WO2014168018A1 - Sweetener composition, method for manufacturing same and use thereof - Google Patents

Sweetener composition, method for manufacturing same and use thereof Download PDF

Info

Publication number
WO2014168018A1
WO2014168018A1 PCT/JP2014/058922 JP2014058922W WO2014168018A1 WO 2014168018 A1 WO2014168018 A1 WO 2014168018A1 JP 2014058922 W JP2014058922 W JP 2014058922W WO 2014168018 A1 WO2014168018 A1 WO 2014168018A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar
fructose
glucose
psicose
sweetener composition
Prior art date
Application number
PCT/JP2014/058922
Other languages
French (fr)
Japanese (ja)
Inventor
知也 新谷
諒 吉川
プシュパ キラン グラッパリ
何森 健
Original Assignee
松谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013080574A external-priority patent/JP6250946B2/en
Application filed by 松谷化学工業株式会社 filed Critical 松谷化学工業株式会社
Priority to KR1020157032013A priority Critical patent/KR102213209B1/en
Priority to CN201480020243.XA priority patent/CN105163603A/en
Publication of WO2014168018A1 publication Critical patent/WO2014168018A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7004Monosaccharides having only carbon, hydrogen and oxygen atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/30Artificial sweetening agents
    • A23L27/33Artificial sweetening agents containing sugars or derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/06Preparations for care of the skin for countering cellulitis
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K11/00Fructose
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K3/00Invert sugar; Separation of glucose or fructose from invert sugar

Definitions

  • the present invention relates to a method for producing a target sweetener composition using sugar as a raw material, and the produced sweetener composition and use thereof.
  • sugar obtained by hydrolyzing sugar
  • the present invention relates to a method for producing a sweetener composition containing D-psicose in glucose, and fructose, or a mixed sugar mainly composed of glucose and fructose, and the obtained sweetener composition and use thereof. .
  • Isomerized sugar produced by saccharifying starch into a saccharified solution and treating it with glucose isomerase is equivalent to the sweetness of sugar and low in production costs. Widely used as a sweetener, the world's total production of isomerized sugar has reached 17.3 million tons (2009 statistics).
  • a typical production method of this isomerized sugar is that starch is hydrolyzed with an enzyme to obtain a hydrolyzed starch (dextrin), then hydrolyzed with another enzyme to obtain a glucose solution (saccharified solution), and then glucose isomerase. This is a method for isomerizing glucose into fructose.
  • the ratio of glucose to fructose in the isomerized sugar obtained by this production method is usually about 58:42. Furthermore, purified fructose may be added in order to eliminate the lack of sweetness. In this case, the ratio of glucose to fructose is generally about 45:55.
  • Rare sugars have attracted attention because they have various physiological effects, and research has been actively conducted. However, in order to be widely used industrially, these rare sugars are efficiently produced. It is essential. Rare sugars are “naturally-occurring monosaccharides” represented by D-glucose (glucose), which are abundant in nature, among the simple sugars that are the basic units of sugar. Monosaccharide "is defined. The abundance of rare sugar is very small, and the abundance is overwhelmingly small compared to D-glucose (glucose).
  • D-psicose is a D-form of psicose classified as ketohexose and is a hexose.
  • D-allose is a D-form of allose classified as an aldohexose, which is also a hexose.
  • Non-patent Document 1 When D-ketohexose 3-epimerase (Patent Document 1) is allowed to act, it is produced in a yield of 20 to 25%. ⁇ When 3-epimerase (Non-patent Document 3) is allowed to act, it is produced in a yield of about 30%, and when boric acid is used in combination, it is reported that it is produced in a yield of about 60% ( Non-patent document 4).
  • D-allose it is known that L-arabinose isomerase is allowed to act on a solution containing D-psicose to produce D-allose from D-psicose (Patent Document 2).
  • rare sugars are obtained by allowing specific enzymes to act on specific raw sugars, but some other acquisition methods are also disclosed.
  • isomerization reactions of aldoses and ketoses via enediol have been known, which is called Robry de Bruin-fan Eckenstein (Lobry de Bruyn and Alberda van Ekenstein) rearrangement reaction.
  • This isomerization reaction is a reaction that can be isomerized to another sugar by placing a certain sugar under alkaline conditions.
  • Non-Patent Document 5 an isomerized product containing a rare sugar at a concentration exhibiting the above physiological activity.
  • problems such as requiring reaction time that does not match the actual industrial production efficiency, coloring of products due to side reactions such as caramelization, and subsequent purification being difficult. It is considered difficult to use.
  • the disadvantage of sweetness is that isomerized sugar (the composition consisting mainly of glucose and fructose obtained by the decomposition of starch, etc.) is used as a raw material, and the isomerized sugar contains oligosaccharide and has a different composition. Since it is considered that the sweetness and sweetness are different from sugar, it was decided to try to produce a sweetener containing rare sugar from sugar. Since sugar was expensive before the spread of isomerized sugar, it has continued to be replaced by isomerized sugar, but now it is produced around 180 million tons worldwide. Has also become relatively stable.
  • sugar By using sugar as a raw material, the high-quality sweetness of sugar can be used, and since sugar is a disaccharide in which glucose and fructose are combined, it can also be used as a feedstock for glucose and fructose. It is thought that it will become cheaper in cost. Furthermore, as described above, sweeteners containing rare sugars using sugar as a raw material also have an advantage that they have less miscellaneous taste than sweeteners using isomerized sugar as a raw material. Based on these assimilating sugars, it is desired to market sweeteners that are superior in sweetness and physical properties and do not cause these diseases.
  • the present invention provides a novel sweetener, a method for producing the same, and a use thereof, which overcome the above-mentioned disease risk by ingesting isomerized sugar, and defects in the production process or taste quality of rare sugar-containing syrup. It is something to be offered.
  • the inventors of the present invention have made extensive studies to solve the above-mentioned problems.
  • an acid and / or enzyme is allowed to act on sugar under specific conditions to produce glucose (D-glucose) and fructose (D-fructose).
  • D-glucose glucose
  • D-fructose fructose
  • the present inventors have found that a sweetener composition having a composition can be obtained, and have completed the present invention.
  • the present invention comprises the following methods (1) to (9) for producing a sweetener composition.
  • (1) Using sugar as a raw material to obtain a mixture of sugar, D-glucose and D-fructose, or a mixture of D-glucose and D-fructose by hydrolysis of the raw sugar, and the sugar A mixture of rare sugars including sugar, D-glucose, D-fructose and at least D-psicose, or D-glucose, D-fructose and at least D-psicose, which are end products by isomerizing the hydrolyzate
  • the raw material sugar hydrolysis step is a step of isomerizing a sugar hydrolyzate by decomposition using an acid and / or an enzyme, and an alkali isomerization, an isomerization using calcium ion catalysis and / or The manufacturing method of the sweetener composition of the said (1) description performed by enzyme isomerization.
  • Alkaline isomerization produces rare sugars including D-psicose, D-allose, D, L-sorbose, D-tagatose, and D-mannose.
  • the final product consists of these monosaccharides, sugar,
  • the method for producing a sweetener composition according to the above (2) which is a mixture of D-glucose and D-fructose or a mixture of D-glucose and D-fructose.
  • Enzymatic isomerization produces only D-psicose from fructose, and the final product is a mixture of D-psicose and sugar, D-glucose and D-fructose, or D-glucose and D-
  • the present invention comprises the following sweetener composition (11), foods and drinks (12) and (13), pharmaceuticals (14) and (15), quasi drugs and cosmetics.
  • (11) A sweetener composition obtained by the production method according to any one of (1) to (10) above.
  • (12) A food or drink comprising the sweetener composition according to (11) above.
  • (12) The food or drink according to (12) above, which is labeled to suppress an increase in body weight and an increase in body fat accumulation.
  • a pharmaceutical, quasi-drug, or cosmetic comprising the sweetener composition as described in (11) above.
  • sugar is used as a raw material, the high-quality sweetness of sugar can be used, and since sugar is a disaccharide in which glucose and fructose are combined, it can also be used as a feedstock for glucose and fructose.
  • a sweetener that is cheaper than isomerized sugar as a raw material, is excellent in sweetness and physical properties, and does not cause these diseases, based on these assimilating sugars.
  • a new sweetener, a method for producing the same, and a use thereof which overcomes the risk of morbidity associated with diabetes and obesity caused by ingestion of isomerized sugar, and defects in the production process or taste quality of rare sugar-containing syrup can do.
  • the present invention it is possible to provide a sweetener composition close to the taste of sugar containing rare sugars such as sugar, D-glucose, D-fructose, and D-psicose in a well-balanced manner.
  • the present invention is a production method that is excellent not only in physical properties but also in cost performance, it can be used inexpensively and safely for pharmaceuticals or quasi drugs, oral compositions, cosmetics and foods, and food additives.
  • An agent can be provided.
  • the product of the present invention is a sweetener with better taste and functionality than isomerized sugar or sugar itself, it has anti-obesity agents, antifeedants, insulin resistance improvers, Or it becomes possible to give the quality as a low-calorie sweetener.
  • the manufacturing flow of the sweetener containing rare sugar which uses sugar as a raw material is shown.
  • the area under a blood glucose level curve when each sweetener composition of the present invention is ingested by a human is shown.
  • the area under the insulin concentration curve when a human being ingested each sweetener composition of the present invention is shown.
  • the present invention relates to a sweetener composition using sugar as a raw material and containing sugar, D-glucose, D-fructose, rare sugar (D-psicose, etc.), etc. in a specific composition ratio, a method for producing the same, and use thereof Consists of. It is possible to adjust the sugar content in the finally obtained sweetener composition by the degree of hydrolysis reaction of the raw sugar, and finally, depending on the degree of isomerization reaction in the next step. Although the content of rare sugar in the resulting sweetener composition can be adjusted, in order to obtain the taste-quality effect of the present invention, the sugar in the final sweetener composition should be 3 to 80%.
  • D-psicose is contained in an amount of 3% or more (hereinafter, unless otherwise specified,% indicates mass% in the sugar composition (solid)), but the sweetness prepared so as not to contain sugar. Even when the compositions are compared, a sweetener composition with less miscellaneous taste is obtained by using sugar as a raw material than when isomerized sugar is used as a raw material.
  • a taste effect is obtained when the D-psicose content in the sweetener composition of the present invention is 3% or more, but the alkali isomerization described later was selected as the isomerization method performed after the decomposition of sugar.
  • D-mannose, D-sorbose, L-sorbose and the like are produced in addition to rare sugars such as D-allose, D-tagatose, and D-altrose other than D-psicose.
  • the alkali isomerization reaction proceeds excessively, the coloration proceeds remarkably and subsequent purification is difficult. Therefore, the composition of D-psicose and D-allose is determined as the degree of isomerization reaction that does not cost this purification step.
  • the sweetener composition of the present invention exhibits characteristics that can be used as an anti-obesity agent, an antifeedant, and an insulin resistance improving agent. It can also be used.
  • the sugar used as a raw material in the present invention may be any sugar containing D-glucose (glucose) and D-fructose (fructose) combined.
  • Different manufacturing methods such as sugar and dense sugar, and product categories such as white disaccharide, medium disaccharide, granulated sugar, super white sugar, tri-warm sugar, invert sugar, sugar cube, rock sugar, brown sugar, red sugar, and Wasanbon
  • any sugar solution in the sugar refining process may be used.
  • oligosaccharides containing three or more sugars including sugar can be used as the raw material sugar.
  • the concentration of the raw sugar solution is 3 to 80%, preferably 10 to 60%, and more preferably 20 to 40%.
  • the concentration of the raw sugar solution is 3 to 80%, preferably 10 to 60%, and more preferably 20 to 40%.
  • the concentration of the raw sugar solution is 3 to 80%, preferably 10 to 60%, and more preferably 20 to 40%.
  • the concentration of the raw sugar solution is 3 to 80%, preferably 10 to 60%, and more preferably 20 to 40%.
  • the concentration of the raw sugar solution is 3 to 80%, preferably 10 to 60%, and more preferably 20 to 40%.
  • about 3 to 40% is more preferable.
  • the raw material having a sugar concentration of 100% that is, the powder or the powder is produced by spraying acid or alkali. Is also possible.
  • the raw sugar hydrolysis step is performed by decomposition using an acid and / or an enzyme.
  • An acid acidic solution
  • Decomposition with an acid is carried out using an inorganic acid, sulfonic acid or carboxylic acid as the acidic solution.
  • the acidic solution includes inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hypochlorous acid, perchloric acid, phosphoric acid, boric acid, fluorosulfonic acid, etc.), sulfone Acids, carboxylic acids (acetic acid, citric acid, formic acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, etc.) can be used as appropriate, but hydrochloric acid is preferred from the viewpoint of safety and cost.
  • the optimum acid concentration depends on the reaction time and temperature, but it is usually preferable to contain about 0.01 to 5 mol / l in the raw sugar solution.
  • the acid decomposition reaction temperature is preferably 20 ° C. or higher, more preferably 30 ° C. to 100 ° C.
  • an enzyme can be used instead of the above acid decomposition.
  • Degradation using an enzyme is performed using invertase.
  • the enzyme include saccharase; invertase (IUPAC-IUB strain name is ⁇ -D-fructofuranosidase (EC 3.2.1.26)), and the strain origin is particularly limited.
  • the enzyme concentration varies depending on the substrate concentration and reaction time, it is usually preferable to use 100 unit / mg enzyme at 0.00075-0.003% (w / w) relative to the substrate.
  • the reaction temperature of the enzyme is preferably 20 ° C.
  • invertase enzyme for immobilization, commercially available invertase is dissolved in a buffer solution (pH 7) and allowed to pass through the column-filled resin at 4 ° C., so that the invertase enzyme protein is bound to the ion exchange resin. Get the enzyme.
  • hydrolysis of raw sugar can be performed by either acid or decomposition using invertase, but in general, it can be used properly depending on the composition of the product to be obtained. Only one of them can be used, or they can be used together.
  • the step of isomerizing the sugar hydrolyzate is performed by alkali isomerization, isomerization using calcium ion catalysis and / or enzymatic isomerization.
  • enzyme isomerization will be described.
  • a method using an isomerization (epimerization) enzyme such as tagatose-3 epimerase or psicose-3 epimerase can be selected.
  • the origin of the microorganism strain from which the isomerase, tagatose-3-epimerase or psicose-3 epimerase, is obtained is not particularly limited, but is a safe species that can also be used for food. From high-yield D-fructose to D-psicose from bacterial species that are listed on the existing additive list that is approved for use in food production It is desirable to be a bacterium belonging to the genus Arthrobacter (Patent Document 5) that produces a novel ketose 3-epimerase that catalyzes isomerization, more preferably an genus Arthrobacter globiformis, and Arthrobacter globiformis M30 (Deposit number NITE BP-1111) is more preferable.
  • the reaction temperature for carrying out the enzyme isomerization is preferably 20 ° C. or higher, more preferably 30 ° C. to 80 ° C. Practically, around 45 ° C. is preferable.
  • the above Arthrobacter globiformis will be described.
  • the ketose 3-epimerase that can be used in the present invention belongs to the genus Arthrobacter , cultivates a microorganism having the ability to produce ketose 3-epimerase, and ketose 3-epimerase from the cells grown in the culture solution. It can be prepared by collecting epimerase.
  • the Arthrobacter globiformis M30 (deposition number NITE BP-1111) strain and mutants thereof can be advantageously used.
  • the M30 strain has a relatively high ability to produce ketose 3-epimerase and is suitable for obtaining the enzyme of the present invention.
  • the M30 strain is based on NITE P-1111 deposited on June 22, 2011 at the Japan Patent Evaluation Depositary Center for Product Evaluation Technology (2-5-8 Higashi Kazusa Kamashika, Kisarazu City, Chiba, Japan). A transfer to the deposit under the Budapest Treaty was requested on May 2, 2012, and the deposit was made internationally under the deposit number NITE BP-1111.
  • a preferred ketose 3-epimerase that can be used in the present invention is a ketose 3-epimerase that can be obtained from a microorganism belonging to the genus Arthrobacter and has the following substrate specificities (A) and (B). .
  • A) Epimerize position 3 of D- or L-ketose to produce the corresponding D- or L-ketose.
  • B) Among D- or L-ketoses, the substrate specificity for D-fructose and D-psicose is the highest.
  • the ketose 3-epimerase derived from Arthrobacter globiformis M30 has a subunit molecular weight of about 32 kDa by SDS-PAGE, a molecular weight of 120 kDa by gel filtration, and a subunit molecular weight of 120 kDa. It has a 32 kDa homotetramer structure, has the following physicochemical properties (a) to (e), and has the following substrate specificity: ⁇ 8. (See Patent Document 5).
  • Mn 2+ divalent manganese ions
  • Co 2+ divalent cobalt ions
  • Ca 2+ calcium
  • Mg 2+ magnesium ions
  • the relative activity when D-fructose is used as a substrate is 43.8%, 2. 100% activity when D-psicose is used as a substrate, 3.
  • the relative activity when using D-sorbose as a substrate is 1.13%, 4).
  • the relative activity when D-tagatose is used as a substrate is 18.3%, 5.
  • the relative activity when using L-fructose as a substrate is 0.97%, 6).
  • the relative activity when L-psicose is used as a substrate is 21.2%, 7).
  • the relative activity when using L-sorbose as a substrate is 16.6%, 8.
  • the relative activity is 44.0% when L-tagatose is used as a substrate.
  • the activity for each ketose is shown as a relative activity, where the epimerization activity of D-psicose is 100.
  • the crude enzyme solution can be collected as a crude enzyme solution from a solution of disrupted cells obtained by digesting the polysaccharide components present on the cell walls of the body to destroy the cells.
  • the crude enzyme solution is passed through the ion-exchange resin packed in the column at a low temperature (4 ° C), the crude enzyme protein is bound to the ion-exchange resin, purified water is passed through and washed, and the immobilized enzyme is washed.
  • An immobilization system that can withstand continuous production in terms of stability (maintenance of activity) completely satisfactory for commercial production was obtained. A large amount of epimerization reaction can be continuously performed using the obtained immobilized enzyme.
  • active ketose 3-epimerase is added to the supernatant obtained after heat treatment at 40 to 70 ° C. for 5 to 60 minutes after crushing treatment with 0.1 to 2% sodium chloride and lysozyme. Since it was found that many can be obtained, a separate patent application is planned.
  • the means for isomerization after decomposing the raw material sugar is not limited to the isomerization (epimerization) by the above enzyme, and a method utilizing alkali isomerization can also be selected.
  • alkaline solution used for the alkali isomerization reaction include sodium hydroxide, potassium hydroxide, ammonia, calcium hydroxide, calcium oxide, barium hydroxide, lead hydroxide, strontium hydroxide, magnesium hydroxide, hydroxide Although tin and aluminum hydroxide are mentioned, sodium hydroxide and calcium hydroxide are preferable in terms of safety and cost.
  • the optimum alkali concentration depends on whether or not an ion exchange resin is used in combination, but usually it is preferably contained in a hexose (hexasaccharide) solution in an amount of 0.005 mol / l or more.
  • the reaction temperature for the alkali isomerization is preferably 20 ° C. or higher, more preferably 30 ° C. to 100 ° C.
  • isomerization using the catalytic action of calcium ions is carried out by advancing the isomerization reaction of hexose in the presence of a calcium salt that generates calcium ions.
  • Patent Document 3 describes a method for isomerizing glucose using calcium chloride.
  • an isomerization reaction using a catalytic action of calcium ions can also be performed.
  • the isomerization reaction of hexose proceeds in the presence of a calcium salt that generates calcium ions, for example, calcium chloride, that is, for example, a sugar composition containing D-psicose and D-allose from fructose. Can be manufactured.
  • the calcium salt is desirably in the presence of an alkali, and is preferably contained in the sugar solution by 0.005 mol / l or more. In a system in which a calcium salt is present, the coexistence of a basic ion exchange resin is not always necessary.
  • the sugar content in the final product is adjusted according to the degree of hydrolysis of the raw sugar.
  • the final product includes sugar, D-glucose, D-fructose, and a rare sugar containing at least D-psicose in a specific proportion, or includes D-glucose, D-fructose, and at least D-psicose.
  • Rare sugar was included at a specific composition ratio. Alkaline isomerization produces rare sugars including D-psicose, D-allose, D, L-sorbose, D-tagatose, and D-mannose, and the final products are these simple sugars, sugars, glucose, And a mixture of fructose.
  • Isomerization using calcium ion catalysis produces rare sugars including D-psicose and D-allose from fructose, and the final product is a mixture of these monosaccharides, sugar, glucose and fructose.
  • Enzymatic isomerization produces only D-psicose from fructose and the final product is a mixture of D-psicose, sugar, glucose and fructose, or a mixture of D-psicose, glucose and fructose .
  • alkaline isomerization or enzymatic isomerization can be selected depending on the amount of hydrolysis and the composition of the product to be obtained. Either one can be used or both can be used. Can do.
  • the sugar composition of the composition it is possible to adjust the sugar composition of the composition to be produced by appropriately changing the raw sugar concentration, acid concentration, alkali concentration, enzyme concentration, reaction temperature, etc. A composition adjusted to have physical properties can be obtained.
  • sugar, glucose, fructose, rare sugar and the like can be appropriately added and adjusted. If it is desired to increase the reaction time, productivity can be improved by applying pressure.
  • ion exchange resin, activated carbon, and purification by filtration usually used in the sugar industry can be appropriately used. Separation can be removed by column chromatography, or precipitation separation can be performed using an agent chelating with sugar. According to the method of the present invention, significant browning does not occur before separation by column chromatography, but generally known purification steps such as deodorization and decolorization processes using activated carbon are added to the previous stage in consideration of the lifetime of the column. You can also.
  • pseudo mobile phase chromatography is optimal for this purpose, but is not particularly limited.
  • the separation step it is possible to separate only rare sugars from the resulting reaction solution and appropriately add to the mixed sugars to obtain the target composition.
  • the remaining sugar solution can be reused. That is, a continuous plant can be constructed by recombining the residual sugar solution with the raw material sugar and guiding it again to the hydrolysis reaction step, so that the manufacturing process can be simplified.
  • a preferred embodiment of the present invention is shown schematically in FIG.
  • Step 1 is a tank for dissolving raw material sugar
  • Step 2 is a tank for acid hydrolysis of raw material sugar
  • 3 is an invertase-immobilized column for hydrolyzing raw material sugar.
  • steps 4 and 5 are an isomerization step with an alkali or an isomerization step with an enzyme, and any of them may be used.
  • Step 6 is a general purification step used for sugar purification of ion exchange resins, activated carbon, filters, and the like. Further, the process can proceed to step 7 to separate and acquire a rare sugar single product. When the rare sugar is separated and acquired in step 7, the remaining sugar, glucose, and fructose mixed sugar solution can be returned to step 1 and reused as the raw sugar.
  • [Use of final product] it is possible to obtain a sweetening composition having a low sweetness intensity and a little miscellaneous taste using sugar as a raw material.
  • a sweetening composition that enhances flavor release using sugar as a raw material can be obtained.
  • the ratio of sugar is 10 to 75 parts.
  • a sweetening composition having a feeling and a sweetness balance can be obtained.
  • this invention relates to the food / beverage products which used the said sweetener composition, the food / beverage products which attached
  • the present invention relates to a pharmaceutical comprising a sweetener composition, a quasi-drug, a cosmetic, a pharmaceutical for suppressing an increase in body weight and an increase in body fat accumulation, a quasi-drug, and a cosmetic.
  • the form is not particularly limited, and the form as it is, the form diluted with a solvent such as oil, the emulsion form, or common in the food industry Any form such as a form to which a carrier used in the preparation is added may be used.
  • target foods and drinks using the sweetener composition of the present invention include the following. That is, confectionery (pudding, jelly, gummy candy, candy, drop, caramel, chewing gum, chocolate, pastry, butter cream, custard cream, cream puff, hot cake, bread, potato chips, french fries, popcorn, biscuits, crackers, pie , Sponge cakes, castella, waffles, cakes, donuts, biscuits, cookies, rice crackers, rice crackers, rice cakes, manju, candy, etc., dry noodle products (macaroni, pasta), egg products (mayonnaise, fresh cream), beverages (functionality) Beverages, lactic acid beverages, lactic acid bacteria beverages, concentrated milk beverages, fruit juice beverages, fruitless beverages, fruit beverages, transparent carbonated beverages, carbonated beverages with fruit juice, fruit colored carbonated beverages, alcoholic beverages, beer-like beverages), luxury products (green tea, Tea, inn Tanto coffee, cocoa, canned coffee drinks), dairy products (ice cream, yogurt, coffee milk, butter, butter sauce, cheese, fermented milk, processed
  • the food and drink can also be used as functional foods, nutritional supplements, or health foods.
  • the form is not particularly limited.
  • proteins such as milk proteins with high amino acid balance, soy protein, egg albumin, etc., their degradation products, egg white oligopeptides, soybean hydrolysates, It can be used according to a conventional method together with a mixture of amino acids alone.
  • forms such as a soft capsule, a tablet, and a film.
  • Examples of the above dietary supplements or functional foods include liquid foods, semi-digested nutritional foods, ingredient nutritional foods, drinks, capsules, sugars, fats, trace elements, vitamins, emulsifiers, fragrances, etc.
  • processing forms such as enteral nutrients.
  • foods and drinks such as sports drinks and nutritional drinks, for the purpose of improving nutritional balance and flavor, further nutritional additives such as amino acids, vitamins, minerals, sweeteners, spices, A fragrance
  • the sweetener composition of the present invention can be used as a food material or food additive for the purpose of improving abnormal carbohydrate metabolism and / or abnormal lipid metabolism, and when used as a drug, It can be used in the form of capsules, solid agents such as powders and granules for use in beverages, semi-solid bodies such as jelly, liquids such as drinking water, and high-concentration solutions used after dilution. Furthermore, the sweetener composition of the present invention can be appropriately added to foods and drinks to provide health foods or sick foods for the purpose of improving abnormal sugar metabolism and / or abnormal lipid metabolism. Vitamins, carbohydrates, pigments, fragrances and the like to be added can be appropriately blended.
  • the form of the capsule may be liquid, solid, or a soft capsule encapsulated by gelatin or the like.
  • the capsule is dissolved by adding water to raw material gelatin, and a plasticizer ( A gelatin film prepared by adding glycerin, D-sorbitol, etc.).
  • the sweetener composition of the present invention can be applied to feed for livestock, poultry and pets.
  • livestock feeds such as dry dog food, dry cat food, wet dog food, wet cat food, semi-moist dock food, poultry feed, cattle, and pigs.
  • livestock feeds such as dry dog food, dry cat food, wet dog food, wet cat food, semi-moist dock food, poultry feed, cattle, and pigs.
  • the feed itself can be prepared according to a conventional method.
  • These therapeutic agents and prophylactic agents include non-human animals, for example, domestic mammals such as cattle, horses, pigs and sheep, poultry such as chickens, quails and ostriches, pets such as reptiles, birds and small mammals, It can also be used for farmed fish.
  • the sweetener composition according to the present invention is a high-intensity sweetener such as aspartame, sucralose, acesulfame K, stevia, monatin, monelin, miraculin, sugar alcohols such as sorbitol, xylitol, erythritol, lactitol, maltitol, ketose, Sweeteners can be prepared by adjusting the sweetness by further mixing with a sweetener such as aldose.
  • a sweetener such as aldose.
  • the sweetener composition of the present invention is a food, health food, patient food, food material, health food material, patient food material, food additive, health food additive, patient food additive, beverage, Health drinks, patient drinks, drinking water, health drinks, patient drinks, medicines, pharmaceutical ingredients, feeds, livestock and / or feeds for patients, pharmaceuticals or quasi drugs, oral compositions, cosmetics It is possible to provide a sweetener composition that can be used for all foods that require sweetness or functionality, such as food additives, and can be used safely and conveniently.
  • a sugar composition containing a specific hexose focusing on the physiological action of the specific hexose, and a specific health food, pharmaceutical or quasi-drug using the same, and oral use
  • a composition, cosmetics, etc. can be provided.
  • it contains sugar, glucose, fructose, and D-psicose, and when an alkali isomerization reaction is selected as a means for isomerization, D-allose Can be obtained, which is superior in taste, physical properties, and physiologically, and is therefore superior in taste to assimilable sugars such as isomerized sugar and sugar.
  • the characteristics as a sweetener, anti-obesity agent, antifeedant, insulin resistance improver, low calorie sweetener, blood pressure suppressor.
  • the obtained sweetener composition of the present invention is different from the monosaccharides known so far in that it has a low calorie and has an appetite suppressing effect, and therefore has a new anti-obesity effect and the like. It has the characteristics.
  • the sweetener composition of the present invention can be widely used as a low calorie sweetener because the sweetness is close to sugar and the calories are low.
  • the said food / beverage products can be processed and manufactured by mix
  • the novel sugar composition of the present invention can be expected to be widely used as a sweetener for soft drinks and other beverages, and can be used in foods, pharmaceuticals or quasi drugs, oral compositions, and cosmetics. There is expected.
  • the sugar composition obtained by acid hydrolysis was confirmed at 90 ° C. under the acid hydrolysis conditions for a sugar 80% (w / w) solution. As a result, decomposition was confirmed.
  • the sugar composition obtained by hydrolysis with hydrochloric acid having a hydrochloric acid concentration of 0.01 to 5 mol / l is used. When confirmed, decomposition was confirmed.
  • invertase manufactured by DSM; 200 U / mg
  • an ion exchange resin resin: IRA904, column inner diameter 1.5 cm, immobilized enzyme 1500 U / wet weight (g)
  • a 30% sugar solution was fed and reacted at a temperature of 45 ° C., a feeding speed of 3 ml / min, a speed of 2 ml / min, and a speed of 1 ml / min.
  • the reaction solution eluted from the column was sampled and subjected to HPLC analysis.
  • Table 4 shows the sugar composition (%) of the obtained hydrolyzate.
  • Example F Enzymatic Isomerization of Sugar Enzyme Hydrolyzate>
  • the hydrolyzate obtained in the experimental sections C1, C3, C4, and C8 in Experimental Example 2 was extracted from Arthrobacter globiformis M30 (deposit number NITE BP-1111) and used for the enzyme immobilized on the ion exchange resin.
  • An isomerization reaction was performed (the immobilization technique is shown below).
  • Isomerization is performed by feeding the solution to a 50 ml ion exchange resin (resin: Amberlite IRA900J, column inner diameter 1.5 cm) at a temperature of 45 ° C. and a feed rate of 0.5 ml / min, and sampling the column eluate.
  • the sugar composition was analyzed.
  • the sugar composition (%) of the obtained enzyme isomerization reaction product is shown in Table 6 below.
  • E1, E3, F1, and F3 had a good balance between richness and sweetness. That is, the sugar is not completely hydrolyzed to the end, and the presence of D-psicose in this composition makes it more sweet compared to the sugar composition obtained by isomerization after complete hydrolysis of the sugar. It became clear that richness and balance improved. Moreover, when the ratio of the sugar in a sweetener is 10 parts or less, or when it exceeds 75 parts, a thick feeling and the tendency to lose
  • H1 D-psicose 10: erythritol 30: sucralose 0.1
  • H2 D-psicose 60: erythritol 20: sucralose
  • High-intensity sweeteners have a bad aftertaste (there is an odd taste) compared to low-intensity sweeteners.
  • sucralose which is a high-intensity sweetener
  • Aftertaste was bad (Table 7).
  • High-intensity sweeteners have a long-lasting sweetness and off-flavor, and are often used in combination with sugar alcohols that have a refreshing sweet taste. It is very difficult to give the sweetness a unity (a sense of unity), and there is a problem that the sweetness of each sweetener is felt separately.
  • E1, E3, F1 which are the sweetening compositions of the present invention
  • F3 and F3 had a coherent and highly desirable sweetness without any drawbacks such as off-taste. That is, a sweetener containing a rare sugar containing at least D-psicose in a sweet composition comprising sugar, glucose, and fructose is obtained by adding D-psicose to a sweet composition comprising a sugar alcohol and a high-intensity sweetener.
  • composition I1 (glucose 50: fructose 38: D-psicose 12). It was.
  • a commercially available general isomerized sugar (glucose 50: fructose 45: oligosaccharide 5) is isomerized with an isomerase according to Experimental Example F, and composition I2 (glucose 50: fructose 34: D-psicose 11: Oligosaccharide 5) was obtained.
  • the taste of each sugar composition was subjected to sensory evaluation by the same evaluation method as described above ( ⁇ Sensory evaluation 1 of sugar composition>). However, the evaluation items were “strength of the start of sweet taste” and “miscellaneous taste”.
  • I1 was superior as a sweetener in terms of not only having a strong start of sweetness compared to I2, but also having less miscellaneous taste. From this, it can be said that the isomerized sweet composition obtained by the above method using sugar as a raw material is superior to the isomerized sweet composition obtained by the above method using isomerized sugar as a raw material as a sweetener. This is probably because contaminants such as oligosaccharides contained in commercially available general isomerized sugars slightly suppress the onset of the sweet taste and make it feel uncomfortable. From this result, it can be said that the sweet taste composition obtained using sugar as a raw material is more preferable as a sweetener than using a commercially available general isomerized sugar as a raw material.
  • Example 2 ⁇ Preparation of acidic beverage and sensory evaluation 1> The sugar compositions (E1, E3, F1, F3) obtained in the above Experimental Examples E and F, G1 (glucose 45: fructose 42: D-psicose 7) and G2 (glucose) prepared by appropriately mixing each sugar 51: Fructose 36: D-psicose 10) Using each saccharide composition, an acidic beverage was prepared according to the formulation shown in Table 9. About this acidic drink, the sensory evaluation by five panelists was performed similarly to Example 1. The results are shown in Table 10.
  • Acidic beverages using E2 and F4 sugar compositions had better richness and sweetness balance than acidic beverages using sugar compositions lacking either sugar or D-psicose.
  • the acidic beverage using the sweet composition containing sugar was better in both aftertaste and sweetness as compared with the acidic beverage using the sweet composition containing no sugar.
  • a saccharide sweetener and a high-intensity sweetener together.
  • a good richness and sweetness balance are obtained by including sugar. be able to.
  • the acidic beverage using F3 has a more balanced sweetness than the acidic beverage using G1, and the flavor is enhanced. From this, it was found that the sweetening composition containing D-psicose and sugar has not only a good sweetness balance but also good flavor standing.
  • Example 3 Crystallization at a low temperature of the sugar solution is a major obstacle during storage and transportation. Therefore, the number of days for crystallization of the composition containing the present sugar was compared with the composition containing no sugar. Specifically, a 70% (w / w) solution was stored at 4 ° C., and the number of days required for crystallization during refrigeration storage of compositions E3, F1, and G2 was measured. As a result, E3, F1, and the number of days required for crystallization were larger than G2, and improvement was recognized. From this, the tendency for the composition containing sugar to be harder to crystallize than the composition containing no sugar was recognized, and it became clear that it was effective during storage and transportation.
  • Example 4 ⁇ Effects of the sweetener composition of the present invention on blood glucose level and insulin secretion in humans>
  • the sweetener composition obtained by the production method of the present invention that is, the blood sugar level and insulin secretion when each human sweetener composition obtained by allowing alkali to act on the enzyme hydrolyzate of sugar is ingested by humans.
  • the effect was examined.
  • Table 16 shows the sugar composition of each sweetener composition (J1 to J4) used.
  • J1 is a raw material for obtaining each sweetener composition (manufactured by Mitsui Sugar Co., Ltd., trade name “Kami Shirasu”), and this was used as a comparative control group.
  • Each of the sweet tastes shown in Table 16 is given to 6 healthy persons who have no smoking habits (average age 34.7 years old, 4 men, 2 women, average BMI 22.1 kg / m2, average fasting blood glucose 92.4 mg / dL) After ingesting a 38.5% aqueous solution of the food composition, changes in blood glucose level and insulin concentration were measured. The test was conducted by a single blind crossover method in which an aqueous sugar composition solution described in Table 16 was ingested. Each test was conducted at an interval of about one week. First, the subjects were fasted from 12 hours before the test day, and then blood was collected on an empty stomach.
  • FIG. 2 shows the numerical results of the area under the blood glucose level curve obtained by plotting the elapsed time (minutes) from the intake of the aqueous solution of each sweetener composition on the horizontal axis and plotting the blood glucose level for each elapsed time on the vertical axis.
  • J3 was reduced to about 81.0% of J1
  • J4 was reduced to 70.0% of J1
  • J2 was reduced to about 93.1% of J1, but no significant difference was observed.
  • the numerical value of the area under the blood glucose level curve is 50.4 mg ⁇ h / dL for J1, 46.9 mg ⁇ h / dL for J2, 40.8 mg ⁇ h / dL for J3, and 35.3 mg ⁇ h / dL for J4. Met.
  • the results of the area under the insulin concentration curve are shown in FIG. J2 was reduced to about 70.2% of J1, and J4 was reduced to 61.7% of J1, indicating that insulin secretion was significantly suppressed.
  • J3 was reduced to about 80.9% of J1, but no significant difference was observed.
  • the area under the insulin curve was 28.2 mU ⁇ h / L for J1, 19.8 mU ⁇ h / L for J2, 22.8 mU ⁇ h / L for J3, and 17.4 mU ⁇ h / L for J4. .
  • the sweetener compositions J2, J3 and J4 of the present invention were ingested, it was estimated that the same increase in blood glucose level and increase in insulin secretion amount as in J1 were observed. Was particularly significantly reduced, and in J3, the increase in blood glucose level was particularly significantly suppressed. In J4, both the blood glucose level and the amount of insulin secretion were significantly reduced. That is, the sweetener composition of the present invention can be used as a sweetener that is imparted with an effect of suppressing an increase in blood glucose level and / or insulin secretion amount when ingested, although it has a sweetness almost equivalent to that of sugar. .
  • the sweetener of the present invention has a composition in which sugar is used as a raw material and the sugar is left in the finally obtained sweetener composition. Even when sugar is added as appropriate after obtaining a sweetener composition that does not remain, a sweetener composition having the same composition can be obtained. Therefore, for reference, the sugar composition produced by the method described in Table 2010/113785 (as the composition is equivalent to the one obtained by removing the sugar portion of the sweetener composition of the present invention) When a sugar composition corresponding to the above-mentioned J2 to J4 obtained by adding A was prepared and a human test similar to that of Example 4 was performed, almost the same results were obtained.
  • the sweetener composition of the present invention is a sweetener composition having an effect of suppressing blood sugar level and / or insulin secretion, and can be said to be a sweetener composition that can be expected to reduce the risk of developing diabetes.
  • continuous intake of the sweetener may ultimately reduce body fat accumulation.
  • the novel sugar composition of the present invention can be expected to be widely used as a sweetener for soft drinks and other beverages, and can be used in foods, pharmaceuticals or quasi drugs, oral compositions, and cosmetics. There is expected. Moreover, since the novel sugar composition of the present invention can be mass-produced and provided at a low production cost, it is expected that the application range will be further expanded.

Abstract

[Problem] To provide a novel sweetener, which is free from a risk of diseases caused by the intake of isomerized sugars and overcomes problems encountered in the course of producing a rare sugar-containing syrup or disadvantages in taste, a method for manufacturing the same, and a use thereof. [Solution] A method for manufacturing a sweetener composition, said method comprising: treating sucrose with an acid and/or an enzyme under specific conditions to thereby efficiently decompose sucrose into glucose and fructose; and then isomerizing the obtained mixture using an alkali and/or an enzyme under specific conditions in such a manner as to allow the resultant isomerized product to contain D-psicose mainly as a rare sugar so that the product comprises, at a specific composition ratio, sucrose, D-glucose, D-fructose and rare sugar(s) at least containing D-psicose, or the product comprises, at a specific composition ratio, D-glucose, D-fructose and rare sugar(s) at least containing D-psicose.

Description

甘味料組成物およびその製造方法並びにその用途Sweetener composition, method for producing the same, and use thereof
 本発明は、砂糖を原料とし、目的とする甘味料組成物を製造する方法およびその製造された甘味料組成物並びにその用途に関し、具体的には、砂糖を加水分解して得られる、砂糖、ぶどう糖、および果糖、又は、ぶどう糖および果糖を主組成とする混合糖中にD-プシコースが含有された甘味料組成物を製造する方法およびその得られた甘味料組成物並びにその用途に関するものである。 The present invention relates to a method for producing a target sweetener composition using sugar as a raw material, and the produced sweetener composition and use thereof. Specifically, sugar, obtained by hydrolyzing sugar, The present invention relates to a method for producing a sweetener composition containing D-psicose in glucose, and fructose, or a mixed sugar mainly composed of glucose and fructose, and the obtained sweetener composition and use thereof. .
 澱粉を糖化して糖化液とし、これをグルコースイソメラーゼで処理して製造される異性化糖は、砂糖の甘味度と同等であることと生産コストの安さから、ソフトドリンクをはじめとする飲料や食品に甘味料として幅広く利用され、世界全体の異性化糖生産量は1730万トンにまで達している(2009年統計)。この異性化糖の代表的な製造方法は、澱粉を酵素で加水分解して澱粉分解物(デキストリン)としたのち、さらに別の酵素で加水分解してブドウ糖溶液(糖化液)とし、次いでグルコースイソメラーゼによりブドウ糖を果糖へと異性化する方法である。異性化反応は平衡反応であるため、この製造方法により得られる異性化糖のブドウ糖と果糖の比率は、通常58:42程度である。さらに、甘味の不足を解消するために、精製果糖を添加する場合があるが、この場合、ブドウ糖と果糖との比率を45:55程度とするのが一般的である。 Isomerized sugar produced by saccharifying starch into a saccharified solution and treating it with glucose isomerase is equivalent to the sweetness of sugar and low in production costs. Widely used as a sweetener, the world's total production of isomerized sugar has reached 17.3 million tons (2009 statistics). A typical production method of this isomerized sugar is that starch is hydrolyzed with an enzyme to obtain a hydrolyzed starch (dextrin), then hydrolyzed with another enzyme to obtain a glucose solution (saccharified solution), and then glucose isomerase. This is a method for isomerizing glucose into fructose. Since the isomerization reaction is an equilibrium reaction, the ratio of glucose to fructose in the isomerized sugar obtained by this production method is usually about 58:42. Furthermore, purified fructose may be added in order to eliminate the lack of sweetness. In this case, the ratio of glucose to fructose is generally about 45:55.
 一方、近年、希少糖は、種々の生理効果を有することから注目され、研究が盛んにおこなわれているが、工業的に広く使用されるためには、これらの希少糖が効率的に生産されることが不可欠である。
 希少糖とは、糖の基本単位である単糖のうち、自然界に大量に存在するD-グルコース(ブドウ糖)に代表される「天然型単糖」に対して、「自然界に微量にしか存在しない単糖」と定義付けられている。希少糖の存在量は非常に少なく、D-グルコース(ブドウ糖)に比べて圧倒的に存在量が少ない。
On the other hand, in recent years, rare sugars have attracted attention because they have various physiological effects, and research has been actively conducted. However, in order to be widely used industrially, these rare sugars are efficiently produced. It is essential.
Rare sugars are “naturally-occurring monosaccharides” represented by D-glucose (glucose), which are abundant in nature, among the simple sugars that are the basic units of sugar. Monosaccharide "is defined. The abundance of rare sugar is very small, and the abundance is overwhelmingly small compared to D-glucose (glucose).
 そのなかでも、現在、大量生産が可能な希少糖は、D-プシコースおよびD-アロースである。D-プシコースは、ケトヘキソースに分類されるプシコースのD体であり、六炭糖(ヘキソース)である。  
 また、D-アロースは、アルドヘキソースに分類されるアロースのD体であり、同じく六炭糖(ヘキソース)である。これらD-プシコースおよびD-アロースは、それぞれ0kcal/gであることがヒト試験(非特許文献1)および動物試験(非特許文献2)においてそれぞれ証明されている。
 D-プシコースは、果糖に特定の酵素を作用させることにより得られ、D-ケトヘキソース・3-エピメラーゼ(特許文献1)を作用させた場合、収率20~25%で生成し、D-プシコース・3-エピメラーゼ(非特許文献3)を作用させた場合は、30%程度の収率で生成し、さらにホウ酸を併用した場合には60%程度の収率で生成するとの報告がある(非特許文献4)。この酵素を用いた希少糖の工業的大量生産を試みる際には、酵素の安全性の確認をはじめ、酵素源となる菌体の培養、酵素の精製、酵素の固定化等、各生産工程についての問題点を順次克服しなければならない。
 D-アロースは、D-プシコースを含有する溶液にL-アラビノースイソメラーゼを作用させて、D-プシコースからD-アロースを生成させる(特許文献2)などが知られている。
Among them, the rare sugars that can be mass-produced at present are D-psicose and D-allose. D-psicose is a D-form of psicose classified as ketohexose and is a hexose.
D-allose is a D-form of allose classified as an aldohexose, which is also a hexose. These D-psicose and D-allose are proved to be 0 kcal / g, respectively, in human tests (Non-patent Document 1) and animal tests (Non-patent Document 2).
D-psicose is obtained by allowing a specific enzyme to act on fructose. When D-ketohexose 3-epimerase (Patent Document 1) is allowed to act, it is produced in a yield of 20 to 25%.・ When 3-epimerase (Non-patent Document 3) is allowed to act, it is produced in a yield of about 30%, and when boric acid is used in combination, it is reported that it is produced in a yield of about 60% ( Non-patent document 4). When attempting industrial mass production of rare sugars using this enzyme, it is necessary to check the safety of the enzyme, cultivate bacterial cells that are the source of the enzyme, purify the enzyme, immobilize the enzyme, etc. These problems must be overcome sequentially.
As for D-allose, it is known that L-arabinose isomerase is allowed to act on a solution containing D-psicose to produce D-allose from D-psicose (Patent Document 2).
 このように、希少糖は、特定の原料糖に特定の酵素を作用させることによって得られるが、それ以外の取得方法も幾分か開示されている。例えば、1800年代よりロブリー・ドブリュイン-ファン エッケンシュタイン(Lobry de Bruyn and Alberda van Ekenstein)転位反応と呼ばれる、エンジオールを介するアルドース、ケトースの異性化反応が知られている。この異性化反応は、ある糖をアルカリ条件下におくことにより、他の糖に異性化することのできる反応である。この反応を利用すれば、糖を異性化することが可能であるため、若干量の希少糖を得ることはできる(非特許文献5)が、上記生理活性を示す濃度の希少糖を含む異性化物を得るには、実際の工業生産効率に見合わない反応時間を要することや、カラメル化等の副反応による生成物の着色が著しく、その後の精製が困難であるなどの問題があり、工業的な利用は難しいとされている。 As described above, rare sugars are obtained by allowing specific enzymes to act on specific raw sugars, but some other acquisition methods are also disclosed. For example, since the 1800s, isomerization reactions of aldoses and ketoses via enediol have been known, which is called Robry de Bruin-fan Eckenstein (Lobry de Bruyn and Alberda van Ekenstein) rearrangement reaction. This isomerization reaction is a reaction that can be isomerized to another sugar by placing a certain sugar under alkaline conditions. By utilizing this reaction, it is possible to isomerize the sugar, so that a slight amount of rare sugar can be obtained (Non-Patent Document 5), but an isomerized product containing a rare sugar at a concentration exhibiting the above physiological activity. In order to obtain the product, there are problems such as requiring reaction time that does not match the actual industrial production efficiency, coloring of products due to side reactions such as caramelization, and subsequent purification being difficult. It is considered difficult to use.
特開平6-125776号公報Japanese Patent Laid-Open No. 6-125776 特開2002-17392号公報JP 2002-17392 A 国際公開第2010/113785号International Publication No. 2010/113785 特開2009-515091号公報JP 2009-515091 A PCT/JP2012/67209PCT / JP2012 / 67209
 異性化糖や砂糖に代表される糖質(資化性糖)は、糖尿病や肥満を併発することが、昨今、問題視されている。一方、前述の希少糖は、種々の有用な生理効果を持ち、特に、ブドウ糖および果糖との混合甘味料組成物としたときに優れた抗肥満効果を示すことが明らかになっており、異性化糖をアルカリ異性化することにより希少糖を含有するシロップを製造する方法(特許文献3)や、酵素を利用して希少糖を含有するシロップを製造する方法も報告されている(特許文献4)。しかしながら、これらのシロップは、単糖のみで構成されているために甘味が若干薄く、長きに渡り消費者に親しまれるためには、甘味バランスの点で改良の余地が残されていた。 [0003] Carbohydrates represented by isomerized sugars and sugars (assimilable sugars) have recently been regarded as a problem with diabetes and obesity. On the other hand, the above-mentioned rare sugar has various useful physiological effects, and in particular, it has been clarified that when it is used as a mixed sweetener composition with glucose and fructose, it exhibits an excellent anti-obesity effect. A method for producing a syrup containing a rare sugar by alkaline isomerization of sugar (Patent Document 3) and a method for producing a syrup containing a rare sugar using an enzyme have also been reported (Patent Document 4). . However, these syrups are composed only of monosaccharides, so that the sweetness is slightly light, and in order to be familiar to consumers for a long time, there remains room for improvement in terms of sweetness balance.
 以上のような甘味に関する欠点を克服した甘味料および製造法は、これまでに存在せず、生産効率および安全面を考慮した工業的に実用可能な製造法が得られていないのが現状である。甘味に関する欠点は、原料として異性化糖(前述した、主に、澱粉の分解等により得られるブドウ糖および果糖から成る組成物)を用いており、異性化糖がオリゴ糖を含み組成も違うことから甘味度、甘味質ともに砂糖とは異なっていることに基づくと考えられるので、砂糖を原料とした希少糖を含む甘味料の製造を試みることとした。砂糖は、異性化糖が普及する以前は高価であったことから、異性化糖に取って代わられる傾向が続いてきたが、現在では世界で1億8千万tほど生産されており、価格も比較的安定してきている。砂糖を原料とすることで、砂糖の良質な甘味を利用できるし、また、砂糖は、ブドウ糖と果糖が結合した二糖であるので、ブドウ糖および果糖の供給原料としても利用できるので、異性化糖よりコスト的に安くなると考えられる。さらに、上述したとおり、砂糖を原料とした希少糖を含む甘味料は、異性化糖を原料とした甘味料よりも雑味が少なくなるという利点もある。これら資化性糖をベースに、甘味および物性面で優れ、かつ、これらの疾病を引き起こさない甘味料の上市が望まれる。 There are no sweeteners and production methods that have overcome the above-mentioned drawbacks related to sweetness, and there is no industrially practical production method that takes production efficiency and safety into consideration. . The disadvantage of sweetness is that isomerized sugar (the composition consisting mainly of glucose and fructose obtained by the decomposition of starch, etc.) is used as a raw material, and the isomerized sugar contains oligosaccharide and has a different composition. Since it is considered that the sweetness and sweetness are different from sugar, it was decided to try to produce a sweetener containing rare sugar from sugar. Since sugar was expensive before the spread of isomerized sugar, it has continued to be replaced by isomerized sugar, but now it is produced around 180 million tons worldwide. Has also become relatively stable. By using sugar as a raw material, the high-quality sweetness of sugar can be used, and since sugar is a disaccharide in which glucose and fructose are combined, it can also be used as a feedstock for glucose and fructose. It is thought that it will become cheaper in cost. Furthermore, as described above, sweeteners containing rare sugars using sugar as a raw material also have an advantage that they have less miscellaneous taste than sweeteners using isomerized sugar as a raw material. Based on these assimilating sugars, it is desired to market sweeteners that are superior in sweetness and physical properties and do not cause these diseases.
 よって、本発明は、異性化糖を摂取することによる上記疾病罹患リスク、および、希少糖含有シロップの製造工程上若しくは味質上の欠点を克服した、新規甘味料およびその製造方法並びにその用途を提供しようとするものである。 Therefore, the present invention provides a novel sweetener, a method for producing the same, and a use thereof, which overcome the above-mentioned disease risk by ingesting isomerized sugar, and defects in the production process or taste quality of rare sugar-containing syrup. It is something to be offered.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねたところ、特定の条件下で酸および/又は酵素を砂糖に作用させてブドウ糖(D-グルコース)と果糖(D-フラクトース)へと効率的に分解したのち、さらに特定の条件下でアルカリおよび/又は酵素を用いてこれを異性化し、その異性化生成物中に主に希少糖としてD-プシコースを含ませることにより、特定の糖組成を有する甘味料組成物が得られることを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to solve the above-mentioned problems. As a result, an acid and / or enzyme is allowed to act on sugar under specific conditions to produce glucose (D-glucose) and fructose (D-fructose). After efficiently decomposing, it is isomerized with alkali and / or enzyme under specific conditions, and D-psicose is mainly contained as a rare sugar in the isomerized product, thereby The present inventors have found that a sweetener composition having a composition can be obtained, and have completed the present invention.
 すなわち、具体的には、本発明は以下の(1)~(9)の甘味料組成物の製造方法からなる。
 (1)砂糖を原料とし、原料砂糖の加水分解により砂糖加水分解物である砂糖、D-グルコースおよびD-フラクトースの混合物、または、D-グルコースおよびD-フラクトースの混合物を得る工程、および該砂糖加水分解物を異性化することにより最終生成物である砂糖、D-グルコース、D-フラクトース、および少なくともD-プシコースを含む希少糖の混合物、または、D-グルコース、D-フラクトースおよび少なくともD-プシコースを含む希少糖の混合物を得る工程を経ること、原料砂糖の加水分解反応の程度により、最終生成物中の砂糖の含量を調節すること、最終生成物は、砂糖、D-グルコース、D-フラクトース、および少なくともD-プシコース含む希少糖を特定の組成割合で含ませるようにした、または、D-グルコース、D-フラクトース、および少なくともD-プシコースを含む希少糖を特定の組成割合で含ませるようにしたことを特徴とする甘味料組成物の製造方法。
 (2)原料砂糖の加水分解工程は、酸および/または酵素を用いた分解により、砂糖加水分解物を異性化する工程は、アルカリ異性化、カルシウムイオンの触媒作用を用いた異性化および/または酵素異性化により行われる、上記(1)記載の甘味料組成物の製造方法。
 (3)アルカリ異性化は、D-プシコース、D-アロース、D,L-ソルボース、D-タガトース、およびD-マンノースを含む希少糖を生成し、最終生成物は、これら単糖と、砂糖、D-グルコースおよびD-フラクトースとの混合物、または、D-グルコースおよびD-フラクトースとの混合物となる、上記(2)記載の甘味料組成物の製造方法。
 (4)酵素異性化は、果糖からD-プシコースが生成するのみで、最終生成物は、D-プシコースと、砂糖、D-グルコースおよびD-フラクトースとの混合物、または、D-グルコースおよびD-フラクトースとの混合物となる、上記(2)記載の甘味料組成物の製造方法。
 (5)酵素異性化は、アルスロバクター グロビホルミス M30(寄託番号NITE BP-1111)由来の異性化酵素を使用して行われる、上記(2)または(4)記載の甘味料組成物の製造方法。
 (6)酵素異性化は、1000U/湿重量樹脂(g)の活性を有する固定化酵素を使用して行われる、上記(2)、(4)または(5)記載の甘味料組成物の製造方法。
 (7)最終生成物が甘味強度および雑味の少ない甘味組成物である上記(1)ないし(6)のいずれかに記載の甘味料組成物の製造方法。
 (8)最終生成物がフレーバーリリースを高める甘味組成物である上記(1)ないし(6)のいずれかに記載の甘味料組成物の製造方法。
 (9)最終生成物が砂糖の割合が、10部から75部の良好な濃厚感と甘味バランスを持つ甘味組成物である上記(1)ないし(6)のいずれかに記載の甘味料組成物の製造方法。
(10)最終生成物が砂糖の割合が、砂糖の割合が10部から80部のインスリン分泌量が有意に低減される機能を持つ甘味組成物である上記(1)ないし(6)のいずれかに記載の甘味料組成物の製造方法。
Specifically, the present invention comprises the following methods (1) to (9) for producing a sweetener composition.
(1) Using sugar as a raw material to obtain a mixture of sugar, D-glucose and D-fructose, or a mixture of D-glucose and D-fructose by hydrolysis of the raw sugar, and the sugar A mixture of rare sugars including sugar, D-glucose, D-fructose and at least D-psicose, or D-glucose, D-fructose and at least D-psicose, which are end products by isomerizing the hydrolyzate A step of obtaining a mixture of rare sugars containing, adjusting the content of sugar in the final product according to the degree of hydrolysis reaction of the raw sugar, and the final product is sugar, D-glucose, D-fructose And a rare sugar containing at least D-psicose in a specific composition ratio, or D- Glucose, D- fructose, and a method for making a sweetener composition, characterized in that the rare saccharide to be included in a particular composition ratio comprising at least D- psicose.
(2) The raw material sugar hydrolysis step is a step of isomerizing a sugar hydrolyzate by decomposition using an acid and / or an enzyme, and an alkali isomerization, an isomerization using calcium ion catalysis and / or The manufacturing method of the sweetener composition of the said (1) description performed by enzyme isomerization.
(3) Alkaline isomerization produces rare sugars including D-psicose, D-allose, D, L-sorbose, D-tagatose, and D-mannose. The final product consists of these monosaccharides, sugar, The method for producing a sweetener composition according to the above (2), which is a mixture of D-glucose and D-fructose or a mixture of D-glucose and D-fructose.
(4) Enzymatic isomerization produces only D-psicose from fructose, and the final product is a mixture of D-psicose and sugar, D-glucose and D-fructose, or D-glucose and D- The manufacturing method of the sweetener composition of said (2) description used as a mixture with fructose.
(5) The method for producing a sweetener composition according to (2) or (4) above, wherein the enzyme isomerization is performed using an isomerase derived from Arthrobacter globiformis M30 (deposit number NITE BP-1111). .
(6) Enzymatic isomerization is performed using an immobilized enzyme having an activity of 1000 U / wet weight resin (g), and the production of the sweetener composition according to (2), (4) or (5) above Method.
(7) The method for producing a sweetener composition according to any one of the above (1) to (6), wherein the final product is a sweetness composition having a low sweetness intensity and an unpleasant taste.
(8) The method for producing a sweetener composition according to any one of (1) to (6), wherein the final product is a sweetening composition that enhances flavor release.
(9) The sweetener composition according to any one of the above (1) to (6), wherein the final product is a sweet composition having a good richness and sweetness balance in which the ratio of sugar is 10 to 75 parts. Manufacturing method.
(10) Any of the above (1) to (6), wherein the final product is a sweetening composition having a function of significantly reducing the amount of insulin secretion when the sugar ratio is 10 to 80 parts. A method for producing the sweetener composition described in 1.
 また、本発明は以下の(11)の甘味料組成物、(12)および(13)の飲食物、(14)および(15)の医薬品、医薬部外品、化粧品からなる。
 (11)上記(1)ないし(10)のいずれかに記載の製造方法により得られた甘味料組成物。
 (12)上記(11)に記載の甘味料組成物を使用してなる飲食物。
 (13)体重の上昇、体脂肪蓄積の上昇を抑制する旨の表示を付した上記(12)に記載の飲食物。
 (14)上記(11)に記載の甘味料組成物からなる医薬品、医薬部外品、化粧品。
 (15)体重の上昇、体脂肪蓄積の上昇を抑制するための上記(14)に記載の医薬品、医薬部外品、化粧品。
Further, the present invention comprises the following sweetener composition (11), foods and drinks (12) and (13), pharmaceuticals (14) and (15), quasi drugs and cosmetics.
(11) A sweetener composition obtained by the production method according to any one of (1) to (10) above.
(12) A food or drink comprising the sweetener composition according to (11) above.
(13) The food or drink according to (12) above, which is labeled to suppress an increase in body weight and an increase in body fat accumulation.
(14) A pharmaceutical, quasi-drug, or cosmetic comprising the sweetener composition as described in (11) above.
(15) The pharmaceutical, quasi-drug, or cosmetic according to (14) above for suppressing an increase in body weight and an increase in body fat accumulation.
 本発明によれば、砂糖を原料とすることで、砂糖の良質な甘味を利用でき、かつ、砂糖は、ブドウ糖と果糖が結合した二糖であるので、ブドウ糖および果糖の供給原料としても利用でき、異性化糖を原料とするよりコスト的に安くなり、これら資化性糖をベースに、甘味および物性面で優れ、かつ、これらの疾病を引き起こさない甘味料を提供することができる。異性化糖を摂取することによる糖尿病や肥満を併発という疾病罹患リスク、および、希少糖含有シロップの製造工程上若しくは味質上の欠点を克服した、新規甘味料およびその製造方法並びにその用途を提供することができる。すなわち、本発明によれば、砂糖、D-グルコース、D-フルクトース、およびD-プシコースをはじめとする希少糖を、バランス良く含んだ砂糖の味質に近い甘味料組成物を提供することができる。また、本発明は、物性面だけでなくコストパフォーマンスに優れた製造法であるため、医薬品もしくは医薬部外品、口腔用組成物、化粧品および食品、食品添加物に、安価かつ安全に利用できる甘味剤を提供することができる。さらに、本発明品は、異性化糖または砂糖そのものよりも味質かつ機能性に優れた甘味剤であるので、飲食品物に対して、抗肥満剤、摂食抑制剤、インスリン抵抗性改善剤、又は低カロリー甘味剤としての特質を持たせることが可能となる。 According to the present invention, since sugar is used as a raw material, the high-quality sweetness of sugar can be used, and since sugar is a disaccharide in which glucose and fructose are combined, it can also be used as a feedstock for glucose and fructose. Thus, it is possible to provide a sweetener that is cheaper than isomerized sugar as a raw material, is excellent in sweetness and physical properties, and does not cause these diseases, based on these assimilating sugars. Provided a new sweetener, a method for producing the same, and a use thereof, which overcomes the risk of morbidity associated with diabetes and obesity caused by ingestion of isomerized sugar, and defects in the production process or taste quality of rare sugar-containing syrup can do. That is, according to the present invention, it is possible to provide a sweetener composition close to the taste of sugar containing rare sugars such as sugar, D-glucose, D-fructose, and D-psicose in a well-balanced manner. . In addition, since the present invention is a production method that is excellent not only in physical properties but also in cost performance, it can be used inexpensively and safely for pharmaceuticals or quasi drugs, oral compositions, cosmetics and foods, and food additives. An agent can be provided. Furthermore, since the product of the present invention is a sweetener with better taste and functionality than isomerized sugar or sugar itself, it has anti-obesity agents, antifeedants, insulin resistance improvers, Or it becomes possible to give the quality as a low-calorie sweetener.
砂糖を原料とした、希少糖を含む甘味料の製造フローを示す。The manufacturing flow of the sweetener containing rare sugar which uses sugar as a raw material is shown. 本発明の各甘味料組成物をヒトに摂取させたときの血糖値曲線下面積を示す。The area under a blood glucose level curve when each sweetener composition of the present invention is ingested by a human is shown. 本発明の各甘味料組成物をヒトに摂取させたときのインスリン濃度曲線下面積を示す。The area under the insulin concentration curve when a human being ingested each sweetener composition of the present invention is shown.
 本発明は、砂糖を原料とし、砂糖、D-グルコース、D-フラクトース、希少糖(D-プシコース等)などを特定の組成割合で含ませるようにした甘味料組成物およびその製造方法並びにその用途からなる。
 原料となる砂糖の加水分解反応の程度により、最終的に得られる甘味料組成物中の砂糖の含量を調節することが可能であり、さらに、次工程の異性化反応の程度により、最終的に得られる甘味料組成物中の希少糖の含量を調節することができるが、本発明の味質上の効果を得るためには、最終甘味料組成物における砂糖は3~80%であることが望ましく、D-プシコースは3%以上含まれていることが望ましい(以降、特に明記しない限り、%は糖組成物(固形物)における質量%を示す)が、砂糖を含ませないよう調製した甘味組成物の比較をしても、砂糖を原料とすることで異性化糖を原料としたときよりも、より雑味の少ない甘味料組成物となる。
The present invention relates to a sweetener composition using sugar as a raw material and containing sugar, D-glucose, D-fructose, rare sugar (D-psicose, etc.), etc. in a specific composition ratio, a method for producing the same, and use thereof Consists of.
It is possible to adjust the sugar content in the finally obtained sweetener composition by the degree of hydrolysis reaction of the raw sugar, and finally, depending on the degree of isomerization reaction in the next step. Although the content of rare sugar in the resulting sweetener composition can be adjusted, in order to obtain the taste-quality effect of the present invention, the sugar in the final sweetener composition should be 3 to 80%. Desirably, it is desirable that D-psicose is contained in an amount of 3% or more (hereinafter, unless otherwise specified,% indicates mass% in the sugar composition (solid)), but the sweetness prepared so as not to contain sugar. Even when the compositions are compared, a sweetener composition with less miscellaneous taste is obtained by using sugar as a raw material than when isomerized sugar is used as a raw material.
 本発明の甘味料組成物中のD-プシコース含量は3%以上であるときに味質上の効果が得られるが、砂糖の分解後に行う異性化の手法として、後述するアルカリ異性化を選択した際には、D-プシコース以外のD-アロース、D-タガトース、D-アルトロースなどの希少糖のほか、D-マンノース、D-ソルボース、L-ソルボースなどが生成する。アルカリ異性化反応は過度に進行すると着色が著しく進み、後の精製が困難であるので、この精製工程にコストをかけない異性化反応の程度としては、D-プシコースおよびD-アロースの組成が、最終甘味料組成物中の砂糖を除いたときの糖質量に対して、それぞれ0.5~17.0%(好ましくは1~15%)および0.2~10.0%(好ましくは0.4~8%)が望ましく、この組成に設定することで、本発明の味質上の効果と精製工程のコストダウンが両立された甘味料組成物を得ることができる。また、砂糖を除き、他の生成希少糖と併せて最終甘味料組成物中に含まれるD-プシコースがおよびD-アロースがそれぞれ2.3%以上 および1.3%以上のときには、、本発明の甘味料組成物は、抗肥満剤、摂食抑制剤、およびインスリン抵抗性改善剤として使用できる特性を示し、加えて、希少糖含量が多いほどに低カロリーとなるため、低カロリー甘味剤として使用することもできる。 A taste effect is obtained when the D-psicose content in the sweetener composition of the present invention is 3% or more, but the alkali isomerization described later was selected as the isomerization method performed after the decomposition of sugar. In some cases, D-mannose, D-sorbose, L-sorbose and the like are produced in addition to rare sugars such as D-allose, D-tagatose, and D-altrose other than D-psicose. When the alkali isomerization reaction proceeds excessively, the coloration proceeds remarkably and subsequent purification is difficult. Therefore, the composition of D-psicose and D-allose is determined as the degree of isomerization reaction that does not cost this purification step. 0.5 to 17.0% (preferably 1 to 15%) and 0.2 to 10.0% (preferably 0.1 to 0.1%) of the sugar mass when the sugar in the final sweetener composition is removed. 4-8%) is desirable, and by setting this composition, it is possible to obtain a sweetener composition in which both the effect on taste of the present invention and the cost reduction of the purification process are compatible. In addition, when D-psicose and D-allose contained in the final sweetener composition together with other produced rare sugars except for sugar are 2.3% or more and 1.3% or more, respectively, The sweetener composition of the present invention exhibits characteristics that can be used as an anti-obesity agent, an antifeedant, and an insulin resistance improving agent. It can also be used.
[原料砂糖]
 本発明において原料となる砂糖は、D-グルコース(ブドウ糖)およびD-フラクトース(果糖)が結合した糖が含まれたものであればよく、甘蔗や甜菜などの原料由来に限定されず、分密糖や含密糖などの製法の違いや、白双糖、中双糖、グラニュー糖、上白糖、三温糖、転化糖、角砂糖、氷砂糖、黒糖、赤糖、および和三盆などの製品分類にも限定されることなく、また、砂糖の精製過程における何れの糖液であっても構わず、砂糖を含むものすべてを指す。さらに、本発明においては、原料となる砂糖として、砂糖を含む3糖以上のオリゴ糖(フラクトオリゴ糖、カップリングシュガー、ラクトスクロース、テアンデロース等)を利用することもできる。
[Raw sugar]
The sugar used as a raw material in the present invention may be any sugar containing D-glucose (glucose) and D-fructose (fructose) combined. Different manufacturing methods such as sugar and dense sugar, and product categories such as white disaccharide, medium disaccharide, granulated sugar, super white sugar, tri-warm sugar, invert sugar, sugar cube, rock sugar, brown sugar, red sugar, and Wasanbon There is no limitation, and any sugar solution in the sugar refining process may be used. Furthermore, in the present invention, oligosaccharides containing three or more sugars including sugar (fructo-oligosaccharide, coupling sugar, lactosucrose, theandelose, etc.) can be used as the raw material sugar.
 上記に挙げられる原料の砂糖を製造に用いる際の濃度に関しては、事後の濃縮工程の簡素化を考慮すれば、原料糖液濃度が高いほど好ましいが、原料砂糖液の濃度が低いほど希少糖の収率を上げることができることから、生産効率を同時に考慮すれば、原料砂糖液の濃度は3~80%、好ましくは10~60%、さらに好ましくは20~40%が良い。
 一方、固定化酵素の担体樹脂および精製に使用する樹脂の浮遊を防止する観点からすれば、3~40%程度がより好ましい。
 また、糖濃度を調節することによって生成組成物比の異なる混合糖を得ることも可能であり、例えば、糖濃度100%の原料、すなわち粉体に対して酸若しくはアルカリを噴霧して生産することも可能である。
Regarding the concentration when using the raw material sugars listed above for production, considering the simplification of the subsequent concentration process, the higher the concentration of the raw sugar solution, the better. However, the lower the concentration of the raw material sugar solution, the lower the concentration of the rare sugar. Since the yield can be increased, considering the production efficiency at the same time, the concentration of the raw sugar solution is 3 to 80%, preferably 10 to 60%, and more preferably 20 to 40%.
On the other hand, from the viewpoint of preventing floating of the immobilized enzyme carrier resin and the resin used for purification, about 3 to 40% is more preferable.
It is also possible to obtain mixed sugars with different product composition ratios by adjusting the sugar concentration. For example, the raw material having a sugar concentration of 100%, that is, the powder or the powder is produced by spraying acid or alkali. Is also possible.
[原料砂糖の加水分解]
 原料砂糖の加水分解工程は、酸および/または酵素を用いた分解により行われる。原料糖を加水分解するためには酸(酸性溶液)を用いることができる。酸を用いた分解は、無機酸、スルホン酸またはカルボン酸を酸性溶液として使用して行われる。より詳細には、本発明において、酸性溶液としては、無機酸類(塩酸、硫酸、硝酸、臭化水素酸、次亜塩素酸、過塩素酸、リン酸、ホウ酸、フルオロスルホン酸等)、スルホン酸類、カルボン酸類(酢酸、クエン酸、ギ酸、グルコン酸、乳酸、シュウ酸、酒石酸等)などを適宜使用することができるが、安全性および費用の面から、塩酸が好ましい。最適な酸の濃度は、反応時間および温度に左右されるが、通常、原料砂糖溶液中に0.01~5mol/l程度含有させることが好ましい。また、酸分解の反応温度は、20℃以上が好ましく30℃~100℃がより好ましい。
[Hydrolysis of raw sugar]
The raw sugar hydrolysis step is performed by decomposition using an acid and / or an enzyme. An acid (acidic solution) can be used to hydrolyze the raw sugar. Decomposition with an acid is carried out using an inorganic acid, sulfonic acid or carboxylic acid as the acidic solution. More specifically, in the present invention, the acidic solution includes inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, hypochlorous acid, perchloric acid, phosphoric acid, boric acid, fluorosulfonic acid, etc.), sulfone Acids, carboxylic acids (acetic acid, citric acid, formic acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, etc.) can be used as appropriate, but hydrochloric acid is preferred from the viewpoint of safety and cost. The optimum acid concentration depends on the reaction time and temperature, but it is usually preferable to contain about 0.01 to 5 mol / l in the raw sugar solution. The acid decomposition reaction temperature is preferably 20 ° C. or higher, more preferably 30 ° C. to 100 ° C.
 砂糖を加水分解する方法としては、上記酸による分解によらず、酵素を用いて分解することもできる。酵素を用いた分解は、インベルターゼを使用して行われる。より詳細には、酵素としては、サッカラーゼ;インベルターゼ(IUPAC-IUB系統名はβ-D-フルクトフラノシダーゼ(E.C. 3.2.1.26))が挙げられ、菌株由来は特に限定されない。
 酵素濃度に関しては、基質濃度および反応時間によって異なるが、通常、100unit/mg の酵素を基質に対して0.00075~0.003% (w/w)で使用することが好ましく、酵素の反応条件や酵素の固定化条件によっては、適宜変更することもできる。また、酵素の反応温度は、20℃以上が好ましく、30℃~100℃がより好ましい。最適には60℃近辺である。
 インベルターゼ酵素の固定化は、市販インべルターゼを緩衝液(pH7)に溶解し、カラム充填樹脂に対して4℃で通液させることにより、イオン交換樹脂にインベルターゼ酵素タンパク質を結合させた固定化インベルターゼ酵素を得る。 
As a method for hydrolyzing sugar, an enzyme can be used instead of the above acid decomposition. Degradation using an enzyme is performed using invertase. More specifically, examples of the enzyme include saccharase; invertase (IUPAC-IUB strain name is β-D-fructofuranosidase (EC 3.2.1.26)), and the strain origin is particularly limited. Not.
Although the enzyme concentration varies depending on the substrate concentration and reaction time, it is usually preferable to use 100 unit / mg enzyme at 0.00075-0.003% (w / w) relative to the substrate. Depending on the immobilization conditions of the enzyme and the enzyme, it can be appropriately changed. In addition, the reaction temperature of the enzyme is preferably 20 ° C. or higher, more preferably 30 ° C. to 100 ° C. The optimum temperature is around 60 ° C.
For immobilization of invertase enzyme, commercially available invertase is dissolved in a buffer solution (pH 7) and allowed to pass through the column-filled resin at 4 ° C., so that the invertase enzyme protein is bound to the ion exchange resin. Get the enzyme.
 以上のように、原料砂糖の加水分解は、酸又はインベルターゼを用いた分解の何れによっても行うことができるが、一般的には、得ようとする生成物の組成によって使い分けることができ、何れか一方のみを使用することもできれば、併用することもできる。 As described above, hydrolysis of raw sugar can be performed by either acid or decomposition using invertase, but in general, it can be used properly depending on the composition of the product to be obtained. Only one of them can be used, or they can be used together.
[砂糖加水分解物の異性化]
 砂糖加水分解物を異性化する工程は、アルカリ異性化、カルシウムイオンの触媒作用を用いた異性化および/または酵素異性化により行われる。
 まず、酵素異性化について説明する。
 原料である砂糖を加水分解後、果糖よりD-プシコースを生成せしめるためには、タガトース-3エピメラーゼ又はプシコース-3エピメラーゼといった異性化(エピ化)酵素を用いる手法を選択することができる。これら異性化酵素であるタガトース-3-エピメラーゼ又はプシコース-3エピメラーゼの取得源となる微生物の菌株由来は特に限定されないが、食品にも用いることの出来る安全な菌種である。  
 食品を製造する際に使用が認められる既存添加物名簿収載リストに収載されている菌種であって毒性がほとんどないとされる菌種から、高い収率でD-フラクトースからD-プシコースへの異性化を触媒する新規なケトース3-エピメラーゼを産生するアルスロバクター(Arthrobacter)属の菌種(特許文献5)であることが望ましく、アルスロバクター属グロビホルミス種がより好ましく、アルスロバクター グロビホルミス M30(寄託番号NITE BP-1111)であれば、なお好ましい。酵素濃度に関しては、基質濃度および反応時間によって適切な範囲が異なるが、酵素の固定化時には、1000U/湿重量樹脂(g)程度の活性を有するものが好ましい。
 酵素異性化を行う反応温度としては、20℃以上が好ましく、30℃~80℃がより好ましい。実用的には45℃近辺が好ましい。
[Isomerization of sugar hydrolyzate]
The step of isomerizing the sugar hydrolyzate is performed by alkali isomerization, isomerization using calcium ion catalysis and / or enzymatic isomerization.
First, enzyme isomerization will be described.
In order to generate D-psicose from fructose after hydrolysis of the raw sugar, a method using an isomerization (epimerization) enzyme such as tagatose-3 epimerase or psicose-3 epimerase can be selected. The origin of the microorganism strain from which the isomerase, tagatose-3-epimerase or psicose-3 epimerase, is obtained is not particularly limited, but is a safe species that can also be used for food.
From high-yield D-fructose to D-psicose from bacterial species that are listed on the existing additive list that is approved for use in food production It is desirable to be a bacterium belonging to the genus Arthrobacter (Patent Document 5) that produces a novel ketose 3-epimerase that catalyzes isomerization, more preferably an genus Arthrobacter globiformis, and Arthrobacter globiformis M30 (Deposit number NITE BP-1111) is more preferable. Regarding the enzyme concentration, an appropriate range varies depending on the substrate concentration and the reaction time, but when the enzyme is immobilized, one having an activity of about 1000 U / wet weight resin (g) is preferable.
The reaction temperature for carrying out the enzyme isomerization is preferably 20 ° C. or higher, more preferably 30 ° C. to 80 ° C. Practically, around 45 ° C. is preferable.
 上記のアルスロバクター グロビホルミスについて説明する。本発明で使用することができるケトース3-エピメラーゼは、アルスロバクター(Arthrobacter)属に属し、ケトース3-エピメラーゼ産生能を有する微生物を培養し、培養液中に生育した菌体中からケトース3-エピメラーゼを採取することにより調製することができる。アルスロバクター(Arthrobacter)属に属する微生物としては、例えば、アルスロバクター グロビホルミス(Arthrobacter globiformis)M30(寄託番号NITE BP-1111)株およびこれらの変異株などが有利に利用できる。M30株はケトース3-エピメラーゼの産生能が比較的高く、本発明の酵素を得る上で好適である。M30株は、日本国独立行政法人製品評価技術基盤機構特許生物寄託センター(日本国千葉県木更津市東かずさ鎌足2-5-8)に2011年6月22日原寄託されたNITE P-1111からブタペスト条約に基づく寄託への移管を2012年5月2日に請求し、受託番号 NITE BP-1111して国際寄託された。 The above Arthrobacter globiformis will be described. The ketose 3-epimerase that can be used in the present invention belongs to the genus Arthrobacter , cultivates a microorganism having the ability to produce ketose 3-epimerase, and ketose 3-epimerase from the cells grown in the culture solution. It can be prepared by collecting epimerase. As microorganisms belonging to the genus Arthrobacter , for example, the Arthrobacter globiformis M30 (deposition number NITE BP-1111) strain and mutants thereof can be advantageously used. The M30 strain has a relatively high ability to produce ketose 3-epimerase and is suitable for obtaining the enzyme of the present invention. The M30 strain is based on NITE P-1111 deposited on June 22, 2011 at the Japan Patent Evaluation Depositary Center for Product Evaluation Technology (2-5-8 Higashi Kazusa Kamashika, Kisarazu City, Chiba, Japan). A transfer to the deposit under the Budapest Treaty was requested on May 2, 2012, and the deposit was made internationally under the deposit number NITE BP-1111.
 すなわち、本発明で使用することができる好ましいケトース3-エピメラーゼは、アルスロバクター属に属する微生物から得ることができ、下記(A)、(B)の基質特異性を有するケトース3-エピメラーゼである。   
 (A)D-またはL-ケトースの3位をエピマー化し、対応するD-またはL-ケトースを生成する。
 (B)D-またはL-ケトースの中ではD-フラクトースおよびD-プシコースに対する基質特異性が最も高い。
 アルスロバクター グロビホルミス M30(寄託番号NITE BP-1111)由来のケトース3-エピメラーゼは、SDS‐PAGEによるサブユニットの分子量が約32kDaであり、ゲル濾過法による分子量が120kDaである、サブユニットの分子量が32kDaのホモテトラマー構造であり、 下記の理化学的性質(a)~(e)を有し、かつ、下記の基質特異性1.~8.を有する(特許文献5参照)。
 (a)至適pH
 30℃、30分間反応、20mMのマグネシウム(Mg2+)存在下の条件で、6ないし11。
 (b)至適温度    
 pH7.5、30分間反応、20mMのマグネシウム(Mg2+)存在下の条件で、60ないし80℃。
(c)pH安定性    
 4℃、24時間保持の条件下で、少なくともpH5ないし11の範囲で安定。 
(d)熱安定性   
 pH7.5、1時間保持、4mMのマグネシウムイオン(Mg2+)の存在下の条件で、約50℃以下で安定。マグネシウムイオン(Mg2+)の非存在下の条件で、約40℃以下で安定。
(e)金属イオンによる活性化
 二価マンガンイオン(Mn2+)、二価コバルトイオン(Co2+)、カルシウム(Ca2+)およびマグネシウムイオン(Mg2+)により活性化される。
 1.D-フルクトースを基質としたときの相対活性が43.8%、
  2.D-プシコースを基質としたときの活性が100%、
  3.D-ソルボースを基質としたときの相対活性が1.13%、
  4.D-タガトースを基質としたときの相対活性が18.3%、
  5.L-フルクトースを基質としたときの相対活性が0.97%、
  6.L-プシコースを基質としたときの相対活性が21.2%、
  7.L-ソルボースを基質としたときの相対活性が16.6%、
  8. L-タガトースを基質としたときの相対活性が44.0%。
 ただし、D-プシコースのエピ化活性を100としてそれぞれのケトースに対する活性を相対活性として示している。
That is, a preferred ketose 3-epimerase that can be used in the present invention is a ketose 3-epimerase that can be obtained from a microorganism belonging to the genus Arthrobacter and has the following substrate specificities (A) and (B). .
(A) Epimerize position 3 of D- or L-ketose to produce the corresponding D- or L-ketose.
(B) Among D- or L-ketoses, the substrate specificity for D-fructose and D-psicose is the highest.
The ketose 3-epimerase derived from Arthrobacter globiformis M30 (deposit number NITE BP-1111) has a subunit molecular weight of about 32 kDa by SDS-PAGE, a molecular weight of 120 kDa by gel filtration, and a subunit molecular weight of 120 kDa. It has a 32 kDa homotetramer structure, has the following physicochemical properties (a) to (e), and has the following substrate specificity: ~ 8. (See Patent Document 5).
(A) Optimum pH
Reaction at 30 ° C. for 30 minutes, 6 to 11 in the presence of 20 mM magnesium (Mg 2+ ).
(B) Optimal temperature
pH 7.5, reaction for 30 minutes, 60 to 80 ° C. in the presence of 20 mM magnesium (Mg 2+ ).
(C) pH stability
Stable at least in the range of pH 5 to 11 under the condition of holding at 4 ° C. for 24 hours.
(D) Thermal stability
Stable at about 50 ° C. or lower under conditions of pH 7.5, 1 hour hold, 4 mM magnesium ion (Mg 2+ ). Stable at about 40 ° C. or lower in the absence of magnesium ions (Mg 2+ ).
(E) Activation by metal ions It is activated by divalent manganese ions (Mn 2+) , divalent cobalt ions (Co 2+ ), calcium (Ca 2+ ) and magnesium ions (Mg 2+ ).
1. The relative activity when D-fructose is used as a substrate is 43.8%,
2. 100% activity when D-psicose is used as a substrate,
3. The relative activity when using D-sorbose as a substrate is 1.13%,
4). The relative activity when D-tagatose is used as a substrate is 18.3%,
5. The relative activity when using L-fructose as a substrate is 0.97%,
6). The relative activity when L-psicose is used as a substrate is 21.2%,
7). The relative activity when using L-sorbose as a substrate is 16.6%,
8. The relative activity is 44.0% when L-tagatose is used as a substrate.
However, the activity for each ketose is shown as a relative activity, where the epimerization activity of D-psicose is 100.
[異性化酵素の固定化] 
 また、異性化酵素はイオン交換樹脂などの適切な基材に固定化して用いることがもっとも実用的である。全体の製造工程は、混合および加熱処理からなる簡便な工程であり、バッチ式または連続式のいずれの方式でも適用することができる。連続式の場合、原料砂糖の加水分解工程と砂糖加水分解物を異性化する工程を一連の工程で行い、さらに、アルスロバクター グロビホルミス M30(寄託番号NITE BP-1111)から得られる酵素を固定化して行われる。このように、砂糖を原料とした加水分解と異性化工程を一連の工程で行い、更に、この菌種から得られる酵素を固定化して製造に用いた製造法はこれまでになく、新規な製造法といえる。酵素異性化は、1000U/湿重量樹脂(g)の活性を有する固定化酵素を使用して行われる。アルスロバクター属の生産する異性化酵素は、培養により得た菌体を緩衝液(pH7.0)に懸濁し、冷却しながら超音波処理により細胞破砕するか、リゾチームによる処理を用いて該菌体の細胞壁に存在する多糖類成分を消化して該菌体細胞を破壊するかして得られた破壊細胞の溶液から粗酵素液として採取することができる。カラム充填したイオン交換樹脂に対し、上記粗酵素液を低温(4℃)下で通液させ、イオン交換樹脂に粗酵素タンパク質を結合させ、精製水を通液させて洗浄し、固定化酵素を得ることができる。商業的生産に完全に満足できる安定性(活性維持)の点で連続生産に耐えられる固定化系が得られた。得られた固定化酵素を用いて連続的で大量のエピ化反応を行うことができる。
 上記M30菌体の固定化については0.1~2%塩化ナトリウムとリゾチームによる破砕処理後に40~70℃、5~60分間の加熱処理後に得られる上清に、活性を有するケトース3-エピメラーゼが多く得られることがわかったため、別途特許出願を予定している。
[Immobilization of isomerase]
It is most practical to use the isomerase immobilized on an appropriate base material such as an ion exchange resin. The entire manufacturing process is a simple process consisting of mixing and heat treatment, and can be applied in either a batch type or a continuous type. In the case of a continuous type, the process of hydrolyzing the raw sugar and the process of isomerizing the sugar hydrolyzate are performed in a series of steps, and the enzyme obtained from Arthrobacter globiformis M30 (Deposit number NITE BP-1111) is immobilized Done. In this way, hydrolysis and isomerization processes using sugar as a raw material are carried out in a series of steps, and furthermore, there is no production method that has been used for production by immobilizing an enzyme obtained from this bacterial species. It's a law. Enzymatic isomerization is performed using an immobilized enzyme having an activity of 1000 U / wet weight resin (g). The isomerase produced by Arthrobacter is prepared by suspending cells obtained by culturing in a buffer solution (pH 7.0), disrupting the cells by sonication while cooling, or treating the cells with lysozyme. It can be collected as a crude enzyme solution from a solution of disrupted cells obtained by digesting the polysaccharide components present on the cell walls of the body to destroy the cells. The crude enzyme solution is passed through the ion-exchange resin packed in the column at a low temperature (4 ° C), the crude enzyme protein is bound to the ion-exchange resin, purified water is passed through and washed, and the immobilized enzyme is washed. Obtainable. An immobilization system that can withstand continuous production in terms of stability (maintenance of activity) completely satisfactory for commercial production was obtained. A large amount of epimerization reaction can be continuously performed using the obtained immobilized enzyme.
For immobilization of M30 cells, active ketose 3-epimerase is added to the supernatant obtained after heat treatment at 40 to 70 ° C. for 5 to 60 minutes after crushing treatment with 0.1 to 2% sodium chloride and lysozyme. Since it was found that many can be obtained, a separate patent application is planned.
 原料の砂糖を分解したのちに異性化する手段としては、上記の酵素による異性化(エピ化)に限らず、アルカリ異性化を利用した手法を選択することもできる。アルカリ異性化反応を行う際に使用するアルカリ性溶液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化カルシウム、酸化カルシウム、水酸化バリウム、水酸化鉛、水酸化ストロンチウム、水酸化マグネシウム、水酸化スズ、水酸化アルミニウムが挙げられるが、安全性および費用の面から、水酸化ナトリウムおよび水酸化カルシウムが好ましい。
 最適なアルカリ濃度は、イオン交換樹脂を併用するか否かによって左右されるが、通常、ヘキソース(六単糖)溶液中に0.005mol/l以上含有されていることが好ましい。
 アルカリ異性化の反応温度に関しては、好ましくは20℃以上、より好ましくは30℃~100℃である。
The means for isomerization after decomposing the raw material sugar is not limited to the isomerization (epimerization) by the above enzyme, and a method utilizing alkali isomerization can also be selected. Examples of the alkaline solution used for the alkali isomerization reaction include sodium hydroxide, potassium hydroxide, ammonia, calcium hydroxide, calcium oxide, barium hydroxide, lead hydroxide, strontium hydroxide, magnesium hydroxide, hydroxide Although tin and aluminum hydroxide are mentioned, sodium hydroxide and calcium hydroxide are preferable in terms of safety and cost.
The optimum alkali concentration depends on whether or not an ion exchange resin is used in combination, but usually it is preferably contained in a hexose (hexasaccharide) solution in an amount of 0.005 mol / l or more.
The reaction temperature for the alkali isomerization is preferably 20 ° C. or higher, more preferably 30 ° C. to 100 ° C.
 さらに、カルシウムイオンの触媒作用を用いた異性化は、カルシウムイオンを生成するカルシウム塩の存在下にヘキソースの異性化反応を進行させて行われる。
 特許文献3には、塩化カルシウムを用いたブドウ糖の異性化方法が記載されているが、本発明においてもカルシウムイオンの触媒作用を用いた異性化反応を行うことができる。本発明においては、カルシウムイオンを生成するカルシウム塩、例えば、塩化カルシウムの存在下にヘキソースの異性化反応を進行させる、すなわち、例えば、果糖からD-プシコースとD-アロースを含有する糖組成物を製造することができる。カルシウム塩は、アルカリ共存下にあるほうが望ましく、糖液中に0.005mol/l以上含有されていることが好ましい。カルシウム塩が存在する系では、塩基性イオン交換樹脂の共存は必ずしも必要ではない。
Furthermore, isomerization using the catalytic action of calcium ions is carried out by advancing the isomerization reaction of hexose in the presence of a calcium salt that generates calcium ions.
Patent Document 3 describes a method for isomerizing glucose using calcium chloride. In the present invention, an isomerization reaction using a catalytic action of calcium ions can also be performed. In the present invention, the isomerization reaction of hexose proceeds in the presence of a calcium salt that generates calcium ions, for example, calcium chloride, that is, for example, a sugar composition containing D-psicose and D-allose from fructose. Can be manufactured. The calcium salt is desirably in the presence of an alkali, and is preferably contained in the sugar solution by 0.005 mol / l or more. In a system in which a calcium salt is present, the coexistence of a basic ion exchange resin is not always necessary.
 [最終生成物] 
 原料となる砂糖の加水分解反応の程度により、最終生成物中の砂糖の含量を調節する。最終生成物は、砂糖、D-グルコース、D-フラクトース、および少なくともD-プシコースを含む希少糖を特定割合で含ませるように、または、D-グルコース、D-フラクトース、および少なくともD-プシコースを含む希少糖を特定の組成割合で含ませるようにした。アルカリ異性化を行うと、D-プシコース、D-アロース、D,L-ソルボース、D-タガトース、およびD-マンノースを含む希少糖を生成し、最終生成物は、これら単糖、砂糖、ブドウ糖、および果糖の混合物となる。カルシウムイオンの触媒作用を用いた異性化は、果糖からD-プシコースおよびD-アロースを含む希少糖を生成し、最終生成物は、これら単糖、砂糖、ブドウ糖、および果糖の混合物となる。酵素異性化を行うと、果糖からD-プシコースが生成するのみで、最終生成物は、D-プシコース、砂糖、ブドウ糖、および果糖の混合物、または、D-プシコース、ブドウ糖、および果糖の混合物となる。アルカリ異性化又は酵素異性化の何れを用いるかは、加水分解する量と、得ようとする生成物の組成によって使い分けることができ、何れか一方のみを使用することもできれば、両者とも使用することができる。
[Final product]
The sugar content in the final product is adjusted according to the degree of hydrolysis of the raw sugar. The final product includes sugar, D-glucose, D-fructose, and a rare sugar containing at least D-psicose in a specific proportion, or includes D-glucose, D-fructose, and at least D-psicose. Rare sugar was included at a specific composition ratio. Alkaline isomerization produces rare sugars including D-psicose, D-allose, D, L-sorbose, D-tagatose, and D-mannose, and the final products are these simple sugars, sugars, glucose, And a mixture of fructose. Isomerization using calcium ion catalysis produces rare sugars including D-psicose and D-allose from fructose, and the final product is a mixture of these monosaccharides, sugar, glucose and fructose. Enzymatic isomerization produces only D-psicose from fructose and the final product is a mixture of D-psicose, sugar, glucose and fructose, or a mixture of D-psicose, glucose and fructose . Whether to use alkaline isomerization or enzymatic isomerization can be selected depending on the amount of hydrolysis and the composition of the product to be obtained. Either one can be used or both can be used. Can do.
 その他、原料砂糖濃度、酸濃度、アルカリ濃度、酵素濃度、反応温度などを適宜変えることにより、生成される組成物の糖組成の調整が可能であり、すなわち、最終的に甘味料として好ましい味質、物性になる様に調整した組成物を得ることができる。また、特に厳密な組成比調整を必要とする場合には、砂糖、ブドウ糖、果糖、希少糖などを適宜添加して調整することも可能である。反応時間を早めたい場合には、圧力をかけて生産性を向上させることもできる。 In addition, it is possible to adjust the sugar composition of the composition to be produced by appropriately changing the raw sugar concentration, acid concentration, alkali concentration, enzyme concentration, reaction temperature, etc. A composition adjusted to have physical properties can be obtained. In addition, when particularly strict composition ratio adjustment is required, sugar, glucose, fructose, rare sugar and the like can be appropriately added and adjusted. If it is desired to increase the reaction time, productivity can be improved by applying pressure.
 また、得られる反応液の精製に関しては、通常、糖質産業で使用されているイオン交換樹脂、活性炭、およびろ過による精製を適宜用いることができ、例えば、得られる反応液から目的としない糖の分離をカラムクロマトグラフィにより除いたり、糖とキレートする薬剤を用いて沈殿分離することができる。本発明の方法によれば、カラムクロマトグラフィによる分離を行う前に著しい褐変は生じないが、カラムの寿命を考慮し、活性炭による脱臭、脱色過程などの一般的に知られる精製工程を前段に加えることもできる。また、クロマト分離様式に関しては、疑似移動相クロマトグラフィが本目的には最適であるが、特に限定されるものではない。 In addition, for purification of the obtained reaction solution, ion exchange resin, activated carbon, and purification by filtration usually used in the sugar industry can be appropriately used. Separation can be removed by column chromatography, or precipitation separation can be performed using an agent chelating with sugar. According to the method of the present invention, significant browning does not occur before separation by column chromatography, but generally known purification steps such as deodorization and decolorization processes using activated carbon are added to the previous stage in consideration of the lifetime of the column. You can also. As for the chromatographic separation mode, pseudo mobile phase chromatography is optimal for this purpose, but is not particularly limited.
 さらに、分離工程の利点を鑑みると、得られる反応液から希少糖のみを分離し、適宜、混合糖に加えて目的とする組成物にすることも可能であるので、目的とする糖の分離後に残る糖液を再利用することが可能となる。すなわち、原料糖に残糖液を再合一して再び加水分解反応工程へと導くことにより、連続プラントを構築することができるので、製造工程を簡略化することができる。
 本発明の好ましい態様を図1に図式化して示す。
Furthermore, in view of the advantages of the separation step, it is possible to separate only rare sugars from the resulting reaction solution and appropriately add to the mixed sugars to obtain the target composition. The remaining sugar solution can be reused. That is, a continuous plant can be constructed by recombining the residual sugar solution with the raw material sugar and guiding it again to the hydrolysis reaction step, so that the manufacturing process can be simplified.
A preferred embodiment of the present invention is shown schematically in FIG.
 本発明の製造方法によれば、図1に示される生産フロー(装置)を組むことが可能であり、この一連の工程をもって簡便に本発明の甘味料組成物を得ることができる。
 図1において、工程1は原料砂糖を溶解させるタンク、工程2は原料砂糖を酸加水分解するタンク、3は原料砂糖を加水分解するインベルターゼ固定化カラムである。砂糖の加水分解は、加水分解時間や反応効率などを考慮して、工程2又は3を用いることができる。次いで、4、5の工程はアルカリによる異性化工程又は酵素による異性化工程であり、何れを用いても良いが、アルカリによる異性化は、D-プシコース以外の希少糖も生成する一方、酵素による異性化は希少糖としてD-プシコースのみを生成するため、目的に応じてその工程を選択することができる。工程6は、イオン交換樹脂、活性炭、フィルター等の糖精製に用いられる一般的な精製工程である。さらに、工程7まで進めて、希少糖単品を分離取得することもできる。工程7で希少糖を分離取得した場合、残存する砂糖、ブドウ糖、果糖の混合糖液を再び工程1に戻して原料糖として再利用することができる。
According to the production method of the present invention, the production flow (apparatus) shown in FIG. 1 can be assembled, and the sweetener composition of the present invention can be easily obtained through this series of steps.
In FIG. 1, Step 1 is a tank for dissolving raw material sugar, Step 2 is a tank for acid hydrolysis of raw material sugar, and 3 is an invertase-immobilized column for hydrolyzing raw material sugar. For hydrolysis of sugar, Step 2 or 3 can be used in consideration of hydrolysis time and reaction efficiency. Next, steps 4 and 5 are an isomerization step with an alkali or an isomerization step with an enzyme, and any of them may be used. However, isomerization with an alkali also produces rare sugars other than D-psicose, whereas Since isomerization produces only D-psicose as a rare sugar, the process can be selected according to the purpose. Step 6 is a general purification step used for sugar purification of ion exchange resins, activated carbon, filters, and the like. Further, the process can proceed to step 7 to separate and acquire a rare sugar single product. When the rare sugar is separated and acquired in step 7, the remaining sugar, glucose, and fructose mixed sugar solution can be returned to step 1 and reused as the raw sugar.
 [最終生成物の用途]
 本発明により、砂糖を原料とした甘味強度および雑味の少ない甘味組成物を得ることができる。砂糖を原料としたフレーバーリリースを高める甘味組成物を得ることができる。上述した砂糖を原料とした希少糖を含む甘味料が異性化糖を原料とした甘味料よりも雑味が少なくなる利点という観点からは、砂糖の割合が、10部から75部の良好な濃厚感と甘味バランスを持つ甘味組成物を得ることができる。さらに、上述した甘味および物性面で優れ、かつ、糖尿病や肥満を併発するなどの疾病を引き起こさない甘味料という観点からは、砂糖の割合を約80部まで増加させてもインスリン分泌量が有意に低減される機能を持つ甘味組成物であることが裏付けられた。したがって、本発明は、上記の甘味料組成物を使用してなる飲食物、体重の上昇、体脂肪蓄積の上昇を抑制する旨の表示を付した飲食物に係わる。また、甘味料組成物からなる医薬品、医薬部外品、化粧品、体重の上昇、体脂肪蓄積の上昇を抑制するための医薬品、医薬部外品、化粧品に係わる。
 本発明の甘味料組成物を飲食物に利用する場合、その形態は特に限定されるものではなく、そのままの形態、オイルなどの溶媒に希釈した形態、乳液状の形態、または食品業界で一般的に使用される担体を添加した形態など、いずれの形態であってもよい。
[Use of final product]
According to the present invention, it is possible to obtain a sweetening composition having a low sweetness intensity and a little miscellaneous taste using sugar as a raw material. A sweetening composition that enhances flavor release using sugar as a raw material can be obtained. From the viewpoint of the advantage that sweeteners containing rare sugars using sugar as a raw material have less miscellaneous taste than sweeteners using isomerized sugar as a raw material, the ratio of sugar is 10 to 75 parts. A sweetening composition having a feeling and a sweetness balance can be obtained. Furthermore, from the viewpoint of a sweetener that is superior in sweetness and physical properties as described above and does not cause diseases such as diabetes and obesity, insulin secretion is significantly increased even if the proportion of sugar is increased to about 80 parts. This proved to be a sweetening composition with reduced function. Therefore, this invention relates to the food / beverage products which used the said sweetener composition, the food / beverage products which attached | subjected the display which suppresses the raise of a body weight, and a body fat accumulation. In addition, the present invention relates to a pharmaceutical comprising a sweetener composition, a quasi-drug, a cosmetic, a pharmaceutical for suppressing an increase in body weight and an increase in body fat accumulation, a quasi-drug, and a cosmetic.
When the sweetener composition of the present invention is used in foods and drinks, the form is not particularly limited, and the form as it is, the form diluted with a solvent such as oil, the emulsion form, or common in the food industry Any form such as a form to which a carrier used in the preparation is added may be used.
 本発明の甘味料組成物を利用する具体的な対象飲食物としては、以下のものを例示することができる。すなわち、洋菓子類(プリン、ゼリー、グミキャンディー、キャンディー、ドロップ、キャラメル、チューインガム、チョコレート、ペストリー、バタークリーム、カスタードグリーム、シュークリーム、ホットケーキ、パン、ポテトチップス、フライドポテト、ポップコーン、ビスケット、クラッカー、パイ、スポンジケーキ、カステラ、ワッフル、ケーキ、ドーナツ、ビスケット、クッキー、せんべい、おかき、おこし、まんじゅう、あめなど) 、乾燥麺製品(マカロニ、パスタ)、卵製品(マヨネーズ、生クリーム)、飲料(機能性飲料、乳酸飲料、乳酸菌飲料、濃厚乳性飲料、果汁飲料、無果汁飲料、果肉飲料、透明炭酸飲料、果汁入り炭酸飲料、果実着色炭酸飲料、アルコール飲料、ビール風飲料)、嗜好品(緑茶、紅茶、インスタントコーヒー、ココア、缶入りコーヒードリンク)、乳製品(アイスクリーム、ヨーグルト、コーヒー用ミルク、バター、バターソース、チーズ、発酵乳、加工乳)、ペースト類(マーマレード、ジャム、フラワーペースト、ピーナッツペースト、フルーツペースト、果実のシロップ漬け)、畜肉製品(ハム、ソーセージ、ベーコン、ドライソーセージ、ビーフジャーキー、ラード)、魚介類製品(魚肉ハム、魚肉ソーセージ、蒲鉾、ちくわ、ハンペン、魚の干物、鰹節、鯖節、煮干し、うに、いかの塩辛、スルメ、魚のみりん干し、貝の干物、鮭などの燻製品)、佃煮類(小魚、貝類、山菜、茸、昆布)、カレー類(即席カレー、レトルトカレー、缶詰カレー)、調味料(みそ、粉末みそ、醤油、粉末醤油、もろみ、魚醤、ソース、ケチャップ、オイスターソース、固形ブイヨン、焼き肉のたれ、カレールー、シチューの素、スープの素、だしの素、ペースト、インスタントスープ、ふりかけ、ドレッシング、サラダ油)、揚げ製品(油揚げ、油揚げ菓子、即席ラーメン)、豆乳、マーガリン、ショートニングなどを挙げることができる。 Specific examples of target foods and drinks using the sweetener composition of the present invention include the following. That is, confectionery (pudding, jelly, gummy candy, candy, drop, caramel, chewing gum, chocolate, pastry, butter cream, custard cream, cream puff, hot cake, bread, potato chips, french fries, popcorn, biscuits, crackers, pie , Sponge cakes, castella, waffles, cakes, donuts, biscuits, cookies, rice crackers, rice crackers, rice cakes, manju, candy, etc., dry noodle products (macaroni, pasta), egg products (mayonnaise, fresh cream), beverages (functionality) Beverages, lactic acid beverages, lactic acid bacteria beverages, concentrated milk beverages, fruit juice beverages, fruitless beverages, fruit beverages, transparent carbonated beverages, carbonated beverages with fruit juice, fruit colored carbonated beverages, alcoholic beverages, beer-like beverages), luxury products (green tea, Tea, inn Tanto coffee, cocoa, canned coffee drinks), dairy products (ice cream, yogurt, coffee milk, butter, butter sauce, cheese, fermented milk, processed milk), pastes (marmalade, jam, flower paste, peanut paste, Fruit paste, pickled fruit syrup), livestock products (ham, sausage, bacon, dry sausage, beef jerky, lard), seafood products (fish meat ham, fish sausage, salmon, chikuwa, hampen, dried fish, bonito, bonito , Boiled and dried, sea urchin, squid salted fish, squid, dried fish, shellfish, dried fish such as salmon), boiled fish (small fish, shellfish, wild vegetables, salmon, kelp), curry (instant curry, retort curry) , Canned curry), seasoning (Miso, powdered miso, soy sauce, powdered soy sauce, moromi, fish sauce, sauce, ke Cap, oyster sauce, solid bouillon, grilled meat sauce, curry roux, stew element, soup element, dashi element, paste, instant soup, sprinkle, dressing, salad oil), fried products (fried food, fried confectionery, instant ramen), Examples include soy milk, margarine, and shortening.
 また、上記飲食物は、機能性食品、栄養補助食品、あるいは健康食品の類としても用いることができる。その形態は、特に限定されるものではなく、例えば、アミノ酸バランスのとれた栄養価の高い乳蛋白質、大豆蛋白質、卵アルブミンなどの蛋白質、これらの分解物、卵白のオリゴペプチド、大豆加水分解物、アミノ酸単体の混合物などとともに、常法に従って使用することができる。また、ソフトカプセル、タブレット、フィルムなどの形態で利用することもできる。 The food and drink can also be used as functional foods, nutritional supplements, or health foods. The form is not particularly limited. For example, proteins such as milk proteins with high amino acid balance, soy protein, egg albumin, etc., their degradation products, egg white oligopeptides, soybean hydrolysates, It can be used according to a conventional method together with a mixture of amino acids alone. Moreover, it can also utilize with forms, such as a soft capsule, a tablet, and a film.
 上記栄養補助食品あるいは機能性食品の例としては、糖類、脂肪、微量元素、ビタミン類、乳化剤、香料などが配合された流動食、半消化態栄養食、成分栄養食、ドリンク剤、カプセル剤、経腸栄養剤などの加工形態を挙げることができる。これら各種飲食品のうち、例えば、スポーツドリンク、栄養ドリンクなどの飲食物は、栄養バランスや風味の向上を目的として、さらにアミノ酸、ビタミン類、ミネラル類などの栄養的添加物、甘味料、香辛料、香料、色素などを配合することもできる。 Examples of the above dietary supplements or functional foods include liquid foods, semi-digested nutritional foods, ingredient nutritional foods, drinks, capsules, sugars, fats, trace elements, vitamins, emulsifiers, fragrances, etc. Examples of processing forms such as enteral nutrients. Among these various foods and drinks, for example, foods and drinks such as sports drinks and nutritional drinks, for the purpose of improving nutritional balance and flavor, further nutritional additives such as amino acids, vitamins, minerals, sweeteners, spices, A fragrance | flavor, a pigment | dye, etc. can also be mix | blended.
 本発明の甘味料組成物は、上記のほか、糖質代謝異常および/又は脂質代謝異常改善を目的とした食品素材あるいは食品添加物として利用することができ、薬剤として使用する場合は、錠剤、カプセル剤、飲料に溶解させる用途の粉末や顆粒といった固形剤、ゼリーなどの半固形体、飲料水などの液体、希釈して用いる高濃度溶液などの形態で利用することができる。
 さらに、本発明の甘味料組成物を適宜飲食品に添加して糖質代謝異常および/又は脂質代謝異常改善を目的とした保健食又は病人食とすることもでき、任意成分として、一般に食品に添加されるビタミン類、炭水化物、色素、香料などを適宜配合することができる。その形態についても、液状、固形状、あるいは、ゼラチンなどで外包してカプセル化した軟カプセル剤の形態でもよく、該カプセルは、例えば、原料ゼラチンに水を加えて溶解し、これに可塑剤(グリセリン、D-ソルビトールなど)を加えることにより調製したゼラチン皮膜でつくることができる。
In addition to the above, the sweetener composition of the present invention can be used as a food material or food additive for the purpose of improving abnormal carbohydrate metabolism and / or abnormal lipid metabolism, and when used as a drug, It can be used in the form of capsules, solid agents such as powders and granules for use in beverages, semi-solid bodies such as jelly, liquids such as drinking water, and high-concentration solutions used after dilution.
Furthermore, the sweetener composition of the present invention can be appropriately added to foods and drinks to provide health foods or sick foods for the purpose of improving abnormal sugar metabolism and / or abnormal lipid metabolism. Vitamins, carbohydrates, pigments, fragrances and the like to be added can be appropriately blended. The form of the capsule may be liquid, solid, or a soft capsule encapsulated by gelatin or the like. For example, the capsule is dissolved by adding water to raw material gelatin, and a plasticizer ( A gelatin film prepared by adding glycerin, D-sorbitol, etc.).
 また、本発明の甘味料組成物は、家畜、家禽、ペット類の飼料用に応用することができる。例えば、ドライドッグフード、ドライキャットフード、ウェットドッグフード、ウェットキャットフード、セミモイストドックフード、養鶏用飼料、牛、豚などの家畜用飼料に配合することができる。飼料自体は、常法に従って調製することができる。
 これらの治療剤および予防剤は、ヒト以外の動物、例えば、牛、馬、豚、羊などの家畜用哺乳類、鶏、ウズラ、ダチョウなどの家禽類、は虫類、鳥類或いは小型哺乳類などのペット類、養殖魚類などにも用いることができる。
In addition, the sweetener composition of the present invention can be applied to feed for livestock, poultry and pets. For example, it can mix | blend with livestock feeds, such as dry dog food, dry cat food, wet dog food, wet cat food, semi-moist dock food, poultry feed, cattle, and pigs. The feed itself can be prepared according to a conventional method.
These therapeutic agents and prophylactic agents include non-human animals, for example, domestic mammals such as cattle, horses, pigs and sheep, poultry such as chickens, quails and ostriches, pets such as reptiles, birds and small mammals, It can also be used for farmed fish.
 また、本発明による甘味料組成物は、アスパルテーム、スクラロース、アセスルファムK、ステビア、モナチン、モネリン、ミラクリンなどの高甘味度甘味料、ソルビトール、キシリトール、エリスリトール、ラクチトール、マルチトール等の糖アルコール、ケトース、アルドースなどの甘味料とさらに混合して甘味を調節して甘味料を調製することができる。 Further, the sweetener composition according to the present invention is a high-intensity sweetener such as aspartame, sucralose, acesulfame K, stevia, monatin, monelin, miraculin, sugar alcohols such as sorbitol, xylitol, erythritol, lactitol, maltitol, ketose, Sweeteners can be prepared by adjusting the sweetness by further mixing with a sweetener such as aldose.
 本発明の甘味料組成物は、食品、保健用食品、患者用食品、食品素材、保健用食品素材、患者用食品素材、食品添加物、保健用食品添加物、患者用食品添加物、飲料、保健用飲料、患者用飲料、飲料水、保健用飲料水、患者用飲料水、薬剤、製剤原料、飼料、患畜および/又は患獣用飼料、医薬品若しくは医薬部外品、口腔用組成物、化粧品、食品添加物などの、甘味もしくは機能性を必要とするものすべてに利用することができ、安全に使用できる甘味料組成物を簡便かつ安価に提供することができる。
 また、本発明によれば、特定のヘキソースが有する生理的作用に着目した、特定のヘキソースを含有する糖組成物、および、それを用いた特定用保健食品、医薬品若しくは医薬部外品、口腔用組成物、化粧品等を提供することができ、具体的には、砂糖、ブドウ糖、果糖、およびD-プシコースを含有し、異性化する手段としてアルカリ異性化反応を選択した場合には、D-アロース等をも含有する、味質的にも物性的にも生理的にも優れた糖組成物が得られるので、資化性糖、例えば、異性化糖や砂糖に対して、味質的に優れた甘味剤、抗肥満剤、摂食抑制剤、インスリン抵抗性改善剤、低カロリー甘味剤、血圧抑制剤としての特質を持たせることが可能となる。
 特筆すべきは、得られる本発明の甘味料組成物は、これまでに知られている単糖とは異なり、低カロリーであり、食欲抑制効果を持つため、抗肥満効果も優れるなどの新たな特質を備えていいることである。また、本発明の甘味料組成物は、甘味質が砂糖に近く、カロリーが低いために、低カロリー甘味剤として幅広く使用することができる。
The sweetener composition of the present invention is a food, health food, patient food, food material, health food material, patient food material, food additive, health food additive, patient food additive, beverage, Health drinks, patient drinks, drinking water, health drinks, patient drinks, medicines, pharmaceutical ingredients, feeds, livestock and / or feeds for patients, pharmaceuticals or quasi drugs, oral compositions, cosmetics It is possible to provide a sweetener composition that can be used for all foods that require sweetness or functionality, such as food additives, and can be used safely and conveniently.
In addition, according to the present invention, a sugar composition containing a specific hexose, focusing on the physiological action of the specific hexose, and a specific health food, pharmaceutical or quasi-drug using the same, and oral use A composition, cosmetics, etc. can be provided. Specifically, it contains sugar, glucose, fructose, and D-psicose, and when an alkali isomerization reaction is selected as a means for isomerization, D-allose Can be obtained, which is superior in taste, physical properties, and physiologically, and is therefore superior in taste to assimilable sugars such as isomerized sugar and sugar. It is possible to have the characteristics as a sweetener, anti-obesity agent, antifeedant, insulin resistance improver, low calorie sweetener, blood pressure suppressor.
It should be noted that the obtained sweetener composition of the present invention is different from the monosaccharides known so far in that it has a low calorie and has an appetite suppressing effect, and therefore has a new anti-obesity effect and the like. It has the characteristics. The sweetener composition of the present invention can be widely used as a low calorie sweetener because the sweetness is close to sugar and the calories are low.
 上記飲食物は、本発明の甘味料組成物をその原料として配合することにより、加工製造することができ、上記飲食物に対する本発明の甘味料組成物の配合量は、対象となる飲食物の形態により異なるため、特に限定されるものではないが、通常、飲食物中において0.1~50質量%が好ましい。
 本発明の新規糖組成物は、ソフトドリンクや他の飲料の甘味料として広く使用されることが期待できるばかりか、食品、医薬品もしくは医薬部外品、口腔用組成物、化粧品に利用されることが期待される。
The said food / beverage products can be processed and manufactured by mix | blending the sweetener composition of this invention as the raw material, and the compounding quantity of the sweetener composition of this invention with respect to the said food / beverage products is the food / drink of object. Since it varies depending on the form, it is not particularly limited, but it is usually preferably 0.1 to 50% by mass in food and drink.
The novel sugar composition of the present invention can be expected to be widely used as a sweetener for soft drinks and other beverages, and can be used in foods, pharmaceuticals or quasi drugs, oral compositions, and cosmetics. There is expected.
 本発明を実験例および実施例によりさらに詳細に説明するが、本発明は実施例によってなんら限定されるものではない。 The present invention will be described in more detail with reference to experimental examples and examples, but the present invention is not limited to the examples.
 <実験例A:砂糖の酸加水分解>
 砂糖と塩酸を用い、砂糖3%(w/v)を含有する0.7mol/l 塩酸溶液を調整した。これを温度40℃にて20分、30分、50分、80分の加水分解をそれぞれ行った。分解液を水酸化ナトリウムで中和後、HPLC(検出器;RI、カラム;三菱化成 MCI GEL CK 08EC、移動相;水、流速; 0.4ml/min)にて分析した(この分析条件は、以降の実験例でも同様である)。
 得られた加水分解物の糖組成(%)を以下の表1に示す。
<Experimental example A: Acid hydrolysis of sugar>
A 0.7 mol / l hydrochloric acid solution containing 3% (w / v) sugar was prepared using sugar and hydrochloric acid. This was hydrolyzed at a temperature of 40 ° C. for 20 minutes, 30 minutes, 50 minutes and 80 minutes, respectively. The decomposition solution was neutralized with sodium hydroxide, and then analyzed by HPLC (detector; RI, column; Mitsubishi Kasei MCI GEL CK 08EC, mobile phase; water, flow rate; 0.4 ml / min). The same applies to the following experimental examples).
The sugar composition (%) of the obtained hydrolyzate is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、酸加水分解により得られる糖組成が、異なる濃度においても同様に分解がおこるかを確認するため、砂糖80%(w/w)溶液を90℃で酸加水分解条件において糖組成を確認したところ、分解が確認された。 
 また、酸加水分解により得られる糖組成が、異なる酸濃度によっても分解がおこるかを確認するため、塩酸濃度0.01~5 mol/lの各濃度の塩酸による加水分解で得られる糖組成を確認したところ、分解が確認された。
Next, in order to confirm whether the sugar composition obtained by acid hydrolysis is similarly decomposed even at different concentrations, the sugar composition was confirmed at 90 ° C. under the acid hydrolysis conditions for a sugar 80% (w / w) solution. As a result, decomposition was confirmed.
In addition, in order to confirm whether the sugar composition obtained by acid hydrolysis is decomposed by different acid concentrations, the sugar composition obtained by hydrolysis with hydrochloric acid having a hydrochloric acid concentration of 0.01 to 5 mol / l is used. When confirmed, decomposition was confirmed.
 <実験例B~D:砂糖の酵素加水分解>
 砂糖とインベルターゼ(MP Biomeicals, Inc.製、100unit/mg)を用い、インベルターゼ(0.003% w/w;砂糖g)を含有する3%(w/v)砂糖溶液を調整した。これを温度40℃にて20分、30分、40分の加水分解をそれぞれ行い、実施例1と同様の方法でHPLC分析を行った。
 得られた加水分解物の糖組成(%)を以下の表2に示す。
<Experimental Examples B to D: Enzymatic hydrolysis of sugar>
Using sugar and invertase (MP Biomeicals, Inc., 100 unit / mg), a 3% (w / v) sugar solution containing invertase (0.003% w / w; sugar g) was prepared. This was hydrolyzed at a temperature of 40 ° C. for 20 minutes, 30 minutes, and 40 minutes, and HPLC analysis was performed in the same manner as in Example 1.
The sugar composition (%) of the obtained hydrolyzate is shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、インベルターゼ(0.00075% w/w;砂糖g)を含有する25%(w/v)砂糖溶液を調整し、これを温度40℃にて10分、20分、30分、40分、50分、60分、70分、80分の加水分解をそれぞれ行い、同様にHPLC分析を行った。
 得られた加水分解物の糖組成(%)を以下の表3に示す。
Next, a 25% (w / v) sugar solution containing invertase (0.00075% w / w; sugar g) was prepared, and this was made at a temperature of 40 ° C. for 10 minutes, 20 minutes, 30 minutes, 40 minutes. , 50 minutes, 60 minutes, 70 minutes and 80 minutes of hydrolysis, respectively, and HPLC analysis was performed in the same manner.
The sugar composition (%) of the obtained hydrolyzate is shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 さらに、市販インべルターゼ(DSM社製;200U/mg)をイオン交換樹脂(樹脂:IRA904、カラム内径1.5cm、固定化酵素1500U/湿重量(g))に固定化し(手法については、下に示す。)、この樹脂20mlを用いて、温度45℃、送液速度 3ml/min、速度2ml/min、速度1ml/minで砂糖30%溶液を送液して反応させた。この時にカラムから溶出してくる反応液をサンプリングしてHPLC分析を行った。 
 得られた加水分解物の糖組成(%)を表4に示す。
Further, commercially available invertase (manufactured by DSM; 200 U / mg) was immobilized on an ion exchange resin (resin: IRA904, column inner diameter 1.5 cm, immobilized enzyme 1500 U / wet weight (g)). Using 30 ml of this resin, a 30% sugar solution was fed and reacted at a temperature of 45 ° C., a feeding speed of 3 ml / min, a speed of 2 ml / min, and a speed of 1 ml / min. At this time, the reaction solution eluted from the column was sampled and subjected to HPLC analysis.
Table 4 shows the sugar composition (%) of the obtained hydrolyzate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 インベルターゼ酵素の固定化:
 0.2gの市販インべルターゼ(DSM社製、200000U/g)をリン酸緩衝液(pH7)に溶解し、その200mlを20mlのカラム充填樹脂に対して4℃で通液(SV=1)させることにより、イオン交換樹脂にインベルターゼ酵素タンパク質を結合させた。固定化効率は75%であった。次いで、1Lの精製水を通液させて洗浄し、最終的に固定化酵素(1500U/湿重量(g))を得た。
Immobilization of invertase enzyme:
0.2 g of commercially available invertase (manufactured by DSM, 200000 U / g) was dissolved in a phosphate buffer (pH 7), and 200 ml of the solution was passed through a 20 ml column packed resin at 4 ° C. (SV = 1). The invertase enzyme protein was bound to the ion exchange resin. The immobilization efficiency was 75%. Subsequently, 1 L of purified water was passed through and washed to finally obtain an immobilized enzyme (1500 U / wet weight (g)).
<実験例E:砂糖の酵素加水分解物のアルカリによる異性化反応>
 実験例2における実験区C3,C4,C5で得られた酵素加水分解物の各液を0.1MNaOHとなるよう調製し、温度60℃で2時間、異性化反応を行った。異性化反応後の反応液の一部をサンプリングし、糖組成をHPLCにより分析した。
 得られたアルカリ異性化反応物の糖組成を以下の表5に示す。
<Experimental example E: Isomerization reaction of enzyme hydrolyzate of sugar with alkali>
Each solution of the enzyme hydrolyzate obtained in the experimental sections C3, C4, and C5 in Experimental Example 2 was prepared to be 0.1 M NaOH, and an isomerization reaction was performed at a temperature of 60 ° C. for 2 hours. A part of the reaction solution after the isomerization reaction was sampled, and the sugar composition was analyzed by HPLC.
The sugar composition of the resulting alkali isomerization reaction product is shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実験例F:砂糖の酵素加水分解物の酵素による異性化反応>
 実験例2における実験区C1,C3,C4,C8で得られた加水分解物を、アルスロバクター グロビホルミス M30(寄託番号NITE BP-1111)から抽出して、イオン交換樹脂に固定化した酵素に供し(固定化の手法については、下に示す)、異性化反応を行った。異性化は、温度45℃、送液速度0.5ml/minで、イオン交換樹脂50ml(樹脂:アンバーライトIRA900J、カラム内径1.5cm)に送液することにより行い、カラム溶出液をサンプリングして、その糖組成を分析した。
 得られた酵素異性化反応物の糖組成(%)を以下の表6に示す。
<Experimental Example F: Enzymatic Isomerization of Sugar Enzyme Hydrolyzate>
The hydrolyzate obtained in the experimental sections C1, C3, C4, and C8 in Experimental Example 2 was extracted from Arthrobacter globiformis M30 (deposit number NITE BP-1111) and used for the enzyme immobilized on the ion exchange resin. An isomerization reaction was performed (the immobilization technique is shown below). Isomerization is performed by feeding the solution to a 50 ml ion exchange resin (resin: Amberlite IRA900J, column inner diameter 1.5 cm) at a temperature of 45 ° C. and a feed rate of 0.5 ml / min, and sampling the column eluate. The sugar composition was analyzed.
The sugar composition (%) of the obtained enzyme isomerization reaction product is shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
※アルスロバクター属の生産する異性化酵素の固定化:
〈超音波による菌体内酵素の抽出〉
 培養により得た菌体60gを10mMリン酸緩衝液(pH7.0)600mlに懸濁し、氷水中で冷却しながら超音波ホモジナイザー(株式会社SONICS&MATERIALS)で細胞破砕後、50℃で15分間の熱ショックを与えた。この破砕物を12000rpm・20分の遠心分離により得た上清約500mlを粗酵素液とした。
〈粗酵素の固定化〉
 カラム充填したイオン交換樹脂(アンバーライトIRW904J、カラム内径1.5cm)に対し、上記粗酵素液を通液(4℃、SV=1)させ、イオン交換樹脂に粗酵素タンパク質を結合させた。次いで、1Lの精製水を通液させて洗浄し、固定化酵素を得た(固定化酵素1000U/湿重量(g))。〈通液反応〉
 原料糖として、高果糖液糖をBx30となるように10mMリン酸緩衝液(pH 7.5)を用いて調製し、送液速度0.5ml/minで上記固定化酵素樹脂50mlに送液した(40℃)。半減期は51日目であり、本固定化法は産業上、非常に優れているといえる。
* Immobilization of isomerase produced by Arthrobacter:
<Extraction of intracellular enzymes by ultrasound>
60 g of the cells obtained by culturing were suspended in 600 ml of 10 mM phosphate buffer (pH 7.0), disrupted with an ultrasonic homogenizer (SONICS & MATERIALS) while cooling in ice water, and heat shock at 50 ° C. for 15 minutes. Gave. About 500 ml of the supernatant obtained by centrifuging this crushed material at 12,000 rpm for 20 minutes was used as a crude enzyme solution.
<Immobilization of crude enzyme>
The crude enzyme solution was passed through the ion-exchange resin (Amberlite IRW904J, column inner diameter 1.5 cm) packed in the column (4 ° C., SV = 1) to bind the crude enzyme protein to the ion-exchange resin. Subsequently, 1 L of purified water was passed through and washed to obtain an immobilized enzyme (immobilized enzyme 1000 U / wet weight (g)). <Liquid reaction>
As the raw sugar, high fructose liquid sugar was prepared using 10 mM phosphate buffer (pH 7.5) so as to be Bx30, and was fed to 50 ml of the above immobilized enzyme resin at a liquid feed rate of 0.5 ml / min. (40 ° C). The half-life is 51 days, and it can be said that this immobilization method is very excellent in industry.
[実施例1]
<糖組成物の官能評価1>
 20歳代~40歳代の味覚に精通したパネラー5名を用い、実験例E、Fにおいて得た糖液の組成物(E1、E3、F1、F3)、各糖を適宜混合して作成したG1(ブドウ糖49:果糖42:D-プシコース7)、G2(ブドウ糖51:果糖36:D-プシコース10)、G3(砂糖10:ブドウ糖48:果糖38)およびG4(砂糖40:ブドウ糖25:果糖25)の各糖組成物の味質について、官能評価を行った。糖組成物はすべて固形分10%に調整したものを用い、評価は、甘味の「濃厚感」と「バランス」について、5点満点(1点:悪い~5点:非常に良い)で評価し、その結果(パネラー5名の合計点)を表7に示す。
[Example 1]
<Sensory evaluation 1 of sugar composition>
Using 5 panelists familiar with the tastes of the 20s to 40s, the composition of the sugar solution obtained in Experimental Examples E and F (E1, E3, F1, F3) and each sugar were appropriately mixed. G1 (glucose 49: fructose 42: D-psicose 7), G2 (glucose 51: fructose 36: D-psicose 10), G3 (sugar 10: glucose 48: fructose 38) and G4 (sugar 40: glucose 25: fructose 25) Sensory evaluation was performed about the taste quality of each saccharide | sugar composition. All sugar compositions were adjusted to a solid content of 10%, and the evaluation was based on a 5-point scale (1 point: bad to 5 points: very good) for the “richness” and “balance” of sweetness. Table 7 shows the results (total score of five panelists).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 G1、G2、G3およびG4と比較して、E1、E3、F1、およびF3は、濃厚感および甘味のバランスともに良好であった。
 すなわち、砂糖を最後まで完全に加水分解しないこと、かつ、この組成物にD-プシコースが存在することによって、砂糖を完全に加水分解後に異性化して得られる糖組成物と比較して、甘味の濃厚感およびバランスが改善することが明らかとなった。
また、甘味料中の砂糖の割合が10部以下の場合や、75部を超える場合には、濃厚感や、バランスが崩れる傾向が認められ、この範囲での砂糖割合に設定するように製造するのが良い。
Compared to G1, G2, G3, and G4, E1, E3, F1, and F3 had a good balance between richness and sweetness.
That is, the sugar is not completely hydrolyzed to the end, and the presence of D-psicose in this composition makes it more sweet compared to the sugar composition obtained by isomerization after complete hydrolysis of the sugar. It became clear that richness and balance improved.
Moreover, when the ratio of the sugar in a sweetener is 10 parts or less, or when it exceeds 75 parts, a thick feeling and the tendency to lose | balance are recognized, and it manufactures so that it may set to the sugar ratio in this range. Is good.
<糖組成物の官能評価2>
 次に、E1、E3、F1、F3、および、各甘味料を適宜混合して作成したH1(D-プシコース10:エリスリトール30:スクラロース0.1)、H2(D-プシコース60:エリスリトール20:スクラロース0.055)の各糖組成物の味質について、先と同様の手順で官能評価を行った。結果(パネラー5名の合計点)を表8に示す。
ただし、高甘味度甘味料を含むために甘味料組成物中の固形分を一定にして比較することは難しく、甘味料組成物の甘味度を一定にして、甘味質を比較することとした。
<Sensory evaluation 2 of sugar composition>
Next, H1 (D-psicose 10: erythritol 30: sucralose 0.1) and H2 (D-psicose 60: erythritol 20: sucralose) prepared by appropriately mixing E1, E3, F1, F3 and each sweetener. The taste of each saccharide composition of 0.055) was subjected to sensory evaluation in the same procedure as above. The results (total score of 5 panelists) are shown in Table 8.
However, since a high-intensity sweetener is included, it is difficult to compare with a solid content in the sweetener composition constant, and the sweetness of the sweetener composition is fixed to compare the sweetness.
 高甘味度甘味料は、低甘味度甘味料に比べて後味が悪い(異味がある)ということは一般的に知られており、実際、高甘味度甘味料であるスクラロースを使用した場合は、後味が悪いとの評価結果であった(表7)。高甘味度甘味料は、後味に長く残る甘味や異味があるために、先味にスッキリとした甘味を感じる糖アルコールと併用する手法が採られることが多いが、その場合でも、各甘味料の甘味質にまとまり(一体感)を持たせることは非常に難しく、それぞれの甘味料の甘味が別々に感じられてしまうという難点があるところ、本発明の甘味組成物であるE1、E3、F1、およびF3は、高甘味度甘味料を含むH1およびH2と比較して、後味に異味などの難点もなく、まとまりのある非常に好ましい甘味質となっていた。
 すなわち、砂糖、ブドウ糖、および果糖からなる甘味組成物に少なくともD-プシコースを含む希少糖を含有させた甘味料は、糖アルコールおよび高甘味度甘味料からなる甘味組成物にD-プシコースを添加した甘味料と比較した場合、より甘味質にまとまりのある甘味料であるといえる。
It is generally known that high-intensity sweeteners have a bad aftertaste (there is an odd taste) compared to low-intensity sweeteners. In fact, when using sucralose, which is a high-intensity sweetener, It was an evaluation result that the aftertaste was bad (Table 7). High-intensity sweeteners have a long-lasting sweetness and off-flavor, and are often used in combination with sugar alcohols that have a refreshing sweet taste. It is very difficult to give the sweetness a unity (a sense of unity), and there is a problem that the sweetness of each sweetener is felt separately. E1, E3, F1, which are the sweetening compositions of the present invention, Compared with H1 and H2 containing high-intensity sweeteners, F3 and F3 had a coherent and highly desirable sweetness without any drawbacks such as off-taste.
That is, a sweetener containing a rare sugar containing at least D-psicose in a sweet composition comprising sugar, glucose, and fructose is obtained by adding D-psicose to a sweet composition comprising a sugar alcohol and a high-intensity sweetener. When compared with sweeteners, it can be said that it is a sweetener with more sweet quality.
 実験例Cの手順にならって砂糖を完全に酵素加水分解した組成物を、さらに実験例Fにならい異性化酵素で異性化し、組成物I1(ブドウ糖50:果糖38:D-プシコース12)を得た。また、市販される一般的な異性化糖(ブドウ糖50:果糖45:オリゴ糖5)を実験例Fにならい異性化酵素で異性化し、組成物I2(ブドウ糖50:果糖34:D-プシコース11:オリゴ糖5)を得た。各糖組成物の味質について、上記(<糖組成物の官能評価1>)と同様の評価方法によって官能評価を行った。ただし、評価項目は「甘味の先味の立ち上がりの強さ」および「雑味」とした。 A composition obtained by completely enzymatically hydrolyzing sugar according to the procedure of Experimental Example C was further isomerized with an isomerizing enzyme according to Experimental Example F to obtain Composition I1 (glucose 50: fructose 38: D-psicose 12). It was. In addition, a commercially available general isomerized sugar (glucose 50: fructose 45: oligosaccharide 5) is isomerized with an isomerase according to Experimental Example F, and composition I2 (glucose 50: fructose 34: D-psicose 11: Oligosaccharide 5) was obtained. The taste of each sugar composition was subjected to sensory evaluation by the same evaluation method as described above (<Sensory evaluation 1 of sugar composition>). However, the evaluation items were “strength of the start of sweet taste” and “miscellaneous taste”.
 その結果、I1は、I2に比べて甘味の先味の立ち上がりが強いだけでなく、雑味が少ない点で甘味料として優れていた。このことから、砂糖を原料として上記手法により得られた異性化甘味組成物は、異性化糖を原料として上記手法により得られた異性化甘味組成物よりも、甘味料として優れているといえる。これは恐らく、市販される一般的な異性化糖に含まれるオリゴ糖などの猥雑物が、甘味の先味の立ち上がりを若干抑え、雑味を感じさせるためであると考えられる。
 この結果から、市販される一般的な異性化糖を原料とするよりも砂糖を原料とするほうが、得られる甘味組成物は、甘味料として好ましい味質であるといえる。
As a result, I1 was superior as a sweetener in terms of not only having a strong start of sweetness compared to I2, but also having less miscellaneous taste. From this, it can be said that the isomerized sweet composition obtained by the above method using sugar as a raw material is superior to the isomerized sweet composition obtained by the above method using isomerized sugar as a raw material as a sweetener. This is probably because contaminants such as oligosaccharides contained in commercially available general isomerized sugars slightly suppress the onset of the sweet taste and make it feel miserable.
From this result, it can be said that the sweet taste composition obtained using sugar as a raw material is more preferable as a sweetener than using a commercially available general isomerized sugar as a raw material.
[実施例2]
<酸性飲料の調製および官能評価1>
 上記実験例E、Fで得られた糖組成物(E1、E3、F1、F3)、各糖を適宜混合して作成したG1(ブドウ糖45:果糖42:D-プシコース7)、およびG2(ブドウ糖51:果糖36:D-プシコース10)の各糖組成物を用い、表9の配合に従って酸性飲料を調製した。この酸性飲料について、実施例1と同様にパネラー5名による官能評価を行った。その結果を表10に示す。
[Example 2]
<Preparation of acidic beverage and sensory evaluation 1>
The sugar compositions (E1, E3, F1, F3) obtained in the above Experimental Examples E and F, G1 (glucose 45: fructose 42: D-psicose 7) and G2 (glucose) prepared by appropriately mixing each sugar 51: Fructose 36: D-psicose 10) Using each saccharide composition, an acidic beverage was prepared according to the formulation shown in Table 9. About this acidic drink, the sensory evaluation by five panelists was performed similarly to Example 1. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 糖組成物そのものの官能評価結果と同様、G1およびG2と比較して、E1、E3、F1、F3の糖組成物を用いた酸性飲料は、それぞれ濃厚感および甘味バランスともに良好であった。 Similar to the sensory evaluation results of the sugar composition itself, compared to G1 and G2, the acidic beverages using the sugar compositions of E1, E3, F1, and F3 each had good richness and sweetness balance.
<酸性飲料の調製および官能評価2>
 上記実験例E、Fで得られた糖組成物(E2、F4)、各糖を適宜混合して作成したG5(ブドウ糖60:果糖38:D-プシコース10)、G6(ブドウ糖55:果糖30:D-プシコース20)、G7(砂糖36:ブドウ糖45:果糖22)、およびG8(砂糖12:ブドウ糖50:果糖33)の各糖組成物を用い、表11の配合に従って酸性飲料を調製した。この酸性飲料について、実施例1と同様に、パネラー5名による官能評価を行った。その結果を表12に示す。
<Preparation of acidic beverage and sensory evaluation 2>
G5 (glucose 60: fructose 38: D-psicose 10), G6 (dextrose 55: fructose 30: prepared by appropriately mixing the sugar compositions (E2, F4) obtained in the above experimental examples E and F. Using each sugar composition of D-psicose 20), G7 (sugar 36: glucose 45: fructose 22), and G8 (sugar 12: glucose 50: fructose 33), an acidic beverage was prepared according to the composition shown in Table 11. About this acidic drink, the sensory evaluation by five panelists was performed similarly to Example 1. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 E2、F4の糖組成物を用いた酸性飲料は、砂糖あるいはD-プシコースの何れかを欠いた糖組成物を使用した酸性飲料と比較して、濃厚感および甘味バランスともに良好であった。 Acidic beverages using E2 and F4 sugar compositions had better richness and sweetness balance than acidic beverages using sugar compositions lacking either sugar or D-psicose.
<酸性飲料の調製および官能評価3>
 上記実験例Fで得られた糖組成物F3(砂糖35:ブドウ糖33:果糖22:D-プシコース8)又は各糖を適宜混合して作成したG1(ブドウ糖45:果糖42:D-プシコース7)の各1重量部に対して、ステビア0.002部を添加して得られる組成物をそれぞれF3-1、G1-1、アセスルファムK0.003部を添加して得られる組成物をそれぞれF3-2、G1-2、アスパルテーム0.003部を添加して得られる組成物をそれぞれF3-3、G1-3とした。これら各糖組成物を用い、表13の配合に従って酸性飲料を調製した。この酸性飲料について、実施例1と同様にパネラー5名による官能評価を行った。その結果を表14に示す。
<Preparation of acidic beverage and sensory evaluation 3>
Sugar composition F3 (sugar 35: glucose 33: fructose 22: D-psicose 8) obtained in Experimental Example F or G1 (glucose 45: fructose 42: D-psicose 7) prepared by appropriately mixing each sugar The composition obtained by adding 0.002 part of stevia to 1 part by weight of each of F3-1, G1-1, and the composition obtained by adding 0.003 part of acesulfame K3 respectively. , G1-2, and 0.003 part of aspartame were designated as F3-3 and G1-3, respectively. Using each of these sugar compositions, an acidic beverage was prepared according to the formulation shown in Table 13. About this acidic drink, the sensory evaluation by five panelists was performed similarly to Example 1. The results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 その結果、砂糖を含有する甘味組成物を使用した酸性飲料は、砂糖を含有しない甘味組成物を使用した酸性飲料と比較して、後味および甘味のまとまりともに良好であった。
近年の飲食品市場においては、糖質系甘味料と高甘味度甘味料を併用してカロリーを下げつつ味質の向上を図る傾向がある。糖質系甘味料に対して高甘味度甘味料であるステビア、アセスルファムK、あるいはアスパルテームをそれぞれ併用した甘味組成物にあっては、砂糖を含ませることによって、良好な濃厚感と甘味バランスを得ることができる。
As a result, the acidic beverage using the sweet composition containing sugar was better in both aftertaste and sweetness as compared with the acidic beverage using the sweet composition containing no sugar.
In the recent food and beverage market, there is a tendency to improve the taste quality while reducing calories by using a saccharide sweetener and a high-intensity sweetener together. In a sweetening composition in which stevia, acesulfame K, or aspartame, which are high-intensity sweeteners, are used in combination with sugar-based sweeteners, a good richness and sweetness balance are obtained by including sugar. be able to.
<酸性飲料の調製および官能評価4>
 上記実験例Fで得られた糖組成物F3(砂糖35:ブドウ糖33:果糖22:D-プシコース10)、および各糖を適宜混合して作成したG1(ブドウ糖45:果糖42:D-プシコース7)を用いて表15の配合の酸性飲料を作成し、実施例1と同様の官能評価法により、各フレーバーの香り立ちを比較した。
<Preparation of acidic beverage and sensory evaluation 4>
Sugar composition F3 obtained in Experimental Example F (sugar 35: glucose 33: fructose 22: D-psicose 10) and G1 (glucose 45: fructose 42: D-psicose 7) prepared by appropriately mixing each sugar ) Was used to prepare acidic beverages having the composition shown in Table 15, and the flavors of the flavors were compared by the same sensory evaluation method as in Example 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 その結果、F3を使用した酸性飲料は、G1を使用した酸性飲料に比べてバランスのとれた甘味とともにフレーバーが引き立つことが認められた。このことから、D-プシコースかつ砂糖を含む甘味組成物は、良好な甘味バランスだけでなく、フレーバー立ちも良好となることがわかった。 As a result, it was recognized that the acidic beverage using F3 has a more balanced sweetness than the acidic beverage using G1, and the flavor is enhanced. From this, it was found that the sweetening composition containing D-psicose and sugar has not only a good sweetness balance but also good flavor standing.
[実施例3]
 糖液の低温化における結晶化は、保存時や輸送時の大きな障害となる。そこで、本砂糖を含む組成物の結晶化日数に関して、砂糖を含まない組成物と比較を行った。具体的には、70%(w/w)溶液を4℃で保存し、組成物E3、F1、G2の冷蔵保存時の結晶化に要する日数を測定した。
その結果、E3、F1、は、G2よりも結晶化に要する日数が多く、改善が認められた。このことから、砂糖を含む組成物は、砂糖を含まない組成物よりも結晶化しにくい傾向が認められ、保存輸送時に有効であることか明らかとなった。
[Example 3]
Crystallization at a low temperature of the sugar solution is a major obstacle during storage and transportation. Therefore, the number of days for crystallization of the composition containing the present sugar was compared with the composition containing no sugar. Specifically, a 70% (w / w) solution was stored at 4 ° C., and the number of days required for crystallization during refrigeration storage of compositions E3, F1, and G2 was measured.
As a result, E3, F1, and the number of days required for crystallization were larger than G2, and improvement was recognized. From this, the tendency for the composition containing sugar to be harder to crystallize than the composition containing no sugar was recognized, and it became clear that it was effective during storage and transportation.
[実施例4]
<ヒトにおける本発明の甘味料組成物が及ぼす血糖値及びインスリン分泌への影響>
 本発明の製造方法により得られた甘味料組成物、すなわち、砂糖の酵素加水分解物にアルカリを作用させて得られた各甘味料組成物をヒトに摂取させたときの血糖値及びインスリン分泌に及ぼす影響を検討した。使用した各甘味料組成物(J1~J4)の糖組成を表16に示す。なお、J1は、各甘味料組成物を得るための原料(三井製糖社製、商品名「上白糖」)であり、これを比較対照区とした。
 喫煙習慣のない健常人6名(平均年齢34.7才、男性4名、女性2名、平均BMI22.1kg/m2、平均空腹時血糖92.4mg/dL)に対し、表16に示す各甘味料組成物の38.5%水溶液を摂取させた後、血糖値及びインスリン濃度の変動を測定した。試験は、表16に記載された糖組成物水溶液を摂取させるシングルブラインド・クロスオーバー法により実施した。また、それぞれの試験は約1週間の間隔をあけて行った。
 まず、試験当日の12時間前より被験者を絶食させた後、空腹時に採血しておいた。次に、表16に示す甘味料組成物の38.5%水溶液のいずれか一つを200mL摂取させ、摂取30、60及び90分後に採血した。血液の水分調整のため、試験中は採血毎に50mLの水を摂取させ、それ以外は絶飲食とした。採血した血液の血糖値及びインスリン濃度を測定し、経時的な血糖値及びインスリン濃度の変化を記録した。得られた結果は平均値及び標準偏差で表し、統計学的検定はStudent’s t検定を用いて行った。検定の有意水準は両側5%未満とした。
 なお、血糖値の測定はグルコースCII-テストワコー(和光純薬工業社製)を用いて行い、インスリン濃度の測定は、超高感度ヒトインスリンELISAキット(Mercodia社製)を用いて行った。
[Example 4]
<Effects of the sweetener composition of the present invention on blood glucose level and insulin secretion in humans>
The sweetener composition obtained by the production method of the present invention, that is, the blood sugar level and insulin secretion when each human sweetener composition obtained by allowing alkali to act on the enzyme hydrolyzate of sugar is ingested by humans. The effect was examined. Table 16 shows the sugar composition of each sweetener composition (J1 to J4) used. J1 is a raw material for obtaining each sweetener composition (manufactured by Mitsui Sugar Co., Ltd., trade name “Kami Shirasu”), and this was used as a comparative control group.
Each of the sweet tastes shown in Table 16 is given to 6 healthy persons who have no smoking habits (average age 34.7 years old, 4 men, 2 women, average BMI 22.1 kg / m2, average fasting blood glucose 92.4 mg / dL) After ingesting a 38.5% aqueous solution of the food composition, changes in blood glucose level and insulin concentration were measured. The test was conducted by a single blind crossover method in which an aqueous sugar composition solution described in Table 16 was ingested. Each test was conducted at an interval of about one week.
First, the subjects were fasted from 12 hours before the test day, and then blood was collected on an empty stomach. Next, 200 mL of any one of the 38.5% aqueous solution of the sweetener composition shown in Table 16 was ingested, and blood was collected at 30, 60, and 90 minutes after ingestion. In order to adjust the water content of the blood, 50 mL of water was ingested for each blood collection during the test, and the rest were fasted. The blood glucose level and insulin concentration of the collected blood were measured, and changes in blood glucose level and insulin concentration over time were recorded. The results obtained were expressed as mean values and standard deviations, and statistical tests were performed using Student's t test. The significance level of the test was less than 5% on both sides.
The blood glucose level was measured using Glucose CII-Test Wako (Wako Pure Chemical Industries, Ltd.), and the insulin concentration was measured using an ultrasensitive human insulin ELISA kit (Mercodia).
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 各甘味料組成物の水溶液摂取からの経過時間(分)を横軸にとり、その経過時間毎の血糖値数値を縦軸にプロットして得られる血糖値曲線下面積の数値結果を図2に示す。その結果、J3はJ1の約81.0%、J4はJ1の70.0%まで低減しており、本発明の甘味料は砂糖に比べて有意に血糖値上昇を抑制することがわかった。一方、J2はJ1の約93.1%まで低減していたが、有意差はみられなかった。
 なお、血糖値曲線下面積の数値は、J1が50.4mg・h/dL、J2が46.9mg・h/dL、J3が40.8mg・h/dL、J4が35.3mg・h/dLであった。
FIG. 2 shows the numerical results of the area under the blood glucose level curve obtained by plotting the elapsed time (minutes) from the intake of the aqueous solution of each sweetener composition on the horizontal axis and plotting the blood glucose level for each elapsed time on the vertical axis. . As a result, J3 was reduced to about 81.0% of J1, and J4 was reduced to 70.0% of J1, and it was found that the sweetener of the present invention significantly suppressed an increase in blood sugar level as compared with sugar. On the other hand, J2 was reduced to about 93.1% of J1, but no significant difference was observed.
In addition, the numerical value of the area under the blood glucose level curve is 50.4 mg · h / dL for J1, 46.9 mg · h / dL for J2, 40.8 mg · h / dL for J3, and 35.3 mg · h / dL for J4. Met.
 インスリン濃度曲線下面積の結果を図3に示す。J2はJ1の約70.2%、J4はJ1の61.7%まで低減しており、有意にインスリン分泌が抑制されることがわかった。一方、J3はJ1の約80.9%まで低減したが、有意差はみられなかった。
 なお、インスリン曲線下面積は、J1が28.2mU・h/L、J2が19.8mU・h/L、J3が22.8mU・h/L、J4が17.4mU・h/Lであった。
The results of the area under the insulin concentration curve are shown in FIG. J2 was reduced to about 70.2% of J1, and J4 was reduced to 61.7% of J1, indicating that insulin secretion was significantly suppressed. On the other hand, J3 was reduced to about 80.9% of J1, but no significant difference was observed.
The area under the insulin curve was 28.2 mU · h / L for J1, 19.8 mU · h / L for J2, 22.8 mU · h / L for J3, and 17.4 mU · h / L for J4. .
 砂糖を摂取した場合、体内酵素により砂糖はブドウ糖及び果糖へ分解され、ブドウ糖に相当する部分が血糖値の上昇及びインスリン分泌量の増加に関与する。よって、対照区J1(砂糖)は、砂糖の1/2に相当する部分(50%)が血糖値の上昇及びインスリン分泌量の増加に関与することになり、本発明の甘味料組成物J2、J3、及びJ4については、砂糖の1/2に相当する部分に加えてブドウ糖が関与することになるので、それぞれ48.7%、49.0%、及び46.8%が血糖値の上昇及びインスリン分泌量の増加に関与することになる。
 よって、本発明の甘味料組成物J2、J3及びJ4を摂取した場合、J1と同様の血糖値上昇及びインスリン分泌量の増加が観察されると推測されたが、意外にもJ2はインスリン分泌量がとくに有意に低減され、J3は血糖値上昇が特に有意に抑制され、J4に至っては、血糖値及びインスリン分泌量の両者ともが有意に低減されていた。
 すなわち、本発明の甘味料組成物は、砂糖とほぼ同等の甘味質であるにも関わらず、摂取時に血糖値上昇及び/又はインスリン分泌量を抑制する効果が付与された甘味料として利用できうる。
When sugar is ingested, sugar is broken down into glucose and fructose by internal enzymes, and a portion corresponding to glucose is involved in an increase in blood glucose level and an increase in insulin secretion. Therefore, in the control group J1 (sugar), a part (50%) corresponding to 1/2 of sugar is involved in the increase in blood glucose level and the increase in insulin secretion, and the sweetener composition J2 of the present invention, As for J3 and J4, glucose is involved in addition to the portion corresponding to 1/2 of sugar, so that 48.7%, 49.0%, and 46.8% increase blood glucose level and It will be involved in an increase in insulin secretion.
Therefore, when the sweetener compositions J2, J3 and J4 of the present invention were ingested, it was estimated that the same increase in blood glucose level and increase in insulin secretion amount as in J1 were observed. Was particularly significantly reduced, and in J3, the increase in blood glucose level was particularly significantly suppressed. In J4, both the blood glucose level and the amount of insulin secretion were significantly reduced.
That is, the sweetener composition of the present invention can be used as a sweetener that is imparted with an effect of suppressing an increase in blood glucose level and / or insulin secretion amount when ingested, although it has a sweetness almost equivalent to that of sugar. .
 本発明の甘味料は、砂糖を原料とし、最終的に得られる甘味料組成物中に砂糖を残存させる組成とすることがより望ましいが、仮に、砂糖を完全に分解し、最終的に砂糖を残存させない甘味料組成物を得てから適宜砂糖を添加しても、同様の組成の甘味料組成物が得られる。
 そこで、参考までに、再表2010/113785号公報に記載される方法により製造される糖組成物(組成物としては、本発明の甘味料組成物の砂糖部分を除いたものに相当)に砂糖を添加して得られる上記J2~J4相当の糖組成物を調製し、実施例4と同様のヒト試験を行ったところ、ほぼ同様の結果が得られた。
It is more desirable that the sweetener of the present invention has a composition in which sugar is used as a raw material and the sugar is left in the finally obtained sweetener composition. Even when sugar is added as appropriate after obtaining a sweetener composition that does not remain, a sweetener composition having the same composition can be obtained.
Therefore, for reference, the sugar composition produced by the method described in Table 2010/113785 (as the composition is equivalent to the one obtained by removing the sugar portion of the sweetener composition of the present invention) When a sugar composition corresponding to the above-mentioned J2 to J4 obtained by adding A was prepared and a human test similar to that of Example 4 was performed, almost the same results were obtained.
 以上より、本発明の甘味料組成物は血糖値及び/又はインスリン分泌を抑制する効果を有する甘味料組成物であり、糖尿病罹患リスクを低減する効果が期待できる甘味料組物といえる。また、該甘味料を継続的に摂取することで、究極的には体脂肪蓄積を低減できる可能性がある。 From the above, the sweetener composition of the present invention is a sweetener composition having an effect of suppressing blood sugar level and / or insulin secretion, and can be said to be a sweetener composition that can be expected to reduce the risk of developing diabetes. In addition, continuous intake of the sweetener may ultimately reduce body fat accumulation.
 本発明の新規糖組成物は、ソフトドリンクや他の飲料の甘味料として広く使用されることが期待できるばかりか、食品、医薬品もしくは医薬部外品、口腔用組成物、化粧品に利用されることが期待される。また、本発明の新規糖組成物は、低い生産コストで大量生産して提供することが可能となるため、用途範囲がさらに拡大されることが期待される。 The novel sugar composition of the present invention can be expected to be widely used as a sweetener for soft drinks and other beverages, and can be used in foods, pharmaceuticals or quasi drugs, oral compositions, and cosmetics. There is expected. Moreover, since the novel sugar composition of the present invention can be mass-produced and provided at a low production cost, it is expected that the application range will be further expanded.
1 砂糖溶解タンク
2 加水分解タンクおよび中和タンク
3 インベルターゼ固定化カラム
4 異性化タンク
5 エピメラーゼ固定化タンク
6 精製装置
7 分離装置
1 Sugar dissolution tank 2 Hydrolysis tank and neutralization tank 3 Invertase immobilization column 4 Isomerization tank 5 Epimerase immobilization tank 6 Purification apparatus 7 Separation apparatus

Claims (15)

  1.  砂糖を原料とし、原料砂糖の加水分解により砂糖加水分解物である砂糖、D-グルコースおよびD-フラクトースの混合物、または、D-グルコースおよびD-フラクトースの混合物を得る工程、および該砂糖加水分解物を異性化することにより最終生成物である砂糖、D-グルコース、D-フラクトース、および少なくともD-プシコースを含む希少糖の混合物、または、D-グルコース、D-フラクトースおよび少なくともD-プシコースを含む希少糖の混合物を得る工程を経ること、原料砂糖の加水分解反応の程度により、最終生成物中の砂糖の含量を調節すること、最終生成物は、砂糖、D-グルコース、D-フラクトース、および少なくともD-プシコース含む希少糖を特定の組成割合で含ませるようにした、または、D-グルコース、D-フラクトース、および少なくともD-プシコースを含む希少糖を特定の組成割合で含ませるようにしたことを特徴とする甘味料組成物の製造方法。 A step of obtaining sugar, a mixture of D-glucose and D-fructose, or a mixture of D-glucose and D-fructose by hydrolysis of the raw material sugar, and the sugar hydrolyzate Is a mixture of rare sugars containing sugar, D-glucose, D-fructose, and at least D-psicose, or a rare product containing D-glucose, D-fructose, and at least D-psicose. Through a step of obtaining a mixture of sugars, adjusting the sugar content in the final product according to the degree of hydrolysis reaction of the raw sugar, the final product comprising sugar, D-glucose, D-fructose, and at least D-psicose-containing rare sugar was included at a specific composition ratio, or D-glucose Over scan, D- fructose, and a method for making a sweetener composition, characterized in that the rare saccharide to be included in a particular composition ratio comprising at least D- psicose.
  2.  原料砂糖の加水分解工程は、酸および/または酵素を用いた分解により、砂糖加水分解物を異性化する工程は、アルカリ異性化、カルシウムイオンの触媒作用を用いた異性化および/または酵素異性化により行われる、請求項1記載の甘味料組成物の製造方法。 The process of hydrolyzing the raw material sugar is a process of isomerizing the sugar hydrolyzate by acid and / or enzyme decomposition, alkali isomerization, isomerization using calcium ion catalysis and / or enzyme isomerization. The method for producing a sweetener composition according to claim 1, wherein
  3.  アルカリ異性化は、D-プシコース、D-アロース、D,L-ソルボース、D-タガトース、およびD-マンノースを含む希少糖を生成し、最終生成物は、これら単糖と、砂糖、D-グルコースおよびD-フラクトースとの混合物、または、D-グルコースおよびD-フラクトースとの混合物となる、請求項2記載の甘味料組成物の製造方法。 Alkaline isomerization produces rare sugars including D-psicose, D-allose, D, L-sorbose, D-tagatose, and D-mannose, and the final product consists of these monosaccharides, sugar, D-glucose The method for producing a sweetener composition according to claim 2, wherein the mixture is a mixture with D-fructose or a mixture with D-glucose and D-fructose.
  4.  酵素異性化は、果糖からD-プシコースが生成するのみで、最終生成物は、D-プシコースと、砂糖、D-グルコースおよびD-フラクトースとの混合物、または、D-グルコースおよびD-フラクトースとの混合物となる、請求項2記載の甘味料組成物の製造方法。 Enzymatic isomerization only produces D-psicose from fructose, and the final product is a mixture of D-psicose and sugar, D-glucose and D-fructose, or D-glucose and D-fructose. The manufacturing method of the sweetener composition of Claim 2 used as a mixture.
  5.  酵素異性化は、アルスロバクター グロビホルミス M30(寄託番号NITE BP-1111)由来の異性化酵素を使用して行われる、請求項2または4記載の甘味料組成物の製造方法。 The method for producing a sweetener composition according to claim 2 or 4, wherein the enzyme isomerization is performed using an isomerase derived from Arthrobacter Globiformis M30 (deposit number NITE BP-1111).
  6.  酵素異性化は、1000U/湿重量樹脂(g)の活性を有する固定化酵素を使用して行われる、請求項2、4または5記載の甘味料組成物の製造方法。 The method for producing a sweetener composition according to claim 2, 4 or 5, wherein the enzyme isomerization is performed using an immobilized enzyme having an activity of 1000 U / wet weight resin (g).
  7.  最終生成物が甘味強度および雑味の少ない甘味組成物である請求項1ないし6のいずれかに記載の甘味料組成物の製造方法。。 The method for producing a sweetener composition according to any one of claims 1 to 6, wherein the final product is a sweetness composition having a low sweetness intensity and a little miscellaneous taste. .
  8.  最終生成物がフレーバーリリースを高める甘味組成物である請求項1ないし6のいずれかに記載の甘味料組成物の製造方法。 The method for producing a sweetener composition according to any one of claims 1 to 6, wherein the final product is a sweetening composition that enhances flavor release.
  9.  最終生成物が、砂糖の割合が10部から75部の良好な濃厚感と甘味バランスを持つ甘味組成物である請求項1ないし6のいずれかに記載の甘味料組成物の製造方法。 The method for producing a sweetener composition according to any one of claims 1 to 6, wherein the final product is a sweetening composition having a good richness and a sweetness balance with a sugar ratio of 10 to 75 parts.
  10.  最終生成物が、砂糖の割合が10部から80部のインスリン分泌量が有意に低減される機能を持つ甘味組成物である請求項1ないし6のいずれかに記載の甘味料組成物の製造方法。 The method for producing a sweetener composition according to any one of claims 1 to 6, wherein the final product is a sweetening composition having a function of significantly reducing the amount of insulin secretion with a sugar ratio of 10 to 80 parts. .
  11.  請求項1ないし10のいずれかに記載の製造方法により得られた甘味料組成物。 A sweetener composition obtained by the production method according to any one of claims 1 to 10.
  12.  請求項11に記載の甘味料組成物を使用してなる飲食物。 Food and drink comprising the sweetener composition according to claim 11.
  13.  体重の上昇、体脂肪蓄積の上昇を抑制する旨の表示を付した請求項12に記載の飲食物。 The food and drink according to claim 12, which is labeled to suppress an increase in body weight and an increase in body fat accumulation.
  14.  請求項11に記載の甘味料組成物からなる医薬品、医薬部外品、化粧品。 Pharmaceuticals, quasi-drugs and cosmetics comprising the sweetener composition according to claim 11.
  15.  体重の上昇、体脂肪蓄積の上昇を抑制するための請求項14に記載の医薬品、医薬部外品、化粧品。
     
    The pharmaceutical product, quasi-drug, and cosmetic product according to claim 14 for suppressing an increase in body weight and an increase in body fat accumulation.
PCT/JP2014/058922 2013-04-08 2014-03-27 Sweetener composition, method for manufacturing same and use thereof WO2014168018A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157032013A KR102213209B1 (en) 2013-04-08 2014-03-27 Sweetener composition, method for manufacturing same and use thereof
CN201480020243.XA CN105163603A (en) 2013-04-08 2014-03-27 Sweetener composition, method for manufacturing same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013080574A JP6250946B2 (en) 2012-12-26 2013-04-08 Sweetener composition, method for producing the same, and use thereof
JP2013-080574 2013-04-08

Publications (1)

Publication Number Publication Date
WO2014168018A1 true WO2014168018A1 (en) 2014-10-16

Family

ID=51690145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058922 WO2014168018A1 (en) 2013-04-08 2014-03-27 Sweetener composition, method for manufacturing same and use thereof

Country Status (3)

Country Link
KR (1) KR102213209B1 (en)
CN (1) CN105163603A (en)
WO (1) WO2014168018A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219756A (en) * 2015-07-17 2016-01-06 江南大学 A kind of L-rhamnulose-1-phosphate aldolase is catalyzing and synthesizing the application in rare sugar
WO2016186338A1 (en) * 2015-05-15 2016-11-24 주식회사 삼양사 Psicose mixed sugar composition having improved sweetness quality and crystallization
EP3138413A1 (en) 2015-08-14 2017-03-08 Pfeifer & Langen GmbH & Co. KG Rare sugars
CN107109448A (en) * 2015-03-26 2017-08-29 松谷化学工业株式会社 The manufacture method of sweetener composition containing psicose
WO2020096006A1 (en) * 2018-11-08 2020-05-14 国立大学法人香川大学 Method for producing rare sugar-containing composition and rare sugar-containing composition
CN113825410A (en) * 2019-03-29 2021-12-21 Cj第一制糖株式会社 Mixed sugar compositions

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505219A (en) * 2016-03-09 2019-02-28 シージェイ チェルジェダン コーポレイション Sweetener with improved acid resistance of oligosaccharide, food containing the same, and method for improving acid resistance of oligosaccharide
CN107495110B (en) * 2017-08-30 2018-10-09 含山县长通食品制造有限公司 A kind of peppery item of benefit iron
CN109022521B (en) * 2018-09-18 2023-05-05 上海立足生物科技有限公司 Method for preparing D-psicose from starch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142860A1 (en) * 2007-05-18 2008-11-27 Matsutani Chemical Industry Co., Ltd. Novel sweetener having sugar-like taste and production method and use of the same
WO2010113785A1 (en) * 2009-03-30 2010-10-07 松谷化学工業株式会社 Method for producing sugar composition containing definite amount of target hexose and having sugar composition ratio different from starting sugar material, and use of sugar composition thus produced
JP2011205913A (en) * 2010-03-29 2011-10-20 Kishoto Seisan Gijutsu Kenkyusho:Kk Complex crystalline sugar of functional isomerized sugar and method for producing the same
WO2013005800A1 (en) * 2011-07-06 2013-01-10 松谷化学工業株式会社 Enzyme produced by arthrobacter globiformis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333969B2 (en) 1992-10-08 2002-10-15 株式会社林原生物化学研究所 D-Ketohexose-3-epimerase, its production method and use
JP4499882B2 (en) 2000-07-07 2010-07-07 株式会社林原生物化学研究所 Method for producing aldohexose using D-xylose isomerase
DE102005052674A1 (en) 2005-11-04 2007-05-10 Robert Bosch Gmbh Sealing disk, in particular for sealing a fuel injector with respect to an engine block, and fuel injector
US8675528B2 (en) 2010-11-15 2014-03-18 Sharp Laboratories Of America, Inc. Configuring uplink control information (UCI) reporting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142860A1 (en) * 2007-05-18 2008-11-27 Matsutani Chemical Industry Co., Ltd. Novel sweetener having sugar-like taste and production method and use of the same
WO2010113785A1 (en) * 2009-03-30 2010-10-07 松谷化学工業株式会社 Method for producing sugar composition containing definite amount of target hexose and having sugar composition ratio different from starting sugar material, and use of sugar composition thus produced
JP2011205913A (en) * 2010-03-29 2011-10-20 Kishoto Seisan Gijutsu Kenkyusho:Kk Complex crystalline sugar of functional isomerized sugar and method for producing the same
WO2013005800A1 (en) * 2011-07-06 2013-01-10 松谷化学工業株式会社 Enzyme produced by arthrobacter globiformis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109448A (en) * 2015-03-26 2017-08-29 松谷化学工业株式会社 The manufacture method of sweetener composition containing psicose
WO2016186338A1 (en) * 2015-05-15 2016-11-24 주식회사 삼양사 Psicose mixed sugar composition having improved sweetness quality and crystallization
CN107809914A (en) * 2015-05-15 2018-03-16 株式会社三养社 The sugared mixture for including psicose with improved sweetness quality and crystallization
US11202460B2 (en) 2015-05-15 2021-12-21 Samyang Corporation Saccharide mixture containing psicose with improved sweetness quality and crystallization
CN105219756A (en) * 2015-07-17 2016-01-06 江南大学 A kind of L-rhamnulose-1-phosphate aldolase is catalyzing and synthesizing the application in rare sugar
EP3138413A1 (en) 2015-08-14 2017-03-08 Pfeifer & Langen GmbH & Co. KG Rare sugars
WO2020096006A1 (en) * 2018-11-08 2020-05-14 国立大学法人香川大学 Method for producing rare sugar-containing composition and rare sugar-containing composition
JPWO2020096006A1 (en) * 2018-11-08 2021-09-24 国立大学法人 香川大学 Method for Producing Rare Sugar-Containing Composition and Rare Sugar-Containing Composition
JP7002159B2 (en) 2018-11-08 2022-02-08 国立大学法人 香川大学 Method for Producing Rare Sugar-Containing Composition and Rare Sugar-Containing Composition
EP3878966A4 (en) * 2018-11-08 2022-10-26 National University Corporation Kagawa University Method for producing rare sugar-containing composition and rare sugar-containing composition
CN113825410A (en) * 2019-03-29 2021-12-21 Cj第一制糖株式会社 Mixed sugar compositions
EP3925453A4 (en) * 2019-03-29 2022-05-04 CJ Cheiljedang Corporation Mixed saccharide composition

Also Published As

Publication number Publication date
CN105163603A (en) 2015-12-16
KR20150139611A (en) 2015-12-11
KR102213209B1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP6250946B2 (en) Sweetener composition, method for producing the same, and use thereof
US9109266B2 (en) Process of producing sugar composition comprising D-psicose and D-allose via strong alkaline isomerization of D-glucose/D-fructose or alkaline pre-treatment of D-glucose/D-fructose followed by isomerization in the presence of a basic ion exchange resin
WO2014168018A1 (en) Sweetener composition, method for manufacturing same and use thereof
EP2156751B1 (en) Novel sweetener having sugar-like taste and production method and use of the same
RU2562839C2 (en) Saccharide polycondensation product, method for production thereof and use thereof
JP4560104B2 (en) Non-reducing saccharide-forming enzyme, its production method and use
AU2010237335B2 (en) Trehalulose-containing composition, its preparation and use
JP2011205913A (en) Complex crystalline sugar of functional isomerized sugar and method for producing the same
KR101974975B1 (en) Composition for improving in vivo metabolism parameter
JP7002159B2 (en) Method for Producing Rare Sugar-Containing Composition and Rare Sugar-Containing Composition
JP3100139B2 (en) Manufacturing method of food and drink
KR100401350B1 (en) Non-reducing saccharides, their preparations and uses
JP3681193B2 (en) α-Isomaltosyl α-isomaltoside, production method thereof and use
JP7217089B2 (en) Blood sugar elevation inhibitor and oral composition containing the same
WO2022234671A1 (en) Method for mass-producing sweetener having flavor quality similar to that of sugar and having d-allulose functionality
JPS6251585B2 (en)
JP4417465B2 (en) Novel disaccharide, sweetener, process for producing the disaccharide and enzyme
JPH08214871A (en) Bifidus proliferation promoter, its production and use thereof
JPS5856628B2 (en) Manufacturing method for food and drinks, etc.
JPH01199557A (en) Food and drink
JP2012206963A (en) Mannose-containing composition having suppressed bitterness of mannose

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020243.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157032013

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14783523

Country of ref document: EP

Kind code of ref document: A1