WO2014169583A1 - 一种高频电子直流镇流器电路及荧光灯 - Google Patents

一种高频电子直流镇流器电路及荧光灯 Download PDF

Info

Publication number
WO2014169583A1
WO2014169583A1 PCT/CN2013/084581 CN2013084581W WO2014169583A1 WO 2014169583 A1 WO2014169583 A1 WO 2014169583A1 CN 2013084581 W CN2013084581 W CN 2013084581W WO 2014169583 A1 WO2014169583 A1 WO 2014169583A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
capacitor
delay control
npn transistor
module
Prior art date
Application number
PCT/CN2013/084581
Other languages
English (en)
French (fr)
Inventor
黄燕耀
黄仰伟
Original Assignee
Huang Yanyao
Huang Yangwei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Yanyao, Huang Yangwei filed Critical Huang Yanyao
Publication of WO2014169583A1 publication Critical patent/WO2014169583A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B35/00Electric light sources using a combination of different types of light generation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant

Definitions

  • the invention belongs to the field of circuits, and in particular relates to a high frequency electronic DC ballast circuit and a fluorescent lamp.
  • Inductive ballasts which are mostly used in fluorescent lamps, consume a large amount of metal materials, and at the same time waste a large amount of electric energy, and the alternating current voltage changes sinusoidally cyclically.
  • the AC ballast produces periodic alternating changes in the fluorescent lamp, which easily causes black circles at both ends of the fluorescent tube, affecting the illumination brightness and reducing the service life of the fluorescent tube.
  • the invention provides a high-frequency electronic DC ballast circuit, which aims to solve the problem of using a high-frequency AC power supply to generate a large amount of electric energy waste in the prior art, which is easy to cause black circles at both ends of the fluorescent lamp tube and has a reduced service life.
  • the present invention provides a high frequency electronic DC ballast circuit connected to an alternating current and a load, the high frequency electronic DC ballast circuit comprising alternating currents connected in sequence,
  • the EMI filter module, the first AC/DC conversion module, and the ballast module, the high frequency electronic DC ballast circuit further includes:
  • a second AC/DC conversion module is respectively connected to the ballast module and the load, and converts the high frequency high voltage alternating current outputted by the ballast module into a high frequency high voltage direct current to provide work for the load Voltage;
  • the delay control module includes four relay switches connected in series, and the delay control module is respectively connected to the alternating current and the load, and is used for controlling the timing of the four relay switches to change the on-off state.
  • the EMI filtering module includes:
  • the first end of the coil L1 is connected to the first end of the filter capacitor C2 and the first end of the resistor R1, and the first end of the resistor R1 is the first output end of the EMI filter module
  • the second end of the resistor R1 is connected to the second end of the filter capacitor C2 and the second end of the mutual inductance coil L2, and the second end of the resistor R1 is the second output end of the EMI filter module.
  • the first end of the mutual inductance coil L2 is respectively connected to the filter capacitor C1 and the second end of the alternating current.
  • the first AC/DC conversion module is a rectifier bridge BD1;
  • the first output end of the EMI filter module is connected to the first input end of the rectifier bridge BD1, and the second output end of the EMI filter module is connected to the second input end of the rectifier bridge BD1.
  • ballast module includes:
  • An anode of the polar capacitor C3 is connected to an output end of the ballast module, and is connected to an output end of the rectifier bridge BD1, and a positive pole of the polar capacitor C3 and a first end of the resistor R2 are connected to each other.
  • the cathode of the diode D1 and the collector of the NPN transistor Q1 and the first of the capacitor C5 The second end of the resistor R2 and the anode of the diode D3 are connected to the first end of the two-terminal AC switch D4 and the first end of the capacitor C4, and the negative pole of the polar capacitor C3.
  • the second end of the capacitor C4 and the second end of the resistor R4 are connected to the second end of the inductor Tc and the first end of the capacitor C6, and the cathode of the polarity capacitor C3 is connected to the a grounding end of the rectifier bridge BD1, a cathode of the diode D3 and an anode of the diode D1 are connected to a second end of the resistor R3 and a collector of the NPN transistor Q2, and a base of the NPN transistor Q1 a first end of the resistor R5, a second end of the resistor R5 is connected to the first end of the inductor Ta, and a second end of the inductor Ta is connected to the first end of the inductor Tb.
  • the second end of the inductor Tb is connected to the first end of the inductor L3, and the common end of the inductor Ta and the inductor Tb is connected to the second end of the resistor R3, the two-terminal AC switch a second end of the D4 is connected to a base of the NPN transistor Q2 and a first end of the resistor R6, the NPN transistor Q2
  • the emitter is connected to the first end of the resistor R4, the second end of the resistor R6 is connected to the first end of the inductor Tc, and the second end of the capacitor C5 is respectively connected to the first end of the capacitor C7.
  • the second end of the capacitor C6 is connected, the second end of the inductor L3 is connected to the second end of the capacitor C7, and the common connection end of the inductor L3 and the capacitor C7 is the first of the ballast module
  • An output terminal, the common connection end of the capacitor C5 and the capacitor C6 is a second output end of the ballast module.
  • the delay control module includes a transformer T1, a rectifier bridge BD3, a filtering unit, a first delay control unit, a second delay control unit, and an intermediate relay control unit that are sequentially connected.
  • the primary of the transformer T1 is connected to two ends of the alternating current, and the secondary of the transformer T1 is respectively connected to the first input end and the second input end of the rectifier bridge BD3, and the filtering unit includes a parallel resistor. R7 and a polar capacitor C8, wherein the first end and the second end of the filtering unit are respectively connected to an output end and a ground end of the rectifier bridge BD3, the first delay control unit and the second delay control a unit connected in parallel between the filtering unit and the intermediate relay control unit, the middle A relay control unit is coupled to the load.
  • first delay control unit and the second delay control unit have the same circuit structure and are connected in parallel, and the first delay control unit includes a resistor R8, a resistor R9, a resistor R10, a resistor R11, and a polarity.
  • Capacitor C9 electrolytic capacitor C10, Zener diode ZD1, NPN type transistor Q3, NPN type transistor Q4, PNP type transistor Q5, delay control relay KT1 and delay control switch KT2-1; the first end of the resistor R8 is respectively Connected to the first end of the filtering unit, the first end of the resistor R10, and the emitter of the PNP transistor Q5, and the resistor R9 is connected in series with the delay control switch KT2-1
  • the capacitor C9 is connected in parallel between the second end of the resistor R8 and the anode of the Zener diode ZD1, and the anode of the Zener diode ZD1 is connected to the second end of the filter unit, the NPN transistor a base of Q3 is connected to a common connection end of the resistor R8 and the polarity capacitor C9, and a collector of the NPN transistor Q3 is connected to a base of the PNP type transistor Q5 through the resistor R11.
  • the emitter of the transistor Q3 is connected to the base of the NPN transistor Q4, and the emitter of the NPN transistor Q4 is respectively connected to the cathode of the Zener diode ZD1 and the second end of the resistor R10, the NPN
  • the collector of the transistor Q4 is connected to the collector of the NPN transistor Q3, and the electrolytic capacitor C10 is connected in parallel with the delay control relay KT1 in the collector of the PNP transistor Q5 and the Zener diode ZD1.
  • the first end of the resistor R10 is the first output end of the first delay control unit, and the anode of the Zener diode ZD1 is the second output end of the first delay control unit ;
  • the second delay control unit includes a resistor R12, a resistor R13, a resistor R14, a resistor R15, a polarity capacitor C11, an electrolytic capacitor C12, a Zener diode ZD2, a NPN transistor Q6, a NPN transistor Q7, and a PNP transistor Q8.
  • a delay control relay KT2 and a delay control switch KT1-1 a first end of the resistor R12 and a first end of the filter unit, a first end of the resistor R14, and a transmission of the PNP transistor Q8 Pole connection, the resistor R13 and the delay control
  • the switch KTl-1 is connected in series with the polar capacitor C11 in parallel between the second end of the resistor R12 and the anode of the Zener diode ZD2, the anode of the Zener diode ZD2 and the filtering unit a second terminal connection, a base of the NPN transistor Q6 is connected to a common connection end of the resistor R12 and the polarity capacitor C11, and a collector of the NPN transistor Q6 passes through the resistor R15 and the a base of the PNP-type transistor Q8 is connected, an emitter of the NPN-type transistor Q6 is connected to a base of the NPN-type transistor Q7, and an emission stage of the NPN-type transistor Q7 is respectively
  • the second end of the resistor R14 is connected, the collector of the NPN transistor Q7 is connected to the collector of the NPN transistor Q6, and the electrolytic capacitor C12 is connected in parallel with the delay control relay KT2 at the PNP.
  • the first end of the resistor R14 is the first output end of the second delay control unit, and the anode of the Zener diode ZD2 is a second output of the second delay control unit.
  • the intermediate relay control unit includes:
  • the relay switch K1-3, the relay switch K1-1, the relay switch K1-2, and the relay switch K1-4 are sequentially connected in series, the delay control switch KT1-2 and the delay control a switch ⁇ 2-2 is connected in parallel between the second output end of the first delay control unit and the second end of the intermediate relay K1, and the first end of the load is connected to the relay switch K1-3 The first end is connected between the first end of the relay switch K1-2 and the second end of the relay switch K1-4 between.
  • the second AC/DC conversion module is a rectifier bridge BD2;
  • a first input end of the rectifier bridge BD2 is connected to a first output end of the ballast module, and a second input end of the rectifier bridge BD2 is connected to a second output end of the ballast module, the rectifier bridge BD2
  • the output end is connected between the first end of the relay switch K1-1 and the second end of the relay switch K1-2, the ground end of the rectifier bridge BD2 and the first end of the relay switch K1-4
  • the second end of the relay switch K1-3 is connected.
  • Another object of the present invention is to provide a fluorescent lamp connected to a load, the load comprising a straight tube type fluorescent lamp tube, a color straight tube type fluorescent lamp tube, a circular fluorescent lamp tube, and a compact energy-saving fluorescent lamp tube, wherein the fluorescent lamp comprises A high frequency electronic DC ballast circuit as described above.
  • the high-frequency high-voltage alternating current outputted by the ballast module is converted into a high-frequency high-voltage direct current by the second AC-DC conversion module to provide a working voltage for the fluorescent lamp, so that the fluorescent lamp works more stably, and the delay control module is used to control the flow direction of the fluorescent lamp.
  • the timing of the current passing through the fluorescent lamp is changed, and the high-frequency high-voltage direct current is prevented from flowing through the fluorescent tube in one direction for a long time, so that a black circle is generated at one end of the fluorescent tube, which affects the illumination brightness of the fluorescent lamp and reduces the life of the fluorescent lamp.
  • FIG. 1 is a block diagram of a high frequency electronic DC ballast circuit according to an embodiment of the present invention
  • FIG. 2 is a circuit block diagram of a high frequency electronic DC ballast circuit according to an embodiment of the present invention
  • the circuit structure diagram of the fluorescent lamp provided by the example. detailed description
  • the present invention provides a high frequency electronic DC ballast circuit, and an alternating current AC.
  • the high frequency electronic DC ballast circuit includes an alternating current AC, an EMI filter module 201, a first AC/DC converter module 202, and a ballast module 203, which are sequentially connected.
  • the high frequency electronic DC ballast circuit further includes:
  • the second AC/DC conversion module 204 is respectively connected to the ballast module 203 and the load 300, and converts the high frequency high voltage alternating current outputted by the ballast module 203 into high frequency high voltage direct current to provide a working voltage for the load 300;
  • the delay control module 205 includes four relay switches Kl-3, a relay switch Kl-1, a relay switch Kl-2, and a relay switch K1-4, which are sequentially connected in series, and the delay control module 205 is respectively connected to the alternating current AC and the load 300. It is used to control the timing of four relay switches to change the on and off state.
  • the embodiment of the invention is mainly applicable to the connection of the load 300 with a power of 30 W or more, and the load 300 includes an energy-saving lamp, a fluorescent lamp, a fluorescent lamp and the like.
  • the second AC/DC conversion module 204 converts the high frequency high voltage alternating current outputted by the ballast module 203 into a high frequency high voltage direct current to supply the working voltage to the load 300, and uses the delay control module 205 to control the current flow of the load 300 to pass the load 300.
  • the current timing changes, avoiding the problem that the traditional AC power supply causes the fluorescent lamp to be gray at one end and reduces the life of the fluorescent lamp.
  • the load 300 includes an energy saving lamp, a fluorescent lamp, a fluorescent lamp, and the like.
  • the EMI filter module 201 includes: a resistor R1, a filter capacitor Cl, a filter capacitor C2, a mutual inductance coil L1, and a mutual inductance coil L2;
  • the first end of the filter capacitor C1 is connected to the first end of the mutual inductance coil L1 and the first end of the alternating current AC, and the second end of the mutual inductance coil L1 is respectively connected to the first end of the filter capacitor C2 and the first end of the resistor R1.
  • the first end of the resistor R1 is the first output end of the EMI filter module 201, and the second end of the resistor R1 is respectively connected to the second end of the filter capacitor C2 and the second end of the mutual inductance coil L2, and the second end of the resistor R1 is EMI.
  • the second output end of the filter module 201 has a first end of the mutual inductance coil L2 and a second end of the filter capacitor C1 and the alternating current AC.
  • the first AC/DC conversion module 202 is a rectifier bridge BD1; the first output end of the EMI filter module 201 is connected to the first input end of the rectifier bridge BD1, and the second output end of the EMI filter module 201 is connected to the second output end of the rectifier bridge BD1. Input.
  • the ballast module 203 includes: a polarity capacitor C3, a capacitor C4, a capacitor C5, a capacitor C6, a capacitor C7, a resistor R3, a resistor R4, a resistor R5, a resistor R6, a diode D1, a diode D2, a diode D3, and two ends.
  • AC switch D4 NPN type transistor Ql, NPN type transistor Q2, inductor coil Ta, inductor coil Tb, inductor coil Tc and inductor L3;
  • the positive pole of the polar capacitor C3 is the input end of the ballast module 203, and is connected to the output end of the rectifier bridge BD1.
  • the positive pole of the polar capacitor C3 and the first end of the resistor R2 are connected to the cathode of the diode D1 and the NPN transistor Q1.
  • the collector and the first end of the capacitor C5, the second end of the resistor R2 and the anode of the diode D3 are connected to the first end of the two-terminal AC switch D4 and the first end of the capacitor C4, the cathode of the polarity capacitor C3, the capacitor C4
  • the second end of the resistor R4 and the second end of the resistor R4 are connected to the second end of the inductor Tc and the first end of the capacitor C6, the cathode of the polarity capacitor C3 is connected to the ground of the rectifier bridge BD1, the cathode of the diode D3 and the diode D1.
  • the anode is connected to the second end of the resistor R3 and the collector of the NPN transistor Q2.
  • the base of the NPN transistor Q1 is connected to the first end of the resistor R5, and the second end of the resistor R5 is connected to the first end of the inductor Ta.
  • the second end of the inductor Ta is connected to the first end of the inductor Tb, the second end of the inductor Tb is connected to the first end of the inductor L3, and the common end of the inductor Ta and the inductor Tb is connected to the second end of the resistor R3.
  • the second end of the two-terminal AC switch D4 is connected to the base of the NPN transistor Q2 and the resistor R
  • the first end of the NPN transistor Q2 is connected to the first end of the resistor R4
  • the second end of the resistor R6 is connected to the first end of the inductor Tc
  • the second end of the capacitor C5 is respectively connected to the first end of the capacitor C7.
  • Connected to the second end of the capacitor C6, the second end of the inductor L3 is connected to the second end of the capacitor C7
  • the common connection end of the inductor L3 and the capacitor C7 is the first output end of the ballast module 203
  • the capacitor C5 and the capacitor C6 The common connection is the second output of the ballast module 203.
  • the inductive coil Ta, the inductive coil Tb, and the inductive coil Tc of the ballast module 203 employ a toroidal ferrite core (Fe 2 0 3 ) to enhance the reaction sensitivity of the circuit.
  • the delay control module 205 includes a transformer T1, a rectifier bridge BD3, a filtering unit 2052, a first delay control unit 2053, a second delay control unit 2054, and an intermediate relay control unit 2055 that are sequentially connected.
  • the primary of the transformer T1 is connected to the two ends of the alternating current AC
  • the secondary of the transformer T1 is respectively connected to the first input end and the second input end of the rectifier bridge BD3
  • the filtering unit 2052 includes the parallel resistor R7 and the polarity.
  • Capacitor C8 the first end and the second end of the filtering unit 2052 are respectively connected to the output end and the ground end of the rectifier bridge BD3, and the first delay control unit 2053 and the second delay control unit 2054 are connected in parallel in the filtering unit 2052 and the middle.
  • the intermediate relay control unit 2055 is connected to the load K.
  • the first delay control unit 2053 is connected in parallel with the second delay control unit 2054 and has the same circuit structure.
  • the first delay control unit 2053 includes a resistor R8, a resistor R9, a resistor R10, a resistor R11, and a polarity capacitor C9.
  • the first end of the resistor R8 is respectively connected to the first end of the filtering unit 2052, the first end of the resistor R10, and the emitter of the PNP transistor Q5, and the resistor R9 is connected in series with the delay control switch KT2-1 and then connected in parallel with the polarity capacitor C9.
  • the anode of the Zener diode ZD1 is connected to the second end of the filter unit 2052, and the base of the NPN transistor Q3 is connected to the resistor R8 and the polarity capacitor C9.
  • the common connection is connected.
  • the collector of the NPN transistor Q3 is connected to the base of the PNP transistor Q5 through the resistor R11, the emitter of the NPN transistor Q3 is connected to the base of the NPN transistor Q4, and the emission level of the NPN transistor Q4 is respectively Cathode with Zener tube ZD1 Connected to the second end of the resistor R10, the collector of the NPN transistor Q4 is connected to the collector of the NPN transistor Q3, and the electrolytic capacitor C10 and the delay control relay KT1 are connected in parallel to the collector and the Zener of the PNP transistor Q5. Between the anodes of ZD1, the first end of the resistor R10 is the first output end of the first delay control unit 2053, and the anode of the Zener diode ZD1 is the second output end of the first delay control unit 2053.
  • the second delay control unit 2054 includes a resistor R12, a resistor R13, a resistor R14, a resistor R15, a polarity capacitor C11, an electrolytic capacitor C12, a Zener diode ZD2, a NPN transistor Q6, a NPN transistor Q7, a PNP transistor Q8, and a time.
  • the control switch KT1-1 is connected in series with the polarity capacitor C11 in parallel between the second end of the resistor R12 and the anode of the Zener diode ZD2, and the anode of the Zener diode ⁇ 2 is connected to the second end of the filter unit 2052, the NPN type transistor
  • the base of Q6 is connected to the common connection of resistor R12 and polarity capacitor C11.
  • the collector of NPN transistor Q6 is connected to the base of PNP transistor Q8 through resistor R15.
  • the emitter of NPN transistor Q6 and NPN transistor Q7 The base connection of the NPN transistor Q7 is connected to the cathode of the Zener ZD2 and the second end of the resistor R14, and the collector and NPN of the NPN transistor Q7
  • the collector of the transistor Q6 is connected, the electrolytic capacitor C12 and the delay control relay KT2 are connected in parallel between the collector of the PNP transistor Q8 and the anode of the Zener diode ZD2, and the first end of the resistor R14 is the second delay control unit.
  • the first output of 2054, the anode of the Zener diode ZD2 is the second output of the second delay control unit 2054.
  • NPN type transistors Q3 and Q4 can be replaced by N type MOS tubes
  • PNP type transistors Q5 can be replaced with P type MOS tubes.
  • the intermediate relay control unit 2055 includes: Intermediate relay K1, delay control switch ⁇ 1-2, delay control switch ⁇ 2-2, relay switch Kl-1, relay switch Kl-2, relay switch K1-3 and relay switch Kl-4;
  • the relay switch Kl-3, the relay switch Kl-1, the relay switch Kl-2, and the relay switch K1-4 are sequentially connected in series, and the delay control switch KT1-2 and the delay control switch KT2-2 are connected in parallel in the first delay control.
  • the first end of the load K is connected between the first end of the relay switch K1-3 and the second end of the relay switch K1-1, the load K The second end is connected between the first end of the relay switch K1-2 and the second end of the relay switch K1-4.
  • the intermediate relay K1 controls the on/off of the relay switch Kl-1, the relay switch Kl-2, the relay switch K1-3, and the relay switch Kl-4, respectively, to change the current flow through the load K, such as The control relay switch K1-2 and the relay switch K1-3 are disconnected, and the control relay switch K1-1 and the relay switch K1-4 are turned on, so that the current of the load K is in one direction, and the relay switch K1-2 and the relay switch K1- are controlled. 3 is turned on, the control relay switch K1-1 and the relay switch K1-4 are disconnected, so that the current of the load K is in the other direction, and the cycle control is performed to change the timing of the current flowing through the load K.
  • the second AC/DC conversion module 204 is a rectifier bridge BD2;
  • the first input end of the rectifier bridge BD2 is connected to the first output end of the ballast module 203, the second input end of the rectifier bridge BD2 is connected to the second output end of the ballast module 203, and the output end of the rectifier bridge BD2 is connected to the relay switch
  • the first end of the K1-1 and the second end of the relay switch K1-2, the ground end of the rectifier bridge BD2 is connected to the first end of the relay switch K1-4 and the second end of the relay switch K1-3.
  • the EMI filter module 201 filters the commercial power, that is, the AC power, and converts it into high voltage direct current through the first AC/DC conversion module.
  • the ballast module 203 composed of two triodes turns the high voltage DC into a high voltage. Frequency high-voltage alternating current, and then the second AC-DC conversion module 204 converts the high-frequency high-voltage alternating current into the high-frequency high-voltage direct current, and the first delay control unit 2053 and the second delay control unit 2054 are initially turned off and closed.
  • the second delay control unit 2054 is in an on state, and the intermediate relay K1 controls the relay switch K1-1 and the relay.
  • the switch K1-4 is turned on, and the delay control switch K1-3 and the relay switch K1-2 are turned off.
  • the first delay control unit 2053 is turned on
  • the second delay control unit 2054 is in a saturated cut-off state.
  • the relay switch K1 controls the relay switch K1-1 and the relay switch K1-4 to be disconnected, and the extension control switch K1-3 and the relay switch K1-2 are turned on, so that the current flowing through the load K is automatically generated after a certain time. Change, to avoid high-frequency high-voltage DC power flowing through the load K in one direction for a long time, so that the black end of the load K causes a damage to the load K.
  • the embodiment of the invention further provides a fluorescent lamp connected to the load K.
  • the load K comprises a straight tube type fluorescent tube, a color straight tube type fluorescent tube, a circular fluorescent tube and a compact energy-saving fluorescent lamp tube, and the fluorescent lamp comprises the above-mentioned high frequency electron. DC ballast circuit.
  • the load K is a straight tubular fluorescent tube M, and two legs of the two ends of the straight tubular fluorescent lamp M are respectively connected together. .
  • a single-lead foot base can also be designed for use in the straight tube-shaped fluorescent lamp tube M provided by the embodiment of the present invention, and the straight tube-shaped fluorescent lamp single-lead leg is also performed in the embodiment of the present invention. Public content.
  • the fluorescent tube K is also applicable to other types of lamps such as energy-saving lamps and fluorescent tubes having a power of 30 W or more.
  • the high frequency output of the ballast module is output through the second AC/DC conversion module.
  • the high-voltage alternating current is converted into high-frequency high-voltage direct current to provide working voltage for the fluorescent lamp, so that the fluorescent lamp works more stably.
  • the delay control module is used to control the current flow of the fluorescent lamp, so that the current timing of the fluorescent lamp is changed, and the high-frequency high-voltage direct current is prevented from flowing through the fluorescent tube in one direction for a long time. , causing a black circle at one end of the fluorescent tube, affecting the illumination brightness of the fluorescent lamp, and reducing the life of the fluorescent lamp.

Abstract

一种高频电子直流镇流器电路,该高频电子直流镇流器电路包括依次连接的交流电模块(100)、EMI滤波模块(201)、第一交直流转换模块(202)、镇流器模块(203)、第二交直流转换模块(204)以及负载(300);其中所述第二交直流转换模块(204)分别与所述镇流器模块(203)和所述负载(300)连接,将所述镇流器模块(203)输出的高频高压交流电转换为高频高压直流电为所述负载(300)提供工作电压;该高频电子直流镇流器电路还包括时延控制模块(205),该时延控制模块(205)包括4个串联的继电器开关,所述时延控制模块(205)分别与所述交流电模块(100)和所述负载(300)连接,用于控制4个继电器开关定时以改变通断状态;还提供了一种包括所述高频电子直流镇流器电路的荧光灯。

Description

说 明 书 一种高频电子直流镇流器电路及荧光灯 技术领域
本发明属于电路领域, 尤其涉及一种高频电子直流镇流器电路及荧光灯。
H 术
电力的发展极大的促进了社会的进步, 人们的生活越来越离不开电, 日常 照明, 工作照明都需要电, 电为人们的生活带来了极大的便利。
但是, 传统的照明荧光灯管都是在交流电的条件下使用, 荧光灯中大多使用的 电感式镇流器, 耗费了大量的金属材料, 同时浪费了大量的电能, 而且交流电 电压成正弦周期性变化, 交流镇流器在荧光灯中产生周期性交变, 易引起荧光 灯管两端产生黑圈, 影响照明亮度, 减少荧光灯管的使用寿命。
发明内容
本发明提供了一种高频电子直流镇流器电路, 旨在解决现有技术中采用高 频交流供电产生较大电能浪费, 易引起荧光灯管两端产生黑圈, 使用寿命减少 的问题。
为了解决上述技术问题, 本发明提供了一种高频电子直流镇流器电路,与 交流电和负载连接, 所述高频电子直流镇流器电路包括依次连接的交流电、
EMI滤波模块、 第一交直流转换模块以及镇流器模块, 所述高频电子直流镇流 器电路还包括:
第二交直流转换模块, 分别与所述镇流器模块和所述负载连接, 将所述镇 流器模块输出的高频高压交流电转换为高频高压直流电为所述负载提供工作 电压; 以及
时延控制模块, 包括 4个串联的继电器开关, 所述时延控制模块分别与所 述交流电和所述负载连接, 用于控制所述 4个继电器开关定时改变通断状态。
进一步地, 所述 EMI滤波模块包括:
电阻 Rl、 滤波电容 Cl、 滤波电容 C2、 互感线圈 L1以及互感线圈 L2; 所述滤波电容 C1的第一端分别与互感线圈 L1的第一端和所述交流电的 第一端连接, 所述互感线圈 L1的第二端分别与所述滤波电容 C2的第一端和 所述电阻 R1的第一端连接, 所述电阻 R1的第一端为所述 EMI滤波模块的第 一输出端, 所述电阻 R1的第二端分别与所述滤波电容 C2的第二端和所述互 感线圈 L2的第二端连接, 所述电阻 R1的第二端为所述 EMI滤波模块的第二 输出端, 所述互感线圈 L2的第一端分别与所述滤波电容 C1和所述交流电的 第二端。
进一步地, 所述第一交直流转换模块为整流桥 BD1;
所述 EMI滤波模块的第一输出端接所述整流桥 BD1的第一输入端, 所述 EMI滤波模块的第二输出端接所述整流桥 BD1的第二输入端。
进一步地, 所述镇流器模块包括:
极性电容 C3、 电容 C4、 电容 C5、 电容 C6、 电容 C7、 电阻 R3、 电阻 R4、 电阻 R5、 电阻 R6、 二极管 Dl、 二极管 D2、 二极管 D3、 二端交流电开关 D4、 NPN型三极管 Ql、 NPN型三极管 Q2、 电感线圈 Ta、 电感线圈 Tb、 电感线圈 Tc以及电感 L3;
所述极性电容 C3的正极作为所述镇流器模块的输入端, 接所述整流桥 BD1的输出端, 所述极性电容 C3的正极和所述电阻 R2的第一端共接于所述 二极管 D1的阴极和所述 NPN型三极管 Q1的集电极以及所述电容 C5的第一 端, 所述电阻 R2的第二端和所述二极管 D3的阳极共接于所述二端交流电开 关 D4的第一端和所述电容 C4的第一端, 所述极性电容 C3的负极、 所述电容 C4的第二端及所述电阻 R4的第二端共接于所述电感线圈 Tc的第二端和所述 电容 C6的第一端, 所述极性电容 C3的负极接所述整流桥 BD1的接地端, 所 述二极管 D3的阴极和所述二极管 D1的阳极共接于所述电阻 R3的第二端和所 述 NPN型三极管 Q2的集电极, 所述 NPN型三极管 Q1的基极接所述电阻 R5 的第一端, 所述电阻 R5的第二端接所述电感线圈 Ta的第一端,所述电感线圈 Ta的第二端接所述电感线圈 Tb的第一端, 所述电感线圈 Tb的第二端接所述 电感 L3的第一端, 所述电感线圈 Ta和所述电感线圈 Tb的公共连接端接所述 电阻 R3的第二端, 所述二端交流电开关 D4的第二端接所述 NPN型三极管 Q2的基极和所述电阻 R6的第一端, 所述 NPN型三极管 Q2的发射极接所述 电阻 R4的第一端, 所述电阻 R6的第二端接所述电感线圈 Tc的第一端, 所述 电容 C5的第二端分别与所述电容 C7的第一端和所述电容 C6的第二端连接, 所述电感 L3的第二端接所述电容 C7的第二端, 所述电感 L3和所述电容 C7 的公共连接端为所述镇流器模块的第一输出端, 所述电容 C5和所述电容 C6 的公共连接端为所述镇流器模块的第二输出端。
进一步地, 所述时延控制模块包括依次连接的变压器 Tl、 整流桥 BD3、 滤波单元、 第一时延控制单元、 第二时延控制单元以及中间继电器控制单元。
进一步地,所述变压器 T1的初级接在交流电的两端,所述变压器 T1的次 级分别与所述整流桥 BD3的第一输入端和第二输入端连接, 所述滤波单元包 括并联的电阻 R7和极性电容 C8,所述滤波单元的第一端和第二端分别与所述 整流桥 BD3的输出端和接地端连接, 所述第一时延控制单元和所述第二时延 控制单元并联连接在所述滤波单元和所述中间继电器控制单元之间,所述中间 继电器控制单元与所述负载连接。
进一步地,所述第一时延控制单元与所述第二时延控制单元电路结构相同 且并联连接, 所述第一时延控制单元包括电阻 R8、 电阻 R9、 电阻 R10、 电阻 Rll、 极性电容 C9、 电解电容 C10、 稳压管 ZD1、 NPN型三极管 Q3、 NPN型 三极管 Q4、PNP型三极管 Q5、时延控制继电器 KT1以及时延控制开关 KT2-1 ; 所述电阻 R8的第一端分别与所述滤波单元的第一端、 所述电阻 R10的第 一端以及所述 PNP型三极管 Q5的发射极连接, 所述电阻 R9与所述时延控制 开关 KT2- 1串联后与所述极性电容 C9并联连接在所述电阻 R8的第二端与所 述稳压管 ZD1的阳极之间, 所述稳压管 ZD1的阳极与所述滤波单元的第二端 连接, 所述 NPN型三极管 Q3的基极与所述电阻 R8和所述极性电容 C9的公 共连接端连接,所述 NPN型三极管 Q3的集电极通过所述电阻 Rl 1与所述 PNP 型三极管 Q5的基极连接, 所述 NPN型三极管 Q3的发射极与所述 NPN型三 极管 Q4的基极连接,所述 NPN型三极管 Q4的发射级分别与所述稳压管 ZD1 的阴极和所述电阻 R10的第二端连接, 所述 NPN型三极管 Q4的集电极与所 述 NPN型三极管 Q3的集电极连接, 所述电解电容 C10与所述时延控制继电 器 KT1并联连接在所述 PNP型三极管 Q5的集电极和所述稳压管 ZD1的阳极 之间,所述电阻 R10的第一端为所述第一时延控制单元的第一输出端, 所述稳 压管 ZD1的阳极为所述第一时延控制单元的第二输出端;
所述第二时延控制单元包括电阻 R12、 电阻 R13、 电阻 R14、 电阻 R15、 极性电容 Cll、 电解电容 C12、 稳压管 ZD2、 NPN型三极管 Q6、 NPN型三极 管 Q7、 PNP型三极管 Q8、 时延控制继电器 KT2以及时延控制开关 KT1-1 ; 所述电阻 R12的第一端分别与所述滤波单元的第一端、 所述电阻 R14的 第一端以及所述 PNP型三极管 Q8的发射极连接,所述电阻 R13与所述时延控 制开关 KTl-1 串联后与所述极性电容 Cll并联连接在所述电阻 R12的第二端 与所述稳压管 ZD2的阳极之间, 所述稳压管 ZD2的阳极与所述滤波单元的第 二端连接,所述 NPN型三极管 Q6的基极与所述电阻 R12和所述极性电容 C11 的公共连接端连接, 所述 NPN型三极管 Q6的集电极通过所述电阻 R15与所 述 PNP型三极管 Q8的基极连接,所述 NPN型三极管 Q6的发射极与所述 NPN 型三极管 Q7的基极连接, 所述 NPN型三极管 Q7的发射级分别与所述稳压管 ZD2的阴极和所述电阻 R14的第二端连接, 所述 NPN型三极管 Q7的集电极 与所述 NPN型三极管 Q6的集电极连接, 所述电解电容 C12与所述时延控制 继电器 KT2并联连接在所述 PNP型三极管 Q8的集电极和所述稳压管 ZD2的 阳极之间, 所述电阻 R14的第一端为所述第二时延控制单元的第一输出端,所 述稳压管 ZD2的阳极为所述第二时延控制单元的第二输出端。
进一步地, 所述中间继电器控制单元包括:
中间继电器 Kl、 时延控制开关 ΚΤ1-2、 时延控制开关 ΚΤ2-2、 继电器开 关 Kl-1、 继电器开关 Kl-2、 继电器开关 K1-3以及继电器开关 K1-4;
所述继电器开关 Kl-3、所述继电器开关 Kl-1、所述继电器开关 K1-2以及 所述继电器开关 K1-4依次串联连接, 所述时延控制开关 KT1-2和所述时延控 制开关 ΚΤ2-2并联连接在所述第一时延控制单元的第二输出端和所述中间继 电器 K1的第二端之间, 所述负载的第一端连接在所述继电器开关 K1-3的第 一端和所述继电器开关 K1-1的第二端之间, 所述负载的第二端连接在所述继 电器开关 K1-2的第一端和所述继电器开关 K1-4第二端之间。
进一步地, 所述第二交直流转换模块为整流桥 BD2;
所述整流桥 BD2的第一输入端接所述镇流器模块的第一输出端, 所述整 流桥 BD2的第二输入端接所述镇流器模块的第二输出端, 所述整流桥 BD2的 输出端连接在所述继电器开关 K1-1第一端和所述继电器开关 K1-2第二端之 间, 所述整流桥 BD2的接地端与所述继电器开关 K1-4的第一端和所述继电器 开关 K1-3的第二端连接。
本发明的目的还在于提供一种荧光灯, 与负载连接, 所述负载包括直管形 荧光灯灯管、 彩色直管型荧光灯灯管、 环形荧光灯灯管以及紧凑型节能荧光灯 灯管, 所述荧光灯包括如上所述的高频电子直流镇流器电路。
在本发明中, 通过第二交直流转换模块, 将镇流器模块输出的高频高压交 流电转换为高频高压直流电为荧光灯提供工作电压, 使荧光灯工作更稳定,采 用延控制模块控制荧光灯电流流向, 使通过荧光灯的电流定时改变, 避免高频 高压直流电长时间一个方向流经荧光灯管, 使荧光灯管一端产生黑圈, 影响荧 光灯的照明亮度, 降低荧光灯寿命。 附图说明
图 1是本发明实施例提供的高频电子直流镇流器电路的模块结构图; 图 2是本发明实施例提供的高频电子直流镇流器电路的电路结构图; 图 3是本发明实施例提供的荧光灯的电路结构图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。 如图 1所示, 本发明提供了一种高频电子直流镇流器电路, 与交流电 AC 和负载 300连接, 高频电子直流镇流器电路包括依次连接的交流电 AC、 EMI 滤波模块 201、 第一交直流转换模块 202以及镇流器模块 203 , 高频电子直流 镇流器电路还包括:
第二交直流转换模块 204, 分别与镇流器模块 203和负载 300连接, 将镇 流器模块 203输出的高频高压交流电转换为高频高压直流电为负载 300提供工 作电压; 以及
时延控制模块 205 , 包括 4个依次串联的继电器开关 Kl-3、 继电器开关 Kl-1、 继电器开关 Kl-2、 继电器开关 K1-4, 时延控制模块 205分别与交流电 AC和负载 300连接, 用于控制 4个继电器开关定时改变通断状态。
本发明实施例主要适用于功率 30W及以上的负载 300连接使用,负载 300 包括节能灯、 荧光灯、 日光灯等。 通过第二交直流转换模块 204, 将镇流器模 块 203输出的高频高压交流电转换为高频高压直流电为负载 300提供工作电 压, 采用延控制模块 205控制负载 300的电流流向, 使通过负载 300的电流定 时改变, 避免了传统交流电供电使荧光灯一端产生灰暗, 降低荧光灯寿命的问 题。 在本发明实施例中, 负载 300包括节能灯、 荧光灯、 日光灯等。
进一步地, 如图 2所示, EMI滤波模块 201包括: 电阻 Rl、 滤波电容 Cl、 滤波电容 C2、 互感线圈 L1以及互感线圈 L2;
滤波电容 C1的第一端分别与互感线圈 L1的第一端和交流电 AC的第一端 连接, 互感线圈 L1的第二端分别与滤波电容 C2的第一端和电阻 R1的第一端 连接, 电阻 R1的第一端为 EMI滤波模块 201的第一输出端, 电阻 R1的第二 端分别与滤波电容 C2的第二端和互感线圈 L2的第二端连接, 电阻 R1的第二 端为 EMI滤波模块 201的第二输出端, 互感线圈 L2的第一端分别与滤波电容 C1和交流电 AC的第二端。 进一步地, 第一交直流转换模块 202为整流桥 BD1 ; EMI滤波模块 201 的第一输出端接整流桥 BD1的第一输入端, EMI滤波模块 201的第二输出端 接整流桥 BD1的第二输入端。
进一步地, 镇流器模块 203包括: 极性电容 C3、 电容 C4、 电容 C5、 电容 C6、 电容 C7、 电阻 R3、 电阻 R4、 电阻 R5、 电阻 R6、 二极管 Dl、 二极管 D2、 二极管 D3、 二端交流电开关 D4、 NPN型三极管 Ql、 NPN型三极管 Q2、 电 感线圈 Ta、 电感线圈 Tb、 电感线圈 Tc以及电感 L3;
极性电容 C3的正极为镇流器模块 203的输入端,接整流桥 BD1的输出端, 极性电容 C3的正极和电阻 R2的第一端共接于二极管 D1的阴极和 NPN型三 极管 Q1的集电极以及电容 C5的第一端, 电阻 R2的第二端和二极管 D3的阳 极共接于二端交流电开关 D4的第一端和电容 C4的第一端,极性电容 C3的负 极、 电容 C4的第二端及电阻 R4的第二端共接于电感线圈 Tc的第二端和电容 C6的第一端,极性电容 C3的负极接整流桥 BD1的接地端,二极管 D3的阴极 和二极管 D1的阳极共接于电阻 R3的第二端和 NPN型三极管 Q2的集电极, NPN型三极管 Q1的基极接电阻 R5的第一端, 电阻 R5的第二端接电感线圈 Ta的第一端, 电感线圈 Ta的第二端接电感线圈 Tb的第一端, 电感线圈 Tb的 第二端接电感 L3的第一端, 电感线圈 Ta和电感线圈 Tb的公共连接端接电阻 R3的第二端, 二端交流电开关 D4的第二端接 NPN型三极管 Q2的基极和电 阻 R6的第一端, NPN型三极管 Q2的发射极接电阻 R4的第一端, 电阻 R6 的第二端接电感线圈 Tc的第一端, 电容 C5的第二端分别与电容 C7的第一端 和电容 C6的第二端连接, 电感 L3的第二端接电容 C7的第二端, 电感 L3和 电容 C7的公共连接端为镇流器模块 203的第一输出端, 电容 C5和电容 C6的 公共连接端为镇流器模块 203的第二输出端。 作为本发明一实施例, 镇流器模块 203中电感线圈 Ta、 电感线圈 Tb、 电 感线圈 Tc采用了环形铁氧体磁芯 ( Fe203 ), 增强电路的反应灵敏度。
进一步地, 时延控制模块 205包括依次连接的变压器 Tl、 整流桥 BD3、 滤波单元 2052、 第一时延控制单元 2053、 第二时延控制单元 2054以及中间继 电器控制单元 2055。
进一步地, 变压器 T1的初级接在交流电 AC的两端, 变压器 T1的次级分 别与所述整流桥 BD3的第一输入端和第二输入端连接, 滤波单元 2052包括并 联的电阻 R7和极性电容 C8 , 滤波单元 2052的第一端和第二端分别与整流桥 BD3的输出端和接地端连接, 第一时延控制单元 2053和第二时延控制单元 2054并联连接在滤波单元 2052和中间继电器控制单元 2055之间,中间继电器 控制单元 2055与负载 K连接。
进一步地,第一时延控制单元 2053与第二时延控制单元 2054并联连接且 电路结构相同, 第一时延控制单元 2053包括电阻 R8、 电阻 R9、 电阻 R10、电 阻 Rll、 极性电容 C9、 电解电容 C10、 稳压管 ZD1、 NPN型三极管 Q3、 NPN 型三极管 Q4、 PNP型三极管 Q5、 时延控制继电器 KT1以及时延控制开关 KT2-1;
电阻 R8的第一端分别与滤波单元 2052的第一端、 电阻 R10的第一端以 及 PNP型三极管 Q5的发射极连接, 电阻 R9与时延控制开关 KT2-1串联后与 极性电容 C9并联连接在电阻 R8的第二端与稳压管 ZD1的阳极之间, 稳压管 ZD1的阳极与滤波单元 2052的第二端连接, NPN型三极管 Q3的基极与电阻 R8和极性电容 C9的公共连接端连接, NPN型三极管 Q3的集电极通过电阻 R11与 PNP型三极管 Q5的基极连接, NPN型三极管 Q3的发射极与 NPN型 三极管 Q4的基极连接, NPN型三极管 Q4的发射级分别与稳压管 ZD1的阴极 和电阻 Rl 0的第二端连接, NPN型三极管 Q4的集电极与 NPN型三极管 Q3 的集电极连接, 电解电容 C10与时延控制继电器 KT1并联连接在 PNP型三极 管 Q5的集电极和稳压管 ZD1的阳极之间,电阻 R10的第一端为第一时延控制 单元 2053的第一输出端, 稳压管 ZD1的阳极为第一时延控制单元 2053的第 二输出端。
第二时延控制单元 2054包括电阻 R12、 电阻 R13、 电阻 R14、 电阻 R15、 极性电容 Cll、 电解电容 C12、 稳压管 ZD2、 NPN型三极管 Q6、 NPN型三极 管 Q7、 PNP型三极管 Q8、 时延控制继电器 KT2以及时延控制开关 KT1- 1; 电阻 R12的第一端分别与滤波单元 2052的第一端、 电阻 R14的第一端以 及 PNP型三极管 Q8的发射极连接, 电阻 R13与时延控制开关 KT1-1 串联后 与极性电容 C11并联连接在电阻 R12的第二端与稳压管 ZD2的阳极之间, 稳 压管 ΖΌ2的阳极与滤波单元 2052的第二端连接, NPN型三极管 Q6的基极 与电阻 R12和极性电容 C11的公共连接端连接, NPN型三极管 Q6的集电极 通过电阻 R15与 PNP型三极管 Q8的基极连接, NPN型三极管 Q6的发射极与 NPN型三极管 Q7的基极连接, NPN型三极管 Q7的发射级分别与稳压管 ZD2 的阴极和电阻 R14的第二端连接, NPN型三极管 Q7的集电极与 NPN型三极 管 Q6的集电极连接, 电解电容 C12与时延控制继电器 KT2并联连接在 PNP 型三极管 Q8的集电极和稳压管 ZD2的阳极之间,电阻 R14的第一端为第二时 延控制单元 2054的第一输出端, 稳压管 ZD2的阳极为所述第二时延控制单元 2054的第二输出端。
作为本发明一实施例, NPN型三极管 Q3和 Q4可以使用 N型 MOS管代 替, PNP型三极管 Q5可以使用 P型 MOS管代替。
进一步地, 中间继电器控制单元 2055包括: 中间继电器 Kl、 时延控制开关 ΚΤ1-2、 时延控制开关 ΚΤ2-2、 继电器开 关 Kl-1、 继电器开关 Kl-2、 继电器开关 K1-3以及继电器开关 Kl-4;
继电器开关 Kl-3、 继电器开关 Kl-1、 继电器开关 Kl-2以及继电器开关 K1-4依次串联连接, 时延控制开关 KT1-2和时延控制开关 KT2-2并联连接在 第一时延控制单元 2053的第二输出端和中间继电器 K1的第二端之间,负载 K 的第一端连接在继电器开关 K1-3的第一端和继电器开关 K1-1的第二端之间, 负载 K的第二端连接在继电器开关 K1-2的第一端和继电器开关 K1-4第二端 之间。
在本发明实施例中, 中间继电器 K1分别控制继电器开关 Kl-1、 继电器开 关 Kl-2、 继电器开关 K1-3以及继电器开关 Kl-4的通断, 以改变流经负载 K 的电流流向, 如控制继电器开关 K1-2和继电器开关 K1-3断开,控制继电器开 关 K1-1和继电器开关 K1-4导通, 使负载 K的电流为一个方向, 控制继电器 开关 K1-2和继电器开关 K1-3导通,控制继电器开关 K1-1和继电器开关 K1-4 断开, 使负载 K的电流为另一个方向, 循环控制, 使流经负载 K的电流方向 定时改变。
进一步地, 第二交直流转换模块 204为整流桥 BD2;
整流桥 BD2的第一输入端接镇流器模块 203的第一输出端, 整流桥 BD2 的第二输入端接镇流器模块 203的第二输出端, 整流桥 BD2的输出端连接在 继电器开关 K1-1第一端和继电器开关 K1-2第二端之间, 整流桥 BD2的接地 端与继电器开关 K1-4的第一端和继电器开关 K1-3的第二端连接。
以下结合本实施例对本发明实现的原理做进一步说明。
EMI滤波模块 201对市电即交流电 AC进行滤波,经过第一交直流转换模 块转换为高压直流电, 由二个三极管组成的镇流器模块 203将高压直流变成高 频高压交流电,再由第二交直流转换模块 204将高频高压交流电转换为高频高 压的直流电,第一时延控制单元 2053和第二时延控制单元 2054初始状态为一 个断开一个闭合, 在第一时延控制单元 2053充电的过程中有一个时延, 电流 来不及导通, 而此时第二时延控制单元 2054处于导通状态, 此时中间继电器 K1控制继电器开关 K1-1和继电器开关 K1-4导通,延控制开关 K1-3和继电器 开关 K1-2断开, 当第一时延控制单元 2053充电结束后导通, 第二时延控制单 元 2054处于饱和截止状态, 此时继电器开关 K1控制继电器开关 K1-1和继电 器开关 K1-4断开, 延控制开关 K1-3和继电器开关 K1-2导通, 这样就实现了 通过负载 K的直流电在一定时间后电流流向自动发生改变,避免高频高压直流 电长时间一个方向流经负载 K, 使负载 K一端产生黑圈, 给负载 K带来的损 伤。
本发明实施例还提供了一种荧光灯, 与负载 K连接, 负载 K包括直管形 荧光灯管、 彩色直管型荧光灯管、 环形荧光灯管以及紧凑型节能荧光灯灯管, 荧光灯包括上述的高频电子直流镇流器电路。
图 3示出了本发明实施例提供的荧光灯的电路图, 在本发明实施例中, 负 载 K为直管形荧光灯管 M, 直管形荧光灯灯管 M的两端的两个灯脚分别连接 在一起。
在本发明实施例中,还可以设计一种单引线的脚座用于给本发明实施例提 供的直管形荧光灯灯管 M使用, 直管形荧光灯单引线脚座也属于本发明实施 例进行公开的内容。
作为本发明一实施例, 荧光灯管 K还适用于功率为 30W及以上的节能灯 管、 日光灯管等其他类型的灯管。
在本发明实施例中, 通过第二交直流转换模块, 将镇流器模块输出的高频 高压交流电转换为高频高压直流电为荧光灯提供工作电压,使荧光灯工作更稳 定, 采用延控制模块控制荧光灯电流流向, 使通过荧光灯的电流定时改变,避 免高频高压直流电长时间一个方向流经荧光灯管, 使荧光灯管一端产生黑圈, 影响荧光灯的照明亮度, 降低荧光灯寿命。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权 利 要 求 书
1、 一种高频电子直流镇流器电路, 与交流电和负载连接, 所述高频电子 直流镇流器电路包括依次连接的交流电、 EMI滤波模块、 第一交直流转换模块 以及镇流器模块, 其特征在于, 所述高频电子直流镇流器电路还包括:
第二交直流转换模块, 分别与所述镇流器模块和所述负载连接, 将所述镇 流器模块输出的高频高压交流电转换为高频高压直流电为所述负载提供工作 电压; 以及
时延控制模块, 包括 4个串联的继电器开关, 所述时延控制模块分别与所 述交流电和所述负载连接, 用于控制所述 4个继电器开关定时改变通断状态。
2、如权利要求 1所述的高频电子直流镇流器电路,其特征在于,所述 EMI 滤波模块包括:
电阻 Rl、 滤波电容 Cl、 滤波电容 C2、 互感线圈 L1以及互感线圈 L2; 所述滤波电容 C1的第一端分别与互感线圈 L1的第一端和所述交流电的 第一端连接, 所述互感线圈 L1的第二端分别与所述滤波电容 C2的第一端和 所述电阻 R1的第一端连接, 所述电阻 R1的第一端为所述 EMI滤波模块的第 一输出端, 所述电阻 R1的第二端分别与所述滤波电容 C2的第二端和所述互 感线圈 L2的第二端连接, 所述电阻 R1的第二端为所述 EMI滤波模块的第二 输出端, 所述互感线圈 L2的第一端分别与所述滤波电容 C1和所述交流电的 第二端。
3、 如权利要求 2所述的高频电子直流镇流器电路, 其特征在于, 所述第 一交直流转换模块为整流桥 BD1 ;
所述 EMI滤波模块的第一输出端接所述整流桥 BD1的第一输入端, 所述 EMI滤波模块的第二输出端接所述整流桥 BD1的第二输入端。
4、 如权利要求 3所述的高频电子直流镇流器电路, 其特征在于, 所述镇 流器模块包括:
极性电容 C3、 电容 C4、 电容 C5、 电容 C6、 电容 C7、 电阻 R3、 电阻 R4、 电阻 R5、 电阻 R6、 二极管 Dl、 二极管 D2、 二极管 D3、 二端交流电开关 D4、 NPN型三极管 Ql、 NPN型三极管 Q2、 电感线圈 Ta、 电感线圈 Tb、 电感线圈 Tc以及电感 L3;
所述极性电容 C3的正极作为所述镇流器模块的输入端, 接所述整流桥 BD1的输出端, 所述极性电容 C3的正极和所述电阻 R2的第一端共接于所述 二极管 D1的阴极和所述 NPN型三极管 Q1的集电极以及所述电容 C5的第一 端, 所述电阻 R2的第二端和所述二极管 D3的阳极共接于所述二端交流电开 关 D4的第一端和所述电容 C4的第一端, 所述极性电容 C3的负极、 所述电容 C4的第二端及所述电阻 R4的第二端共接于所述电感线圈 Tc的第二端和所述 电容 C6的第一端, 所述极性电容 C3的负极接所述整流桥 BD1的接地端, 所 述二极管 D3的阴极和所述二极管 D1的阳极共接于所述电阻 R3的第二端和所 述 NPN型三极管 Q2的集电极, 所述 NPN型三极管 Q1的基极接所述电阻 R5 的第一端, 所述电阻 R5的第二端接所述电感线圈 Ta的第一端,所述电感线圈 Ta的第二端接所述电感线圈 Tb的第一端, 所述电感线圈 Tb的第二端接所述 电感 L3的第一端, 所述电感线圈 Ta和所述电感线圈 Tb的公共连接端接所述 电阻 R3的第二端, 所述二端交流电开关 D4的第二端接所述 NPN型三极管 Q2的基极和所述电阻 R6的第一端, 所述 NPN型三极管 Q2的发射极接所述 电阻 R4的第一端, 所述电阻 R6的第二端接所述电感线圈 Tc的第一端, 所述 电容 C5的第二端分别与所述电容 C7的第一端和所述电容 C6的第二端连接, 所述电感 L3的第二端接所述电容 C7的第二端, 所述电感 L3和所述电容 C7 的公共连接端为所述镇流器模块的第一输出端, 所述电容 C5和所述电容 C6 的公共连接端为所述镇流器模块的第二输出端。
5、 如权利要求 4所述的高频电子直流镇流器电路, 其特征在于, 所述时 延控制模块包括依次连接的变压器 Tl、 整流桥 BD3、 滤波单元、 第一时延控 制单元、 第二时延控制单元以及中间继电器控制单元。
6、 如权利要求 5所述的高频电子直流镇流器电路, 其特征在于, 所述变 压器 T1的初级接在交流电的两端, 所述变压器 T1的次级分别与所述整流桥 BD3的第一输入端和第二输入端连接, 所述滤波单元包括并联的电阻 R7和极 性电容 C8, 所述滤波单元的第一端和第二端分别与所述整流桥 BD3的输出端 和接地端连接,所述第一时延控制单元和所述第二时延控制单元并联连接在所 述滤波单元和所述中间继电器控制单元之间,所述中间继电器控制单元与所述 负载连接。
7、 如权利要求 6所述的高频电子直流镇流器电路, 其特征在于, 所述第 一时延控制单元与所述第二时延控制单元电路结构相同且并联连接,所述第一 时延控制单元包括电阻 R8、 电阻 R9、 电阻 R10、 电阻 Rll、 极性电容 C9、电 解电容 C10、 稳压管 ZD1、 NPN型三极管 Q3、 NPN型三极管 Q4、 PNP型三 极管 Q5、 时延控制继电器 KT1以及时延控制开关 KT2-1 ;
所述电阻 R8的第一端分别与所述滤波单元的第一端、 所述电阻 R10的第 一端以及所述 PNP型三极管 Q5的发射极连接, 所述电阻 R9与所述时延控制 开关 KT2- 1串联后与所述极性电容 C9并联连接在所述电阻 R8的第二端与所 述稳压管 ZD1的阳极之间, 所述稳压管 ZD1的阳极与所述滤波单元的第二端 连接, 所述 NPN型三极管 Q3的基极与所述电阻 R8和所述极性电容 C9的公 共连接端连接,所述 NPN型三极管 Q3的集电极通过所述电阻 Rl 1与所述 PNP 型三极管 Q5的基极连接, 所述 NPN型三极管 Q3的发射极与所述 NPN型三 极管 Q4的基极连接,所述 NPN型三极管 Q4的发射级分别与所述稳压管 ZD1 的阴极和所述电阻 R10的第二端连接, 所述 NPN型三极管 Q4的集电极与所 述 NPN型三极管 Q3的集电极连接, 所述电解电容 C10与所述时延控制继电 器 KT1并联连接在所述 PNP型三极管 Q5的集电极和所述稳压管 ZD1的阳极 之间,所述电阻 R10的第一端为所述第一时延控制单元的第一输出端, 所述稳 压管 ZD1的阳极为所述第一时延控制单元的第二输出端;
所述第二时延控制单元包括电阻 R12、 电阻 R13、 电阻 R14、 电阻 R15、 极性电容 Cll、 电解电容 C12、 稳压管 ZD2、 NPN型三极管 Q6、 NPN型三极 管 Q7、 PNP型三极管 Q8、 时延控制继电器 KT2以及时延控制开关 KT1-1 ; 所述电阻 R12的第一端分别与所述滤波单元的第一端、 所述电阻 R14的 第一端以及所述 PNP型三极管 Q8的发射极连接,所述电阻 R13与所述时延控 制开关 KT1-1 串联后与所述极性电容 C11并联连接在所述电阻 R12的第二端 与所述稳压管 ZD2的阳极之间, 所述稳压管 ZD2的阳极与所述滤波单元的第 二端连接,所述 NPN型三极管 Q6的基极与所述电阻 R12和所述极性电容 C11 的公共连接端连接, 所述 NPN型三极管 Q6的集电极通过所述电阻 R15与所 述 PNP型三极管 Q8的基极连接,所述 NPN型三极管 Q6的发射极与所述 NPN 型三极管 Q7的基极连接, 所述 NPN型三极管 Q7的发射级分别与所述稳压管 ZD2的阴极和所述电阻 R14的第二端连接, 所述 NPN型三极管 Q7的集电极 与所述 NPN型三极管 Q6的集电极连接, 所述电解电容 C12与所述时延控制 继电器 KT2并联连接在所述 PNP型三极管 Q8的集电极和所述稳压管 ΖΌ2的 阳极之间, 所述电阻 R14的第一端为所述第二时延控制单元的第一输出端,所 述稳压管 ZD2的阳极为所述第二时延控制单元的第二输出端。
8、 如权利要求 7所述的高频电子直流镇流器电路, 其特征在于, 所述中 间继电器控制单元包括:
中间继电器 Kl、 时延控制开关 ΚΤ1-2、 时延控制开关 ΚΤ2-2、 继电器开 关 Kl-1、 继电器开关 Kl-2、 继电器开关 K1-3以及继电器开关 K1-4;
所述继电器开关 Kl-3、所述继电器开关 Kl-1、所述继电器开关 K1-2以及 所述继电器开关 K1-4依次串联连接, 所述时延控制开关 KT1-2和所述时延控 制开关 ΚΤ2-2并联连接在所述第一时延控制单元的第二输出端和所述中间继 电器 K1的第二端之间, 所述负载的第一端连接在所述继电器开关 K1-3的第 一端和所述继电器开关 K1-1的第二端之间, 所述负载的第二端连接在所述继 电器开关 K1-2的第一端和所述继电器开关 K1-4第二端之间。
9、 如权利要求 8所述的高频电子直流镇流器电路, 其特征在于, 所述第 二交直流转换模块为整流桥 BD2;
所述整流桥 BD2的第一输入端接所述镇流器模块的第一输出端, 所述整 流桥 BD2的第二输入端接所述镇流器模块的第二输出端, 所述整流桥 BD2的 输出端连接在所述继电器开关 K1-1第一端和所述继电器开关 K1-2第二端之 间, 所述整流桥 BD2的接地端与所述继电器开关 K1-4的第一端和所述继电器 开关 K1-3的第二端连接。
10、 一种荧光灯, 与负载连接, 所述负载包括直管形荧光灯管、 彩色直管 型荧光灯管、 环形荧光灯管以及紧凑型节能荧光灯管, 其特征在于, 所述荧光 灯包括如权利要求 1至 9任一所述的高频电子直流镇流器电路。
PCT/CN2013/084581 2013-04-18 2013-09-29 一种高频电子直流镇流器电路及荧光灯 WO2014169583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310136998.3A CN103237395B (zh) 2013-04-18 2013-04-18 一种高频电子直流镇流器电路及荧光灯
CN201310136998.3 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014169583A1 true WO2014169583A1 (zh) 2014-10-23

Family

ID=48885397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084581 WO2014169583A1 (zh) 2013-04-18 2013-09-29 一种高频电子直流镇流器电路及荧光灯

Country Status (2)

Country Link
CN (1) CN103237395B (zh)
WO (1) WO2014169583A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787732A (zh) * 2017-02-16 2017-05-31 深圳怡化电脑股份有限公司 一种两级电源开关控制装置及电气设备
CN107371312A (zh) * 2017-08-17 2017-11-21 威海东兴电子有限公司 无源自激荡自谐振可重启防短路点火电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103237396B (zh) * 2013-04-18 2015-10-28 黄燕耀 一种高频电子直流镇流器电路及荧光灯
CN103237395B (zh) * 2013-04-18 2015-05-27 黄燕耀 一种高频电子直流镇流器电路及荧光灯

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277728A (en) * 1978-05-08 1981-07-07 Stevens Luminoptics Power supply for a high intensity discharge or fluorescent lamp
CN1370037A (zh) * 2001-01-24 2002-09-18 香港城市大学 用于高强度气体放电灯的高频电子镇流器的新颖电路设计和控制技术
CN1430458A (zh) * 2001-12-19 2003-07-16 尼古拉斯·伯埃诺肯托 具有应急照明设备的电子镇流器系统
CN101257762A (zh) * 2008-04-10 2008-09-03 杨素芬 大功率紫外灯管数字智能电子镇流器
CN202840991U (zh) * 2012-10-09 2013-03-27 米万里 单双极两用低功耗自动调功耗ac/dc开关电源
CN103237395A (zh) * 2013-04-18 2013-08-07 黄燕耀 一种高频电子直流镇流器电路及荧光灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2037521U (zh) * 1988-01-03 1989-05-10 殷住顺 电子自动定时换向器
US5811938A (en) * 1995-06-01 1998-09-22 The Bodine Company, Inc. Emergency lighting ballast for starting and operating two compact fluorescent lamps with integral starter
WO1999007705A1 (en) * 1997-08-07 1999-02-18 The Regents Of The University Of California Purine inhibitor of protein kinases, g proteins and polymerases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277728A (en) * 1978-05-08 1981-07-07 Stevens Luminoptics Power supply for a high intensity discharge or fluorescent lamp
CN1370037A (zh) * 2001-01-24 2002-09-18 香港城市大学 用于高强度气体放电灯的高频电子镇流器的新颖电路设计和控制技术
CN1430458A (zh) * 2001-12-19 2003-07-16 尼古拉斯·伯埃诺肯托 具有应急照明设备的电子镇流器系统
CN101257762A (zh) * 2008-04-10 2008-09-03 杨素芬 大功率紫外灯管数字智能电子镇流器
CN202840991U (zh) * 2012-10-09 2013-03-27 米万里 单双极两用低功耗自动调功耗ac/dc开关电源
CN103237395A (zh) * 2013-04-18 2013-08-07 黄燕耀 一种高频电子直流镇流器电路及荧光灯

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787732A (zh) * 2017-02-16 2017-05-31 深圳怡化电脑股份有限公司 一种两级电源开关控制装置及电气设备
CN106787732B (zh) * 2017-02-16 2023-08-08 深圳怡化电脑股份有限公司 一种两级电源开关控制装置及电气设备
CN107371312A (zh) * 2017-08-17 2017-11-21 威海东兴电子有限公司 无源自激荡自谐振可重启防短路点火电路
CN107371312B (zh) * 2017-08-17 2023-08-29 威海东兴电子有限公司 无源自激荡自谐振可重启防短路点火电路

Also Published As

Publication number Publication date
CN103237395B (zh) 2015-05-27
CN103237395A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN102510610A (zh) 一种单级ac-dc大功率led照明驱动电路
CN101742784A (zh) 一种led灯具及其驱动电路
WO2014169583A1 (zh) 一种高频电子直流镇流器电路及荧光灯
WO2019144414A1 (zh) 灯管驱动电路
CN101170863A (zh) 一种电流激励无磁环反馈式镇流器
CN203279255U (zh) 一种led日光灯的驱动电路
TWI401991B (zh) 一種介於直流發光元件與安定器之間的電源轉換裝置
CN204518177U (zh) 一种led驱动电源电路
CN105611707A (zh) 一种金卤灯热启动镇流器及低频全桥电路
CN102647838A (zh) 电子镇流器驱动led的转换模块
CN202103927U (zh) 可调光气体放电灯电子镇流器
CN101586790B (zh) 一种无极灯
CN202841667U (zh) 一种用于节能灯的镇流器电路
CN211606848U (zh) 一种hid灯驱动电路
CN1674757B (zh) 电磁感应灯电路
CN202841664U (zh) 用于节能灯的电子镇流器电路
CN201403243Y (zh) 冷阴极调光灯
WO2014169584A1 (zh) 一种高频电子直流镇流器电路及荧光灯
CN202773160U (zh) 一种电子镇流器
CN201255382Y (zh) 一种光控节能灯
CN105828472A (zh) 一种抗干扰led路灯电路
CN202841668U (zh) 一种用于节能灯的电子镇流器电路
KR102130004B1 (ko) 램프용 전자식 안정기
CN202841665U (zh) 一种电子镇流器的电路
CN201114953Y (zh) 一种荧光灯电路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882291

Country of ref document: EP

Kind code of ref document: A1