WO2014170060A1 - Method for measuring the volume of a cluster of materials - Google Patents

Method for measuring the volume of a cluster of materials Download PDF

Info

Publication number
WO2014170060A1
WO2014170060A1 PCT/EP2014/053873 EP2014053873W WO2014170060A1 WO 2014170060 A1 WO2014170060 A1 WO 2014170060A1 EP 2014053873 W EP2014053873 W EP 2014053873W WO 2014170060 A1 WO2014170060 A1 WO 2014170060A1
Authority
WO
WIPO (PCT)
Prior art keywords
materials
drone
cluster
stereoscopic images
acquired
Prior art date
Application number
PCT/EP2014/053873
Other languages
French (fr)
Inventor
Frédéric Serre
Original Assignee
Delta Drone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Drone filed Critical Delta Drone
Publication of WO2014170060A1 publication Critical patent/WO2014170060A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • B64U2101/32UAVs specially adapted for particular uses or applications for imaging, photography or videography for cartography or topography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Definitions

  • the invention relates to a method for measuring the volume of a mass of materials.
  • the invention therefore relates to a method of measuring the volume of a mass of materials according to claim 1.
  • the drone allows the acquisition of a digital model of the pile of materials faster than a team of surveyors-experts, while maintaining sufficient precision to then determine the volume of this pile of materials.
  • the measurement of volume with a drone can be done in less than an hour, while the measurement of an expert surveyor lasts days, even weeks before obtaining a result.
  • Embodiments of the invention may have one or more of the features in accordance with any of the dependent claims 2 to 5.
  • FIG. 1 is a schematic illustration, in a perspective view, of a cluster of materials
  • FIG. 2 is a schematic representation of a drone that can be used to measure the volume of the cluster of materials of FIG. 1;
  • FIG. 3 is a flowchart of a method for measuring the volume of the cluster of materials of FIG. 1 by means of the drone of FIG. 2;
  • FIG. 4 is a flow diagram of a step of the method of FIG. 3.
  • the same references are used to designate the same elements.
  • Figure 1 shows a cluster 2 of materials, deposited on a terrain 4.
  • this cluster 2 is formed of aggregates of homogeneous nature.
  • the particle size of this cluster corresponds here to the granular class "2/8" as defined by the standard "NF
  • the ground 4 is here of flat shape.
  • an optical reference pattern 6, also called reference target, is placed on the cluster 2.
  • This pattern 6 will be described in more detail in the following.
  • a drone 10 is able to overfly the cluster 2 to measure the volume.
  • FIG. 2 shows in greater detail an example of such a drone 10 and a control unit 12 of this drone 10.
  • drone Unmanned Aerial Vehicle
  • FIG. 2 shows in greater detail an example of such a drone 10 and a control unit 12 of this drone 10.
  • This drone 10 is here a rotary wing drone, for example quadrirotor. This drone 10 is thus able to remain hovering.
  • This drone 10 comprises an optical imaging device 14, capable of acquiring stereoscopic images. For example, the drone 10 is able to move at an altitude less than or equal to 3m or 7m or 15m or 20m.
  • This drone 10 has a mass less than 10kg or 5kg and a wingspan less than 3m or 2,5m or 2m.
  • This drone 10 is particularly capable of transmitting data, such as data acquired by the device 14, to the unit 12.
  • This drone 10 is also able to take off and move autonomously, for example following a plane of flight transmitted by unit 12.
  • This drone 10 advantageously comprises a geolocation device 16.
  • Such a geolocation device is able to provide geographical coordinates of the position occupied by the drone 10. This geographical location is here expressed in the form of coordinates of a system. Satellite location, such as GPS coordinates ("Global Positioning System" in English). Such a device 16 therefore comprises here a GPS receiver.
  • the unit 12 is suitable:
  • This unit 12 here comprises a microcomputer equipped with a communication interface and a control software for the drone 10.
  • the device 14 here comprises a stereoscopic optical camera.
  • a flight plan of the drone 10 is defined so that the drone 10 flies over the cluster 2.
  • the flight plan is automatically defined by means of the unit 12.
  • geographic coordinates of the portion of land 4 comprising cluster 2 are provided.
  • a plurality of crossing points are defined by which the drone must pass by flying over the cluster 2 so as to be able to acquire a set of stereoscopic images illustrating the totality of the outer surface of the cluster 2.
  • the flight plan is defined so that the drone 10 defines a circle around the cluster 2 to acquire images of all the side faces of the cluster 2.
  • Each waypoint is here identified by its geographical coordinates and by its altitude. The flight plan is thus defined so that the drone 10 passes through each of these points of passage, preferably following a path of reduced length.
  • a plurality of stereoscopic images of the cluster 2 is acquired by means of the drone.
  • Figure 4 shows in more detail an example of this step 22.
  • the defined flight plan is transmitted to the drone 10, for example by means of the unit 12. Then, during an operation 26, a take-off order is transmitted to the drone 10.
  • a plurality of stereoscopic images of the cluster 2 is then acquired using the device 14.
  • these stereoscopic images are acquired periodically, as the movement of the drone, with a predetermined periodicity.
  • a stereoscopic image is acquired every 0.5s or every 0.1s.
  • Images stereoscopically are advantageously acquired so as to have a mutual overlap two by two.
  • two stereoscopic images acquired consecutively by the device 14 have a mutual overlap. Two images are said to have a mutual overlap if respective portions of these two images represent the same scene.
  • these images have a mutual overlap on a portion of their area greater than or equal to 20% or 40% or 50% or 80% of their total area.
  • the device 16 here records the geographical coordinates of the position occupied by the drone 10 during the acquisition of each image by the device 14. In the remainder of the description, reference will be made to "coordinates of an image" for designate these coordinates, respectively, for each stereoscopic image.
  • the altitude of the drone 10 is also recorded at each acquisition.
  • calibration data are recorded, in order to subsequently determine the scale of the acquired stereoscopic images.
  • At least one copy of an optical reference pattern 6, and preferably three copies, are placed on the cluster 2 prior to the acquisition of the stereoscopic images during the operation 28.
  • This pattern 6 is shown in FIG.
  • This reference optical pattern 6 is visible from the location of the drone 10 while this drone flies over the cluster 2 according to the flight plan, and is able to be recorded on the stereoscopic images.
  • This reference optical pattern has known dimensions, so as to serve a scale of dimensions on the acquired stereoscopic images.
  • the pattern 6 is placed on the cluster 2.
  • This pattern 6 is here a pattern, cross-shaped, drawn on a panel.
  • Operation 30 is performed in conjunction with the operation 28 of acquiring stereoscopic images.
  • the stereoscopic images acquired during the operation 28 are received by the unit 12, each in the form of a digital stereoscopic image.
  • the geographical coordinates of each of these stereoscopic images, as well as their altitude, are also received by the unit 12.
  • step 22 there is therefore a set of stereoscopic images taken at different positions, illustrating the entire outer surface of the cluster 2.
  • a surface topography of the cluster 2 is formed from the stereoscopic images acquired during step 22.
  • topography of a surface here is meant a set of data representing, at any point on a surface, the geographical elevation of this surface.
  • This topography is, for example, a digital elevation model in English.
  • Such a digital terrain model, for a given object is for example represented, in digital form, by a cloud of points. At each of these points corresponds the position and the average altitude of the portion of object corresponding to this point.
  • these stereoscopic images are combined by means of a photogrammetry method, to form the digital terrain model.
  • This combination is for example carried out by means of the software "Agisoft PhotoScan Professional" version 0 .8 distributed by the company "Agisoft”.
  • the dimensions of these stereoscopic images are calibrated from the dimensions of the pattern 6 as it appears on these stereoscopic images, and knowing the known dimensions of this pattern 6.
  • the numerical model of ground obtained for the cluster 2 comprises a cloud of points comprising 52000 points , distributed with an average density of 95 points per m 2 on the surface of cluster 2.
  • the volume of the cluster 2 is calculated from the digital terrain model obtained during step 40. This calculation is done automatically here, by interpolating first, to from the cloud of points, a continuous surface forming the perimeter of the cluster 2, then calculating the volume delimited by the union of this continuous surface with the surface of the ground 4.
  • the volume of the cluster 2 calculated in step 50 is equal to 395.71 m 3 .
  • the volume of this cluster 2 was measured independently by a team of surveyors. This team obtained a value of 404m 3 for the volume of the cluster 2, a difference of only 2% compared to the value obtained using the process. The method therefore has sufficient accuracy and reliability, while being faster and less expensive to implement.
  • a step 60 the value of the calculated volume is provided on a communication interface.
  • the method can be used to measure the volume of a plurality of clusters of different materials deposited on the ground 4. In this case, the volume of each of these clusters can be determined.
  • the flight plan is then defined so that the drone 10 overflows successively each of these clusters to separately acquire stereoscopic images of each of these clusters on which the other clusters are not visible.
  • several clusters may appear on a given stereoscopic image.
  • the clusters are automatically identified, in order to build, separate digital terrain models for each of these clusters. For example, different optical reference patterns are used to identify each of the clusters.
  • the pattern 6 may have a shape and / or different dimensions. Several copies of the pattern 6 can be used on the cluster 2. Several different reference patterns between them can be placed on the cluster 2.
  • the device 16 may be different.
  • the geolocation of the drone 10 is provided by means of a radio triangulation method.
  • at least three radio transmitters are arranged on the ground 4 at known locations.
  • the device 16 comprises a radio receiver able to receive the radio signals emitted by these transmitters and to determine geographical coordinates from these transmitted radio signals.
  • These radio signals are for example issued according to the so-called “ultra-wide band” (ULB) technology.
  • ULB ultra-wide band
  • the acquisition periodicity of the images during the operation 28 may be different. This periodicity can for example be defined with respect to the distance traveled by the drone. An image can be acquired every 2m or every meter.
  • the calibration data can be recorded differently.
  • the pattern 6 placed on the cluster 2 in the form of a panel is replaced by a predefined image projected by the drone on the cluster 2.
  • the operation 30 consists in projecting, during the acquisition of each stereoscopic image, this predefined image on the cluster 2, so that this projected predefined image is visible on the acquired stereoscopic images.
  • This predefined image here has known dimensions, and is then used, during operation 40, to calibrate the distances of each of the images.
  • the drone 10 comprises a light source capable of projecting such a predefined image.
  • such a source comprises two laser pointers, each emitting a laser beam along a rectilinear trajectory. These laser pointers are arranged so that these two rectilinear paths are parallel to each other and separated from one another by a predefined distance.
  • the projection of these two laser beams on the cluster 2 leads to the formation, on the surface of this cluster 2, of two luminous spots, spaced from each other by a known distance. This separation between the two spots is then measured on the stereoscopic images acquired to allow the calibration of the distances on the stereoscopic images.
  • these laser pointers may be arranged in such a way that the trajectories of their respective beams are divergent, with a known divergence angle.
  • the two spots therefore have, on the cluster 2, a spacing that can vary according to the distance between the drone 10 and the cluster 2.
  • the calibration comprises an additional operation for determining the distance between the drone 10 and the cluster 2 to then calculate the distance separating the two spots.
  • the operation 30 does not require a reference optical pattern.
  • the calibration of a stereoscopic image is performed according to:
  • the distance at which the drone 10 was from the cluster 2 at the time of acquisition of the stereoscopic image is for example measured by means of a telemeter embedded by the drone 10, and recorded during the acquisition of this stereoscopic image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention concerns a method for measuring the volume of a cluster of materials, comprising: - defining (20) a flight plan of a drone (10) for flying over a cluster (2) of materials; - acquiring (22), by the drone, when flying over the cluster of materials along the defined flight plan, a plurality of stereoscopic images of the cluster of materials, the acquired stereoscopic images being suitable for forming a digital terrain model representing the surface topography of the cluster of materials; - combining (28) said acquired images to form the digital terrain model; - calculating (32) the volume of the cluster of materials from the digital terrain model that has been formed.

Description

PROCÉDÉ DE MESURE DU VOLUME D'UN AMAS DE MATÉRIAUX  METHOD FOR MEASURING THE VOLUME OF A MATERIAL AMAS
[ooi] L'invention concerne un procédé de mesure du volume d'un amas de matériaux. [Ooi] The invention relates to a method for measuring the volume of a mass of materials.
[002] Dans l'industrie minière, il est fréquent de stocker des matériaux sous forme d'amas de grande taille, typiquement déposés à ciel ouvert. Il est souvent nécessaire de mesurer le volume de tels amas de matériaux, pour évaluer la quantité de matériaux présents dans un site donné. [002] In the mining industry, it is common to store materials in the form of large clusters, typically deposited in the open. It is often necessary to measure the volume of such clusters of materials, to evaluate the amount of materials present in a given site.
[003] Par exemple, dans une carrière, il peut être nécessaire de mesurer le volume d'un amas de granulats déposé à ciel ouvert. Ceci peut être important pour dresser un inventaire de la carrière à un instant donné. De plus, une plus fine connaissance des stocks permet de mieux gérer l'exploitation même de la carrière, par exemple pour l'extraction ou la vente.  [003] For example, in a quarry, it may be necessary to measure the volume of a mass of aggregates deposited in the open. This can be important for making an inventory of the career at a given moment. In addition, a better knowledge of the stocks makes it possible to better manage the exploitation even of the quarry, for example for the extraction or the sale.
[004] Généralement, une telle mesure de volume est réalisée manuellement par des géomètres-experts, ce qui est coûteux en temps et en main d'œuvre. C'est pourquoi une telle mesure n'est faite que rarement. En outre, une telle mesure impose généralement aux géomètres-experts de monter sur l'amas, ce qui présente un risque d'accident important.  [004] Generally, such a volume measurement is performed manually by surveyors, which is costly in time and manpower. This is why such a measure is rarely done. In addition, such a measure usually requires surveyors to climb on the pile, which presents a risk of major accident.
[005] De l'état de la technique est également connu des documents suivants :  [005] From the state of the art is also known from the following documents:
- ES 2366717 A1 ; - ES 2366717 A1;
- US 2010/250125 A1 ; - US 2010/250125 A1;
- JP 2008186145 A ;  JP 2008186145 A;
- EP 2333481 A1 ;  EP 2333481 A1;
- US 2006/082590 A1 ;  - US 2006/082590 A1;
- EP 1100048 A1 . EP 1100048 A1.
[006] Il existe donc un besoin pour un procédé permettant de mesurer, de façon fiable, le volume d'un amas de matériaux, avec une rapidité accrue et avec un coût réduit.  [006] There is therefore a need for a method for measuring, reliably, the volume of a mass of materials, with increased speed and with a reduced cost.
[007] L'invention concerne donc sur un procédé de mesure du volume d'un amas de matériaux conforme à la revendication 1 .  [007] The invention therefore relates to a method of measuring the volume of a mass of materials according to claim 1.
[008] Le drone permet l'acquisition d'un modèle numérique de terrain de l'amas de matériaux plus rapidement qu'une équipe de géomètres-experts, tout en conservant une précision suffisante pour ensuite déterminer le volume de cet amas de matériaux de façon fiable. En effet, la mesure de volume avec un drone peut se faire en moins d'une heure, alors que la mesure d'un géomètre expert dure des jours, voire des semaines avant d'obtenir un résultat.  [008] The drone allows the acquisition of a digital model of the pile of materials faster than a team of surveyors-experts, while maintaining sufficient precision to then determine the volume of this pile of materials. Reliably. Indeed, the measurement of volume with a drone can be done in less than an hour, while the measurement of an expert surveyor lasts days, even weeks before obtaining a result.
[009] En outre, l'utilisation du drone pour survoler l'amas de matériaux est plus économique et moins compliquée à mettre en œuvre que l'utilisation d'un satellite d'imagerie ou d'un aéronef piloté tel qu'un hélicoptère. [0010] Les modes de réalisation de l'invention peuvent présenter une ou plusieurs des caractéristiques conformes à l'une quelconques des revendications dépendantes 2 à 5. [009] In addition, the use of the drone to fly over the pile of materials is more economical and less complicated to implement than the use of an imaging satellite or a piloted aircraft such as a helicopter . Embodiments of the invention may have one or more of the features in accordance with any of the dependent claims 2 to 5.
[0011] L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en se référant aux dessins sur lesquels :  The invention will be better understood on reading the description which follows, given solely by way of nonlimiting example and with reference to the drawings in which:
- la figure 1 est une illustration schématique, selon une vue en perspective, d'un amas de matériaux ;  - Figure 1 is a schematic illustration, in a perspective view, of a cluster of materials;
- la figure 2 est une représentation schématique d'un drone apte à être utilisé pour mesurer le volume de l'amas de matériaux de la figure 1 ;  FIG. 2 is a schematic representation of a drone that can be used to measure the volume of the cluster of materials of FIG. 1;
- la figure 3 est un organigramme d'un procédé de mesure du volume de l'amas de matériaux de la figure 1 au moyen du drone de la figure 2 ;  FIG. 3 is a flowchart of a method for measuring the volume of the cluster of materials of FIG. 1 by means of the drone of FIG. 2;
- la figure 4 est un organigramme d'une étape du procédé de la figure 3. [0012] Dans ces figures, les mêmes références sont utilisées pour désigner les mêmes éléments.  FIG. 4 is a flow diagram of a step of the method of FIG. 3. In these figures, the same references are used to designate the same elements.
[0013] Dans la suite de cette description, les caractéristiques et fonctions bien connues de l'homme du métier ne sont pas décrites en détails.  In the following description, the features and functions well known to those skilled in the art are not described in detail.
[0014] La figure 1 représente un amas 2 de matériaux, déposé sur un terrain 4. Ici, cet amas 2 est formé de granulats de nature homogène. La granulométrie de cet amas correspond ici à la classe granulaire « 2/8 » telle que définie par la norme « NF Figure 1 shows a cluster 2 of materials, deposited on a terrain 4. Here, this cluster 2 is formed of aggregates of homogeneous nature. The particle size of this cluster corresponds here to the granular class "2/8" as defined by the standard "NF
EN 13285 ». Le terrain 4 est ici de forme plane. EN 13285 ". The ground 4 is here of flat shape.
[0015] Avantageusement, un motif optique de référence 6, également appelé cible de référence, est placé sur l'amas 2. Ce motif 6 sera décrit plus en détail dans ce qui suit.  Advantageously, an optical reference pattern 6, also called reference target, is placed on the cluster 2. This pattern 6 will be described in more detail in the following.
[0016] Un drone 10 est apte à survoler l'amas 2 pour en mesurer le volume. A drone 10 is able to overfly the cluster 2 to measure the volume.
[0017] La figure 2 représente plus en détail un exemple d'un tel drone 10 et d'une unité de commande 12 de ce drone 10. Par drone (« Unmanned Aerial Vehicle » en langue anglaise), on désigne un aéronef de dimensions réduites et pouvant circuler sans pilote humain à son bord, par exemple de façon autonome à partir d'un plan de vol prédéfini.  FIG. 2 shows in greater detail an example of such a drone 10 and a control unit 12 of this drone 10. By drone ("Unmanned Aerial Vehicle" in English), an aircraft of dimensions reduced and can travel without a human pilot on board, for example autonomously from a predefined flight plan.
[0018] Ce drone 10 est ici un drone à voilure tournante, par exemple à quadrirotor. Ce drone 10 est ainsi apte à se maintenir en vol stationnaire. Ce drone 10 comporte un dispositif d'imagerie optique 14, apte à acquérir des images stéréoscopiques. Par exemple, le drone 10 est apte à se déplacer à une altitude inférieure ou égale à 3m ou à 7m ou à 15m ou à 20m. Ce drone 10 présente une masse inférieure à 10kg ou à 5kg et une envergure inférieure à 3m ou à 2,5m ou à 2m. Ce drone 10 est notamment apte à transmettre des données, telles que des données acquises par le dispositif 14, vers l'unité 12. Ce drone 10 est également apte à décoller et à se déplacer de façon autonome, par exemple en suivant un plan de vol transmis par l'unité 12. [0019] Ce drone 10 comporte avantageusement un dispositif de géolocalisation 16. Un tel dispositif de géolocalisation est apte à fournir des coordonnées géographiques de la position occupée par le drone 10. Cette localisation géographique est ici exprimée sous la forme de coordonnées d'un système de localisation par satellite, comme par exemple des coordonnées GPS (« Global Positioning System » en langue anglaise). Un tel dispositif 16 comporte donc ici un récepteur GPS. This drone 10 is here a rotary wing drone, for example quadrirotor. This drone 10 is thus able to remain hovering. This drone 10 comprises an optical imaging device 14, capable of acquiring stereoscopic images. For example, the drone 10 is able to move at an altitude less than or equal to 3m or 7m or 15m or 20m. This drone 10 has a mass less than 10kg or 5kg and a wingspan less than 3m or 2,5m or 2m. This drone 10 is particularly capable of transmitting data, such as data acquired by the device 14, to the unit 12. This drone 10 is also able to take off and move autonomously, for example following a plane of flight transmitted by unit 12. This drone 10 advantageously comprises a geolocation device 16. Such a geolocation device is able to provide geographical coordinates of the position occupied by the drone 10. This geographical location is here expressed in the form of coordinates of a system. satellite location, such as GPS coordinates ("Global Positioning System" in English). Such a device 16 therefore comprises here a GPS receiver.
[0020] L'unité 12 est apte : The unit 12 is suitable:
-à transmettre des instructions, comme un plan de vol ou un ordre de décoller, au drone 10, et  to transmit instructions, such as a flight plan or a take-off command, to the drone 10, and
-à recevoir des données venant du drone 10, comme des données issues du dispositif 14. Cette unité 12 comporte ici un micro-ordinateur équipé d'une interface de communication et d'un logiciel de contrôle du drone 10. to receive data coming from the drone 10, such as data coming from the device 14. This unit 12 here comprises a microcomputer equipped with a communication interface and a control software for the drone 10.
[0021] Le dispositif 14 comporte ici une caméra optique stéréoscopique.  The device 14 here comprises a stereoscopic optical camera.
[0022] Un exemple d'un procédé de mesure du volume occupé par l'amas 2 va maintenant être décrit, en référence à l'organigramme de la figure 3 et à l'aide des figures 1 , 2 et 4.  An example of a method for measuring the volume occupied by cluster 2 will now be described with reference to the flowchart of FIG. 3 and using FIGS. 1, 2 and 4.
[0023] Lors d'une étape 20, un plan de vol du drone 10 est défini, pour que le drone 10 survole l'amas 2. Par exemple, le plan de vol est automatiquement défini au moyen de l'unité 12. Ici, des coordonnées géographiques de la portion de terrain 4 comportant l'amas 2 sont fournies. On définit par exemple une pluralité de points de passage par lesquels le drone doit passer en survolant l'amas 2 de façon à pouvoir acquérir un ensemble d'images stéréoscopiques illustrant la totalité de la surface extérieure de l'amas 2. Par exemple, le plan de vol est défini pour que le drone 10 définisse un cercle autour de l'amas 2 pour acquérir des images de toutes les faces latérales de l'amas 2. Chaque point de passage est ici identifié par ses coordonnées géographiques et par son altitude. Le plan de vol est ainsi défini pour que le drone 10 passe par chacun de ces points de passage, en suivant de préférence une trajectoire de longueur réduite.  During a step 20, a flight plan of the drone 10 is defined so that the drone 10 flies over the cluster 2. For example, the flight plan is automatically defined by means of the unit 12. Here , geographic coordinates of the portion of land 4 comprising cluster 2 are provided. For example, a plurality of crossing points are defined by which the drone must pass by flying over the cluster 2 so as to be able to acquire a set of stereoscopic images illustrating the totality of the outer surface of the cluster 2. For example, the flight plan is defined so that the drone 10 defines a circle around the cluster 2 to acquire images of all the side faces of the cluster 2. Each waypoint is here identified by its geographical coordinates and by its altitude. The flight plan is thus defined so that the drone 10 passes through each of these points of passage, preferably following a path of reduced length.
[0024] Puis, lors d'une étape 22, une pluralité d'images stéréoscopiques de l'amas 2 est acquise au moyen du drone. La figure 4 représente plus en détail un exemple de cette étape 22.  Then, during a step 22, a plurality of stereoscopic images of the cluster 2 is acquired by means of the drone. Figure 4 shows in more detail an example of this step 22.
[0025] D'abord, lors d'une opération 24, le plan de vol défini est transmis au drone 10, par exemple au moyen de l'unité 12. Ensuite, lors d'une opération 26, un ordre de décollage est transmis au drone 10.  First, during an operation 24, the defined flight plan is transmitted to the drone 10, for example by means of the unit 12. Then, during an operation 26, a take-off order is transmitted to the drone 10.
[0026] Puis, lors d'une opération 28, le drone 10 se déplace au-dessus de l'amas 2, suivant le plan de vol reçu lors de l'opération 24. Une pluralité d'images stéréoscopiques de l'amas 2 est alors acquise à l'aide du dispositif 14. Dans cet exemple, ces images stéréoscopiques sont acquises périodiquement, au fur et à mesure du déplacement du drone, avec une périodicité prédéterminée. Par exemple, une image stéréoscopique est acquise toutes les 0,5s ou toutes les 0,1 s. Les images stéréoscopiques sont avantageusement acquises de façon à présenter un recouvrement mutuel deux à deux. Par exemple, deux images stéréoscopiques acquises consécutivement par le dispositif 14 présentent un recouvrement mutuel. On dit de deux images qu'elles présentent un recouvrement mutuel si des portions respectives de ces deux images représentent une même scène. Par exemple, ces images présentent un recouvrement mutuel sur une portion de leur superficie supérieure ou égal à 20 % ou à 40 % ou à 50 % ou à 80 % de leur superficie totale. [0027] Le dispositif 16 enregistre ici les coordonnées géographiques de la position occupée par le drone 10 lors de l'acquisition de chaque image par le dispositif 14. Dans la suite de la description, on parlera de « coordonnées d'une image » pour désigner ces coordonnées, respectivement, pour chaque image stéréoscopiques. Avantageusement, l'altitude du drone 10 est également enregistrée lors de chaque acquisition. Then, during an operation 28, the drone 10 moves over the cluster 2, according to the flight plan received during the operation 24. A plurality of stereoscopic images of the cluster 2 is then acquired using the device 14. In this example, these stereoscopic images are acquired periodically, as the movement of the drone, with a predetermined periodicity. For example, a stereoscopic image is acquired every 0.5s or every 0.1s. Images stereoscopically are advantageously acquired so as to have a mutual overlap two by two. For example, two stereoscopic images acquired consecutively by the device 14 have a mutual overlap. Two images are said to have a mutual overlap if respective portions of these two images represent the same scene. For example, these images have a mutual overlap on a portion of their area greater than or equal to 20% or 40% or 50% or 80% of their total area. The device 16 here records the geographical coordinates of the position occupied by the drone 10 during the acquisition of each image by the device 14. In the remainder of the description, reference will be made to "coordinates of an image" for designate these coordinates, respectively, for each stereoscopic image. Advantageously, the altitude of the drone 10 is also recorded at each acquisition.
[0028] Avantageusement, lors d'une opération 30, des données de calibration sont enregistrées, en vue de déterminer ultérieurement l'échelle des images stéréoscopiques acquises.  Advantageously, during an operation 30, calibration data are recorded, in order to subsequently determine the scale of the acquired stereoscopic images.
[0029] Par exemple, au moins un exemplaire d'un motif optique de référence 6, et de préférence trois exemplaires, sont placés sur l'amas 2 préalablement à l'acquisition des images stéréoscopiques au cours de l'opération 28. Pour simplifier, seul un exemplaire de ce motif 6 est représenté sur la figure 1 .  For example, at least one copy of an optical reference pattern 6, and preferably three copies, are placed on the cluster 2 prior to the acquisition of the stereoscopic images during the operation 28. To simplify only one copy of this pattern 6 is shown in FIG.
[0030] Ce motif optique de référence 6 est visible depuis l'emplacement du drone 10 pendant que ce drone survole l'amas 2 selon le plan de vol, et est apte à être enregistré sur les images stéréoscopiques. Ce motif optique de référence présente des dimensions connues, de façon à pouvoir servir une échelle de dimensions sur les images stéréoscopiques acquises.  This reference optical pattern 6 is visible from the location of the drone 10 while this drone flies over the cluster 2 according to the flight plan, and is able to be recorded on the stereoscopic images. This reference optical pattern has known dimensions, so as to serve a scale of dimensions on the acquired stereoscopic images.
[0031] Dans cet exemple, le motif 6 est placé sur l'amas 2. Ce motif 6 est ici une mire, en forme de croix, dessinée sur un panneau. L'opération 30 est réalisée conjointement à l'opération 28 d'acquisition des images stéréoscopiques.  In this example, the pattern 6 is placed on the cluster 2. This pattern 6 is here a pattern, cross-shaped, drawn on a panel. Operation 30 is performed in conjunction with the operation 28 of acquiring stereoscopic images.
[0032] Puis, lors d'une opération 32, les images stéréoscopiques acquises lors de l'opération 28 sont reçues par l'unité 12, chacune sous la forme d'une image stéréoscopique numérique. Avantageusement, les coordonnées géographiques de chacune de ces images stéréoscopiques, ainsi que leur altitude, sont également reçues par l'unité 12. Then, during an operation 32, the stereoscopic images acquired during the operation 28 are received by the unit 12, each in the form of a digital stereoscopic image. Advantageously, the geographical coordinates of each of these stereoscopic images, as well as their altitude, are also received by the unit 12.
[0033] A l'issue de l'étape 22, on dispose donc d'un ensemble d'images stéréoscopiques, prises selon des positions différentes, illustrant la totalité de la surface extérieure de l'amas 2.  At the end of step 22, there is therefore a set of stereoscopic images taken at different positions, illustrating the entire outer surface of the cluster 2.
[0034] Ensuite, lors d'une étape 40, une topographie de surface de l'amas 2 est formée à partir des images stéréoscopiques acquises lors de l'étape 22.  Then, during a step 40, a surface topography of the cluster 2 is formed from the stereoscopic images acquired during step 22.
[0035] Par topographie d'une surface, on désigne ici un ensemble de données représentant, en tout point d'une surface, l'élévation géographique de cette surface par rapport au terrain 4. Cette topographie est, par exemple, un modèle numérique de terrain (« digital élévation model » en langue anglaise). Un tel modèle numérique de terrain, pour un objet donné, est par exemple représenté, sous forme numérique, par un nuage de points. À chacun de ces points correspond la position et l'altitude moyenne de la portion d'objet correspondant à ce point. By topography of a surface, here is meant a set of data representing, at any point on a surface, the geographical elevation of this surface. This topography is, for example, a digital elevation model in English. Such a digital terrain model, for a given object, is for example represented, in digital form, by a cloud of points. At each of these points corresponds the position and the average altitude of the portion of object corresponding to this point.
[0036] Dans cet exemple, ces images stéréoscopiques sont combinées au moyen d'un procédé de photogrammétrie, pour former le modèle numérique de terrain. Cette combinaison est par exemple réalisée au moyen du logiciel « Agisoft PhotoScan Professional » version 0 .8 distribué par la société « Agisoft ». Les dimensions de ces images stéréoscopiques sont calibrées à partir des dimensions du motif 6 tel qu'il apparaît sur ces images stéréoscopiques, et connaissant les dimensions connues de ce motif 6.  In this example, these stereoscopic images are combined by means of a photogrammetry method, to form the digital terrain model. This combination is for example carried out by means of the software "Agisoft PhotoScan Professional" version 0 .8 distributed by the company "Agisoft". The dimensions of these stereoscopic images are calibrated from the dimensions of the pattern 6 as it appears on these stereoscopic images, and knowing the known dimensions of this pattern 6.
[0037] A l'issue de cette étape 40, on dispose d'un modèle numérique de terrain de l'amas 2. Dans cet exemple, le modèle numérique de terrain obtenu pour l'amas 2 comporte un nuage de points comportant 52000 points, répartis avec une densité moyenne de 95 points par m2 sur la surface de l'amas 2. At the end of this step 40, there is a numerical model of field of the cluster 2. In this example, the numerical model of ground obtained for the cluster 2 comprises a cloud of points comprising 52000 points , distributed with an average density of 95 points per m 2 on the surface of cluster 2.
[0038] Ensuite, lors d'une étape 50, le volume de l'amas 2 est calculé à partir du modèle numérique de terrain obtenu lors de l'étape 40. Ce calcul est ici réalisé automatiquement, en interpolant d'abord, à partir du nuage de points, une surface continue formant le pourtour de l'amas 2, puis en calculant le volume délimité par la réunion de cette surface continue avec la surface du terrain 4.  Then, during a step 50, the volume of the cluster 2 is calculated from the digital terrain model obtained during step 40. This calculation is done automatically here, by interpolating first, to from the cloud of points, a continuous surface forming the perimeter of the cluster 2, then calculating the volume delimited by the union of this continuous surface with the surface of the ground 4.
[0039] Dans cet exemple, le volume de l'amas 2 calculé lors de l'étape 50 est égal 395,71 m3. Afin d'illustrer l'efficacité de ce procédé, le volume de cet amas 2 a été mesuré indépendamment par une équipe de géomètres-experts. Cette équipe a obtenu une valeur de 404m3 pour le volume de l'amas 2, soit un écart de seulement 2% par rapport à la valeur obtenue à l'aide du procédé. Le procédé présente donc une précision et une fiabilité suffisantes, tout en étant plus rapide et moins coûteux à mettre en œuvre. In this example, the volume of the cluster 2 calculated in step 50 is equal to 395.71 m 3 . In order to illustrate the efficiency of this process, the volume of this cluster 2 was measured independently by a team of surveyors. This team obtained a value of 404m 3 for the volume of the cluster 2, a difference of only 2% compared to the value obtained using the process. The method therefore has sufficient accuracy and reliability, while being faster and less expensive to implement.
[0040] Enfin, ici, lors d'une étape 60, la valeur du volume calculée est fournie sur une interface de communication.  Finally, here, in a step 60, the value of the calculated volume is provided on a communication interface.
[0041] De nombreux autres modes de réalisation sont possibles.  Many other embodiments are possible.
[0042] Le procédé peut être utilisé pour mesurer le volume d'une pluralité d'amas de matériaux distincts déposés sur le terrain 4. Dans ce cas, le volume de chacun de ces amas peut être déterminé. Le plan de vol est alors défini pour que le drone 10 survole successivement chacun de ces amas pour acquérir séparément des images stéréoscopiques de chacun de ces amas sur lesquels les autres amas ne sont pas visibles. Dans une autre variante, plusieurs amas peuvent figurer sur une image stéréoscopique donnée. Dans ce cas, lors de l'étape 40, les amas sont identifiés automatiquement, afin de construire, des modèles numériques de terrain distincts pour chacun de ces amas. Par exemple, des motifs optiques de référence différents sont utilisés pour identifier chacun des amas. The method can be used to measure the volume of a plurality of clusters of different materials deposited on the ground 4. In this case, the volume of each of these clusters can be determined. The flight plan is then defined so that the drone 10 overflows successively each of these clusters to separately acquire stereoscopic images of each of these clusters on which the other clusters are not visible. In another variant, several clusters may appear on a given stereoscopic image. In this case, during step 40, the clusters are automatically identified, in order to build, separate digital terrain models for each of these clusters. For example, different optical reference patterns are used to identify each of the clusters.
[0043] Le motif 6 peut présenter une forme et/ou des dimensions différentes. Plusieurs exemplaires du motif 6 peuvent être utilisés sur l'amas 2. Plusieurs motifs de référence différents entre eux peuvent être placés sur l'amas 2.  The pattern 6 may have a shape and / or different dimensions. Several copies of the pattern 6 can be used on the cluster 2. Several different reference patterns between them can be placed on the cluster 2.
[0044] Le dispositif 16 peut être différent. Par exemple, la géolocalisation du drone 10 est assurée au moyen d'un procédé de triangulation par radio. À cet effet, au moins trois émetteurs radio sont disposés sur le terrain 4 à des emplacements connus. Le dispositif 16 comporte un récepteur radio apte à recevoir les signaux radio émis par ces émetteurs et à déterminer des coordonnées géographiques à partir de ces signaux radio émis. Ces signaux radio sont par exemple émis suivant la technologie dite de « Ultra-large bande » (ULB).  The device 16 may be different. For example, the geolocation of the drone 10 is provided by means of a radio triangulation method. For this purpose, at least three radio transmitters are arranged on the ground 4 at known locations. The device 16 comprises a radio receiver able to receive the radio signals emitted by these transmitters and to determine geographical coordinates from these transmitted radio signals. These radio signals are for example issued according to the so-called "ultra-wide band" (ULB) technology.
[0045] La périodicité d'acquisition des images lors de l'opération 28 peut être différente. Cette périodicité peut par exemple être définie par rapport à la distance parcourue par le drone. Une image peut ainsi être acquise tous les 2m ou tous les mètres.  The acquisition periodicity of the images during the operation 28 may be different. This periodicity can for example be defined with respect to the distance traveled by the drone. An image can be acquired every 2m or every meter.
[0046] Les données de calibration peuvent être enregistrées différemment. Par exemple, le motif 6 posé sur l'amas 2 sous forme de panneau est remplacé par une image prédéfinie projetée par le drone sur l'amas 2. Dans ce cas, l'opération 30 consiste à projeter, pendant l'acquisition de chaque image stéréoscopique, cette image prédéfinie sur l'amas 2, de façon à que cette image prédéfinie projetée soit visible sur les images stéréoscopiques acquises. Cette image prédéfinie présente ici des dimensions connues, et est ensuite utilisée, lors de l'opération 40, pour calibrer les distances de chacune des images. Dans ce cas, à cet effet, le drone 10 comporte une source lumineuse apte à projeter une telle image prédéfinie.  The calibration data can be recorded differently. For example, the pattern 6 placed on the cluster 2 in the form of a panel is replaced by a predefined image projected by the drone on the cluster 2. In this case, the operation 30 consists in projecting, during the acquisition of each stereoscopic image, this predefined image on the cluster 2, so that this projected predefined image is visible on the acquired stereoscopic images. This predefined image here has known dimensions, and is then used, during operation 40, to calibrate the distances of each of the images. In this case, for this purpose, the drone 10 comprises a light source capable of projecting such a predefined image.
[0047] Par exemple, une telle source comporte deux pointeurs lasers, émettant chacun un faisceau laser suivant une trajectoire rectiligne. Ces pointeurs laser sont disposés de façon à ce que ces deux trajectoires rectilignes soient parallèles entre elles et séparées l'une de l'autre par une distance prédéfinie. La projection de ces deux faisceaux laser sur l'amas 2 conduit à la formation, en surface de cet amas 2, de deux taches lumineuses, écartées l'une de l'autre d'une distance connue. Cet écartement entre les deux taches est ensuite mesuré sur les images stéréoscopiques acquises pour permettre la calibration des distances sur les images stéréoscopiques.  For example, such a source comprises two laser pointers, each emitting a laser beam along a rectilinear trajectory. These laser pointers are arranged so that these two rectilinear paths are parallel to each other and separated from one another by a predefined distance. The projection of these two laser beams on the cluster 2 leads to the formation, on the surface of this cluster 2, of two luminous spots, spaced from each other by a known distance. This separation between the two spots is then measured on the stereoscopic images acquired to allow the calibration of the distances on the stereoscopic images.
[0048] En variante, ces pointeurs laser peuvent être disposés de façon à ce que les trajectoires de leurs faisceaux respectifs soient divergentes, avec un angle de divergence connu. Les deux taches présentent donc, sur l'amas 2, un écartement pouvant varier en fonction de la distance entre le drone 10 et l'amas 2. Dans ce cas, la calibration comporte une opération supplémentaire de détermination de la distance entre le drone 10 et l'amas 2 pour ensuite calculer la distance séparant les deux taches. [0049] Selon une autre variante, l'opération 30 ne nécessite pas de motif optique de référence. Dans ce cas, la calibration d'une image stéréoscopique est réalisée en fonction : In a variant, these laser pointers may be arranged in such a way that the trajectories of their respective beams are divergent, with a known divergence angle. The two spots therefore have, on the cluster 2, a spacing that can vary according to the distance between the drone 10 and the cluster 2. In this case, the calibration comprises an additional operation for determining the distance between the drone 10 and the cluster 2 to then calculate the distance separating the two spots. According to another variant, the operation 30 does not require a reference optical pattern. In this case, the calibration of a stereoscopic image is performed according to:
-des coordonnées de cette image stéréoscopique,  coordinates of this stereoscopic image,
-de l'altitude du drone 10 enregistrée pour cette image stéréoscopique, et the altitude of the drone 10 recorded for this stereoscopic image, and
-de la distance à laquelle le drone 10 se trouvait de l'amas 2 au moment de l'acquisition de l'image stéréoscopique. Cette distance est par exemple mesurée au moyen d'un télémètre embarqué par le drone 10, puis enregistrée lors de l'acquisition de cette image stéréoscopique.  the distance at which the drone 10 was from the cluster 2 at the time of acquisition of the stereoscopic image. This distance is for example measured by means of a telemeter embedded by the drone 10, and recorded during the acquisition of this stereoscopic image.

Claims

REVENDICATIONS
1 . Procédé de mesure du volume d'un amas de matériaux, caractérisé en ce que ce procédé comporte : 1. Method for measuring the volume of a mass of materials, characterized in that this method comprises:
-la définition (20) d'un plan de vol d'un drone (10) pour survoler un amas (2) de matériaux ; the definition (20) of a flight plan of a drone (10) for flying over a cluster (2) of materials;
-l'acquisition (22), par le drone, lors du survol de l'amas de matériaux suivant le plan de vol défini, d'une pluralité d'images stéréoscopiques de l'amas de matériaux, les images stéréoscopiques acquises étant aptes à former un modèle numérique de terrain représentant la topographie de surface de l'amas de matériaux ;  the acquisition (22), by the drone, during the overflight of the cluster of materials according to the defined flight plan, of a plurality of stereoscopic images of the mass of materials, the acquired stereoscopic images being able to form a digital terrain model representing the surface topography of the pile of materials;
- l'enregistrement (30) de données de calibration pour déterminer l'échelle des images stéréoscopiques acquises, cet enregistrement comportant le positionnement d'un motif optique de référence (6) sur l'amas de matériaux, préalablement à l'acquisition des images stéréoscopiques ;  the recording (30) of calibration data for determining the scale of the acquired stereoscopic images, this recording comprising the positioning of an optical reference pattern (6) on the mass of materials, prior to the acquisition of the images stereoscopic;
· le drone comportant une source de lumière, configurée pour projeter un motif optique prédéfini sur l'amas de matériaux ;  · The drone having a light source, configured to project a predefined optical pattern on the pile of materials;
• l'enregistrement des données de calibration comportant la projection du motif prédéfini sur l'amas de matériaux au moyen de la source de lumière, ce motif optique prédéfini formant le motif optique de référence ;  Recording the calibration data comprising the projection of the predefined pattern onto the mass of materials by means of the light source, this predefined optical pattern forming the reference optical pattern;
au moins une des images stéréoscopiques acquises de l'amas de matériaux comportant ledit motif optique de référence ; at least one of the acquired stereoscopic images of the cluster of materials comprising said optical reference pattern;
-la combinaison (28) desdites images acquises pour former le modèle numérique de terrain ;  the combination (28) of said acquired images to form the digital terrain model;
-le calcul (32) du volume de l'amas de matériaux à partir du modèle numérique de terrain formé.  the calculation (32) of the volume of the pile of materials from the digital terrain model formed.
2. Procédé selon la revendication 1 , dans lequel la source de lumière comporte deux pointeurs lasers, chacun de ces pointeurs étant configuré pour émettre un rayonnement laser suivant une trajectoire rectiligne, lesdites trajectoires étant parallèles entre elles et séparées l'une de l'autre par une distance prédéfinie. 2. Method according to claim 1, wherein the light source comprises two laser pointers, each of these pointers being configured to emit laser radiation along a rectilinear trajectory, said trajectories being parallel to each other and separated from each other by a predefined distance.
3. Procédé selon la revendication 1 , dans lequel : The method of claim 1, wherein:
-le drone comporte : the drone comprises:
• un dispositif de géolocalisation (16), apte à fournir des coordonnées géographiques indiquant la position du drone ;  • a geolocation device (16), able to provide geographical coordinates indicating the position of the drone;
• un télémètre, apte à mesurer la distance séparant le drone de la surface de l'amas de matériaux ; -l'enregistrement des données de calibration comporte, lors de l'acquisition des images stéréoscopiques, la détermination de la distance séparant le drone de la surface de l'amas de matériaux au moyen du télémètre. • a rangefinder, able to measure the distance separating the drone from the surface of the pile of materials; the recording of the calibration data comprises, during the acquisition of the stereoscopic images, the determination of the distance separating the drone from the surface of the mass of materials by means of the range finder.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le drone comporte une caméra stéréoscopique (14). 4. Method according to any one of claims 1 to 3, wherein the drone comprises a stereoscopic camera (14).
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les images stéréoscopiques acquises présentent deux à deux des portions communes. 5. Method according to any one of claims 1 to 4, wherein the acquired stereoscopic images present two by two common portions.
PCT/EP2014/053873 2013-04-18 2014-02-27 Method for measuring the volume of a cluster of materials WO2014170060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353513A FR3004801A1 (en) 2013-04-18 2013-04-18 METHOD FOR MEASURING THE VOLUME OF A MATERIAL AMAS
FR1353513 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014170060A1 true WO2014170060A1 (en) 2014-10-23

Family

ID=49111329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/053873 WO2014170060A1 (en) 2013-04-18 2014-02-27 Method for measuring the volume of a cluster of materials

Country Status (2)

Country Link
FR (1) FR3004801A1 (en)
WO (1) WO2014170060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186515A1 (en) * 2016-04-25 2017-11-02 Siemens Aktiengesellschaft Aircraft for scanning an object, and system for damage analysis for the object
CN109074612A (en) * 2016-03-31 2018-12-21 住友重机械工业株式会社 Construction machinery Work management system and construction machinery
US10217207B2 (en) 2016-01-20 2019-02-26 Ez3D, Llc System and method for structural inspection and construction estimation using an unmanned aerial vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100048A1 (en) * 1999-11-12 2001-05-16 Société N3DI S.A.R.L. Automatic building process of a digital model using stereoscopic image couples
US20060082590A1 (en) * 2004-10-14 2006-04-20 Stevick Glen R Method and apparatus for dynamic space-time imaging system
JP2008186145A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Aerial image processing apparatus and aerial image processing method
US20100250125A1 (en) * 2007-07-04 2010-09-30 Kristian Lundberg Arrangement and method for providing a three dimensional map representation of an area
EP2333481A1 (en) * 2009-11-27 2011-06-15 Thales Optoelectronic system and method for creating three-dimensional identification images
ES2366717A1 (en) * 2008-09-03 2011-10-25 Universidad De Sevilla Apparatus for obtaining information on work and infrastructures which is based on an unmanned air vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100048A1 (en) * 1999-11-12 2001-05-16 Société N3DI S.A.R.L. Automatic building process of a digital model using stereoscopic image couples
US20060082590A1 (en) * 2004-10-14 2006-04-20 Stevick Glen R Method and apparatus for dynamic space-time imaging system
JP2008186145A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Aerial image processing apparatus and aerial image processing method
US20100250125A1 (en) * 2007-07-04 2010-09-30 Kristian Lundberg Arrangement and method for providing a three dimensional map representation of an area
ES2366717A1 (en) * 2008-09-03 2011-10-25 Universidad De Sevilla Apparatus for obtaining information on work and infrastructures which is based on an unmanned air vehicle
EP2333481A1 (en) * 2009-11-27 2011-06-15 Thales Optoelectronic system and method for creating three-dimensional identification images

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10217207B2 (en) 2016-01-20 2019-02-26 Ez3D, Llc System and method for structural inspection and construction estimation using an unmanned aerial vehicle
US10853931B2 (en) 2016-01-20 2020-12-01 Ez3D Technologies, Inc. System and method for structural inspection and construction estimation using an unmanned aerial vehicle
CN109074612A (en) * 2016-03-31 2018-12-21 住友重机械工业株式会社 Construction machinery Work management system and construction machinery
WO2017186515A1 (en) * 2016-04-25 2017-11-02 Siemens Aktiengesellschaft Aircraft for scanning an object, and system for damage analysis for the object
CN109073498A (en) * 2016-04-25 2018-12-21 西门子股份公司 For the mobile aircraft of sweep object and the system of the Failure analysis for object
JP2019515272A (en) * 2016-04-25 2019-06-06 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft System for analyzing the damage of an aircraft and an object scanning an object
CN109073498B (en) * 2016-04-25 2020-10-16 西门子股份公司 System for damage analysis of objects
DE102016206982B4 (en) 2016-04-25 2022-02-10 Siemens Aktiengesellschaft Airmobile for scanning an object and system for damage analysis of the object
US11513029B2 (en) 2016-04-25 2022-11-29 Siemens Aktiengesellschaft Moving flying object for scanning an object, and system for analyzing damage to the object

Also Published As

Publication number Publication date
FR3004801A1 (en) 2014-10-24

Similar Documents

Publication Publication Date Title
US9336568B2 (en) Unmanned aerial vehicle image processing system and method
EP2375299B1 (en) Flight management system for an unmanned aircraft
US11866167B2 (en) Method and algorithm for flight, movement, autonomy, in GPS, communication, degraded, denied, obstructed non optimal environment
FR3038991A1 (en) AUTOMATIC ASSISTANCE METHOD FOR LANDING AN AIRCRAFT
EP3271789B1 (en) Automatic assistance method for landing an aircraft
US11022426B2 (en) Layer thickness measurement of soil covering
JP7007137B2 (en) Information processing equipment, information processing methods and programs for information processing
EP2932182B1 (en) Method for accurately geolocating an image sensor installed on board an aircraft
EP2932341A1 (en) Method for controlling a set of robots, and set of robots
FR3054357A1 (en) METHOD AND DEVICE FOR DETERMINING THE POSITION OF AN AIRCRAFT DURING AN APPROACH FOR LANDING
FR3077393A1 (en) Aerial vehicles with artificial vision
WO2014170060A1 (en) Method for measuring the volume of a cluster of materials
FR2984577A1 (en) AIRCRAFT ASSISTANCE ASSISTANCE SYSTEM, IN PARTICULAR AID FOR LANDING, APPROACHING AND NAVIGATION
JP2007033258A (en) Method and device for observing object to be observed
WO2014146884A1 (en) Method for observing an area by means of a drone
EP2407953B1 (en) Enhanced piloting assistance method for an aircraft
CN101762269A (en) Region topographic map low-altitude mapping technique without control point and equipment thereof
WO2021014294A1 (en) Method and device for calibrating an inertial unit
EP3620852B1 (en) Method of capturing aerial images of a geographical area, method for three-dimensional mapping of a geographical area and aircraft for implementing such methods
FR2852685A1 (en) METHOD AND DEVICE FOR DETERMINING AT LEAST ONE VERTICAL POSITION INFORMATION OF AN AIRCRAFT.
WO2020157425A1 (en) Locating method
WO2015162151A1 (en) Method for guiding an aircraft
WO2022219007A1 (en) Automatic adaptation of the vertical profile of an aircraft on the basis of a positional uncertainty
EP4198947A1 (en) Method for identifying a landing area, associated computer program and electronic device
WO2022152723A1 (en) Electronic device for storing a terrain database, method for generating such a database, avionics system, monitoring method and associated computer programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14706865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14706865

Country of ref document: EP

Kind code of ref document: A1