WO2014170858A1 - Process for the purification of anesthesia gases using membrane contactors and its applications - Google Patents

Process for the purification of anesthesia gases using membrane contactors and its applications Download PDF

Info

Publication number
WO2014170858A1
WO2014170858A1 PCT/IB2014/060797 IB2014060797W WO2014170858A1 WO 2014170858 A1 WO2014170858 A1 WO 2014170858A1 IB 2014060797 W IB2014060797 W IB 2014060797W WO 2014170858 A1 WO2014170858 A1 WO 2014170858A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid phase
acid
process according
contactor
receiving liquid
Prior art date
Application number
PCT/IB2014/060797
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2014170858A4 (en
Inventor
Luísa Alexandra GRAÇA NEVES
Isabel Maria RÔLA COELHOSO
Carlos Alberto Mateus Afonso
JOãO PAULO SEREJO GOULÃO CRESPO
Original Assignee
Graça Neves Luísa Alexandra
Rôla Coelhoso Isabel Maria
Carlos Alberto Mateus Afonso
Serejo Goul O Crespo Jo O Paulo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graça Neves Luísa Alexandra, Rôla Coelhoso Isabel Maria, Carlos Alberto Mateus Afonso, Serejo Goul O Crespo Jo O Paulo filed Critical Graça Neves Luísa Alexandra
Priority to EP14728310.5A priority Critical patent/EP2987525A1/en
Publication of WO2014170858A1 publication Critical patent/WO2014170858A1/en
Publication of WO2014170858A4 publication Critical patent/WO2014170858A4/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/104Preparation of respiratory gases or vapours specially adapted for anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/22Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D2053/221Devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4533Gas separation or purification devices adapted for specific applications for medical purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present application relates to a process of removal of toxic compounds, namely carbon dioxide, present in gas streams in anesthesia circuits.
  • Anesthesia gas is generally composed of about 70% nitrous oxide (N 2 0), 22-29% of oxygen and 1-8% of halogenated hydrocarbons. After breathing, the carbon dioxide (CO 2 ) present in the gas mixture reaches a content of 5% and should be removed below 0.5%, making it possible to recirculate this gas to the patient under anesthesia.
  • CO 2 carbon dioxide
  • the calcium hydroxide has a high sensitivity to reactive anesthetic agents.
  • anesthetic agents are fluorinated hydrocarbons, such as sevoflurane, isoflurane, desflurane, which may react chemically with the calcium hydroxide, which may form potentially toxic by-products for the patient.
  • MX 2009006916A suggests the use of a CO 2 absorber with the composition 70-90% calcium hydroxide (free of potassium hydroxide and sodium hydroxide), 0.1-17% lithium hydroxide and 5-25%. % of water.
  • US 5,390,667 suggests the use of a CO 2 absorber consisting of magnesium oxide, magnesium hydroxide, or magnesium hydrocarbon with a small amount of water.
  • US 2004/0103898 suggests the construction of a tube for adapting to anesthesia circuits, which should contain a membrane and a CO 2 absorbent (without specifying what the composition of this absorbent or the membrane material is). however, once again, an absorption only system which does not ensure its in-situ regeneration.
  • anesthetic agents are fluorinated hydrocarbons, which may lead to the formation of potentially toxic compounds when combined with the absorbent.
  • Xenon on the other hand, is considered the ideal anesthetic gas. Its use causes virtually no side effects (particularly on the cardiovascular system) to occur, is odorless, and allows rapid induction. Moreover, it does not react chemically with any substance and does not present the problem of formation of potentially toxic compounds for the patient.
  • the high cost of surgery when using Xenon compared to other anesthetic agents has limited its use. It is therefore urgent to find efficient alternative processes for recovering and recycling anesthetic gases, and in particular Xenon, in an efficient and inexpensive manner.
  • Some Ionic Liquids have a high solubility to CO 2 , which makes them good candidates as gaseous CO 2 absorbers, as well as having a very low vapor pressure, which ensures no evaporation losses. to the atmosphere.
  • the present invention proposes an integrated process (in situ absorption and regeneration) for the purification of anesthetic gases and CO 2 removal by combining the ability of ionic liquids or eutectic mixtures with specificity to solubilize carbon dioxide with the use of an enzyme.
  • carbonic anhydrase which catalyzes the reaction of converting CO 2 to bicarbonate according to the following reaction:
  • This process is characterized by contacting a gaseous stream comprised of anesthetic gases and gases exhaled by the anesthetized subject into a membrane contactor, ensuring solubilization and diffusion of toxic gaseous compounds into a receptor liquid phase comprising the dispersed carbonic anhydrase enzyme. in an ionic liquid or a eutectic mixture with affinity for carbon dioxide, allowing its subsequent removal of this liquid phase in a second membrane contactor. So the Said method allows the recirculation of the purified anesthetic gas stream to the subject under intervention and the recirculation of the CO 2 free receiving liquid phase (exiting the second contactor) to the first contactor.
  • the present application describes a process of removal of carbon dioxide present in the gas stream in anesthesia circuits, comprising the following steps:
  • the receiving liquid phase comprises an ionic liquid or a eutectic mixture.
  • the receiving liquid phase further comprises an immobilized carbonic anhydrase enzyme, wherein the concentration ranges from 0.001% (w / w) to 0.1% (w / w).
  • the ionic liquid has a Q + structure X ⁇ , wherein the cationic moiety Q + is selected from the group comprising imidazolium, pyrazolium, pyridinium, pyrrolidinium, ephedrinium, morfolineo, piperazineo, triazolium, thiazolium, benzotriazólio , oxazolium, tetrazolium, sulfonium, ammonium, phosphonium or guanidinium salts or containing a pendant tertiary amine groups and wherein anionic moiety X- is selected from the group comprising halide, aluminum tetrachloride, iron tetrachloride, perchlorate, nitrate, cyanide, dicyanamide, thiocyanate, tricyanomethane, formate, acetate, trifluoroacetate, trichloroacetate, propionate, butanoate,
  • the eutectic mixture comprises a combination of choline with a compound selected from the group comprising urea, thiourea, methylurea, 1,3-dimethylurea, 1,1-dimethylurea, acetamide, benzamide, ethylene glycol, glycerol, 2, 2,2-trifluoroacetamide, imidazole, adipic acid, benzoic acid, citric acid, malonic acid, oxalic acid, phenylacetic acid, phenylpropionic acid, succinic acid, levulinic acid, xylitol, sorbitol, tartaric acid or isosurbide or by the combination of urea methylurea, 1,3-dimethylurea, or 1,1-dimethylurea, and choline, triethylchlorethylammonium chloride, dimethylbenzylhydroxyethylammonium chloride triphenyl methylphosphonium chlor
  • the operating temperature of the receiving liquid phase ranges from 10 ° C to 100 ° C, preferably at room temperature.
  • the two contactors are membrane contactors whose pore diameter is between 20nm and 500nm.
  • the membranes of the two contactors are polymeric or inorganic or simultaneously comprising polymeric and inorganic materials, being tubular, capillary fiber, hollow fiber, flat or spiral modules. It is also the objective of this application to use this process in the medical field, preferably in medical interventions in which the subject is anesthetized.
  • the present application proposes an integrated process (simultaneous absorption and regeneration) using membrane contactors in order to obtain a compact medical system that allows the patient to recycle anesthetic gases during the medical intervention process.
  • the CO 2 -containing gas stream contacts a solution consisting of ionic liquids or eutectic mixtures of suitable water activity and the carbonic anhydrase enzyme.
  • CO 2 is selectively transported from the anesthetic gas stream through the solution consisting of ionic liquids or eutectic mixtures containing the carbonic anhydrase enzyme.
  • the cationic moiety Q + is preferentially unit imidazolium type, pyrazolium, pyridinium, pyrrolidinium, ephedrinium, morfol ⁇ neo, piperaz ⁇ neo, triazolium, thiazolium, benzotriazólio, oxazolium, tetrazolium, sulfonium, ammonium, phosphonium or guanidinium salts, and anionic moiety X- is a halide, aluminum tetrachloride, iron tetrachloride, perchlorate, nitrate, cyanide, dicyanide, thiocyanate, tricyclomethane, formate, acetate, trifluoroacetate, trichloroacetate, propionate, butanoate, octanoate, methylsulfate, ethylsulfate, propylsulfate, butylsulf
  • This design also allows to overcome the evaporative absorbent loss problems that occur when using aqueous solutions.
  • the use of a membrane contactor characterized by a high mass transfer area in a small volume allows the development of a compact equipment suitable for hospital use and allows the patient to recirculate anesthetic gases.
  • the eutectic mixture comprises a combination of choline one or more compounds selected from the group comprising urea, thiourea, methylurea, 1,3-dimethylurea, 1,1-dimethylurea, acetamide, benzamide, ethylene glycol, glycerol, 2,2,2-trifluoroacetamide, imidazole, adipic acid, benzoic acid, citric acid, malonic acid, oxalic acid, phenylacetic acid, phenylpropionic acid, succinic acid, levulinic acid, xylitol, sorbitol, tartaric acid or isosurbide by the combination of urea, methylurea, 1,3-dimethylurea, or 1,1-di
  • This affinity can be further enhanced by synthesizing ionic liquids based on the imidazole, pyrazol, pyridinium, pyrrolidinium, ephedrinium, morpholine, piperazine, triazole, thiazole, benzotriazole, oxazole, tetrazolium, sulfonium, ammonium, phosphonium, or guanidinium cation.
  • tertiary amine group pending. The use of these cations allows for selective CO 2 absorption due to the presence of the organic cation and to ensure that the tertiary amine containing group acts as a counterion of the enzymatically produced bicarbonate anion.
  • This technology makes it possible to solve the problem of removing toxic compounds from anesthesia circuits, preferably CO 2 , in an efficient and sustainable manner, with the ionic liquid or eutectic mixture being regenerated by desorption of CO2 using reduced pressure or a drag ( Figure 1).
  • FIG. 1 Integrated process for capturing toxic gases present in anesthesia circuits with two membrane contactors in series.
  • the CO2 present in the anesthesia gas is preferably removed and in the second contactor the receiving liquid phase is regenerated in the circuit with a carrier gas or with reduced pressure.
  • Reference numbers are:
  • the present application describes a process for the efficient removal of toxic compounds, namely carbon dioxide, present in the gas stream in anesthesia circuits, combining the ability of ionic liquids or eutectic mixtures with specificity to solubilize carbon dioxide with the use of an enzyme, carbonic anhydrase, that catalyzes the reaction of converting CO2 to bicarbonate.
  • the carbonic anhydrase enzyme is dissolved in an ionic liquid or eutectic mixture which has high solubility to CO2.
  • this liquid or mixture contains a certain activity in water, with optimum values between 0.2 and 0.8.
  • a membrane contactor is used characterized by a high mass transfer area in a small volume.
  • two contactors (5 and 8) are provided, with membranes which may be polymeric or ceramic, with pore sizes ranging from 0.02 micrometers to 0.5 micrometers.
  • This process is characterized by contacting a gaseous stream, consisting of anesthetic gases and gases exhaled by the anesthetized rich in CO2, N2O or Xe (3), in a membrane contactor (5) ensuring the solubilization and diffusion of toxic gaseous compounds.
  • a receptor liquid phase (7) incorporating the carbonic anhydrase enzyme dispersed in an ionic liquid or a eutectic mixture with affinity for CO2.
  • the liquid phase in which the CO2 is dissolved (6) is fed to a second operated membrane contactor (8). at reduced pressure using a condenser (10) and a vacuum pump (11), or using a controlled flow carrier gas (13).
  • the CO 2 is captured (12) and separated from the receiving liquid phase stream, which contains the enzyme and the CO 2 free ionic or eutectic mixture (9), the latter being recirculated to the first contactor (5).
  • the treated gas stream in the first carbon dioxide free contactor (4) can be recirculated to the patient (2).
  • a controlled addition of anesthesia gas (1) is also possible to replace the composition of anesthesia gas to be administered to the patient.
  • This system completely prevents contamination of the treated gas (and carbon dioxide stream) as the ionic liquid or eutectic mixture has negligible vapor pressure. High temperatures are not required to regenerate the ionic liquid or eutectic mixture because the use of reduced pressure or the use of carrier gas in the permeate circuit allows the release of the captured carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present application describes a process for removing toxic compounds, namely carbon dioxide, present in gas streams in anesthesia circuits, using membrane contactors. The present process allows for the recirculation of anesthesia gases, C02 free, to the anesthetized subject, aswell as the recirculation of the receiving absorber liquid phase, from which the CO2 is removed. The present application also describes the use of this procedure in the field of medicine, namely its in-situ use during medical interventions, in which the subject is anesthetized.

Description

D E S C R I Ç Ã O  DESCRIPTION
"PROCESSO DE PURIFICAÇÃO DE GASES DE ANESTESIA USANDO CONTACTORES DE MEMBRANAS E SUAS APLICAÇÕES"  "ANESTHESIA GAS PURIFICATION PROCESS USING MEMBRANE CONTACTORS AND THEIR APPLICATIONS"
Domínio técnico Technical Domain
O presente pedido diz respeito a um processo de remoção de compostos tóxicos, nomeadamente dióxido de carbono, presentes em correntes de gás em circuitos de anestesia.  The present application relates to a process of removal of toxic compounds, namely carbon dioxide, present in gas streams in anesthesia circuits.
Antecedentes Background
Um gás de anestesia é geralmente composto por cerca de 70% de óxido nitroso (N20) , 22-29% de oxigénio e 1-8% de hidrocarbonetos halogenados. Após a respiração, o dióxido de carbono (CO2) presente na mistura gasosa atinge um teor de 5% devendo ser removido para valores inferiores 0.5%, tornando possível a recirculação desse gás ao paciente sob anestesia . An anesthesia gas is generally composed of about 70% nitrous oxide (N 2 0), 22-29% of oxygen and 1-8% of halogenated hydrocarbons. After breathing, the carbon dioxide (CO 2 ) present in the gas mixture reaches a content of 5% and should be removed below 0.5%, making it possible to recirculate this gas to the patient under anesthesia.
Atualmente a remoção de CO2 de correntes de gases de anestesia é feita através do uso de um absorvente constituído por hidróxido de cálcio (CaOH2) . Este absorvente promove a seguinte reação com o CO2 : Currently the removal of CO 2 from anesthetic gas streams is done through the use of an absorbent composed of calcium hydroxide (CaOH 2 ). This absorbent promotes the following reaction with CO 2 :
CaOH2(s) + C02(g) ► Ca(C03) (s) + H20(g,l) na qual o hidróxido de cálcio reage com o dióxido de carbono formando carbonato de cálcio e água. Apesar de ser o absorvente mais utilizado em circuitos de anestesia para a remoção de C02, o hidróxido de cálcio apresenta uma elevada sensibilidade reativa aos agentes anestésicos. CaOH 2 (s) + CO 2 (g) ► Ca (C 3 ) (s) + H 2 0 (g, 1) in which calcium hydroxide reacts with carbon dioxide to form calcium carbonate and water. Although the most used circuits in anesthesia absorbent for the removal of C0 2, the calcium hydroxide has a high sensitivity to reactive anesthetic agents.
Os agentes anestésicos mais utilizados são hidrocarbonetos fluorados, como por exemplo, sevoflurano, isoflurano, desflurano, os quais podem reagir quimicamente com o hidróxido de cálcio, podendo formar subprodutos potencialmente tóxicos para o paciente. The most commonly used anesthetic agents are fluorinated hydrocarbons, such as sevoflurane, isoflurane, desflurane, which may react chemically with the calcium hydroxide, which may form potentially toxic by-products for the patient.
Foram propostas na literatura algumas soluções para minimizar a ocorrência de reações secundárias entre o absorvente e o agente anestésico. A patente MX 2009006916A sugere a utilização de um absorvente de CO2 com a composição 70-90% de hidróxido de cálcio (livre de hidróxido de potássio e hidróxido de sódio), 0,1-17% de hidróxido de lítio e 5-25% de água. A patente US 5,390,667 sugere a utilização de um absorvente de CO2 constituído por óxido de magnésio, hidróxido de magnésio, ou hidrocarboneto de magnésio, com uma pequena quantidade de água . Some solutions have been proposed in the literature to minimize the occurrence of side reactions between the absorbent and the anesthetic agent. MX 2009006916A suggests the use of a CO 2 absorber with the composition 70-90% calcium hydroxide (free of potassium hydroxide and sodium hydroxide), 0.1-17% lithium hydroxide and 5-25%. % of water. US 5,390,667 suggests the use of a CO 2 absorber consisting of magnesium oxide, magnesium hydroxide, or magnesium hydrocarbon with a small amount of water.
Todas as soluções mencionadas anteriormente baseiam-se em sistemas de absorção, isto é não há regeneração simultânea do absorvente, o que implica a substituição do absorvente quando saturado e um elevado custo associado à eliminação de resíduos hospitalares contaminados.  All solutions mentioned above are based on absorption systems, ie there is no simultaneous regeneration of the absorbent, which implies the replacement of the absorbent when saturated and a high cost associated with the disposal of contaminated hospital waste.
Mais recentemente, a patente US 2004/0103898 sugere a construção de um tubo para adaptar a circuitos de anestesia, que deverá conter uma membrana e um absorvente de CO2 (sem especificar qual a composição deste absorvente nem o material da membrana) , sendo, no entanto, mais uma vez, um sistema apenas de absorção, o qual não assegura a sua regeneração in-situ . More recently, US 2004/0103898 suggests the construction of a tube for adapting to anesthesia circuits, which should contain a membrane and a CO 2 absorbent (without specifying what the composition of this absorbent or the membrane material is). however, once again, an absorption only system which does not ensure its in-situ regeneration.
Como referido anteriormente, os agentes anestésicos utilizados mais frequentemente são hidrocarbonetos fluorados, podendo originar a formação de compostos potencialmente tóxicos quando combinados com o absorvente. O Xenon, por outro lado, é considerado o gás anestésico ideal. A sua utilização faz com que não ocorram praticamente efeitos secundários (em particular no sistema cardiovascular), é inodoro, e permite uma rápida indução. Para além disso, não reage quimicamente com qualquer substância, não apresentando o problema de formação de compostos potencialmente tóxicos para o paciente. No entanto, o elevado custo da cirurgia quando se utiliza Xenon comparado com os restantes agentes anestésicos, tem limitado a sua utilização. Por isso, é premente encontrar processos alternativos eficientes para recuperar e reciclar gases de anestesia e, em particular Xenon, de uma forma eficiente e com baixo custo. As mentioned above, the most commonly used anesthetic agents are fluorinated hydrocarbons, which may lead to the formation of potentially toxic compounds when combined with the absorbent. Xenon, on the other hand, is considered the ideal anesthetic gas. Its use causes virtually no side effects (particularly on the cardiovascular system) to occur, is odorless, and allows rapid induction. Moreover, it does not react chemically with any substance and does not present the problem of formation of potentially toxic compounds for the patient. However, the high cost of surgery when using Xenon compared to other anesthetic agents has limited its use. It is therefore urgent to find efficient alternative processes for recovering and recycling anesthetic gases, and in particular Xenon, in an efficient and inexpensive manner.
Trabalhos recentes propõem o uso de membranas para absorção de C02, usando soluções de sais de amino ácidos com polietileno glicol e glicerol, mas estes processos necessitam de regeneração térmica, o que condiciona a sua utilização em ambiente hospitalar (Portugal, A. F., F. D. Magalhães, A. Mendes, Carbon dioxide removal from anaesthetic gas circuits using hollow fiber membrane contactors with amino acid salt solutions J. Memb Sei. 339 (2009) 275-286) . Recent studies propose the use of membranes for absorption of C0 2 using solutions of amino acids with polyethylene glycol and glycerol salts, but these processes require heat regeneration, which determines its use in hospital environment (Portugal, AF, DF Magellan , A. Mendes, Carbon dioxide removal from anesthetic gas circuits using hollow fiber membrane contactors with amino acid salt solutions J. Memb Sci. 339 (2009) 275-286).
Alguns Líquidos Iónicos (Lis) apresentam uma elevada solubilidade ao CO2, o que os torna bons candidatos como absorventes de CO2 de correntes gasosas, para além de terem uma pressão de vapor muito baixa, o que garante a não ocorrência de perdas por evaporação para a atmosfera. Some Ionic Liquids (Lys) have a high solubility to CO 2 , which makes them good candidates as gaseous CO 2 absorbers, as well as having a very low vapor pressure, which ensures no evaporation losses. to the atmosphere.
Igualmente há misturas eutécticas que asseguram uma afinidade elevada para o CO2 e volatilidade negligenciável. A presente invenção propõe um processo integrado (absorção e regeneração in-situ) para a purificação de gases de anestesia e remoção de CO2 combinando a capacidade de líquidos iónicos ou misturas eutéticas com especificidade para solubilizar dióxido de carbono com o uso de uma enzima, anidrase carbónica, que catalisa a reação de conversão do CO2 em bicarbonato, de acordo com a seguinte reação : There are also eutectic mixtures that ensure high affinity for CO 2 and negligible volatility. The present invention proposes an integrated process (in situ absorption and regeneration) for the purification of anesthetic gases and CO 2 removal by combining the ability of ionic liquids or eutectic mixtures with specificity to solubilize carbon dioxide with the use of an enzyme. carbonic anhydrase, which catalyzes the reaction of converting CO 2 to bicarbonate according to the following reaction:
C02 + H20 4 HC03 ~ + H+ C0 2 + H 2 0 4 HC0 3 ~ + H +
Assim, em adição ao transporte de CO2 pela fase líquida seletiva, o mecanismo adicional de conversão enzimática em bicarbonato aumenta a força motriz de transporte, melhorando consideravelmente a transferência total de CO2. A anidrase carbónica é reconhecida pela comunidade científica como tendo a capacidade para catalisar de forma reversível a reação de conversão de dióxido de carbono em bicarbonato . Thus, in addition to the selective liquid phase transport of CO 2 , the additional mechanism of enzymatic conversion to bicarbonate increases the transport driving force, considerably improving the total CO 2 transfer. Carbonic anhydrase is recognized by the scientific community as having the ability to reversibly catalyze the carbon dioxide to bicarbonate conversion reaction.
Sumário summary
É objetivo do presente pedido a descrição de um processo de purificação de gases de circuitos de anestesia utilizando contactores de membranas. Este processo é caracterizado por fazer contactar uma corrente gasosa, constituída por gases de anestesia e por gases exalados pelo sujeito anestesiado, num contactor de membranas, assegurando a solubilização e difusão dos compostos gasosos tóxicos para uma fase líquida recetora que integra a enzima anidrase carbónica dispersa num líquido iónico ou numa mistura eutética, com afinidade para o dióxido de carbono, permitindo a sua subsequente remoção desta fase líquida, num segundo contactor de membranas. Assim, o referido processo permite a recirculação da corrente de gás de anestesia purificada ao sujeito sob intervenção e a recirculação da fase liquida recetora, livre de CO2 (à saída do segundo contactor), ao primeiro contactor. It is the object of the present application to describe a gas purification process of anesthesia circuits using membrane contactors. This process is characterized by contacting a gaseous stream comprised of anesthetic gases and gases exhaled by the anesthetized subject into a membrane contactor, ensuring solubilization and diffusion of toxic gaseous compounds into a receptor liquid phase comprising the dispersed carbonic anhydrase enzyme. in an ionic liquid or a eutectic mixture with affinity for carbon dioxide, allowing its subsequent removal of this liquid phase in a second membrane contactor. So the Said method allows the recirculation of the purified anesthetic gas stream to the subject under intervention and the recirculation of the CO 2 free receiving liquid phase (exiting the second contactor) to the first contactor.
As principais vantagens são: The main advantages are:
a. Eliminação de problemas de toxicidade, causados pelos sistemas atuais de purificação de gases em circuitos de anestesia . The. Elimination of toxicity problems caused by current gas purification systems in anesthesia circuits.
b. Regeneração in-situ e à temperatura ambiente da fase líquida usada para solubilização dos gases tóxicos. B. In situ and room temperature regeneration of the liquid phase used for solubilization of toxic gases.
c. Equipamento compacto (contactores de membranas) adequado para utilização em ambiente hospitalar. ç. Compact equipment (membrane contactors) suitable for use in a hospital environment.
Neste contexto, o presente pedido descreve um processo de remoção de dióxido de carbono presente na corrente gasosa em circuitos de anestesia, compreendendo os seguintes passos : In this context, the present application describes a process of removal of carbon dioxide present in the gas stream in anesthesia circuits, comprising the following steps:
- admissão de uma corrente gasosa, compreendendo gases de anestesia e gases exalados pelo sujeito anestesiado, a pelo menos um primeiro contactor de membranas, no qual ocorre a solubilização e difusão do dióxido carbono para uma fase líquida recetora;  admission of a gaseous stream comprising anesthetic gases and gases exhaled by the anesthetized subject to at least one first membrane contactor in which the solubilization and diffusion of carbon dioxide to a receiving liquid phase occurs;
- admissão da fase líquida recetora proveniente do primeiro contactor, a pelo menos um segundo contactor de membranas no qual ocorre a dessorção do dióxido de carbono;  admitting the receiving liquid phase from the first contactor to at least one second membrane contactor in which carbon dioxide desorption occurs;
- recirculação da corrente gasosa proveniente do primeiro contactor à corrente gasosa de anestesia a ser administrada ao sujeito; - recirculação da fase liquida recetora proveniente do segundo contactor ao primeiro contactor. recirculation of the gas stream from the first contactor to the anesthetic gas stream to be administered to the subject; - recirculation of the receiving liquid phase from the second contactor to the first contactor.
Numa forma de realização preferencial, a fase liquida recetora compreende um liquido iónico ou uma mistura eutéctica . In a preferred embodiment, the receiving liquid phase comprises an ionic liquid or a eutectic mixture.
Numa outra forma de realização preferencial, a fase liquida recetora compreende ainda uma enzima anidrase carbónica imobilizada, cu a concentração varia entre 0.001% (p/p) a 0.1% (p/p) . In another preferred embodiment, the receiving liquid phase further comprises an immobilized carbonic anhydrase enzyme, wherein the concentration ranges from 0.001% (w / w) to 0.1% (w / w).
Ainda numa outra forma de realização preferencial, o liquido iónico apresenta uma estrutura Q+X~, em que a unidade catiónica Q+ é selecionada do grupo compreendendo imidazólio, pirazólio, piridinio, pirrolidinio, efedrinio, morfolineo, piperazineo, triazólio, tiazólio, benzotriazólio, oxazólio, tetrazólio, sulfónio, amónio, fosfónio ou guanidinio, ou contendo um grupo amina terciária pendente e em que unidade aniónica X~ é selecionada do grupo compreendendo halogeneto, tetracloreto de alumínio, tetracloreto de ferro, perclorato, nitrato, cianeto, dicianamida, tiocianato, tricianometanide, formato, acetato, trifluoroacetato, tricloroacetato, propionato, butanoato, octanoato, metilsulfato, etilsulfato, propilsulfato, butilsulfato, octilsulfato, tosilato, benzenosulfonato, mesilato, triflato, sulfato, hidrogenossulfato, carbonato, bis (trifluorometil-sulfonil ) imida, carborane, sacarinato, acesulfanato, hexafluorofosfato, fosfato, dihidrogenofosfato, hidrogenofosfato, tetrafluoroborato, tetrafenilborato . Numa forma de realização preferencial, a mistura eutética compreende uma combinação de colina com um composto selecionado do grupo que compreende ureia, tioureia, metilureia, 1 , 3-dimetilureia, 1 , 1-dimetilureia, acetamida, benzamida, etilenoglicol , glicerol, 2,2,2- trifluoroacetamida, imidazole, ácido adipico, ácido benzóico, ácido cítrico, ácido malónico, ácido oxálico, ácido fenilacético, ácido fenilpropiónico, ácido sucínico, ácido levulínico, xilitol, sorbitol, ácido tartárico ou isosurbida ou pela combinação de ureia metilureia, 1,3- dimetilureia, ou 1 , 1-dimetilureia, e colina, cloreto de trietil-cloroetilamónio, cloreto de dimetil-benzil- hidroxietilamónio cloreto de trifenil-metilfosfónio e dicloreto de zinco. In yet another preferred embodiment, the ionic liquid has a Q + structure X ~, wherein the cationic moiety Q + is selected from the group comprising imidazolium, pyrazolium, pyridinium, pyrrolidinium, ephedrinium, morfolineo, piperazineo, triazolium, thiazolium, benzotriazólio , oxazolium, tetrazolium, sulfonium, ammonium, phosphonium or guanidinium salts or containing a pendant tertiary amine groups and wherein anionic moiety X- is selected from the group comprising halide, aluminum tetrachloride, iron tetrachloride, perchlorate, nitrate, cyanide, dicyanamide, thiocyanate, tricyanomethane, formate, acetate, trifluoroacetate, trichloroacetate, propionate, butanoate, octanoate, methylsulfate, ethylsulfate, propylsulfate, butylsulfate, octylsulfate, tosylate, benzenesulfonate, mesylate, triflate, sulfate, hydrogen sulfide, bisulfonate, carbonate, carborane, saccharinate, acesulfanate, hexafluorophosphate, phosphate, dihydrogen phosphate, hydrogenophos fact, tetrafluoroborate, tetrafenylborate. In a preferred embodiment, the eutectic mixture comprises a combination of choline with a compound selected from the group comprising urea, thiourea, methylurea, 1,3-dimethylurea, 1,1-dimethylurea, acetamide, benzamide, ethylene glycol, glycerol, 2, 2,2-trifluoroacetamide, imidazole, adipic acid, benzoic acid, citric acid, malonic acid, oxalic acid, phenylacetic acid, phenylpropionic acid, succinic acid, levulinic acid, xylitol, sorbitol, tartaric acid or isosurbide or by the combination of urea methylurea, 1,3-dimethylurea, or 1,1-dimethylurea, and choline, triethylchlorethylammonium chloride, dimethylbenzylhydroxyethylammonium chloride triphenyl methylphosphonium chloride and zinc dichloride.
Numa outra forma de realização preferencial, a temperatura de operação da fase líquida recetora varia entre 10°C e 100°C, encontrando-se preferencialmente à temperatura ambiente . In another preferred embodiment, the operating temperature of the receiving liquid phase ranges from 10 ° C to 100 ° C, preferably at room temperature.
Ainda numa outra forma de realização preferencial, os dois contactores são contactores de membrana cujo diâmetro de poro se encontra entre os 20nm e 500nm. In yet another preferred embodiment, the two contactors are membrane contactors whose pore diameter is between 20nm and 500nm.
Numa forma de realização preferencial, as membranas dos dois contactores são poliméricas ou inorgânicas ou compreendendo simultaneamente materiais poliméricos e materiais inorgânicos, sendo módulos do tipo tubular, de fibras capilares, de fibras ocas, módulos planos ou módulos espirais. É ainda objetivo deste pedido a utilização deste processo na área da medicina, preferencialmente nas intervenções médicas nas quais o sujeito se encontra anestesiado. In a preferred embodiment, the membranes of the two contactors are polymeric or inorganic or simultaneously comprising polymeric and inorganic materials, being tubular, capillary fiber, hollow fiber, flat or spiral modules. It is also the objective of this application to use this process in the medical field, preferably in medical interventions in which the subject is anesthetized.
Descrição geral General description
0 presente pedido propõe um processo integrado (absorção e regeneração simultâneas) usando contactores de membranas, de forma a obter um sistema médico compacto que permite reciclar gases de anestesia ao paciente, durante o processo de intervenção médica.  The present application proposes an integrated process (simultaneous absorption and regeneration) using membrane contactors in order to obtain a compact medical system that allows the patient to recycle anesthetic gases during the medical intervention process.
Nesta configuração, a corrente de gás que contém C02 contacta com uma solução constituída por líquidos iónicos ou misturas eutéticas com uma actividade em água adequada e a enzima anidrase carbónica. O CO2 é transportado seletivamente da corrente gasosa de anestesia através da solução constituída por líquidos iónicos ou misturas eutéticas contendo a enzima anidrase carbónica. In this configuration, the CO 2 -containing gas stream contacts a solution consisting of ionic liquids or eutectic mixtures of suitable water activity and the carbonic anhydrase enzyme. CO 2 is selectively transported from the anesthetic gas stream through the solution consisting of ionic liquids or eutectic mixtures containing the carbonic anhydrase enzyme.
Esta solução é regenerada à temperatura ambiente o que se traduz numa não acumulação de CO2 na solução absorvente, evitando a sua saturação (como acontece nas soluções propostas anteriormente) . Não são necessárias temperaturas elevadas para regenerar o líquido iónico ou a mistura eutética, porque a pressão reduzida ou o gás de arraste usado no circuito de permeado permite a libertação do dióxido de carbono capturado. Por outro lado, a corrente de gás tratada, com um teor de dióxido de carbono adequado, pode ser recirculada ao paciente. Este sistema evita completamente a contaminação do gás tratado pois o líquido iónico ou a mistura eutética têm uma pressão de vapor negligenciável. Recentemente foi demonstrado na literatura a capacidade do liquido iónico ( [C4MIM] [ f2N] ) de solubilizar a enzima anidrase carbónica, tendo sido observado o aumento do coeficiente de solubilidade do CO2 em 30% para uma pequena concentração da enzima (0.1 mg/g liquido iónico) ( Neves, Luisa, C. Afonso, I. M. Coelhoso, J. Crespo, Integrated CO capture and enzymatic bioconversion in supported ionic liquid membranes r Sep. Purif. Tech. (2012), 97, 34-41) . This solution is regenerated at room temperature which results in no accumulation of CO 2 in the absorbent solution, avoiding its saturation (as in the previously proposed solutions). Elevated temperatures are not required to regenerate the ionic liquid or eutectic mixture because the reduced pressure or carrier gas used in the permeate circuit permits the release of the captured carbon dioxide. On the other hand, the treated gas stream having a suitable carbon dioxide content may be recirculated to the patient. This system completely prevents contamination of the treated gas as the ionic liquid or the eutectic mixture has negligible vapor pressure. Recently the capacity of ionic liquid ([C 4 ME] [f 2 N]) has been demonstrated in the literature. solubilization of the carbonic anhydrase enzyme, with an increase in the CO 2 solubility coefficient by 30% for a small enzyme concentration (0.1 mg / g ionic liquid) (Neves, Luisa, C. Afonso, IM Coelhoso, J. Crespo, CO Integrated Σ Capture and enzymatic bioconversion in supported ionic liquid membranes r Sep. Purif. Tech. (2012), 97, 34-41).
Neste processo, propõe-se a dispersão da enzima, anidrase carbónica em líquidos iónicos ou misturas eutéticas com elevada afinidade para remover seletivamente CO2. Através do ajuste da atividade adequada em água é possível dispersar a enzima anidrase carbónica (AC) num líquido iónico ou mistura eutética. Os líquidos iónicos, compostos consistindo inteiramente de espécies iónicas, possuem uma estrutura geral Q+X~, quirais ou aquirais, sendo Q+ um catião orgânico e X~ um anião inorgânico ou orgânico. A unidade catiónica Q+ é uma unidade preferencialmente do tipo imidazólio, pirazólio, piridínio, pirrolidínio, efedrínio, morfolíneo, piperazíneo, triazólio, tiazólio, benzotriazólio, oxazólio, tetrazólio, sulfónio, amónio, fosfónio ou guanidínio, e a unidade aniónica X~ é um halogeneto, tetracloreto de alumínio, tetracloreto de ferro, perclorato, nitrato, cianeto, dicianamida, tiocianato, tricianometanide, formato, acetato, trifluoroacetato, tricloroacetato, propionato, butanoato, octanoato, metilsulfato, etilsulfato, propilsulfato, butilsulfato, octilsulfato, tosilato, benzenosulfonato, mesilato, triflato, sulfato, hidrogenossulfato, carbonato, bis (trifluorometil-sulfonil ) imida, carborane, sacarinato, acesulfanato, hexafluorofosfato, fosfato, dihidrogenofosfato, hidrogenofosfato, tetrafluoroborato, tetrafenilborato . Por apresentarem uma pressão de vapor muito baixa podem ser usados quer em membranas liquidas suportadas quer em contactores de membranas, obtendo-se membranas ou soluções extremamente estáveis quando em contacto com correntes gasosas. 0 uso de líquidos iónicos ou misturas eutéticas com pressão de vapor muito baixa, com a particularidade de concentrarem e solubilizarem CO2 , promovem o ambiente perfeito para a enzima, assegurando uma elevada concentração local de CO2 e o nível de água necessário que garante uma adequada atividade e estabilidade da enzima. Deste modo, além da maior solubilidade do CO2 num LI ou mistura eutéctica seletivo, o mecanismo adicional da conversão enzimática de CO2 em bicarbonato aumenta a força motriz de transporte, e melhora significativamente a transferência de massa global de CO2. Esta concepção permite ainda ultrapassar os problemas de perda de absorvente por evaporação que ocorrem quando se usam soluções aquosas. A utilização de um contactor de membranas caracterizado por uma elevada área de transferência de massa num reduzido volume permite o desenvolvimento de um equipamento compacto, adequado para uso hospitalar e permite a recirculação ao paciente dos gases de anestesia. In this process, it is proposed to disperse the enzyme, carbonic anhydrase in ionic liquids or high affinity eutectic mixtures to selectively remove CO 2 . By adjusting the appropriate activity in water it is possible to disperse the carbonic anhydrase (AC) enzyme in an ionic liquid or eutectic mixture. The ionic liquid composed entirely consisting of ionic species have a general structure Q + X-, chiral or achiral, with an organic cation Q + X- , and an inorganic or organic anion. The cationic moiety Q + is preferentially unit imidazolium type, pyrazolium, pyridinium, pyrrolidinium, ephedrinium, morfolíneo, piperazíneo, triazolium, thiazolium, benzotriazólio, oxazolium, tetrazolium, sulfonium, ammonium, phosphonium or guanidinium salts, and anionic moiety X- is a halide, aluminum tetrachloride, iron tetrachloride, perchlorate, nitrate, cyanide, dicyanide, thiocyanate, tricyclomethane, formate, acetate, trifluoroacetate, trichloroacetate, propionate, butanoate, octanoate, methylsulfate, ethylsulfate, propylsulfate, butylsulfate, benzylsulfate, , mesylate, triflate, sulfate, hydrogen sulfate, carbonate, bis (trifluoromethyl sulfonyl) imide, carborane, saccharate, acesulfanate, hexafluorophosphate, phosphate, dihydrogen phosphate, hydrogen phosphate, tetrafluoroborate, tetrafenylborate. Because of their very low vapor pressure, they can be used in both supported liquid membranes and membrane contactors, providing extremely stable membranes or solutions when in contact with gaseous streams. The use of ionic liquids or eutectic mixtures with very low vapor pressure, with the particularity of concentrating and solubilizing CO2, promotes the perfect environment for the enzyme, ensuring a high local concentration of CO2 and the required water level that ensures adequate activity. and enzyme stability. Thus, in addition to the greater solubility of CO2 in an IL or selective eutectic mixture, the additional mechanism of enzymatic conversion of CO2 to bicarbonate increases the transport driving force, and significantly improves overall CO2 mass transfer. This design also allows to overcome the evaporative absorbent loss problems that occur when using aqueous solutions. The use of a membrane contactor characterized by a high mass transfer area in a small volume allows the development of a compact equipment suitable for hospital use and allows the patient to recirculate anesthetic gases.
Neste processo são utilizados preferencialmente líquidos iónicos ou misturas eutéticas com elevada afinidade para o CO2 · Em experiências recentes foi desenvolvida uma gama de líquidos iónicos baseados no catião imidazólio com grande afinidade para CO2. A mistura eutética compreende uma combinação de colina um ou mais compostos selecionados do grupo que compreende ureia, tioureia, metilureia, 1,3- dimetilureia, 1 , 1-dimetilureia, acetamida, benzamida, etilenoglicol , glicerol, 2 , 2 , 2-trifluoroacetamida, imidazole, ácido adipico, ácido benzóico, ácido cítrico, ácido malónico, ácido oxálico, ácido fenilacético, ácido fenilpropiónico, ácido sucinico, ácido levulinico, xilitol, sorbitol, ácido tartárico ou isosurbida ou pela combinação de ureia, metilureia, 1 , 3-dimetilureia, ou 1,1- dimetilureia, e colina, cloreto de trietil- cloroetilamónio, cloreto de dimetil-benzil- hidroxietilamónio cloreto de trifenil-metilfosfónio e dicloreto de zinco. Esta afinidade pode ainda ser melhorada através da síntese de líquidos iónicos baseados no catião imidazólio, pirazólio, piridínio, pirrolidínio, efedrínio, morfolíneo, piperazíneo, triazólio, tiazólio, benzotriazólio, oxazólio, tetrazólio, sulfónio, amónio, fosfónio, ou guanidínio, contendo um grupo amina terciária pendente. A utilização destes catiões permite a absorção seletiva de CO2 devido à presença do catião orgânico e assegurar que o grupo contendo a amina terciária actue como contra-ião do anião bicarbonato produzido enzimaticamente . Highly affinity CO2 ionic liquids or eutectic mixtures are preferably used in this process. In recent experiments a range of high affinity CO2-affixed imidazole cation based ionic liquids has been developed. The eutectic mixture comprises a combination of choline one or more compounds selected from the group comprising urea, thiourea, methylurea, 1,3-dimethylurea, 1,1-dimethylurea, acetamide, benzamide, ethylene glycol, glycerol, 2,2,2-trifluoroacetamide, imidazole, adipic acid, benzoic acid, citric acid, malonic acid, oxalic acid, phenylacetic acid, phenylpropionic acid, succinic acid, levulinic acid, xylitol, sorbitol, tartaric acid or isosurbide by the combination of urea, methylurea, 1,3-dimethylurea, or 1,1-dimethylurea, and choline, triethylchlorethylammonium chloride, dimethyl benzylhydroxyethyl ammonium triphenyl methylphosphonium chloride and zinc dichloride. This affinity can be further enhanced by synthesizing ionic liquids based on the imidazole, pyrazol, pyridinium, pyrrolidinium, ephedrinium, morpholine, piperazine, triazole, thiazole, benzotriazole, oxazole, tetrazolium, sulfonium, ammonium, phosphonium, or guanidinium cation. tertiary amine group pending. The use of these cations allows for selective CO 2 absorption due to the presence of the organic cation and to ensure that the tertiary amine containing group acts as a counterion of the enzymatically produced bicarbonate anion.
Esta tecnologia permite resolver o problema de remoção de compostos tóxicos presentes em circuitos de anestesia, preferencialmente o CO2, de uma forma eficiente e sustentável, sendo o líquido iónico ou a mistura eutética, regenerados por dessorção do C02 usando pressão reduzida ou um gás de arraste (Figura 1) . This technology makes it possible to solve the problem of removing toxic compounds from anesthesia circuits, preferably CO 2 , in an efficient and sustainable manner, with the ionic liquid or eutectic mixture being regenerated by desorption of CO2 using reduced pressure or a drag (Figure 1).
Breve descrição das figuras Brief Description of the Figures
Para uma mais fácil compreensão da invenção juntam-se em anexo a figura, a qual, representa realizações preferenciais do invento que, contudo, não pretendem limitar o objeto do presente pedido. For an easier understanding of the invention, attached the figure, which represents embodiments of the invention which, however, are not intended to limit the object of the present application.
Figura 1. Processo integrado de captura de gases tóxicos presentes em circuitos de anestesia com dois contactores de membranas em série. No primeiro contactor o CO2 presente no gás de anestesia é preferencialmente removido e no segundo contactor a fase liquisa receptora é regenerada no circuito, com um gás de arraste ou com pressão reduzida. Os números de referência são: Figure 1. Integrated process for capturing toxic gases present in anesthesia circuits with two membrane contactors in series. In the first contactor the CO2 present in the anesthesia gas is preferably removed and in the second contactor the receiving liquid phase is regenerated in the circuit with a carrier gas or with reduced pressure. Reference numbers are:
1 - corrente de admissão de gás de anestesia;  1 - anesthesia gas intake current;
2 - sujeito ou paciente;  2 - subject or patient;
3 - gases de anestesia e gases exalados pelo sujeito  3 - anesthetic gases and gases exhaled by the subject
anestesiado, ricos em C02, N20 ou Xe; anesthetized, rich in C0 2, N 2 0 or Xe;
4 - corrente gasosa de gases livre de CO2 ;  4 - CO2 free gas stream;
5 - primeiro contactor;  5 - first contactor;
6 - corrente da fase liquida recetora com CO2 dissolvido; 6 - dissolved liquid phase current with dissolved CO2;
7 - fase liquida recetora; 7 - receiving liquid phase;
8 - segundo contactor;  8 - second contactor;
9 - corrente da fase liquida recetora livre de CO2 ;  9 - CO2 free receiver liquid phase current;
10 - condensador;  10 - condenser;
11 - bomba de vácuo;  11 - vacuum pump;
12 - recuperação do CO2 ;  12 - CO2 recovery;
13 - corrente com gás de arraste.  13 - chain with carrier gas.
Descrição de formas de realização Description of embodiments
Fazendo referência às figuras, algumas formas de realização vão ser agora descritas de forma mais pormenorizada, as quais não pretendem contudo limitar o âmbito do presente pedido. O presente pedido descreve um processo para a remoção eficiente de compostos tóxicos, nomeadamente dióxido de carbono, presentes na corrente de gás em circuitos de anestesia, combinando a capacidade de líquidos iónicos ou de misturas eutéticas com especificidade para solubilizar dióxido de carbono com o uso de uma enzima, anidrase carbónica, que catalisa a reação de conversão do CO2 em bicarbonato . Referring to the figures, some embodiments will now be described in more detail, which are not, however, intended to limit the scope of the present application. The present application describes a process for the efficient removal of toxic compounds, namely carbon dioxide, present in the gas stream in anesthesia circuits, combining the ability of ionic liquids or eutectic mixtures with specificity to solubilize carbon dioxide with the use of an enzyme, carbonic anhydrase, that catalyzes the reaction of converting CO2 to bicarbonate.
Neste processo, a enzima anidrase carbónica é dissolvida num líquido iónico ou mistura eutética, que apresente elevada solubilidade ao CO2. De modo a assegurar a estabilidade e a atividade da enzima, é necessário que este líquido ou mistura contenha uma determinada atividade em água, com valores óptimos situados entre 0.2 e 0.8. In this process, the carbonic anhydrase enzyme is dissolved in an ionic liquid or eutectic mixture which has high solubility to CO2. In order to ensure the stability and activity of the enzyme, it is necessary that this liquid or mixture contains a certain activity in water, with optimum values between 0.2 and 0.8.
Neste processo, é utilizado um contactor de membranas caracterizado por uma elevada área de transferência de massa num reduzido volume. No processo integrado prevê-se a utilização de dois contactores (5 e 8), com membranas que podem ser poliméricas ou cerâmicas, com tamanho de poros que podem variar entre 0.02 micrómetros e 0.5 micrómetros. Este processo é caracterizado por fazer contactar uma corrente gasosa, constituída por gases de anestesia e por gases exalados pelo anestesiado rica em CO2 , N2O ou Xe (3), num contactor de membranas (5) assegurando a solubilização e difusão dos compostos gasosos tóxicos para uma fase líquida recetora (7) que integra a enzima anidrase carbónica dispersa num líquido iónico ou numa mistura eutética, com afinidade para o CO2 . A fase líquida na qual o CO2 se encontra dissolvido (6) é alimentada a um segundo contactor de membranas (8) operado a pressão reduzida utilizando um condensador (10) e uma bomba de vácuo (11), ou usando um gás de arraste com caudal controlado (13) . Neste segundo contactor (8), o CO2 é capturado (12) e separada da corrente de fase liquida recetora, que contém a enzima e o liquido iónico ou mistura eutéctica, livre de CO2 (9), sendo esta última recirculada para o primeiro contactor (5) . A corrente de gás tratada no primeiro contactor, livre de dióxido de carbono (4), pode ser recirculada para o paciente (2) . É ainda possível uma adição controlada de gás de anestesia (1) de forma a repor a composição do gás de anestesia a administrar ao paciente. Este sistema evita completamente a contaminação do gás tratado (e da corrente de dióxido de carbono) pois o líquido iónico ou mistura eutética têm uma pressão de vapor negligenciável. Não são necessárias temperaturas elevadas para regenerar o líquido iónico ou a mistura eutética, porque a utilização de pressão reduzida ou a utilização de gás de arraste no circuito de permeado permitem a libertação do dióxido de carbono capturado. In this process, a membrane contactor is used characterized by a high mass transfer area in a small volume. In the integrated process two contactors (5 and 8) are provided, with membranes which may be polymeric or ceramic, with pore sizes ranging from 0.02 micrometers to 0.5 micrometers. This process is characterized by contacting a gaseous stream, consisting of anesthetic gases and gases exhaled by the anesthetized rich in CO2, N2O or Xe (3), in a membrane contactor (5) ensuring the solubilization and diffusion of toxic gaseous compounds. a receptor liquid phase (7) incorporating the carbonic anhydrase enzyme dispersed in an ionic liquid or a eutectic mixture with affinity for CO2. The liquid phase in which the CO2 is dissolved (6) is fed to a second operated membrane contactor (8). at reduced pressure using a condenser (10) and a vacuum pump (11), or using a controlled flow carrier gas (13). In this second contactor (8), the CO 2 is captured (12) and separated from the receiving liquid phase stream, which contains the enzyme and the CO 2 free ionic or eutectic mixture (9), the latter being recirculated to the first contactor (5). The treated gas stream in the first carbon dioxide free contactor (4) can be recirculated to the patient (2). A controlled addition of anesthesia gas (1) is also possible to replace the composition of anesthesia gas to be administered to the patient. This system completely prevents contamination of the treated gas (and carbon dioxide stream) as the ionic liquid or eutectic mixture has negligible vapor pressure. High temperatures are not required to regenerate the ionic liquid or eutectic mixture because the use of reduced pressure or the use of carrier gas in the permeate circuit allows the release of the captured carbon dioxide.
Exemplo 1 Example 1
No líquido iónico l-butil-3-methilimidazolio bis (trifluoromethanosulfonil) imida, [C4MIM] [ f2N] com actividade em água igual a 0.753, foi dissolvida a enzima liofilizada anidrase carbónica, na concentração de 0.01% (p/p) . A fase líquida constituída por líquido iónico e enzima foi imobilizada numa membrana hidrofóbica de PVDF, com tamanho de poro igual a 0.22 micrómetros. Foram efectuados ensaios de permeabilidade aos gases puros, dióxido de carbono e xenon, à temperatura de 30°C, para a membrana hidrofóbica imobilizada com líquido iónico, e para a membrana hidrofóbica imobilizada com líquido iónico e enzima. Os resultados experimentais demonstraram um aumento médio de 90% na seletividade ideal C02/Xe quando a enzima está presente na fase liquida imobilizada nos poros da membrana. In the 1-butyl-3-methylimidazolium bis (trifluoromethanosulfonyl) imide ionic liquid, [C 4 ME] [f 2 N] with water activity of 0.753, the lyophilized enzyme carbonic anhydrase was dissolved at a concentration of 0.01% (w / w). P) . The liquid phase consisting of ionic liquid and enzyme was immobilized on a hydrophobic PVDF membrane with a pore size of 0.22 micrometers. Pure gas, carbon dioxide and xenon permeability tests were performed at 30 ° C for the hydrophobic membrane immobilized with ionic liquid and the hydrophobic membrane immobilized with ionic liquid. and enzyme. Experimental results demonstrated an average 90% increase in optimal C0 2 / Xe selectivity when the enzyme is present in the immobilized liquid phase in the membrane pores.

Claims

R E I V I N D I C A Ç Õ E S
1. Um processo de remoção de dióxido de carbono presente na corrente gasosa em circuitos de anestesia, compreendendo os seguintes passos: 1. A process of removing carbon dioxide from the gaseous stream in anesthesia circuits, comprising the following steps:
- admissão de uma corrente gasosa, compreendendo gases de anestesia e gases exalados pelo sujeito anestesiado, a pelo menos um primeiro contactor de membranas, no qual ocorre a solubilização e difusão do dióxido carbono para uma fase liquida recetora;  admission of a gaseous stream comprising anesthetic gases and gases exhaled by the anesthetized subject to at least one first membrane contactor in which carbon dioxide solubilization and diffusion to a receiving liquid phase occurs;
- admissão da fase liquida recetora proveniente do primeiro contactor, a pelo menos um segundo contactor de membranas no qual ocorre a dessorção do dióxido de carbono;  admitting the receiving liquid phase from the first contactor to at least one second membrane contactor in which carbon dioxide desorption occurs;
- recirculação da corrente gasosa proveniente do primeiro contactor à corrente gasosa de anestesia a ser administrada ao sujeito;  recirculation of the gas stream from the first contactor to the anesthetic gas stream to be administered to the subject;
- recirculação da fase liquida recetora proveniente do segundo contactor ao primeiro contactor.  - recirculation of the receiving liquid phase from the second contactor to the first contactor.
2. O processo de acordo com a reivindicação anterior, em que fase liquida recetora compreende um liquido iónico ou uma mistura eutéctica. The process according to the preceding claim, wherein the receiving liquid phase comprises an ionic liquid or a eutectic mixture.
3. O processo de acordo com a reivindicação anterior, em que fase liquida recetora compreende ainda uma enzima anidrase carbónica imobilizada. The process according to the preceding claim, wherein the receptor liquid phase further comprises an immobilized carbonic anhydrase enzyme.
4. O processo de acordo com a reivindicação anterior, em que a concentração da enzima anidrase carbónica imobilizada na fase liquida recetora varia entre 0.001% (p/p) a 0.1% (p/p) . The process according to the preceding claim, wherein the concentration of the carbonic anhydrase enzyme immobilized in the receiving liquid phase ranges from 0.001% (w / w) to 0.1% (w / w).
5. O processo de acordo com qualquer uma das reivindicações 2-4, em que o liquido iónico apresenta uma estrutura Q+X~, em que a unidade catiónica Q+ é selecionada do grupo compreendendo imidazólio, pirazólio, piridinio, pirrolidinio, efedrinio, morfolineo, piperazineo, triazólio, tiazólio, benzotriazólio, oxazólio, tetrazólio, sulfónio, amónio, fosfónio ou guanidinio, ou contendo um grupo amina terciária pendente e em que unidade aniónica X~ é selecionada do grupo compreendendo halogeneto, tetracloreto de alumínio, tetracloreto de ferro, perclorato, nitrato, cianeto, dicianamida, tiocianato, tricianometanide, formato, acetato, trifluoroacetato, tricloroacetato, propionato, butanoato, octanoato, metilsulfato, etilsulfato, propilsulfato, butilsulfato, octilsulfato, tosilato, benzenosulfonato, mesilato, triflato, sulfato, hidrogenossulfato, carbonato, bis (trifluorometil-sulfonil ) imida, carborane, sacarinato, acesulfanato, hexafluorofosfato, fosfato, dihidrogenofosfato, hidrogenofosfato, tetrafluoroborato, tetrafenilborato . 5. The process according to any one of claims 2-4, wherein the ionic liquid has a structure X-Q +, wherein Q + is cationic moiety selected from the group comprising imidazolium, pyrazolium, pyridinium, pyrrolidinium, ephedrinium, morfolineo, piperazineo, triazolium, thiazolium, benzotriazólio, oxazolium, tetrazolium, sulfonium, ammonium, phosphonium or guanidinium salts or containing a pendant tertiary amine groups and wherein anionic moiety X- is selected from the group comprising halide, aluminum tetrachloride, iron tetrachloride , perchlorate, nitrate, cyanide, dicyanamide, thiocyanate, tricianomethanide, formate, acetate, trifluoroacetate, trichloroacetate, propionate, butanoate, octanoate, methylsulfate, ethylsulfate, propylsulfate, butylsulfate, octylsulfate, tosylate, benzenesulfonate, sulfate, sulfate bis (trifluoromethyl sulfonyl) imide, carborane, saccharate, acesulfanate, hexafluorophosphate, phosphate, dihydrogen phosphate, hydrogen phosphate, tetrafluoroborate, tetrafenylborate.
6. O processo de acordo com qualquer uma das reivindicações 2-4, em que a mistura eutética compreende uma combinação de colina com um composto selecionado do grupo que compreende ureia, tioureia, metilureia, 1 , 3-dimetilureia, 1 , 1-dimetilureia, acetamida, benzamida, etilenoglicol , glicerol, 2,2,2- trifluoroacetamida, imidazole, ácido adípico, ácido benzóico, ácido cítrico, ácido malónico, ácido oxálico, ácido fenilacético, ácido fenilpropiónico, ácido sucinico, ácido levulinico, xilitol, sorbitol, ácido tartárico ou isosurbida ou pela combinação de ureia metilureia, 1 , 3-dimetilureia, ou 1 , 1-dimetilureia, e colina, cloreto de trietil-cloroetilamónio, cloreto de dimetil-benzil-hidroxietilamónio cloreto de trifenil- metilfosfónio e dicloreto de zinco. The process according to any one of claims 2-4, wherein the eutectic mixture comprises a combination of choline with a compound selected from the group comprising urea, thiourea, methylurea, 1,3-dimethylurea, 1,1-dimethylurea , acetamide, benzamide, ethylene glycol, glycerol, 2,2,2-trifluoroacetamide, imidazole, adipic acid, benzoic acid, citric acid, malonic acid, oxalic acid, phenylacetic acid, phenylpropionic acid, succinic acid, levulinic acid, xylitol, sorbitol, tartaric acid or isosurbid or by the combination of urea methylurea, 1,3-dimethylurea, or 1,1-dimethylurea, and choline, triethylchlorethylammonium chloride, chloride dimethyl benzyl hydroxyethyl ammonium triphenyl methylphosphonium chloride and zinc dichloride.
7. O processo de acordo com qualquer uma das reivindicações anteriores, em que a temperatura de operação da fase liquida recetora varia entre 10°C e 100°C. The process according to any preceding claim, wherein the operating temperature of the receiving liquid phase ranges from 10 ° C to 100 ° C.
8. O processo de acordo com qualquer uma das reivindicações anteriores, em que a temperatura de operação da fase liquida recetora se encontra à temperatura ambiente. The process according to any preceding claim, wherein the operating temperature of the receiving liquid phase is at room temperature.
9. O processo de acordo com qualquer uma das reivindicações anteriores, em que os dois contactores são contactores de membrana cujo diâmetro de poro se encontra entre os 20nm e 500nm. The process according to any preceding claim, wherein the two contactors are membrane contactors whose pore diameter is between 20nm and 500nm.
10. O processo de acordo com qualquer uma das reivindicações anteriores, em que as membranas dos dois contactores são poliméricas ou inorgânicas ou compreendendo simultaneamente materiais poliméricos e materiais inorgânicos. The process according to any preceding claim, wherein the membranes of the two contactors are polymeric or inorganic or simultaneously comprising polymeric materials and inorganic materials.
11. O processo de acordo com a reivindicação anterior, em que as membranas são módulos do tipo tubular, de fibras capilares, de fibras ocas, módulos planos ou módulos espirais . The process according to the preceding claim, wherein the membranes are tubular, capillary fiber, hollow fiber modules, flat modules or spiral modules.
12. Uso do processo descrito nas reivindicações 1-11, na área da medicina. Use of the process described in claims 1-11 in the field of medicine.
Uso do processo de acordo com a reivindicação anterior, em intervenções médicas nas quais o sujeito se encontra anestesiado . Use of the method according to the preceding claim, in medical interventions in which the subject is anesthetized.
PCT/IB2014/060797 2013-04-19 2014-04-17 Process for the purification of anesthesia gases using membrane contactors and its applications WO2014170858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14728310.5A EP2987525A1 (en) 2013-04-19 2014-04-17 Process for the purification of anesthesia gases using membrane contactors and its applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT106902 2013-04-19
PT106902A PT106902A (en) 2013-04-19 2013-04-19 ANESTHESIA CIRCUIT GAS PURIFICATION PROCESS USING MEMBRANE CONTACTORS

Publications (2)

Publication Number Publication Date
WO2014170858A1 true WO2014170858A1 (en) 2014-10-23
WO2014170858A4 WO2014170858A4 (en) 2014-12-18

Family

ID=50884963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/060797 WO2014170858A1 (en) 2013-04-19 2014-04-17 Process for the purification of anesthesia gases using membrane contactors and its applications

Country Status (2)

Country Link
PT (1) PT106902A (en)
WO (1) WO2014170858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3366365A1 (en) * 2017-02-27 2018-08-29 Honeywell International Inc. Hollow fiber membrane contactor scrubber/stripper for cabin carbon dioxide and humidity control
SE1850195A1 (en) * 2018-02-22 2019-08-23 Kalmarsund Strategic Consultancy Ab Non-ionic deep eutectic mixtures for use as solvents and dispersants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390667A (en) 1991-09-03 1995-02-21 Central Glass Company, Limited Absorption of carbon dioxide gas contained in exhalation of inhalation anesthetic subject
US20040103898A1 (en) 2002-11-28 2004-06-03 Maguet Critical Care Ab Tube for use in an anesthetic system
MX2009006916A (en) 2006-12-26 2009-07-06 Allied Healthcare Prod Carbon dioxide absorbent.
WO2012096576A1 (en) * 2011-01-14 2012-07-19 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for separating mixed gas feed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390667A (en) 1991-09-03 1995-02-21 Central Glass Company, Limited Absorption of carbon dioxide gas contained in exhalation of inhalation anesthetic subject
US20040103898A1 (en) 2002-11-28 2004-06-03 Maguet Critical Care Ab Tube for use in an anesthetic system
MX2009006916A (en) 2006-12-26 2009-07-06 Allied Healthcare Prod Carbon dioxide absorbent.
WO2012096576A1 (en) * 2011-01-14 2012-07-19 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method and apparatus for separating mixed gas feed

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LUÍSA A. NEVES ET AL: "Integrated CO2 capture and enzymatic bioconversion in supported ionic liquid membranes", SEPARATION AND PURIFICATION TECHNOLOGY, vol. 97, 1 September 2012 (2012-09-01), pages 34 - 41, XP055133456, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2012.01.049 *
NEVES; LUISA C. AFONSO; IM COELHOSO; J. CRESPO: "Integrated C02 capture and enzymatic bioconversion in supported ionic liquid membranes", SEP. SCI. PURIF. TECH., vol. 97, 2012, pages 34 - 41, XP055133456, DOI: doi:10.1016/j.seppur.2012.01.049
PORTUGAL A F ET AL: "Carbon dioxide removal from anaesthetic gas circuits using hollow fiber membrane contactors with amino acid salt solutions", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL, vol. 339, no. 1-2, 1 September 2009 (2009-09-01), pages 275 - 286, XP026172864, ISSN: 0376-7388, [retrieved on 20090512], DOI: 10.1016/J.MEMSCI.2009.04.055 *
PORTUGAL, AF; FD MAGALHAES; A. MENDES: "Carbon dioxide removal from anesthetic gas circuits using hollow fiber membrane contactors with amino acid salt solutions", J. MEMB SCI., vol. 339, 2009, pages 275 - 286, XP026172864, DOI: doi:10.1016/j.memsci.2009.04.055

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3366365A1 (en) * 2017-02-27 2018-08-29 Honeywell International Inc. Hollow fiber membrane contactor scrubber/stripper for cabin carbon dioxide and humidity control
US11123685B2 (en) 2017-02-27 2021-09-21 Honeywell International Inc. Hollow fiber membrane contactor scrubber/stripper for cabin carbon dioxide and humidity control
US11707709B2 (en) 2017-02-27 2023-07-25 Honeywell International Inc. Hollow fiber membrane contactor scrubber/stripper for cabin carbon dioxide and humidity control
SE1850195A1 (en) * 2018-02-22 2019-08-23 Kalmarsund Strategic Consultancy Ab Non-ionic deep eutectic mixtures for use as solvents and dispersants
WO2019164442A1 (en) * 2018-02-22 2019-08-29 Kalmarsund Strategic Consultancy Ab Non-ionic deep eutectic mixtures for use as solvents and dispersants

Also Published As

Publication number Publication date
WO2014170858A4 (en) 2014-12-18
PT106902A (en) 2014-10-20

Similar Documents

Publication Publication Date Title
EP3059004B1 (en) Method for removing sox from gas with complex alcohol-amine solution
JP5932335B2 (en) Method and system for deoxidizing mixed gas
US7846407B2 (en) Self-concentrating absorbent for acid gas separation
ES2841352T3 (en) Method to remove SOX in gases by using ethylene glycol complex solution
BRPI0613800A2 (en) method and equipment for energy reduction in acid gas capture processes
JP2012505077A5 (en)
JP7410653B2 (en) Electrochemical carbon dioxide converter and liquid regenerator
CA2866095A1 (en) Regenerable solvent mixtures for acid-gas separation
CN101804287B (en) Absorbing agent for catching or separating carbon dioxide
CN102974203B (en) A kind of New Absorbent trapping separating carbon dioxide
CN102527192A (en) Carbon dioxide absorbent containing ionic liquid
WO2014170858A1 (en) Process for the purification of anesthesia gases using membrane contactors and its applications
Kim et al. Kinetics of carbon dioxide reaction with diethylaminoethanol in aqueous solutions
Patil et al. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review
EP2987525A1 (en) Process for the purification of anesthesia gases using membrane contactors and its applications
KR100424863B1 (en) A method for separation of carbon dioxide using a polyvinylidene difluoride hollow fiber membrane contactor
KR20140139821A (en) Carbon Dioxide Absorbent Solution and Method for Absorbing And Exhausting Carbon Dioxide Using the Same
JPH06343858A (en) Carbon dioxide absorbent
CN106984152B (en) It is a kind of for trapping the two-phase mixture of carbon dioxide
CA2834664C (en) Method and apparatus for capturing sox in a flue gas processing system
CN113350977A (en) Coupling membrane separation device for absorbing and separating acid gas from mixed gas
CN113731119A (en) Liquid-liquid phase change absorbent with controllable carbon dioxide capture threshold
WO1994022560A1 (en) Carbon dioxide absorbent
KR101311783B1 (en) Amines Absorbent and Preparing Method Thereof
JP2020044490A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14728310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014728310

Country of ref document: EP