WO2016108398A1 - Organic group 13 precursor and method for depositing thin film using same - Google Patents

Organic group 13 precursor and method for depositing thin film using same Download PDF

Info

Publication number
WO2016108398A1
WO2016108398A1 PCT/KR2015/009872 KR2015009872W WO2016108398A1 WO 2016108398 A1 WO2016108398 A1 WO 2016108398A1 KR 2015009872 W KR2015009872 W KR 2015009872W WO 2016108398 A1 WO2016108398 A1 WO 2016108398A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
formula
organic group
group
carbon atoms
Prior art date
Application number
PCT/KR2015/009872
Other languages
French (fr)
Korean (ko)
Inventor
이근수
이영민
김상민
Original Assignee
주식회사 유진테크 머티리얼즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150058809A external-priority patent/KR20160082321A/en
Application filed by 주식회사 유진테크 머티리얼즈 filed Critical 주식회사 유진테크 머티리얼즈
Publication of WO2016108398A1 publication Critical patent/WO2016108398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to an organic group 13 precursor and a thin film deposition method using the same, and in detail, an aluminum precursor capable of effectively forming an aluminum-containing film, an aluminum-containing film deposition method using the same, a gallium precursor that can effectively form a gallium-containing film, and It relates to a gallium-containing film deposition method using the same.
  • MOC metal oxide devices
  • Precursors containing a Group 13 element have been spotlighted as precursors having excellent stability and conductivity, and precursors for thin film deposition.
  • precursors containing Group 13 elements are actively utilized in metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD) processes.
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • the precursor containing the Group 13 element supplied must be thermally stable and have a high vapor pressure at low temperatures.
  • An object of the present invention is to provide an aluminum precursor capable of effectively forming an aluminum containing film and an aluminum containing film deposition method using the same.
  • Another object of the present invention is to provide a gallium precursor capable of effectively forming a gallium-containing film and a method for depositing a gallium-containing film using the same.
  • An organic group 13 precursor according to an embodiment of the present invention is represented by the following ⁇ Formula 1>.
  • M is any one selected from metal elements belonging to the Group 13 element on the periodic table
  • L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms
  • R 1 and R 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 2>.
  • L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 3>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 4>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 5>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 6>.
  • R 1 and R 2 are connected to each other to form a cyclic amine group having 3 to 6 carbon atoms with the nitrogen atom to which R 1 and R 2 are bonded.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 7>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 8>.
  • L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 9>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 10>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 11>.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 12>.
  • R 1 and R 2 are connected to each other to form a cyclic amine group having 3 to 6 carbon atoms with the nitrogen atom to which R 1 and R 2 are bonded.
  • the organic group 13 precursor may be represented by the following ⁇ Formula 13>.
  • a thin film deposition method includes a deposition process for depositing a thin film on a substrate using the organic group 13 precursor.
  • the deposition process may be performed by an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the chemical vapor deposition may include a metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • the deposition process includes a loading step of loading a substrate into the chamber; A heating step of heating the substrate loaded in the chamber; A supplying step of supplying the organic group 13 precursor to the inside of the chamber loaded with the substrate; A compound layer forming step of adsorbing the organic Group 13 precursor onto the substrate to form an organic Group 13 compound layer; And forming a group 13 element-containing film on the substrate by applying thermal energy, plasma, or electrical bias to the substrate.
  • the substrate may be heated to a temperature range of 50 ⁇ 800 °C.
  • the organic group 13 precursor may be heated to a temperature range of 20 to 100 ° C. and supplied onto the substrate.
  • At least one carrier gas selected from argon (Ar), nitrogen (N 2 ), helium (He), and hydrogen may be mixed with the organic group 13 precursor and supplied to the substrate.
  • the Group 13 element-containing film may be an aluminum film or a gallium film.
  • the supplying step may further include a reaction gas supplying step of supplying at least one reaction gas selected from among water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) onto the substrate.
  • a reaction gas supplying step of supplying at least one reaction gas selected from among water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) onto the substrate.
  • the group 13 element-containing film may be an aluminum oxide film or a gallium oxide film.
  • the supplying step further includes a reaction gas supplying step of supplying at least one reaction gas selected from ammonia (NH 3 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ) and nitrogen (N 2 ) onto the substrate. can do.
  • a reaction gas supplying step of supplying at least one reaction gas selected from ammonia (NH 3 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ) and nitrogen (N 2 ) onto the substrate. can do.
  • the Group 13 element-containing film may be an aluminum nitride film or a gallium nitride film.
  • An organic group 13 precursor and an effect of thin film deposition using the same according to an embodiment of the present invention are as follows.
  • the organic group 13 precursor according to an embodiment of the present invention has a small boiling point but has a high boiling point, and thus is present in a liquid state at room temperature, and has excellent thermal stability.
  • the organic group 13 precursor according to the embodiment of the present invention has a strong affinity with the silicon substrate and the metal atom because it includes the nitrogen atom and the organic group 13 atom having an unshared electron pair in one molecular structure.
  • the temperature window of the deposition process can be narrowed.
  • Organic Group 13 precursor according to an embodiment of the present invention has a non-explosive, non-flammable properties, it is easy to maintain, repair and manage the equipment during deposition of the Group 13 element-containing film using it.
  • the group 13 element-containing film is deposited using the organic group 13 precursor according to an embodiment of the present invention
  • the number of molecules of the organic group 13 precursor adsorbed per unit area of the lower structure increases, so that deposition density and deposition uniformity are improved. Therefore, step coverage of the Group 13 element-containing film is improved.
  • the vapor deposition precursor since the vapor deposition precursor has a lower vapor pressure than trimethylaluminum (TMA), it is possible to control the deposition rate during thin film deposition.
  • TMA trimethylaluminum
  • the organic group 13 element-containing film can be effectively deposited using the organic group 13 precursor according to one embodiment of the present invention.
  • 1 is a graph showing the thermal analysis test results of diethylamino diethylaluminum.
  • 3 is a graph showing the thermal analysis test results of ethylmethylamino diethylaluminum.
  • 5 is a graph showing the thermal analysis test results of dimethylamino diethylgallium.
  • 6 is a graph showing the thermal analysis test results of pyrrolidino diethylgallium.
  • FIG. 7 is a graph showing the results of ICP-AES component analysis of an aluminum-containing film deposited using diethylamino diethylaluminum.
  • FIG. 8 is a graph showing the results of ASE component analysis of an aluminum containing film deposited using diethylamino diethyl aluminum.
  • FIG. 9 is a graph showing the growth rate per cycle with respect to the process temperature of the aluminum containing film deposited using diethylamino diethyl aluminum.
  • FIG. 10 is a graph showing the film thickness per cycle of an aluminum containing film deposited using diethylamino diethylaluminum.
  • 11 is a graph showing the results of ICP-AES component analysis of an aluminum-containing film deposited using dimethylamino diethylaluminum.
  • FIG. 12 is a graph showing ASE component analysis results of an aluminum-containing film deposited using dimethylamino diethyl aluminum.
  • FIG. 13 is a graph showing growth rate per cycle versus process temperature of an aluminum-containing film deposited using dimethylamino diethylaluminum.
  • FIG. 14 is a graph showing the film thickness per cycle of an aluminum containing film deposited using dimethylamino diethylaluminum.
  • FIG. 15 is a graph showing ICP-AES component analysis results of an aluminum-containing film deposited using pyrrolidino diethyl aluminum.
  • FIG. 16 is a graph showing ASE component analysis results of an aluminum-containing film deposited using pyrrolidino diethyl aluminum.
  • 17 is a graph showing the film thickness of a film containing aluminum deposited using pyrrolidino diethyl aluminum.
  • the present invention relates to an organic group 13 precursor and a thin film deposition method using the same, it will be described embodiments of the present invention by using the following formula and experimental examples.
  • the embodiments of the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below.
  • An organic group 13 precursor according to an embodiment of the present invention is represented by the following ⁇ Formula 1>.
  • M is any one selected from metal elements belonging to the Group 13 element on the periodic table
  • L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms
  • R 1 and R 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms.
  • trimethylaluminum is widely used as a precursor to form an aluminum-containing film. Since trimethylaluminum (TMA) is used in many fields besides thin film deposition, there are advantages in that it is easy to supply raw materials, has a very high vapor pressure, and is thermally stable. However, since trimethylaluminum (TMA) has a very high vapor pressure, it is not possible to control the deposition rate of the thin film, and there is a risk of fire due to spontaneous ignition even when only a very small amount is exposed to air. In addition, since trimethylaluminum (TMA) is a compound consisting only of aluminum and carbon, carbon, which is an impurity, is generated during thin film deposition, thereby degrading the quality of the thin film.
  • the present invention seeks to provide an organic Group 13 precursor that can complement the disadvantages of such trimethylaluminum (TMA) and effectively deposit an aluminum containing film.
  • TMA trimethylaluminum
  • the precursor for depositing an aluminum thin film according to an embodiment of the present invention is represented by the following ⁇ Formula 2>.
  • L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
  • Substituents L 1 , L 2 , R 1 and R 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 2> may be an alkyl group having 2 carbon atoms, which is represented by the following ⁇ Formula 3>.
  • Substituents L 1 and L 2 of the precursor for aluminum thin film deposition represented by ⁇ Formula 2> may be an alkyl group having 2 carbon atoms, and substituents R 1 and R 2 may be alkyl groups having 1 carbon number. This is represented by the following ⁇ Formula 4>.
  • Substituents L 1 , L 2, and R 1 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 2> may be an alkyl group having 2 carbon atoms, and the substituent R 2 may be an alkyl group having 1 carbon atoms. This is represented by the following ⁇ Formula 5>.
  • Substituents R 1 and R 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 2> may be connected to each other, and R 1 and R 2 may have 3 to 6 carbon atoms together with the nitrogen atom to which R 1 and R 2 are bonded. Cyclic amine groups can be formed. This is represented by the following ⁇ Formula 6>.
  • Substituents L 1 and L 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 6> may be an alkyl group having 2 carbon atoms, and R 1 and R 2 may have 4 carbon atoms together with a nitrogen atom having R 1 and R 2 bonded thereto.
  • the cyclic amine group of can be formed. This is represented by the following ⁇ Formula 7>.
  • the present invention is to provide an organic Group 13 precursor capable of effectively depositing a gallium-containing film.
  • Gallium thin film deposition precursor according to an embodiment of the present invention is represented by the following formula (8).
  • L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
  • Substituents L 1 , L 2 , R 1 and R 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 8> may be an alkyl group having 2 carbon atoms, which is represented by the following ⁇ Formula 9>.
  • Substituents L 1 and L 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 8> may be an alkyl group having 2 carbon atoms, and substituents R 1 and R 2 may be alkyl groups having 1 carbon number. This is represented by the following ⁇ Formula 10>.
  • Substituents L 1 , L 2, and R 1 of the precursor for aluminum thin film deposition represented by ⁇ Formula 8> may be an alkyl group having 2 carbon atoms, and the substituent R 2 may be an alkyl group having 1 carbon number. This is represented by the following formula (11).
  • Substituents R 1 and R 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 8> may be connected to each other, and R 1 and R 2 may have 3 to 6 carbon atoms together with the nitrogen atom to which R 1 and R 2 are bonded. Cyclic amine groups can be formed. This is represented by the following formula (12).
  • Substituents L 1 and L 2 of the precursor for depositing an aluminum thin film represented by ⁇ Formula 12> may be an alkyl group having 2 carbon atoms, and R 1 and R 2 may have 4 carbon atoms together with a nitrogen atom having R 1 and R 2 bonded thereto.
  • the cyclic amine group of can be formed. This is represented by the following formula (13).
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • DSC Differential scanning calorimetry
  • TGA thermogravimetric analysis
  • Heating profile heating from 30 ° C. to 350 ° C. at a heating rate of 10 ° C./min
  • FIG. 1 shows the DSC thermal curves and TGA thermal curves obtained through the thermal analysis test results in one diagram.
  • the thermal curves indicated by dotted lines indicate the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown.
  • the pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again.
  • the pyrolysis temperature of diethylamino diethylaluminum is about 237.12 ° C., and the residual component amount is about 1.613% of the initial weight.
  • the diethylamino diethylaluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
  • FIG. 2 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one diagram, and shows the results obtained from the DSC test of the thermal curves indicated by dotted lines. Results obtained from the TGA test are shown.
  • the pyrolysis temperature of the DSC test was designated as the temperature at which the DSC heat curve decreases when the heat flow rate increases and then suddenly rises again. As shown in FIG. 2, the pyrolysis temperature of dimethylamino diethylaluminum is about 192.79 ° C., and the residual amount is about 2.100% of the initial weight.
  • the dimethylamino diealkylaluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
  • FIG. 3 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one drawing.
  • the thermal curves indicated by dotted lines indicate the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown.
  • the pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again. As shown in FIG.
  • the thermal decomposition temperature of ethylmethylamino diethylaluminum is about 217.04 ° C., and the residual amount of the residue is about 1.218% based on the initial weight. Therefore, the ethylmethylamino diethylaluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
  • FIG. 4 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one diagram.
  • the thermal curves indicated by dotted lines indicate the results obtained by the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown.
  • the pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again.
  • the pyrolytico diethylaluminum pyrolysis temperature is about 217.04 ° C., and the residual amount is about 1.218% based on the initial weight. Therefore, the pyrrolidino diethyl aluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
  • FIG. 5 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one diagram, and the thermal curves indicated by dotted lines show the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown.
  • the pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again.
  • the thermal decomposition temperature of dimethylamino diethylgallium was found to be 198.74 ° C., and T1 / 2 was 178.83 ° C.
  • the residual component amount (residue) after the temperature is raised to 350 °C is about 3.2% of the initial weight.
  • the dimethylamino diethylgallium of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
  • FIG. 6 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one drawing.
  • the thermal curves indicated by dotted lines show the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown.
  • the pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again.
  • pyrolidino diethylgallium had a thermal decomposition temperature of 229.28 ° C. and T1 / 2 of 251.31 ° C.
  • the residual component amount (residue) remaining after the temperature is raised to 350 °C is about 3.466% of the initial weight. Therefore, the pyrrolidino diethylgallium of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
  • the organic Group 13 precursor according to an embodiment of the present invention has a small boiling point but has a high boiling point and thus exists in a liquid state at room temperature, and has excellent thermal stability.
  • a nitrogen atom and an aluminum or gallium atom having an unshared electron pair are included in one molecular structure, it exhibits a strong affinity with a silicon substrate and a metal atom.
  • the thin film deposition method includes a deposition process of depositing an aluminum-containing film or a gallium-containing film on a substrate by using the aforementioned organic group 13 precursor.
  • the deposition process may be performed by an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process, and the chemical vapor deposition (CVD) may be performed by an organic metal chemical deposition process (Metal Organic). Chemical Vapor Deposition, MOCVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • MOCVD Metal Organic
  • the deposition process may include a loading step (S100) of loading a substrate into a chamber providing a space in which a process for the substrate is performed, a heating step (S200) of heating a substrate loaded in the chamber, and a chamber loaded with a substrate.
  • a loading step (S100) of loading a substrate into a chamber providing a space in which a process for the substrate is performed a heating step (S200) of heating a substrate loaded in the chamber, and a chamber loaded with a substrate.
  • the supply step (S300) of supplying the organic group 13 precursor according to an embodiment of the present invention the compound layer for adsorbing the supplied organic group 13 precursor on the substrate to form an organic aluminum compound layer or organic gallium compound layer Forming step (S400) and the film forming step (S500) of forming an aluminum-containing or gallium-containing film by applying thermal energy, plasma or electrical bias to the substrate on which the organic aluminum compound layer or organic gallium compound layer is formed.
  • the substrate may be heated to a temperature range of 50 to 800 ° C.
  • the organic group 13 precursor may be heated to a temperature range of 20 to 100 ° C. and supplied onto the substrate.
  • the organic group 13 precursor and one or more carrier gases selected from argon (Ar), nitrogen (N 2 ), helium (He) and hydrogen according to an embodiment of the present invention may be mixed and supplied onto the substrate. have.
  • the deposition process is performed by supplying only the mixture of the organic group 13 precursor and the carrier gas on the substrate according to an embodiment of the present invention, an aluminum film or gallium film is deposited on the substrate.
  • the organic group 13 precursor according to an embodiment of the present invention is supplied onto a substrate, and oxygen-based reaction gases such as water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) are supplied. It can supply on a board
  • the oxygen-based reaction gas may be supplied onto the substrate together with the organic Group 13 precursor according to the embodiment of the present invention, or may be supplied onto the substrate separately from the organic Group 13 precursor according to the embodiment of the present invention.
  • a metal aluminum oxide film or a gallium oxide film, a hafnium gallium oxide film, such as an aluminum oxide film, a hafnium aluminum oxide film, a zirconium aluminum oxide film, and a titanium aluminum oxide film A metal gallium oxide film such as a zirconium gallium oxide film and a titanium gallium oxide film can be formed.
  • the organic group 13 precursor according to an embodiment of the present invention is supplied onto a substrate, and ammonia (NH 3 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), and nitrogen (N 2 ) A nitrogen-based reaction gas such as this can be supplied onto the substrate.
  • the nitrogen-based reaction gas may be supplied onto the substrate together with the organic Group 13 precursor according to the embodiment of the present invention, or may be supplied onto the substrate separately from the organic Group 13 precursor according to the embodiment of the present invention.
  • a metal aluminum nitride film such as an aluminum nitride film, a hafnium aluminum nitride film, a zirconium aluminum nitride film, and a titanium aluminum nitride film or a gallium nitride film, a hafnium gallium nitride film
  • a metal gallium nitride film such as a zirconium gallium nitride film and a titanium gallium nitride film, may be formed.
  • the organic group 13 precursor according to an embodiment of the present invention is a bubbling method, a vapor phase mass flow controller method, a direct liquid injection (DLI) method, It may be supplied onto the substrate by a liquid transfer method for dissolving and transferring in an organic solvent, but is not necessarily limited to these methods.
  • a liquid transfer method for dissolving and transferring in an organic solvent but is not necessarily limited to these methods.
  • the excess organic group 13 which is not adsorbed on the substrate by supplying a first purge gas selected from an inert gas such as argon (Ar), nitrogen (N 2 ), and helium (He) into the chamber.
  • a first purge gas selected from an inert gas such as argon (Ar), nitrogen (N 2 ), and helium (He) into the chamber.
  • the first purge step S410 may be performed to remove the precursor, and in the first purge step S410, the first purge gas may be supplied into the chamber in less than 1 minute.
  • a second purge for supplying a second purge gas selected from an inert gas such as argon (Ar), nitrogen (N 2 ), and helium (He) to the chamber to remove excess reaction gas and by-products.
  • Step S510 may be performed, and in the second purge step S510, the second purge gas may be introduced into the chamber in less than 1 minute.
  • a thin film deposition method using an organic group 13 precursor according to an embodiment of the present invention will be described in detail with reference to the following examples.
  • the following examples are presented to aid the understanding of the present invention, and the scope of the present invention is not limited to the following examples.
  • An argon (Ar) gas having a flow rate of 250 sccm was used as a carrier gas, and the diethylamino diethylaluminum compound was supplied at a feed rate of 0.02 g per minute using a LMF (Liguid Flow Meter).
  • the temperature of the feed pipe for supplying the diethylamino diethylaluminum compound into the chamber was maintained at a temperature range of 180 to 185 ° C.
  • the process pressure in the chamber was adjusted to 0.3 torr, and the process conditions were controlled so that the diethylamino diethylaluminum compound gas contacted the substrate alternately with O 2 .
  • the deposition process used a cycle of supplying diethylamino diethylaluminum compound gas for 1 second, argon (Ar) gas supply for 1 second, O 2 gas supply for 0.2 second, and plasma application, and argon (Ar) gas for 1 second.
  • the aluminum-containing film deposited by the deposition process was confirmed by ICP-AES, ASE component analysis.
  • FIG. 7 is a graph showing ICP-AES component analysis results of the aluminum-containing film deposited by the deposition process
  • FIG. 8 is a graph showing ASE component analysis results of the aluminum-containing film deposited by the deposition process.
  • C residual carbon
  • FIG. 9 is a graph showing the growth rate per cycle with respect to the process temperature of the aluminum-containing film deposited by the deposition process
  • Figure 10 is a graph showing the film thickness per cycle of the aluminum-containing film deposited by the deposition process.
  • the growth rate (Growth Per Cycle, GPC) is 0.75 ⁇ 0.8 kHz level. Since the growth rate per cycle (GPC) of trimethylaluminum (TMA) in the same temperature range is about 1.0 kW, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention when using trimethylaluminum (TMA) It can be seen that the growth rate per cycle (GPC) is low.
  • the aluminum-containing film thickness deposited by the deposition process increases linearly as the deposition cycle proceeds. Therefore, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention can easily adjust the thickness of the thin film according to the control of the deposition cycle.
  • dimethylamino diethylaluminum compound obtained in Experimental Example 2 was used as a precursor, and the deposition process was performed at a process temperature of 400 ° C. in the chamber.
  • the dimethylamino diethylaluminum compound was vaporized in a container made of stainless steel, and the vaporization temperature of the vaporizer was set to 130 ° C.
  • Argon (Ar) gas having a flow rate of 250 sccm was used as the carrier gas, and the dimethylamino diethylaluminum compound was supplied at a feed rate of 0.02 g per minute using an LMF (Liguid Flow Meter).
  • LMF Liguid Flow Meter
  • the temperature of the feed tube for supplying the dimethylamino diethylaluminum compound into the chamber was maintained in the temperature range of 135 ⁇ 140 °C.
  • the process pressure in the chamber was adjusted to 0.3 torr, and the process conditions were controlled so that the dimethylamino diethylaluminum compound gas contacted the substrate alternately with O 2 .
  • the deposition process used a cycle of supplying dimethylamino diethylaluminum compound gas for 0.8 seconds, argon (Ar) gas supply for 1 second, O 2 gas supply and plasma application for 1 second, and argon (Ar) gas for 1 second.
  • the aluminum-containing film deposited by the deposition process was confirmed by ICP-AES, ASE component analysis.
  • FIG. 11 is a graph showing ICP-AES component analysis results of the aluminum-containing film deposited by the deposition process
  • Figure 12 is a graph showing the ASE component analysis results of the aluminum-containing film deposited by the deposition process.
  • C residual carbon
  • FIG. 13 is a graph showing the growth rate per cycle with respect to the process temperature of the aluminum-containing film deposited by the deposition process
  • Figure 14 is a graph showing the film thickness per cycle of the aluminum-containing film deposited by the deposition process.
  • the growth rate (Growth Per Cycle, GPC) is 0.75 ⁇ 0.8 kHz level. Since the growth rate per cycle (GPC) of trimethylaluminum (TMA) in the same temperature range is about 1.0 kW, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention when using trimethylaluminum (TMA) It can be seen that the growth rate per cycle (GPC) is low.
  • the thickness of the aluminum-containing film deposited by the deposition process increases linearly as the deposition cycle progresses. Therefore, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention can easily adjust the thickness of the thin film according to the control of the deposition cycle.
  • the process pressure in the chamber was adjusted to 0.3 torr, and the process conditions were controlled such that the pyrrolidino diethylaluminum compound gas contacted the substrate alternately with O 2 .
  • the deposition process used a cycle of supplying pyrrolidino diethylaluminum compound gas for 0.6 seconds, argon (Ar) gas supply for 2 seconds, O 2 gas supply and plasma application for 1 second, and argon (Ar) gas for 0.5 seconds.
  • the aluminum-containing film deposited by the deposition process was confirmed by ICP-AES, ASE component analysis.
  • FIG. 15 is a graph showing ICP-AES component analysis results of an aluminum-containing film deposited by the deposition process
  • FIG. 16 is a graph showing ASE component analysis results of an aluminum-containing film deposited by the deposition process.
  • C residual carbon
  • FIG. 17 is a graph showing the film thickness of the aluminum-containing film deposited by the deposition process with respect to the process temperature based on 200 cycles.
  • a growth rate per cycle (GPC) is about 0.4 ⁇ s. Since the growth rate per cycle (GPC) of trimethylaluminum (TMA) in the same temperature range is about 1.0 kW, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention when using trimethylaluminum (TMA) It can be seen that the growth rate per cycle (GPC) is low. Therefore, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention can easily adjust the thickness of the thin film according to the control of the deposition cycle.
  • GPC growth rate per cycle

Abstract

An organic group 13 precursor according to one embodiment of the present invention is indicated as (R1R2N) M (L1L2), wherein M is selected from metals which belong to group 13 elements in the periodic chart, L1 and L2 are independently selected from an alkyl group having 1 to 6 carbon numbers or a cycloalkyl group having 3 to 6 carbon numbers, and R1 and R2 are independently selected from an alkyl group having 1 to 6 carbon numbers or a cycloalkyl group having 3 to 6 carbon numbers.

Description

유기 13족 전구체 및 이를 이용한 박막 증착 방법Organic Group 13 Precursor and Thin Film Deposition Method Using the Same
본 발명은 유기 13족 전구체 및 이를 이용한 박막 증착 방법에 관한 것이며, 상세하게는 알루미늄 함유막을 효과적으로 형성할 수 있는 알루미늄 전구체 및 이를 이용한 알루미늄 함유막 증착 방법, 갈륨 함유막을 효과적으로 형성할 수 있는 갈륨 전구체 및 이를 이용한 갈륨 함유막 증착 방법에 관한 것이다.The present invention relates to an organic group 13 precursor and a thin film deposition method using the same, and in detail, an aluminum precursor capable of effectively forming an aluminum-containing film, an aluminum-containing film deposition method using the same, a gallium precursor that can effectively form a gallium-containing film, and It relates to a gallium-containing film deposition method using the same.
전자 기술의 발전에 따른 미세화, 저전력화, 고용량화 추세에 부응하도록 소형화된 전자 소자를 제조하기 위해서는, 금속산화물 소자(MOC, Metal-Oxide Semiconductor)를 비롯한 각종 전자 소자의 소형화가 요구된다.In order to manufacture miniaturized electronic devices to meet the trend of miniaturization, low power consumption, and high capacity according to the development of electronic technology, miniaturization of various electronic devices including metal oxide devices (MOC) is required.
13족 원소를 포함하는 전구체는 우수한 안정성 및 전도성을 가지는 전구체로서, 박막 증착을 위한 전구체로서 각광을 받고 있다. 특히 금속 유기물 화학 기상 증착(MOCVD, Metal Organic Chemical Vapor Deposition)이나 원자층 증착(ALD, Atomic Layer Deposition) 공정에서 13족 원소를 포함하는 전구체가 적극 활용되고 있다. MOCVD 또는 ALD 공정에서 증착되는 박막의 특성을 확보하기 위해서는, 공급되는 13족 원소를 포함하는 전구체가 열적으로 안정해야 하며, 저온에서 높은 증기압을 가져야 한다. Precursors containing a Group 13 element have been spotlighted as precursors having excellent stability and conductivity, and precursors for thin film deposition. In particular, precursors containing Group 13 elements are actively utilized in metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD) processes. In order to ensure the properties of the thin film deposited in the MOCVD or ALD process, the precursor containing the Group 13 element supplied must be thermally stable and have a high vapor pressure at low temperatures.
본 발명의 목적은 알루미늄 함유막을 효과적으로 형성할 수 있는 알루미늄 전구체 및 이를 이용한 알루미늄 함유막 증착 방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide an aluminum precursor capable of effectively forming an aluminum containing film and an aluminum containing film deposition method using the same.
본 발명의 다른 목적은 갈륨 함유막을 효과적으로 형성할 수 있는 갈륨 전구체 및 이를 이용한 갈륨 함유막 증착 방법을 제공하는 데 있다.Another object of the present invention is to provide a gallium precursor capable of effectively forming a gallium-containing film and a method for depositing a gallium-containing film using the same.
본 발명의 또 다른 목적들은 다음의 상세한 설명에 의해 보다 명확해질 것이다.Still other objects of the present invention will become more apparent from the following detailed description.
본 발명의 일 실시예에 의한 유기 13족 전구체는 하기 <화학식 1>로 표시된다.An organic group 13 precursor according to an embodiment of the present invention is represented by the following <Formula 1>.
<화학식 1><Formula 1>
Figure PCTKR2015009872-appb-I000001
Figure PCTKR2015009872-appb-I000001
상기 <화학식 1>에서 M은 주기율표상에서 13족 원소에 속하는 금속 원소 중에서 선택된 어느 하나이며, L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다.In <Formula 1>, M is any one selected from metal elements belonging to the Group 13 element on the periodic table, and L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms. R 1 and R 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms.
상기 유기 13족 전구체는 하기 <화학식 2>로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 2>.
<화학식 2><Formula 2>
Figure PCTKR2015009872-appb-I000002
Figure PCTKR2015009872-appb-I000002
상기 <화학식 2>에서 L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다. In Formula 2, L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
상기 유기 13족 전구체는 하기 <화학식 3>으로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 3>.
<화학식 3><Formula 3>
Figure PCTKR2015009872-appb-I000003
Figure PCTKR2015009872-appb-I000003
상기 유기 13족 전구체는 하기 <화학식 4>로 표시되는 것을 특징으로 할 수 있다. The organic group 13 precursor may be represented by the following <Formula 4>.
<화학식 4><Formula 4>
Figure PCTKR2015009872-appb-I000004
Figure PCTKR2015009872-appb-I000004
상기 유기 13족 전구체는 하기 <화학식 5>로 표시되는 것을 특징으로 할 수 있다. The organic group 13 precursor may be represented by the following <Formula 5>.
<화학식 5><Formula 5>
Figure PCTKR2015009872-appb-I000005
Figure PCTKR2015009872-appb-I000005
상기 유기 13족 전구체는 하기 <화학식 6>로 표시되는 것을 특징으로 할 수 있다. The organic group 13 precursor may be represented by the following <Formula 6>.
<화학식 6><Formula 6>
Figure PCTKR2015009872-appb-I000006
Figure PCTKR2015009872-appb-I000006
상기 <화학식 6>에서 R1 및 R2는 서로 연결되어 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 3 내지 6의 사이클릭 아민기를 형성한다. In Formula 6, R 1 and R 2 are connected to each other to form a cyclic amine group having 3 to 6 carbon atoms with the nitrogen atom to which R 1 and R 2 are bonded.
상기 유기 13족 전구체는 하기 <화학식 7>로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 7>.
<화학식 7><Formula 7>
Figure PCTKR2015009872-appb-I000007
Figure PCTKR2015009872-appb-I000007
상기 유기 13족 전구체는 하기 <화학식 8>로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 8>.
<화학식 8><Formula 8>
Figure PCTKR2015009872-appb-I000008
Figure PCTKR2015009872-appb-I000008
상기 <화학식 8>에서 L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다. In Formula 8, L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
상기 유기 13족 전구체는 하기 <화학식 9>로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 9>.
<화학식 9><Formula 9>
Figure PCTKR2015009872-appb-I000009
Figure PCTKR2015009872-appb-I000009
상기 유기 13족 전구체는 하기 <화학식 10>으로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 10>.
<화학식 10><Formula 10>
Figure PCTKR2015009872-appb-I000010
Figure PCTKR2015009872-appb-I000010
상기 유기 13족 전구체는 하기 <화학식 11>로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 11>.
<화학식 11><Formula 11>
Figure PCTKR2015009872-appb-I000011
Figure PCTKR2015009872-appb-I000011
상기 유기 13족 전구체는 하기 <화학식 12>로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 12>.
<화학식 12><Formula 12>
Figure PCTKR2015009872-appb-I000012
Figure PCTKR2015009872-appb-I000012
상기 <화학식 12>에서 R1 및 R2는 서로 연결되어 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 3 내지 6의 사이클릭 아민기를 형성한다. In Formula 12, R 1 and R 2 are connected to each other to form a cyclic amine group having 3 to 6 carbon atoms with the nitrogen atom to which R 1 and R 2 are bonded.
상기 유기 13족 전구체는 하기 <화학식 13>으로 표시되는 것을 특징으로 할 수 있다.The organic group 13 precursor may be represented by the following <Formula 13>.
<화학식 13><Formula 13>
Figure PCTKR2015009872-appb-I000013
Figure PCTKR2015009872-appb-I000013
본 발명의 일 실시예에 의한 박막 증착 방법은 상기 유기 13족 전구체를 이용하여 기판상에 박막을 증착하는 증착 공정을 포함한다.A thin film deposition method according to an embodiment of the present invention includes a deposition process for depositing a thin film on a substrate using the organic group 13 precursor.
상기 증착 공정은, 원자층 증착(Atomic Layer Deposition, ALD) 공정 또는 화학 증착(Chemical Vapor Deposition, CVD) 공정에 의해 수행될 수 있다. The deposition process may be performed by an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
상기 화학 증착(Chemical Vapor Deposition, CVD)은, 유기 금속 화학 증착(Metal Organic Chemical Vapor Deposition, MOCVD)을 포함할 수 있다.The chemical vapor deposition (CVD) may include a metal organic chemical vapor deposition (MOCVD).
상기 증착 공정은, 챔버의 내부에 기판을 로딩하는 로딩단계; 상기 챔버의 내부에 로딩된 기판을 가열하는 가열단계; 상기 기판이 로딩된 챔버의 내부에 상기 유기 13족 전구체를 공급하는 공급단계; 상기 유기 13족 전구체를 상기 기판상에 흡착시켜 유기 13족 화합물 층을 형성하는 화합물 층 형성단계; 및 상기 기판에 열에너지, 플라즈마 또는 전기적 바이어스를 인가하여 상기 기판상에 상기 13족 원소 함유막을 형성하는 성막단계를 포함할 수 있다.The deposition process includes a loading step of loading a substrate into the chamber; A heating step of heating the substrate loaded in the chamber; A supplying step of supplying the organic group 13 precursor to the inside of the chamber loaded with the substrate; A compound layer forming step of adsorbing the organic Group 13 precursor onto the substrate to form an organic Group 13 compound layer; And forming a group 13 element-containing film on the substrate by applying thermal energy, plasma, or electrical bias to the substrate.
상기 가열단계는, 상기 기판을 50 ~ 800 ℃의 온도범위로 가열할 수 있다.In the heating step, the substrate may be heated to a temperature range of 50 ~ 800 ℃.
상기 공급단계는, 상기 유기 13족 전구체를 20 ~ 100 ℃의 온도범위로 가열하여 상기 기판상으로 공급할 수 있다.In the supplying step, the organic group 13 precursor may be heated to a temperature range of 20 to 100 ° C. and supplied onto the substrate.
상기 공급단계는, 아르곤(Ar), 질소(N2), 헬륨(He) 및 수소 중에서 선택된 하나 이상의 캐리어가스와 상기 유기 13족 전구체를 혼합하여 상기 기판상으로 공급할 수 있다.In the supplying step, at least one carrier gas selected from argon (Ar), nitrogen (N 2 ), helium (He), and hydrogen may be mixed with the organic group 13 precursor and supplied to the substrate.
상기 13족 원소 함유막은 알루미늄막 또는 갈륨막일 수 있다.The Group 13 element-containing film may be an aluminum film or a gallium film.
상기 공급단계는, 상기 기판상으로 수증기(H2O), 산소(O2) 및 오존(O3) 중에선 선택된 하나 이상의 반응가스를 공급하는 반응가스 공급단계를 더 포함할 수 있다.The supplying step may further include a reaction gas supplying step of supplying at least one reaction gas selected from among water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) onto the substrate.
상기 13족 원소 함유막은 알루미늄 산화물막 또는 갈륨 산화물막일 수 있다.The group 13 element-containing film may be an aluminum oxide film or a gallium oxide film.
상기 공급단계는, 상기 기판상으로 암모니아(NH3), 히드라진(N2H4), 이산화질소(NO2) 및 질소(N2) 중에서 선택된 하나 이상의 반응가스를 공급하는 반응가스 공급단계를 더 포함할 수 있다.The supplying step further includes a reaction gas supplying step of supplying at least one reaction gas selected from ammonia (NH 3 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ) and nitrogen (N 2 ) onto the substrate. can do.
상기 13족 원소 함유막은 알루미늄 질화물막 또는 갈륨 질화물막일 수 있다.The Group 13 element-containing film may be an aluminum nitride film or a gallium nitride film.
[발명의 효과][Effects of the Invention]
본 발명의 일 실시예에 의한 유기 13족 전구체 및 이를 이용한 박막 증착의 효과는 다음과 같다.An organic group 13 precursor and an effect of thin film deposition using the same according to an embodiment of the present invention are as follows.
본 발명의 일 실시예에 의한 유기 13족 전구체는 분자 크기는 작지만 높은 끓는점을 가지므로 상온에서 액체 상태로 존재하며, 열 안정성이 우수하다. The organic group 13 precursor according to an embodiment of the present invention has a small boiling point but has a high boiling point, and thus is present in a liquid state at room temperature, and has excellent thermal stability.
본 발명의 일 실시예에 의한 유기 13족 전구체는 비공유 전자쌍을 갖는 질소 원자 및 유기 13족 원자를 하나의 분자 구조 내에 포함하기 때문에 실리콘 기판 및 금속 원자와 강한 친화력을 나타낸다.The organic group 13 precursor according to the embodiment of the present invention has a strong affinity with the silicon substrate and the metal atom because it includes the nitrogen atom and the organic group 13 atom having an unshared electron pair in one molecular structure.
본 발명의 일 실시예에 의한 유기 13족 전구체를 이용하여 13족 원소 함유막을 증착하는 경우, 금속의 공급원 역할을 하는 금속 전구체 화합물의 분해온도와 비슷한 분해온도를 갖기 때문에 증착 공정의 온도창(temperature window)을 좁게 할 수 있다. In the case of depositing a Group 13 element-containing film by using the organic Group 13 precursor according to an embodiment of the present invention, since it has a decomposition temperature similar to that of the metal precursor compound serving as a source of metal, the temperature window of the deposition process (temperature window) can be narrowed.
본 발명의 일 실시예에 의한 유기 13족 전구체는 비폭발성, 불연성의 성질을 가지므로, 이를 이용하여 13족 원소 함유막 증착시 장비의 유지, 보수 및 관리가 용이하다.Organic Group 13 precursor according to an embodiment of the present invention has a non-explosive, non-flammable properties, it is easy to maintain, repair and manage the equipment during deposition of the Group 13 element-containing film using it.
본 발명의 일 실시예에 의한 유기 13족 전구체를 이용하여 13족 원소 함유막 증착시, 하부 구조물의 단위면적당 흡착되는 유기 13족 전구체의 분자수가 증가하므로 증착 밀도 및 증착 균일도가 향상된다. 따라서 13족 원소 함유막의 스텝 커버리지(step coverage)가 향상된다.When the group 13 element-containing film is deposited using the organic group 13 precursor according to an embodiment of the present invention, the number of molecules of the organic group 13 precursor adsorbed per unit area of the lower structure increases, so that deposition density and deposition uniformity are improved. Therefore, step coverage of the Group 13 element-containing film is improved.
본 발명의 일 실시예에 의한 유기 13족 전구체는 증착용 전구체는 트리메틸알루미늄(trimethylaluminum, TMA)에 비해 증기압이 낮으므로, 박막 증착시 증착 속도의 조절이 가능하다. In the organic group 13 precursor according to the embodiment of the present invention, since the vapor deposition precursor has a lower vapor pressure than trimethylaluminum (TMA), it is possible to control the deposition rate during thin film deposition.
따라서, 본 발명의 일 실시예에 의한 유기 13족 전구체를 이용하여 유기 13족 원소 함유막을 효과적으로 증착할 수 있다.Therefore, the organic group 13 element-containing film can be effectively deposited using the organic group 13 precursor according to one embodiment of the present invention.
도 1은 다이에틸아미노 다이에틸알루미늄의 열분석 시험 결과를 나타낸 그래프이다.1 is a graph showing the thermal analysis test results of diethylamino diethylaluminum.
도 2는 다이메틸아미노 다이에틸알루미늄의 열분석 시험 결과를 나타낸 그래프이다.2 is a graph showing the thermal analysis test results of dimethylamino diethyl aluminum.
도 3은 에틸메틸아미노 다이에틸알루미늄의 열분석 시험 결과를 나타낸 그래프이다.3 is a graph showing the thermal analysis test results of ethylmethylamino diethylaluminum.
도 4는 피롤리디노 다이에틸알루미늄의 열분석 시험 결과를 나타낸 그래프이다.4 is a graph showing the thermal analysis test results of pyrrolidino diethyl aluminum.
도 5는 다이메틸아미노 다이에틸갈륨의 열분석 시험 결과를 나타낸 그래프이다.5 is a graph showing the thermal analysis test results of dimethylamino diethylgallium.
도 6은 피롤리디노 다이에틸갈륨의 열분석 시험 결과를 나타낸 그래프이다.6 is a graph showing the thermal analysis test results of pyrrolidino diethylgallium.
도 7은 다이에틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 ICP-AES 성분 분석 결과를 나타낸 그래프이다.7 is a graph showing the results of ICP-AES component analysis of an aluminum-containing film deposited using diethylamino diethylaluminum.
도 8은 다이에틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 ASE 성분 분석 결과를 나타낸 그래프이다.8 is a graph showing the results of ASE component analysis of an aluminum containing film deposited using diethylamino diethyl aluminum.
도 9는 다이에틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 공정온도에 대한 주기당 성장률을 나타낸 그래프이다.9 is a graph showing the growth rate per cycle with respect to the process temperature of the aluminum containing film deposited using diethylamino diethyl aluminum.
도 10은 다이에틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 주기당 막 두께를 나타낸 그래프이다.10 is a graph showing the film thickness per cycle of an aluminum containing film deposited using diethylamino diethylaluminum.
도 11은 다이메틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 ICP-AES 성분 분석 결과를 나타낸 그래프이다.11 is a graph showing the results of ICP-AES component analysis of an aluminum-containing film deposited using dimethylamino diethylaluminum.
도 12는 다이메틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 ASE 성분 분석 결과를 나타낸 그래프이다.12 is a graph showing ASE component analysis results of an aluminum-containing film deposited using dimethylamino diethyl aluminum.
도 13은 다이메틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 공정온도에 대한 주기당 성장률을 나타낸 그래프이다.FIG. 13 is a graph showing growth rate per cycle versus process temperature of an aluminum-containing film deposited using dimethylamino diethylaluminum.
도 14는 다이메틸아미노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 주기당 막 두께를 나타낸 그래프이다.14 is a graph showing the film thickness per cycle of an aluminum containing film deposited using dimethylamino diethylaluminum.
도 15는 피롤리디노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 ICP-AES 성분 분석 결과를 나타낸 그래프이다.FIG. 15 is a graph showing ICP-AES component analysis results of an aluminum-containing film deposited using pyrrolidino diethyl aluminum. FIG.
도 16은 피롤리디노 다이에틸알루미늄을 이용하여 증착된 알루미늄 함유막의 ASE 성분 분석 결과를 나타낸 그래프이다.FIG. 16 is a graph showing ASE component analysis results of an aluminum-containing film deposited using pyrrolidino diethyl aluminum. FIG.
도 17은 피롤리디노 다이에틸알루미늄을 이용하여 증착된 알루미늄의 함유막의 막 두께를 나타낸 그래프이다.17 is a graph showing the film thickness of a film containing aluminum deposited using pyrrolidino diethyl aluminum.
본 발명은 유기 13족 전구체 및 이를 이용한 박막 증착 방법에 관한 것으로, 이하에 첨부된 화학식 및 실험예를 이용하여 본 발명의 실시예들을 설명하고자 한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안된다.The present invention relates to an organic group 13 precursor and a thin film deposition method using the same, it will be described embodiments of the present invention by using the following formula and experimental examples. The embodiments of the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below.
본 발명의 일 실시예에 의한 유기 13족 전구체는 하기의 <화학식 1>로 표현된다.An organic group 13 precursor according to an embodiment of the present invention is represented by the following <Formula 1>.
<화학식 1><Formula 1>
Figure PCTKR2015009872-appb-I000014
Figure PCTKR2015009872-appb-I000014
상기 <화학식 1>에서 M은 주기율표상에서 13족 원소에 속하는 금속 원소 중에서 선택된 어느 하나이며, L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다.In <Formula 1>, M is any one selected from metal elements belonging to the Group 13 element on the periodic table, and L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms. R 1 and R 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms.
알루미늄 함유막을 형성하기 위해 전구체로서 일반적으로 트리메틸알루미늄(trimethylaluminum, TMA)이 널리 이용된다. 트리메틸알루미늄(TMA)은 박막 증착 외에 여려 분야에 사용되고 있기 때문에 원료 수급이 용이하고, 매우 높은 증기압을 가지며, 열적으로 안정하다는 장점이 존재한다. 하지만, 트리메틸알루미늄(TMA)은 매우 높은 증기압을 가지므로, 박막 증착 속도를 제어할 수 없으며, 극미량만이 공기 중에 노출되어도 자연 발화에 따른 화재가 발생하는 위험성이 존재한다. 또한, 트리메틸알루미늄(TMA)은 알루미늄과 탄소로만 이루어진 화합물이기 때문에 박막 증착시 불순물인 탄소가 생성되어 박막의 품질이 저하된다.In general, trimethylaluminum (TMA) is widely used as a precursor to form an aluminum-containing film. Since trimethylaluminum (TMA) is used in many fields besides thin film deposition, there are advantages in that it is easy to supply raw materials, has a very high vapor pressure, and is thermally stable. However, since trimethylaluminum (TMA) has a very high vapor pressure, it is not possible to control the deposition rate of the thin film, and there is a risk of fire due to spontaneous ignition even when only a very small amount is exposed to air. In addition, since trimethylaluminum (TMA) is a compound consisting only of aluminum and carbon, carbon, which is an impurity, is generated during thin film deposition, thereby degrading the quality of the thin film.
본 발명은 이러한 트리메틸알루미늄(TMA)의 단점을 보완하고, 효과적으로 알루미늄 함유막을 증착할 수 있는 유기 13족 전구체를 제공하고자 한다.The present invention seeks to provide an organic Group 13 precursor that can complement the disadvantages of such trimethylaluminum (TMA) and effectively deposit an aluminum containing film.
본 발명의 일 실시예에 의한 알루미늄 박막 증착용 전구체는 하기의 <화학식 2>로 표시된다.The precursor for depositing an aluminum thin film according to an embodiment of the present invention is represented by the following <Formula 2>.
<화학식 2><Formula 2>
Figure PCTKR2015009872-appb-I000015
Figure PCTKR2015009872-appb-I000015
상기 <화학식 2>에서 L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다.In Formula 2, L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
상기 <화학식 2>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1, L2, R1 및 R2는 탄소수 2의 알킬기일 수 있으며, 이는 하기의 <화학식 3>으로 표시된다.Substituents L 1 , L 2 , R 1 and R 2 of the precursor for depositing an aluminum thin film represented by <Formula 2> may be an alkyl group having 2 carbon atoms, which is represented by the following <Formula 3>.
<화학식 3><Formula 3>
Figure PCTKR2015009872-appb-I000016
Figure PCTKR2015009872-appb-I000016
상기 <화학식 2>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1 및 L2는 탄소수 2의 알킬기일 수 있으며, 치환기 R1 및 R2는 탄소수 1의 알킬기일 수 있다. 이는 하기의 <화학식 4>로 표시된다.Substituents L 1 and L 2 of the precursor for aluminum thin film deposition represented by <Formula 2> may be an alkyl group having 2 carbon atoms, and substituents R 1 and R 2 may be alkyl groups having 1 carbon number. This is represented by the following <Formula 4>.
<화학식 4><Formula 4>
Figure PCTKR2015009872-appb-I000017
Figure PCTKR2015009872-appb-I000017
상기 <화학식 2>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1, L2 및 R1은 탄소수 2의 알킬기일 수 있으며, 치환기 R2는 탄소수 1의 알킬기일 수 있다. 이는 하기의 <화학식 5>로 표시된다. Substituents L 1 , L 2, and R 1 of the precursor for depositing an aluminum thin film represented by <Formula 2> may be an alkyl group having 2 carbon atoms, and the substituent R 2 may be an alkyl group having 1 carbon atoms. This is represented by the following <Formula 5>.
<화학식 5><Formula 5>
Figure PCTKR2015009872-appb-I000018
Figure PCTKR2015009872-appb-I000018
상기 <화학식 2>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 R1 및 R2는 서로 연결될 수 있으며, R1 및 R2는 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 3 내지 6의 사이클릭 아민기를 형성할 수 있다. 이는 하기의 <화학식 6>으로 표시된다. Substituents R 1 and R 2 of the precursor for depositing an aluminum thin film represented by <Formula 2> may be connected to each other, and R 1 and R 2 may have 3 to 6 carbon atoms together with the nitrogen atom to which R 1 and R 2 are bonded. Cyclic amine groups can be formed. This is represented by the following <Formula 6>.
<화학식 6><Formula 6>
Figure PCTKR2015009872-appb-I000019
Figure PCTKR2015009872-appb-I000019
상기 <화학식 6>으로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1, L2는 탄소수 2의 알킬기일 수 있으며, R1 및 R2는 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 4의 사이클릭 아민기를 형성할 수 있다. 이는 하기의 <화학식 7>로 표시된다.Substituents L 1 and L 2 of the precursor for depositing an aluminum thin film represented by <Formula 6> may be an alkyl group having 2 carbon atoms, and R 1 and R 2 may have 4 carbon atoms together with a nitrogen atom having R 1 and R 2 bonded thereto. The cyclic amine group of can be formed. This is represented by the following <Formula 7>.
<화학식 7><Formula 7>
Figure PCTKR2015009872-appb-I000020
Figure PCTKR2015009872-appb-I000020
또한, 본 발명은 효과적으로 갈륨 함유막을 증착할 수 있는 유기 13족 전구체를 제공하고자 한다. In addition, the present invention is to provide an organic Group 13 precursor capable of effectively depositing a gallium-containing film.
본 발명의 일 실시예에 의한 갈륨 박막 증착용 전구체는 하기의 <화학식 8>로 표시된다.Gallium thin film deposition precursor according to an embodiment of the present invention is represented by the following formula (8).
<화학식 8><Formula 8>
Figure PCTKR2015009872-appb-I000021
Figure PCTKR2015009872-appb-I000021
상기 <화학식 8>에서 L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다.In Formula 8, L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
상기 <화학식 8>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1, L2, R1 및 R2는 탄소수 2의 알킬기일 수 있으며, 이는 하기의 <화학식 9>로 표시된다.Substituents L 1 , L 2 , R 1 and R 2 of the precursor for depositing an aluminum thin film represented by <Formula 8> may be an alkyl group having 2 carbon atoms, which is represented by the following <Formula 9>.
<화학식 9><Formula 9>
Figure PCTKR2015009872-appb-I000022
Figure PCTKR2015009872-appb-I000022
상기 <화학식 8>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1 및 L2는 탄소수 2의 알킬기일 수 있으며, 치환기 R1 및 R2는 탄소수 1의 알킬기일 수 있다. 이는 하기의 <화학식 10>으로 표시된다.Substituents L 1 and L 2 of the precursor for depositing an aluminum thin film represented by <Formula 8> may be an alkyl group having 2 carbon atoms, and substituents R 1 and R 2 may be alkyl groups having 1 carbon number. This is represented by the following <Formula 10>.
<화학식 10><Formula 10>
Figure PCTKR2015009872-appb-I000023
Figure PCTKR2015009872-appb-I000023
상기 <화학식 8>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1, L2 및 R1은 탄소수 2의 알킬기일 수 있으며, 치환기 R2는 탄소수 1의 알킬기일 수 있다. 이는 하기의 <화학식 11>로 표시된다. Substituents L 1 , L 2, and R 1 of the precursor for aluminum thin film deposition represented by <Formula 8> may be an alkyl group having 2 carbon atoms, and the substituent R 2 may be an alkyl group having 1 carbon number. This is represented by the following formula (11).
<화학식 11><Formula 11>
Figure PCTKR2015009872-appb-I000024
Figure PCTKR2015009872-appb-I000024
상기 <화학식 8>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 R1 및 R2는 서로 연결될 수 있으며, R1 및 R2는 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 3 내지 6의 사이클릭 아민기를 형성할 수 있다. 이는 하기의 <화학식 12>로 표시된다. Substituents R 1 and R 2 of the precursor for depositing an aluminum thin film represented by <Formula 8> may be connected to each other, and R 1 and R 2 may have 3 to 6 carbon atoms together with the nitrogen atom to which R 1 and R 2 are bonded. Cyclic amine groups can be formed. This is represented by the following formula (12).
<화학식 12><Formula 12>
Figure PCTKR2015009872-appb-I000025
Figure PCTKR2015009872-appb-I000025
상기 <화학식 12>로 표시되는 알루미늄 박막 증착용 전구체의 치환기 L1, L2는 탄소수 2의 알킬기일 수 있으며, R1 및 R2는 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 4의 사이클릭 아민기를 형성할 수 있다. 이는 하기의 <화학식 13>으로 표시된다.Substituents L 1 and L 2 of the precursor for depositing an aluminum thin film represented by <Formula 12> may be an alkyl group having 2 carbon atoms, and R 1 and R 2 may have 4 carbon atoms together with a nitrogen atom having R 1 and R 2 bonded thereto. The cyclic amine group of can be formed. This is represented by the following formula (13).
<화학식 13><Formula 13>
Figure PCTKR2015009872-appb-I000026
Figure PCTKR2015009872-appb-I000026
본 발명의 일 실시예에 의한 유기 13족 전구체에 대하여 아래의 실험예를 통해 보다 구체적으로 설명하고자 한다. 아래의 실험예는 본 발명의 이해를 돕기 위해 제시되는 것으로, 본 발명의 범위가 아래의 실험예로 한정되는 것은 아니다.The organic group 13 precursor according to an embodiment of the present invention will be described in more detail through the following experimental examples. The following experimental examples are presented to aid the understanding of the present invention, and the scope of the present invention is not limited to the following experimental examples.
이하의 실험예에서 모든 합성 단계는 표준 진공 라인 슈렝크 방법(Schlenk technique)을 사용하였으며, 모든 합성은 질소 또는 아르곤 가스 분위기 하에서 실행하였다. 합성된 화합물의 구조 분석은 JEOL JNM-ECS 400 MHz NMR spectrometer(1H-NMR 400 MHz)를 이용하여 실시하였다. NMR 용매 benzene-d6는 하루 동안 CaH2와 함께 교반시켜 잔류 수분을 완전하게 제거한 후 사용하였다.In the following examples all synthesis steps used a standard vacuum line Schlenk technique, and all synthesis was carried out under nitrogen or argon gas atmosphere. Structural analysis of the synthesized compound was performed using a JEOL JNM-ECS 400 MHz NMR spectrometer ( 1 H-NMR 400 MHz). NMR solvent benzene-d 6 was used with CaH 2 for one day to completely remove residual moisture.
이하의 실험예에서 시차주사열량 분석(DSC) 시험은 열분석기(제조사: TA Instruments사, 모델명: TA-Q 600)를 시차주사열량 분석 모드로 하여 실시하였으며, 열중량 분석(TGA) 시험은 열분석기를 열중량 분석 모드로 하여 실시하였다. In the following experimental example, differential scanning calorimetry (DSC) test was performed using a thermal analyzer (manufacturer: TA Instruments, model name: TA-Q 600) in the differential scanning calorimetry mode, and thermogravimetric analysis (TGA) test was performed The analyzer was run in thermogravimetric analysis mode.
실험예 1: (diethylamino)diethylalluminum, (CH3CH2)2Al(N(CH3CH2)2)의 제조Experimental Example 1: Preparation of (diethylamino) diethylalluminum, (CH 3 CH 2 ) 2 Al (N (CH 3 CH 2 ) 2 )
500 mL 가지달린 둥근 플라스크에 무수 톨루엔 200 mL와 TEA(triethyl aluminum) 10.0 g (0.088 mol)을 첨가하였다. 가지달린 둥근 플라스크의 내부 온도를 0 ℃로 유지한 상태에서, DEA(diethylamine) 6.41 g (0.088 mol)을 적하깔때기를 이용하여 천천히 더 첨가하였다. DEA(diethylamine) 첨가가 종료되면 플라스크의 내부 온도를 30 ℃로 승온하여 약 4 시간 동안 더 교반하였다.To a 500 mL round flask, 200 mL of anhydrous toluene and 10.0 g (0.088 mol) of triethyl aluminum (TEA) were added. 6.41 g (0.088 mol) of DEA (diethylamine) was added slowly using the dropping funnel, maintaining the internal temperature of the branched round flask at 0 degreeC. When the addition of DEA (diethylamine) was completed, the internal temperature of the flask was raised to 30 ° C, and further stirred for about 4 hours.
4 시간의 교반이 완료되면 내부 온도를 110 ℃로 승온하여, 30 시간 동안 교반을 진행하였다. 30 시간의 교반이 완료되면 감압하여 용매를 모두 제거하고, 남겨진 노란색 액체를 감압 정제하여 노란색의 점성이 없는 액체 (diethylamino)diethylalluminum 11 g (수율: 80%)을 얻었다.After 4 hours of stirring was completed, the internal temperature was raised to 110 ° C, and stirring was performed for 30 hours. After 30 hours of stirring was completed, the solvent was removed under reduced pressure, and the remaining yellow liquid was purified under reduced pressure to obtain a yellow viscous liquid (diethylamino) diethylalluminum 11 g (yield: 80%).
끓는점(b.p): 85 ℃ at 0.8 torrBoiling Point (b.p): 85 ° C at 0.8 torr
1H-NMR(C6D6):δ 2.68 [(CH3CH2)2Al(N(CH3CH2)2), q, 4H] 1 H-NMR (C 6 D 6 ): δ 2.68 [(CH 3 CH 2 ) 2 Al (N (CH 3 CH 2 ) 2 ), q, 4H]
1H-NMR(C6D6) :δ 0.79 [(CH3CH2)2Al(N(CH3CH2)2), t, 6H] 1 H-NMR (C 6 D 6 ): δ 0.79 [(CH 3 CH 2 ) 2 Al (N (CH 3 CH 2 ) 2 ), t, 6H]
1H-NMR(C6D6) :δ 0.15 [(CH3CH2)2Al(N(CH3CH2)2), q, 4H] 1 H-NMR (C 6 D 6 ): δ 0.15 [(CH 3 CH 2 ) 2 Al (N (CH 3 CH 2 ) 2 ), q, 4H]
1H-NMR(C6D6) :δ 1.30 [(CH3CH2)2Al(N(CH3CH2)2), t, 6H] 1 H-NMR (C 6 D 6 ): δ 1.30 [(CH 3 CH 2 ) 2 Al (N (CH 3 CH 2 ) 2 ), t, 6H]
실험예 2: (dimethylamino)diethylalluminum, (CH3CH2)2Al(N(CH3)2)의 제조Experimental Example 2: Preparation of (dimethylamino) diethylalluminum, (CH 3 CH 2 ) 2 Al (N (CH 3 ) 2 )
500 mL의 가지달린 둥근 플라스크에 무수 톨루엔 200 mL와 TEA(triethyl aluminum) 10.0 g (0.088mol)을 첨가하였다. 가지달린 둥근 플라스크의 내부 온도를 0 ℃로 유지한 상태에서, DMA(dimethylamine) 3.95 g (0.088 mol)을 적하깔때기를 이용하여 천천히 더 첨가하였다. DMA(dimethylamine) 첨가가 종료되면 플라스크의 내부 온도를 30 ℃로 승온하여 약 4 시간 동안 더 교반하였다.200 mL of anhydrous toluene and 10.0 g (0.088 mol) of TEA (triethyl aluminum) were added to a 500 mL branched round flask. 3.95 g (0.088 mol) of DMA (dimethylamine) was added slowly using the dropping funnel, maintaining the internal temperature of the rounded flask with 0 degreeC. When the addition of DMA (dimethylamine) was completed, the internal temperature of the flask was raised to 30 ° C, and further stirred for about 4 hours.
4 시간의 교반이 완료되면, 내부 온도를 110 ℃로 승온하여, 30 시간 동안 교반을 진행하였다. 30 시간의 교반이 완료되면 감압하여 용매를 모두 제거하고, 남겨진 노란색 액체를 감압 정제하여 노란색의 점성이 없는 액체 (dimethylamino)diethylalluminum 9.05 g (수율: 80%)을 얻었다.When stirring for 4 hours was completed, the internal temperature was raised to 110 ° C, and stirring was performed for 30 hours. After 30 hours of stirring was completed, the solvent was removed under reduced pressure, and the remaining yellow liquid was purified under reduced pressure to obtain 9.05 g of a yellow viscous liquid (dimethylamino) diethylalluminum (yield: 80%).
끓는점(b.p): 65 ℃ at 0.8 torrBoiling Point (b.p): 65 ° C at 0.8 torr
1H-NMR(C6D6):δ 2.11 [(CH3CH2)2Al(N(CH3)2), s, 6H] 1 H-NMR (C 6 D 6 ): δ 2.11 [(CH 3 CH 2 ) 2 Al (N (CH 3 ) 2 ), s, 6H]
1H-NMR(C6D6):δ 0.10 [(CH3CH2)2Al(N(CH3)2), q, 4H] 1 H-NMR (C 6 D 6 ): δ 0.10 [(CH 3 CH 2 ) 2 Al (N (CH 3 ) 2 ), q, 4H]
1H-NMR(C6D6):δ 1.27 [(CH3CH2)2Al(N(CH3)2), t, 6H] 1 H-NMR (C 6 D 6 ): δ 1.27 [(CH 3 CH 2 ) 2 Al (N (CH 3 ) 2 ), t, 6H]
실험예 3: (ethylmethylamino)diethylalluminum, (CH3CH2)Al(N(CH3CH2)(CH3))의 제조Experimental Example 3: Preparation of (ethylmethylamino) diethylalluminum, (CH 3 CH 2 ) Al (N (CH 3 CH 2 ) (CH 3 ))
500 mL의 가지달린 둥근 플라스크에 무수 톨루엔 200 mL와 TEA(triethyl aluminum) 10.0 g (0.088mol)을 첨가하였다. 가지달린 둥근 플라스크의 내부 온도를 0 ℃로 유지한 상태에서, EMA(ethylmethylamine) 3.95 g (0.088 mol)을 적하깔때기를 이용하여 천천히 더 첨가하였다. EMA(ethylmethylamine) 첨가가 종료되면 플라스크의 내부 온도를 30 ℃로 승온하여 약 4 시간 동안 더 교반하였다.200 mL of anhydrous toluene and 10.0 g (0.088 mol) of TEA (triethyl aluminum) were added to a 500 mL branched round flask. 3.95 g (0.088 mol) of EMA (ethylmethylamine) was added slowly using the dropping funnel, maintaining the internal temperature of the branched round flask at 0 degreeC. When EMA (ethylmethylamine) addition was completed, the flask was heated to 30 ° C. and stirred for about 4 hours.
4 시간의 교반이 완료되면, 내부 온도를 110 ℃로 승온하여, 30 시간 동안 교반을 진행하였다. 30 시간의 교반이 완료되면 감압하여 용매를 모두 제거하고, 남겨진 노란색 액체를 감압 정제하여 노란색의 점성이 없는 액체 (ethylmethylamino)diethylalluminum 10.03 g (수율: 80%)을 얻었다.When stirring for 4 hours was completed, the internal temperature was raised to 110 ° C, and stirring was performed for 30 hours. When 30 hours of stirring was completed, the solvent was removed under reduced pressure, and the remaining yellow liquid was purified under reduced pressure to obtain 10.03 g of a yellow viscous liquid (ethylmethylamino) diethylalluminum (yield: 80%).
끓는점(b.p): 65 ℃ at 0.8 torrBoiling Point (b.p): 65 ° C at 0.8 torr
1H-NMR(C6D6):δ 2.55 [(CH3CH2)Al(N(CH3CH2)(CH3)), q, 2H] 1 H-NMR (C 6 D 6 ): δ 2.55 [(CH 3 CH 2 ) Al (N (CH 3 CH 2 ) (CH 3 )), q, 2H]
1H-NMR(C6D6):δ 0.81 [(CH3CH2)Al(N(CH3CH2)(CH3)), t, 3H] 1 H-NMR (C 6 D 6 ): δ 0.81 [(CH 3 CH 2 ) Al (N (CH 3 CH 2 ) (CH 3 )), t, 3H]
1H-NMR(C6D6):δ 2.11 [(CH3CH2)Al(N(CH3CH2)(CH3)), s, 3H] 1 H-NMR (C 6 D 6 ): δ 2.11 [(CH 3 CH 2 ) Al (N (CH 3 CH 2 ) (CH 3 )), s, 3H]
1H-NMR(C6D6):δ 0.15 [(CH3CH2)Al(N(CH3CH2)(CH3)), q, 4H] 1 H-NMR (C 6 D 6 ): δ 0.15 [(CH 3 CH 2 ) Al (N (CH 3 CH 2 ) (CH 3 )), q, 4H]
1H-NMR(C6D6):δ 1.28 [(CH3CH2)Al(N(CH3CH2)(CH3)), t, 6H] 1 H-NMR (C 6 D 6 ): δ 1.28 [(CH 3 CH 2 ) Al (N (CH 3 CH 2 ) (CH 3 )), t, 6H]
실험예 4: (pyrrolidino)diethylalluminum, (CH3CH2)Al(NC4H5)의 제조Experimental Example 4: Preparation of (pyrrolidino) diethylalluminum, (CH 3 CH 2 ) Al (NC 4 H 5 )
500 mL의 가지달린 둥근 플라스크에 무수 톨루엔 200 mL와 TEA(triethyl aluminum) 10.0 g (0.088mol)을 첨가하였다. 가지달린 둥근 플라스크의 내부 온도를 0 ℃로 유지한 상태에서, Pyrrolidine 6.23 g (0.088 mol)을 적하깔때기를 이용하여 천천히 더 첨가하였다. Pyrrolidine 첨가가 종료되면 플라스크의 내부 온도를 30 ℃로 승온하여 약 4 시간 동안 더 교반하였다.200 mL of anhydrous toluene and 10.0 g (0.088 mol) of TEA (triethyl aluminum) were added to a 500 mL branched round flask. While maintaining the internal temperature of the branched round flask at 0 ° C., 6.23 g (0.088 mol) of Pyrrolidine was added slowly using a dropping funnel. After the addition of pyrrolidine was completed, the flask was heated to 30 ° C. and stirred for about 4 hours.
4 시간의 교반이 완료되면, 내부 온도를 110 ℃로 승온하여, 30 시간 동안 교반을 진행하였다. 30 시간의 교반이 완료되면 감압하여 용매를 모두 제거하고, 남겨진 노란색 액체를 감압 정제하여 노란색의 점성이 없는 액체 (pyrrolidino)diethylalluminum 10.88 g (수율: 80%)을 얻었다.When stirring for 4 hours was completed, the internal temperature was raised to 110 ° C, and stirring was performed for 30 hours. After 30 hours of stirring was completed, the solvent was removed under reduced pressure, and the remaining yellow liquid was purified under reduced pressure to obtain 10.88 g (yield: 80%) of a yellow viscous liquid (pyrrolidino) diethylalluminum.
끓는점(b.p): 110 ℃ at 0.8 torrBoiling Point (b.p): 110 ° C at 0.8 torr
1H-NMR(C6D6):δ 2.65 [(CH3CH2)Al(NC4H5), m, 4H] 1 H-NMR (C 6 D 6 ): δ 2.65 [(CH 3 CH 2 ) Al (NC 4 H 5 ), m, 4H]
1H-NMR(C6D6):δ 1.34 [(CH3CH2)Al(NC4H5), m, 4H] 1 H-NMR (C 6 D 6 ): δ 1.34 [(CH 3 CH 2 ) Al (NC 4 H 5 ), m, 4H]
1H-NMR(C6D6):δ 0.12 [(CH3CH2)Al(NC4H5), q, 4H] 1 H-NMR (C 6 D 6 ): δ 0.12 [(CH 3 CH 2 ) Al (NC 4 H 5 ), q, 4H]
1H-NMR(C6D6):δ 1.28 [(CH3CH2)Al(NC4H5), t, 6H] 1 H-NMR (C 6 D 6 ): δ 1.28 [(CH 3 CH 2 ) Al (NC 4 H 5 ), t, 6H]
실험예 5: (dimethylamino)diethylgallium, ((CH3CH2)2Ga(N(CH3)2)의 합성Experimental Example 5: Synthesis of (dimethylamino) diethylgallium, ((CH 3 CH 2 ) 2 Ga (N (CH 3 ) 2 )
하기 <반응식 1>에 따라 500 ml의 가지달린 둥근 플라스크에 Mesitylene 250 ml를 첨가하고, Triethylgallium(TEGa) 28.1 g(0.179 mol)을 첨가하였다. 반응기 온도를 -40 ℃로 냉각시키고, 무색의 기체 Dimethylamine 8.986 g(0.197 mol)을 천천히 첨가하였다. Cyclopentanol이 완전히 첨가되면 반응기 온도를 20 ℃로 승온하고 1 시간 동안 교반하였다. 1 시간의 교반이 끝난 후 Reflux를 140 ℃에서 55 시간 동안 진행하였다. Reflux가 끝난 후 감압정제를 통하여 무색 투명한 액체 (dimethylamino)diethylgallium 23.13 g(수율: 75 %)을 얻었다.250 ml of Mesitylene was added to a 500 ml branched round flask according to <Reaction Scheme 1>, and 28.1 g (0.179 mol) of Triethylgallium (TEGa) was added thereto. The reactor temperature was cooled to −40 ° C. and 8.986 g (0.197 mol) of colorless gas Dimethylamine were added slowly. When cyclopentanol was completely added, the reactor temperature was raised to 20 ° C. and stirred for 1 hour. After 1 hour of stirring, Reflux was run at 140 ° C. for 55 hours. After reflux, 23.13 g (yield: 75%) of colorless transparent liquid (dimethylamino) diethylgallium was obtained through reduced pressure purification.
끓는점(b.p): 100 ℃ at 0.5 torrBoiling Point (b.p): 100 ° C at 0.5 torr
1H-NMR(C6D6):δ 2.230 [(CH3CH2)2Ga(N(CH3)2), m, 6H] 1 H-NMR (C 6 D 6 ): δ 2.230 [(CH 3 CH 2 ) 2 Ga (N (CH 3 ) 2 ), m, 6H]
1H-NMR(C6D6):δ 1.26, 1.28, 1.30 [(CH3CH2)2Ga(N(CH3)2), m, 6H] 1 H-NMR (C 6 D 6 ): δ 1.26, 1.28, 1.30 [(CH 3 CH 2 ) 2 Ga (N (CH 3 ) 2 ), m, 6H]
1H-NMR(C6D6):δ 0.50, 0.52, 0.54, 0.56 [(CH3CH2)2Ga(N(CH3)2), m, 4H] 1 H-NMR (C 6 D 6 ): δ 0.50, 0.52, 0.54, 0.56 [(CH 3 CH 2 ) 2 Ga (N (CH 3 ) 2 ), m, 4H]
<반응식 1><Scheme 1>
Figure PCTKR2015009872-appb-I000027
Figure PCTKR2015009872-appb-I000027
실험예 6: (pyrrolidino)diethylgallium, ((CH3CH2)2Ga(NC4H8))의 합성Experimental Example 6: Synthesis of (pyrrolidino) diethylgallium, ((CH 3 CH 2 ) 2 Ga (NC 4 H 8 ))
하기 <반응식 2>에 따라 500 ml의 가지달린 둥근 플라스크에 Toluene 250 ml를 첨가하고, Triethylgallium(TEGa) 19.34 g(0.123 mol)을 첨가하였다. 반응기 온도를 -40 ℃로 냉각시키고, 옅은 노란색 액체 Pyrrolidine 9.740 g(0.136 mol)을 천천히 첨가하였다. Pyrrolidine이 완전히 첨가되면 반응기 온도를 20 ℃로 승온하고 1 시간 동안 교반하였다. 1 시간의 교반이 끝난 후 Reflux를 110 ℃에서 151 시간 동안 진행하였다. Reflux가 끝난 후 감압정제를 통하여 노란색 액체 (pyrrolidino)diethylgallium 17.81 g(수율: 73%)을 얻었다.250 ml of Toluene was added to a 500 ml branched round flask according to <Reaction Scheme 2>, and 19.34 g (0.123 mol) of Triethylgallium (TEGa) was added thereto. The reactor temperature was cooled to -40 ° C and 9.740 g (0.136 mol) of pale yellow liquid Pyrrolidine was added slowly. When Pyrrolidine was completely added, the reactor temperature was raised to 20 ° C. and stirred for 1 hour. After 1 hour of stirring, Reflux was run at 110 ° C. for 151 hours. After Reflux, 17.81 g (yield: 73%) of yellow liquid (pyrrolidino) diethylgallium was obtained through reduced pressure purification.
끓는점(b.p): 120 ℃ at 0.8 torrBoiling Point (b.p): 120 ° C at 0.8 torr
1H-NMR(C6D6):δ 2.70, 2.69, 2.68, 2.67 [(CH3CH2)2Ga(NC4H8), br, 2H] 1 H-NMR (C 6 D 6 ): δ 2.70, 2.69, 2.68, 2.67 [(CH 3 CH 2 ) 2 Ga (NC 4 H 8 ), br, 2H]
1H-NMR(C6D6):δ 1.37, 1.36, 1.35, 1,34 [(CH3CH2)2Ga(NC4H8), br, 2H] 1 H-NMR (C 6 D 6 ): δ 1.37, 1.36, 1.35, 1,34 [(CH 3 CH 2 ) 2 Ga (NC 4 H 8 ), br, 2H]
1H-NMR(C6D6):δ 1.31, 1.29, 1.27 [(CH3CH2)2Ga(NC4H8), m, 6H] 1 H-NMR (C 6 D 6 ): δ 1.31, 1.29, 1.27 [(CH 3 CH 2 ) 2 Ga (NC 4 H 8 ), m, 6H]
1H-NMR(C6D6):δ 0.55, 0.53, 0.51, 0.49 [(CH3CH2)2Ga(NC4H8), m, 4H] 1 H-NMR (C 6 D 6 ): δ 0.55, 0.53, 0.51, 0.49 [(CH 3 CH 2 ) 2 Ga (NC 4 H 8 ), m, 4H]
<반응식 2><Scheme 2>
Figure PCTKR2015009872-appb-I000028
Figure PCTKR2015009872-appb-I000028
실험예 7: 열분석 시험Experimental Example 7: Thermal Analysis Test
실험예 1의 다이에틸아미노 다이에틸알루미늄, 실험예 2의 다이메틸아미노 다이에틸알루미늄, 실험예 3의 에틸메틸아미노 다이에틸알루미늄, 실험예 4의 피롤리디노 다이에틸알루미늄, 실험예 5의 다이메틸아미노 다이에틸갈륨 및 실험예 6의 피롤리디노 다이에틸갈륨에 대하여 시차주사열량 분석(DSC) 시험 및 열중량 분석(TGA) 시험을 실시하였다.Diethylamino diethylaluminum of Experimental Example 1, dimethylamino diethylaluminum of Experimental Example 2, ethylmethylamino diethylaluminum of Experimental Example 3, pyrrolidino diethylaluminum of Experimental Example 4, dimethyl of Experimental Example 5 Differential scanning calorimetry (DSC) test and thermogravimetric analysis (TGA) test were performed on amino diethylgallium and pyrrolidino diethylgallium of Experimental Example 6.
시차주사열량 분석(DSC) 시험 및 열중량 분석(TGA) 시험 조건은 다음과 같다. Differential scanning calorimetry (DSC) test and thermogravimetric analysis (TGA) test conditions are as follows.
이송가스: 아르곤(Ar) 가스,Transfer gas: argon (Ar) gas,
이송가스 유량: 100 cc/min,Transfer gas flow rate: 100 cc / min,
가열 프로파일: 30 ℃에서 350 ℃로 10 ℃/min의 승온 속도로 가열,Heating profile: heating from 30 ° C. to 350 ° C. at a heating rate of 10 ° C./min,
시료량: 10 mg.Sample volume: 10 mg.
실험예 1의 다이에틸아미노 다이에틸알루미늄의 열분석 시험 결과는 도 1에 도시되어 있다. 도 1은 열분석 시험 결과를 통해 얻어진 DSC 열곡선 및 TGA 열곡선을 하나의 도면으로 종합하여 도시한 것이며, 점선으로 표시된 열곡선은 DSC 시험으로부터 얻은 결과를 표시한 것이고, 실선으로 표시된 열곡선은 TGA 시험으로부터 얻은 결과를 표시한 것이다. DSC 시험의 열분해 온도는 DSC 열곡선의 승온시 열 흐름량이 저감하다가 갑자기 다시 상승하는 지점의 온도로 지정하였다. 도 1에 도시된 바와 같이, 다이에틸아미노 다이에틸알루미늄의 열분해 온도는 약 237.12 ℃이고, 잔류 성분(residue)량이 초기 중량대비 약 1.613 % 인 것을 확인할 수 있다. 따라서, 본 발명의 다이에틸아미노 다이에틸알루미늄은 열 안전성이 우수하며, 잔여물이 작음을 확인할 수 있다.The thermal analysis test results of diethylamino diethylaluminum of Experimental Example 1 are shown in FIG. 1. FIG. 1 shows the DSC thermal curves and TGA thermal curves obtained through the thermal analysis test results in one diagram. The thermal curves indicated by dotted lines indicate the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown. The pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again. As shown in FIG. 1, the pyrolysis temperature of diethylamino diethylaluminum is about 237.12 ° C., and the residual component amount is about 1.613% of the initial weight. Thus, the diethylamino diethylaluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
실험예 2의 다이메틸아미노 다이에틸알루미늄의 열분석 시험 결과는 도 2에 도시되어 있다. 도 2는 열분석 시험 결과를 통해 얻어진 DSC 열곡선 및 TGA 열곡선을 하나의 도면으로 종합하여 도시한 것이며, 점선으로 표시된 열곡선의 DSC 시험으로부터 얻은 결과를 표시한 것이고, 실선으로 표시된 열곡선은 TGA 시험으로부터 얻은 결과를 표시한 것이다. DSC 시험의 열분해 온도는 DSC 열곡선이 승온시 열 흐름량이 저감하다가 갑자기 다시 상승하는 지점의 온도로 지정하였다. 도 2에 도시된 바와 같이, 다이메틸아미노 다이에틸알루미늄의 열분해 온도는 약 192.79 ℃이고, 잔류 성분(residue)량이 초기 중량대비 약 2.100 % 인 것을 확인할 수 있다. 따라서, 본 발명의 다이메틸아미노 다이에킬알루미늄은 열 안전성이 우수하며, 잔여물이 작음을 확인할 수 있다.The thermal analysis test results of dimethylamino diethylaluminum of Experimental Example 2 are shown in FIG. 2. FIG. 2 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one diagram, and shows the results obtained from the DSC test of the thermal curves indicated by dotted lines. Results obtained from the TGA test are shown. The pyrolysis temperature of the DSC test was designated as the temperature at which the DSC heat curve decreases when the heat flow rate increases and then suddenly rises again. As shown in FIG. 2, the pyrolysis temperature of dimethylamino diethylaluminum is about 192.79 ° C., and the residual amount is about 2.100% of the initial weight. Thus, the dimethylamino diealkylaluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
실험예 3의 에틸메틸아미노 다이에틸알루미늄의 열분석 시험 결과는 도 3에 도시되어 있다. 도 3은 열분석 시험 결과를 통해 얻어진 DSC 열곡선 및 TGA 열곡선을 하나의 도면으로 종합하여 도시한 것이며, 점선으로 표시된 열곡선은 DSC 시험으로부터 얻은 결과를 표시한 것이고, 실선으로 표시된 열곡선은 TGA 시험으로부터 얻은 결과를 표시한 것이다. DSC 시험의 열분해 온도는 DSC 열곡선의 승온시 열 흐름량이 저감하다가 갑자기 다시 상승하는 지점의 온도로 지정하였다. 도 3에 도시된 바와 같이, 에틸메틸아미노 다이에틸알루미늄의 열분해 온도는 약 217.04 ℃이고, 잔류 성분(residue)량이 초기 중량대비 약 1.218 % 인 것을 확인할 수 있다. 따라서, 본 발명의 에틸메틸아미노 다이에틸알루미늄은 열 안전성이 우수하며, 잔여물이 작음을 확인할 수 있다.The thermal analysis test results of ethylmethylamino diethylaluminum of Experimental Example 3 are shown in FIG. 3. FIG. 3 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one drawing. The thermal curves indicated by dotted lines indicate the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown. The pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again. As shown in FIG. 3, the thermal decomposition temperature of ethylmethylamino diethylaluminum is about 217.04 ° C., and the residual amount of the residue is about 1.218% based on the initial weight. Therefore, the ethylmethylamino diethylaluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
실험예 4의 피롤리디노 다이에틸알루미늄의 열분석 시험 결과는 도 4에 도시되어 있다. 도 4는 열분석 시험 결과를 통해 얻어진 DSC 열곡선 및 TGA 열곡선을 하나의 도면으로 종합하여 도시한 것이며, 점선으로 표시된 열곡선은 DSC 시험으로부터 얻은 결과를 표시한 것이고, 실선으로 표시된 열곡선은 TGA 시험으로부터 얻은 결과를 표시한 것이다. DSC 시험의 열분해 온도는 DSC 열곡선의 승온시 열 흐름량이 저감하다가 갑자기 다시 상승하는 지점의 온도로 지정하였다. 도 4에 도시된 바와 같이, 피롤리디노 다이에틸알루미늄의 열분해 온도는 약 217.04 ℃이고, 잔류 성분(residue)량이 초기 중량대비 약 1.218 % 인 것을 확인할 수 있다. 따라서, 본 발명의 피롤리디노 다이에틸알루미늄은 열 안전성이 우수하며, 잔여물이 작음을 확인할 수 있다.The thermal analysis test results of pyrrolidino diethyl aluminum of Experimental Example 4 are shown in FIG. 4. FIG. 4 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one diagram. The thermal curves indicated by dotted lines indicate the results obtained by the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown. The pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again. As shown in FIG. 4, the pyrolytico diethylaluminum pyrolysis temperature is about 217.04 ° C., and the residual amount is about 1.218% based on the initial weight. Therefore, the pyrrolidino diethyl aluminum of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
실험예 5의 다이메틸아미노 다이에틸갈륨의 열분석 시험 결과는 도 5에 도시되어 있다. 도 5는 열분석 시험 결과를 통해 얻어진 DSC 열곡선 및 TGA 열곡선을 하나의 도면으로 종합하여 도시한 것이며, 점선으로 표시된 열곡선은 DSC 시험으로부터 얻은 결과를 도시한 것이고, 실선으로 표시된 열곡선은 TGA 시험으로부터 얻은 결과를 표시한 것이다. DSC 시험의 열분해 온도는 DSC 열곡선의 승온시 열 흐름량이 저감하다가 갑자기 다시 상승하는 지점의 온도로 지정하였다. 도 5에 도시된 바와 같이, 다이메틸아미노 다이에틸갈륨의 열분해 온도는 198.74 ℃, T1/2는 178.83 ℃로 확인되었다. 또한, 350 ℃까지 승온하고 남은 잔류성분(residue)량이 초기 중량대비 약 3.2 %인 것을 확인할 수 있다. 따라서, 본 발명의 다이메틸아미노 다이에틸갈륨은 열 안전성이 우수하며, 잔여물이 작음을 확인할 수 있다.The thermal analysis test results of dimethylamino diethylgallium of Experimental Example 5 are shown in FIG. 5. FIG. 5 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one diagram, and the thermal curves indicated by dotted lines show the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown. The pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again. As shown in FIG. 5, the thermal decomposition temperature of dimethylamino diethylgallium was found to be 198.74 ° C., and T1 / 2 was 178.83 ° C. FIG. In addition, it can be seen that the residual component amount (residue) after the temperature is raised to 350 ℃ is about 3.2% of the initial weight. Thus, the dimethylamino diethylgallium of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
실험예 6의 피롤리디노 다이에틸갈륨의 열분석 시험 결과는 도 6에 도시되어 있다. 도 6은 열분석 시험 결과를 통해 얻어진 DSC 열곡선 및 TGA 열곡선을 하나의 도면으로 종합하여 도시한 것이며, 점선으로 표시된 열곡선은 DSC 시험으로부터 얻은 결과를 도시한 것이고, 실선으로 표시된 열곡선은 TGA 시험으로부터 얻은 결과를 표시한 것이다. DSC 시험의 열분해 온도는 DSC 열곡선의 승온시 열 흐름량이 저감하다가 갑자기 다시 상승하는 지점의 온도로 지정하였다. 도 6에 도시된 바와 같이, 피롤리디노 다이에틸갈륨의 열분해 온도는 229.28 ℃, T1/2는 251.31 ℃로 확인되었다. 또한, 350 ℃까지 승온하고 남은 잔류성분(residue)량이 초기 중량대비 약 3.466 %인 것을 확인할 수 있다. 따라서, 본 발명의 피롤리디노 다이에틸갈륨은 열 안전성이 우수하며, 잔여물이 작음을 확인할 수 있다.The thermal analysis test results of pyrrolidino diethylgallium of Experimental Example 6 are shown in FIG. 6. FIG. 6 shows the DSC thermal curves and the TGA thermal curves obtained through the thermal analysis test results in one drawing. The thermal curves indicated by dotted lines show the results obtained from the DSC test, and the thermal curves indicated by solid lines Results obtained from the TGA test are shown. The pyrolysis temperature of the DSC test was designated as the temperature at the point where the heat flow amount of the DSC heat curve decreases and then suddenly rises again. As shown in FIG. 6, pyrolidino diethylgallium had a thermal decomposition temperature of 229.28 ° C. and T1 / 2 of 251.31 ° C. In addition, it can be seen that the residual component amount (residue) remaining after the temperature is raised to 350 ℃ is about 3.466% of the initial weight. Therefore, the pyrrolidino diethylgallium of the present invention is excellent in thermal stability, it can be confirmed that the residue is small.
이상에 검토한 바와 같이 본 발명의 일 실시예에 의한 유기 13족 전구체는 분자 크기는 작지만 높은 끓는 점을 가지므로 상온에서 액체 상태로 존재하며, 열 안정성이 우수하다. 또한, 비공유 전자쌍을 갖는 질소 원자와 알루미늄 또는 갈륨 원자를 하나의 분자 구조 내에 포함하기 때문에 실리콘 기판 및 금속 원자와 강한 친화력을 나타낸다.As discussed above, the organic Group 13 precursor according to an embodiment of the present invention has a small boiling point but has a high boiling point and thus exists in a liquid state at room temperature, and has excellent thermal stability. In addition, since a nitrogen atom and an aluminum or gallium atom having an unshared electron pair are included in one molecular structure, it exhibits a strong affinity with a silicon substrate and a metal atom.
본 발명의 다른 실시예에 의한 박막 증착 방법은, 전술한 유기 13족 전구체를 이용하여 기판상에 알루미늄 함유막 또는 갈륨 함유막을 증착하는 증착공정을 포함한다.The thin film deposition method according to another embodiment of the present invention includes a deposition process of depositing an aluminum-containing film or a gallium-containing film on a substrate by using the aforementioned organic group 13 precursor.
증착 공정은, 원자층 증착(Atomic Layer Deposition, ALD) 공정 또는 화학 증착(Chemical Vapor Deposition, CVD) 공정에 의해 수행될 수 있으며, 화학 증착(Chemical Vapor Deposition, CVD)은 유기 금속 화학 증착(Metal Organic Chemical Vapor Deposition, MOCVD)일 수 있다.The deposition process may be performed by an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process, and the chemical vapor deposition (CVD) may be performed by an organic metal chemical deposition process (Metal Organic). Chemical Vapor Deposition, MOCVD).
증착 공정은, 기판에 대한 공정이 수행되는 공간을 제공하는 챔버의 내부에 기판을 로딩하는 로딩단계(S100), 챔버의 내부에 로딩된 기판을 가열하는 가열단계(S200), 기판이 로딩된 챔버의 내부에 본 발명의 일 실시예에 의한 유기 13족 전구체를 공급하는 공급단계(S300), 공급된 유기 13족 전구체를 기판상에 흡착시켜서 유기 알루미늄 화합물 층 또는 유기 갈륨 화합물 층을 형성하는 화합물 층 형성단계(S400) 및 유기 알루미늄 화합물 층 또는 유기 갈륨 화합물 층이 형성된 기판에 열에너지, 플라즈마 또는 전기적 바이어스를 인가하여 알루미늄 함유막 또는 갈륨 함유막을 형성하는 성막단계(S500)를 포함한다.The deposition process may include a loading step (S100) of loading a substrate into a chamber providing a space in which a process for the substrate is performed, a heating step (S200) of heating a substrate loaded in the chamber, and a chamber loaded with a substrate. In the supply step (S300) of supplying the organic group 13 precursor according to an embodiment of the present invention, the compound layer for adsorbing the supplied organic group 13 precursor on the substrate to form an organic aluminum compound layer or organic gallium compound layer Forming step (S400) and the film forming step (S500) of forming an aluminum-containing or gallium-containing film by applying thermal energy, plasma or electrical bias to the substrate on which the organic aluminum compound layer or organic gallium compound layer is formed.
가열단계(S200)에서는 기판을 50 ~ 800 ℃의 온도범위로 가열할 수 있으며, 공급단계(S300)에서는 유기 13족 전구체를 20 ~ 100 ℃의 온도범위로 가열하여 기판상으로 공급할 수 있다.In the heating step S200, the substrate may be heated to a temperature range of 50 to 800 ° C., and in the supplying step S300, the organic group 13 precursor may be heated to a temperature range of 20 to 100 ° C. and supplied onto the substrate.
공급단계(S300)에서 본 발명의 일 실시예에 의한 유기 13족 전구체와 아르곤(Ar), 질소(N2), 헬륨(He) 및 수소 중에서 선택된 하나 이상 캐리어가스를 혼합하여 기판상으로 공급할 수 있다. 본 발명의 일 실시예에 의한 유기 13족 전구체와 캐리어가스의 혼합물만을 기판상에 공급하여 증착 공정이 수행하는 경우, 알루미늄막 또는 갈륨 막이 기판상에 증착된다.In the supplying step (S300), the organic group 13 precursor and one or more carrier gases selected from argon (Ar), nitrogen (N 2 ), helium (He) and hydrogen according to an embodiment of the present invention may be mixed and supplied onto the substrate. have. When the deposition process is performed by supplying only the mixture of the organic group 13 precursor and the carrier gas on the substrate according to an embodiment of the present invention, an aluminum film or gallium film is deposited on the substrate.
공급단계(S300)에서 본 발명의 일 실시예에 의한 유기 13족 전구체를 기판상으로 공급하고, 수증기(H2O), 산소(O2) 및 오존(O3) 등의 산소계열 반응가스를 기판상으로 공급할 수 있다. 산소계열 반응가스는 본 발명의 일 실시예에 의한 유기 13족 전구체와 함께 기판상으로 공급될 수 있으며, 본 발명의 일 실시예에 의한 유기 13족 전구체와 별도로 기판상으로 공급될 수도 있다. 산소계열 반응가스를 기판상으로 공급하여 증착 공정을 수행하는 경우, 알루미늄 산화물막, 하프늄 알루미늄 산화물막, 지르코늄 알루미늄 산화물막 및 티타늄 알루미늄 산화물막 등과 같은 금속 알루미늄 산화물막 또는 갈륨 산화물막, 하프늄 갈륨 산화물막, 지르코늄 갈륨 산화물막 및 티타늄 갈륨 산화물막 등과 같은 금속 갈륨 산화물막이 형성될 수 있다. In the supplying step (S300), the organic group 13 precursor according to an embodiment of the present invention is supplied onto a substrate, and oxygen-based reaction gases such as water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) are supplied. It can supply on a board | substrate. The oxygen-based reaction gas may be supplied onto the substrate together with the organic Group 13 precursor according to the embodiment of the present invention, or may be supplied onto the substrate separately from the organic Group 13 precursor according to the embodiment of the present invention. When the deposition process is performed by supplying an oxygen-based reaction gas onto a substrate, a metal aluminum oxide film or a gallium oxide film, a hafnium gallium oxide film, such as an aluminum oxide film, a hafnium aluminum oxide film, a zirconium aluminum oxide film, and a titanium aluminum oxide film A metal gallium oxide film such as a zirconium gallium oxide film and a titanium gallium oxide film can be formed.
공급단계(S300)에서 본 발명의 일 실시예에 의한 유기 13족 전구체를 기판상으로 공급하고, 암모니아(NH3), 히드라진(N2H4), 이산화질소(NO2) 및 질소(N2) 등의 질소계열 반응가스를 기판상으로 공급할 수 있다. 질소계열 반응가스는 본 발명의 일 실시예에 의한 유기 13족 전구체와 함께 기판상으로 공급될 수도 있으며, 본 발명의 일 실시예에 의한 유기 13족 전구체와 별도로 기판상으로 공급될 수도 있다. 질소계열 반응가스를 기판상으로 공급하여 증착 공정을 수행하는 경우, 알루미늄 질화물막, 하프늄 알루미늄 질화물막, 지르코늄 알루미늄 질화물막 및 티타늄 알루미늄 질화물막 등과 같은 금속 알루미늄 질화물막 또는 갈륨 질화물막, 하프늄 갈륨 질화물막, 지르코늄 갈륨 질화물막 및 티타늄 갈륨 질화물막 등과 같은 금속 갈륨 질화물막이 형성될 수 있다.In the supplying step (S300), the organic group 13 precursor according to an embodiment of the present invention is supplied onto a substrate, and ammonia (NH 3 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), and nitrogen (N 2 ) A nitrogen-based reaction gas such as this can be supplied onto the substrate. The nitrogen-based reaction gas may be supplied onto the substrate together with the organic Group 13 precursor according to the embodiment of the present invention, or may be supplied onto the substrate separately from the organic Group 13 precursor according to the embodiment of the present invention. In the case of performing a deposition process by supplying a nitrogen-based reaction gas onto a substrate, a metal aluminum nitride film such as an aluminum nitride film, a hafnium aluminum nitride film, a zirconium aluminum nitride film, and a titanium aluminum nitride film or a gallium nitride film, a hafnium gallium nitride film A metal gallium nitride film, such as a zirconium gallium nitride film and a titanium gallium nitride film, may be formed.
공급단계(S300)에서 본 발명의 일 실시예에 의한 유기 13족 전구체는 버블링 방식, 가스상(vapor phase) 질량유량제어기(mass flow controller) 방식, 직접 액체 주입(Direct Liquid Injection, DLI) 방식, 유기 용매에 용해하여 이송하는 액체 이송 방식 등에 의해 기판상으로 공급될 수 있으나, 반드시 이들 방식에 국한될 것은 아니다.In the supplying step (S300), the organic group 13 precursor according to an embodiment of the present invention is a bubbling method, a vapor phase mass flow controller method, a direct liquid injection (DLI) method, It may be supplied onto the substrate by a liquid transfer method for dissolving and transferring in an organic solvent, but is not necessarily limited to these methods.
화합물 층 형성단계(S400) 이후, 아르곤(Ar), 질소(N2) 및 헬륨(He) 등의 불활성가스로부터 선택된 제1 퍼지가스를 챔버 내로 공급하여 기판상에 흡착되지 않은 과량의 유기 13족 전구체를 제거하는 제1 퍼지단계(S410)를 수행할 수 있으며, 제1 퍼지단계(S410)에서는 제1 퍼지가스를 1 분 미만의 시간으로 챔버 내로 공급할 수 있다.After the compound layer forming step (S400), the excess organic group 13 which is not adsorbed on the substrate by supplying a first purge gas selected from an inert gas such as argon (Ar), nitrogen (N 2 ), and helium (He) into the chamber. The first purge step S410 may be performed to remove the precursor, and in the first purge step S410, the first purge gas may be supplied into the chamber in less than 1 minute.
성막단계(S500) 이후, 아르곤(Ar), 질소(N2) 및 헬륨(He) 등의 불활성가스로부터 선택된 제2 퍼지가스를 챔버 내로 공급하여 과량의 반응가스 및 생성 부산물을 제거하는 제2 퍼지단계(S510)를 수행할 수 있으며, 제2 퍼지단계(S510)에서는 제2 퍼지가스를 1 분 미만의 시간으로 챔버 내로 도입할 수 있다.After the deposition step S500, a second purge for supplying a second purge gas selected from an inert gas such as argon (Ar), nitrogen (N 2 ), and helium (He) to the chamber to remove excess reaction gas and by-products. Step S510 may be performed, and in the second purge step S510, the second purge gas may be introduced into the chamber in less than 1 minute.
본 발명의 일 실시예에 의한 유기 13족 전구체를 이용한 박막 증착 방법에 대하여 아래의 실시예를 통해 구체적으로 설명하고자 한다. 아래의 실시예는 본 발명의 이해를 돕기 위해 제시되는 것으로, 본 발명의 범위가 아래의 실시예에 한정되는 것은 아니다.A thin film deposition method using an organic group 13 precursor according to an embodiment of the present invention will be described in detail with reference to the following examples. The following examples are presented to aid the understanding of the present invention, and the scope of the present invention is not limited to the following examples.
<실시예 1><Example 1>
다이에틸아미노 다이에틸알루미늄 화합물을 전구체로 이용한 알루미늄 함유막의 증착 및 증착된 알루미늄 함유막의 분석:Deposition of an aluminum containing film using a diethylamino diethyl aluminum compound as a precursor and analysis of the deposited aluminum containing film:
상기 <실험예 1>에서 수득된 다이에틸아미노 다이에틸알루미늄 화합물을 전구체로 이용하여 기판에 알루미늄 함유막 증착 실험을 수행하였다. 기판은 실리콘(Si) 웨이퍼를 사용하였으며, 증착 공정은 챔버 내에서 400 ℃의 공정 온도로 진행하였다. 다이에틸아미노 다이에틸알루미늄 화합물은 스테인리스 스틸(Stainless steel) 재질의 용기에 담아서 기화하였으며, 기화장치(Vaporizer)의 기화온도는 175 ℃로 설정하였다. 250 sccm의 유속을 갖는 아르곤(Ar) 기체를 캐리어 가스로 이용하였으며, 다이에틸아미노 다이에틸알루미늄 화합물은 LMF(Liguid Flow Meter)를이용하여 분당 0.02 g의 공급속도로 공급되도록 하였다. 챔버 내로 다이에틸아미노 다이에틸알루미늄 화합물을 공급하는 공급관의 온도는 180 ~ 185 ℃의 온도범위로 유지하였다.Using the diethylamino diethylaluminum compound obtained in the above <Experimental Example 1> as a precursor, an aluminum-containing film deposition experiment was performed on the substrate. As a substrate, a silicon (Si) wafer was used, and the deposition process was performed at a process temperature of 400 ° C. in the chamber. The diethylamino diethylaluminum compound was vaporized in a container made of stainless steel, and the vaporization temperature of the vaporizer was set to 175 ° C. An argon (Ar) gas having a flow rate of 250 sccm was used as a carrier gas, and the diethylamino diethylaluminum compound was supplied at a feed rate of 0.02 g per minute using a LMF (Liguid Flow Meter). The temperature of the feed pipe for supplying the diethylamino diethylaluminum compound into the chamber was maintained at a temperature range of 180 to 185 ° C.
챔버 내의 공정압력은 0.3 torr로 조절하였으며, 다이에틸아미노 다이에틸알루미늄 화합물 기체가 O2와 교대로 기판에 접촉하도록 공정 조건을 제어하였다. 증착 공정은 1초간 다이에틸아미노 다이에틸알루미늄 화합물 기체 공급, 1초간 아르곤(Ar) 가스 공급, 0.2초간 O2 기체 공급 및 플라즈마 인가, 1초간 아르곤(Ar) 기체를 공급하는 주기를 이용하였다. 증착 공정에 의해 증착된 알루미늄 함유막은 ICP-AES, ASE 성분 분석을 통해 확인하였다.The process pressure in the chamber was adjusted to 0.3 torr, and the process conditions were controlled so that the diethylamino diethylaluminum compound gas contacted the substrate alternately with O 2 . The deposition process used a cycle of supplying diethylamino diethylaluminum compound gas for 1 second, argon (Ar) gas supply for 1 second, O 2 gas supply for 0.2 second, and plasma application, and argon (Ar) gas for 1 second. The aluminum-containing film deposited by the deposition process was confirmed by ICP-AES, ASE component analysis.
도 7은 상기 증착 공정에 의해 증착된 알루미늄 함유막의 ICP-AES 성분 분석 결과를 나타낸 그래프이며, 도 8은 상기 증착 공정에 의해 증착된 알루미늄 함유막의 ASE 성분 분석 결과를 나타낸 그래프이다. 도 7 및 도 8에 나타난 바와 같이 상기 증착 공정에 의해 증착된 알루미늄 함유막에는 잔류 탄소(C)가 존재하지 않는 것을 확인할 수 있다. 또한, Al과 O의 원자퍼센트(Atomic Percent) 비가 Al : O = 2 : 3임이 확인되어 알루미늄 산화막(Al2O3)이 형성됨을 확인할 수 있다.FIG. 7 is a graph showing ICP-AES component analysis results of the aluminum-containing film deposited by the deposition process, and FIG. 8 is a graph showing ASE component analysis results of the aluminum-containing film deposited by the deposition process. As shown in FIG. 7 and FIG. 8, it may be confirmed that residual carbon (C) does not exist in the aluminum-containing film deposited by the deposition process. In addition, it is confirmed that the atomic percent ratio of Al and O is Al: O = 2: 3 , thereby forming an aluminum oxide layer (Al 2 O 3 ).
도 9는 상기 증착 공정에 의해 증착된 알루미늄 함유막의 공정온도에 대한 주기당 성장률을 나타낸 그래프이며, 도 10은 상기 증착 공정에 의해 증착된 알루미늄 함유막의 주기당 막 두께를 나타낸 그래프이다. 도 9에 나타난 바와 같이 350 ~ 500 ℃의 온도영역에서, 주기당 성장률(Growth Per Cycle, GPC)은 0.75 ~ 0.8 Å 수준을 나타낸다. 동일 온도영역에서 트리메틸알루미늄(TMA)의 주기당 성장률(GPC)는 약 1.0 Å 수준이므로, 본 발명의 일 실시예에 따른 박막 증착 방법에 의해 증착된 알루미늄 함유막은 트리메틸알루미늄(TMA)을 이용하는 경우에 비해 주기당 성장률(GPC)이 낮은 것을 확인할 수 있다. 도 10에 나타난 바와 같이 상기 증착 공정에 의해 증착된 알루미늄 함유막 두께는 증착 주기가 진행됨에 따라 선형적으로 증가함을 확인할 수 있다. 따라서 본 발명의 일 실시예에 따른 박막 증착 방법에 의해 증착된 알루미늄 함유막은 증착 주기의 조절에 따라 박막 두께를 용이하게 조절할 수 있다. 9 is a graph showing the growth rate per cycle with respect to the process temperature of the aluminum-containing film deposited by the deposition process, Figure 10 is a graph showing the film thickness per cycle of the aluminum-containing film deposited by the deposition process. As shown in Figure 9, in the temperature range of 350 ~ 500 ℃, the growth rate (Growth Per Cycle, GPC) is 0.75 ~ 0.8 kHz level. Since the growth rate per cycle (GPC) of trimethylaluminum (TMA) in the same temperature range is about 1.0 kW, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention when using trimethylaluminum (TMA) It can be seen that the growth rate per cycle (GPC) is low. As shown in Figure 10 it can be seen that the aluminum-containing film thickness deposited by the deposition process increases linearly as the deposition cycle proceeds. Therefore, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention can easily adjust the thickness of the thin film according to the control of the deposition cycle.
<실시예 2><Example 2>
다이메틸아미노 다이에틸알루미늄 화합물을 전구체로 이용한 알루미늄 함유막의 증착 및 증착된 알루미늄 함유막의 분석:Deposition of an aluminum containing film using a dimethylamino diethylaluminum compound as a precursor and analysis of the deposited aluminum containing film:
상기 <실험예 2>에서 수득된 다이메틸아미노 다이에틸알루미늄 화합물을 전구체로 이용하여 기판에 알루미늄 함유막 증착 실험을 수행하였다. 기판은 실리콘(Si) 웨이퍼를 사용하였으며, 증착 공정은 챔버 내에서 400 ℃의 공정 온도로 진행하였다. 다이메틸아미노 다이에틸알루미늄 화합물은 스테인리스 스틸(Stainless steel) 재질의 용기에 담아서 기화하였으며, 기화장치(Vaporizer)의 기화온도는 130 ℃로 설정하였다. 250 sccm의 유속을 갖는 아르곤(Ar) 기체를 캐리어 가스로 이용하였으며, 다이메틸아미노 다이에틸알루미늄 화합물은 LMF(Liguid Flow Meter)를이용하여 분당 0.02 g의 공급속도로 공급되도록 하였다. 챔버 내로 다이메틸아미노 다이에틸알루미늄 화합물을 공급하는 공급관의 온도는 135 ~ 140 ℃의 온도범위로 유지하였다.Using the dimethylamino diethylaluminum compound obtained in Experimental Example 2 as a precursor, an aluminum-containing film deposition experiment was performed on a substrate. As a substrate, a silicon (Si) wafer was used, and the deposition process was performed at a process temperature of 400 ° C. in the chamber. The dimethylamino diethylaluminum compound was vaporized in a container made of stainless steel, and the vaporization temperature of the vaporizer was set to 130 ° C. Argon (Ar) gas having a flow rate of 250 sccm was used as the carrier gas, and the dimethylamino diethylaluminum compound was supplied at a feed rate of 0.02 g per minute using an LMF (Liguid Flow Meter). The temperature of the feed tube for supplying the dimethylamino diethylaluminum compound into the chamber was maintained in the temperature range of 135 ~ 140 ℃.
챔버 내의 공정압력은 0.3 torr로 조절하였으며, 다이메틸아미노 다이에틸알루미늄 화합물 기체가 O2와 교대로 기판에 접촉하도록 공정 조건을 제어하였다. 증착 공정은 0.8초간 다이메틸아미노 다이에틸알루미늄 화합물 기체 공급, 1초간 아르곤(Ar) 가스 공급, 1초간 O2 기체 공급 및 플라즈마 인가, 1초간 아르곤(Ar) 기체를 공급하는 주기를 이용하였다. 증착 공정에 의해 증착된 알루미늄 함유막은 ICP-AES, ASE 성분 분석을 통해 확인하였다.The process pressure in the chamber was adjusted to 0.3 torr, and the process conditions were controlled so that the dimethylamino diethylaluminum compound gas contacted the substrate alternately with O 2 . The deposition process used a cycle of supplying dimethylamino diethylaluminum compound gas for 0.8 seconds, argon (Ar) gas supply for 1 second, O 2 gas supply and plasma application for 1 second, and argon (Ar) gas for 1 second. The aluminum-containing film deposited by the deposition process was confirmed by ICP-AES, ASE component analysis.
도 11은 상기 증착 공정에 의해 증착된 알루미늄 함유막의 ICP-AES 성분 분석 결과를 나타낸 그래프이며, 도 12는 상기 증착 공정에 의해 증착된 알루미늄 함유막의 ASE 성분 분석 결과를 나타낸 그래프이다. 도 11 및 도 12에 나타난 바와 같이 상기 증착 공정에 의해 증착된 알루미늄 함유막에는 잔류 탄소(C)가 존재하지 않는 것을 확인할 수 있다. 또한, Al과 O의 원자퍼센트(Atomic Percent) 비가 Al : O = 2 : 3임이 확인되어 알루미늄 산화막(Al2O3)이 형성됨을 확인할 수 있다.11 is a graph showing ICP-AES component analysis results of the aluminum-containing film deposited by the deposition process, Figure 12 is a graph showing the ASE component analysis results of the aluminum-containing film deposited by the deposition process. As shown in FIG. 11 and FIG. 12, it may be confirmed that residual carbon (C) does not exist in the aluminum-containing film deposited by the deposition process. In addition, it is confirmed that the atomic percent ratio of Al and O is Al: O = 2: 3 , thereby forming an aluminum oxide layer (Al 2 O 3 ).
도 13은 상기 증착 공정에 의해 증착된 알루미늄 함유막의 공정온도에 대한 주기당 성장률을 나타낸 그래프이며, 도 14는 상기 증착 공정에 의해 증착된 알루미늄 함유막의 주기당 막 두께를 나타낸 그래프이다. 도 13에 나타난 바와 같이 250 ~ 500 ℃의 온도영역에서, 주기당 성장률(Growth Per Cycle, GPC)은 0.75 ~ 0.8 Å 수준을 나타낸다. 동일 온도영역에서 트리메틸알루미늄(TMA)의 주기당 성장률(GPC)는 약 1.0 Å 수준이므로, 본 발명의 일 실시예에 따른 박막 증착 방법에 의해 증착된 알루미늄 함유막은 트리메틸알루미늄(TMA)을 이용하는 경우에 비하여 주기당 성장률(GPC)이 낮은 것을 확인할 수 있다. 도 14에 나타난 바와 같이 상기 증착 공정에 의해 증착된 알루미늄 함유막 두께는 증착 주기가 진행됨에 따라 선형적으로 증가함을 확인할 수 있다. 따라서 본 발명의 일 실시예에 따른 박막 증착 방법에 의해 증착된 알루미늄 함유막은 증착 주기의 조절에 따라 박막 두께를 용이하게 조절할 수 있다. 13 is a graph showing the growth rate per cycle with respect to the process temperature of the aluminum-containing film deposited by the deposition process, Figure 14 is a graph showing the film thickness per cycle of the aluminum-containing film deposited by the deposition process. As shown in Figure 13, in the temperature range of 250 ~ 500 ℃, the growth rate (Growth Per Cycle, GPC) is 0.75 ~ 0.8 kHz level. Since the growth rate per cycle (GPC) of trimethylaluminum (TMA) in the same temperature range is about 1.0 kW, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention when using trimethylaluminum (TMA) It can be seen that the growth rate per cycle (GPC) is low. As shown in FIG. 14, it can be seen that the thickness of the aluminum-containing film deposited by the deposition process increases linearly as the deposition cycle progresses. Therefore, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention can easily adjust the thickness of the thin film according to the control of the deposition cycle.
<실시예 3><Example 3>
피놀리디노 다이에틸알루미늄 화합물을 전구체로 이용한 알루미늄 함유막의 증착 및 증착된 알루미늄 함유막의 분석:Deposition of an Aluminum Containing Film Using a Pinolidino Diethyl Aluminum Compound as a Precursor and Analysis of the Deposited Aluminum Containing Film:
상기 <실험예 4>에서 수득된 피놀리디노 다이에틸알루미늄 화합물을 전구체로 이용하여 기판에 알루미늄 함유막 증착 실험을 수행하였다. 기판은 실리콘(Si) 웨이퍼를 사용하였으며, 증착 공정은 챔버 내에서 400 ℃의 공정 온도로 진행하였다. 피놀리디노 다이에틸알루미늄 화합물은 스테인리스 스틸(Stainless steel) 재질의 용기에 담아서 기화하였으며, 기화장치(Vaporizer)의 기화온도는 175 ℃로 설정하였다. 250 sccm의 유속을 갖는 아르곤(Ar) 기체를 캐리어 가스로 이용하였으며, 피놀리디노 다이에틸알루미늄 화합물은 LMF(Liguid Flow Meter)를 이용하여 분당 0.02 g의 공급속도로 공급되도록 하였다. 챔버 내로 피롤리디노 다이에틸알루미늄 화합물을 공급하는 공급관의 온도는 180 ~ 185 ℃의 온도범위로 유지하였다.Using the pinolidino diethylaluminum compound obtained in Experimental Example 4 as a precursor, an aluminum-containing film deposition experiment was performed on a substrate. As a substrate, a silicon (Si) wafer was used, and the deposition process was performed at a process temperature of 400 ° C. in the chamber. The pinolidino diethylaluminum compound was vaporized in a container made of stainless steel, and the vaporization temperature of the vaporizer was set to 175 ° C. Argon (Ar) gas having a flow rate of 250 sccm was used as a carrier gas, and the pinolidino diethylaluminum compound was supplied at a feed rate of 0.02 g per minute using a Liflow Flow Meter (LMF). The temperature of the feed tube for supplying the pyrrolidino diethylaluminum compound into the chamber was maintained in the temperature range of 180 ~ 185 ℃.
챔버 내의 공정압력은 0.3 torr로 조절하였으며, 피롤리디노 다이에틸알루미늄 화합물 기체가 O2와 교대로 기판에 접촉하도록 공정 조건을 제어하였다. 증착 공정은 0.6초간 피롤리디노 다이에틸알루미늄 화합물 기체 공급, 2초간 아르곤(Ar) 가스 공급, 1초간 O2 기체 공급 및 플라즈마 인가, 0.5초간 아르곤(Ar) 기체를 공급하는 주기를 이용하였다. 증착 공정에 의해 증착된 알루미늄 함유막은 ICP-AES, ASE 성분 분석을 통해 확인하였다.The process pressure in the chamber was adjusted to 0.3 torr, and the process conditions were controlled such that the pyrrolidino diethylaluminum compound gas contacted the substrate alternately with O 2 . The deposition process used a cycle of supplying pyrrolidino diethylaluminum compound gas for 0.6 seconds, argon (Ar) gas supply for 2 seconds, O 2 gas supply and plasma application for 1 second, and argon (Ar) gas for 0.5 seconds. The aluminum-containing film deposited by the deposition process was confirmed by ICP-AES, ASE component analysis.
도 15는 상기 증착 공정에 의해 증착된 알루미늄 함유막의 ICP-AES 성분 분석 결과를 나타낸 그래프이며, 도 16은 상기 증착 공정에 의해 증착된 알루미늄 함유막의 ASE 성분 분석 결과를 나타낸 그래프이다. 도 15 및 도 16에 나타난 바와 같이 상기 증착 공정에 의해 증착된 알루미늄 함유막에는 잔류 탄소(C)가 존재하지 않는 것을 확인할 수 있다. 또한, Al과 O의 원자퍼센트(Atomic Percent) 비가 Al : O = 2 : 3임이 확인되어 알루미늄 산화막(Al2O3)이 형성됨을 확인할 수 있다.FIG. 15 is a graph showing ICP-AES component analysis results of an aluminum-containing film deposited by the deposition process, and FIG. 16 is a graph showing ASE component analysis results of an aluminum-containing film deposited by the deposition process. As shown in FIG. 15 and FIG. 16, it may be confirmed that residual carbon (C) does not exist in the aluminum-containing film deposited by the deposition process. In addition, it is confirmed that the atomic percent ratio of Al and O is Al: O = 2: 3 , thereby forming an aluminum oxide layer (Al 2 O 3 ).
도 17은 200 주기(cycle)를 기준으로 상기 증착 공정에 의해 증착된 알루미늄 함유막의 막 두께를 공정온도에 대해 나타낸 그래프이다. 도 17에 나타난 바와 같이 350 ~ 450 ℃의 온도영역에서, 주기당 성장률(Growth Per Cycle, GPC)은 약 0.4 Å 수준을 나타낸다. 동일 온도영역에서 트리메틸알루미늄(TMA)의 주기당 성장률(GPC)는 약 1.0 Å 수준이므로, 본 발명의 일 실시예에 따른 박막 증착 방법에 의해 증착된 알루미늄 함유막은 트리메틸알루미늄(TMA)을 이용하는 경우에 비하여 주기당 성장률(GPC)이 낮은 것을 확인할 수 있다. 따라서 본 발명의 일 실시예에 따른 박막 증착 방법에 의해 증착된 알루미늄 함유막은 증착 주기의 조절에 따라 박막 두께를 용이하게 조절할 수 있다. FIG. 17 is a graph showing the film thickness of the aluminum-containing film deposited by the deposition process with respect to the process temperature based on 200 cycles. As shown in FIG. 17, in a temperature range of 350 ° C. to 450 ° C., a growth rate per cycle (GPC) is about 0.4 μs. Since the growth rate per cycle (GPC) of trimethylaluminum (TMA) in the same temperature range is about 1.0 kW, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention when using trimethylaluminum (TMA) It can be seen that the growth rate per cycle (GPC) is low. Therefore, the aluminum-containing film deposited by the thin film deposition method according to an embodiment of the present invention can easily adjust the thickness of the thin film according to the control of the deposition cycle.
이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다. Although the present invention has been described in detail through the embodiments, other forms of embodiments are possible. Therefore, the spirit and scope of the claims set forth below are not limited to the embodiments.

Claims (25)

  1. 하기 <화학식 1>로 표시되는 유기 13족 전구체.An organic group 13 precursor represented by the following <Formula 1>.
    <화학식 1><Formula 1>
    Figure PCTKR2015009872-appb-I000029
    Figure PCTKR2015009872-appb-I000029
    상기 <화학식 1>에서 M은 주기율표상에서 13족 원소에 속하는 금속 원소 중에서 선택된 어느 하나이며, L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다.In <Formula 1>, M is any one selected from metal elements belonging to the Group 13 element on the periodic table, and L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms. R 1 and R 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 6 carbon atoms.
  2. 제1항에 있어서,The method of claim 1,
    상기 유기 13족 전구체는 하기 <화학식 2>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 2>, organic group 13 precursor.
    <화학식 2><Formula 2>
    Figure PCTKR2015009872-appb-I000030
    Figure PCTKR2015009872-appb-I000030
    상기 <화학식 2>에서 L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다. In Formula 2, L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
  3. 제2항에 있어서,The method of claim 2,
    상기 유기 13족 전구체는 하기 <화학식 3>으로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 3>, organic group 13 precursor.
    <화학식 3><Formula 3>
    Figure PCTKR2015009872-appb-I000031
    Figure PCTKR2015009872-appb-I000031
  4. 제2항에 있어서,The method of claim 2,
    상기 유기 13족 전구체는 하기 <화학식 4>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 4>, organic group 13 precursor.
    <화학식 4><Formula 4>
    Figure PCTKR2015009872-appb-I000032
    Figure PCTKR2015009872-appb-I000032
  5. 제2항에 있어서,The method of claim 2,
    상기 유기 13족 전구체는 하기 <화학식 5>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 5>, organic group 13 precursor.
    <화학식 5><Formula 5>
    Figure PCTKR2015009872-appb-I000033
    Figure PCTKR2015009872-appb-I000033
  6. 제2항에 있어서,The method of claim 2,
    상기 유기 13족 전구체는 하기 <화학식 6>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 6>, organic group 13 precursor.
    <화학식 6><Formula 6>
    Figure PCTKR2015009872-appb-I000034
    Figure PCTKR2015009872-appb-I000034
    상기 <화학식 6>에서 R1 및 R2는 서로 연결되어 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 3 내지 6의 사이클릭 아민기를 형성한다. In Formula 6, R 1 and R 2 are connected to each other to form a cyclic amine group having 3 to 6 carbon atoms with the nitrogen atom to which R 1 and R 2 are bonded.
  7. 제6항에 있어서,The method of claim 6,
    상기 유기 13족 전구체는 하기 <화학식 7>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 7>, organic group 13 precursor.
    <화학식 7><Formula 7>
    Figure PCTKR2015009872-appb-I000035
    Figure PCTKR2015009872-appb-I000035
  8. 제1항에 있어서,The method of claim 1,
    상기 유기 13족 전구체는 하기 <화학식 8>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 8>, organic group 13 precursor.
    <화학식 8><Formula 8>
    Figure PCTKR2015009872-appb-I000036
    Figure PCTKR2015009872-appb-I000036
    상기 <화학식 8>에서 L1 및 L2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이며, R1 및 R2는 각각 독립적으로 탄소수 1 내지 6의 알킬기, 탄소수 3 내지 6의 시클로 알킬기 중에서 선택된 어느 하나이다.In Formula 8, L 1 and L 2 are each independently selected from an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and R 1 and R 2 are each independently an alkyl group having 1 to 6 carbon atoms. And any one selected from a cycloalkyl group having 3 to 6 carbon atoms.
  9. 제8항에 있어서,The method of claim 8,
    상기 유기 13족 전구체는 하기 <화학식 9>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 9>, organic group 13 precursor.
    <화학식 9><Formula 9>
    Figure PCTKR2015009872-appb-I000037
    Figure PCTKR2015009872-appb-I000037
  10. 제8항에 있어서,The method of claim 8,
    상기 유기 13족 전구체는 하기 <화학식 10>으로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 10>, organic group 13 precursor.
    <화학식 10><Formula 10>
    Figure PCTKR2015009872-appb-I000038
    Figure PCTKR2015009872-appb-I000038
  11. 제8항에 있어서,The method of claim 8,
    상기 유기 13족 전구체는 하기 <화학식 11>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 11>, organic group 13 precursor.
    <화학식 11><Formula 11>
    Figure PCTKR2015009872-appb-I000039
    Figure PCTKR2015009872-appb-I000039
  12. 제8항에 있어서,The method of claim 8,
    상기 유기 13족 전구체는 하기 <화학식 12>로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 12>, organic group 13 precursor.
    <화학식 12><Formula 12>
    Figure PCTKR2015009872-appb-I000040
    Figure PCTKR2015009872-appb-I000040
    상기 <화학식 12>에서 R1 및 R2는 서로 연결되어 R1 및 R2가 결합되어 있는 질소원자와 함께 탄소수 3 내지 6의 사이클릭 아민기를 형성한다.In Formula 12, R 1 and R 2 are connected to each other to form a cyclic amine group having 3 to 6 carbon atoms with the nitrogen atom to which R 1 and R 2 are bonded.
  13. 제12항에 있어서,The method of claim 12,
    상기 유기 13족 전구체는 하기 <화학식 13>으로 표시되는 것을 특징으로 하는, 유기 13족 전구체.The organic group 13 precursor is represented by the following <Formula 13>, organic group 13 precursor.
    <화학식 13><Formula 13>
    Figure PCTKR2015009872-appb-I000041
    Figure PCTKR2015009872-appb-I000041
  14. 제1항 내지 제13항 중 어느 한 항의 유기 13족 전구체를 이용하여 기판상에 박막을 증착하는 증착 공정을 포함하는 박막 증착 방법.A thin film deposition method comprising a deposition process for depositing a thin film on a substrate using the organic group 13 precursor of any one of claims 1 to 13.
  15. 제14항에 있어서,The method of claim 14,
    상기 증착 공정은,The deposition process,
    원자층 증착(Atomic Layer Deposition, ALD) 공정 또는 화학 증착(Chemical Vapor Deposition, CVD) 공정에 의해 수행되는, 박막 증착 방법.A thin film deposition method carried out by an atomic layer deposition (ALD) process or a chemical vapor deposition (CVD) process.
  16. 제15항에 있어서,The method of claim 15,
    상기 화학 증착(Chemical Vapor Deposition, CVD)은,The chemical vapor deposition (CVD),
    유기 금속 화학 증착(Metal Organic Chemical Vapor Deposition, MOCVD)을 포함하는, 박막 증착 방법. A method of depositing thin films, including organic organic chemical vapor deposition (MOCVD).
  17. 제14항에 있어서,The method of claim 14,
    상기 증착 공정은,The deposition process,
    챔버의 내부에 기판을 로딩하는 로딩단계;A loading step of loading a substrate into the chamber;
    상기 챔버의 내부에 로딩된 기판을 가열하는 가열단계;A heating step of heating the substrate loaded in the chamber;
    상기 기판이 로딩된 챔버의 내부에 상기 유기 13족 전구체를 공급하는 공급단계;A supplying step of supplying the organic group 13 precursor to the inside of the chamber loaded with the substrate;
    상기 유기 13족 전구체를 상기 기판상에 흡착시켜 유기 13족 화합물 층을 형성하는 화합물 층 형성단계; 및A compound layer forming step of adsorbing the organic Group 13 precursor onto the substrate to form an organic Group 13 compound layer; And
    상기 기판에 열에너지, 플라즈마 또는 전기적 바이어스를 인가하여 상기 기판상에 상기 13족 원소 함유막을 형성하는 성막단계를 포함하는, 박막 증착 방법.And forming a group 13 element-containing film on the substrate by applying thermal energy, plasma, or electrical bias to the substrate.
  18. 제18항에 있어서,The method of claim 18,
    상기 가열단계는,The heating step,
    상기 기판을 50 ~ 800 ℃의 온도범위로 가열하는, 박막 증착 방법. Thin film deposition method for heating the substrate to a temperature range of 50 ~ 800 ℃.
  19. 제18항에 있어서,The method of claim 18,
    상기 공급단계는,The supplying step,
    상기 유기 13족 전구체를 20 ~ 100 ℃의 온도범위로 가열하여 상기 기판상으로 공급하는, 박막 증착 방법.The organic group 13 precursor is heated to a temperature range of 20 ~ 100 ℃ to supply on the substrate, a thin film deposition method.
  20. 제18항에 있어서,The method of claim 18,
    상기 공급단계는,The supplying step,
    아르곤(Ar), 질소(N2), 헬륨(He) 및 수소 중에서 선택된 하나 이상의 캐리어가스와 상기 유기 13족 전구체를 혼합하여 상기 기판상으로 공급하는, 박막 증착 방법. At least one carrier gas selected from argon (Ar), nitrogen (N 2 ), helium (He), and hydrogen and the organic group 13 precursor are mixed and supplied onto the substrate.
  21. 제13항에 있어서,The method of claim 13,
    상기 13족 원소 함유막은 알루미늄막 또는 갈륨막인, 박막 증착 방법.And the group 13 element-containing film is an aluminum film or a gallium film.
  22. 제17항에 있어서,The method of claim 17,
    상기 공급단계는,The supplying step,
    상기 기판상으로 수증기(H2O), 산소(O2) 및 오존(O3) 중에선 선택된 하나 이상의 반응가스를 공급하는 반응가스 공급단계를 더 포함하는, 박막 증착 방법.And a reaction gas supplying step of supplying at least one reaction gas selected from among water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) onto the substrate.
  23. 제22항에 있어서,The method of claim 22,
    상기 13족 원소 함유막은 알루미늄 산화물막 또는 갈륨 산화물막인, 박막 증착 방법.And the group 13 element-containing film is an aluminum oxide film or a gallium oxide film.
  24. 제17항에 있어서,The method of claim 17,
    상기 공급단계는,The supplying step,
    상기 기판상으로 암모니아(NH3), 히드라진(N2H4), 이산화질소(NO2) 및 질소(N2) 중에서 선택된 하나 이상의 반응가스를 공급하는 반응가스 공급단계를 더 포함하는, 박막 증착 방법.Further comprising a reaction gas supply step of supplying at least one reaction gas selected from ammonia (NH 3 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ) and nitrogen (N 2 ) on the substrate. .
  25. 제24항에 있어서,The method of claim 24,
    상기 13족 원소 함유막은 알루미늄 질화물막 또는 갈륨 질화물막인, 박막 증착 방법.The group 13 element-containing film is an aluminum nitride film or a gallium nitride film.
PCT/KR2015/009872 2014-12-31 2015-09-21 Organic group 13 precursor and method for depositing thin film using same WO2016108398A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140195101 2014-12-31
KR10-2014-0195101 2014-12-31
KR1020150058809A KR20160082321A (en) 2014-12-31 2015-04-27 Precursor for depositing aluminum thin film and method for depositing thin film using thereof
KR10-2015-0058809 2015-04-27

Publications (1)

Publication Number Publication Date
WO2016108398A1 true WO2016108398A1 (en) 2016-07-07

Family

ID=56284515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009872 WO2016108398A1 (en) 2014-12-31 2015-09-21 Organic group 13 precursor and method for depositing thin film using same

Country Status (1)

Country Link
WO (1) WO2016108398A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619419A (en) * 2016-07-14 2018-01-23 三星电子株式会社 Aluminium compound and the method for forming film and manufacture IC-components using it
CN115279940A (en) * 2020-02-24 2022-11-01 Up化学株式会社 Aluminum precursor compound, method for preparing the same, and method for forming aluminum-containing film using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276832A (en) * 1986-05-26 1987-12-01 Hitachi Ltd Method of forming film and manufacture of semiconductor device employing the same
JPH02217473A (en) * 1988-02-29 1990-08-30 Natl Res Dev Corp Forming method of aluminum nitride film
US5209952A (en) * 1989-03-09 1993-05-11 Merck Patent Gesellschaft Mit Beschraenkter Haftung Use of organometallic compounds to deposit thin films from the gas phase
KR950001217B1 (en) * 1986-09-16 1995-02-14 메르크 파텐트 게젤샤프트 미트 베슈랭크터 하프퉁 Organometallic compounds
US20130330936A1 (en) * 2011-02-07 2013-12-12 Technische Universiteit Eindhoven METHOD OF DEPOSITION OF Al2O3/SiO2 STACKS, FROM ALUMINIUM AND SILICON PRECURSORS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276832A (en) * 1986-05-26 1987-12-01 Hitachi Ltd Method of forming film and manufacture of semiconductor device employing the same
KR950001217B1 (en) * 1986-09-16 1995-02-14 메르크 파텐트 게젤샤프트 미트 베슈랭크터 하프퉁 Organometallic compounds
JPH02217473A (en) * 1988-02-29 1990-08-30 Natl Res Dev Corp Forming method of aluminum nitride film
US5209952A (en) * 1989-03-09 1993-05-11 Merck Patent Gesellschaft Mit Beschraenkter Haftung Use of organometallic compounds to deposit thin films from the gas phase
US20130330936A1 (en) * 2011-02-07 2013-12-12 Technische Universiteit Eindhoven METHOD OF DEPOSITION OF Al2O3/SiO2 STACKS, FROM ALUMINIUM AND SILICON PRECURSORS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619419A (en) * 2016-07-14 2018-01-23 三星电子株式会社 Aluminium compound and the method for forming film and manufacture IC-components using it
CN107619419B (en) * 2016-07-14 2021-08-10 三星电子株式会社 Aluminum compound, and method for forming thin film and method for manufacturing integrated circuit device using the same
CN115279940A (en) * 2020-02-24 2022-11-01 Up化学株式会社 Aluminum precursor compound, method for preparing the same, and method for forming aluminum-containing film using the same
CN115279940B (en) * 2020-02-24 2024-04-09 Up化学株式会社 Aluminum precursor compound, method for producing the same, and method for forming aluminum-containing film using the same

Similar Documents

Publication Publication Date Title
WO2012067439A2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
WO2015190900A1 (en) Precursor compound for film formation, and thin film formation method using same
WO2019156451A1 (en) Group iv metal element-containing compound, preparation method therefor, precursor composition comprising same compound for film formation, and film forming method using same composition
WO2016129867A1 (en) Novel compound for organic electric element, organic electric element using same, and electronic device comprising same
WO2022265240A1 (en) Tricyclodecane dimethanol composition and method for preparing same
WO2019074241A1 (en) Inhibitor against interaction between pd-1 and pd-l1, comprising phenylacetylene derivative
WO2016108398A1 (en) Organic group 13 precursor and method for depositing thin film using same
WO2020101437A1 (en) Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same
WO2018124705A1 (en) Etching composition, and method for producing semiconductor element by utilizing same
WO2023200154A1 (en) Ruthenium precursor composition, preparation method therefor, and formation method for ruthenium-containing film using same
WO2022045825A1 (en) Method for preparing deuterated aromatic compound and deuterated composition
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2019231164A1 (en) Chemical vapor deposition silicon carbide bulk with improved etching characteristics
WO2023287192A1 (en) Silicon precursor compound, composition for forming silicon-containing film comprising same, and method for forming film using composition for forming silicon-containing film
WO2021172867A1 (en) Aluminum precursor compound, production method therefor, and aluminum-containing layer forming method using same
WO2023282615A1 (en) Molybdenum precursor compound, preparation method therefor, and method for depositing molybdenum-containing thin film by using same
WO2022149854A1 (en) Area-selective method for forming thin film by using nuclear growth retardation
WO2021153986A1 (en) Silicon precursor compound, composition for forming silicon-containing film, comprising same, and method for forming silicon-containing film
WO2022045838A1 (en) Method for preparing deuterated aromatic compound, and deuterated reactive composition
WO2023219446A1 (en) Film depositing composition including group 4 metal element-containing precursor compound and method for forming film using same
WO2023287196A1 (en) Silicon precursor compound, silicon-containing film formation composition comprising same, and method for forming film by using silicon-containing film formation composition
WO2023204453A1 (en) Selective thin film deposition method using area-selective atomic layer deposition method, and substrates having thin films selectively formed thereon
WO2023121383A1 (en) Molybdenum precursor compound, method for preparing same, and method for depositing molybdenum-containing film using same
WO2023003398A1 (en) Method for forming silicon-containing film, and silicon-containing film formed thereby
WO2019203481A1 (en) Phosphor monomolecular compound, organic transistor using same, and water decomposition and hydrogen production photocatalytic system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875492

Country of ref document: EP

Kind code of ref document: A1