicide layer 2 is preferably at least one selected from the group consisting of ⁇ -iron silicide, barium silicide, magnesium silicide, chromium silicide, and rhenium silicide, for example.
  • the ⁇ -iron silicide is preferably ⁇ -FeSi 2 .
  • the iron silicide, FeSi besides FeSi 2, Fe 3 Si, but like Fe 5 Si 3 and the like, FeSi 2 is good and most power generation efficiency. If the stoichiometry approximates FeSi 2 , it can be used as iron silicide even if it is slightly deviated (the range in which the atomic ratio of Fe and Si is 1: 2 by rounding off the first digit of the decimal point).
  • the solar power generation module 1 includes, for example, a p-type ⁇ -iron silicide layer and an n-type ⁇ -iron silicide layer provided in contact with the p-type ⁇ -iron silicide layer. It may have a pn junction structure, a Schottky structure, a MIS (Metal Insulator Semiconductor) structure, or a MOS (Metal Oxide Semiconductor) structure. When comparing the pn junction type structure and the Schottky type structure, the Schottky type structure is preferable.
  • the polycrystalline metal silicide layer 2 may be doped with impurities.
  • the carrier density of p-type ⁇ -FeSi 2 is preferably 1 ⁇ 10 14 to 1 ⁇ 10 21 cm ⁇ 3
  • the carrier density of n-type ⁇ -FeSi 2 is 1 ⁇ 10 14 to 1 ⁇ 10 21 cm ⁇ 3.
  • the carrier density of Schottky ⁇ -FeSi 2 is preferably 1 ⁇ 10 14 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the carrier density of any ⁇ -FeSi 2 is more preferably 1 ⁇ 10 16 cm ⁇ 3 or less.
  • Barium silicide is preferably a BaSi 2.
  • examples of barium silicide include BaSi, and BaSi 2 has the highest power generation efficiency. If the stoichiometry approximates to BaSi 2 , it can be used as barium silicide even if the composition ratio is slightly deviated.
  • the photovoltaic module 1 includes a pn junction structure, a Schottky structure, a MIS structure, or a p-type barium silicide layer and an n-type barium silicide layer in contact with the p-type barium silicide layer. It may have a MOS type structure. If necessary, the polycrystalline metal silicide layer 2 may be doped with impurities.
  • the carrier density of the p-type BaSi 2 is 1 ⁇ 10 14 ⁇ 1 ⁇ 10 21 cm -3, that the carrier density of the n-type BaSi 2 is 1 ⁇ 10 14 ⁇ 1 ⁇ 10 21 cm -3 preferable.
  • the carrier density of the Schottky BaSi 2 is preferably 1 ⁇ 10 14 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the carrier density of any BaSi 2 is more preferably 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the improvement in power generation efficiency indicates that the carrier density is 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the carrier density of 1 ⁇ 10 17 cm ⁇ 3 or less is a numerical value smaller than 1 ⁇ 10 17 cm ⁇ 3 such as a multiplier of 1 ⁇ 10 17 cm ⁇ 3 or 1 ⁇ 10 15 cm ⁇ 3. Show.
  • ⁇ -FeSi 2 Since ⁇ -FeSi 2 has a band gap Eg of about 0.85 eV and is a direct transition type, it has a high absorption efficiency for light having a wavelength of 1500 nm or less.
  • BaSi 2 has a band gap Eg of about 1.4 eV and is an indirect transition type, and therefore has high absorption efficiency for wavelengths of 950 nm and below.
  • ⁇ -FeSi 2 or BaSi 2 for the polycrystalline metal silicide layer 2
  • infrared rays of 1500 nm or less or 950 nm or less can be used for power generation, and power generation can be performed for a long time even in units of one day. .
  • the film thickness of the polycrystalline metal silicide layer 2 containing ⁇ -FeSi 2 and BaSi 2 is set to the same power generation efficiency.
  • the thickness can be reduced to about 1/100 to 1/1000 of the Si solar cell layer.
  • the structure of the photovoltaic power generation module 1 includes a first polycrystalline metal silicide layer having a ⁇ -FeSi 2 layer and a second polycrystalline metal silicide provided on the first polycrystalline metal silicide layer and having a BaSi 2 layer.
  • a tandem structure including a silicide layer may be used.
  • the BaSi 2 layer has high absorption efficiency at a wavelength of 950 nm or less. In other words, light exceeding the wavelength of 950 nm is likely to be transmitted.
  • the ⁇ -FeSi 2 layer has high absorption efficiency at a wavelength of 1500 nm or less, the light transmitted through the BaSi 2 layer can be used for power generation by using the ⁇ -FeSi 2 layer.
  • the magnesium silicide is preferably Mg 2 Si
  • the chromium silicide is preferably CrSi 2
  • the rhenium silicide is preferably ReSi 2 .
  • the carrier density is preferably 1 ⁇ 10 17 cm ⁇ 3 or less as in the case of BaSi 2 .
  • FIG. 3 is a schematic diagram showing a structural example of a photovoltaic power generation module having a pn junction type structure.
  • the photovoltaic power generation module shown in FIG. 3 includes a polycrystalline metal silicide layer 2, a surface electrode portion 4 provided on the surface side (sunlight receiving surface side) of the polycrystalline metal silicide layer 2, and the polycrystalline metal silicide layer 2. Electrode layer 3 provided on the back surface side (opposite side of the sunlight receiving surface).
  • the polycrystalline metal silicide layer 2 includes a p-type polycrystalline metal silicide layer 2a provided on the surface electrode portion 4 side, and an n-type polycrystalline metal silicide layer 2b provided on the electrode layer 3 (back surface electrode) side. It comprises.
  • the arrangement of the p-type polycrystalline metal silicide layer 2a and the n-type polycrystalline metal silicide layer 2b may be reversed.
  • a depletion layer 2c is formed between the p-type polycrystalline metal silicide layer 2a and the n-type polycrystalline metal silicide layer 2b. Due to the presence of the depletion layer 2 c, the polycrystalline metal silicide layer 2 becomes an electric double layer, and electricity can be extracted from the polycrystalline metal silicide layer 2.
  • the electrode layer 3 may be formed on the substrate 5 as in FIG.
  • FIG. 4 is a schematic diagram showing a structural example of a photovoltaic power generation module having a Schottky structure.
  • the photovoltaic power generation module shown in FIG. 4 includes a polycrystalline metal silicide layer 2, a surface electrode portion 4 provided on the surface side (sunlight receiving surface side) of the polycrystalline metal silicide layer 2, and the polycrystalline metal silicide layer 2. Electrode layer 3 provided on the back surface side (opposite side of the sunlight receiving surface).
  • the polycrystalline metal silicide layer 2 may be either the p-type polycrystalline metal silicide layer 2a or the n-type polycrystalline metal silicide layer 2b.
  • a Schottky structure is a junction structure that exhibits a rectifying action between a metal and a semiconductor.
  • the depletion layer is formed by contact between a metal and a semiconductor.
  • the metal is the surface electrode portion 4 or the electrode layer 3.
  • the semiconductor is p-type polycrystalline metal silicide layer 2a or n-type polycrystalline metal silicide layer 2b.
  • the electrode layer 3 may be formed on the substrate 5 as in FIG.
  • the pn junction structure is a structure in which current is mainly flowed using minority carriers
  • the Schottky structure is a structure in which current is mainly flowed using majority carriers. For this reason, the solar power generation module in which the Schottky structure is superior in high-speed operability can be manufactured.
  • a method of adding at least one element selected from Group 13 of the periodic table to the polycrystalline metal silicide layer can be used.
  • the elements belonging to Group 13 of the periodic table include B (boron), Al (aluminum), Ga (gallium), In (indium), and Tl (thallium).
  • a method of adding at least one element selected from Group 15 of the periodic table to the polycrystalline metal silicide layer can be used.
  • Examples of the elements belonging to Group 15 of the periodic table include N (nitrogen), P (phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), and the like.
  • the p-type polycrystalline metal silicide layer 2a and the n-type polycrystalline metal silicide layer 2b can also be produced by controlling the composition of the polycrystalline metal silicide layer.
  • the surface electrode portion 4 is preferably an electrode material that transmits light having a wavelength of 1500 nm or less.
  • a material include transparent electrode materials such as ITO (Indium Tin Oxide: ITO), ATO (Antimony Tin Oxide: ATO), and AZO (Aluminum Zinc Oxide: AZO).
  • ITO Indium Tin Oxide: ITO
  • ATO Antimony Tin Oxide: ATO
  • AZO Alluminanum Zinc Oxide: AZO
  • One or more surface electrode portions 4 may be formed on the polycrystalline metal silicide layer 2.
  • An antireflection film or a glass substrate may be provided on the surface electrode portion 4 and the polycrystalline metal silicide layer 2.
  • a transparent electrode may be formed thereon.
  • the nitride film functions as a protective film that prevents oxidation and moisture absorption of the polycrystalline metal silicide layer 2.
  • a silicon nitride film is preferably used as the nitride film.
  • As the silicon nitride film it is preferable to use a nitride film of one material selected from SiN x , SiN x O y , SiN x O y H z , and SiN x H z .
  • x, y and z are atomic ratios when the atomic weight of Si is 1, x is a number satisfying 0 ⁇ x ⁇ 2.0, y is a number satisfying 0 ⁇ y ⁇ 1.0, z Is preferably a number satisfying 0 ⁇ z ⁇ 0.1.
  • the film thickness of the nitride film is preferably 10 nm or less, more preferably 5 nm or less.
  • Nitride films are often insulative (low conductivity), and if the film thickness exceeds 10 nm, electricity may not flow. By using a thin film of 10 nm or less, and further 5 nm or less, the tunnel effect is obtained, so there is no influence on conduction.
  • the thickness of the nitride film is not particularly limited, but is preferably 2 nm or more, for example.
  • Examples of methods for forming the nitride film include film formation methods such as sputtering, chemical vapor deposition (CVD), and direct nitridation (a method for nitriding metal silicide). Further, when each film forming method is used, a nitride film of SiN x O y , SiN x O y H z , or SiN x H z can be formed by including oxygen or hydrogen in the atmosphere during film formation. .
  • the electrode layer 3 may be any material having conductivity, and examples of materials applicable to the electrode layer 3 include metal materials (including alloys) such as Pt, Ag, Al, and Cu, and conductivity such as LaB 6 and TiN. Examples thereof include metal silicides such as nitride, nickel silicide (NiSi 2 ), and cobalt silicide (CoSi).
  • the thickness of the electrode layer 3 is arbitrary, but is preferably 10 nm or more. When ⁇ -FeSi 2 is used as the polycrystalline metal silicide layer 2, NiSi 2 is preferably used as the electrode layer 3. NiSi 2 is an electrode material that also functions as a template for controlling the crystal orientation of ⁇ -FeSi 2 .
  • an alloy applicable to the electrode layer 3 is an Al alloy.
  • the Al alloy include an Al-rare earth alloy such as an AlNd alloy.
  • the rare earth element content in the Al-rare earth alloy is preferably 10 atomic% or less.
  • An insulating layer may be partially provided between the polycrystalline metal silicide layer 2 and the electrode layer 3 as necessary.
  • the electrode layer 3 is preferably a material having heat resistance. This is because, as will be described later, it is preferable to perform heat treatment when the polycrystalline metal silicide layer 2 is formed.
  • the material having heat resistance include NiSi 2 , AlNd alloy, LaB 6 , and TiN. The yield in forming the electrode layer 3 is improved by using an electrode material having heat resistance.
  • the work function of the electrode in contact with the p-type polycrystalline metal silicide layer 2a is preferably lower than the work function of the p-type polycrystalline metal silicide layer 2a.
  • the work function of the electrode in contact with n-type polycrystalline metal silicide layer 2b is preferably higher than the work function of n-type polycrystalline metal silicide layer 2b.
  • the p-type polycrystalline metal silicide layer 2a is a p-type BaSi 2 layer
  • the n-type polycrystalline metal silicide layer 2b is an n-type BaSi 2 layer.
  • the electrode material is preferably selected.
  • the electrode material is preferably selected based on the work function 4.8.
  • the unit of work function is eV.
  • a glass substrate, an insulating ceramic substrate, a metal substrate, or the like can be used as the substrate 5.
  • a metal substrate it may have an insulating surface made of an insulating layer.
  • the manufacturing method of a 1st photovoltaic power generation module is demonstrated.
  • the manufacturing method of the solar power generation module of this embodiment will not be specifically limited if it has the said structure, The following method is mentioned as a method for obtaining a solar power generation module efficiently.
  • the substrate 5 is prepared. At this time, the surface of the substrate 5 is cleaned as necessary. If washed, perform the drying process sufficiently.
  • the electrode layer 3 is formed.
  • the electrode layer 3 can be formed by a film forming method such as sputtering using a material applicable to the electrode layer 3.
  • a metal silicide such as NiSi 2 is used for the electrode layer 3
  • sputtering using a NiSi 2 target sputtering using both a Ni target and a Si target, and the like can be applied.
  • sputtering using both the Ni target and the Si target either sputtering using the Ni target and the Si target at the same time or sputtering using them alternately may be used.
  • a heat treatment is performed after sputtering to react the film formed by the sputtering to form a NiSi 2 layer.
  • the heat treatment conditions are preferably 300 to 700 ° C. and 30 seconds to 5 minutes in an inert atmosphere such as nitrogen. If heat treatment is performed at a high temperature exceeding 700 ° C. or for a long time exceeding 5 minutes, the substrate 5 may be distorted.
  • the purity of NiSi 2 formed is preferably 99.9% by mass or more, and more preferably 99.999% by mass or more.
  • the NiSi 2 layer may be either a polycrystalline film or a single crystal film.
  • the NiSi 2 layer preferably has a large average crystal grain size.
  • the average crystal grain size of the polycrystalline metal silicide layer 2 formed thereon can be increased. The same effect can be obtained even if the base layer is a single crystal film.
  • a patterning process is performed on the electrode layer 3 as necessary.
  • the patterning process include a method in which a resist or a mask material is disposed at a place where a pattern (wiring) is desired to be left and an etching process is performed.
  • a polycrystalline metal silicide layer 2 is formed.
  • the polycrystalline metal silicide layer 2 can be formed using a film forming method such as sputtering.
  • the thickness of the polycrystalline metal silicide layer 2 is preferably 0.01 ⁇ m (10 nm) or more.
  • FeSi 2 method of performing sputtering using a target, ⁇ -FeSi 2 layer by using a method of performing sputtering using both Fe target and a Si target can be formed.
  • sputtering using both the Fe target and the Si target either sputtering using the Fe target and the Si target at the same time or sputtering using them alternately may be used.
  • FeSi 2 is formed by reacting the film formed by sputtering after heat treatment.
  • the heat treatment condition is preferably 300 to 900 ° C. for 30 seconds to 1 hour in an inert atmosphere or a reducing atmosphere.
  • the inert atmosphere include a nitrogen gas atmosphere and an argon gas atmosphere.
  • the reducing atmosphere include a nitrogen gas atmosphere containing hydrogen. If heat treatment is performed at a high temperature exceeding 900 ° C. or for a long time exceeding 1 hour, the substrate 5 or the like may be distorted.
  • the heat treatment temperature can be set to 500 ° C. or less. This is because the metal silicide serves as a template for forming the ⁇ -FeSi 2 layer. Further, it is desirable that the heat treatment temperature for forming the ⁇ -FeSi 2 layer can be 500 ° C. or less because damage to the substrate, particularly the glass substrate can be reduced. Further, the average crystal grain size A of the ⁇ -FeSi 2 layer can be controlled by heat treatment after sputtering.
  • the Fe film is in the range of 0.5 to 5 nm
  • the Si film is in the range of 1 to 10 nm
  • the Fe film and the Si film are formed while being alternately stacked until the desired film thickness is obtained, and heat treatment is performed.
  • the heat treatment the Fe film and the Si film react to form a polycrystalline ⁇ -FeSi 2 layer.
  • the resistivity of the homogeneous ⁇ -FeSi 2 layer formed by the above process is 4 ⁇ 10 4 ⁇ cm or more.
  • a high sheet resistance value indicates that there are few portions of Fe or Si having a low resistance value, and a homogeneous ⁇ -FeSi 2 layer is obtained.
  • the purity of the sputtering target to be used is 99.9% by mass or more, regardless of the method of sputtering using an FeSi 2 target or the method of sputtering using both an Fe target and an Si target.
  • Preferably has a high purity of 99.999% by mass or more.
  • Sputtering is preferably performed in a vacuum atmosphere or an inert atmosphere.
  • the vacuum atmosphere is preferably a vacuum atmosphere of 1 ⁇ 10 ⁇ 3 Pa or less
  • the inert atmosphere is preferably an argon gas atmosphere.
  • it is good also as a heating atmosphere during sputtering.
  • the sheet resistance value is measured on the ⁇ -FeSi 2 layer surface by the four-probe method. Whether or not a homogeneous ⁇ -FeSi 2 layer is formed can also be confirmed by X-ray diffraction (XRD) analysis.
  • XRD X-ray diffraction
  • the homogeneous ⁇ -FeSi 2 layer obtained by the heat treatment has an absorption edge at 6300 to 6500 cm ⁇ 1 as infrared absorption characteristics. Further, a ⁇ -FeSi 2 layer formed by alternately forming an Fe film and a Si film by sputtering and reacting the Fe film and the Si film by heat treatment has a high temperature dependency of the sheet resistance.
  • a uniform ⁇ -FeSi 2 layer can be obtained by alternately stacking Fe films and Si films and generating a ⁇ -FeSi 2 layer by heat treatment. Further, by adjusting the heat treatment conditions, the average crystal grain size A of the polycrystalline metal silicide layer 2 can be set to a film thickness B or more (A ⁇ B).
  • a method of forming the BaSi 2 layer by performing sputtering using a barium silicide target can be mentioned.
  • the barium silicide target include a BaSi 2 target and a BaSi target.
  • oxidation and moisture absorption after opening to the atmosphere can be prevented by continuously forming a nitride film (protective film) after forming the BaSi 2 layer.
  • Sputtering is preferably performed in a vacuum atmosphere or an inert atmosphere.
  • a vacuum atmosphere or an inert atmosphere By performing sputtering in a vacuum atmosphere or an inert atmosphere, a BaSi 2 layer can be formed while suppressing oxidation.
  • the vacuum atmosphere is preferably a vacuum atmosphere of 1 ⁇ 10 ⁇ 3 Pa or less.
  • the inert atmosphere is preferably an inert atmosphere such as nitrogen or argon. Note that a heating atmosphere may be used during the sputtering process.
  • heat treatment may be performed after forming a BaSi 2 layer using a BaSi 2 target.
  • a sputtering target in which the composition ratio of Ba and Si is changed such as a BaSi 2 target and a BaSi target, is prepared, and sputtering is performed alternately to form a laminated film of an Si film and an Fe film.
  • a BaSi 2 layer may be formed by reacting the Si film and the Fe film by heat treatment.
  • the heat treatment conditions are preferably 300 to 900 ° C. and 30 seconds to 1 hour in a vacuum atmosphere, an inert atmosphere or a reducing atmosphere. If heat treatment is performed at a high temperature exceeding 900 ° C. or for a long time exceeding 1 hour, the substrate 5 or the like may be distorted.
  • the vacuum atmosphere is preferably 1 ⁇ 10 ⁇ 3 Pa or less.
  • the inert atmosphere is preferably a nitrogen atmosphere, an argon atmosphere, or the like.
  • the reducing atmosphere is preferably a nitrogen atmosphere containing hydrogen.
  • the heat treatment temperature can be set to 500 ° C. or less. This is because the metal silicide serves as a template for forming the BaSi 2 layer. Further, it is desirable that the heat treatment temperature for forming the BaSi 2 layer can be 500 ° C. or lower because damage to the substrate 5, particularly the glass substrate can be reduced.
  • the average crystal grain size A of the BaSi 2 layer can be controlled by heat treatment after sputtering.
  • the electrode layer 3 may be either a polycrystal or a single crystal. In the case of a polycrystal, it is desirable that the average crystal grain size be as large as possible.
  • the polycrystalline metal silicide layer 2 is provided on the electrode layer 3 having a large average crystal grain size, the average crystal grain size A ( ⁇ m) and the film thickness B ( ⁇ m) of the polycrystalline metal silicide layer 2 easily satisfy A ⁇ B. Become.
  • metal silicide is used as the electrode layer 3
  • a multilayer electrode structure in which the electrode layer 3 is a base layer and a metal electrode or the like is provided thereunder may be employed.
  • the patterning process of the electrode layer 3 is performed as described above, it is performed after a resist or a mask material is arranged in a place where the electrode layer 3 is not provided. Further, in the case of a laminated structure such as a pn junction type, a step of doping impurities is performed.
  • the polycrystalline metal silicide layer 2 can be formed by combining sputtering and heat treatment.
  • the polycrystalline metal silicide layer 2 is subjected to heat treatment to grow grains. It is valid. This heat treatment is preferably performed at 300 to 900 ° C. for 30 seconds to 1 hour. Note that the heat treatment may be performed together with the heat treatment after performing sputtering using the Fe target and the Si target simultaneously or sputtering using the target alternately. Note that with the Schottky structure, since the heat treatment temperature can be set to 500 ° C. or lower, damage to the substrate 5 can be reduced.
  • a process of providing the surface electrode portion 4 is performed.
  • a transparent electrode such as ITO or ATO is used as the surface electrode portion 4
  • an ITO film or ATO film is formed by sputtering using an ITO target or an ATO target.
  • sputtering may be performed by placing a resist or a mask material.
  • an antireflection film may be formed on the surface electrode part 4, or the surface electrode part 4 and a transparent substrate such as a glass substrate may be bonded together. Further, the surface electrode portion 4 may be bonded to a transparent substrate provided in advance.
  • FIG. 5 is a schematic diagram showing a structural example of the second photovoltaic power generation module.
  • the solar power generation module 6 shown in FIG. 5 includes the substrate 5 of the solar power generation module according to the first embodiment, and a power storage mechanism unit 11 provided on the back side thereof.
  • the solar power generation module 6 includes the polycrystalline metal silicide layer 2, the electrode layer 3, and the surface electrode portion 4 provided on the surface side of the substrate 5 as in the solar power generation module in the first embodiment.
  • description of the solar power generation module which concerns on 1st Embodiment can be used suitably.
  • the power storage mechanism unit 11 has a function of storing part or all of the power supplied from the polycrystalline metal silicide layer 2.
  • the power storage mechanism unit 11 is connected to the surface electrode unit 4 and the electrode layer 3 by wiring (not shown) or the like.
  • FIG. 6 is a schematic diagram showing a structural example of the power storage mechanism unit 11.
  • the power storage mechanism unit 11 illustrated in FIG. 6 includes an electrode unit 12 (corresponding to an example of a first electrode unit), an electrode unit 13 (corresponding to an example of a second electrode unit), a sealing unit 14, and a power storage unit 15. , An electrolytic solution 16, a protection unit 17, and a reduction unit 18.
  • the outer periphery of the electrical storage mechanism part 11 is covered with the insulating member (not shown).
  • the electrode portion 12 has a plate shape and is formed using a conductive material.
  • the electrode part 12 contains metals, such as aluminum, copper, stainless steel, platinum, for example.
  • the electrode portion 13 has a plate shape and is provided to face the electrode portion 12.
  • the electrode portion 13 is formed using a conductive material.
  • the electrode part 13 contains metals, such as aluminum, copper, stainless steel, platinum, for example.
  • the electrode part 12 and the electrode part 13 can also be formed using the same material, and the electrode part 12 and the electrode part 13 can also be formed using different materials.
  • ITO ITO
  • IZO Indium Zinc Oxide
  • FTO Fluorine Tin Oxide
  • the electrode part 12 and the electrode part 13 are provided on a substrate (not shown).
  • the substrate include a glass substrate and an insulated metal substrate.
  • the above-described substrate 5 may be used. That is, the structure of the solar power generation module 6 may be a structure including the power storage mechanism unit 11 arranged directly on the substrate 5.
  • the electrode unit 13 provided on the power storage unit 15 side serves as a negative electrode. Moreover, the electrode part 12 which opposes the electrode part 13 turns into a positive electrode.
  • the sealing part 14 is provided between the electrode part 12 and the electrode part 13 and seals the peripheral part of the electrode part 12 and the peripheral part of the electrode part 13. That is, the sealing unit 14 is provided so as to surround the inside of the power storage mechanism unit 11 along the periphery of the electrode unit 12 and the electrode unit 13, and the power storage mechanism is formed by joining the electrode unit 12 side and the electrode unit 13 side. The inside of the part 11 is sealed.
  • the thickness of the sealing part 14 is not particularly limited, but is preferably in the range of 1.5 to 30 times the thickness of the power storage part 15.
  • the sealing part 14 Since the thickness of the sealing part 14 becomes a space for filling the electrolyte solution 16, the sealing part 14 should have a thickness in a predetermined range. If it is less than 1.5 times, the electricity stored in the electricity storage unit 15 is likely to be released, and if it exceeds 30 times, it is difficult to take out the electricity stored in the electricity storage unit 15.
  • the sealing part 14 seals between the electrode part 12 and the electrode part 13.
  • the sealing unit 14 may include a glass material.
  • the sealing portion 14 can be formed using, for example, a glass frit that is made into a paste by mixing powder glass, a binder such as an acrylic resin, an organic solvent, or the like. Examples of the powder glass material include vanadate glass and bismuth oxide glass. In this case, the glass frit in the form of paste can be applied to the portion to be sealed and baked to form the sealing portion 14. Then, by heating the sealing part 14, the sealing part 14 can be melted and the power storage mechanism part 11 can be sealed.
  • the power storage mechanism 11 can be sealed by irradiating the formed sealing portion 14 with laser light and melting the portion of the sealing portion 14 irradiated with the laser light.
  • the material applicable to the sealing part 14 is not limited to a glass material.
  • the sealing part 14 may contain a resin material.
  • the power storage mechanism unit 11 may have a structure in which the sealing unit 14 includes a resin material and is bonded to the electrode unit 12 and the electrode unit 13.
  • the power storage unit 15 is provided inside the sealing unit 14 and on the surface of the electrode unit 13 facing the electrode unit 12.
  • the power storage unit 15 is provided on the electrode unit 13 via the protection unit 17.
  • the power storage unit 15 is formed of a material having a power storage property.
  • the power storage unit 15 includes, for example, WO 3 (tungsten oxide).
  • the power storage unit 15 may have a porous structure.
  • the porosity of the porous structure is preferably in the range of 20 to 80% by volume.
  • tungsten oxide it is preferable to use tungsten oxide particles having an average particle diameter of 1 to 1000 nm, more preferably 1 to 100 nm.
  • a metal film, a metal oxide film, or the like may be provided on the surface of the tungsten oxide particles in order to improve power storage performance.
  • the thickness of the power storage unit 15 can be about 30 ⁇ m, for example.
  • the power storage unit 15 may be formed by laminating WO 3 particles having a diameter of about 20 nm to a thickness of about 30 ⁇ m.
  • the thickness of the power storage unit 15 is not particularly limited as long as it has a power storage function, but is preferably 1 ⁇ m or more, more preferably 1 ⁇ m to 100 ⁇ m.
  • the electrolytic solution 16 is provided inside the sealing portion 14. That is, the electrolytic solution 16 is filled in a space surrounded by the electrode part 12, the electrode part 13, and the sealing part 14.
  • an electrolytic solution containing iodine can be used.
  • an electrolytic solution in which lithium iodide and iodine are dissolved in a solvent such as acetonitrile can be used.
  • the concentration of lithium iodide is preferably in the range of 0.5 to 5 mol / L, and the concentration of iodine is preferably in the range of 0.01 to 5 mol / L.
  • the protection unit 17 has a film shape and is provided between the power storage unit 15 and the electrode unit 13.
  • the protection part 17 is provided so as to cover the surface of the electrode part 13 defined by the sealing part 14.
  • the protection part 17 is provided to prevent the electrode part 13 from being corroded by the electrolytic solution 16.
  • the protection part 17 is formed using a material having conductivity and chemical resistance against the electrolytic solution 16.
  • the protection unit 17 includes, for example, carbon or platinum.
  • the thickness of the protection part 17 is preferably about 100 nm, for example.
  • the protection part 17 does not necessarily need to be provided.
  • the reducing part 18 has a film shape and is provided so as to cover the surface of the electrode part 12 defined by the sealing part 14.
  • the reducing unit 18 is provided to reduce ions contained in the electrolytic solution 16.
  • the reducing unit 18 reduces I 3 ⁇ ions (triiodide ions) contained in the electrolytic solution 16 to I ⁇ ions (iodide ions). Therefore, the reducing portion 18 is formed using a material that takes into consideration conductivity, chemical resistance to the electrolytic solution 16, and reduction of ions contained in the electrolytic solution 16.
  • the reducing unit 18 includes, for example, carbon or platinum.
  • the thickness of the reducing unit 18 is preferably about 80 nm, for example.
  • a power storage mechanism unit 11 part or all of the power generated by the polycrystalline metal silicide layer 2 can be stored efficiently. Moreover, such a power storage mechanism 11 a storage capacity 1000 C-/ m 2 or more, further it is also possible to 10000C / m 2 or more.
  • FIG. 7 is a schematic diagram showing output characteristics of the photovoltaic power generation module according to the second embodiment.
  • the vertical axis represents the voltage of power supplied by the solar power generation module 6 and the horizontal axis represents time.
  • the photovoltaic power generation module 6 is exposed to sunlight and supplies a constant voltage.
  • the power generated by the polycrystalline metal silicide layer 2 decreases.
  • the voltage drops to a certain voltage ( ⁇ V1)
  • electric power is supplied from the power storage mechanism 11.
  • Electric power is supplied according to the electric power (electric storage capacity) stored in the electric storage mechanism 11.
  • Switching to a commercial power source or the like may be performed until the voltage from the power storage mechanism unit 11 drops to a constant voltage ( ⁇ V2).
  • ⁇ V2 constant voltage
  • the power generation of the polycrystalline metal silicide layer 2 can be stabilized by increasing the power storage capacity of the power storage mechanism 11 to 1000 C / m 2 or more.
  • the power generation can be stabilized by supplying electric power less than 5% from the power storage mechanism unit 11.
  • Example 1 and 2 and Comparative Example 1 A NiSi 2 layer (thickness 20 nm) was provided on a glass substrate.
  • sputtering was performed by alternately using the Ni target and the Si target, and a plurality of Ni films / Si films were alternately stacked to form a stacked film. Thereafter, heat treatment was performed in a nitrogen atmosphere at 500 ° C. for 1 minute to form a NiSi 2 layer.
  • the purity of the Ni target or Si target was 99.9% by mass.
  • a ⁇ -FeSi 2 layer (thickness 300 nm) was formed on the NiSi 2 layer.
  • sputtering was performed using an Fe target and an Si target alternately, and the Fe film and the Si film were alternately stacked a plurality of times.
  • the film thickness of the Fe film was set to 1 to 3 nm, and the film thickness of the Si film was set to the range of 5 to 10 nm.
  • the purity of the Fe target and the Si target was 99.9% by mass.
  • a photovoltaic power generation module having a Schottky structure was produced by the above method.
  • the average crystal grain size A and the film thickness B of the ⁇ -FeSi 2 layer were determined.
  • the measuring method of the average crystal grain size A and the film thickness B in the examples is as shown in the above embodiment. Further, as a result of XRD analysis to beta-FeSi 2 layer, only detected peaks of beta-FeSi 2 crystals, Fe alone and Si single peak was detected.
  • the power generation efficiency was obtained.
  • the power generation efficiency was obtained by irradiating with LED illumination light having a sunlight spectrum (approximate to the emission spectrum at 12:00 noon) with an emission intensity of 30 W / m 2 and a color temperature of 5700 K. The results are shown in Table 2.
  • the power generation efficiency of the solar power generation modules according to Example 1 and Example 2 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 1. This is because in Example 1 and Example 2, the average grain size A ⁇ film thickness B, so that the grain boundary trap side was reduced.
  • Examples 3 and 4 and Comparative Example 2 An AlNd alloy electrode layer (thickness 50 nm) was provided on the SiO 2 substrate. An Al-1 atomic% Nd alloy was used as the AlNd alloy. Next, a BaSi 2 layer (thickness 300 nm) was formed on the AlNd alloy electrode layer. In the formation of the BaSi 2 layer, sputtering was performed using a BaSi 2 target, and then a silicon nitride layer (thickness 3 nm) was continuously formed. The sputtering process was performed in a heated atmosphere at 300 ° C. in a vacuum of 1 ⁇ 10 ⁇ 3 Pa or less. Moreover, the purity of the BaSi 2 target was 99.99% by mass.
  • a surface electrode portion made of AZO was provided on the BaSi 2 layer.
  • an AZO film was formed by sputtering an AZO target.
  • a photovoltaic power generation module having a Schottky structure was produced.
  • the average crystal grain size A and the film thickness B of the BaSi 2 layer were determined by the measurement method described above.
  • the power generation efficiency of the solar power generation modules according to Example 3 and Examples 3 and 4 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 2. This is because in Example 3 and Example 4, since the average crystal grain size A ⁇ film thickness B, the grain boundary trap side was reduced.
  • Example 5 to 9 A NiSi 2 layer (thickness 20 nm) was provided on a glass substrate.
  • sputtering was performed by alternately using the Ni target and the Si target to form a laminated film in which a plurality of Ni films / Si films were alternately laminated. Thereafter, heat treatment was performed in a nitrogen atmosphere at 500 ° C. for 1 minute to react the Ni film and the Si film to obtain a NiSi 2 layer.
  • the purity of the Ni target and the Si target was 99.99% by mass.
  • a ⁇ -FeSi 2 layer was formed on the NiSi 2 layer.
  • sputtering was performed using an Fe target and an Si target alternately, and the Fe film and the Si film were alternately stacked a plurality of times.
  • the thickness of the Fe film was in the range of 1 to 3 nm
  • the thickness of the Si film was in the range of 5 to 10 nm.
  • the purity of the Fe target and the Si target was 99.99% by mass.
  • the sputtering process was performed in a vacuum of 1 ⁇ 10 ⁇ 3 Pa or less.
  • a photovoltaic power generation module having a Schottky structure was produced.
  • the average crystal grain size A and the film thickness B of the ⁇ -FeSi 2 layer were determined. Further, as a result of XRD analysis to beta-FeSi 2 layer, only detected peaks of beta-FeSi 2 crystals, Fe alone and Si single peak was detected.
  • the power generation efficiency was determined for the solar power generation modules according to Examples 5 to 9.
  • the method for measuring the power generation efficiency is the same as that in Example 1.
  • the results are shown in Table 6.
  • the power generation efficiency of the solar power generation modules according to Examples 5 to 9 was high. This is because the grain boundary trap side is reduced because the average crystal grain size A ⁇ film thickness B. As described above, the power generation efficiency of the solar power generation modules according to Examples 5 to 9 was 2% or more.
  • Examples 10 and 11, Comparative Example 3 A NiSi 2 layer (thickness 20 nm) was provided on a glass substrate. The formation of the NiSi 2 layer was performed by alternately using the Ni target and the Si target, and the Ni film and the Si film were alternately stacked a plurality of times. Thereafter, heat treatment was performed in a nitrogen atmosphere at 500 ° C. for 1 minute to react the Ni film and the Si film to form a NiSi 2 layer. The purity of the Ni target and the Si target was 99.99% by mass.
  • n-type beta-FeSi 2 layer was formed on the NiSi 2 layer to form an n-type beta-FeSi 2 layer.
  • sputtering was performed by alternately using the Fe target and the Si target, and the Fe film and the Si film were alternately laminated a plurality of times.
  • the thickness of the Fe film was in the range of 1 to 3 nm
  • the thickness of the Si film was in the range of 5 to 10 nm.
  • the purity of the Fe target and the Si target was 99.99 mass%.
  • the sputtering process was performed in a vacuum of 1 ⁇ 10 ⁇ 3 Pa or less. Thereafter, heat treatment was performed under the conditions shown in Table 7, and the Fe film and the Si film were reacted to obtain a ⁇ -FeSi 2 layer.
  • the n-type and p-type were prepared by doping impurities into the FeSi 2 layer.
  • a surface electrode portion made of ITO was formed on the ⁇ -FeSi 2 layer.
  • the ITO target was sputtered to form an ITO film.
  • a pn junction type polycrystalline ⁇ -FeSi 2 photovoltaic power generation module was produced.
  • the average crystal grain size A and the film thickness B of the ⁇ -FeSi 2 layer were determined.
  • the power generation efficiency of the solar power generation modules according to Examples 10 and 11 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 3. This is because the grain boundary trap side is reduced because the average crystal grain size A ⁇ film thickness B. As described above, it has been found that the power generation efficiency can be increased also for the pn junction type.
  • Example 12 to 14 Comparative Example 4
  • a LaB 6 electrode layer (thickness 50 nm) was provided on the SiO 2 substrate.
  • n-type BaSi 2 layer on the electrode layer to form a p-type BaSi 2 layer thereon.
  • a silicon nitride layer (thickness 3 nm) was continuously formed on the p-type BaSi 2 layer (Example 13 and Comparative Example 4 have no silicon nitride layer).
  • the sputtering process was performed in a heated atmosphere at 300 ° C. in a vacuum of 1 ⁇ 10 ⁇ 3 Pa or less.
  • the purity of the BaSi 2 target was 99.9% by mass. Thereafter, heat treatment was performed under the conditions shown in Table 9.
  • a surface electrode portion made of AZO was provided on the BaSi 2 layer.
  • an AZO film was formed by sputtering an AZO target.
  • a photovoltaic power generation module having a pn junction structure was produced by the above method.
  • the average crystal grain size A and the film thickness B of the BaSi 2 layer were determined.
  • the power generation efficiency was determined for the solar power generation modules according to Examples 12 to 14 and Comparative Example 4.
  • the method for measuring the power generation efficiency is the same as that in Example 1.
  • the results are shown in Table 10.
  • the power generation efficiency of the solar power generation modules according to Examples 12 to 14 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 4. This is because the grain boundary trap side is reduced because the average crystal grain size A ⁇ film thickness B. Thus, it has been found that high power generation efficiency can be obtained even for the pn junction type.
  • Example 1A A solar power generation module according to Examples 1 and 2 having the power storage mechanism unit shown in FIG. 5 bonded to the back surface of the substrate and the power storage mechanism unit provided on the back surface of Example 1 is referred to as Example 1A.
  • the back surface of 2 was provided with a power storage mechanism portion as Example 2A.
  • the output characteristics were examined, the behavior shown in FIG. 7 was shown. From this, it can be seen that the photovoltaic power generation modules according to Example 1A and Example 2A are resistant to changes in the amount of sunlight.
  • Examples 3 to 14 the output characteristics of the solar power generation modules obtained by unitizing with the power storage mechanism part behaved as shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a photovoltaic power generation module provided with a metal silicide layer and having high power generation efficiency. A photovoltaic power generation module provided with a polycrystalline metal silicide layer as a power generation layer, wherein the average grain size (A) of the polycrystalline metal silicide layer is greater than or equal to the film thickness (B) of the polycrystalline metal silicide layer (A≥B).

Description

太陽光発電モジュールSolar power module
 後述する実施形態は、概ね、太陽光発電モジュールに関する。 DETAILED DESCRIPTION Embodiments described below generally relate to photovoltaic modules.
 太陽光を利用して発電する太陽電池は、クリーンな電気エネルギーデバイスとして注目を集めている。太陽電池としては、発電効率が優れていることから単結晶シリコン基板や多結晶シリコン基板を具備する太陽電池が主に用いられている。また、コストダウンのため、薄膜化されたシリコン基板を具備する薄膜状アモルファスシリコン太陽電池を用いることも検討されている。 Solar cells that generate power using sunlight are attracting attention as clean electrical energy devices. As a solar cell, a solar cell including a single crystal silicon substrate or a polycrystalline silicon substrate is mainly used because of its excellent power generation efficiency. In order to reduce the cost, the use of a thin-film amorphous silicon solar cell including a thinned silicon substrate has been studied.
 また、シリコン系以外の太陽電池として、ガリウム、砒素、リン、ゲルマニウム、インジウムなどを用いた化合物半導体系の太陽電池も提案されている。上記シリコン系太陽電池や化合物半導体系太陽電池は、太陽光を受けるシリコン基板の大型化や化合物の合成プロセスの煩雑さ等によりコストが高いため、思うように普及が進まないといった問題を有していた。 Also, compound semiconductor solar cells using gallium, arsenic, phosphorus, germanium, indium, etc. have been proposed as solar cells other than silicon. The above-mentioned silicon-based solar cells and compound semiconductor-based solar cells have a problem that they cannot be spread as expected because they are expensive due to the large size of the silicon substrate that receives sunlight and the complexity of the compound synthesis process. It was.
 そこで近年、半導体層として金属シリサイド層を具備する太陽電池が研究されている。例えば、半導体層としてβ-FeSi層を具備する太陽電池が提案されている。鉄シリサイドなどの金属シリサイドでは、単結晶体および多結晶体の両方を製造することができ、シリコン系太陽電池よりも低コスト化の期待がある。また、金属シリサイド系太陽電池は、シリコン系太陽電池では使用されない赤外線を感受して発電することからシリコン系太陽電池よりも高い発電効率を有する太陽電池として期待されている。 Therefore, in recent years, solar cells including a metal silicide layer as a semiconductor layer have been studied. For example, a solar cell having a β-FeSi 2 layer as a semiconductor layer has been proposed. Metal silicides such as iron silicide can produce both single crystals and polycrystals, and are expected to be lower in cost than silicon solar cells. In addition, metal silicide solar cells are expected as solar cells having higher power generation efficiency than silicon solar cells because they generate power by sensing infrared rays that are not used in silicon solar cells.
 しかしながら、金属シリサイド系太陽電池は、現状において商品化されておらず、研究段階である。これは安定した発電効率が得られていないためである。また、金属シリサイド系太陽電池は、受光した光の強度により出力が変動するため、単独電源としての使用に対する不安を有していた。 However, metal silicide solar cells are not commercialized at present and are in the research stage. This is because stable power generation efficiency is not obtained. In addition, since the output of the metal silicide solar cell varies depending on the intensity of received light, there is anxiety about the use as a single power source.
特開2011-198941号公報JP 2011-198941 A
 本発明が解決しようとする課題は、金属シリサイド層を具備する太陽光発電モジュールであって、高い発電効率を有する太陽光発電モジュールを提供することである。また、光の強度の変化、つまりは日照量の変化に強い安定した電力供給を可能とする太陽光発電モジュールを提供することである。 The problem to be solved by the present invention is to provide a solar power generation module having a metal silicide layer and having high power generation efficiency. Another object of the present invention is to provide a solar power generation module that enables stable power supply that is resistant to changes in light intensity, that is, changes in the amount of sunlight.
 実施形態にかかる太陽光発電モジュールは、発電層として多結晶金属シリサイド層を具備する。多結晶金属シリサイド層の平均結晶粒径Aは、上記多結晶金属シリサイド層の膜厚B以上(A≧B)である。 The photovoltaic power generation module according to the embodiment includes a polycrystalline metal silicide layer as a power generation layer. The average crystal grain size A of the polycrystalline metal silicide layer is not less than the film thickness B of the polycrystalline metal silicide layer (A ≧ B).
太陽光発電モジュールの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a solar power generation module. 多結晶金属シリサイド層の構造例を示す模式図である。It is a schematic diagram which shows the structural example of a polycrystalline metal silicide layer. pn接合型多結晶金属シリサイド層の構造例を示す模式図である。It is a schematic diagram which shows the structural example of a pn junction type polycrystalline metal silicide layer. ショットキー型多結晶金属シリサイド層の構造例を示す模式図である。It is a schematic diagram which shows the structural example of a Schottky type polycrystalline metal silicide layer. 太陽光発電モジュールの構成例を示す模式図である。It is a schematic diagram which shows the structural example of a solar power generation module. 蓄電機構部の構成例を示す模式図である。It is a schematic diagram which shows the structural example of an electrical storage mechanism part. 太陽光発電モジュールの出力特性例を示す模式図である。It is a schematic diagram which shows the output characteristic example of a solar power generation module.
 以下、図面を参照しつつ、実施の形態について例示する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, embodiments will be illustrated with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to the same component and detailed description is abbreviate | omitted suitably.
 図1は、第一の実施形態に係る太陽光発電モジュール1の構造例を示す模式図である。太陽光発電モジュール1は、基板5上に設けられた多結晶金属シリサイド層2と、多結晶金属シリサイド層2の表面側(太陽光受光面側)に設けられた表面電極部4と、多結晶金属シリサイド層2の裏面側(太陽光受光面の反対側)に設けられた電極層3と、を具備する。 FIG. 1 is a schematic diagram showing a structural example of the photovoltaic power generation module 1 according to the first embodiment. The photovoltaic power generation module 1 includes a polycrystalline metal silicide layer 2 provided on a substrate 5, a surface electrode portion 4 provided on the surface side (sunlight receiving surface side) of the polycrystalline metal silicide layer 2, a polycrystalline And an electrode layer 3 provided on the back side of the metal silicide layer 2 (opposite side of the sunlight receiving surface).
 多結晶金属シリサイド層2は、太陽光を受光して発電する機能を有する。太陽光発電モジュール1では、表面電極部4および電極層3を用いて多結晶金属シリサイド層2で発電した電気を外部に取り出すことができる。このとき、多結晶金属シリサイド層2は、発電層としての機能を有する。 The polycrystalline metal silicide layer 2 has a function of receiving sunlight and generating electric power. In the photovoltaic power generation module 1, electricity generated by the polycrystalline metal silicide layer 2 using the surface electrode portion 4 and the electrode layer 3 can be taken out to the outside. At this time, the polycrystalline metal silicide layer 2 has a function as a power generation layer.
 多結晶金属シリサイド層2の平均結晶粒径A(μm)と膜厚B(μm)は、A≧Bを満たす。つまり、多結晶金属シリサイド層2の平均結晶粒径Aは、多結晶金属シリサイド層2の膜厚B以上(A≧B)である。 The average crystal grain size A (μm) and the film thickness B (μm) of the polycrystalline metal silicide layer 2 satisfy A ≧ B. That is, the average crystal grain size A of the polycrystalline metal silicide layer 2 is not less than the film thickness B of the polycrystalline metal silicide layer 2 (A ≧ B).
 多結晶金属シリサイド層2では、個々の結晶粒子が発電に寄与する。金属シリサイド結晶粒子により発電した電気は、前述のように表面電極部4および電極層3を伝って外部に取り出されることになる。つまり、多結晶金属シリサイド層2の厚み方向に電気が流れることになる。多結晶金属シリサイド層2の中を電気が流れる際に、金属シリサイド結晶粒子同士の粒界はトラップサイトとなる。粒界トラップサイトは、キャリアの伝導を阻害する内部抵抗となる。このため、粒界トラップサイトが存在すると多結晶金属シリサイド層2により発電した電気を取り出しにくくなり、結果として発電効率が低下しやすくなる。 In the polycrystalline metal silicide layer 2, individual crystal particles contribute to power generation. The electricity generated by the metal silicide crystal particles is taken out through the surface electrode portion 4 and the electrode layer 3 as described above. That is, electricity flows in the thickness direction of the polycrystalline metal silicide layer 2. When electricity flows through the polycrystalline metal silicide layer 2, the grain boundaries between the metal silicide crystal particles become trap sites. The grain boundary trap site serves as an internal resistance that hinders carrier conduction. For this reason, if there is a grain boundary trap site, it becomes difficult to take out the electricity generated by the polycrystalline metal silicide layer 2, and as a result, the power generation efficiency tends to be lowered.
 太陽光発電モジュール1では、多結晶金属シリサイド層2の平均結晶粒径Aを多結晶金属シリサイド層2の膜厚B以上(A≧B)とすることにより、多結晶金属シリサイド層2の厚み方向に対して粒界の個数を減らす(ゼロ含む)ことができる。このとき、多結晶金属シリサイド層2の厚み方向に交わるように金属シリサイド結晶粒子の粒界が存在しない状態が最も好ましい。 In the photovoltaic module 1, the average crystal grain size A of the polycrystalline metal silicide layer 2 is set to be not less than the film thickness B of the polycrystalline metal silicide layer 2 (A ≧ B), so that the thickness direction of the polycrystalline metal silicide layer 2 is increased. In contrast, the number of grain boundaries can be reduced (including zero). At this time, it is most preferable that there is no grain boundary of the metal silicide crystal grains so as to cross the thickness direction of the polycrystalline metal silicide layer 2.
 多結晶金属シリサイド層2の平均結晶粒径A、膜厚Bの測定方法例について説明する。まず、多結晶金属シリサイド層2の厚み方向における任意の断面の拡大写真を取得する。取得した拡大写真に写る個々の金属シリサイド結晶粒子の最大径を該結晶粒子の結晶粒径とし、任意の30粒の金属シリサイド結晶粒子の結晶粒径(最大径)の平均値を平均結晶粒径Aとする。また、取得した拡大写真において、任意の10か所の厚さを測定し、測定した10か所の厚さの平均値を膜厚Bとする。なお、拡大写真の倍率は金属シリサイド結晶粒子間の粒界が分かる程度の倍率である。また、一枚の写真(一視野)に30粒の金属シリサイド結晶粒子の全てが入らない場合、写真画像が連続するように複数の拡大写真を用いる。 An example of a method for measuring the average crystal grain size A and the film thickness B of the polycrystalline metal silicide layer 2 will be described. First, an enlarged photograph of an arbitrary cross section in the thickness direction of the polycrystalline metal silicide layer 2 is acquired. The maximum diameter of each individual metal silicide crystal particle in the obtained enlarged photograph is defined as the crystal particle diameter of the crystal particle, and the average crystal grain diameter (maximum diameter) of any 30 metal silicide crystal particles is the average crystal grain diameter. A. Moreover, in the acquired enlarged photograph, the thickness of arbitrary 10 places is measured and the average value of the measured thickness of 10 places is set to the film thickness B. The magnification of the enlarged photograph is such a magnification that the grain boundary between the metal silicide crystal grains can be seen. Further, when not all of the 30 metal silicide crystal particles are included in one photograph (one field of view), a plurality of enlarged photographs are used so that the photograph images are continuous.
 図2は多結晶金属シリサイド層2の構造例を示す模式図である。図2では、多結晶金属シリサイド層2の膜厚Bを示している。なお、図2は一例として5粒の金属シリサイド結晶粒子が並んだ状態の模式図である。金属シリサイド結晶粒子間の粒界の形状は、特に限定されず、例えば直線状、曲線状などであってもよい。また、個々の金属シリサイド結晶粒子の粒径は、拡大写真に写る個々の金属シリサイド結晶粒子の最大径である。このとき、図2に示す金属シリサイド結晶粒子の粒径は、それぞれ粒径A1、粒径A2、粒径A3、粒径A4、粒径A5となる。 FIG. 2 is a schematic view showing a structural example of the polycrystalline metal silicide layer 2. In FIG. 2, the film thickness B of the polycrystalline metal silicide layer 2 is shown. FIG. 2 is a schematic diagram showing a state in which five metal silicide crystal particles are arranged as an example. The shape of the grain boundary between the metal silicide crystal grains is not particularly limited, and may be, for example, linear or curved. The particle diameter of each metal silicide crystal particle is the maximum diameter of each metal silicide crystal particle shown in the enlarged photograph. At this time, the particle diameters of the metal silicide crystal particles shown in FIG. 2 are a particle diameter A1, a particle diameter A2, a particle diameter A3, a particle diameter A4, and a particle diameter A5, respectively.
 多結晶金属シリサイド層2の平均結晶粒径Aは、0.01μm以上(10nm以上)であることが好ましい。平均結晶粒径Aが10nm未満の場合、結晶粒径が小さすぎてA≧Bとなるように多結晶金属シリサイド層2の平均結晶粒径Aおよび膜厚Bを制御することが困難になるおそれがある。平均結晶粒径Aの上限は、特に限定されないが、例えば3μm以下であることが好ましい。平均結晶粒径Aが3μmを超えて大きい場合、均一な結晶を作製することが困難になるおそれがある。さらに、平均結晶粒径Aは、0.05~1.2μm(50~1200nm)であることがより好ましい。 The average crystal grain size A of the polycrystalline metal silicide layer 2 is preferably 0.01 μm or more (10 nm or more). When the average crystal grain size A is less than 10 nm, it is difficult to control the average crystal grain size A and the film thickness B of the polycrystalline metal silicide layer 2 so that the crystal grain size is too small and A ≧ B. There is. The upper limit of the average crystal grain size A is not particularly limited, but is preferably 3 μm or less, for example. If the average crystal grain size A exceeds 3 μm, it may be difficult to produce a uniform crystal. Further, the average crystal grain size A is more preferably 0.05 to 1.2 μm (50 to 1200 nm).
 多結晶金属シリサイド層2の膜厚Bは、1μm以下であることが好ましい。膜厚Bが1μmを超える場合、均質な結晶を作製することが困難になるおそれがある。また、1μmを超える場合であっても、発電効率が向上しないおそれがある。 The film thickness B of the polycrystalline metal silicide layer 2 is preferably 1 μm or less. When the film thickness B exceeds 1 μm, it may be difficult to produce a homogeneous crystal. Moreover, even if it is a case exceeding 1 micrometer, there exists a possibility that electric power generation efficiency may not improve.
 多結晶金属シリサイド層2に含まれる金属シリサイドは、例えばβ-鉄シリサイド、バリウムシリサイド、マグネシウムシリサイド、クロムシリサイド、およびレニウムシリサイドからなる群より選ばれる少なくとも1つであることが好ましい。 The metal silicide contained in the polycrystalline metal silicide layer 2 is preferably at least one selected from the group consisting of β-iron silicide, barium silicide, magnesium silicide, chromium silicide, and rhenium silicide, for example.
 β-鉄シリサイドは、β-FeSiであることが好ましい。鉄シリサイドとしては、FeSi以外にもFeSi、FeSi、FeSiなどが挙げられるが、FeSiが最も発電効率がよい。なお、化学量論としてFeSiに近似していれば多少ずれていても鉄シリサイドとして用いることができる(小数点一桁目を四捨五入してFeとSiの原子比が1:2になる範囲)。 The β-iron silicide is preferably β-FeSi 2 . The iron silicide, FeSi besides FeSi 2, Fe 3 Si, but like Fe 5 Si 3 and the like, FeSi 2 is good and most power generation efficiency. If the stoichiometry approximates FeSi 2 , it can be used as iron silicide even if it is slightly deviated (the range in which the atomic ratio of Fe and Si is 1: 2 by rounding off the first digit of the decimal point).
 β-鉄シリサイドを用いる場合、太陽光発電モジュール1は、例えばp型β-鉄シリサイド層とp型β-鉄シリサイド層に接触するように設けられたn型β-鉄シリサイド層とを具備するpn接合型構造、ショットキー型構造、MIS(Metal Insulator Semiconductor)型構造、またはMOS(Metal Oxide Semiconductor)型構造を有していてもよい。pn接合型構造とショットキー型構造を比較した場合、ショットキー型構造の方が好ましい。ショットキー型構造であれば、pn接合型構造のようにp型およびn型の2種類の金属シリサイドを用いる必要がないため、低コスト化が図れる。なお、必要に応じ、多結晶金属シリサイド層2に不純物などをドープしてもよい。 When β-iron silicide is used, the solar power generation module 1 includes, for example, a p-type β-iron silicide layer and an n-type β-iron silicide layer provided in contact with the p-type β-iron silicide layer. It may have a pn junction structure, a Schottky structure, a MIS (Metal Insulator Semiconductor) structure, or a MOS (Metal Oxide Semiconductor) structure. When comparing the pn junction type structure and the Schottky type structure, the Schottky type structure is preferable. With a Schottky structure, it is not necessary to use two types of metal silicides, p-type and n-type, unlike the pn junction structure, so that the cost can be reduced. If necessary, the polycrystalline metal silicide layer 2 may be doped with impurities.
 p型β-FeSiのキャリア密度は1×1014~1×1021cm-3であることが好ましく、n型β-FeSiのキャリア密度は1×1014~1×1021cm-3であることが好ましい。また、ショットキー型β-FeSiのキャリア密度は1×1014~1×1018cm-3であることが好ましい。さらに、いずれのβ-FeSiであってもキャリア密度は1×1016cm-3以下であることがより好ましい。キャリア密度を低くすることにより発電効率が向上する。言い換えると、発電効率が向上しているということはキャリア密度が1×1016cm-3以下となっていることを示す。なお、キャリア密度が1×1016cm-3以下とは、乗数が1×1016cm-3と同じまたは1×1014cm-3のように1×1016cm-3よりも小さい数値を示す。 The carrier density of p-type β-FeSi 2 is preferably 1 × 10 14 to 1 × 10 21 cm −3 , and the carrier density of n-type β-FeSi 2 is 1 × 10 14 to 1 × 10 21 cm −3. It is preferable that The carrier density of Schottky β-FeSi 2 is preferably 1 × 10 14 to 1 × 10 18 cm −3 . Furthermore, the carrier density of any β-FeSi 2 is more preferably 1 × 10 16 cm −3 or less. By reducing the carrier density, the power generation efficiency is improved. In other words, the improvement in power generation efficiency indicates that the carrier density is 1 × 10 16 cm −3 or less. Note that the carrier density of 1 × 10 16 cm -3 or less, a number lower than 1 × 10 16 cm -3 as a multiplier of 1 × 10 16 cm -3 and equal to or 1 × 10 14 cm -3 Show.
 バリウムシリサイドは、BaSiであることが好ましい。バリウムシリサイドとしてはBaSi以外にも、BaSiなどが挙げられるが、BaSiが最も発電効率がよい。なお、化学量論としてBaSiに近似していれば組成比等が多少ずれていてもバリウムシリサイドとして用いることができる。バリウムシリサイドを用いる場合、太陽光発電モジュール1は、p型バリウムシリサイド層とp型バリウムシリサイド層に接するn型バリウムシリサイド層とを具備するpn接合型構造、ショットキー型構造、MIS型構造、またはMOS型構造を有していてもよい。また、必要に応じ、多結晶金属シリサイド層2に不純物などをドープしてもよい。 Barium silicide is preferably a BaSi 2. In addition to BaSi 2 , examples of barium silicide include BaSi, and BaSi 2 has the highest power generation efficiency. If the stoichiometry approximates to BaSi 2 , it can be used as barium silicide even if the composition ratio is slightly deviated. When barium silicide is used, the photovoltaic module 1 includes a pn junction structure, a Schottky structure, a MIS structure, or a p-type barium silicide layer and an n-type barium silicide layer in contact with the p-type barium silicide layer. It may have a MOS type structure. If necessary, the polycrystalline metal silicide layer 2 may be doped with impurities.
 p型BaSiのキャリア密度は1×1014~1×1021cm-3であることが好ましく、n型BaSiのキャリア密度は1×1014~1×1021cm-3であることが好ましい。また、ショットキー型BaSiのキャリア密度は1×1014~1×1018cm-3であることが好ましい。さらに、いずれのBaSiであってもキャリア密度は1×1017cm-3以下であることがより好ましい。キャリア密度を低くすることにより発電効率が向上する。、発電効率が向上するということは、キャリア密度が1×1017cm-3以下となっていることを示す。なお、キャリア密度が1×1017cm-3以下とは、乗数が1×1017cm-3と同じまたは1×1015cm-3のように1×1017cm-3よりも小さい数値を示す。 Preferably the carrier density of the p-type BaSi 2 is 1 × 10 14 ~ 1 × 10 21 cm -3, that the carrier density of the n-type BaSi 2 is 1 × 10 14 ~ 1 × 10 21 cm -3 preferable. The carrier density of the Schottky BaSi 2 is preferably 1 × 10 14 to 1 × 10 18 cm −3 . Furthermore, the carrier density of any BaSi 2 is more preferably 1 × 10 17 cm −3 or less. By reducing the carrier density, the power generation efficiency is improved. The improvement in power generation efficiency indicates that the carrier density is 1 × 10 17 cm −3 or less. Note that the carrier density of 1 × 10 17 cm −3 or less is a numerical value smaller than 1 × 10 17 cm −3 such as a multiplier of 1 × 10 17 cm −3 or 1 × 10 15 cm −3. Show.
 β-FeSiは、バンドギャップEgが0.85eV程度であり、直接遷移型であるため、波長1500nm以下の光に対し高い吸収効率を有している。BaSiは、バンドギャップEgが1.4eV程度であり、間接遷移型であるため、波長950nm以下に対し高い吸収効率を有している。β-FeSiまたはBaSiを多結晶金属シリサイド層2に用いることにより、1500nm以下または950nm以下の赤外線を発電に利用できるようになり、一日単位でみても長い時間発電することが可能となる。また、β-FeSi、BaSiの吸収係数は、Siの100~1000倍と高いことから、同じ発電効率としたときβ-FeSiやBaSiを含む多結晶金属シリサイド層2の膜厚をSi太陽電池層の1/100~1/1000程度に薄くすることもできる。 Since β-FeSi 2 has a band gap Eg of about 0.85 eV and is a direct transition type, it has a high absorption efficiency for light having a wavelength of 1500 nm or less. BaSi 2 has a band gap Eg of about 1.4 eV and is an indirect transition type, and therefore has high absorption efficiency for wavelengths of 950 nm and below. By using β-FeSi 2 or BaSi 2 for the polycrystalline metal silicide layer 2, infrared rays of 1500 nm or less or 950 nm or less can be used for power generation, and power generation can be performed for a long time even in units of one day. . Further, since the absorption coefficient of β-FeSi 2 and BaSi 2 is as high as 100 to 1000 times that of Si, the film thickness of the polycrystalline metal silicide layer 2 containing β-FeSi 2 and BaSi 2 is set to the same power generation efficiency. The thickness can be reduced to about 1/100 to 1/1000 of the Si solar cell layer.
 太陽光発電モジュール1の構造を、β-FeSi層を有する第1の多結晶金属シリサイド層と、第1の多結晶金属シリサイド層上に設けられ、BaSi層を有する第2の多結晶金属シリサイド層とを具備するタンデム構造とすることも可能である。BaSi層は、950nm以下の波長に高い吸収効率を有している。言い換えると950nmの波長を超えた光は透過しやすい。一方、β-FeSi層は、1500nm以下の波長に高い吸収効率を有しているため、β-FeSi層を用いることによりBaSi層を透過した光も発電に使うことができる。タンデム構造とする場合、第2の多結晶金属シリサイド層の裏面電極として透光性を有する電極層を用いることが好ましい。 The structure of the photovoltaic power generation module 1 includes a first polycrystalline metal silicide layer having a β-FeSi 2 layer and a second polycrystalline metal silicide provided on the first polycrystalline metal silicide layer and having a BaSi 2 layer. A tandem structure including a silicide layer may be used. The BaSi 2 layer has high absorption efficiency at a wavelength of 950 nm or less. In other words, light exceeding the wavelength of 950 nm is likely to be transmitted. On the other hand, since the β-FeSi 2 layer has high absorption efficiency at a wavelength of 1500 nm or less, the light transmitted through the BaSi 2 layer can be used for power generation by using the β-FeSi 2 layer. In the case of a tandem structure, it is preferable to use a light-transmitting electrode layer as the back electrode of the second polycrystalline metal silicide layer.
 マグネシウムシリサイドは、MgSiであることが好ましく、クロムシリサイドは、CrSiであることが好ましく、レニウムシリサイドは、ReSiであることが好ましい。なお、BaSi、MgSi、CrSi、ReSiと原子比がずれる材料であっても、小数点一桁目を四捨五入して原子比がこの範囲となるのであれば、各金属シリサイドとして用いることができる。また、金属シリサイドとしてMgSi、CrSi、ReSiを用いる場合であっても、BaSiと同様にキャリア密度が1×1017cm-3以下であることが好ましい。 The magnesium silicide is preferably Mg 2 Si, the chromium silicide is preferably CrSi 2 , and the rhenium silicide is preferably ReSi 2 . In addition, even if it is a material whose atomic ratio deviates from BaSi 2 , Mg 2 Si, CrSi 2 , or ReSi 2 , if the atomic ratio falls within this range by rounding off the first decimal place, it should be used as each metal silicide. Can do. Even when Mg 2 Si, CrSi 2 , or ReSi 2 is used as the metal silicide, the carrier density is preferably 1 × 10 17 cm −3 or less as in the case of BaSi 2 .
 図3はpn接合型構造を有する太陽光発電モジュールの構造例を示す模式図である。図3に示す太陽光発電モジュールは、多結晶金属シリサイド層2と、多結晶金属シリサイド層2の表面側(太陽光受光面側)に設けられた表面電極部4と、多結晶金属シリサイド層2の裏面側(太陽光受光面の反対側)に設けられた電極層3と、を具備する。さらに、多結晶金属シリサイド層2は、表面電極部4側に設けられたp型多結晶金属シリサイド層2aと、電極層3(裏面電極)側に設けられたn型多結晶金属シリサイド層2bとを具備する。なお、p型多結晶金属シリサイド層2aとn型多結晶金属シリサイド層2bの配置を逆にしてもよい。図3に示すように、pn接合型構造の太陽光発電モジュールに電荷を与えるとp型多結晶金属シリサイド層2aとn型多結晶金属シリサイド層2bの間に空乏層2cが形成される。空乏層2cが存在することにより多結晶金属シリサイド層2が電気二重層となり、多結晶金属シリサイド層2から電気を取出すことが可能となる。なお、電極層3は、図1と同様に基板5上に形成されていてもよい。 FIG. 3 is a schematic diagram showing a structural example of a photovoltaic power generation module having a pn junction type structure. The photovoltaic power generation module shown in FIG. 3 includes a polycrystalline metal silicide layer 2, a surface electrode portion 4 provided on the surface side (sunlight receiving surface side) of the polycrystalline metal silicide layer 2, and the polycrystalline metal silicide layer 2. Electrode layer 3 provided on the back surface side (opposite side of the sunlight receiving surface). Furthermore, the polycrystalline metal silicide layer 2 includes a p-type polycrystalline metal silicide layer 2a provided on the surface electrode portion 4 side, and an n-type polycrystalline metal silicide layer 2b provided on the electrode layer 3 (back surface electrode) side. It comprises. The arrangement of the p-type polycrystalline metal silicide layer 2a and the n-type polycrystalline metal silicide layer 2b may be reversed. As shown in FIG. 3, when an electric charge is applied to a photovoltaic power generation module having a pn junction structure, a depletion layer 2c is formed between the p-type polycrystalline metal silicide layer 2a and the n-type polycrystalline metal silicide layer 2b. Due to the presence of the depletion layer 2 c, the polycrystalline metal silicide layer 2 becomes an electric double layer, and electricity can be extracted from the polycrystalline metal silicide layer 2. The electrode layer 3 may be formed on the substrate 5 as in FIG.
 図4はショットキー型構造を有する太陽光発電モジュールの構造例を示す模式図である。図4に示す太陽光発電モジュールは、多結晶金属シリサイド層2と、多結晶金属シリサイド層2の表面側(太陽光受光面側)に設けられた表面電極部4と、多結晶金属シリサイド層2の裏面側(太陽光受光面の反対側)に設けられた電極層3と、を具備する。このとき、多結晶金属シリサイド層2は、p型多結晶金属シリサイド層2aまたはn型多結晶金属シリサイド層2bのどちらであってもよい。一般的に、ショットキー型構造は、金属と半導体の間で整流作用を示す接合構造である。空乏層は、金属と半導体の接触により形成される。図4に示すショットキー型構造を有する太陽光発電モジュールの場合、金属は表面電極部4または電極層3である。半導体はp型多結晶金属シリサイド層2aまたはn型多結晶金属シリサイド層2bである。なお、電極層3は、図1と同様に基板5上に形成されていてもよい。 FIG. 4 is a schematic diagram showing a structural example of a photovoltaic power generation module having a Schottky structure. The photovoltaic power generation module shown in FIG. 4 includes a polycrystalline metal silicide layer 2, a surface electrode portion 4 provided on the surface side (sunlight receiving surface side) of the polycrystalline metal silicide layer 2, and the polycrystalline metal silicide layer 2. Electrode layer 3 provided on the back surface side (opposite side of the sunlight receiving surface). At this time, the polycrystalline metal silicide layer 2 may be either the p-type polycrystalline metal silicide layer 2a or the n-type polycrystalline metal silicide layer 2b. In general, a Schottky structure is a junction structure that exhibits a rectifying action between a metal and a semiconductor. The depletion layer is formed by contact between a metal and a semiconductor. In the case of the photovoltaic module having the Schottky structure shown in FIG. 4, the metal is the surface electrode portion 4 or the electrode layer 3. The semiconductor is p-type polycrystalline metal silicide layer 2a or n-type polycrystalline metal silicide layer 2b. The electrode layer 3 may be formed on the substrate 5 as in FIG.
 pn接合型構造は、主に少数キャリアを使って電流を流す構造であるのに対し、ショットキー型構造は、主に多数キャリアを使って電流を流す構造である。このため、ショットキー型構造の方が高速動作性に優れた太陽光発電モジュールを作製することができる。 The pn junction structure is a structure in which current is mainly flowed using minority carriers, whereas the Schottky structure is a structure in which current is mainly flowed using majority carriers. For this reason, the solar power generation module in which the Schottky structure is superior in high-speed operability can be manufactured.
 p型多結晶金属シリサイド層2aの作製方法例としては、多結晶金属シリサイド層に周期表第13族から選ばれる少なくとも1つの元素を添加する方法を用いることができる。周期表第13族の元素としては、例えばB(ホウ素)、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Tl(タリウム)などが挙げられる。n型多結晶金属シリサイド層2bの作製方法例としては、多結晶金属シリサイド層に周期表第15族から選ばれる少なくとも1つの元素を添加する方法を用いることができる。周期表第15族の元素としては、例えばN(窒素)、P(リン)、As(ヒ素)、Sb(アンチモン)、Bi(ビスマス)などが挙げられる。なお、多結晶金属シリサイド層の組成を制御することにより、p型多結晶金属シリサイド層2aおよびn型多結晶金属シリサイド層2bを作製することもできる。 As an example of a method for producing the p-type polycrystalline metal silicide layer 2a, a method of adding at least one element selected from Group 13 of the periodic table to the polycrystalline metal silicide layer can be used. Examples of the elements belonging to Group 13 of the periodic table include B (boron), Al (aluminum), Ga (gallium), In (indium), and Tl (thallium). As an example of a method for producing the n-type polycrystalline metal silicide layer 2b, a method of adding at least one element selected from Group 15 of the periodic table to the polycrystalline metal silicide layer can be used. Examples of the elements belonging to Group 15 of the periodic table include N (nitrogen), P (phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), and the like. The p-type polycrystalline metal silicide layer 2a and the n-type polycrystalline metal silicide layer 2b can also be produced by controlling the composition of the polycrystalline metal silicide layer.
 表面電極部4は、波長1500nm以下の光が透過する電極材料であることが好ましい。このような材料としては、ITO(Indium Tin Oxide:ITO)、ATO(Antimony Tin Oxide:ATO)、AZO(Aluminum Zinc Oxide:AZO)などの透明電極材料が挙げられる。表面電極部4は、多結晶金属シリサイド層2上に1か所以上形成されていればよい。なお、表面電極部4および多結晶金属シリサイド層2の上に反射防止膜やガラス基板を設けてもよい。 The surface electrode portion 4 is preferably an electrode material that transmits light having a wavelength of 1500 nm or less. Examples of such a material include transparent electrode materials such as ITO (Indium Tin Oxide: ITO), ATO (Antimony Tin Oxide: ATO), and AZO (Aluminum Zinc Oxide: AZO). One or more surface electrode portions 4 may be formed on the polycrystalline metal silicide layer 2. An antireflection film or a glass substrate may be provided on the surface electrode portion 4 and the polycrystalline metal silicide layer 2.
 多結晶金属シリサイド層2上に窒化膜を形成した後、その上に透明電極を形成してもよい。窒化膜は、多結晶金属シリサイド層2の酸化や吸湿を防止する保護膜としての機能を有する。窒化膜としては、シリコン窒化膜を用いることが好ましい。シリコン窒化膜としては、SiN、SiN、SiN、SiNから選ばれる1つの材料の窒化膜を用いることが好ましい。このとき、x、y、zはSiの原子量を1としたときの原子比であり、xは0<x≦2.0を満たす数、yは0≦y≦1.0を満たす数、zは0≦z≦0.1を満たす数であることが好ましい。 After forming a nitride film on the polycrystalline metal silicide layer 2, a transparent electrode may be formed thereon. The nitride film functions as a protective film that prevents oxidation and moisture absorption of the polycrystalline metal silicide layer 2. A silicon nitride film is preferably used as the nitride film. As the silicon nitride film, it is preferable to use a nitride film of one material selected from SiN x , SiN x O y , SiN x O y H z , and SiN x H z . In this case, x, y and z are atomic ratios when the atomic weight of Si is 1, x is a number satisfying 0 <x ≦ 2.0, y is a number satisfying 0 ≦ y ≦ 1.0, z Is preferably a number satisfying 0 ≦ z ≦ 0.1.
 窒化膜の膜厚は10nm以下、さらには5nm以下であることが好ましい。窒化膜は絶縁性である(導電性が低い)ことが多く、膜厚が10nmを超えると電気が流れなくなるおそれがある。10nm以下、さらには5nm以下の薄い膜にすることにより、トンネル効果が得られるため導通に対する影響はなくなる。なお、窒化膜が保護膜として機能するのであれば、窒化膜の膜厚は特に限定されないが、例えば2nm以上が好ましい。 The film thickness of the nitride film is preferably 10 nm or less, more preferably 5 nm or less. Nitride films are often insulative (low conductivity), and if the film thickness exceeds 10 nm, electricity may not flow. By using a thin film of 10 nm or less, and further 5 nm or less, the tunnel effect is obtained, so there is no influence on conduction. If the nitride film functions as a protective film, the thickness of the nitride film is not particularly limited, but is preferably 2 nm or more, for example.
 窒化膜の作製方法例としては、例えばスパッタリング、化学気相成長(Chemical Vapor Deposition:CVD)法、直接窒化法(金属シリサイドを窒化させる方法)などの成膜方法が挙げられる。また、各成膜方法を用いる場合、成膜中の雰囲気に酸素や水素を含有させることにより、SiN、SiN、SiNの窒化膜を形成することができる。 Examples of methods for forming the nitride film include film formation methods such as sputtering, chemical vapor deposition (CVD), and direct nitridation (a method for nitriding metal silicide). Further, when each film forming method is used, a nitride film of SiN x O y , SiN x O y H z , or SiN x H z can be formed by including oxygen or hydrogen in the atmosphere during film formation. .
 電極層3は、導電性を有する材料であればよく、電極層3に適用可能な材料としては、Pt、Ag、Al、Cuなどの金属材料(合金含む)、LaB、TiNなどの導電性窒化物、ニッケルシリサイド(NiSi)やコバルトシリサイド(CoSi)などの金属シリサイドが挙げられる。電極層3の厚さは、任意であるが、10nm以上であることが好ましい。多結晶金属シリサイド層2として、β-FeSiを用いる場合は電極層3としてNiSiを用いることが好ましい。NiSiは、β-FeSiの結晶配向性を制御するテンプレートとしても機能する電極材料である。 The electrode layer 3 may be any material having conductivity, and examples of materials applicable to the electrode layer 3 include metal materials (including alloys) such as Pt, Ag, Al, and Cu, and conductivity such as LaB 6 and TiN. Examples thereof include metal silicides such as nitride, nickel silicide (NiSi 2 ), and cobalt silicide (CoSi). The thickness of the electrode layer 3 is arbitrary, but is preferably 10 nm or more. When β-FeSi 2 is used as the polycrystalline metal silicide layer 2, NiSi 2 is preferably used as the electrode layer 3. NiSi 2 is an electrode material that also functions as a template for controlling the crystal orientation of β-FeSi 2 .
 電極層3として合金を用いる場合、電極層3に適用可能な合金としては、Al合金が挙げられる。Al合金としては、AlNd合金といったAl-希土類合金が挙げられる。Al-希土類合金中の希土類元素の含有量は、10原子%以下であることが好ましい。なお、多結晶金属シリサイド層2と電極層3の間には、必要に応じ、部分的に絶縁層を設けてもよい。 When an alloy is used as the electrode layer 3, an alloy applicable to the electrode layer 3 is an Al alloy. Examples of the Al alloy include an Al-rare earth alloy such as an AlNd alloy. The rare earth element content in the Al-rare earth alloy is preferably 10 atomic% or less. An insulating layer may be partially provided between the polycrystalline metal silicide layer 2 and the electrode layer 3 as necessary.
 電極層3は、耐熱性を有する材料であることが好ましい。後述するように、多結晶金属シリサイド層2を作製する際に熱処理を施すことが好ましいためである。耐熱性を有する材料としては、NiSi、AlNd合金、LaB、TiNが挙げられる。耐熱性を有する電極材料を用いることにより電極層3の形成における歩留りが向上する。 The electrode layer 3 is preferably a material having heat resistance. This is because, as will be described later, it is preferable to perform heat treatment when the polycrystalline metal silicide layer 2 is formed. Examples of the material having heat resistance include NiSi 2 , AlNd alloy, LaB 6 , and TiN. The yield in forming the electrode layer 3 is improved by using an electrode material having heat resistance.
 電極層3の材料を決める場合、多結晶金属シリサイド層2の仕事関数のマッチングを行うことが好ましい。具体的には、p型多結晶金属シリサイド層2aに接する電極の仕事関数は、p型多結晶金属シリサイド層2aの仕事関数よりも低いことが好ましい。また、n型多結晶金属シリサイド層2bに接する電極の仕事関数は、n型多結晶金属シリサイド層2bの仕事関数よりも高いことが好ましい。このようなマッチングを行うことにより、多結晶金属シリサイド層2と電極層との間に整流特性を付与することができる。整流特性とは一定方向に電流が流れやすくなる特性である。整流特性を付与することにより、発電効率が向上する。 When determining the material of the electrode layer 3, it is preferable to match the work function of the polycrystalline metal silicide layer 2. Specifically, the work function of the electrode in contact with the p-type polycrystalline metal silicide layer 2a is preferably lower than the work function of the p-type polycrystalline metal silicide layer 2a. The work function of the electrode in contact with n-type polycrystalline metal silicide layer 2b is preferably higher than the work function of n-type polycrystalline metal silicide layer 2b. By performing such matching, rectification characteristics can be imparted between the polycrystalline metal silicide layer 2 and the electrode layer. The rectification characteristic is a characteristic that facilitates current flow in a certain direction. By providing the rectification characteristic, the power generation efficiency is improved.
 例えば、p型多結晶金属シリサイド層2aがp型BaSi層である場合、仕事関数4.7を基準に電極材料を選定することが好ましく、n型多結晶金属シリサイド層2bがn型BaSi層である場合、仕事関数3.3を基準に電極材料を選定することが好ましく、p型多結晶金属シリサイド層2aがp型β-FeSi層である場合、仕事関数5.6を基準に電極材料を選定することが好ましく、n型多結晶金属シリサイド層2bがn型β-FeSi層である場合、仕事関数4.8を基準に電極材料を選定することが好ましい。なお、仕事関数の単位はeVである。 For example, when the p-type polycrystalline metal silicide layer 2a is a p-type BaSi 2 layer, it is preferable to select an electrode material based on the work function 4.7, and the n-type polycrystalline metal silicide layer 2b is an n-type BaSi 2 layer. If the p-type polycrystalline metal silicide layer 2a is a p-type β-FeSi 2 layer, it is preferable to select the electrode material based on the work function 3.3. The electrode material is preferably selected. When the n-type polycrystalline metal silicide layer 2b is an n-type β-FeSi 2 layer, the electrode material is preferably selected based on the work function 4.8. The unit of work function is eV.
 基板5としては、ガラス基板、絶縁性セラミック基板、金属基板などを用いることができる。なお、金属基板の場合は絶縁層からなる絶縁表面を有していてもよい。 As the substrate 5, a glass substrate, an insulating ceramic substrate, a metal substrate, or the like can be used. In the case of a metal substrate, it may have an insulating surface made of an insulating layer.
 上記第一の実施形態における太陽光発電モジュールでは、発電効率を向上させることができる。ここで、第一の太陽光発電モジュールの製造方法について説明する。本実施形態の太陽光発電モジュールの製造方法は、上記構成を有していれば特に限定されないが、効率よく太陽光発電モジュールを得るための方法としては、次の方法が挙げられる。 In the solar power generation module in the first embodiment, power generation efficiency can be improved. Here, the manufacturing method of a 1st photovoltaic power generation module is demonstrated. Although the manufacturing method of the solar power generation module of this embodiment will not be specifically limited if it has the said structure, The following method is mentioned as a method for obtaining a solar power generation module efficiently.
 まず、基板5を用意する。このとき、必要に応じ、基板5の表面を洗浄する。洗浄した場合は、十分に乾燥工程を行う。次に、電極層3を形成する。例えば、電極層3に適用可能な材料を用い、スパッタリングなどの成膜法により電極層3を形成することができる。 First, the substrate 5 is prepared. At this time, the surface of the substrate 5 is cleaned as necessary. If washed, perform the drying process sufficiently. Next, the electrode layer 3 is formed. For example, the electrode layer 3 can be formed by a film forming method such as sputtering using a material applicable to the electrode layer 3.
 例えば、NiSiなどの金属シリサイドを電極層3に用いる場合、NiSiターゲットを用いたスパッタリング、NiターゲットおよびSiターゲットの両方を用いたスパッタリング等を適用することができる。NiターゲットおよびSiターゲットの両方を用いたスパッタリングの場合、NiターゲットとSiターゲットを同時に用いたスパッタリングまたは交互に用いたスパッタリングのどちらであってもよい。このとき、スパッタリング後、熱処理を行うことにより上記スパッタリングにより形成した膜が反応しNiSi層が形成される。 For example, when a metal silicide such as NiSi 2 is used for the electrode layer 3, sputtering using a NiSi 2 target, sputtering using both a Ni target and a Si target, and the like can be applied. In the case of sputtering using both the Ni target and the Si target, either sputtering using the Ni target and the Si target at the same time or sputtering using them alternately may be used. At this time, a heat treatment is performed after sputtering to react the film formed by the sputtering to form a NiSi 2 layer.
 熱処理条件は、窒素などの不活性雰囲気中、300~700℃、30秒~5分の条件であることが好ましい。700℃を超えた高温または5分を超えた長時間の熱処理を行うと基板5などに歪みが生じるおそれがある。形成されるNiSiの純度は99.9質量%以上、さらには99.999質量%以上であることが好ましい。 The heat treatment conditions are preferably 300 to 700 ° C. and 30 seconds to 5 minutes in an inert atmosphere such as nitrogen. If heat treatment is performed at a high temperature exceeding 700 ° C. or for a long time exceeding 5 minutes, the substrate 5 may be distorted. The purity of NiSi 2 formed is preferably 99.9% by mass or more, and more preferably 99.999% by mass or more.
 NiSi層は、多結晶膜または単結晶膜のどちらでもよい。多結晶膜の場合、NiSi層の平均結晶粒径は大きいことが好ましい。NiSi層などの下地層の平均結晶粒径を大きくすることにより、その上に形成される多結晶金属シリサイド層2の平均結晶粒径を大きくすることができる。なお、下地層を単結晶膜にしても同様の効果が得られる。 The NiSi 2 layer may be either a polycrystalline film or a single crystal film. In the case of a polycrystalline film, the NiSi 2 layer preferably has a large average crystal grain size. By increasing the average crystal grain size of the underlying layer such as the NiSi 2 layer, the average crystal grain size of the polycrystalline metal silicide layer 2 formed thereon can be increased. The same effect can be obtained even if the base layer is a single crystal film.
 次に、電極層3に対し、必要に応じ、パターニング処理を行う。パターニング処理としては、パターン(配線)として残したい箇所にレジストまたはマスク材を配置し、エッチング処理を行う方法が挙げられる。 Next, a patterning process is performed on the electrode layer 3 as necessary. Examples of the patterning process include a method in which a resist or a mask material is disposed at a place where a pattern (wiring) is desired to be left and an etching process is performed.
 次に、多結晶金属シリサイド層2を形成する。例えば、スパッタリングなどの成膜法を用いて多結晶金属シリサイド層2を形成することができる。多結晶金属シリサイド層2の厚さは、0.01μm(10nm)以上であることが好ましい。 Next, a polycrystalline metal silicide layer 2 is formed. For example, the polycrystalline metal silicide layer 2 can be formed using a film forming method such as sputtering. The thickness of the polycrystalline metal silicide layer 2 is preferably 0.01 μm (10 nm) or more.
 多結晶金属シリサイド層2としてβ-FeSi層を形成する場合、FeSiターゲットを用いてスパッタリングを行う方法、FeターゲットおよびSiターゲットの両方を用いてスパッタリングを行う方法を用いてβ-FeSi層を形成することができる。FeターゲットおよびSiターゲットの両方を用いるスパッタリングの場合、FeターゲットとSiターゲットとを同時に用いたスパッタリングまたは交互に用いたスパッタリングのどちらでもよい。このとき、スパッタリング後、熱処理を行いスパッタリングにより生成した膜を反応させることによりFeSiが形成される。 When forming a beta-FeSi 2 layer as a polycrystalline metal silicide layer 2, FeSi 2 method of performing sputtering using a target, β-FeSi 2 layer by using a method of performing sputtering using both Fe target and a Si target Can be formed. In the case of sputtering using both the Fe target and the Si target, either sputtering using the Fe target and the Si target at the same time or sputtering using them alternately may be used. At this time, FeSi 2 is formed by reacting the film formed by sputtering after heat treatment.
 熱処理条件は、不活性雰囲気中または還元性雰囲気中、300~900℃、30秒~1時間の条件であることが好ましい。不活性雰囲気としては、窒素ガス雰囲気、アルゴンガス雰囲気などが挙げられる。還元性雰囲気としては、水素を含有した窒素ガス雰囲気などが挙げられる。900℃を超えた高温または1時間を超えた長時間の熱処理を行うと基板5などに歪みが生じるおそれがある。 The heat treatment condition is preferably 300 to 900 ° C. for 30 seconds to 1 hour in an inert atmosphere or a reducing atmosphere. Examples of the inert atmosphere include a nitrogen gas atmosphere and an argon gas atmosphere. Examples of the reducing atmosphere include a nitrogen gas atmosphere containing hydrogen. If heat treatment is performed at a high temperature exceeding 900 ° C. or for a long time exceeding 1 hour, the substrate 5 or the like may be distorted.
 電極層3として金属シリサイド(NiSiまたはCoSi)を用いる場合、熱処理温度を500℃以下とすることができる。これは金属シリサイドがβ-FeSi層を形成するためのテンプレートの役割を果たすためである。また、β-FeSi層を形成するための熱処理温度が500℃以下にできれば、基板、特にガラス基板に対するダメージを低減することができるため望ましい。また、スパッタリング後の熱処理によって、β-FeSi層の平均結晶粒径Aを制御することができる。 When metal silicide (NiSi 2 or CoSi) is used as the electrode layer 3, the heat treatment temperature can be set to 500 ° C. or less. This is because the metal silicide serves as a template for forming the β-FeSi 2 layer. Further, it is desirable that the heat treatment temperature for forming the β-FeSi 2 layer can be 500 ° C. or less because damage to the substrate, particularly the glass substrate can be reduced. Further, the average crystal grain size A of the β-FeSi 2 layer can be controlled by heat treatment after sputtering.
 均質なβ-FeSi層を得るためには、FeターゲットとSiターゲットを交互に用いてスパッタリングを行った後、熱処理を行うことが好ましい。Fe膜を0.5~5nm、Si膜を1~10nmの範囲とし、Fe膜およびSi膜を目的とする膜厚になるまで交互に積層しながら形成し、熱処理を施す。熱処理により、Fe膜とSi膜が反応し、多結晶のβ-FeSi層となる。また、Fe膜とSi膜を交互に積層する場合、SiとFeの原子比がFe:Si=1:1.5~2.5、さらにはFe:Si=1:2.0~2.5であることが好ましい。FeとSiの原子比を1:2.0~2.5とすることにより均質なβ-FeSi層が形成されやすくなる。 In order to obtain a homogeneous β-FeSi 2 layer, it is preferable to perform heat treatment after performing sputtering using an Fe target and an Si target alternately. The Fe film is in the range of 0.5 to 5 nm, the Si film is in the range of 1 to 10 nm, the Fe film and the Si film are formed while being alternately stacked until the desired film thickness is obtained, and heat treatment is performed. By the heat treatment, the Fe film and the Si film react to form a polycrystalline β-FeSi 2 layer. When the Fe film and the Si film are alternately laminated, the atomic ratio of Si and Fe is Fe: Si = 1: 1.5 to 2.5, and further Fe: Si = 1: 2.0 to 2.5. It is preferable that By setting the atomic ratio of Fe to Si to 1: 2.0 to 2.5, a uniform β-FeSi 2 layer is easily formed.
 上記工程により形成された均質なβ-FeSi層の抵抗率は、4×10Ωcm以上である。特に、FeとSiの原子比をFe:Si=1:2.1~2.4の範囲にすることにより、β-FeSi層の抵抗率を1×10Ωcm以上にすることができる。シート抵抗値が高いということは、抵抗値の低いFe単体やSi単体となっている部分が少なく、均質なβ-FeSi層が得られていることを示す。 The resistivity of the homogeneous β-FeSi 2 layer formed by the above process is 4 × 10 4 Ωcm or more. In particular, the resistivity of the β-FeSi 2 layer can be increased to 1 × 10 5 Ωcm or more by setting the atomic ratio of Fe to Si in the range of Fe: Si = 1: 2.1 to 2.4. A high sheet resistance value indicates that there are few portions of Fe or Si having a low resistance value, and a homogeneous β-FeSi 2 layer is obtained.
 FeSiターゲットを用いてスパッタリングを行う方法、FeターゲットおよびSiターゲットの両方を用いてスパッタリングを行う方法のいずれの方法であっても、使用するスパッタリングターゲットの純度は、99.9質量%以上、さらには99.999質量%以上の高純度であることが好ましい。 The purity of the sputtering target to be used is 99.9% by mass or more, regardless of the method of sputtering using an FeSi 2 target or the method of sputtering using both an Fe target and an Si target. Preferably has a high purity of 99.999% by mass or more.
 スパッタリングは、真空雰囲気または不活性雰囲気中で行うことが好ましい。真空雰囲気または不活性雰囲気中でスパッタリングを行うことにより、スパッタリング中の不純物の混入を防ぐことができる。また、真空雰囲気は1×10-3Pa以下の真空雰囲気であることが好ましく、不活性雰囲気はアルゴンガス雰囲気であることが好ましい。また、スパッタリング中に、加熱雰囲気としてもよい。 Sputtering is preferably performed in a vacuum atmosphere or an inert atmosphere. By performing sputtering in a vacuum atmosphere or an inert atmosphere, contamination of impurities during sputtering can be prevented. The vacuum atmosphere is preferably a vacuum atmosphere of 1 × 10 −3 Pa or less, and the inert atmosphere is preferably an argon gas atmosphere. Moreover, it is good also as a heating atmosphere during sputtering.
 シート抵抗値の測定は、四探針法によりβ-FeSi層表面に対して行う。均質なβ-FeSi層が形成されているか否かは、X線回折(X-Ray Diffraction:XRD)分析により確認することもできる。得られたβ-FeSi層に対してXRD分析(2θ)を行ったとき、28~30°の間にβ-FeSiの(202)/(220)面のピークおよび(004)/(040)面のピークが検出され、42~58°の間に(422)面のピークおよび(133)面のピークが検出される。なお、(202)/(220)面のピークが最強ピークになることが好ましい。また、均質なβ-FeSiとなっていると、XRD分析を行ったときにFe単体やSi単体のピークが検出されない。 The sheet resistance value is measured on the β-FeSi 2 layer surface by the four-probe method. Whether or not a homogeneous β-FeSi 2 layer is formed can also be confirmed by X-ray diffraction (XRD) analysis. When XRD analysis (2θ) was performed on the obtained β-FeSi 2 layer, the peak of (202) / (220) plane of β-FeSi 2 and (004) / (040 The peak of the (422) plane and the peak of the (133) plane are detected between 42 and 58 °. In addition, it is preferable that the peak of (202) / (220) plane becomes the strongest peak. Further, if it is homogeneous β-FeSi 2 , the peak of simple Fe or simple Si is not detected when XRD analysis is performed.
 熱処理を施すことで得られた均質なβ-FeSi層は、赤外線吸収特性として6300~6500cm-1に吸収端(Absorption Edge)を有する。また、スパッタリングによりFe膜とSi膜を交互に形成し、熱処理によりFe膜とSi膜を反応させて形成したβ-FeSi層では、シート抵抗の温度依存性が高い。 The homogeneous β-FeSi 2 layer obtained by the heat treatment has an absorption edge at 6300 to 6500 cm −1 as infrared absorption characteristics. Further, a β-FeSi 2 layer formed by alternately forming an Fe film and a Si film by sputtering and reacting the Fe film and the Si film by heat treatment has a high temperature dependency of the sheet resistance.
 β-FeSi層における、シート抵抗の温度依存性をアレニウスプロット(Arrhenios Plot)で表すと、298K(25℃)で「抵抗率が8×10Ωcm、Ea=0.142eV」であるとき、200K(-73℃)で「抵抗率が3.6×10Ωcm、Ea=0.123eV」となり、90K(-183℃)で「抵抗率が3.6×10Ωcm、Ea=0.0926eV」となり、50K(-223℃)で「抵抗率が2×10Ωcm、Ea=0.0395eV」となる。上記のように低温領域でも優れた抵抗率を示すということは、キャリア密度が1×1018cm-3以下になっていることを示している。 When the temperature dependence of the sheet resistance in the β-FeSi 2 layer is expressed by an Arrhenius plot (Arrhenios Plot), when “resistivity is 8 × 10 4 Ωcm, Ea = 0.142 eV” at 298 K (25 ° C.), “Resistivity is 3.6 × 10 5 Ωcm, Ea = 0.123 eV” at 200 K (−73 ° C.), and “Resistivity is 3.6 × 10 6 Ωcm, Ea = 0. 0926 eV ”, and“ resistivity is 2 × 10 7 Ωcm, Ea = 0.0395 eV ”at 50 K (−223 ° C.). The fact that excellent resistivity is exhibited even in the low temperature region as described above indicates that the carrier density is 1 × 10 18 cm −3 or less.
 このため、Fe膜とSi膜を交互に積層して熱処理によりβ-FeSi層を生成することにより、均質なβ-FeSi層が得られる。また、熱処理条件を調整することにより、多結晶金属シリサイド層2の平均結晶粒径Aを膜厚B以上(A≧B)にすることもできる。 Therefore, a uniform β-FeSi 2 layer can be obtained by alternately stacking Fe films and Si films and generating a β-FeSi 2 layer by heat treatment. Further, by adjusting the heat treatment conditions, the average crystal grain size A of the polycrystalline metal silicide layer 2 can be set to a film thickness B or more (A ≧ B).
 多結晶金属シリサイド層2としてBaSi層を形成する場合、バリウムシリサイドターゲットを用いてスパッタリングを行うことによりBaSi層を形成する方法が挙げられる。バリウムシリサイドターゲットとしては、BaSiターゲットBaSiターゲットなどが挙げられる。なお、BaSi層形成後、窒化膜(保護膜)を連続成膜することで大気開放後の酸化や吸湿を防止することができる。 In the case of forming a BaSi 2 layer as the polycrystalline metal silicide layer 2, a method of forming the BaSi 2 layer by performing sputtering using a barium silicide target can be mentioned. Examples of the barium silicide target include a BaSi 2 target and a BaSi target. In addition, oxidation and moisture absorption after opening to the atmosphere can be prevented by continuously forming a nitride film (protective film) after forming the BaSi 2 layer.
 スパッタリングは、真空雰囲気または不活性雰囲気中で行うことが好ましい。真空雰囲気中または不活性雰囲気中でスパッタリングを行うことにより酸化を抑制しながらBaSi層を成膜することができる。真空雰囲気としては、1×10-3Pa以下の真空雰囲気であることが好ましい。不活性雰囲気は、窒素、アルゴンなどの不活性雰囲気が好ましい。なお、スパッタリング工程中に、加熱雰囲気としてもよい。 Sputtering is preferably performed in a vacuum atmosphere or an inert atmosphere. By performing sputtering in a vacuum atmosphere or an inert atmosphere, a BaSi 2 layer can be formed while suppressing oxidation. The vacuum atmosphere is preferably a vacuum atmosphere of 1 × 10 −3 Pa or less. The inert atmosphere is preferably an inert atmosphere such as nitrogen or argon. Note that a heating atmosphere may be used during the sputtering process.
 スパッタリング工程では、BaSiターゲットを用いてBaSi層を形成した後、熱処理を行ってもよい。また、スパッタリング工程では、BaSiターゲット、BaSiターゲットなどのようにBaとSiの組成比を変えたスパッタリングターゲットを用意し、交互にスパッタリングを行いSi膜とFe膜との積層膜を形成し、スパッタリング後、熱処理を行いSi膜とFe膜とを反応させてBaSi層を形成してもよい。 In the sputtering step, heat treatment may be performed after forming a BaSi 2 layer using a BaSi 2 target. Also, in the sputtering process, a sputtering target in which the composition ratio of Ba and Si is changed, such as a BaSi 2 target and a BaSi target, is prepared, and sputtering is performed alternately to form a laminated film of an Si film and an Fe film. Thereafter, a BaSi 2 layer may be formed by reacting the Si film and the Fe film by heat treatment.
 熱処理条件は、真空雰囲気、不活性雰囲気中または還元性雰囲気中、300~900℃、30秒~1時間の条件であることが好ましい。900℃を超えた高温または1時間を超えた長時間の熱処理を行うと基板5などに歪みが生じるおそれがある。また、真空雰囲気で熱処理する場合、真空雰囲気は1×10-3Pa以下であることが好ましい。不活性雰囲気は、窒素雰囲気、アルゴン雰囲気などであることが好ましい。還元性雰囲気は、水素を含有した窒素雰囲気などであることが好ましい。 The heat treatment conditions are preferably 300 to 900 ° C. and 30 seconds to 1 hour in a vacuum atmosphere, an inert atmosphere or a reducing atmosphere. If heat treatment is performed at a high temperature exceeding 900 ° C. or for a long time exceeding 1 hour, the substrate 5 or the like may be distorted. When heat treatment is performed in a vacuum atmosphere, the vacuum atmosphere is preferably 1 × 10 −3 Pa or less. The inert atmosphere is preferably a nitrogen atmosphere, an argon atmosphere, or the like. The reducing atmosphere is preferably a nitrogen atmosphere containing hydrogen.
 電極層3として金属シリサイド(NiSiまたはCoSi)を用いる場合、熱処理温度を500℃以下とすることができる。これは金属シリサイドがBaSi層を形成するためのテンプレートの役割を果たすためである。また、BaSi層を形成するための熱処理温度を500℃以下にできれば、基板5、特にガラス基板に対するダメージを低減することができるため望ましい。スパッタリング後の熱処理によって、BaSi層の平均結晶粒径Aを制御することができる。 When metal silicide (NiSi 2 or CoSi) is used as the electrode layer 3, the heat treatment temperature can be set to 500 ° C. or less. This is because the metal silicide serves as a template for forming the BaSi 2 layer. Further, it is desirable that the heat treatment temperature for forming the BaSi 2 layer can be 500 ° C. or lower because damage to the substrate 5, particularly the glass substrate can be reduced. The average crystal grain size A of the BaSi 2 layer can be controlled by heat treatment after sputtering.
 電極層3として金属シリサイド(NiSiまたはCoSi)を用いる場合、電極層3は、多結晶体または単結晶体のどちらでもよい。多結晶体の場合、平均結晶粒径はできるだけ大きい方が望ましい。平均結晶粒径の大きな電極層3上に多結晶金属シリサイド層2を設けると、多結晶金属シリサイド層2の平均結晶粒径A(μm)と膜厚B(μm)がA≧Bを満たしやすくなる。また、金属シリサイドを電極層3として用いる場合、電極層3を下地層とし、その下に金属電極などを設けた多層電極構造にしてもよい。 When metal silicide (NiSi 2 or CoSi) is used as the electrode layer 3, the electrode layer 3 may be either a polycrystal or a single crystal. In the case of a polycrystal, it is desirable that the average crystal grain size be as large as possible. When the polycrystalline metal silicide layer 2 is provided on the electrode layer 3 having a large average crystal grain size, the average crystal grain size A (μm) and the film thickness B (μm) of the polycrystalline metal silicide layer 2 easily satisfy A ≧ B. Become. When metal silicide is used as the electrode layer 3, a multilayer electrode structure in which the electrode layer 3 is a base layer and a metal electrode or the like is provided thereunder may be employed.
 前述のように電極層3のパターニング処理を行う場合、電極層3が設けられていない個所にレジストまたはマスク材を配置してから行う。また、pn接合型のように積層構造とする場合は、それぞれ不純物をドーピングする工程を行う。 When the patterning process of the electrode layer 3 is performed as described above, it is performed after a resist or a mask material is arranged in a place where the electrode layer 3 is not provided. Further, in the case of a laminated structure such as a pn junction type, a step of doping impurities is performed.
 前述のようにスパッタリングと熱処理を組合せることにより多結晶金属シリサイド層2を形成することができる。多結晶金属シリサイド層2の平均結晶粒径A(μm)と膜厚B(μm)がA≧Bを満たすようにするには、多結晶金属シリサイド層2に熱処理を加えて粒成長させることが有効である。この熱処理は300~900℃、30秒~1時間で行うことが好ましい。なお、上記熱処理は、FeターゲットとSiターゲットを同時に用いたスパッタリングまたは交互に用いたスパッタリングを行った後の熱処理と併せて行ってもよい。なお、ショットキー型構造であれば、熱処理温度を500℃以下にできるため基板5に対するダメージを低減することができる。 As described above, the polycrystalline metal silicide layer 2 can be formed by combining sputtering and heat treatment. In order for the average crystal grain size A (μm) and the film thickness B (μm) of the polycrystalline metal silicide layer 2 to satisfy A ≧ B, the polycrystalline metal silicide layer 2 is subjected to heat treatment to grow grains. It is valid. This heat treatment is preferably performed at 300 to 900 ° C. for 30 seconds to 1 hour. Note that the heat treatment may be performed together with the heat treatment after performing sputtering using the Fe target and the Si target simultaneously or sputtering using the target alternately. Note that with the Schottky structure, since the heat treatment temperature can be set to 500 ° C. or lower, damage to the substrate 5 can be reduced.
 次に、表面電極部4を設ける工程を行う。表面電極部4としてITOやATOなどの透明電極を用いる場合、ITOターゲットまたはATOターゲットを用いたスパッタリングによりITO膜またはATO膜を形成する。その後、図1に示したように、多結晶金属シリサイド層2上に部分的に表面電極部4を設ける場合、レジストまたはマスク材を配置してスパッタリングを行ってもよい。表面電極部4を形成した後は、必要に応じ、表面電極部4上に反射防止膜を形成したり、表面電極部4とガラス基板などの透明基板とを貼り合わせてもよい。また、表面電極部4を予め設けた透明基板と貼り合わせてもよい。 Next, a process of providing the surface electrode portion 4 is performed. When a transparent electrode such as ITO or ATO is used as the surface electrode portion 4, an ITO film or ATO film is formed by sputtering using an ITO target or an ATO target. Thereafter, as shown in FIG. 1, when the surface electrode portion 4 is partially provided on the polycrystalline metal silicide layer 2, sputtering may be performed by placing a resist or a mask material. After forming the surface electrode part 4, if necessary, an antireflection film may be formed on the surface electrode part 4, or the surface electrode part 4 and a transparent substrate such as a glass substrate may be bonded together. Further, the surface electrode portion 4 may be bonded to a transparent substrate provided in advance.
 次に、第二の実施形態に係る太陽光発電モジュール(第二の太陽光発電モジュール)について説明する。図5は第二の太陽光発電モジュールの構造例を示す模式図である。図5に示す太陽光発電モジュール6は、第一の実施形態における太陽光発電モジュールの基板5と、その裏面側に設けられた蓄電機構部11とを具備する。また、太陽光発電モジュール6は、第一の実施形態における太陽光発電モジュールと同様に基板5の表面側に設けられた多結晶金属シリサイド層2、電極層3、表面電極部4を具備する。なお、第1の実施形態に係る太陽光発電モジュールと同じ構成要素については、第1の実施形態に係る太陽光発電モジュールの説明を適宜援用することができる。 Next, the solar power generation module (second solar power generation module) according to the second embodiment will be described. FIG. 5 is a schematic diagram showing a structural example of the second photovoltaic power generation module. The solar power generation module 6 shown in FIG. 5 includes the substrate 5 of the solar power generation module according to the first embodiment, and a power storage mechanism unit 11 provided on the back side thereof. Moreover, the solar power generation module 6 includes the polycrystalline metal silicide layer 2, the electrode layer 3, and the surface electrode portion 4 provided on the surface side of the substrate 5 as in the solar power generation module in the first embodiment. In addition, about the same component as the solar power generation module which concerns on 1st Embodiment, description of the solar power generation module which concerns on 1st Embodiment can be used suitably.
 蓄電機構部11は、多結晶金属シリサイド層2から供給される電力の一部または全部を蓄電する機能を有する。蓄電機構部11は、配線(図示しない)などにより表面電極部4および電極層3に接続される。図6は蓄電機構部11の構造例を示す模式図である。図6に示す蓄電機構部11は、電極部12(第1の電極部の一例に相当する)、電極部13(第2の電極部の一例に相当する)、封止部14、蓄電部15、電解液16、保護部17、還元部18を具備する。なお、蓄電機構部11の外周は、絶縁部材(図示しない)で覆われている。 The power storage mechanism unit 11 has a function of storing part or all of the power supplied from the polycrystalline metal silicide layer 2. The power storage mechanism unit 11 is connected to the surface electrode unit 4 and the electrode layer 3 by wiring (not shown) or the like. FIG. 6 is a schematic diagram showing a structural example of the power storage mechanism unit 11. The power storage mechanism unit 11 illustrated in FIG. 6 includes an electrode unit 12 (corresponding to an example of a first electrode unit), an electrode unit 13 (corresponding to an example of a second electrode unit), a sealing unit 14, and a power storage unit 15. , An electrolytic solution 16, a protection unit 17, and a reduction unit 18. In addition, the outer periphery of the electrical storage mechanism part 11 is covered with the insulating member (not shown).
 電極部12は、板状を呈し、導電性を有する材料を用いて形成されている。電極部12は、例えばアルミニウム、銅、ステンレス、白金などの金属を含む。電極部13は、板状を呈し、電極部12と対峙して設けられている。電極部13は、導電性を有する材料を用いて形成されている。電極部13は、例えばアルミニウム、銅、ステンレス、白金などの金属を含む。なお、電極部12と電極部13とを同じ材料を用いて形成することもできるし、電極部12と電極部13とを異なる材料を用いて形成することもできる。また、電極部12および電極部13としては、例えばITO、IZO(Indium Zinc Oxide)、FTO(Fluorine Tin Oxide)、SnO、InOなどからなる材料を用いてもよい。 The electrode portion 12 has a plate shape and is formed using a conductive material. The electrode part 12 contains metals, such as aluminum, copper, stainless steel, platinum, for example. The electrode portion 13 has a plate shape and is provided to face the electrode portion 12. The electrode portion 13 is formed using a conductive material. The electrode part 13 contains metals, such as aluminum, copper, stainless steel, platinum, for example. In addition, the electrode part 12 and the electrode part 13 can also be formed using the same material, and the electrode part 12 and the electrode part 13 can also be formed using different materials. Further, as the electrode portion 12 and the electrode portion 13, for example ITO, IZO (Indium Zinc Oxide) , FTO (Fluorine Tin Oxide), may be a material made of SnO 2, InO 3.
 電極部12および電極部13は、基板(図示しない)上に設けられる。上記基板としては、ガラス基板や絶縁処理した金属基板などが挙げられる。上記基板としては、前述の基板5を用いてもよい。つまり、太陽光発電モジュール6の構造を基板5上に直接配置された蓄電機構部11を具備する構造にしてもよい。 The electrode part 12 and the electrode part 13 are provided on a substrate (not shown). Examples of the substrate include a glass substrate and an insulated metal substrate. As the substrate, the above-described substrate 5 may be used. That is, the structure of the solar power generation module 6 may be a structure including the power storage mechanism unit 11 arranged directly on the substrate 5.
 蓄電部15側に設けられた電極部13は、負極側の電極となる。また、電極部13に対峙する電極部12は、正極側の電極となる。封止部14は、電極部12と電極部13との間に設けられ、電極部12の周縁部と電極部13の周縁部とを封止する。すなわち、封止部14は、電極部12と電極部13の周縁に沿って蓄電機構部11の内部を囲うように設けられ、電極部12側と電極部13側とを接合することで蓄電機構部11の内部を密閉する。また、封止部14の厚さは、特に限定されないが、蓄電部15の厚さの1.5~30倍の範囲であることが好ましい。封止部14の厚さが電解液16を充填するスペースとなるため、封止部14は所定の範囲の厚さを有していた方がよい。1.5倍未満では蓄電部15に蓄電した電気が放出されやすく、30倍を超えると蓄電部15に蓄電した電気を取り出し難くなる。 The electrode unit 13 provided on the power storage unit 15 side serves as a negative electrode. Moreover, the electrode part 12 which opposes the electrode part 13 turns into a positive electrode. The sealing part 14 is provided between the electrode part 12 and the electrode part 13 and seals the peripheral part of the electrode part 12 and the peripheral part of the electrode part 13. That is, the sealing unit 14 is provided so as to surround the inside of the power storage mechanism unit 11 along the periphery of the electrode unit 12 and the electrode unit 13, and the power storage mechanism is formed by joining the electrode unit 12 side and the electrode unit 13 side. The inside of the part 11 is sealed. The thickness of the sealing part 14 is not particularly limited, but is preferably in the range of 1.5 to 30 times the thickness of the power storage part 15. Since the thickness of the sealing part 14 becomes a space for filling the electrolyte solution 16, the sealing part 14 should have a thickness in a predetermined range. If it is less than 1.5 times, the electricity stored in the electricity storage unit 15 is likely to be released, and if it exceeds 30 times, it is difficult to take out the electricity stored in the electricity storage unit 15.
 封止部14は、電極部12と電極部13との間を封止する。封止部14は、ガラス材料を含んでいてもよい。封止部14は、例えば、粉末ガラス、アクリル樹脂などのバインダ、有機溶媒などを混合してペースト状にしたガラスフリットを用いて形成することができる。粉末ガラスの材料としては、例えばバナジン酸塩系ガラスや酸化ビスマス系ガラスなどが挙げられる。この場合、ペースト状にしたガラスフリットを封止対象部分に塗布し、これを焼成して封止部14を形成することができる。そして、封止部14を加熱することで封止部14を溶融させて蓄電機構部11を封止することができる。例えば、形成された封止部14にレーザ光を照射し、封止部14のレーザ光が照射された部分を溶融させることで蓄電機構部11を封止することができる。なお、封止部14に適用可能な材料は、ガラス材料に限定されない。例えば、封止部14は、樹脂材料を含んでいてもよい。例えば、蓄電機構部11は、封止部14が樹脂材料を含み、電極部12および電極部13に接着する構造であってもよい。 The sealing part 14 seals between the electrode part 12 and the electrode part 13. The sealing unit 14 may include a glass material. The sealing portion 14 can be formed using, for example, a glass frit that is made into a paste by mixing powder glass, a binder such as an acrylic resin, an organic solvent, or the like. Examples of the powder glass material include vanadate glass and bismuth oxide glass. In this case, the glass frit in the form of paste can be applied to the portion to be sealed and baked to form the sealing portion 14. Then, by heating the sealing part 14, the sealing part 14 can be melted and the power storage mechanism part 11 can be sealed. For example, the power storage mechanism 11 can be sealed by irradiating the formed sealing portion 14 with laser light and melting the portion of the sealing portion 14 irradiated with the laser light. In addition, the material applicable to the sealing part 14 is not limited to a glass material. For example, the sealing part 14 may contain a resin material. For example, the power storage mechanism unit 11 may have a structure in which the sealing unit 14 includes a resin material and is bonded to the electrode unit 12 and the electrode unit 13.
 蓄電部15は、封止部14の内側であって、電極部13の電極部12に対峙する側の面に設けられている。蓄電部15は、保護部17を介して電極部13上に設けられている。蓄電部15は、蓄電性を有する材料により形成されている。蓄電部15は、例えばWO(酸化タングステン)を含む。蓄電部15は、多孔質構造を有していてもよい。多孔質構造の空隙率は20~80体積%の範囲であることが好ましい。酸化タングステンとしては、平均粒径1~1000nm、さらには1~100nmの酸化タングステン粒子を用いることが好ましい。また、蓄電性能を向上させるために酸化タングステン粒子の表面に金属被膜、金属酸化物被膜等を設けてもよい。 The power storage unit 15 is provided inside the sealing unit 14 and on the surface of the electrode unit 13 facing the electrode unit 12. The power storage unit 15 is provided on the electrode unit 13 via the protection unit 17. The power storage unit 15 is formed of a material having a power storage property. The power storage unit 15 includes, for example, WO 3 (tungsten oxide). The power storage unit 15 may have a porous structure. The porosity of the porous structure is preferably in the range of 20 to 80% by volume. As tungsten oxide, it is preferable to use tungsten oxide particles having an average particle diameter of 1 to 1000 nm, more preferably 1 to 100 nm. In addition, a metal film, a metal oxide film, or the like may be provided on the surface of the tungsten oxide particles in order to improve power storage performance.
 蓄電部15の構造を多孔質構造を有する構造にすれば、電解液16との接触面積を大きくすることができる。そのため、蓄電部15に対する蓄電を容易にすることができる。蓄電部15の厚みは、例えば、30μm程度とすることができる。また、直径寸法が20nm程度のWOの粒子を30μm程度の厚みになるまで積層させることで蓄電部15を形成してもよい。また、蓄電部15の厚みは、蓄電機能を有することができれば特に限定されないが、1μm以上、さらには1μm~100μmが好ましい。 If the power storage unit 15 has a porous structure, the contact area with the electrolytic solution 16 can be increased. Therefore, the power storage with respect to the power storage unit 15 can be facilitated. The thickness of the power storage unit 15 can be about 30 μm, for example. Alternatively, the power storage unit 15 may be formed by laminating WO 3 particles having a diameter of about 20 nm to a thickness of about 30 μm. The thickness of the power storage unit 15 is not particularly limited as long as it has a power storage function, but is preferably 1 μm or more, more preferably 1 μm to 100 μm.
 電解液16は、封止部14の内側に設けられている。すなわち、電解液16は、電極部12と電極部13と封止部14とで囲まれる空間に充填されている。電解液16としては、例えばヨウ素を含む電解液を用いることができる。また、電解液16としては、例えばアセトニトリルなどの溶媒に、ヨウ化リチウムとヨウ素とを溶解させた電解液を用いることができる。ヨウ化リチウムの濃度は、0.5~5mol/Lの範囲であることが好ましく、ヨウ素の濃度は0.01~5mol/Lの範囲であることが好ましい。 The electrolytic solution 16 is provided inside the sealing portion 14. That is, the electrolytic solution 16 is filled in a space surrounded by the electrode part 12, the electrode part 13, and the sealing part 14. As the electrolytic solution 16, for example, an electrolytic solution containing iodine can be used. Moreover, as the electrolytic solution 16, for example, an electrolytic solution in which lithium iodide and iodine are dissolved in a solvent such as acetonitrile can be used. The concentration of lithium iodide is preferably in the range of 0.5 to 5 mol / L, and the concentration of iodine is preferably in the range of 0.01 to 5 mol / L.
 保護部17は、膜状を呈し、蓄電部15と電極部13との間に設けられている。保護部17は、封止部14により画された電極部13の表面を覆うように設けられている。保護部17は、電解液16により電極部13が腐食してしまうことを抑制するために設けられている。保護部17は、導電性と電解液16に対する耐薬品性とを有する材料を用いて形成される。保護部17は、例えば炭素や白金などを含む。保護部17の厚みは、例えば、100nm程度であることが好ましい。なお、電解液16に対する耐薬品性を有する材料を用いて電極部13を形成する場合、必ずしも保護部17を設けなくてもよい。 The protection unit 17 has a film shape and is provided between the power storage unit 15 and the electrode unit 13. The protection part 17 is provided so as to cover the surface of the electrode part 13 defined by the sealing part 14. The protection part 17 is provided to prevent the electrode part 13 from being corroded by the electrolytic solution 16. The protection part 17 is formed using a material having conductivity and chemical resistance against the electrolytic solution 16. The protection unit 17 includes, for example, carbon or platinum. The thickness of the protection part 17 is preferably about 100 nm, for example. In addition, when forming the electrode part 13 using the material which has chemical resistance with respect to the electrolyte solution 16, the protection part 17 does not necessarily need to be provided.
 還元部18は、膜状を呈し、封止部14により画された電極部12の表面を覆うように設けられている。還元部18は、電解液16に含まれているイオンを還元するために設けられている。例えば、還元部18は、電解液16に含まれているI イオン(三ヨウ化物イオン)をIイオン(ヨウ化物イオン)に還元する。そのため、還元部18は、導電性と、電解液16に対する耐薬品性と、電解液16に含まれているイオンの還元を考慮した材料を用いて形成される。還元部18は、例えば、炭素や白金などを含む。還元部18の厚みは、例えば80nm程度であることが好ましい。 The reducing part 18 has a film shape and is provided so as to cover the surface of the electrode part 12 defined by the sealing part 14. The reducing unit 18 is provided to reduce ions contained in the electrolytic solution 16. For example, the reducing unit 18 reduces I 3 ions (triiodide ions) contained in the electrolytic solution 16 to I ions (iodide ions). Therefore, the reducing portion 18 is formed using a material that takes into consideration conductivity, chemical resistance to the electrolytic solution 16, and reduction of ions contained in the electrolytic solution 16. The reducing unit 18 includes, for example, carbon or platinum. The thickness of the reducing unit 18 is preferably about 80 nm, for example.
 このような蓄電機構部11であれば、多結晶金属シリサイド層2により発電された電力の一部または全部を効率よく蓄電することができる。また、このような蓄電機構部11は蓄電容量を1000C/m以上、さらには10000C/m以上とすることも可能である。 With such a power storage mechanism unit 11, part or all of the power generated by the polycrystalline metal silicide layer 2 can be stored efficiently. Moreover, such a power storage mechanism 11 a storage capacity 1000 C-/ m 2 or more, further it is also possible to 10000C / m 2 or more.
 次に、第二の実施形態における太陽光発電モジュール(太陽光発電モジュール6)の出力特性について説明する。図7は第二の実施形態における太陽光発電モジュールの出力特性を示す模式図である。 Next, output characteristics of the solar power generation module (solar power generation module 6) in the second embodiment will be described. FIG. 7 is a schematic diagram showing output characteristics of the photovoltaic power generation module according to the second embodiment.
 図7において、縦軸は太陽光発電モジュール6が供給する電力の電圧を表し、横軸は時間を表す。太陽光発電モジュール6は太陽光を浴びて一定の電圧を供給することになる。天候の変化などにより日照量が低下すると、多結晶金属シリサイド層2により生成される電力は低下する。このとき、一定の電圧(△V1)まで下がると蓄電機構部11から電力が供給される。蓄電機構部11に蓄えられた電力(蓄電容量)に応じて、電力が供給される。蓄電機構部11からの電圧が一定の電圧(△V2)まで下がるまでの間に、商用電源などへの切り替えを行えばよい。これにより、太陽電池単独で発電していたときとは異なり、日照量変化に伴い電力供給が不安定になる問題を改善することができる。 7, the vertical axis represents the voltage of power supplied by the solar power generation module 6 and the horizontal axis represents time. The photovoltaic power generation module 6 is exposed to sunlight and supplies a constant voltage. When the amount of sunshine decreases due to changes in the weather, etc., the power generated by the polycrystalline metal silicide layer 2 decreases. At this time, when the voltage drops to a certain voltage (ΔV1), electric power is supplied from the power storage mechanism 11. Electric power is supplied according to the electric power (electric storage capacity) stored in the electric storage mechanism 11. Switching to a commercial power source or the like may be performed until the voltage from the power storage mechanism unit 11 drops to a constant voltage (ΔV2). Thus, unlike the case where power is generated by a solar cell alone, it is possible to improve the problem that the power supply becomes unstable as the amount of sunlight changes.
 また、蓄電機構部11の蓄電容量を1000C/m以上と大きくすることにより、多結晶金属シリサイド層2の発電を安定化させることもできる。例えば、多結晶金属シリサイド層2の発電効率目標を5%とした場合、5%に足りない電力を蓄電機構部11から供給することにより発電を安定化させることもできる。 Moreover, the power generation of the polycrystalline metal silicide layer 2 can be stabilized by increasing the power storage capacity of the power storage mechanism 11 to 1000 C / m 2 or more. For example, when the power generation efficiency target of the polycrystalline metal silicide layer 2 is set to 5%, the power generation can be stabilized by supplying electric power less than 5% from the power storage mechanism unit 11.
(実施例1、2、比較例1)
 ガラス基板上にNiSi層(厚さ20nm)を設けた。なお、NiSi層の形成では、NiターゲットとSiターゲットを交互に用いてスパッタリングを行い、Ni膜/Si膜を交互に複数積層させて積層膜を形成した。その後、窒素雰囲気中、500℃×1分間の条件で熱処理を行いNiSi層を生成した。なお、NiターゲットまたはSiターゲットの純度は、99.9質量%であった。
(Examples 1 and 2 and Comparative Example 1)
A NiSi 2 layer (thickness 20 nm) was provided on a glass substrate. In forming the NiSi 2 layer, sputtering was performed by alternately using the Ni target and the Si target, and a plurality of Ni films / Si films were alternately stacked to form a stacked film. Thereafter, heat treatment was performed in a nitrogen atmosphere at 500 ° C. for 1 minute to form a NiSi 2 layer. The purity of the Ni target or Si target was 99.9% by mass.
 次に、NiSi層上にβ-FeSi層(厚さ300nm)を形成した。β-FeSi層の形成では、FeターゲットとSiターゲットを交互に用いてスパッタリングを行い、Fe膜とSi膜とを交互に複数回積層した。実施例1、実施例2、比較例1では、Fe膜の膜厚を1~3nmとし、Si膜の膜厚を5~10nmの範囲とした。また、実施例1ではFeとSiの原子比をFe:Si=1:2.1、実施例2、比較例1ではFe:Si=1:2.3にした。なお、FeターゲットとSiターゲットの純度は、99.9質量%であった。その後、表1に示す条件で熱処理を施しFe膜とSi膜とを反応させβ-FeSi層を得た。次に、β-FeSi層上に、ITOからなる表面電極部を設けた。なお、ITO表面電極部の形成では、ITOターゲットのスパッタリングを行いITO膜を形成した。 Next, a β-FeSi 2 layer (thickness 300 nm) was formed on the NiSi 2 layer. In the formation of the β-FeSi 2 layer, sputtering was performed using an Fe target and an Si target alternately, and the Fe film and the Si film were alternately stacked a plurality of times. In Example 1, Example 2, and Comparative Example 1, the film thickness of the Fe film was set to 1 to 3 nm, and the film thickness of the Si film was set to the range of 5 to 10 nm. In Example 1, the atomic ratio of Fe and Si was set to Fe: Si = 1: 2.1, and in Example 2 and Comparative Example 1, Fe: Si = 1: 2.3. The purity of the Fe target and the Si target was 99.9% by mass. Thereafter, heat treatment was performed under the conditions shown in Table 1 to react the Fe film and the Si film to obtain a β-FeSi 2 layer. Next, a surface electrode portion made of ITO was provided on the β-FeSi 2 layer. In forming the ITO surface electrode portion, the ITO target was sputtered to form an ITO film.
 上記方法により、ショットキー型構造を有する太陽光発電モジュールを作製した。得られた太陽光発電モジュールに対し、β-FeSi層の平均結晶粒径Aおよび膜厚Bを求めた。実施例における平均結晶粒径Aおよび膜厚Bの測定方法は、上記実施形態に示したとおりである。また、β-FeSi層に対しXRD分析を行った結果、β-FeSi結晶のピークのみ検出され、Fe単体およびSi単体のピークは検出されなかった。 A photovoltaic power generation module having a Schottky structure was produced by the above method. With respect to the obtained solar power generation module, the average crystal grain size A and the film thickness B of the β-FeSi 2 layer were determined. The measuring method of the average crystal grain size A and the film thickness B in the examples is as shown in the above embodiment. Further, as a result of XRD analysis to beta-FeSi 2 layer, only detected peaks of beta-FeSi 2 crystals, Fe alone and Si single peak was detected.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1、2および比較例1に係る太陽光発電モジュールに関し、発電効率を求めた。発電効率の測定では、発光強度30W/m、色温度5700Kの太陽光スペクトル(昼12時の発光スペクトルに近似)を具備するLED照明光を照射して発電効率を求めた。その結果を表2に示す。 Regarding the photovoltaic power generation modules according to Examples 1 and 2 and Comparative Example 1, the power generation efficiency was obtained. In the measurement of power generation efficiency, the power generation efficiency was obtained by irradiating with LED illumination light having a sunlight spectrum (approximate to the emission spectrum at 12:00 noon) with an emission intensity of 30 W / m 2 and a color temperature of 5700 K. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かる通り、比較例1に係る太陽光発電モジュールの発電効率よりも実施例1および実施例2に係る太陽光発電モジュールの発電効率の方が高かった。これは実施例1および実施例2において平均結晶粒径A≧膜厚Bとなっているため粒界トラップサイドが低減したためである。 As can be seen from Table 2, the power generation efficiency of the solar power generation modules according to Example 1 and Example 2 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 1. This is because in Example 1 and Example 2, the average grain size A ≧ film thickness B, so that the grain boundary trap side was reduced.
(実施例3、4、比較例2)
 SiO基板上にAlNd合金電極層(厚さ50nm)を設けた。なお、AlNd合金としては、Al-1原子%Nd合金を用いた。次に、AlNd合金電極層上にBaSi層(厚さ300nm)を形成した。BaSi層の形成では、BaSiターゲットを用いてスパッタリングを行い、その後、シリコン窒化物層(厚さ3nm)を連続成膜した。なお、スパッタリング工程は、1×10-3Pa以下の真空中、300℃の加熱雰囲気で行った。また、BaSiターゲットの純度は、99.99質量%であった。その後、表3に示した条件で熱処理を施した。次に、BaSi層上に、AZOからなる表面電極部を設けた。AZO表面電極部の形成では、AZOターゲットのスパッタリングを行うことによりAZO膜を形成した。
(Examples 3 and 4 and Comparative Example 2)
An AlNd alloy electrode layer (thickness 50 nm) was provided on the SiO 2 substrate. An Al-1 atomic% Nd alloy was used as the AlNd alloy. Next, a BaSi 2 layer (thickness 300 nm) was formed on the AlNd alloy electrode layer. In the formation of the BaSi 2 layer, sputtering was performed using a BaSi 2 target, and then a silicon nitride layer (thickness 3 nm) was continuously formed. The sputtering process was performed in a heated atmosphere at 300 ° C. in a vacuum of 1 × 10 −3 Pa or less. Moreover, the purity of the BaSi 2 target was 99.99% by mass. Thereafter, heat treatment was performed under the conditions shown in Table 3. Next, a surface electrode portion made of AZO was provided on the BaSi 2 layer. In the formation of the AZO surface electrode portion, an AZO film was formed by sputtering an AZO target.
 このような方法により、ショットキー型構造を有する太陽光発電モジュールを作製した。得られた太陽光発電モジュールに対し、上記に示した測定方法によりBaSi層の平均結晶粒径Aおよび膜厚Bを求めた。 By such a method, a photovoltaic power generation module having a Schottky structure was produced. With respect to the obtained photovoltaic power generation module, the average crystal grain size A and the film thickness B of the BaSi 2 layer were determined by the measurement method described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 さらに実施例3~4および比較例2に係る太陽光発電モジュールに関し、発電効率を求めた。発電効率の測定方法は、実施例1と同様の方法である。その結果を表4に示す。 Further, regarding the photovoltaic power generation modules according to Examples 3 to 4 and Comparative Example 2, the power generation efficiency was obtained. The method for measuring the power generation efficiency is the same as that in Example 1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かる通り、比較例2に係る太陽光発電モジュールの発電効率よりも実施例3および実施例3、4に係る太陽光発電モジュールの発電効率の方が高かった。これは実施例3および実施例4において、平均結晶粒径A≧膜厚Bとなっているため粒界トラップサイドが低減したためである。 As can be seen from Table 4, the power generation efficiency of the solar power generation modules according to Example 3 and Examples 3 and 4 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 2. This is because in Example 3 and Example 4, since the average crystal grain size A ≧ film thickness B, the grain boundary trap side was reduced.
(実施例5~9)
 ガラス基板上にNiSi層(厚さ20nm)を設けた。なお、NiSi層の形成では、NiターゲットとSiターゲットを交互に用いてスパッタリングを行い、Ni膜/Si膜を交互に複数積層させた積層膜を形成した。その後、窒素雰囲気中、500℃×1分間の条件で熱処理を行いNi膜とSi膜を反応させてNiSi層を得た。なお、NiターゲットおよびSiターゲットの純度は99.99質量%であった。
(Examples 5 to 9)
A NiSi 2 layer (thickness 20 nm) was provided on a glass substrate. In forming the NiSi 2 layer, sputtering was performed by alternately using the Ni target and the Si target to form a laminated film in which a plurality of Ni films / Si films were alternately laminated. Thereafter, heat treatment was performed in a nitrogen atmosphere at 500 ° C. for 1 minute to react the Ni film and the Si film to obtain a NiSi 2 layer. The purity of the Ni target and the Si target was 99.99% by mass.
 次に、NiSi層上にβ-FeSi層を形成した。β-FeSi層の形成では、FeターゲットとSiターゲットを交互に用いてスパッタリングを行い、Fe膜とSi膜とを交互に複数回積層した。実施例5~9では、Fe膜の膜厚を1~3nmの範囲とし、Si膜の膜厚を5~10nmの範囲とした。また、実施例5~9では、FeとSiの原子比をFe:Si=1:2.25にした。なお、FeターゲットおよびSiターゲットの純度は99.99質量%であった。また、スパッタリング工程は1×10-3Pa以下の真空中で行った。その後、表5に示した条件で熱処理を行った。次に、β-FeSi層上に、ITOからなる表面電極部を設けた。ITO表面電極部の形成では、ITOターゲットのスパッタリングを行いITO膜を形成した。 Next, a β-FeSi 2 layer was formed on the NiSi 2 layer. In the formation of the β-FeSi 2 layer, sputtering was performed using an Fe target and an Si target alternately, and the Fe film and the Si film were alternately stacked a plurality of times. In Examples 5 to 9, the thickness of the Fe film was in the range of 1 to 3 nm, and the thickness of the Si film was in the range of 5 to 10 nm. In Examples 5 to 9, the atomic ratio of Fe to Si was set to Fe: Si = 1: 2.25. The purity of the Fe target and the Si target was 99.99% by mass. The sputtering process was performed in a vacuum of 1 × 10 −3 Pa or less. Thereafter, heat treatment was performed under the conditions shown in Table 5. Next, a surface electrode portion made of ITO was provided on the β-FeSi 2 layer. In the formation of the ITO surface electrode part, the ITO target was sputtered to form an ITO film.
 このような方法により、ショットキー型構造を有する太陽光発電モジュールを作製した。得られた太陽光発電モジュールに対し、β-FeSi層の平均結晶粒径Aおよび膜厚Bを求めた。また、β-FeSi層に対しXRD分析を行った結果、β-FeSi結晶のピークのみ検出され、Fe単体およびSi単体のピークは検出されなかった。 By such a method, a photovoltaic power generation module having a Schottky structure was produced. With respect to the obtained solar power generation module, the average crystal grain size A and the film thickness B of the β-FeSi 2 layer were determined. Further, as a result of XRD analysis to beta-FeSi 2 layer, only detected peaks of beta-FeSi 2 crystals, Fe alone and Si single peak was detected.
 実施例5~9に係る太陽光発電モジュールに関し、発電効率を求めた。発電効率の測定方法は、実施例1と同様の方法である。その結果を表6に示す。 The power generation efficiency was determined for the solar power generation modules according to Examples 5 to 9. The method for measuring the power generation efficiency is the same as that in Example 1. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から分かる通り、実施例5~9に係る太陽光発電モジュールの発電効率は高かった。これは平均結晶粒径A≧膜厚Bとなっているため粒界トラップサイドが低減したためである。以上のように、実施例5~9に係る太陽光発電モジュールの発電効率は、いずれも2%以上となった。 As can be seen from Table 6, the power generation efficiency of the solar power generation modules according to Examples 5 to 9 was high. This is because the grain boundary trap side is reduced because the average crystal grain size A ≧ film thickness B. As described above, the power generation efficiency of the solar power generation modules according to Examples 5 to 9 was 2% or more.
(実施例10、11、比較例3)
 ガラス基板上にNiSi層(厚さ20nm)を設けた。なお、NiSi層の形成は、NiターゲットとSiターゲットを交互に用いてスパッタリングを行い、Ni膜とSi膜とを交互に複数回積層した。その後、窒素雰囲気中、500℃×1分間の条件で熱処理を行いNi膜とSi膜を反応させてNiSi層を形成した。なお、NiターゲットおよびSiターゲットの純度は、99.99質量%であった。
(Examples 10 and 11, Comparative Example 3)
A NiSi 2 layer (thickness 20 nm) was provided on a glass substrate. The formation of the NiSi 2 layer was performed by alternately using the Ni target and the Si target, and the Ni film and the Si film were alternately stacked a plurality of times. Thereafter, heat treatment was performed in a nitrogen atmosphere at 500 ° C. for 1 minute to react the Ni film and the Si film to form a NiSi 2 layer. The purity of the Ni target and the Si target was 99.99% by mass.
 次に、NiSi層上に、n型β-FeSi層を形成し、さらにその上にp型β-FeSi層を形成した。n型およびp型のβ-FeSi層の形成では、FeターゲットとSiターゲットを交互に用いてスパッタリングを行い、Fe膜とSi膜とを交互に複数回積層した。実施例10、11、比較例3ではFe膜の膜厚を1~3nmの範囲とし、Si膜の膜厚を5~10nmの範囲とした。また、実施例10、11、比較例3では、FeとSiの原子比をFe:Si=1:2.25にした。なお、FeターゲットおよびSiターゲットの純度は、99.99質量%であった。スパッタリング工程は、1×10-3Pa以下の真空中で行った。その後、表7に示した条件で熱処理を施しFe膜とSi膜とを反応させてβ-FeSi層を得た。なお、n型、p型の作製はFeSi層に対する不純物ドープにより行った。 Then, on the NiSi 2 layer to form an n-type beta-FeSi 2 layer was formed a p-type beta-FeSi 2 layer further thereon. In the formation of the n-type and p-type β-FeSi 2 layers, sputtering was performed by alternately using the Fe target and the Si target, and the Fe film and the Si film were alternately laminated a plurality of times. In Examples 10 and 11 and Comparative Example 3, the thickness of the Fe film was in the range of 1 to 3 nm, and the thickness of the Si film was in the range of 5 to 10 nm. In Examples 10 and 11 and Comparative Example 3, the atomic ratio of Fe and Si was set to Fe: Si = 1: 2.25. Note that the purity of the Fe target and the Si target was 99.99 mass%. The sputtering process was performed in a vacuum of 1 × 10 −3 Pa or less. Thereafter, heat treatment was performed under the conditions shown in Table 7, and the Fe film and the Si film were reacted to obtain a β-FeSi 2 layer. The n-type and p-type were prepared by doping impurities into the FeSi 2 layer.
 次に、β-FeSi層上に、ITOからなる表面電極部を形成した。なお、ITO表面電極部の形成では、ITOターゲットのスパッタリングを行いITO膜を形成した。これにより、pn接合型多結晶β-FeSi太陽光発電モジュールを作製した。得られた太陽光発電モジュールに対し、β-FeSi層の平均結晶粒径Aおよび膜厚Bを求めた。 Next, a surface electrode portion made of ITO was formed on the β-FeSi 2 layer. In forming the ITO surface electrode portion, the ITO target was sputtered to form an ITO film. As a result, a pn junction type polycrystalline β-FeSi 2 photovoltaic power generation module was produced. With respect to the obtained solar power generation module, the average crystal grain size A and the film thickness B of the β-FeSi 2 layer were determined.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例10、11、比較例3に係る太陽光発電モジュールに関し、発電効率を求めた。発電効率の測定方法は、実施例1と同様の方法である。その結果を表8に示す。 Regarding the photovoltaic power generation modules according to Examples 10 and 11 and Comparative Example 3, the power generation efficiency was obtained. The method for measuring the power generation efficiency is the same as that in Example 1. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8から分かる通り、比較例3に係る太陽光発電モジュールの発電効率よりも実施例10、11に係る太陽光発電モジュールの発電効率の方が高かった。これは平均結晶粒径A≧膜厚Bとなっているため粒界トラップサイドが低減したためである。このようにpn接合型に関しても発電効率を高めることできることが判明した。 As can be seen from Table 8, the power generation efficiency of the solar power generation modules according to Examples 10 and 11 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 3. This is because the grain boundary trap side is reduced because the average crystal grain size A ≧ film thickness B. As described above, it has been found that the power generation efficiency can be increased also for the pn junction type.
(実施例12~14、比較例4)
 実施例12~14および比較例4では、SiO基板上に、LaB電極層(厚さ50nm)を設けた。次に、電極層上にn型BaSi層、その上にp型BaSi層を形成した。次に、実施例12および実施例14はp型BaSi層上にシリコン窒化物層(厚さ3nm)を連続成膜した(実施例13と比較例4はシリコン窒化物層なし)。なお、スパッタリング工程は、1×10-3Pa以下の真空中、300℃の加熱雰囲気で行った。また、BaSiターゲットの純度は、99.9質量%であった。その後、表9に示した条件で熱処理を施した。
(Examples 12 to 14, Comparative Example 4)
In Examples 12 to 14 and Comparative Example 4, a LaB 6 electrode layer (thickness 50 nm) was provided on the SiO 2 substrate. Next, n-type BaSi 2 layer on the electrode layer to form a p-type BaSi 2 layer thereon. Next, in Example 12 and Example 14, a silicon nitride layer (thickness 3 nm) was continuously formed on the p-type BaSi 2 layer (Example 13 and Comparative Example 4 have no silicon nitride layer). The sputtering process was performed in a heated atmosphere at 300 ° C. in a vacuum of 1 × 10 −3 Pa or less. Moreover, the purity of the BaSi 2 target was 99.9% by mass. Thereafter, heat treatment was performed under the conditions shown in Table 9.
 次に、BaSi層上に、AZOからなる表面電極部を設けた。AZO表面電極部の形成では、AZOターゲットのスパッタリングによりAZO膜を形成した。上記方法により、pn接合型構造を有する太陽光発電モジュールを作製した。得られた太陽光発電モジュールに対し、BaSi層の平均結晶粒径Aおよび膜厚Bを求めた。 Next, a surface electrode portion made of AZO was provided on the BaSi 2 layer. In the formation of the AZO surface electrode portion, an AZO film was formed by sputtering an AZO target. A photovoltaic power generation module having a pn junction structure was produced by the above method. For the obtained photovoltaic power generation module, the average crystal grain size A and the film thickness B of the BaSi 2 layer were determined.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例12~14、比較例4に係る太陽光発電モジュールに関し、発電効率を求めた。発電効率の測定方法は、実施例1と同様の方法である。その結果を表10に示す。 The power generation efficiency was determined for the solar power generation modules according to Examples 12 to 14 and Comparative Example 4. The method for measuring the power generation efficiency is the same as that in Example 1. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10から分かる通り、比較例4に係る太陽光発電モジュールの発電効率よりも実施例12~14に係る太陽光発電モジュールの発電効率の方が高かった。これは平均結晶粒径A≧膜厚Bとなっているため粒界トラップサイドが低減したためである。このようにpn接合型に関しても高い発電効率が得られることが判明した。 As can be seen from Table 10, the power generation efficiency of the solar power generation modules according to Examples 12 to 14 was higher than the power generation efficiency of the solar power generation module according to Comparative Example 4. This is because the grain boundary trap side is reduced because the average crystal grain size A ≧ film thickness B. Thus, it has been found that high power generation efficiency can be obtained even for the pn junction type.
(実施例1A、2A)
 実施例1~2に係る太陽光発電モジュールの基板の裏面に図5に示した蓄電機構部を接合して、実施例1の裏面に蓄電機構部を設けたものを実施例1Aとし、実施例2の裏面に蓄電機構部を設けたものを実施例2Aとした。出力特性を調べたところ、図7のような挙動を示した。このことから、実施例1A、実施例2Aに係る太陽光発電モジュールは、日照量の変化に強いことが分かる。また、実施例3~14に関しても蓄電機構部とのユニット化を行うことにより得られた太陽光発電モジュールの出力特性は図7のような挙動を示した。
(Examples 1A, 2A)
A solar power generation module according to Examples 1 and 2 having the power storage mechanism unit shown in FIG. 5 bonded to the back surface of the substrate and the power storage mechanism unit provided on the back surface of Example 1 is referred to as Example 1A. The back surface of 2 was provided with a power storage mechanism portion as Example 2A. When the output characteristics were examined, the behavior shown in FIG. 7 was shown. From this, it can be seen that the photovoltaic power generation modules according to Example 1A and Example 2A are resistant to changes in the amount of sunlight. In addition, with respect to Examples 3 to 14, the output characteristics of the solar power generation modules obtained by unitizing with the power storage mechanism part behaved as shown in FIG.
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 As mentioned above, although some embodiment of this invention was illustrated, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and equivalents thereof. Further, the above-described embodiments can be implemented in combination with each other.

Claims (12)

  1.  発電層として多結晶金属シリサイド層を具備する太陽光発電モジュールであって、
     前記多結晶金属シリサイド層の平均結晶粒径Aは、前記多結晶金属シリサイド層の膜厚B以上(A≧B)である、太陽光発電モジュール。
    A photovoltaic power generation module comprising a polycrystalline metal silicide layer as a power generation layer,
    The photovoltaic module according to claim 1, wherein an average crystal grain size A of the polycrystalline metal silicide layer is equal to or greater than a film thickness B of the polycrystalline metal silicide layer (A ≧ B).
  2.  前記多結晶金属シリサイド層の平均結晶粒径Aが0.01μm以上である、請求項1記載の太陽光発電モジュール。 The photovoltaic power generation module according to claim 1, wherein an average crystal grain size A of the polycrystalline metal silicide layer is 0.01 µm or more.
  3.  前記多結晶金属シリサイド層の膜厚Bが1μm以下である、請求項1に記載の太陽光発電モジュール。 The photovoltaic module according to claim 1, wherein the polycrystalline metal silicide layer has a thickness B of 1 µm or less.
  4.  前記多結晶金属シリサイド層は、β-鉄シリサイド、バリウムシリサイド、マグネシウムシリサイド、クロムシリサイド、およびレニウムシリサイドからなる群より選ばれる少なくとも1つである、請求項1に記載の太陽光発電モジュール。 The photovoltaic power generation module according to claim 1, wherein the polycrystalline metal silicide layer is at least one selected from the group consisting of β-iron silicide, barium silicide, magnesium silicide, chromium silicide, and rhenium silicide.
  5.  前記β-鉄シリサイドは、β-FeSiである、請求項4に記載の太陽光発電モジュール。 The photovoltaic module according to claim 4, wherein the β-iron silicide is β-FeSi 2 .
  6.  前記バリウムシリサイドは、BaSiである、請求項4に記載の太陽光発電モジュール。 The photovoltaic module according to claim 4, wherein the barium silicide is BaSi 2 .
  7.  前記多結晶金属シリサイド層のキャリア密度は、1×1018cm-3以下である、請求項1に記載の太陽光発電モジュール。 2. The photovoltaic power generation module according to claim 1, wherein the polycrystalline metal silicide layer has a carrier density of 1 × 10 18 cm −3 or less.
  8.  前記多結晶金属シリサイド層は、
     n型多結晶金属シリサイド層およびp型多結晶金属シリサイド層の少なくとも1つを具備する、請求項1に記載の太陽光発電モジュール。
    The polycrystalline metal silicide layer includes:
    The photovoltaic power generation module according to claim 1, comprising at least one of an n-type polycrystalline metal silicide layer and a p-type polycrystalline metal silicide layer.
  9.  前記太陽光発電モジュールは、ショットキー型構造を有する、請求項1に記載の太陽光発電モジュール。 The solar power generation module according to claim 1, wherein the solar power generation module has a Schottky structure.
  10.  前記多結晶金属シリサイド層に接する電極層を具備し、
     前記電極層は、多結晶金属シリサイドからなる、請求項1に記載の太陽光発電モジュール。
    Comprising an electrode layer in contact with the polycrystalline metal silicide layer;
    The photovoltaic module according to claim 1, wherein the electrode layer is made of polycrystalline metal silicide.
  11.  前記多結晶金属シリサイド層から供給される電力の一部または全部を蓄電する蓄電機構部を具備する、請求項1に記載の太陽光発電モジュール。 The solar power generation module according to claim 1, further comprising a power storage mechanism that stores part or all of the power supplied from the polycrystalline metal silicide layer.
  12.  前記蓄電機構部は、
     第1の電極部と、
     第2の電極部と、
     前記第1の電極部と前記第2の電極部との間を封止する封止部と、
     前記封止部の内側に設けられた蓄電部と、
     第1の電極部、前記第2の電極部、および封止部により囲まれる空間に充填された電解液と、
     前記蓄電部と前記第1の電極部との間に設けられた保護部と、
     前記封止部の内側において前記第2の電極部の表面を覆うように設けられた還元部と、
    を具備する、請求項11に記載の太陽光発電モジュール。
    The power storage mechanism is
    A first electrode part;
    A second electrode part;
    A sealing portion that seals between the first electrode portion and the second electrode portion;
    A power storage unit provided inside the sealing unit;
    An electrolyte filled in a space surrounded by the first electrode portion, the second electrode portion, and the sealing portion;
    A protection unit provided between the power storage unit and the first electrode unit;
    A reducing part provided to cover the surface of the second electrode part inside the sealing part;
    The photovoltaic power generation module according to claim 11, comprising:
PCT/JP2014/002190 2013-04-18 2014-04-17 Photovoltaic power generation module WO2014171146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480021625.4A CN105144400B (en) 2013-04-18 2014-04-17 Solar electrical energy generation module
JP2015512318A JP6359525B2 (en) 2013-04-18 2014-04-17 Solar power module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-087766 2013-04-18
JP2013087766 2013-04-18
JP2013124876 2013-06-13
JP2013-124876 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014171146A1 true WO2014171146A1 (en) 2014-10-23

Family

ID=51731108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002190 WO2014171146A1 (en) 2013-04-18 2014-04-17 Photovoltaic power generation module

Country Status (3)

Country Link
JP (1) JP6359525B2 (en)
CN (1) CN105144400B (en)
WO (1) WO2014171146A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054237A (en) * 2014-09-04 2016-04-14 国立大学法人名古屋大学 solar battery
JP2017045754A (en) * 2015-08-24 2017-03-02 株式会社東芝 Photovoltaic power generation module
WO2019187222A1 (en) * 2018-03-30 2019-10-03 国立大学法人茨城大学 Photodiode and light-sensitive device
WO2023008477A1 (en) * 2021-07-29 2023-02-02 京セラ株式会社 Photodiode and photosensitive device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103080A (en) * 1997-09-26 1999-04-13 Aisin Seiki Co Ltd Solar cell
JP2001267268A (en) * 2000-03-22 2001-09-28 Japan Science & Technology Corp Method for forming semiconductor silicide film
JP2003243426A (en) * 2002-02-13 2003-08-29 Mitsubishi Materials Corp Manufacturing method for iron silicide layer, semiconductor substrate, and optical semiconductor device
JP2007266106A (en) * 2006-03-27 2007-10-11 Japan Science & Technology Agency Thin-film containing iron silicide crystal and manufacturing method for the thin film
JP2009283923A (en) * 2008-04-25 2009-12-03 Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device
WO2010131639A1 (en) * 2009-05-12 2010-11-18 国立大学法人筑波大学 Semiconductor device, manufacturing method therefor, and solar cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782377A (en) * 1986-09-30 1988-11-01 Colorado State University Research Foundation Semiconducting metal silicide radiation detectors and source
JP2011198941A (en) * 2010-03-18 2011-10-06 Kanagawa Prefecture Optical semiconductor device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103080A (en) * 1997-09-26 1999-04-13 Aisin Seiki Co Ltd Solar cell
JP2001267268A (en) * 2000-03-22 2001-09-28 Japan Science & Technology Corp Method for forming semiconductor silicide film
JP2003243426A (en) * 2002-02-13 2003-08-29 Mitsubishi Materials Corp Manufacturing method for iron silicide layer, semiconductor substrate, and optical semiconductor device
JP2007266106A (en) * 2006-03-27 2007-10-11 Japan Science & Technology Agency Thin-film containing iron silicide crystal and manufacturing method for the thin film
JP2009283923A (en) * 2008-04-25 2009-12-03 Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device
WO2010131639A1 (en) * 2009-05-12 2010-11-18 国立大学法人筑波大学 Semiconductor device, manufacturing method therefor, and solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016054237A (en) * 2014-09-04 2016-04-14 国立大学法人名古屋大学 solar battery
JP2017045754A (en) * 2015-08-24 2017-03-02 株式会社東芝 Photovoltaic power generation module
WO2019187222A1 (en) * 2018-03-30 2019-10-03 国立大学法人茨城大学 Photodiode and light-sensitive device
JPWO2019187222A1 (en) * 2018-03-30 2020-04-30 国立大学法人茨城大学 Photodiodes and photosensitive devices
US11011664B2 (en) 2018-03-30 2021-05-18 Ibaraki University Photodiode and photosensitive device
WO2023008477A1 (en) * 2021-07-29 2023-02-02 京セラ株式会社 Photodiode and photosensitive device

Also Published As

Publication number Publication date
CN105144400A (en) 2015-12-09
JP6359525B2 (en) 2018-07-18
CN105144400B (en) 2017-11-07
JPWO2014171146A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US20240154049A1 (en) Photovoltaic devices and method of making
JP6108858B2 (en) P-type semiconductor material and semiconductor device
JP6790296B1 (en) Manufacturing method of laminated thin film, manufacturing method of solar cell, manufacturing method of solar cell module
US20160027937A1 (en) Semiconductor materials and method for making and using such materials
US8980682B2 (en) Methods for fabricating ZnOSe alloys
JP4885237B2 (en) Photovoltaic active semiconductor materials
CN102206801B (en) The forming method of the conductive transparent oxide film layer used by film photovoltaic device based on cadmium telluride
Itthibenchapong et al. Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers
Chouhan et al. BaBiO3: A potential absorber for all-oxide photovoltaics
JP6359525B2 (en) Solar power module
US20100043872A1 (en) Photovoltaic Device With an Up-Converting Quantum Dot Layer and Absorber
JP4954213B2 (en) Photovoltaic cell containing photovoltaic active semiconductor material
CN103194722B (en) Manufacture the method for solar cell
JP2016541124A (en) Layer system for thin film solar cells
WO2012035833A1 (en) Semiconductor film, and solar cell
Jang et al. Evolution of structural and optoelectronic properties in fluorine–aluminum co-doped zinc oxide (FAZO) thin films and their application in CZTSSe thin-film solar cells
JP6539541B2 (en) Solar power module
JP5980059B2 (en) Solar cell
TW201145538A (en) Solar cell
JP2017037876A (en) Photovoltaic module
CN113728445B (en) Process for manufacturing a multilayer thin film, method for manufacturing a solar cell, and method for manufacturing a solar cell module
JP2014212216A (en) Photovoltaic power module
Danielson et al. CdSexTe1-x/CdTe Devices With Reduced Interface Recombination Through Novel Back Contacts and Doping Strategies
Cheng et al. Characteristics of Quantum Dots and Single-Phase p-CuInSe2 Nanowire Arrays Electrodeposited as Schottky Diodes with a Silver Contact
Wan et al. Co‐Evaporated CuSbSe2 Thin Films for Solar Cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021625.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015512318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785964

Country of ref document: EP

Kind code of ref document: A1