WO2014168312A1 - Group iv transition metal-containing precursor compound, and method for depositing thin film using same - Google Patents

Group iv transition metal-containing precursor compound, and method for depositing thin film using same Download PDF

Info

Publication number
WO2014168312A1
WO2014168312A1 PCT/KR2013/011370 KR2013011370W WO2014168312A1 WO 2014168312 A1 WO2014168312 A1 WO 2014168312A1 KR 2013011370 W KR2013011370 W KR 2013011370W WO 2014168312 A1 WO2014168312 A1 WO 2014168312A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
formula
precursor compound
containing precursor
Prior art date
Application number
PCT/KR2013/011370
Other languages
French (fr)
Korean (ko)
Inventor
한원석
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130038326A external-priority patent/KR20140074162A/en
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Publication of WO2014168312A1 publication Critical patent/WO2014168312A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Definitions

  • the present application relates to a Group 4 transition metal-containing precursor compound, a method for preparing the precursor compound, a precursor composition for thin film deposition including the precursor compound, and a method for depositing a thin film using the precursor compound.
  • Korean Patent Laid-Open No. 10-2012-0038369 “Method for Manufacturing Semiconductor Device, Substrate Processing Device and Semiconductor Device” discloses forming a ZrO 2 dielectric layer included in a semiconductor DRAM using TEMAZ.
  • cyclopentadienyltris (dimethylamido) zirconium [CpZr (NMe 2 ) 3 ] having a pyrolysis temperature higher than TEMAZ may also be used to deposit a zirconium oxide film.
  • a high dielectric constant oxide film having a low aspect current in a structure having a higher aspect ratio.
  • a zirconium oxide film or a hafnium oxide film can be formed using an atomic layer deposition method at a high temperature.
  • the zirconium raw material or hafnium raw material used for a liquid vaporization apparatus is a liquid at normal temperature.
  • Raw materials that are solid at room temperature may also be heated to liquefy by melting above their melting point, or may be used in liquid vaporization devices in the form of solutions dissolved in a suitable solvent.
  • the vapor pressure of the solvent should be less than the raw material to prevent the problem that the solvent evaporates in the liquid vaporization device to block the passage of the solution as a solid raw material.
  • cyclopentadienyltris (dimethylamido) zirconium [CpZr (NMe 2 ) 3 ] compounds can be used for this purpose.
  • the zirconium oxide film or the hafnium oxide film may differ in permittivity, leakage current, step coverage, etc., so that a new zirconium raw material compound or a new hafnium raw material can be selected so as to select the most suitable raw material for the desired purpose.
  • the demand for compounds still exists in the semiconductor industry.
  • the present application is to provide a Group 4 transition metal-containing precursor compound represented by Formula 1 or Formula 2, a method for preparing the same, and a thin film deposition use thereof.
  • M 1 comprises Zr or Hf
  • Cp ' comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group
  • n 1 or 2
  • the two Cp's may be the same or different from each other
  • L includes a C 1-3 alkyl group, a C 1-6 alkoxide group or -NHR 3 , wherein R 3 is a C 1-6 alkyl group, and when two or more L are two or more L, they may be the same or different from each other,
  • M 1 is bonded to Cp ';
  • M 1 comprises Zr or Hf
  • Cp 'and Cp each independently include a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
  • L 1 and L 2 each independently include a C 1-3 alkyl group, a C 1-6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group,
  • R 1 and R 2 each independently include hydrogen or a C 1-4 alkyl group
  • M 1 is bonded to Cp 'and Cp ".
  • a first aspect of the present application provides a Group 4 transition metal-containing precursor compound represented by Formula 1 or Formula 2 below:
  • M 1 comprises Zr or Hf
  • Cp ' comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group
  • n 1 or 2
  • the two Cp's may be the same or different from each other
  • L includes a C 1-3 alkyl group, a C 1-6 alkoxide group or -NHR 3 , wherein R 3 is a C 1-6 alkyl group, and when two or more L are two or more L, they may be the same or different from each other,
  • M 1 is bonded to Cp ';
  • M 1 comprises Zr or Hf
  • Cp 'and Cp each independently include a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
  • L 1 and L 2 each independently include a C 1-3 alkyl group, a C 1-6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group,
  • R 1 and R 2 each independently include hydrogen or a C 1-4 alkyl group
  • M 1 is bonded to Cp 'and Cp ".
  • a second aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • M 1 X 4 and Cp'M 2 are reacted in an organic solvent to form M 1 (Cp ′) n (X) 4-n ;
  • M 1 X 4 and Cp'M 2 X includes a halo group
  • M 2 and M 3 each independently include an alkali metal
  • M 1 , Cp ′, and L are each of the agent of the present application. Same as defined in 1 aspect.
  • a third aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • a fourth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • a fifth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • R ′ and R ′′ are each independently C 1- 4 alkyl group
  • M 1 , Cp ', Cp ", R 1 , R 2 , L 1 and L 2 are the same as defined above in the first aspect of the present application.
  • a sixth aspect of the present application provides a precursor composition for depositing a Group 4 transition metal-containing thin film, comprising a Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
  • a seventh aspect of the present application provides a method for depositing a Group 4 transition metal-containing thin film using the Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
  • an oxide of Group 4 transition metal is included in a uniform thickness on a surface having a high aspect ratio using an organometallic chemical vapor deposition method or an atomic layer deposition method at a high temperature.
  • a thin film can be formed, and the recording density of the semiconductor DRAM can be improved by using the thin film for manufacturing a semiconductor DRAM.
  • Group 4 transition metal-containing precursor compound As a raw material and forming a thin film containing an oxide of Group 4 transition metal by organometallic chemical vapor deposition or atomic layer deposition, For example, even at a high temperature of about 320 °C to about 360 °C can exhibit an excellent step coverage effect.
  • Group 4 transition metal-containing precursor compound for example, (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr (O 3 Pen) 3 , CpZr (NH t Bu) 3 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp ) 2 Zr (OMe) 2 , and Cp (EtCp) Zr (OEt) 2 , and (MeCp) 2 Zr (OEt) 2 , and (MeCp) 2 Zr (OEt) 2 are liquid at room temperature, Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (
  • 1 is a graph showing the results of thermogravimetric analysis of a Group 4 transition metal-containing precursor compound prepared according to one embodiment of the present application.
  • Figure 2 is a graph showing the results of thermogravimetric analysis of Group 4 transition metal-containing precursor compound prepared according to an embodiment of the present application.
  • FIG 3 is a graph showing film growth per atomic layer deposition cycle of a zirconium oxide thin film formed according to an embodiment of the present application.
  • 4A to 4F are transmission electron micrographs showing a cross section of a zirconium oxide thin film formed on a narrow, deep grooved substrate according to one embodiment of the present application.
  • 5A to 5F are transmission electron micrographs showing a cross section of a zirconium oxide thin film formed on a narrow, deep grooved substrate according to one embodiment of the present application.
  • FIG. 6 is a graph showing film growth per atomic layer deposition cycle of a zirconium oxide thin film formed according to an embodiment of the present application.
  • step to or “step of” does not mean “step for.”
  • the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
  • alkyl group includes a linear or branched C 1-10 alkyl group, C 1-6 alkyl group, C 1-4 alkyl group, C 1-3 alkyl group, or C 3-6 alkyl group, respectively. It may be, for example, may include, but is not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof.
  • alkoxide group is a form in which the alkyl group and the oxygen atom as defined above are bonded, and may include a C 1-10 alkoxide group, a C 1-6 alkoxide group or a C 3-6 alkoxide group, eg For example, methoxide, ethoxide, propoxide, butoxide, pentoxide, hexoxide, hexoxide, octoside, nonoxide, desoxide, or all possible isomers thereof may be included, but is not limited thereto. You may not.
  • halo group means that a halogen element belonging to Group 17 of the periodic table is included in the compound in the form of a functional group, and the halogen element is, for example, F, Cl, Br, or I It may be, but may not be limited thereto.
  • alkali metal refers to a metal belonging to Group 1 of the periodic table, and may be Li, Na, Ca, Rb, or Cs, but may not be limited thereto.
  • Group 4 transition metal refers to a transition metal belonging to Group 4 of the periodic table, which may for example be Ti, Zr, or Hf, and in particular herein may mean Zr or Hf. However, this may not be limited. It is generally known that among Group 4 transition metals, especially Zr and Hf are almost indistinguishable from each other and the properties of Zr and Hf compounds are very similar. It is common sense for organometallic chemists that a compound in which Zr is substituted with Hf in a Zr compound can be synthesized in the same manner as the Zr compound, and that the properties of the synthesized Hf compound are very similar to that of the Zr compound.
  • cyclopentadienyl (group) may be abbreviated as Cp and refers to a 5-membered ring aromatic cyclic substituent of -C 5 H 5 .
  • a first aspect of the present application provides a Group 4 transition metal-containing precursor compound represented by Formula 1 or Formula 2 below:
  • M 1 comprises Zr or Hf
  • Cp ' comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group
  • n 1 or 2
  • the two Cp's may be the same or different from each other
  • L comprises a C 1-3 alkyl group, a C 1-6 alkoxide group or —NHR 3 , wherein said R 3 is a C 1-6 alkyl group and when two or more L are two or more L they may be the same or different from each other;
  • M 1 is bonded to Cp ';
  • M 1 comprises Zr or Hf;
  • L 1 and L 2 each independently represent a C 1-3 alkyl group, C 1- 6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group, R 1 and R 2 each independently comprise hydrogen or a C 1-4 alkyl group; and
  • M 1 is Bound to Cp 'and Cp ".
  • the C 1-3 alkyl group may be a methyl group, an ethyl group, an n-propyl group, or an iso-propyl group, but may not be limited thereto.
  • the C 1-6 alkoxide group is a methoxy, ethoxy, n-propoxide group, iso-propoxide group, n-butoxide group, iso-butoxide group, sec-butoxide group , but may include tert-butoxide group, 1-pentoxide group, 2-pentoxide group, or 3-pentoxide group, but may not be limited thereto.
  • the n-propoxide group may be abbreviated as O n Pr as CH 3 (CH 2 ) 2 O— and the iso-propoxide group is referred to as O i Pr as (CH 3 ) 2 CHO-.
  • n-butoxide group may be abbreviated to O n Bu as CH 3 (CH 2 ) 3 O— and the iso-butoxide group is referred to as O i Bu as (CH 3 ) 2 CHCH 2 O—
  • O i Bu as (CH 3 ) 2 CHCH 2 O—
  • sec-butoxide group may be abbreviated to O sec Bu as CH 3 CH 2 CH (CH 3 ) O— and the tert-butoxide group is referred to as O t Bu as (CH 3 ) 3 CO— It may be abbreviated, but may not be limited thereto.
  • the 1-pentoxide group is abbreviated O 1 Pen as CH 3 (CH 2 ) 4 O— and the 2-pentoxide group is CH 3 [CH 3 (CH 2 ) 2 ] CHO— It is abbreviated as O 2 Pen and the 3-pentoxide group may be abbreviated as O 3 Pen as (CH 3 CH 2 ) 2 CHO-, but may not be limited thereto.
  • R 3 in -NHR 3 may include a C 1-6 alkyl group or a C 3-6 alkyl group, for example, methylamino group, ethylamino group, n-propylamino group, iso-propylamino group, An n-butylamino group, iso-butylamino group, sec-butylamino group, tert-butylamino group, 1-pentylamino group, 2-pentylamino group, or may include 3-pentylamino group, but may not be limited thereto.
  • the n-propylamino group may be abbreviated as NH n Pr as CH 3 (CH 2 ) 2 NH—
  • the iso-propylamino group may be abbreviated as NH i Pr as (CH 3 ) 2 CHNH-
  • the n-butylamino group may be abbreviated NH n Bu as CH 3 (CH 2 ) 3 NH—
  • the iso-butylamino group may be abbreviated NH i Bu as (CH 3 ) 2 CHCH 2 NH—
  • the sec -butylamino group may be abbreviated as NH sec Bu as CH 3 CH 2 CH (CH 3 ) NH-
  • the tert-butylamino group may be abbreviated as NH t Bu as (CH 3 ) 3 CNH- It may be, but may not be limited thereto.
  • the 1-pentylamino group is abbreviated NH 1 Pen as CH 3 (CH 2 ) 4 NH-
  • the 2-pentylamino group is abbreviated NH 2 Pen as CH 3 [CH 3 (CH 2 ) 2 ] CHNH-
  • the 3-pentylamino group may be abbreviated as NH 3 Pen as (CH 3 CH 2 ) 2 CHNH-, but may not be limited thereto.
  • L, L 1 and L 2 are each independently a methyl group, an ethyl group, a propyl group, an iso-propyl group, a methoxide group, an ethoxide group, an n-propoxide group, and iso It may include, but is not limited to, a propoxide group, an iso-butoxide group, a sec-butoxide group, a 3-pentoxide group, or a tert-butylamino group.
  • L when L is two or more, they may be the same or different from each other, but may not be limited thereto.
  • Cp 'and Cp each independently comprise a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group, wherein Cp' or Cp" is 1 to 5 substituents It may include, wherein 1 to 5 hydrogen atoms of the Cp 'or Cp "may be independently substituted by the C 1-4 alkyl group.
  • Cp ie, C 5 H 5
  • a substituent C 5 H 4 (CH 3 ) comprising one methyl group C 5 H 4 (C 2 H 5 ) comprising one ethyl group, C 5 H 4 (CH 2 containing one n-propyl group as a substituent) CH 2 CH 3
  • C 5 H 4 (C 2 H 5 ), which is a kind of Cp ′, may be abbreviated as EtCp
  • C 5 H 4 (CH 2 CH 2 CH 3 ) may be abbreviated as n PrCp
  • the C 5 H 4 (CH (CH 3 ) 2 ) may be abbreviated as i PrCp, but may not be limited thereto.
  • Cp ′ and Cp ′′ may be each independently Cp, MeCp, EtCp, n PrCp, i PrCp, i BuCp, sec BuCp, or t BuCp, but may not be limited thereto.
  • n 2 in Formula 1
  • the two Cp's may be the same or different from each other.
  • Cp ′ and Cp ′′ may be the same as or different from each other.
  • R 1 and R 2 may be the same or different from each other, and may include ones selected from the group consisting of methyl group, ethyl group, n-propyl group, and iso-propyl group, respectively. This may not be limited.
  • the Group 4 transition metal-containing precursor compound may include (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr ( O 3 Pen) 3 , CpZr (NH t Bu) 3 , Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (OEt) 2 , Cp (EtCp) Zr (OEt) 2 , Cp (EtCp) Zr (OEt) 2 , Cp (EtCp) Zr (OEt) 2 ,
  • the Group 4 transition metal-containing precursor compound may include, but is not limited to, a liquid at room temperature or a liquid at a volatilization temperature. Accordingly, (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr (O 3 Pen) 3 , CpZr (NH t Bu) which are liquid at room temperature ) 3 , ( n PrCp) 2 Zr (Me) 2 , Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp) 2 Zr (OMe) 2 , Cp (MeCp) 2 Zr (OMe
  • a second aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • M 1 X 4 and Cp'M 2 are reacted in an organic solvent to form M 1 (Cp ′) n (X) 4-n ; And reacting the M 1 (Cp ′) n (X) 4-n and M 3 L in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
  • M 1 , Cp ′, n, and L in Formula 1 are the same as defined in the first aspect of the present application, respectively;
  • X includes a halo group, and M 2 and M 3 each independently include an alkali metal.
  • a third aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • R 'and R" may be the same or different from each other, and each independently include a C 1-4 alkyl group; M 1 , Cp ′, and L are the same as defined above in the first aspect of the present application, respectively.
  • a fourth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • R 'and R may be the same or different from each other, and each independently And C 1-4 alkyl group, M 1 , Cp ′, n, and L are the same as defined above in the first aspect of the present application.
  • a fifth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
  • R ′ and R ′′ may be the same as or different from each other.
  • M 1 , Cp ′, Cp ′′, R 1 , R 2 , L 1 and L 2 are the same as defined above in each of the first aspects herein.
  • the organic solvent may be one selected from the group consisting of toluene, benzene, hexane, pentane, tetrahydrofuran, dichloromethane, chloroform, ether, and combinations thereof, but It may not be limited.
  • a sixth aspect of the present application provides a precursor composition for depositing a Group 4 transition metal-containing thin film including a Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
  • a seventh aspect of the present application provides a method for depositing a Group 4 transition metal-containing thin film using the Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
  • the second to seventh aspects of the present application are each a method for producing a Group 4 transition metal-containing precursor compound according to the first aspect of the present application, a precursor composition for thin film deposition including the precursor compound, and the precursor compound
  • a method of depositing a thin film detailed descriptions of parts overlapping with the first aspect of the present application have been omitted, but the descriptions of the first aspect of the present disclosure are not described in each of the second to seventh aspects of the present application. The same may be applied even if omitted.
  • depositing the thin film may be performed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), but may not be limited thereto.
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the thin film may include, but may not be limited to, a Group 4 transition metal-containing oxide, nitride, or oxynitride.
  • the thin film in each of the sixth and seventh aspects of the present application includes a ZAZ multilayer film in which zirconium oxide (ZrO 2 ) / aluminum oxide (Al 2 O 3 ) / zirconium oxide (ZrO 2 ) is sequentially formed. It may be, but may not be limited thereto.
  • Figure 1 is a graph showing the thermal weight analysis results of CpZr (O sec Bu) 3 , a Group 4 transition metal-containing precursor compound according to Example 3.
  • CpZr (O sec Bu) 3 which is a Group 4 transition metal-containing precursor compound of the present application, can be confirmed that a rapid weight loss occurs at 150 ° C. to 280 ° C. in a thermogravimetric analysis (TGA) graph.
  • TGA thermogravimetric analysis
  • FIG. 2 is a graph showing the thermal weight analysis results of CpZr (O 3 Pen) 3 which is a Group 4 transition metal-containing precursor compound according to the fourth embodiment.
  • CpZr (O 3 Pen) 3 which is a Group 4 transition metal-containing precursor compound of the present application, was found to have a rapid weight loss at 150 ° C. to 250 ° C. in a thermogravimetric analysis (TGA) graph.
  • TGA thermogravimetric analysis
  • Example 2 An experiment was performed in which a zirconium oxide film was formed using atomic layer deposition (ALD) using ( i PrCp) 2 Zr (Me) 2 obtained in Example 2 as a precursor.
  • the substrate was a silicon wafer on which titanium nitride (TiN) was deposited.
  • the substrate was heated to 300 ° C to 350 ° C.
  • the precursor compound contained in a stainless steel vessel was heated to a temperature of 120 °C, the precursor compound was fed to the ALD reactor for performing atomic layer deposition by passing argon (Ar) gas at a flow rate of 50 sccm through the vessel. .
  • the internal pressure of the ALD reactor was maintained at 3 torr.
  • FIG. 3 is a graph showing film growth per atomic layer deposition cycle of a zirconium oxide thin film formed according to the present embodiment. As shown in FIG. 3, it was confirmed that a zirconium oxide film was formed with a constant film thickness within the temperature range applied to the substrate.
  • the internal pressure of the ALD reactor was maintained at 3 torr.
  • the precursor compound gas was supplied to the ALD reactor for 15 seconds, and then argon gas was supplied for 5 seconds, then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was supplied again by supplying argon gas for 5 seconds.
  • One cycle was completed and this was repeated 200 times.
  • the cross section of the zirconium oxide thin film formed according to the above process was measured using a transmission electron microscope (TEM), and the results are shown in FIGS. 4A to 4F.
  • 4A to 4C are observations of the upper end, the middle end, and the lower end of the hole pattern, respectively, and the TEM analysis results of the zirconium oxide film formed by heating the temperature of the substrate to 300 ° C., and FIGS.
  • 4D to 4F are hole patterns, respectively.
  • the upper end, the stop part and the lower end of the film were observed, and the TEM analysis result of the zirconium oxide film formed by heating the temperature of the base material to 350 ° C. 4A to 4F, it was confirmed that a film was formed evenly on both the surface of the substrate and the inside of the hole.
  • Example 19 Zirconium Oxide Formation Using (Cp 2 CMe 2 ) Zr (OMe) 2 and Atomic Layer Deposition
  • the internal pressure of the ALD reactor was maintained at 3 torr.
  • the precursor compound gas was supplied to the ALD reactor for 15 seconds, and then argon gas was supplied for 5 seconds, then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was supplied again by supplying argon gas for 5 seconds.
  • One cycle was completed and this was repeated 200 times.
  • the cross section of the zirconium oxide thin film formed according to the above process was measured using a transmission electron microscope (TEM), and the results are shown in FIGS. 5A to 5F.
  • 5A to 5C are observations of the upper end, the middle end, and the lower end of the hole pattern, respectively, and are results of TEM analysis of a zirconium oxide film formed by heating the temperature of the substrate to 300 ° C.
  • the precursor compound gas was supplied to the ALD reactor for 9 seconds, and then argon gas was supplied for 5 seconds, and then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was supplied with argon gas for 5 seconds.
  • the cycle was repeated to form a zirconium oxide film on a flat wafer heated to 300 ° C, 320 ° C, and 350 ° C.
  • the film growth per ALD cycle with temperature is shown in FIG. 6. In the temperature range of 300 °C to 350 °C it can be seen that almost no change in film growth per ALD cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present application relates to a group IV transition metal-containing precursor compound, to a method for preparing the precursor compound, to a precursor composition for deposition of a thin film comprising the precursor compound, and to a method for depositing the thin film using the precursor compound.

Description

4 족 전이금속-함유 전구체 화합물 및 이를 이용하는 박막의 증착 방법Group 4 transition metal-containing precursor compound and thin film deposition method using the same
본원은 4 족 전이금속-함유 전구체 화합물, 상기 전구체 화합물의 제조 방법, 상기 전구체 화합물을 포함하는 박막 증착용 전구체 조성물, 및 상기 전구체 화합물을 이용하는 박막의 증착 방법에 관한 것이다.The present application relates to a Group 4 transition metal-containing precursor compound, a method for preparing the precursor compound, a precursor composition for thin film deposition including the precursor compound, and a method for depositing a thin film using the precursor compound.
테트라키스에틸메틸아미도하프늄, 또는 테트라키스에틸메틸아미도지르코늄 [Zr(NEtMe)4, TEMAZ]을 오존 (O3)을 사용한 원자층 증착법 (ALD)을 통해 증착함으로써 형성한 HfO2 유전층, 또는 ZrO2 유전층은 반도체 디램 (DRAM) 제조에 사용되었다. 예를 들어, 대한민국 공개특허 제10-2012-0038369호 "반도체 장치의 제조 방법, 기판 처리 장치 및 반도체 장치"에서는 TEMAZ를 이용하여 반도체 디램에 포함되는 ZrO2 유전층을 형성하는 것에 대하여 개시하고 있다. 또한, 열분해 온도가 TEMAZ보다 높은 시클로펜타디에닐트리스(디메틸아미도)지르코늄 [CpZr(NMe2)3]도 지르코늄 산화막을 증착하기 위하여 이용될 수 있다.HfO 2 dielectric layer formed by depositing tetrakisethylmethylamidohafnium or tetrakisethylmethylamidozirconium [Zr (NEtMe) 4 , TEMAZ] via atomic layer deposition (ALD) using ozone (O 3 ), or ZrO 2 dielectric layers have been used to fabricate semiconductor DRAMs (DRAM). For example, Korean Patent Laid-Open No. 10-2012-0038369 "Method for Manufacturing Semiconductor Device, Substrate Processing Device and Semiconductor Device" discloses forming a ZrO 2 dielectric layer included in a semiconductor DRAM using TEMAZ. In addition, cyclopentadienyltris (dimethylamido) zirconium [CpZr (NMe 2 ) 3 ] having a pyrolysis temperature higher than TEMAZ may also be used to deposit a zirconium oxide film.
반도체 디램의 기록 밀도를 높이기 위해서는 종횡비가 보다 높은 구조에 누설 전류가 작은 고유전율 산화막을 형성하는 것이 바람직하며, 이를 위해 지르코늄 산화막 또는 하프늄 산화막을 높은 온도에서 원자층 증착법을 이용하여 형성할 수 있다.In order to increase the recording density of the semiconductor DRAM, it is preferable to form a high dielectric constant oxide film having a low aspect current in a structure having a higher aspect ratio. For this purpose, a zirconium oxide film or a hafnium oxide film can be formed using an atomic layer deposition method at a high temperature.
원자층 증착법에서 원료 공급 주기의 시간을 짧게 하려면 단시간에 다량의 지르코늄 또는 하프늄 원료를 공급할 필요가 있고 이를 위해 액체 원료를 순간적으로 기화시키는 액체 기화 장치를 사용하는 것이 바람직하다. 액체 기화 장치에서는 액체를 미리 가열하지 않고, 액체를 직접 주입하여 순간 기화 (flash vaporization) 시키기 때문에 공급하는 원료의 양을 정밀하게 제어할 수 있는 장점도 있다. 액체 기화 장치에 사용하는 지르코늄 원료 또는 하프늄 원료는 상온에서 액체인 것이 바람직하다. 상온에서 고체인 원료도 녹는점 이상으로 가열하여 액화시키거나, 적당한 용매에 녹인 용액의 형태로 액체 기화 장치에서 사용할 수 있다. 용액의 형태로 사용할 때는 용매의 증기압이 원료와 차이가 적어야 액체 기화 장치에서 용매가 먼저 증발하여 용액이 지나가는 통로가 고체 원료로 막히는 문제를 방지할 수 있다. In order to shorten the time of the raw material supply cycle in the atomic layer deposition method, it is necessary to supply a large amount of zirconium or hafnium raw material in a short time, and for this purpose, it is preferable to use a liquid vaporization apparatus for instantaneously vaporizing the liquid raw material. In the liquid vaporization apparatus, the liquid is directly heated, and the liquid is directly vaporized by flash vaporization, so that the amount of raw material to be supplied can be precisely controlled. It is preferable that the zirconium raw material or hafnium raw material used for a liquid vaporization apparatus is a liquid at normal temperature. Raw materials that are solid at room temperature may also be heated to liquefy by melting above their melting point, or may be used in liquid vaporization devices in the form of solutions dissolved in a suitable solvent. When used in the form of a solution, the vapor pressure of the solvent should be less than the raw material to prevent the problem that the solvent evaporates in the liquid vaporization device to block the passage of the solution as a solid raw material.
이미 알려진 지르코늄 또는 하프늄 화합물들 중 시클로펜타디에닐트리스(디메틸아미도)지르코늄 [CpZr(NMe2)3] 화합물을 이러한 목적에 사용할 수 있다. 원자층 증착법에 사용하는 원료에 따라, 형성되는 지르코늄 산화막 또는 하프늄 산화막의 유전율, 누설 전류, 단차 피복성 등에 차이가 있기 때문에 원하는 목적에 가장 적합한 원료 화합물을 선택할 수 있도록 신규 지르코늄 원료 화합물 또는 신규 하프늄 원료 화합물에 대한 수요가 반도체 산업에서 여전히 존재한다.Among the known zirconium or hafnium compounds, cyclopentadienyltris (dimethylamido) zirconium [CpZr (NMe 2 ) 3 ] compounds can be used for this purpose. Depending on the raw materials used in the atomic layer deposition method, the zirconium oxide film or the hafnium oxide film may differ in permittivity, leakage current, step coverage, etc., so that a new zirconium raw material compound or a new hafnium raw material can be selected so as to select the most suitable raw material for the desired purpose. The demand for compounds still exists in the semiconductor industry.
본원은 하기 화학식 1 또는 화학식 2 로서 표시되는 4 족 전이금속-함유 전구체 화합물, 이의 제조 방법, 및 이의 박막 증착 용도를 제공하고자 한다:The present application is to provide a Group 4 transition metal-containing precursor compound represented by Formula 1 or Formula 2, a method for preparing the same, and a thin film deposition use thereof.
[화학식 1][Formula 1]
M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
상기 화학식 1에 있어서,In Chemical Formula 1,
M1 은 Zr 또는 Hf 을 포함하고,M 1 comprises Zr or Hf,
Cp'는 C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, Cp 'comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
n 은 1 또는 2 이며, 상기 n 이 2 인 경우, 상기 두 개의 Cp'는 서로 동일하거나 상이할 수 있고, n is 1 or 2, and when n is 2, the two Cp's may be the same or different from each other,
L 은 C1-3 알킬기, C1-6 알콕사이드기 또는 -NHR3 를 포함하며, 여기서 상기 R3은 C1-6 알킬기이고, 상기 L이 두 개 이상인 경우 이들은 서로 동일하거나 상이할 수 있고,L includes a C 1-3 alkyl group, a C 1-6 alkoxide group or -NHR 3 , wherein R 3 is a C 1-6 alkyl group, and when two or more L are two or more L, they may be the same or different from each other,
상기 M1 은 Cp' 에 결합된 것이며;M 1 is bonded to Cp ';
[화학식 2][Formula 2]
Figure PCTKR2013011370-appb-I000001
;
Figure PCTKR2013011370-appb-I000001
;
상기 화학식 2 에서, In Chemical Formula 2,
M1 은 Zr 또는 Hf 을 포함하고, M 1 comprises Zr or Hf,
Cp' 및 Cp" 는, 각각 독립적으로, C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고,Cp 'and Cp "each independently include a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
L1 및 L2 는, 각각 독립적으로, C1-3 알킬기, C1-6 알콕사이드기, 또는 -NHR3를 포함하며, 여기서 상기 R3 은 C1-6 알킬기이고,L 1 and L 2 each independently include a C 1-3 alkyl group, a C 1-6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group,
R1 및 R2 는, 각각 독립적으로, 수소 또는 C1-4 알킬기를 포함하며,R 1 and R 2 each independently include hydrogen or a C 1-4 alkyl group,
상기 M1 은 Cp' 와 Cp"에 결합된 것임.M 1 is bonded to Cp 'and Cp ".
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 하기 화학식 1 또는 화학식 2 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 제공한다:A first aspect of the present application provides a Group 4 transition metal-containing precursor compound represented by Formula 1 or Formula 2 below:
[화학식 1][Formula 1]
M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
상기 화학식 1에 있어서,In Chemical Formula 1,
M1 은 Zr 또는 Hf 을 포함하고,M 1 comprises Zr or Hf,
Cp'는 C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, Cp 'comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
n 은 1 또는 2 이며, 상기 n 이 2 인 경우, 상기 두 개의 Cp'는 서로 동일하거나 상이할 수 있고, n is 1 or 2, and when n is 2, the two Cp's may be the same or different from each other,
L 은 C1-3 알킬기, C1-6 알콕사이드기 또는 -NHR3 를 포함하며, 여기서 상기 R3은 C1-6 알킬기이고, 상기 L이 두 개 이상인 경우 이들은 서로 동일하거나 상이할 수 있고,L includes a C 1-3 alkyl group, a C 1-6 alkoxide group or -NHR 3 , wherein R 3 is a C 1-6 alkyl group, and when two or more L are two or more L, they may be the same or different from each other,
상기 M1 은 Cp'에 결합된 것이며;M 1 is bonded to Cp ';
[화학식 2][Formula 2]
Figure PCTKR2013011370-appb-I000002
;
Figure PCTKR2013011370-appb-I000002
;
상기 화학식 2 에서, In Chemical Formula 2,
M1 은 Zr 또는 Hf 를 포함하고, M 1 comprises Zr or Hf,
Cp' 및 Cp" 는, 각각 독립적으로, C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, Cp 'and Cp "each independently include a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
L1 및 L2 는, 각각 독립적으로, C1-3 알킬기, C1-6 알콕사이드기, 또는 -NHR3 를 포함하며, 여기서 상기 R3 은 C1-6 알킬기이고,L 1 and L 2 each independently include a C 1-3 alkyl group, a C 1-6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group,
R1 및 R2 는, 각각 독립적으로, 수소 또는 C1-4 알킬기를 포함하며,R 1 and R 2 each independently include hydrogen or a C 1-4 alkyl group,
상기 M1 은 Cp' 와 Cp"에 결합된 것임.M 1 is bonded to Cp 'and Cp ".
본원의 제 2 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A second aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
M1X4 및 Cp'M2를 유기 용매 중에서 반응시켜 M1(Cp')n(X)4-n를 형성하고; 및 M 1 X 4 and Cp'M 2 are reacted in an organic solvent to form M 1 (Cp ′) n (X) 4-n ; And
상기 M1(Cp')n(X)4-n 및 M3L을 유기 용매 중에서 반응시켜 상기 화학식 1로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the M 1 (Cp ′) n (X) 4-n and M 3 L in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
상기 M1X4 및 Cp'M2에 있어서, X는 할로기를 포함하고, M2 및 M3는 각각 독립적으로 알칼리 금속을 포함하는 것이며, M1, Cp', 및 L 은 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In M 1 X 4 and Cp'M 2 , X includes a halo group, M 2 and M 3 each independently include an alkali metal, and M 1 , Cp ′, and L are each of the agent of the present application. Same as defined in 1 aspect.
본원의 제 3 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A third aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
Cp'M1(NR'R")3 및 LH 를 유기 용매 중에서 반응시켜 상기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Cp'M 1 (NR'R ") 3 and LH are reacted in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
상기 Cp'M1(NR'R")3, LH 에서, R' 및 R"는 각각 서로 독립적으로 C1-4 알킬기이고, M1, Cp', 및 L 은 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In said Cp'M 1 (NR'R ") 3 , LH, R 'and R" are each independently of each other a C 1-4 alkyl group, M 1 , Cp', and L are each in the first aspect of the present application Same as defined.
본원의 제 4 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A fourth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
Cp'M1(NR'R")3 및 Cp'H 를 유기 용매 중에서 반응시켜 Cp'M1(NR'R")2Cp' 를 형성하고; 및 Cp'M 1 (NR'R ") 3 and Cp'H are reacted in an organic solvent to form Cp'M 1 (NR'R") 2 Cp '; And
상기 Cp'M1(NR'R")2Cp' 및 LH 를 유기 용매 중에서 반응시켜 상기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the Cp'M 1 (NR'R ") 2 Cp 'and LH in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
상기 Cp'M1(NR'R")3, Cp'H, Cp'M1(NR'R") 및 LH 에서, R' 및 R"는 각각 서로 독립적으로 C1-4 알킬기이고, M1 및 Cp' 는 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In the Cp'M 1 (NR'R ") 3 , Cp'H, Cp'M 1 (NR'R") and LH, R 'and R "are each independently a C 1-4 alkyl group, M 1 And Cp 'are the same as defined above in each of the first aspects of the present application.
본원의 제 5 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A fifth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
M1(NR'R")4 및 R1R2C(Cp'H)(Cp"H)를 유기 용매 중에서 반응시켜 하기 화학식 3으로서 표시되는 중간체 화합물을 형성하고; 및 M 1 (NR′R ″) 4 and R 1 R 2 C (Cp'H) (Cp ″ H) are reacted in an organic solvent to form an intermediate compound represented by the following formula (3); And
상기 중간체 화합물 및 LH 를 유기 용매 중에서 반응시켜 하기 화학식 2 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the intermediate compound and LH in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 2:
[화학식 2][Formula 2]
Figure PCTKR2013011370-appb-I000003
;
Figure PCTKR2013011370-appb-I000003
;
[화학식 3][Formula 3]
Figure PCTKR2013011370-appb-I000004
Figure PCTKR2013011370-appb-I000004
상기 M1(NR'R")4, R1R2C(Cp'H)(Cp"H), LH, 화학식 2 및 화학식 3에 있어서, R' 및 R"는 각각 서로 독립적으로 C1-4 알킬기이고, M1, Cp', Cp", R1, R2, L1 및 L2 는, 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In M 1 (NR ′ R ″) 4 , R 1 R 2 C (Cp′H) (Cp ″ H), LH, Formula 2 and Formula 3, R ′ and R ″ are each independently C 1- 4 alkyl group, M 1 , Cp ', Cp ", R 1 , R 2 , L 1 and L 2 are the same as defined above in the first aspect of the present application.
본원의 제 6 측면은, 상기 본원의 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물을 포함하는, 4 족 전이금속-함유 박막 증착용 전구체 조성물을 제공한다.A sixth aspect of the present application provides a precursor composition for depositing a Group 4 transition metal-containing thin film, comprising a Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
본원의 제 7 측면은, 상기 본원의 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물을 이용하는 4 족 전이금속-함유 박막의 증착 방법을 제공한다.A seventh aspect of the present application provides a method for depositing a Group 4 transition metal-containing thin film using the Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
본원에 따른 4 족 전이금속-함유 전구체 화합물을 원료로서 사용할 경우, 높은 온도에서 유기금속 화학기상증착법 또는 원자층 증착법을 이용하여 종횡비가 심한 표면에 균일한 두께로 4 족 전이금속의 산화물을 포함하는 박막을 형성할 수 있으며, 상기 박막을 반도체 디램 제조에 이용함으로써 상기 반도체 디램의 기록 밀도를 향상시킬 수 있다.When the Group 4 transition metal-containing precursor compound according to the present invention is used as a raw material, an oxide of Group 4 transition metal is included in a uniform thickness on a surface having a high aspect ratio using an organometallic chemical vapor deposition method or an atomic layer deposition method at a high temperature. A thin film can be formed, and the recording density of the semiconductor DRAM can be improved by using the thin film for manufacturing a semiconductor DRAM.
본원에 따라 상기 4 족 전이금속-함유 전구체 화합물을 원료로서 사용하고 유기금속 화학기상증착법 또는 원자층 증착법을 이용하여 4 족 전이금속의 산화물을 함유하는 박막을 형성하는 경우, 약 300℃ 이상, 예를 들어, 약 320℃ 내지 약 360℃의 고온에서도 우수한 단차 피복 효과를 나타낼 수 있다.When using the Group 4 transition metal-containing precursor compound as a raw material and forming a thin film containing an oxide of Group 4 transition metal by organometallic chemical vapor deposition or atomic layer deposition, For example, even at a high temperature of about 320 ℃ to about 360 ℃ can exhibit an excellent step coverage effect.
본원의 일 구현예에 따른 4 족 전이금속-함유 전구체 화합물, 예를 들어, (EtCp)2Zr(Me)2, (iPrCp)2Zr(Me)2, CpZr(OsecBu)3, CpZr(O3Pen)3, CpZr(NHtBu)3, Cp(EtCp)Zr(OMe)2, Cp(iPrCp)Zr(OMe)2, (MeCp)(EtCp)Zr(OMe)2, (EtCp)2Zr(OMe)2, 및 Cp(EtCp)Zr(OEt)2, 및 (MeCp)2Zr(OEt)2는 상온에서 액체이고, Cp(MeCp)Zr(OMe)2, (MeCp)2Zr(OMe)2, Cp(MeCp)Zr(OEt)2,
Figure PCTKR2013011370-appb-I000005
, 및
Figure PCTKR2013011370-appb-I000006
는 휘발 온도에서 액체 상태로 존재한다는 점에서 박막 증착용 전구체 조성물로서 유용하게 이용될 수 있고, 특히 원자층 증착 장치 또는 화학 증착 장치와 함께 사용되는 액체 원료 공급 장치에서 유용하게 사용될 수 있다.
Group 4 transition metal-containing precursor compound according to one embodiment of the present application, for example, (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr (O 3 Pen) 3 , CpZr (NH t Bu) 3 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp ) 2 Zr (OMe) 2 , and Cp (EtCp) Zr (OEt) 2 , and (MeCp) 2 Zr (OEt) 2 are liquid at room temperature, Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (OEt) 2 ,
Figure PCTKR2013011370-appb-I000005
, And
Figure PCTKR2013011370-appb-I000006
May be usefully used as a precursor composition for thin film deposition in that it is in a liquid state at a volatilization temperature, and particularly useful in a liquid raw material supply device used with an atomic layer deposition apparatus or a chemical vapor deposition apparatus.
도 1은, 본원의 일 실시예에 따라 제조된 4 족 전이금속-함유 전구체 화합물의 열무게 분석 결과를 나타내는 그래프이다.1 is a graph showing the results of thermogravimetric analysis of a Group 4 transition metal-containing precursor compound prepared according to one embodiment of the present application.
도 2는, 본원의 일 실시예에 따라 제조된 4 족 전이금속-함유 전구체 화합물의 열무게 분석 결과를 나타내는 그래프이다.Figure 2 is a graph showing the results of thermogravimetric analysis of Group 4 transition metal-containing precursor compound prepared according to an embodiment of the present application.
도 3은, 본원의 일 실시예에 따라 형성한 지르코늄 산화물 박막의 원자층 증착 주기당 막 성장을 나타내는 그래프이다.3 is a graph showing film growth per atomic layer deposition cycle of a zirconium oxide thin film formed according to an embodiment of the present application.
도 4a 내지 도 4f는, 본원의 일 실시예에 따라, 좁고 깊은 홈이 있는 기재에 형성한 지르코늄 산화물 박막의 단면을 나타내는 투과 전자 현미경 사진이다.4A to 4F are transmission electron micrographs showing a cross section of a zirconium oxide thin film formed on a narrow, deep grooved substrate according to one embodiment of the present application.
도 5a 내지 도 5f는, 본원의 일 실시예에 따라, 좁고 깊은 홈이 있는 기재에 형성한 지르코늄 산화물 박막의 단면을 나타내는 투과 전자 현미경 사진이다.5A to 5F are transmission electron micrographs showing a cross section of a zirconium oxide thin film formed on a narrow, deep grooved substrate according to one embodiment of the present application.
도 6은, 본원의 일 실시예에 따라 형성한 지르코늄 산화물 박막의 원자층 증착 주기당 막 성장을 나타내는 그래프이다.6 is a graph showing film growth per atomic layer deposition cycle of a zirconium oxide thin film formed according to an embodiment of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination (s) thereof" included in the representation of a makushi form refers to one or more mixtures or combinations selected from the group consisting of the components described in the representation of makushi form, It means to include one or more selected from the group consisting of the above components.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다. Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원 명세서 전체에서, 용어 "알킬기"는, 각각, 선형 또는 분지형의 C1-10 알킬기, C1-6 알킬기, C1-4 알킬기, C1-3 알킬기, 또는 C3-6 알킬기를 포함하는 것일 수 있으며, 예를 들어, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵실, 옥틸, 노닐, 데실, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. Throughout this specification, the term "alkyl group" includes a linear or branched C 1-10 alkyl group, C 1-6 alkyl group, C 1-4 alkyl group, C 1-3 alkyl group, or C 3-6 alkyl group, respectively. It may be, for example, may include, but is not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, or all possible isomers thereof.
본원 명세서 전체에서, 용어 "알콕사이드기"는 상기 정의된 알킬기와 산소 원자가 결합된 형태로서, C1-10 알콕사이드기, C1-6 알콕사이드기 또는 C3-6 알콕사이드기를 포함하는 것일 수 있으며, 예를 들어, 메톡사이드, 에톡사이드, 프로폭사이드, 부톡사이드, 펜톡사이드, 헥속사이드, 헵속사이드, 옥톡사이드, 노녹사이드, 데속사이드, 또는 이들의 가능한 모든 이성질체를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "alkoxide group" is a form in which the alkyl group and the oxygen atom as defined above are bonded, and may include a C 1-10 alkoxide group, a C 1-6 alkoxide group or a C 3-6 alkoxide group, eg For example, methoxide, ethoxide, propoxide, butoxide, pentoxide, hexoxide, hexoxide, octoside, nonoxide, desoxide, or all possible isomers thereof may be included, but is not limited thereto. You may not.
본원 명세서 전체에서, 용어 "할로기"는 주기율표의 17 족에 속하는 할로겐 원소가 작용기의 형태로서 화합물에 포함되어 있는 것을 의미하는 것으로서, 상기 할로겐 원소는, 예를 들어 F, Cl, Br, 또는 I 일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "halo group" means that a halogen element belonging to Group 17 of the periodic table is included in the compound in the form of a functional group, and the halogen element is, for example, F, Cl, Br, or I It may be, but may not be limited thereto.
본원 명세서 전체에서, 용어 "알칼리 금속"은 주기율표의 1 족에 속하는 금속을 의미하는 것으로서, Li, Na, Ca, Rb, 또는 Cs 일 수 있으나, 이에 제한되지 않을 수 있다.Throughout this specification, the term "alkali metal" refers to a metal belonging to Group 1 of the periodic table, and may be Li, Na, Ca, Rb, or Cs, but may not be limited thereto.
본원 명세서 전체에서, 용어 "4 족 전이금속"은 주기율표의 4 족에 속하는 전이금속을 의미하는 것으로서, 예를 들어 Ti, Zr, 또는 Hf 일 수 있으며, 본원에서는 특히 Zr 또는 Hf 을 의미하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 4 족 전이금속 중 특히 Zr 과 Hf 은 거의 구분하기 어려울 정도로 유사하고 Zr 과 Hf 화합물의 성질도 매우 유사하다는 것이 일반적으로 알려져 있다. Zr 화합물에서 Zr 을 Hf 으로 치환한 화합물을, Zr 화합물과 같은 방법으로 합성할 수 있고 그렇게 합성한 Hf 화합물의 성질이 Zr 화합물과 매우 유사하다는 것은 유기금속화학자들에게 일반적인 상식이다. Throughout this specification, the term “Group 4 transition metal” refers to a transition metal belonging to Group 4 of the periodic table, which may for example be Ti, Zr, or Hf, and in particular herein may mean Zr or Hf. However, this may not be limited. It is generally known that among Group 4 transition metals, especially Zr and Hf are almost indistinguishable from each other and the properties of Zr and Hf compounds are very similar. It is common sense for organometallic chemists that a compound in which Zr is substituted with Hf in a Zr compound can be synthesized in the same manner as the Zr compound, and that the properties of the synthesized Hf compound are very similar to that of the Zr compound.
본원 명세서 전체에서, 용어 "시클로펜타디에닐(기)"는 Cp 로서 약칭될 수 있고 -C5H5 의 5원환 방향족 고리형의 치환기를 의미한다.Throughout this specification, the term "cyclopentadienyl (group)" may be abbreviated as Cp and refers to a 5-membered ring aromatic cyclic substituent of -C 5 H 5 .
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.Hereinafter, embodiments of the present disclosure have been described in detail, but the present disclosure may not be limited thereto.
본원의 제 1 측면은, 하기 화학식 1 또는 화학식 2로서 표시되는 4 족 전이금속-함유 전구체 화합물을 제공한다:A first aspect of the present application provides a Group 4 transition metal-containing precursor compound represented by Formula 1 or Formula 2 below:
[화학식 1][Formula 1]
M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
상기 화학식 1에 있어서,In Chemical Formula 1,
M1 은 Zr 또는 Hf 을 포함하고,M 1 comprises Zr or Hf,
Cp'는 C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, Cp 'comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
n 은 1 또는 2 이며, 상기 n 이 2 인 경우, 상기 두 개의 Cp'는 서로 동일하거나 상이할 수 있고 n is 1 or 2, and when n is 2, the two Cp's may be the same or different from each other
L 은 C1-3 알킬기, C1-6 알콕사이드기 또는 -NHR3 를 포함하며, 여기서 상기 R3은 C1-6 알킬기이고, 상기 L이 두 개 이상인 경우 이들은 서로 동일하거나 상이할 수 있고;L comprises a C 1-3 alkyl group, a C 1-6 alkoxide group or —NHR 3 , wherein said R 3 is a C 1-6 alkyl group and when two or more L are two or more L they may be the same or different from each other;
상기 M1 은 Cp'에 결합된 것이며;M 1 is bonded to Cp ';
[화학식 2][Formula 2]
Figure PCTKR2013011370-appb-I000007
;
Figure PCTKR2013011370-appb-I000007
;
상기 화학식 2 에서, In Chemical Formula 2,
M1 은 Zr 또는 Hf 을 포함하고; Cp' 및 Cp" 는, 각각 독립적으로, C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고; L1 및 L2 는, 각각 독립적으로, C1-3 알킬기, C1-6 알콕사이드기, 또는 -NHR3 을 포함하며, 여기서 상기 R3 은 C1-6 알킬기이고; R1 및 R2 는, 각각 독립적으로, 수소 또는 C1-4 알킬기를 포함하며; 상기 M1 은 Cp' 와 Cp"에 결합된 것임.M 1 comprises Zr or Hf; Cp 'and Cp "each independently include a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group; L 1 and L 2 each independently represent a C 1-3 alkyl group, C 1- 6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group, R 1 and R 2 each independently comprise hydrogen or a C 1-4 alkyl group; and M 1 is Bound to Cp 'and Cp ".
비제한적 예시로서, 상기 C1-3 알킬기는, 메틸기, 에틸기, n-프로필기, 또는 iso-프로필기일 수 있으나, 이에 제한되지 않을 수 있다.As a non-limiting example, the C 1-3 alkyl group may be a methyl group, an ethyl group, an n-propyl group, or an iso-propyl group, but may not be limited thereto.
비제한적 예시로서, 상기 C1-6 알콕사이드기는, 메톡시, 에톡시, n-프로폭사이드기, iso-프로폭사이드기, n-부톡사이드기, iso-부톡사이드기, sec-부톡사이드기, tert-부톡사이드기, 1-펜톡사이드기, 2-펜톡사이드기, 또는 3-펜톡사이드기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원 명세서 전체에서, 상기 n-프로폭사이드기는 CH3(CH2)2O-로서 OnPr로 약칭될 수 있고, 상기 iso-프로폭사이드기는 (CH3)2CHO-로서 OiPr로 약칭될 수 있고, 상기 n-부톡사이드기는 CH3(CH2)3O-로서 OnBu로 약칭될 수 있고, 상기 iso-부톡사이드기는 (CH3)2CHCH2O-로서 OiBu로 약칭될 수 있고, 상기 sec-부톡사이드기는 CH3CH2CH(CH3)O-로서 OsecBu로 약칭될 수 있으며, 상기 tert-부톡사이드기는 (CH3)3CO-로서 OtBu로 약칭될 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 1-펜톡사이드 (1-pentoxide) 기는 CH3(CH2)4O-로서 O1Pen으로 약칭되고, 상기 2-펜톡사이드기는 CH3[CH3(CH2)2]CHO-로서 O2Pen으로 약칭되며 상기 3-펜톡사이드 (3-pentoxide) 기는 (CH3CH2)2CHO-로서 O3Pen으로 약칭될 수 있으나, 이에 제한되지 않을 수 있다. As a non-limiting example, the C 1-6 alkoxide group is a methoxy, ethoxy, n-propoxide group, iso-propoxide group, n-butoxide group, iso-butoxide group, sec-butoxide group , but may include tert-butoxide group, 1-pentoxide group, 2-pentoxide group, or 3-pentoxide group, but may not be limited thereto. Throughout this specification, the n-propoxide group may be abbreviated as O n Pr as CH 3 (CH 2 ) 2 O— and the iso-propoxide group is referred to as O i Pr as (CH 3 ) 2 CHO-. May be abbreviated and the n-butoxide group may be abbreviated to O n Bu as CH 3 (CH 2 ) 3 O— and the iso-butoxide group is referred to as O i Bu as (CH 3 ) 2 CHCH 2 O— May be abbreviated and the sec-butoxide group may be abbreviated to O sec Bu as CH 3 CH 2 CH (CH 3 ) O— and the tert-butoxide group is referred to as O t Bu as (CH 3 ) 3 CO— It may be abbreviated, but may not be limited thereto. In addition, the 1-pentoxide group is abbreviated O 1 Pen as CH 3 (CH 2 ) 4 O— and the 2-pentoxide group is CH 3 [CH 3 (CH 2 ) 2 ] CHO— It is abbreviated as O 2 Pen and the 3-pentoxide group may be abbreviated as O 3 Pen as (CH 3 CH 2 ) 2 CHO-, but may not be limited thereto.
비제한적 예시로서, 상기 -NHR3 에서 R3 은 C1-6 알킬기 또는 C3-6 알킬기를 포함할 수 있으며, 예를 들어, 메틸아미노기, 에틸아미노기, n-프로필아미노기, iso-프로필아미노기, n-부틸아미노기, iso-부틸아미노기, sec-부틸아미노기, tert-부틸아미노기, 1-펜틸아미노기, 2-펜틸아미노기, 또는 3-펜틸아미노기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원 명세서 전체에서, 상기 n-프로필아미노기는 CH3(CH2)2NH-로서 NHnPr로 약칭될 수 있고, 상기 iso-프로필아미노기는 (CH3)2CHNH-로서 NHiPr로 약칭될 수 있고, 상기 n-부틸아미노기는 CH3(CH2)3NH-로서 NHnBu로 약칭될 수 있고, 상기 iso-부틸아미노기는 (CH3)2CHCH2NH-로서 NHiBu로 약칭될 수 있고, 상기 sec-부틸아미노기는 CH3CH2CH(CH3)NH-로서 NHsecBu로 약칭될 수 있고, 상기 tert-부틸아미노기는 (CH3)3CNH- 로서 NHtBu로 약칭될 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 1-펜틸아미노기는 CH3(CH2)4NH-로서 NH1Pen으로 약칭되고, 상기 2-펜틸아미노기는 CH3[CH3(CH2)2]CHNH-로서 NH2Pen으로 약칭되며, 상기 3-펜틸아미노기는 (CH3CH2)2CHNH-로서 NH3Pen으로 약칭될 수 있으나, 이에 제한되지 않을 수 있다.As a non-limiting example, R 3 in -NHR 3 may include a C 1-6 alkyl group or a C 3-6 alkyl group, for example, methylamino group, ethylamino group, n-propylamino group, iso-propylamino group, An n-butylamino group, iso-butylamino group, sec-butylamino group, tert-butylamino group, 1-pentylamino group, 2-pentylamino group, or may include 3-pentylamino group, but may not be limited thereto. Throughout this specification, the n-propylamino group may be abbreviated as NH n Pr as CH 3 (CH 2 ) 2 NH—, and the iso-propylamino group may be abbreviated as NH i Pr as (CH 3 ) 2 CHNH- Wherein the n-butylamino group may be abbreviated NH n Bu as CH 3 (CH 2 ) 3 NH— and the iso-butylamino group may be abbreviated NH i Bu as (CH 3 ) 2 CHCH 2 NH— Wherein the sec -butylamino group may be abbreviated as NH sec Bu as CH 3 CH 2 CH (CH 3 ) NH- and the tert-butylamino group may be abbreviated as NH t Bu as (CH 3 ) 3 CNH- It may be, but may not be limited thereto. In addition, the 1-pentylamino group is abbreviated NH 1 Pen as CH 3 (CH 2 ) 4 NH-, and the 2-pentylamino group is abbreviated NH 2 Pen as CH 3 [CH 3 (CH 2 ) 2 ] CHNH-. The 3-pentylamino group may be abbreviated as NH 3 Pen as (CH 3 CH 2 ) 2 CHNH-, but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 L, L1 및 L2 는, 각각 독립적으로, 메틸기,에틸기, 프로필기, iso-프로필기, 메톡사이드기, 에톡사이드기, n-프로폭사이드기, iso-프로폭사이드기, iso-부톡사이드기, sec-부톡사이드기, 3-펜톡사이드기, 또는 tert-부틸아미노기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to an embodiment of the present disclosure, L, L 1 and L 2 are each independently a methyl group, an ethyl group, a propyl group, an iso-propyl group, a methoxide group, an ethoxide group, an n-propoxide group, and iso It may include, but is not limited to, a propoxide group, an iso-butoxide group, a sec-butoxide group, a 3-pentoxide group, or a tert-butylamino group.
상기 화학식 1 에서 상기 L이 두 개 이상인 경우 이들은 서로 동일하거나 상이할 수 있으나, 이에 제한되지 않을 수 있다.In Formula 1, when L is two or more, they may be the same or different from each other, but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 Cp' 및 Cp" 는 각각 서로 독립적으로 C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, 상기 Cp' 또는 Cp" 는 1 내지 5 개의 치환기를 포함할 수 있는데, 상기 Cp' 또는 Cp" 의 1 내지 5 개의 수소원자가 각각 독립적으로 상기 C1-4 알킬기에 의하여 치환될 수 있다. 예를 들어, Cp (즉, C5H5), 치환기로서 1 개의 메틸기를 포함하는 C5H4(CH3), 1 개의 에틸기를 포함하는 C5H4(C2H5), 치환기로서 1 개의 n-프로필기를 포함하는 C5H4(CH2CH2CH3), 또는 치환기로서 1 개의 iso-프로필기를 포함하는 C5H4(CH(CH3)2)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. According to an embodiment of the present disclosure, wherein Cp 'and Cp "each independently comprise a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group, wherein Cp' or Cp" is 1 to 5 substituents It may include, wherein 1 to 5 hydrogen atoms of the Cp 'or Cp "may be independently substituted by the C 1-4 alkyl group. For example, Cp (ie, C 5 H 5 ), a substituent C 5 H 4 (CH 3 ) comprising one methyl group, C 5 H 4 (C 2 H 5 ) comprising one ethyl group, C 5 H 4 (CH 2 containing one n-propyl group as a substituent) CH 2 CH 3 ), or may include C 5 H 4 (CH (CH 3 ) 2 ) including one iso-propyl group as a substituent, but may not be limited thereto.
예를 들어, 상기 Cp'의 일종인 C5H4(C2H5)는 EtCp 로서 약칭될 수 있고, 상기 C5H4(CH2CH2CH3)는 nPrCp 로서 약칭될 수 있으며, 상기 C5H4(CH(CH3)2)는 iPrCp 로서 약칭될 수 있으나, 이에 제한되지 않을 수 있다. 비제한적 예시로서, 상기 Cp' 및 Cp" 는 각각 독립적으로 Cp, MeCp, EtCp, nPrCp, iPrCp, iBuCp, secBuCp, 또는 tBuCp를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.For example, C 5 H 4 (C 2 H 5 ), which is a kind of Cp ′, may be abbreviated as EtCp, and C 5 H 4 (CH 2 CH 2 CH 3 ) may be abbreviated as n PrCp, The C 5 H 4 (CH (CH 3 ) 2 ) may be abbreviated as i PrCp, but may not be limited thereto. As a non-limiting example, Cp ′ and Cp ″ may be each independently Cp, MeCp, EtCp, n PrCp, i PrCp, i BuCp, sec BuCp, or t BuCp, but may not be limited thereto.
상기 화학식 1 에서 n 이 2 인 경우, 상기 두 개의 Cp'는 서로 동일하거나 상이할 수 있다. 또한, 상기 화학식 2 에서 상기 Cp' 및 Cp" 는 서로 동일하거나 상이할 수 있다.When n is 2 in Formula 1, the two Cp's may be the same or different from each other. In addition, in Formula 2, Cp ′ and Cp ″ may be the same as or different from each other.
본원의 일 구현예에 따르면, 상기 R1 및 R2 는 서로 동일하거나 상이한 것일 수 있으며, 각각 메틸기, 에틸기, n-프로필기, 및 iso-프로필기로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to the exemplary embodiment of the present application, R 1 and R 2 may be the same or different from each other, and may include ones selected from the group consisting of methyl group, ethyl group, n-propyl group, and iso-propyl group, respectively. This may not be limited.
본원의 일 구현예에 따르면, 상기 4 족 전이금속-함유 전구체 화합물은, (EtCp)2Zr(Me)2, (iPrCp)2Zr(Me)2, CpZr(OsecBu)3, CpZr(O3Pen)3, CpZr(NHtBu)3, Cp(MeCp)Zr(OMe)2, (MeCp)2Zr(OMe)2, Cp(EtCp)Zr(OMe)2, Cp(iPrCp)Zr(OMe)2, (MeCp)(EtCp)Zr(OMe)2, (EtCp)2Zr(OMe)2, Cp(MeCp)Zr(OEt)2, Cp(EtCp)Zr(OEt)2, (MeCp)2Zr(OEt)2,
Figure PCTKR2013011370-appb-I000008
,
Figure PCTKR2013011370-appb-I000009
, (EtCp)2Hf(Me)2, (iPrCp)2Hf(Me)2, (iPrCp)2Hf(Me)2, CpHf(OsecBu)3, CpHf(O3Pen)3, CpHf(NHtBu)3, Cp(MeCp)Hf(OMe)2, (MeCp)2Hf(OMe)2, Cp(EtCp)Hf(OMe)2, Cp(iPrCp)Hf(OMe)2, (MeCp)(EtCp)Hf(OMe)2, (EtCp)2Hf(OMe)2, Cp(MeCp)Hf(OEt)2, Cp(EtCp)Hf(OEt)2, (MeCp)2Hf(OEt)2,
Figure PCTKR2013011370-appb-I000010
, 및
Figure PCTKR2013011370-appb-I000011
로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 (EtCp)2Zr(Me)2, (iPrCp)2Zr(Me)2, CpZr(OsecBu)3, CpZr(O3Pen)3, CpZr(NHtBu)3, Cp(EtCp)Zr(OMe)2, Cp(iPrCp)Zr(OMe)2, (MeCp)(EtCp)Zr(OMe)2, (EtCp)2Zr(OMe)2, Cp(EtCp)Zr(OEt)2, 및 (MeCp)2Zr(OEt)2는 상온에서 액체이고, Cp(MeCp)Zr(OMe)2, (MeCp)2Zr(OMe)2, Cp(MeCp)Zr(OEt)2,
Figure PCTKR2013011370-appb-I000012
, 및
Figure PCTKR2013011370-appb-I000013
는 휘발 온도에서 액체 상태로 존재한다는 점에서 박막 증착용 전구체로서 유용하게 이용될 수 있으나, 이에 제한되지 않을 수 있다.
According to an embodiment of the present disclosure, the Group 4 transition metal-containing precursor compound may include (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr ( O 3 Pen) 3 , CpZr (NH t Bu) 3 , Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (OEt) 2 , Cp (EtCp) Zr (OEt) 2 , (MeCp) 2 Zr (OEt) 2 ,
Figure PCTKR2013011370-appb-I000008
,
Figure PCTKR2013011370-appb-I000009
, (EtCp) 2 Hf (Me) 2 , ( i PrCp) 2 Hf (Me) 2 , ( i PrCp) 2 Hf (Me) 2 , CpHf (O sec Bu) 3 , CpHf (O 3 Pen) 3 , CpHf (NH t Bu) 3 , Cp (MeCp) Hf (OMe) 2 , (MeCp) 2 Hf (OMe) 2 , Cp (EtCp) Hf (OMe) 2 , Cp ( i PrCp) Hf (OMe) 2 , (MeCp ) (EtCp) Hf (OMe) 2 , (EtCp) 2 Hf (OMe) 2 , Cp (MeCp) Hf (OEt) 2 , Cp (EtCp) Hf (OEt) 2 , (MeCp) 2 Hf (OEt) 2 ,
Figure PCTKR2013011370-appb-I000010
, And
Figure PCTKR2013011370-appb-I000011
It may be to include one selected from the group consisting of, but may not be limited thereto. (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr (O 3 Pen) 3 , CpZr (NH t Bu) 3 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp) 2 Zr (OMe) 2 , Cp (EtCp) Zr (OEt ) 2 , and (MeCp) 2 Zr (OEt) 2 is a liquid at room temperature, Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (OEt) 2 ,
Figure PCTKR2013011370-appb-I000012
, And
Figure PCTKR2013011370-appb-I000013
May be usefully used as a precursor for thin film deposition in the presence of a liquid at a volatilization temperature, but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 4 족 전이금속-함유 전구체 화합물은 상온에서 액체이거나 휘발 온도에서 액체인 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 이에 따라, 상온에서 액체인 상기 (EtCp)2Zr(Me)2, (iPrCp)2Zr(Me)2, CpZr(OsecBu)3, CpZr(O3Pen)3, CpZr(NHtBu)3, (nPrCp)2Zr(Me)2, Cp(MeCp)Zr(OMe)2, (MeCp)2Zr(OMe)2, Cp(EtCp)Zr(OMe)2, Cp(iPrCp)Zr(OMe)2, (MeCp)(EtCp)Zr(OMe)2, (EtCp)2Zr(OMe)2, Cp(MeCp)Zr(OEt)2, Cp(EtCp)Zr(OEt)2, (MeCp)2Zr(OEt)2와 휘발 온도에서 액체인
Figure PCTKR2013011370-appb-I000014
,
Figure PCTKR2013011370-appb-I000015
및 그 외 상온에서 액체이거나 휘발 온도에서 액체인 상기 본원의 제 1 측면에 따른 다양한 4 족 전이금속-함유 전구체 화합물들은 화학기상증착법 또는 원자층 증착법을 이용하여 박막을 형성하고자 할 때 유용하게 사용될 수 있으나, 이에 제한되지 않을 수 있다.
According to one embodiment of the present application, the Group 4 transition metal-containing precursor compound may include, but is not limited to, a liquid at room temperature or a liquid at a volatilization temperature. Accordingly, (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr (O 3 Pen) 3 , CpZr (NH t Bu) which are liquid at room temperature ) 3 , ( n PrCp) 2 Zr (Me) 2 , Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (OEt) 2 , Cp (EtCp) Zr (OEt) 2 , (MeCp) 2 Zr (OEt) 2 and liquid at volatilization temperature
Figure PCTKR2013011370-appb-I000014
,
Figure PCTKR2013011370-appb-I000015
And other Group 4 transition metal-containing precursor compounds according to the first aspect of the present application, which are liquid at room temperature or liquid at volatilization temperature, can be usefully used when forming thin films using chemical vapor deposition or atomic layer deposition. However, this may not be limited.
본원의 제 2 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A second aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
M1X4 및 Cp'M2를 유기 용매 중에서 반응시켜 M1(Cp')n(X)4-n를 형성하고; 및 상기 M1(Cp')n(X)4-n 및 M3L을 유기 용매 중에서 반응시켜 상기 화학식 1로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:M 1 X 4 and Cp'M 2 are reacted in an organic solvent to form M 1 (Cp ′) n (X) 4-n ; And reacting the M 1 (Cp ′) n (X) 4-n and M 3 L in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
[화학식 1][Formula 1]
M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
상기 화학식 1에서 M1, Cp', n, 및 L은 각각 상기 본원의 제 1 측면에서 정의된 바와 동일하며; 상기 M1X4 및 Cp'M2에 있어서, X는 할로기를 포함하고, M2 및 M3는 각각 독립적으로 알칼리 금속을 포함하는 것임.M 1 , Cp ′, n, and L in Formula 1 are the same as defined in the first aspect of the present application, respectively; In M 1 X 4 And Cp'M 2 , X includes a halo group, and M 2 and M 3 each independently include an alkali metal.
본원의 제 3 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A third aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
Cp'M1(NR'R")3 및 LH 를 유기 용매 중에서 반응시켜 상기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Cp'M 1 (NR'R ") 3 and LH are reacted in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
[화학식 1][Formula 1]
M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
상기 Cp'M1(NR'R")3, LH, 및 화학식 1 에서, R' 및 R"는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 C1-4 알킬기를 포함하며; M1, Cp', 및 L 은 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In the above Cp'M 1 (NR'R ") 3 , LH, and Formula 1, R 'and R" may be the same or different from each other, and each independently include a C 1-4 alkyl group; M 1 , Cp ′, and L are the same as defined above in the first aspect of the present application, respectively.
본원의 제 4 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A fourth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
Cp'M1(NR'R")3 및 Cp'H 를 유기 용매 중에서 반응시켜 Cp'M1(NR'R")2Cp' 를 형성하고; 및 Cp'M 1 (NR'R ") 3 and Cp'H are reacted in an organic solvent to form Cp'M 1 (NR'R") 2 Cp '; And
상기 Cp'M1(NR'R")2Cp' 및 LH 를 유기 용매 중에서 반응시켜 상기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the Cp'M 1 (NR'R ") 2 Cp 'and LH in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1:
[화학식 1][Formula 1]
M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
상기 Cp'M1(NR'R")3, Cp'H, Cp'M1(NR'R"), LH 및 화학식 1 에서, R' 및 R"는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 C1-4 알킬기를 포함하며; M1, Cp', n, 및 L 은 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In the above Cp'M 1 (NR'R ") 3 , Cp'H, Cp'M 1 (NR'R"), LH and Formula 1, R 'and R "may be the same or different from each other, and each independently And C 1-4 alkyl group, M 1 , Cp ′, n, and L are the same as defined above in the first aspect of the present application.
본원의 제 5 측면은, 하기를 포함하는, 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법을 제공한다:A fifth aspect of the present application provides a method of preparing a Group 4 transition metal-containing precursor compound according to the first aspect, comprising:
M1(NR'R")4 및 R1R2C(Cp'H)(Cp"H)를 유기 용매 중에서 반응시켜 하기 화학식 3으로서 표시되는 중간체 화합물을 형성하고; 및 M 1 (NR′R ″) 4 and R 1 R 2 C (Cp'H) (Cp ″ H) are reacted in an organic solvent to form an intermediate compound represented by the following formula (3); And
상기 중간체 화합물 및 LH 를 유기 용매 중에서 반응시켜 하기 화학식 2 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the intermediate compound and LH in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 2:
[화학식 2][Formula 2]
Figure PCTKR2013011370-appb-I000016
;
Figure PCTKR2013011370-appb-I000016
;
[화학식 3][Formula 3]
Figure PCTKR2013011370-appb-I000017
Figure PCTKR2013011370-appb-I000017
상기 M1(NR'R")4, R1R2C(Cp'H)(Cp"H), LH, 화학식 2 및 화학식 3에 있어서, R' 및 R"는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 C1-4 알킬기를 포함하며; M1, Cp', Cp", R1, R2, L1 및 L2 는, 각각 상기 본원의 제 1 측면에서 정의된 바와 동일함.In M 1 (NR ′ R ″) 4 , R 1 R 2 C (Cp′H) (Cp ″ H), LH, Formula 2, and Formula 3, R ′ and R ″ may be the same as or different from each other. Each independently comprises a C 1-4 alkyl group; M 1 , Cp ′, Cp ″, R 1 , R 2 , L 1 and L 2 are the same as defined above in each of the first aspects herein.
본원의 일 구현예에 따르면, 상기 유기 용매는 톨루엔, 벤젠, 헥산, 펜탄, 테트라하이드로푸란, 디클로로메탄, 클로로포름, 에테르, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the organic solvent may be one selected from the group consisting of toluene, benzene, hexane, pentane, tetrahydrofuran, dichloromethane, chloroform, ether, and combinations thereof, but It may not be limited.
본원의 제 6 측면은, 상기 본원의 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물을 포함하는 4 족 전이금속-함유 박막 증착용 전구체 조성물을 제공한다.A sixth aspect of the present application provides a precursor composition for depositing a Group 4 transition metal-containing thin film including a Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
본원의 제 7 측면은, 상기 본원의 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물을 이용하는 4 족 전이금속-함유 박막의 증착 방법을 제공한다.A seventh aspect of the present application provides a method for depositing a Group 4 transition metal-containing thin film using the Group 4 transition metal-containing precursor compound according to the first aspect of the present application.
상기 본원의 제 2 측면 내지 제 7 측면은 각각 상기 본원의 제 1 측면에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법, 상기 전구체 화합물을 포함하는 박막 증착용 전구체 조성물, 및 상기 전구체 화합물을 이용하는 박막의 증착 방법에 관한 것으로서, 본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면 내지 제 7 측면 각각에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.The second to seventh aspects of the present application are each a method for producing a Group 4 transition metal-containing precursor compound according to the first aspect of the present application, a precursor composition for thin film deposition including the precursor compound, and the precursor compound As a method of depositing a thin film, detailed descriptions of parts overlapping with the first aspect of the present application have been omitted, but the descriptions of the first aspect of the present disclosure are not described in each of the second to seventh aspects of the present application. The same may be applied even if omitted.
본원의 일 구현예에 따르면, 상기 박막을 증착하는 것은 유기금속 화학기상증착법 (MOCVD), 또는 원자층 증착법 (ALD)에 의하여 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to the exemplary embodiment of the present disclosure, depositing the thin film may be performed by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), but may not be limited thereto.
본원의 일 구현예에 따르면, 상기 박막은 4 족 전이금속-함유 산화물, 질화물 또는 산질화물(oxynitride)을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to the exemplary embodiment of the present application, the thin film may include, but may not be limited to, a Group 4 transition metal-containing oxide, nitride, or oxynitride.
예를 들어, 상기 본원의 제 6 측면 및 제 7 측면 각각에서의 박막은 지르코늄 산화물(ZrO2)/알루미늄 산화물(Al2O3)/지르코늄 산화물(ZrO2)이 순차적으로 형성된 ZAZ 다층막을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.For example, the thin film in each of the sixth and seventh aspects of the present application includes a ZAZ multilayer film in which zirconium oxide (ZrO 2 ) / aluminum oxide (Al 2 O 3 ) / zirconium oxide (ZrO 2 ) is sequentially formed. It may be, but may not be limited thereto.
이하, 본원의 바람직한 실시예를 기재한다. 다만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present application are described. However, the following examples are only illustrated to aid the understanding of the present application, but the content of the present invention is not limited to the following examples.
하기 실시예 1 내지 16에서 합성한 화합물과 일반식으로서 표현한 화학식 1 및 화학식 2의 관계를 하기 표 1에 정리하였다.The relationship between the compounds synthesized in Examples 1 to 16 and Formula 1 and Formula 2 expressed as general formulas are summarized in Table 1 below.
표 1
Figure PCTKR2013011370-appb-T000001
Table 1
Figure PCTKR2013011370-appb-T000001
Figure PCTKR2013011370-appb-I000018
Figure PCTKR2013011370-appb-I000018
[실시예]EXAMPLE
실시예 1: (EtCp)2Zr(Me)2의 합성Example 1 Synthesis of (EtCp) 2 Zr (Me) 2
불꽃 건조된 250 mL 슐렝크 플라스크 (Schlenk flask)에서 에틸시클로펜타다이엔 (ethylcyclopentadiene, EtCpH) 17.8 g (189 mmol, 2.2 당량)을 디에틸에테르 100 mL에 용해시킨 후 -30℃로 유지시켰다. -30℃로 유지시킨 플라스크에, n-BuLi 용액 (1.6 M in hexane) 118 mL (189 mmol, 2.2 당량)을 천천히 적가한 후 혼합액을 제조하고, 상기 혼합액을 3 시간 동안 실온에서 교반하였다. 상기 교반된 용액에 디에틸에테르 50 mL에 용해된 염화지르코늄 [Zirconium(IV) chloride, ZrCl4] 20 g (86 mmol, 1 당량)을 0℃에서 천천히 적가한 후, 추가로 3 시간 동안 실온에서 교반하였다. 뒤이어 MeLi 용액(1.6 M in diethyl ether) 118 mL (189 mmol, 2.2 당량)을 20℃에서 천천히 적가한 후, 추가로 12 시간 동안 실온에서 교반하였다. 반응이 완료되면 감압 하에서 용액 중 용매 및 휘발성 부반응물을 제거한 뒤 노말헥산 200 mL로 추출하였다. 상기 노말헥산 추출물을 셀라이트 (Cellite) 패드와 유리 프리트(frit)를 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고, 이어서 감압 하에서 증류함으로써 옅은 노란색의 액체 화합물을 수득하였다.In a flame dried 250 mL Schlenk flask, 17.8 g (189 mmol, 2.2 eq) of ethylcyclopentadiene (EtCpH) was dissolved in 100 mL of diethyl ether and kept at -30 ° C. To the flask maintained at -30 ° C, 118 mL (189 mmol, 2.2 equiv) of n-BuLi solution (1.6 M in hexane) was slowly added dropwise to prepare a mixed solution, and the mixed solution was stirred at room temperature for 3 hours. 20 g (86 mmol, 1 equivalent) of zirconium chloride [Zirconium (IV) chloride, ZrCl 4 ] dissolved in 50 mL of diethyl ether was slowly added dropwise to the stirred solution at 0 ° C., and then further stirred at room temperature for 3 hours. Stirred. Then 118 mL (189 mmol, 2.2 equiv) of MeLi solution (1.6 M in diethyl ether) was slowly added dropwise at 20 ° C., followed by stirring at room temperature for further 12 h. When the reaction was completed, the solvent and volatile side reactions in the solution was removed under reduced pressure and extracted with 200 mL of normal hexane. The normal hexane extract was filtered through a Celite pad and a glass frit to remove the solvent under reduced pressure, and then distilled under reduced pressure to obtain a pale yellow liquid compound.
수율 (yield): 19.03 g (72.1%);Yield: 19.03 g (72.1%);
원소분석 (elemental analysis): 계산치 (C16H24Zr) C, 62.48; H, 7.86. 실측치 C, 62.23; H, 7.89;Elemental analysis: calcd (C 16 H 24 Zr) C, 62.48; H, 7.86. Found C, 62.23; H, 7.89;
끓는점 (b.p): 121℃, 0.35 torr;Boiling point (b.p): 121 ° C., 0.35 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 5.695, 5.516 (m, 8H, C5 H 4-CH2CH3), 2.384 (q, 4H, C5H4-CH 2CH3), 1.081 (t, 6H, C5H4-CH2CH 3), -0.150 (s, 6H, Zr-CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 5.695, 5.516 (m, 8H, C 5 H 4 -CH 2 CH 3 ), 2.384 (q, 4H, C 5 H 4 -C H 2 CH 3 ), 1.081 (t, 6H, C 5 H 4 -CH 2 C H 3 ), -0.150 (s, 6H, Zr-C H 3 ).
실시예 2: (iPrCp)2Zr(Me)2의 합성Example 2: Synthesis of ( i PrCp) 2 Zr (Me) 2
불꽃 건조된 250 mL 슐렝크 플라스크에서 이소프로필시클로펜타다이엔 (isopropylcyclopentadiene, iPrCpH) 20.4 g (189 mmol, 2.2 당량)을 디에틸에테르 100 mL에 용해시킨 후 -30℃로 유지시켰다. -30℃로 유지시킨 플라스크에, n-BuLi 용액 (1.6 M in hexane) 118 mL (189 mmol, 2.2 당량)을 천천히 적가한 후, 이 혼합액을 3 시간 동안 실온에서 교반하였다. 상기 교반된 용액에 디에틸에테르 50 mL에 용해된 염화지르코늄 [Zirconium(IV) chloride, ZrCl4] 20 g (86 mmol, 1 당량)을 0℃에서 천천히 적가한 후, 추가로 3 시간 동안 실온에서 교반을 실시하였다. 뒤이어 MeLi 용액 (1.6 M in diethyl ether) 118 mL (189 mmol, 2.2 당량)을 20℃에서 천천히 적가한 후 추가로 12 시간 동안 실온에서 교반을 실시하였다. 반응이 완료되면 감압 하에서 용액 중 용매 및 휘발성 부반응물을 제거한 뒤, 노말헥산 200 mL로 추출하였다. 상기 노말헥산 추출물을 셀라이트 (Cellite) 패드와 유리 프리트를 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고, 이어서 감압 하에서 증류함으로써 옅은 노란색의 액체 화합물을 수득하였다.In a flame-dried 250 mL Schlenk flask, 20.4 g (189 mmol, 2.2 equiv) of isopropylcyclopentadiene ( i PrCpH) was dissolved in 100 mL of diethyl ether and kept at -30 ° C. To the flask maintained at -30 ° C, 118 mL (189 mmol, 2.2 equiv) of n-BuLi solution (1.6 M in hexane) was slowly added dropwise, and the mixture was stirred at room temperature for 3 hours. 20 g (86 mmol, 1 equivalent) of zirconium chloride [Zirconium (IV) chloride, ZrCl 4 ] dissolved in 50 mL of diethyl ether was slowly added dropwise to the stirred solution at 0 ° C., and then further stirred at room temperature for 3 hours. Stirring was performed. Then 118 mL (189 mmol, 2.2 equiv) of MeLi solution (1.6 M in diethyl ether) was slowly added dropwise at 20 ° C., followed by stirring at room temperature for additional 12 hours. When the reaction was completed, the solvent and volatile side reactions in the solution was removed under reduced pressure, and then extracted with 200 mL of normal hexane. The normal hexane extract was filtered through a Celite pad and a glass frit, and the filtrate obtained was freed of solvent under reduced pressure, and then distilled under reduced pressure to obtain a pale yellow liquid compound.
수율 (yield): 20.54 g (71.3%);Yield: 20.54 g (71.3%);
원소분석 (elemental analysis): 계산치 (C18H28Zr) C, 64.41; H, 8.41. 실측치 C, 63.34; H, 8.37;Elemental analysis: calcd (C 18 H 28 Zr) C, 64.41; H, 8.41. Found C, 63.34; H, 8. 37;
끓는점 (b.p): 116℃, 0.35 torr;Boiling point (b.p): 116 ° C., 0.35 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 5.742, 5.573 (m, 8H, C5 H 4-CH(CH3)2), 2.743 (m, 2H, C5H4-CH(CH3)2), 1.121 (d, 12H, C5H4-CH(CH3)2), 0.119 (s, 6H, Zr-CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 5.742, 5.573 (m, 8H, C 5 H 4 -CH (CH 3 ) 2 ), 2.743 (m, 2H, C 5 H 4- C H (CH 3 ) 2 ), 1.121 (d, 12H, C 5 H 4 -CH (CH 3 ) 2 ), 0.119 (s, 6H, Zr-C H 3 ).
실시예 3: CpZr(OsecBu)3의 제조Example 3: Preparation of CpZr (O sec Bu) 3
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol)을 헥산 300 mL에 용해시킨 뒤 0℃로 유지시켰다. 이처럼 0℃를 유지시킨 상기 플라스크에, 2-부탄올 77.1 g (1.040 mol)을 천천히 첨가한 뒤, 상기 반응 용액을 실온까지 천천히 승온시켰다. 이후, 상기 반응 용액이 실온으로 유지된 상태에서 15 시간 동안 교반시킴으로써 반응을 완결시켰다. In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of hexane and kept at 0 ° C. Thus, 77.1 g (1.040 mol) of 2-butanol was slowly added to the flask maintained at 0 ° C., and then the reaction solution was slowly heated to room temperature. Thereafter, the reaction was completed by stirring for 15 hours while the reaction solution was maintained at room temperature.
이처럼 반응이 완결된 후, 감압 하에 두어 용매를 제거하였고, 이후 감압 하에서 증류함으로써 하기 화학식 4로서 표시되는 옅은 노란색 액체 화합물을 수득하였다:After the reaction was completed, the solvent was removed under reduced pressure, and then distilled under reduced pressure to obtain a pale yellow liquid compound represented by the following Chemical Formula 4.
[화학식 4][Formula 4]
Figure PCTKR2013011370-appb-I000019
;
Figure PCTKR2013011370-appb-I000019
;
수율 (yield): 95.04 g (73%);Yield: 95.04 g (73%);
끓는점 (bp): 107℃ (0.3 torr);Boiling point (bp): 107 ° C. (0.3 torr);
1H-NMR (C6D6): δ 6.306 (s, 5H, C H ), 3.956 (m, 3H, OCH(CH3)(CH2CH3)), 1.424 (m, 6H, OCH(CH3)(CH 2CH3)), 1.159 (d, 9H, OCH(CH 3)(CH2CH3)), 0.985 (t, 9H, OCH(CH3)(CH2CH 3)). 1 H-NMR (C 6 D 6 ): δ 6.306 (s, 5H, C 5 H 5 ), 3.956 (m, 3H, OC H (CH 3 ) (CH 2 CH 3 )), 1.424 (m, 6H, OCH (CH 3 ) (C H 2 CH 3 ) ), 1.159 (d, 9H, OCH (C H 3 ) (CH 2 CH 3 )), 0.985 (t, 9H, OCH (CH 3 ) (CH 2 C H 3 )).
한편, 실시예 3과 관련하여, 도 1은 본 실시예 3에 따른 4 족 전이금속-함유 전구체 화합물인 CpZr(OsecBu)3의 열무게 분석 결과를 나타낸 그래프이다. 도 1에 나타난 바와 같이, 본원의 4 족 전이금속-함유 전구체 화합물인 CpZr(OsecBu)3은 열무게 분석 (TGA) 그래프에서 150℃ 내지 280℃에서 급격한 중량 손실이 일어남을 확인할 수 있으며, 반감기 T1/2 은 202℃였다.On the other hand, with respect to Example 3, Figure 1 is a graph showing the thermal weight analysis results of CpZr (O sec Bu) 3 , a Group 4 transition metal-containing precursor compound according to Example 3. As shown in FIG. 1, CpZr (O sec Bu) 3, which is a Group 4 transition metal-containing precursor compound of the present application, can be confirmed that a rapid weight loss occurs at 150 ° C. to 280 ° C. in a thermogravimetric analysis (TGA) graph. Half-life T 1/2 was 202 degreeC.
실시예 4: CpZr(O3Pen)3의 제조Example 4: Preparation of CpZr (O 3 Pen) 3
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol)을 헥산 300 mL에 용해시킨 뒤 0℃로 유지시켰다. 이처럼 0℃를 유지시킨 상기 플라스크에, 3-펜탄올 91.7 g (1.040 mol)을 천천히 첨가한 뒤, 상기 반응 용액을 실온까지 천천히 승온시켰다. 이후, 상기 반응 용액이 실온으로 유지된 상태에서 15 시간 동안 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of hexane and kept at 0 ° C. To this flask maintained at 0 ° C., 91.7 g (1.040 mol) of 3-pentanol was slowly added, and the reaction solution was slowly heated to room temperature. Thereafter, the reaction was completed by stirring for 15 hours while the reaction solution was maintained at room temperature.
이처럼 반응이 완결된 후, 감압 하에 두어 용매를 제거하였고, 이후 감압 하에서 증류함으로써 하기 화학식 5로서 표시되는 노란색 액체 화합물을 수득하였다:After the reaction was completed, the solvent was removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound represented by the following Chemical Formula 5:
[화학식 5][Formula 5]
Figure PCTKR2013011370-appb-I000020
;
Figure PCTKR2013011370-appb-I000020
;
수율 (yield): 107.14 g (74%);Yield: 107.14 g (74%);
끓는점 (bp): 120℃ (0.3 torr);Boiling point (bp): 120 ° C. (0.3 torr);
1H-NMR (C6D6): δ 6.326 (s, 5H, C H ), 3.713 (m, 3H, OCH(CH2CH3)2), 1.445 (m, 12H, OCH(CH 2CH3)2), 0.985 (t, 18H, OCH(CH2CH 3)2). 1 H-NMR (C 6 D 6 ): δ 6.326 (s, 5H, C 5 H 5 ), 3.713 (m, 3H, OC H (CH 2 CH 3 ) 2 ), 1.445 (m, 12H, OCH (C H 2 CH 3 ) 2 ), 0.985 (t, 18H, OCH (CH 2 C H 3 ) 2 ).
한편, 실시예 4와 관련하여, 도 2는 본 실시예 4에 따른 4 족 전이금속-함유 전구체 화합물인 CpZr(O3Pen)3의 열무게 분석 결과를 나타낸 그래프이다. 도 2에 나타난 바와 같이, 본원의 4 족 전이금속-함유 전구체 화합물인 CpZr(O3Pen)3은 열무게 분석 (TGA) 그래프에서 150℃ 내지 250℃에서 급격한 중량 손실이 일어남을 확인할 수 있었으며, 반감기 T1/2 은 229℃였다.On the other hand, with respect to Example 4, Figure 2 is a graph showing the thermal weight analysis results of CpZr (O 3 Pen) 3 which is a Group 4 transition metal-containing precursor compound according to the fourth embodiment. As shown in FIG. 2, CpZr (O 3 Pen) 3, which is a Group 4 transition metal-containing precursor compound of the present application, was found to have a rapid weight loss at 150 ° C. to 250 ° C. in a thermogravimetric analysis (TGA) graph. Half-life T 1/2 was 229 degreeC.
실시예 5: CpZr(NHtBu)3의 제조Example 5: Preparation of CpZr (NH t Bu) 3
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZrCl3 30.0 g (0.114 mol)을 헥산 300 mL에 용새시킨 뒤 0℃로 유지시켰다. 이처럼 0℃를 유지시킨 상기 플라스크에, n-BuLi 용액 (2.6 M in hexane) 132 mL (0.343 mol)와 tert-부틸아민 (tert-butylamine) 25.1 g (0.343 mol)을 헥산 200 mL에 녹여 반응시킴으로써 인-시츄 제조된 LiNHtBu을 천천히 첨가한 뒤, 상기 반응 용액을 실온까지 천천히 승온하였다. 이후, 상기 반응 용액을 15 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 30.0 g (0.114 mol) of CpZrCl 3 were dissolved in 300 mL of hexane and kept at 0 ° C. In this flask maintained at 0 ° C., 132 mL (0.343 mol) of n-BuLi solution (2.6 M in hexane) and 25.1 g (0.343 mol) of tert-butylamine were dissolved in 200 mL of hexane. In-situ prepared LiNH t Bu was slowly added, and the reaction solution was slowly heated to room temperature. The reaction was then completed by stirring the reaction solution at room temperature for 15 hours.
이처럼 반응이 완결된 후, 상기 결과물을 셀라이트 패드와 유리 프릿을 통해 여과시킴으로써 수득한 여과액을 감압 하에 두어 용매를 제거하였고, 이후 감압 하에서 증류함으로써 하기 화학식 6으로서 표시되는 노란색 액체 화합물을 수득하였다:After the reaction was completed, the resultant was filtered through a pad of celite and glass frit to remove the solvent by placing the filtrate under reduced pressure, and then distilled under reduced pressure to give a yellow liquid compound represented by the following formula (6). :
[화학식 6][Formula 6]
Figure PCTKR2013011370-appb-I000021
;
Figure PCTKR2013011370-appb-I000021
;
수율 (yield): 14.47 g (34%);Yield: 14.47 g (34%);
끓는점 (bp): 122℃ (0.3 torr);Boiling point (bp): 122 ° C. (0.3 torr);
1H-NMR (C6D6): δ 6.160 (s, 5H, C H ), 4.364 (br, 3H, NHC(CH3)3), 1.226 (s, 27H, NHC(CH 3)3). 1 H-NMR (C 6 D 6 ): δ 6.160 (s, 5H, C 5 H 5 ), 4.364 (br, 3H, N H C (CH 3 ) 3 ), 1.226 (s, 27H, NHC (C H 3 ) 3 ).
실시예 6: Cp(MeCp)Zr(OMe)2의 제조Example 6: Preparation of Cp (MeCp) Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol, 1 당량)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 메틸싸이클로펜타다이엔 (methylcyclopentadiene, MeCpH) 27.8 g (0.347 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 실온에서 교반하였다. 상기 용액에 메탄올 22.2 g (0.693 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol, 1 equiv) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 27.8 g (0.347 mol, 1 equivalent) of methylcyclopentadiene (MeCpH) was slowly added dropwise to the flask maintained at 0 ° C, and the mixture was stirred at room temperature for 5 hours. To the solution was added 22.2 g (0.693 mol, 2 equiv) of methanol slowly at 0 ° C. and then stirred for an additional 5 hours at room temperature to complete the reaction.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 고체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow solid compound.
수율 (yield): 74.34 g (72.1%);Yield: 74.34 g (72.1%);
원소분석 (elemental analysis): 계산치 (C13H18O2Zr) C, 52.48; H, 6.10; O, 10.76. 실측치 C, 51.59; H, 6.13; O, 10.49;Elemental analysis: calcd (C 13 H 18 O 2 Zr) C, 52.48; H, 6. 10; O, 10.76. Found C, 51.59; H, 6. 13; 0, 10.49;
끓는점 (b.p): 106℃, 0.30 torr;Boiling point (b.p): 106 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.003, 5.843, 5.740 (m, 9H, C5 H 5, C5 H 4-CH3), 3.835 (s, 6H, OCH 3), 2.051 (s, 3H, C5H4-CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.003, 5.843, 5.740 (m, 9H, C 5 H 5, C 5 H 4 -CH 3 ), 3.835 (s, 6H, OC H 3 ), 2.051 (s, 3H, C 5 H 4 -C H 3 ).
실시예 7: (MeCp)2Zr(OMe)2의 제조Example 7: Preparation of (MeCp) 2 Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, Zr(NEtMe)4 100.0 g (0.309 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 메틸싸이클로펜타다이엔 49.5 g (0.618 mol, 2 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 환류 (reflux) 시켰다. 상기 용액에 메탄올 19.8 g (0.618 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 3시간 동안 환류시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.309 mol) of Zr (NEtMe) 4 was dissolved in 300 mL of toluene and kept at 0 ° C. 49.5 g (0.618 mol, 2 equivalents) of methylcyclopentadiene were slowly added dropwise to the flask maintained at 0 ° C., and the mixed solution was refluxed for 5 hours. The reaction was completed by slowly adding 19.8 g (0.618 mol, 2 equiv) of methanol to the solution at 0 ° C. and refluxing for an additional 3 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 고체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow solid compound.
수율 (yield): 71.43 g (74.2%);Yield: 71.43 g (74.2%);
원소분석 (elemental analysis): 계산치 (C14H20O2Zr) C, 53.98; H, 6.47; O, 10.27. 실측치 C, 54.23; H, 6.39; O, 10.34;Elemental analysis: calcd (C 14 H 20 O 2 Zr) C, 53.98; H, 6. 47; O, 10.27. Found C, 54.23; H, 6.39; 0, 10.34;
끓는점 (b.p): 111℃, 0.30 torr;Boiling point (b.p): 111 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 5.838, 5.783 (m, 8H, C5 H 4-CH3), 3.869 (s, 6H, OCH 3), 2.050 (s, 6H, C5H4-CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 5.838, 5.783 (m, 8H, C 5 H 4 -CH 3 ), 3.869 (s, 6H, OC H 3 ), 2.050 (s, 6H, C 5 H 4 -C H 3 ).
실시예 8: Cp(EtCp)Zr(OMe)2의 제조Example 8: Preparation of Cp (EtCp) Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 에틸싸이클로펜타다이엔 (ethylcyclopentadiene, EtCpH) 32.6 g (0.347 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 실온에서 교반하였다. 상기 용액에 메탄올 22.2 g (0.693 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 32.6 g (0.347 mol, 1 equivalent) of ethylcyclopentadiene (EtCpH) was slowly added dropwise to the flask maintained at 0 ° C, and the mixture was stirred at room temperature for 5 hours. To the solution was added 22.2 g (0.693 mol, 2 equiv) of methanol slowly at 0 ° C. and then stirred for an additional 5 hours at room temperature to complete the reaction.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 액체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound.
수율 (yield): 79.57 g (73.7%);Yield: 79.57 g (73.7%);
원소분석 (elemental analysis): 계산치 (C14H20O2Zr) C, 53.98; H, 6.47; O, 10.27. 실측치 C, 52.92; H, 6.37; O, 10.15;Elemental analysis: calcd (C 14 H 20 O 2 Zr) C, 53.98; H, 6. 47; O, 10.27. Found C, 52.92; H, 6. 37; 0, 10.15;
끓는점 (b.p): 109℃, 0.30 torr;Boiling point (b.p): 109 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.002, 5.862, 5.785 (m, 9H, C5 H 5, C5 H 4-CH2CH3), 3.799 (s, 6H, OCH 3), 2.469 (q, 2H, C5H4-CH 2CH3), 1.116 (t, 3H, C5H4-CH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.002, 5.862, 5.785 (m, 9H, C 5 H 5, C 5 H 4 -CH 2 CH 3 ), 3.799 (s, 6H, OC H 3 ), 2.469 (q, 2H, C 5 H 4 -C H 2 CH 3 ), 1.116 (t, 3H, C 5 H 4 -CH 2 C H 3 ).
실시예 9: Cp(iPrCp)Zr(OMe)2의 제조Example 9: Preparation of Cp ( i PrCp) Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 아이소프로필싸이클로펜타다이엔 (isopropylcyclopentadiene, iPrCpH) 37.5 g (0.347 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 실온에서 교반하였다. 상기 용액에 메탄올 22.2 g (0.693 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of toluene and kept at 0 ° C. Such added dropwise to the flask maintaining the 0 ℃, an isopropyl-cyclo-penta-diene (isopropylcyclopentadiene, i PrCpH) 37.5 g (0.347 mol, 1 eq) then slowly, the mixture was stirred at room temperature for 5 hours. To the solution was added 22.2 g (0.693 mol, 2 equiv) of methanol slowly at 0 ° C. and then stirred for an additional 5 hours at room temperature to complete the reaction.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 액체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound.
수율 (yield): 81.12 g (71.9%);Yield: 81.12 g (71.9%);
원소분석 (elemental analysis): 계산치 (C15H22O2Zr) C, 55.34; H, 6.81; O, 9.83. 실측치 C, 54.87; H, 6.76; O, 9.45;Elemental analysis: calcd (C 15 H 22 O 2 Zr) C, 55.34; H, 6.81; O, 9.83. Found C, 54.87; H, 6.76; 0, 9.45;
끓는점 (b.p): 116℃, 0.30 torr;Boiling point (b.p): 116 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.011, 5.851, 5.785 (m, 9H, C5 H 5, C5 H 4-CH(CH3)2), 3.814 (s, 6H, OCH 3), 2.857 (sept. 1H, C5H4-CH(CH3)2), 1.200 (d, 6H, C5H4-CH(CH 3)2). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.011, 5.851, 5.785 (m, 9H, C 5 H 5, C 5 H 4 -CH (CH 3 ) 2 ), 3.814 (s, 6H, OC H 3 ), 2.857 (sept. 1 H, C 5 H 4 -C H (CH 3 ) 2 ), 1.200 (d, 6H, C 5 H 4 -CH (C H 3 ) 2 ).
실시예 10: (MeCp)(EtCp)Zr(OMe)2의 제조Example 10 Preparation of (MeCp) (EtCp) Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, (MeCp)Zr(NMe2)3 100.0 g (0.331 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 에틸싸이클로펜타다이엔 31.1 g (0.331 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 실온에서 교반하였다. 상기 용액에 메탄올 21.2 g (0.661 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.331 mol) of (MeCp) Zr (NMe 2 ) 3 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 31.1 g (0.331 mol, 1 equivalent) of ethyl cyclopentadiene was slowly added dropwise to the flask maintained at 0 ° C., and then the mixed solution was stirred at room temperature for 5 hours. To the solution was added 21.2 g (0.661 mol, 2 equiv) of methanol slowly at 0 ° C. and then stirred at room temperature for an additional 5 hours to complete the reaction.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 액체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound.
수율 (yield): 78.76 g (73.2%);Yield: 78.76 g (73.2%);
원소분석 (elemental analysis): 계산치 (C15H22O2Zr) C, 55.34; H, 6.81; O, 9.83. 실측치 C, 56.04; H, 6.79; O, 9.71;Elemental analysis: calcd (C 15 H 22 O 2 Zr) C, 55.34; H, 6.81; O, 9.83. Found C, 56.04; H, 6.79; 0, 9.71;
끓는점 (b.p): 114℃, 0.30 torr;Boiling point (b.p): 114 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 5.852, 5.787 (m, 8H, C5 H 4-CH3, C5 H 4-CH2CH3), 3.860 (s, 6H, OCH 3), 2.495 (q, 2H, C5H4-CH 2CH3), 2.052 (s, 3H, C5H4-CH 3), 1.143 (t, 3H, C5H4-CH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 5.852, 5.787 (m, 8H, C 5 H 4 -CH 3 , C 5 H 4 -CH 2 CH 3 ), 3.860 (s, 6H , OC H 3 ), 2.495 (q, 2H, C 5 H 4 -C H 2 CH 3 ), 2.052 (s, 3H, C 5 H 4 -C H 3 ), 1.143 (t, 3H, C 5 H 4 -CH 2 C H 3 ).
실시예 11: (EtCp)2Zr(OMe)2의 제조Example 11: Preparation of (EtCp) 2 Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, Zr(NEtMe)4 100.0 g (0.309 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 에틸싸이클로펜타다이엔 58.2 g (0.618 mol, 2 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 환류시켰다. 상기 용액에 메탄올 19.8 g (0.618 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 3 시간 동안 환류시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.309 mol) of Zr (NEtMe) 4 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 58.2 g (0.618 mol, 2 equivalents) of ethylcyclopentadiene was slowly added dropwise to the flask maintained at 0 ° C, and the mixture was refluxed for 5 hours. To the solution was completed by adding 19.8 g (0.618 mol, 2 equiv) of methanol slowly at 0 ° C. and refluxing for an additional 3 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 액체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound.
수율 (yield): 76.28 g (72.7%);Yield: 76.28 g (72.7%);
원소분석 (elemental analysis): 계산치 (C16H24O2Zr) C, 56.59; H, 7.12; O, 9.42. 실측치 C, 55.98; H, 7.09; O, 9.29;Elemental analysis: calcd (C 16 H 24 O 2 Zr) C, 56.59; H, 7. 12; O, 9.42. Found C, 55.98; H, 7.09; 0, 9.29;
끓는점 (b.p): 119℃, 0.30 torr;Boiling point (b.p): 119 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 5.863 (m, 8H, C5 H 4-CH2CH3), 3.853 (s, 6H, OCH 3), 2.497 (q, 4H, C5H4-CH 2CH3), 1.149 (t, 6H, C5H4-CH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 5.863 (m, 8H, C 5 H 4 -CH 2 CH 3 ), 3.853 (s, 6H, OC H 3 ), 2.497 (q, 4H, C 5 H 4 -C H 2 CH 3 ), 1.149 (t, 6H, C 5 H 4 -CH 2 C H 3 ).
실시예 12: Cp(MeCp)Zr(OEt)2의 제조Example 12 Preparation of Cp (MeCp) Zr (OEt) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 메틸싸이클로펜타다이엔 27.8 g (0.347 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 실온에서 교반하였다. 상기 용액에 에탄올 31.9 g (0.693 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 27.8 g (0.347 mol, 1 equivalent) of methylcyclopentadiene was slowly added dropwise to the flask maintained at 0 ° C, and the mixed solution was stirred at room temperature for 5 hours. To the solution was completed 31.9 g (0.693 mol, 2 equiv) of ethanol slowly at 0 ° C., followed by stirring at room temperature for an additional 5 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 고체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow solid compound.
수율 (yield): 82.48 g (73.1%);Yield: 82.48 g (73.1%);
원소분석 (elemental analysis): 계산치 (C15H22O2Zr) C, 55.34; H, 6.81; O, 9.83. 실측치 C, 54.79; H, 6.74; O, 9.48;Elemental analysis: calcd (C 15 H 22 O 2 Zr) C, 55.34; H, 6.81; O, 9.83. Found C, 54.79; H, 6. 74; 0, 9.48;
끓는점 (b.p): 114℃, 0.30 torr;Boiling point (b.p): 114 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.018, 5.856, 5.769 (m, 9H, C5 H 5, C5 H 4-CH3), 4.002 (q, 4H, OCH 2CH3), 2.084 (s, 3H, C5H4-CH 3), 1.141 (t, 6H, OCH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.018, 5.856, 5.769 (m, 9H, C 5 H 5 , C 5 H 4 -CH 3 ), 4.002 (q, 4H, OC H 2 CH 3 ), 2.084 (s, 3H, C 5 H 4 -C H 3 ), 1.141 (t, 6H, OCH 2 C H 3 ).
실시예 13: Cp(EtCp)Zr(OEt)2의 제조Example 13: Preparation of Cp (EtCp) Zr (OEt) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, CpZr(NMe2)3 100.0 g (0.347 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 에틸싸이클로펜타다이엔 (ethylcyclopentadiene, EtCpH) 32.6 g (0.347 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 실온에서 교반하였다. 상기 용액에 에탄올 31.9 g (0.693 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.347 mol) of CpZr (NMe 2 ) 3 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 32.6 g (0.347 mol, 1 equivalent) of ethylcyclopentadiene (EtCpH) was slowly added dropwise to the flask maintained at 0 ° C, and the mixture was stirred at room temperature for 5 hours. To the solution was completed 31.9 g (0.693 mol, 2 equiv) of ethanol slowly at 0 ° C., followed by stirring at room temperature for an additional 5 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 액체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound.
수율 (yield): 84.62 g (71.9%);Yield: 84.62 g (71.9%);
원소분석 (elemental analysis): 계산치 (C16H24O2Zr) C, 56.59; H, 7.12; O, 9.42. 실측치 C, 55.97; H, 7.25; O, 9.23;Elemental analysis: calcd (C 16 H 24 O 2 Zr) C, 56.59; H, 7. 12; O, 9.42. Found C, 55.97; H, 7. 25; 0, 9.23;
끓는점 (b.p): 109℃, 0.30 torr;Boiling point (b.p): 109 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.019, 5.874, 5.837 (m, 9H, C5 H 5, C5 H 4-CH2CH3), 3.990 (q, 4H, OCH 2CH3), 2.533 (q, 2H, C5H4-CH 2CH3), 1.136 (m, 6H, OCH2CH 3, C5H4-CH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.019, 5.874, 5.837 (m, 9H, C 5 H 5, C 5 H 4 -CH 2 CH 3 ), 3.990 (q, 4H, OC H 2 CH 3 ), 2.533 (q, 2H, C 5 H 4 -C H 2 CH 3 ), 1.136 (m, 6H, OCH 2 C H 3, C 5 H 4 -CH 2 C H 3 ).
실시예 14: (MeCp)2Zr(OEt)2의 제조Example 14 Preparation of (MeCp) 2 Zr (OEt) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, Zr(NEtMe)4 100.0 g (0.309 mol)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 메틸싸이클로펜타다이엔 49.5 g (0.618 mol, 2 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 환류 (reflux) 시켰다. 상기 용액에 에탄올 28.5 g (0.618 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.309 mol) of Zr (NEtMe) 4 was dissolved in 300 mL of toluene and kept at 0 ° C. 49.5 g (0.618 mol, 2 equivalents) of methylcyclopentadiene were slowly added dropwise to the flask maintained at 0 ° C., and the mixed solution was refluxed for 5 hours. The reaction was completed by slowly adding 28.5 g (0.618 mol, 2 equiv) of ethanol to the solution at 0 ° C. and then stirring at room temperature for an additional 5 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 노란색의 액체 화합물을 수득하였다.After the reaction was completed as such, the solvent and the volatile side reactions were removed under reduced pressure, and then distilled under reduced pressure to obtain a yellow liquid compound.
수율 (yield): 75.44 g (71.9%);Yield: 75.44 g (71.9%);
원소분석 (elemental analysis): 계산치 (C16H24O2Zr) C, 56.59; H, 7.12; O, 9.42. 실측치 C, 56.93; H, 7.04; O, 9.35;Elemental analysis: calcd (C 16 H 24 O 2 Zr) C, 56.59; H, 7. 12; O, 9.42. Found C, 56.93; H, 7.04; 0, 9.35;
끓는점 (b.p): 118℃, 0.30 torr;Boiling point (b.p): 118 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 5.860, 5.796 (m, 8H, C5 H 4-CH3), 4.038 (q, 4H, OCH 2CH3), 2.070 (s, 6H, C5H4-CH 3), 1.157 (t, 6H, OCH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 5.860, 5.796 (m, 8H, C 5 H 4 -CH 3 ), 4.038 (q, 4H, OC H 2 CH 3 ), 2.070 ( s, 6H, C 5 H 4 -C H 3 ), 1.157 (t, 6H, OCH 2 C H 3 ).
실시예 15: (Cp2CMe2)Zr(OMe)2의 제조Example 15 Preparation of (Cp 2 CMe 2 ) Zr (OMe) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, Zr(NEtMe)4 100.0 g (0.309 mol, 1 당량)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 다이메틸메틸렌다이싸이클로펜타다이엔 [dimethylmethylenedicyclopentadiene, (HCp)2CMe2] 53.2 g (0.309 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 환류시켰다. 상기 용액에 메탄올 19.8 g (0.618 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.309 mol, 1 equiv) of Zr (NEtMe) 4 was dissolved in 300 mL of toluene and kept at 0 ° C. To this flask maintained at 0 ° C., 53.2 g (0.309 mol, 1 equivalent) of dimethylmethylenedicyclopentadiene (HCp) 2 CMe 2 ] was slowly added dropwise, and the mixture was refluxed for 5 hours. I was. To the solution was completed by adding 19.8 g (0.618 mol, 2 equiv) of methanol slowly at 0 ° C. and then stirring at room temperature for an additional 5 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 하기 화학식 7로서 표시되는 노란색의 고체 화합물을 수득하였다:After completion of the reaction, the mixture was placed under reduced pressure to remove the solvent and volatile side reactions, and then distilled under reduced pressure to obtain a yellow solid compound represented by the following Chemical Formula 7:
[화학식 7][Formula 7]
Figure PCTKR2013011370-appb-I000022
;
Figure PCTKR2013011370-appb-I000022
;
수율 (yield): 65.68 g (65.7%);Yield: 65.68 g (65.7%);
원소분석 (elemental analysis): 계산치 (C15H20O2Zr) C, 55.68; H, 6.23; O, 9.89. 실측치 C, 55.47; H, 6.17; O, 9.92;Elemental analysis: calcd (C 15 H 20 O 2 Zr) C, 55.68; H, 6. 23; 0, 9.89. Found C, 55.47; H, 6. 17; 0, 9.92;
끓는점 (b.p): 115℃, 0.30 torr;Boiling point (b.p): 115 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.183, 5.504 (m, 8H, (C5 H 4)2C(CH3)2), 3.805 (s, 6H, OCH 3), 1.531 (s, 6H, (C5H4)2C(CH 3)2). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.183, 5.504 (m, 8H, (C 5 H 4 ) 2 C (CH 3 ) 2 ), 3.805 (s, 6H, OC H 3 ), 1.531 (s, 6H, (C 5 H 4 ) 2 C (C H 3 ) 2 ).
실시예 16: (Cp2CMe2)Zr(OEt)2의 제조Example 16: Preparation of (Cp 2 CMe 2 ) Zr (OEt) 2
불꽃 건조된 1000 mL 슐렝크 플라스크에서, Zr(NEtMe)4 100.0 g (0.309 mol, 1 당량)을 톨루엔 300 mL에 녹인 뒤 0℃로 유지하였다. 이처럼 0℃를 유지한 상기 플라스크에, 다이메틸메틸렌다이싸이클로펜타다이엔 53.2 g (0.309 mol, 1 당량)을 천천히 적가한 후, 이 혼합액을 5 시간 동안 환류시켰다. 상기 용액에 에탄올 28.5 g (0.618 mol, 2 당량)을 0℃에서 천천히 첨가한 후 추가로 5 시간 동안 실온에서 교반시킴으로써 반응을 완결시켰다.In a flame dried 1000 mL Schlenk flask, 100.0 g (0.309 mol, 1 equiv) of Zr (NEtMe) 4 was dissolved in 300 mL of toluene and kept at 0 ° C. Thus, 53.2 g (0.309 mol, 1 equivalent) of dimethylmethylenedicyclopentadiene was slowly added dropwise to the flask maintained at 0 ° C, and the mixture was refluxed for 5 hours. The reaction was completed by slowly adding 28.5 g (0.618 mol, 2 equiv) of ethanol to the solution at 0 ° C. and then stirring at room temperature for an additional 5 hours.
이처럼 반응이 완결된 후, 감압 하에 두어 용매 및 휘발성 부반응물을 제거하였고, 이후 감압 하에서 증류하여 하기 화학식 8로서 표시되는 노란색의 고체 화합물을 수득하였다:After the reaction was completed, the reaction mixture was placed under reduced pressure to remove the solvent and volatile side reactions, and then distilled under reduced pressure to obtain a yellow solid compound represented by the following Chemical Formula 8:
[화학식 8][Formula 8]
Figure PCTKR2013011370-appb-I000023
;
Figure PCTKR2013011370-appb-I000023
;
수율 (yield): 68.12 g (62.7%);Yield: 68.12 g (62.7%);
원소분석 (elemental analysis): 계산치 (C17H24O2Zr) C, 58.07; H, 6.88; O, 9.10. 실측치 C, 57.88; H, 6.96; O, 9.17;Elemental analysis: calcd (C 17 H 24 O 2 Zr) C, 58.07; H, 6.88; O, 9.10. Found C, 57.88; H, 6.96; 0, 9.17;
끓는점 (b.p): 121℃, 0.30 torr;Boiling point (b.p): 121 ° C., 0.30 torr;
1H-NMR(400 MHz, C6D6, 25℃): δ 6.192, 5.567 (m, 8H, (C5 H 4)2C(CH3)2), 3.958 (q, 4H, OCH 2CH3), 1.560 (s, 6H, (C5H4)2C(CH 3)2), 1.140 (t, 6H, OCH2CH 3). 1 H-NMR (400 MHz, C 6 D 6, 25 ° C.): δ 6.192, 5.567 (m, 8H, (C 5 H 4 ) 2 C (CH 3 ) 2 ), 3.958 (q, 4H, OC H 2 CH 3 ), 1.560 (s, 6H, (C 5 H 4 ) 2 C (C H 3 ) 2 ), 1.140 (t, 6H, OCH 2 C H 3 ).
실시예 17: (iPrCp)2Zr(Me)2 의 원자층 증착법을 이용한 지르코늄 산화막 형성Example 17 Formation of Zirconium Oxides by Atomic Layer Deposition of ( i PrCp) 2 Zr (Me) 2
상기 실시예 2에서 수득된 (iPrCp)2Zr(Me)2를 전구체로서 사용한 원자층 증착법(ALD)을 이용하여 지르코늄 산화막을 형성하는 실험을 수행하였다. 이때, 기재는 티타늄 나이트라이드(TiN)가 증착된 실리콘 웨이퍼를 사용하였다. 상기 기재는 300℃ 내지 350℃로 가열되었다. 또한, 스테인리스 스틸 재질의 용기에 담은 전구체 화합물은 120℃의 온도로 가열하였고, 50 sccm 유속의 아르곤 (Ar) 가스를 상기 용기에 통과시킴으로써 상기 전구체 화합물을 원자층 증착법 수행을 위한 ALD 반응기로 공급하였다. 상기 ALD 반응기의 내부 압력은 3 torr로 유지되었다. 상기 ALD 반응기에 상기 전구체 화합물 기체를 15 초 동안 공급하였고, 이후 아르곤 기체를 5 초 동안 공급하였고, 이후 오존 (O3) 기체를 14 초 동안 공급하였고, 이후 다시 아르곤 기체를 5 초 동안 공급함으로써 ALD 1 주기를 완성하였으며, 이를 200 회 반복하였다. 상기 공정에 따라 형성한 지르코늄 산화물 박막의 1 주기당 두께를 도 3에 나타내었다. 도 3은 본 실시예에 따라 형성한 지르코늄 산화물 박막의 원자층 증착 주기 당 막 성장을 나타내는 그래프이다. 도 3에 나타난 바와 같이, 상기 기재에 가해진 온도 범위 내에서 일정한 막 두께로 지르코늄 산화막이 형성되었음을 확인할 수 있었다.An experiment was performed in which a zirconium oxide film was formed using atomic layer deposition (ALD) using ( i PrCp) 2 Zr (Me) 2 obtained in Example 2 as a precursor. In this case, the substrate was a silicon wafer on which titanium nitride (TiN) was deposited. The substrate was heated to 300 ° C to 350 ° C. In addition, the precursor compound contained in a stainless steel vessel was heated to a temperature of 120 ℃, the precursor compound was fed to the ALD reactor for performing atomic layer deposition by passing argon (Ar) gas at a flow rate of 50 sccm through the vessel. . The internal pressure of the ALD reactor was maintained at 3 torr. The precursor compound gas was supplied to the ALD reactor for 15 seconds, and then argon gas was supplied for 5 seconds, then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was again supplied with argon gas for 5 seconds. One cycle was completed and this was repeated 200 times. The thickness per cycle of the zirconium oxide thin film formed by the above process is shown in FIG. 3. 3 is a graph showing film growth per atomic layer deposition cycle of a zirconium oxide thin film formed according to the present embodiment. As shown in FIG. 3, it was confirmed that a zirconium oxide film was formed with a constant film thickness within the temperature range applied to the substrate.
실시예 18: Cp(EtCp)Zr(OMe)2 및 원자층 증착법을 이용한 지르코늄 산화막 형성Example 18 Formation of Zirconium Oxide Film Using Cp (EtCp) Zr (OMe) 2 and Atomic Layer Deposition
상기 실시예 8에 따라 제조된 Cp(EtCp)Zr(OMe)2를 전구체로서 사용하고 원자층 증착법(ALD)을 이용하여 지르코늄 산화막을 형성하는 실험을 수행하였다. 이때, 종횡비가 40:1 (직경 50 nm, 깊이 2 μm)로서 구멍 (hole) 패턴을 가지는 웨이퍼를 기재로서 사용하였다. 상기 기재는 300℃ 및 350℃로 가열되었다. 또한, 스테인리스 스틸 재질의 용기에 담은 전구체 화합물은 110℃의 온도로 가열하였고, 50 sccm 유속의 아르곤(Ar) 가스를 상기 용기에 통과시킴으로써 상기 전구체 화합물을 원자층 증착법 수행을 위한 ALD 반응기로 공급하였다. 상기 ALD 반응기의 내부 압력은 3 torr로 유지되었다. 상기 ALD 반응기에 상기 전구체 화합물 기체를 15 초 동안 공급하였고, 이후 아르곤 기체를 5 초 동안 공급하였고, 이후 오존(O3) 기체를 14 초 동안 공급하였고, 이후 다시 아르곤 기체를 5 초 동안 공급함으로써 ALD 1 주기를 완성하였으며, 이를 200 회 반복하였다. 상기 공정에 따라 형성한 지르코늄 산화물 박막의 단면을 투과 전자 현미경 (TEM)을 이용하여 측정한 뒤 그 결과를 도 4a 내지 도 4f에 나타내었다. 도 4a 내지 도 4c는 각각 구멍 패턴의 상단부, 중단부 및 하단부를 관찰한 것으로서, 상기 기재의 온도를 300℃로 가열하여 형성한 지르코늄 산화막의 TEM 분석 결과이며, 도 4d 내지 도 4f는 각각 구멍 패턴의 상단부, 중단부 및 하단부를 관찰한 것으로서, 상기 기재의 온도를 350℃로 가열하여 형성한 지르코늄 산화막의 TEM 분석 결과이다. 도 4a 내지 도 4f를 참조하여, 상기 기재의 표면과 구멍 내부에 모두 고르게 막이 형성되었음을 확인할 수 있었다.Experiments were performed using Cp (EtCp) Zr (OMe) 2 prepared according to Example 8 as a precursor and forming a zirconium oxide film using atomic layer deposition (ALD). At this time, a wafer having a hole pattern having an aspect ratio of 40: 1 (50 nm in diameter and 2 μm in depth) was used as the substrate. The substrate was heated to 300 ° C and 350 ° C. In addition, the precursor compound contained in a stainless steel vessel was heated to a temperature of 110 ℃, and the precursor compound was fed to the ALD reactor for performing atomic layer deposition by passing argon (Ar) gas at a flow rate of 50 sccm through the vessel. . The internal pressure of the ALD reactor was maintained at 3 torr. The precursor compound gas was supplied to the ALD reactor for 15 seconds, and then argon gas was supplied for 5 seconds, then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was supplied again by supplying argon gas for 5 seconds. One cycle was completed and this was repeated 200 times. The cross section of the zirconium oxide thin film formed according to the above process was measured using a transmission electron microscope (TEM), and the results are shown in FIGS. 4A to 4F. 4A to 4C are observations of the upper end, the middle end, and the lower end of the hole pattern, respectively, and the TEM analysis results of the zirconium oxide film formed by heating the temperature of the substrate to 300 ° C., and FIGS. 4D to 4F are hole patterns, respectively. The upper end, the stop part and the lower end of the film were observed, and the TEM analysis result of the zirconium oxide film formed by heating the temperature of the base material to 350 ° C. 4A to 4F, it was confirmed that a film was formed evenly on both the surface of the substrate and the inside of the hole.
실시예 19: (Cp2CMe2)Zr(OMe)2 및 원자층 증착법을 이용한 지르코늄 산화막 형성Example 19: Zirconium Oxide Formation Using (Cp 2 CMe 2 ) Zr (OMe) 2 and Atomic Layer Deposition
상기 실시예 15에 따라 제조된 (Cp2CMe2)Zr(OMe)2를 전구체로서 사용하고 원자층 증착법(ALD)을 이용하여 지르코늄 산화막을 형성하는 실험을 수행하였다. 이때, 종횡비가 40:1 (직경 50 nm, 깊이 2 μm)로서 구멍 (hole) 패턴을 가지는 웨이퍼 조각을 기재로서 사용하였다. 상기 기재는 300℃ 및 350℃로 가열되었다. 또한, 스테인리스 스틸 재질의 용기에 담은 전구체 화합물은 120℃의 온도로 가열하였고, 50 sccm 유속의 아르곤(Ar) 가스를 상기 용기에 통과시킴으로써 상기 전구체 화합물을 원자층 증착법 수행을 위한 ALD 반응기로 공급하였다. 상기 ALD 반응기의 내부 압력은 3 torr로 유지되었다. 상기 ALD 반응기에 상기 전구체 화합물 기체를 15 초 동안 공급하였고, 이후 아르곤 기체를 5 초 동안 공급하였고, 이후 오존(O3) 기체를 14 초 동안 공급하였고, 이후 다시 아르곤 기체를 5 초 동안 공급함으로써 ALD 1 주기를 완성하였으며, 이를 200 회 반복하였다. 상기 공정에 따라 형성한 지르코늄 산화물 박막의 단면을 투과 전자 현미경 (TEM)을 이용하여 측정한 뒤 그 결과를 도 5a 내지 도 5f에 나타내었다. 도 5a 내지 도 5c는 각각 구멍 패턴의 상단부, 중단부 및 하단부를 관찰한 것으로서, 상기 기재의 온도를 300℃로 가열하여 형성한 지르코늄 산화막의 TEM 분석 결과이며, 도 5d 내지 도 5f는 각각 구멍 패턴의 상단부, 중단부 및 하단부를 관찰한 것으로서, 상기 기재의 온도를 350℃로 가열하여 형성한 지르코늄 산화막의 TEM 분석 결과이다. 도 5a 내지 도 5f를 참조하여, 상기 기재의 표면과 구멍 내부에 모두 고르게 막이 형성되었음을 확인할 수 있었다.Experiments were performed using (Cp 2 CMe 2 ) Zr (OMe) 2 prepared according to Example 15 as a precursor and forming a zirconium oxide film using atomic layer deposition (ALD). At this time, a wafer piece having a hole pattern with an aspect ratio of 40: 1 (50 nm in diameter and 2 μm in depth) was used as the substrate. The substrate was heated to 300 ° C and 350 ° C. In addition, the precursor compound contained in a stainless steel vessel was heated to a temperature of 120 ℃, and the precursor compound was fed to the ALD reactor for performing atomic layer deposition by passing argon (Ar) gas at a flow rate of 50 sccm through the vessel. . The internal pressure of the ALD reactor was maintained at 3 torr. The precursor compound gas was supplied to the ALD reactor for 15 seconds, and then argon gas was supplied for 5 seconds, then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was supplied again by supplying argon gas for 5 seconds. One cycle was completed and this was repeated 200 times. The cross section of the zirconium oxide thin film formed according to the above process was measured using a transmission electron microscope (TEM), and the results are shown in FIGS. 5A to 5F. 5A to 5C are observations of the upper end, the middle end, and the lower end of the hole pattern, respectively, and are results of TEM analysis of a zirconium oxide film formed by heating the temperature of the substrate to 300 ° C. The upper end, the stop part and the lower end of the film were observed, and the TEM analysis result of the zirconium oxide film formed by heating the temperature of the base material to 350 ° C. 5A to 5F, it was confirmed that a film was formed evenly on both the surface of the substrate and the inside of the hole.
상기 ALD 반응기에 상기 전구체 화합물 기체를 9 초 동안 공급하였고, 이후 아르곤 기체를 5 초 동안 공급하였고, 이후 오존(O3) 기체를 14 초 동안 공급하였고, 이후 다시 아르곤 기체를 5 초 동안 공급하는 ALD 주기를 반복하여, 300℃, 320℃, 350℃로 가열한 평판 웨이퍼에서 지르코늄 산화막을 형성하였다. 온도에 따른 ALD 주기 당 막 성장을 도 6에 나타내었다. 300℃ 내지 350℃의 온도 구간에서는 ALD 주기 당 막 성장에 거의 변화가 없음을 확인할 수 있었다.The precursor compound gas was supplied to the ALD reactor for 9 seconds, and then argon gas was supplied for 5 seconds, and then ozone (O 3 ) gas was supplied for 14 seconds, and then ALD was supplied with argon gas for 5 seconds. The cycle was repeated to form a zirconium oxide film on a flat wafer heated to 300 ° C, 320 ° C, and 350 ° C. The film growth per ALD cycle with temperature is shown in FIG. 6. In the temperature range of 300 ℃ to 350 ℃ it can be seen that almost no change in film growth per ALD cycle.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.The foregoing description is for the purpose of illustration, and Those skilled in the art will understand that the present invention can be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application. Should be interpreted as

Claims (13)

  1. 하기 화학식 1 또는 화학식 2로서 표시되는, 4 족 전이금속-함유 전구체 화합물:A Group 4 transition metal-containing precursor compound, represented by Formula 1 or Formula 2 below:
    [화학식 1][Formula 1]
    M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
    상기 화학식 1에 있어서,In Chemical Formula 1,
    M1 은 Zr 또는 Hf 을 포함하고,M 1 comprises Zr or Hf,
    Cp'는 C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, Cp 'comprises a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
    n 은 1 또는 2 이며, 상기 n 이 2 인 경우, 상기 두 개의 Cp'는 서로 동일하거나 상이할 수 있고 n is 1 or 2, and when n is 2, the two Cp's may be the same or different from each other
    L 은 C1-3 알킬기, C1-6 알콕사이드기 또는 -NHR3 를 포함하며, 여기서 상기 R3은 C1-6 알킬기이고, 상기 L이 두 개 이상인 경우 이들은 서로 동일하거나 상이할 수 있고;L comprises a C 1-3 alkyl group, a C 1-6 alkoxide group or —NHR 3 , wherein said R 3 is a C 1-6 alkyl group and when two or more L are two or more L they may be the same or different from each other;
    상기 M1 은 Cp'에 결합된 것이며; M 1 is bonded to Cp ';
    [화학식 2] [Formula 2]
    Figure PCTKR2013011370-appb-I000024
    ;
    Figure PCTKR2013011370-appb-I000024
    ;
    상기 화학식 2 에서, In Chemical Formula 2,
    M1 은 Zr 또는 Hf 을 포함하고,M 1 comprises Zr or Hf,
    Cp' 및 Cp"는, 각각 독립적으로, C1-4 알킬기에 의하여 치환될 수 있는 시클로펜타디에닐기를 포함하고, Cp 'and Cp "each independently include a cyclopentadienyl group which may be substituted by a C 1-4 alkyl group,
    L1 및 L2 는, 각각 독립적으로, C1-3 알킬기, C1-6 알콕사이드기 또는 -NHR3 를 포함하며, 여기서 상기 R3은 C1-6 알킬기이고,L 1 and L 2 each independently include a C 1-3 alkyl group, a C 1-6 alkoxide group, or —NHR 3 , wherein R 3 is a C 1-6 alkyl group,
    R1 및 R2 는, 각각 독립적으로, 수소 또는 C1-4 알킬기를 포함하며,R 1 and R 2 each independently include hydrogen or a C 1-4 alkyl group,
    상기 M1 은 Cp'와 Cp"에 결합된 것임.M 1 is bonded to Cp 'and Cp ".
  2. 제 1 항에 있어서, The method of claim 1,
    상기 L, L1 및 L2 는, 각각 독립적으로, 메틸기, 에틸기, 프로필기, iso-프로필기, 메톡사이드기, 에톡사이드기, n-프로폭사이드기, iso-프로폭사이드기, iso-부톡사이드기, sec-부톡사이드기, 3-펜톡사이드기, 또는 tert-부틸아미노기를 포함하는 것인, 4 족 전이금속-함유 전구체 화합물.L, L 1 and L 2 are each independently a methyl group, ethyl group, propyl group, iso-propyl group, methoxide group, ethoxide group, n-propoxide group, iso-propoxide group, iso- A group 4 transition metal-containing precursor compound comprising a butoxide group, sec-butoxide group, 3-pentoxide group, or tert-butylamino group.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 Cp' 및 Cp" 는, 각각 독립적으로, Cp, MeCp, EtCp, nPrCp, iPrCp, iBuCp, secBuCp, 또는 tBuCp를 포함하는 것인, 4 족 전이금속-함유 전구체 화합물.Wherein Cp 'and Cp ", each independently, Group 4 transition metal-containing precursor compound containing Cp, MeCp, EtCp, n PrCp, i PrCp, i BuCp, sec BuCp, or t BuCp.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 4 족 전이금속-함유 전구체 화합물은 상온에서 액체이거나 휘발 온도에서 액체인 것을 포함하는 것인, 4 족 전이금속-함유 전구체 화합물.The Group 4 transition metal-containing precursor compound is one comprising a liquid at room temperature or a liquid at a volatile temperature, Group 4 transition metal-containing precursor compound.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 4 족 전이금속-함유 전구체 화합물은, (EtCp)2Zr(Me)2, (iPrCp)2Zr(Me)2, CpZr(OsecBu)3, CpZr(O3Pen)3, CpZr(NHtBu)3, Cp(MeCp)Zr(OMe)2, (MeCp)2Zr(OMe)2, Cp(EtCp)Zr(OMe)2, Cp(iPrCp)Zr(OMe)2, (MeCp)(EtCp)Zr(OMe)2, (EtCp)2Zr(OMe)2, Cp(MeCp)Zr(OEt)2, Cp(EtCp)Zr(OEt)2, (MeCp)2Zr(OEt)2,
    Figure PCTKR2013011370-appb-I000025
    ,
    Figure PCTKR2013011370-appb-I000026
    , (EtCp)2Hf(Me)2, (iPrCp)2Hf(Me)2, (iPrCp)2Hf(Me)2, CpHf(OsecBu)3, CpHf(O3Pen)3, CpHf(NHtBu)3, Cp(MeCp)Hf(OMe)2, (MeCp)2Hf(OMe)2, Cp(EtCp)Hf(OMe)2, Cp(iPrCp)Hf(OMe)2, (MeCp)(EtCp)Hf(OMe)2, (EtCp)2Hf(OMe)2, Cp(MeCp)Hf(OEt)2, Cp(EtCp)Hf(OEt)2, (MeCp)2Hf(OEt)2,
    Figure PCTKR2013011370-appb-I000027
    , 및
    Figure PCTKR2013011370-appb-I000028
    로 이루어진 군으로부터 선택되는 것을 포함하는 것인, 4 족 전이금속-함유 전구체 화합물.
    The Group 4 transition metal-containing precursor compound includes (EtCp) 2 Zr (Me) 2 , ( i PrCp) 2 Zr (Me) 2 , CpZr (O sec Bu) 3 , CpZr (O 3 Pen) 3 , CpZr ( NH t Bu) 3 , Cp (MeCp) Zr (OMe) 2 , (MeCp) 2 Zr (OMe) 2 , Cp (EtCp) Zr (OMe) 2 , Cp ( i PrCp) Zr (OMe) 2 , (MeCp) (EtCp) Zr (OMe) 2 , (EtCp) 2 Zr (OMe) 2 , Cp (MeCp) Zr (OEt) 2 , Cp (EtCp) Zr (OEt) 2 , (MeCp) 2 Zr (OEt) 2 ,
    Figure PCTKR2013011370-appb-I000025
    ,
    Figure PCTKR2013011370-appb-I000026
    , (EtCp) 2 Hf (Me) 2 , ( i PrCp) 2 Hf (Me) 2 , ( i PrCp) 2 Hf (Me) 2 , CpHf (O sec Bu) 3 , CpHf (O 3 Pen) 3 , CpHf (NH t Bu) 3 , Cp (MeCp) Hf (OMe) 2 , (MeCp) 2 Hf (OMe) 2 , Cp (EtCp) Hf (OMe) 2 , Cp ( i PrCp) Hf (OMe) 2 , (MeCp ) (EtCp) Hf (OMe) 2 , (EtCp) 2 Hf (OMe) 2 , Cp (MeCp) Hf (OEt) 2 , Cp (EtCp) Hf (OEt) 2 , (MeCp) 2 Hf (OEt) 2 ,
    Figure PCTKR2013011370-appb-I000027
    , And
    Figure PCTKR2013011370-appb-I000028
    Group 4 transition metal-containing precursor compound, including those selected from the group consisting of.
  6. 하기를 포함하는, 제 1 항 내지 제 5 항 중 어느 한 항에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법:A process for preparing a Group 4 transition metal-containing precursor compound according to any one of claims 1 to 5 comprising:
    M1X4 및 Cp'M2을 유기 용매 중에서 반응시켜 M1(Cp')n(X)4-n를 형성하고; 및 M 1 X 4 and Cp'M 2 are reacted in an organic solvent to form M 1 (Cp ′) n (X) 4-n ; And
    상기 M1(Cp')n(X)4-n 및 M3L을 유기 용매 중에서 반응시켜 하기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the M 1 (Cp ′) n (X) 4-n and M 3 L in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1 below:
    [화학식 1][Formula 1]
    M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
    상기 화학식 1에서 In Chemical Formula 1
    M1, Cp', n, 및 L은 각각 제 1 항에서 정의된 바와 동일하며, M 1 , Cp ', n, and L are the same as defined in claim 1, respectively,
    상기 M1X4 및 Cp'M2에 있어서, X는 할로기를 포함하고, M2 및 M3는 각각 독립적으로 알칼리 금속을 포함하는 것임.In M 1 X 4 And Cp'M 2 , X includes a halo group, and M 2 and M 3 each independently include an alkali metal.
  7. 하기를 포함하는, 제 1 항 내지 제 5 항 중 어느 한 항에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법:A process for preparing a Group 4 transition metal-containing precursor compound according to any one of claims 1 to 5 comprising:
    Cp'M1(NR'R")3 및 LH 를 유기 용매 중에서 반응시켜 하기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Cp'M 1 (NR'R ") 3 and LH are reacted in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1 below:
    [화학식 1] [Formula 1]
    M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
    상기 Cp'M1(NR'R")3, LH 및 화학식 1 에서, R' 및 R"는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 C1-4 알킬기를 포함하며,In the Cp'M 1 (NR'R ") 3 , LH and Formula 1, R 'and R" may be the same or different from each other, and each independently include a C 1-4 alkyl group,
    M1, Cp', n, 및 L 은 각각 제 1 항에서 정의된 바와 동일함.M 1 , Cp ', n, and L are the same as defined in claim 1, respectively.
  8. 하기를 포함하는, 제 1 항 내지 제 5 항 중 어느 한 항에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법:A process for preparing a Group 4 transition metal-containing precursor compound according to any one of claims 1 to 5 comprising:
    Cp'M1(NR'R")3 및 Cp'H 를 유기 용매 중에서 반응시켜 Cp'M1(NR'R")2Cp' 를 형성하고; 및Cp'M 1 (NR'R ") 3 and Cp'H are reacted in an organic solvent to form Cp'M 1 (NR'R") 2 Cp '; And
    상기 Cp'M1(NR'R")2Cp' 및 LH 를 유기 용매 중에서 반응시켜 하기 화학식 1 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:The Cp'M 1 (NR'R ") 2 Cp 'and LH are reacted in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 1 below:
    [화학식 1] [Formula 1]
    M1(Cp')n(L)4-n;M 1 (Cp ') n (L) 4-n ;
    상기 Cp'M1(NR'R")3 , Cp'H, Cp'M1(NR'R"), LH 및 화학식 1 에서, In the Cp'M 1 (NR'R ") 3 , Cp'H, Cp'M 1 (NR'R") , LH and Formula 1,
    R' 및 R"는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 C1-4 알킬기를 포함하며, R 'and R "may be the same or different from each other, and each independently include a C 1-4 alkyl group,
    M1, Cp', n, 및 L 은 각각 제 1 항에서 정의된 바와 동일함.M 1 , Cp ', n, and L are the same as defined in claim 1, respectively.
  9. 하기를 포함하는, 제 1 항 내지 제 5 항 중 어느 한 항에 따른 4 족 전이금속-함유 전구체 화합물의 제조 방법:A process for preparing a Group 4 transition metal-containing precursor compound according to any one of claims 1 to 5 comprising:
    M1(NR'R")4 및 R1R2C(Cp'H)(Cp"H) 를 유기 용매 중에서 반응시켜 하기 화학식 3으로서 표시되는 중간체 화합물을 형성하고;M 1 (NR'R ") 4 and R 1 R 2 C (Cp'H) (Cp" H) Reacting in an organic solvent to form an intermediate compound represented by the following formula (3);
    상기 중간체 화합물 및 LH 를 유기 용매 중에서 반응시켜 하기 화학식 2 로서 표시되는 4 족 전이금속-함유 전구체 화합물을 형성함:Reacting the intermediate compound and LH in an organic solvent to form a Group 4 transition metal-containing precursor compound represented by Formula 2:
    [화학식 2] [Formula 2]
    Figure PCTKR2013011370-appb-I000029
    ;
    Figure PCTKR2013011370-appb-I000029
    ;
    [화학식 3][Formula 3]
    Figure PCTKR2013011370-appb-I000030
    Figure PCTKR2013011370-appb-I000030
    상기 화학식 2 또는 화학식 3 에서,In Chemical Formula 2 or Chemical Formula 3,
    상기 M1(NR'R")4 , R1R2C(Cp'H)(Cp"H), LH, 화학식 2 및 화학식 3에 있어서, R' 및 R"는 서로 동일하거나 상이할 수 있고, 각각 독립적으로 C1-4 알킬기를 포함하며,In M 1 (NR ′ R ″) 4 , R 1 R 2 C (Cp′H) (Cp ″ H), LH, Formula 2, and Formula 3, R ′ and R ″ may be the same as or different from each other. Each independently include a C 1-4 alkyl group,
    M1, Cp', Cp", R1, R2, L1 및 L2 는 각각 제 1 항에서 정의된 바와 동일함.M 1 , Cp ', Cp ", R 1 , R 2 , L 1 and L 2 are the same as defined in claim 1, respectively.
  10. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 4 족 전이금속-함유 전구체 화합물을 포함하는, 4 족 전이금속-함유 박막 증착용 전구체 조성물.A precursor composition for depositing a Group 4 transition metal-containing thin film, comprising the Group 4 transition metal-containing precursor compound according to any one of claims 1 to 5.
  11. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 4 족 전이금속-함유 전구체 화합물을 이용하는, 4 족 전이금속-함유 박막의 증착 방법.A method of depositing a Group 4 transition metal-containing thin film, using the Group 4 transition metal-containing precursor compound according to any one of claims 1 to 5.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 박막을 증착하는 것은 유기금속 화학기상증착법(MOCVD), 또는 원자층 증착법(ALD)에 의하여 수행되는 것을 포함하는 것인, 4 족 전이금속-함유 박막의 증착 방법.Depositing the thin film comprises organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD).
  13. 제 11 항에 있어서,The method of claim 11,
    상기 박막은 4 족 전이금속-함유 산화물, 질화물 또는 산질화물을 포함하는 것인, 4 족 전이금속-함유 박막의 증착 방법.Wherein said thin film comprises a Group 4 transition metal-containing oxide, nitride or oxynitride.
PCT/KR2013/011370 2013-04-08 2013-12-09 Group iv transition metal-containing precursor compound, and method for depositing thin film using same WO2014168312A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130038326A KR20140074162A (en) 2012-12-07 2013-04-08 A precursor compound containing group iv transition metal, and depositing method of thin film using the same
KR10-2013-0038326 2013-04-08
KR1020130152574A KR20140121761A (en) 2013-04-08 2013-12-09 A precursor compound containing group iv transition metal and depositing method of thin film using the same
KR10-2013-0152574 2013-12-09

Publications (1)

Publication Number Publication Date
WO2014168312A1 true WO2014168312A1 (en) 2014-10-16

Family

ID=51689694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011370 WO2014168312A1 (en) 2013-04-08 2013-12-09 Group iv transition metal-containing precursor compound, and method for depositing thin film using same

Country Status (2)

Country Link
KR (1) KR20140121761A (en)
WO (1) WO2014168312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030616A1 (en) * 2022-08-05 2024-02-08 Dow Global Technologies Llc Asymmetrical hafnium metallocenes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292783A1 (en) * 2007-04-13 2008-11-27 Samsung Electronics Co., Ltd. Method of manufacturing a thin layer and methods of manufacturing gate structures and capacitors using the same
KR20090018080A (en) * 2006-06-02 2009-02-19 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing
WO2009036046A1 (en) * 2007-09-14 2009-03-19 Sigma-Aldrich Co. Methods of preparing thin films by atomic layer deposition using monocyclopentadienyl trialkoxy hafnium and zirconium precursors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090018080A (en) * 2006-06-02 2009-02-19 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method of forming dielectric films, new precursors and their use in the semi-conductor manufacturing
US20080292783A1 (en) * 2007-04-13 2008-11-27 Samsung Electronics Co., Ltd. Method of manufacturing a thin layer and methods of manufacturing gate structures and capacitors using the same
WO2009036046A1 (en) * 2007-09-14 2009-03-19 Sigma-Aldrich Co. Methods of preparing thin films by atomic layer deposition using monocyclopentadienyl trialkoxy hafnium and zirconium precursors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDREA SARTORI ET AL.: "Zirconocene Alkoxides, Promising Precursors for MOCVD of Zirconium Dioxide Thin Films", CHEM. VAP. DEPOSITION, vol. 18, 2012, pages 151 - 158 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030616A1 (en) * 2022-08-05 2024-02-08 Dow Global Technologies Llc Asymmetrical hafnium metallocenes

Also Published As

Publication number Publication date
KR20140121761A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2019156451A1 (en) Group iv metal element-containing compound, preparation method therefor, precursor composition comprising same compound for film formation, and film forming method using same composition
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2018048124A1 (en) Group 5 metal compound, preparation method therefor, film deposition precursor composition comprising same, and film deposition method using same
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2015190900A1 (en) Precursor compound for film formation, and thin film formation method using same
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2017135715A1 (en) Group 4 metal element-containing compound, method for preparing same, precursor composition containing same for film deposition, and method for depositing film using same
WO2022149854A1 (en) Area-selective method for forming thin film by using nuclear growth retardation
WO2023200154A1 (en) Ruthenium precursor composition, preparation method therefor, and formation method for ruthenium-containing film using same
WO2014168312A1 (en) Group iv transition metal-containing precursor compound, and method for depositing thin film using same
WO2020116770A1 (en) Group 4 transition metal compound, method for preparing same and method for forming thin film using same
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2021153986A1 (en) Silicon precursor compound, composition for forming silicon-containing film, comprising same, and method for forming silicon-containing film
WO2023219446A1 (en) Film depositing composition including group 4 metal element-containing precursor compound and method for forming film using same
WO2022055201A1 (en) Group 4 metal element-containing compound, precursor composition including same, and method for manufacturing thin film using same
WO2016108398A1 (en) Organic group 13 precursor and method for depositing thin film using same
WO2023121383A1 (en) Molybdenum precursor compound, method for preparing same, and method for depositing molybdenum-containing film using same
WO2021085810A2 (en) Group 4 transition metal compound, preparation method therefor, and composition, comprising same, for depositing thin film
WO2023282615A1 (en) Molybdenum precursor compound, preparation method therefor, and method for depositing molybdenum-containing thin film by using same
WO2023287192A1 (en) Silicon precursor compound, composition for forming silicon-containing film comprising same, and method for forming film using composition for forming silicon-containing film
WO2023003398A1 (en) Method for forming silicon-containing film, and silicon-containing film formed thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881627

Country of ref document: EP

Kind code of ref document: A1