WO2014167959A1 - Variable damping force damper - Google Patents

Variable damping force damper Download PDF

Info

Publication number
WO2014167959A1
WO2014167959A1 PCT/JP2014/057383 JP2014057383W WO2014167959A1 WO 2014167959 A1 WO2014167959 A1 WO 2014167959A1 JP 2014057383 W JP2014057383 W JP 2014057383W WO 2014167959 A1 WO2014167959 A1 WO 2014167959A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
opening
damping force
closing
piston
Prior art date
Application number
PCT/JP2014/057383
Other languages
French (fr)
Japanese (ja)
Inventor
清志 中島
和彦 島田
貴之 大森
良雄 尾上
小川 和男
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480020054.2A priority Critical patent/CN105102851B/en
Publication of WO2014167959A1 publication Critical patent/WO2014167959A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3484Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of the annular discs per se, singularly or in combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/464Control of valve bias or pre-stress, e.g. electromagnetically

Definitions

  • the present invention relates to a damping force variable damper.
  • Patent Document 1 discloses a hydraulic shock absorber (variable damping force) that adjusts damping force by opening and closing a valve hole formed in a piston (piston assembly) that slides in a cylinder with a compression side check valve (opening / closing portion). Damper) is described.
  • the pressure check valve adjusts the opening / closing strength by adjusting the magnetic force generated when electric power is supplied to the electromagnetic solenoid, thereby adjusting the damping force.
  • the pressure side check valve of the hydraulic shock absorber described in Patent Document 1 extends in a radial direction from a piston rod that is the center of a piston, and is configured to be pushed open by the pressure of hydraulic oil flowing through the valve hole. ing.
  • the pressure-side check valve is configured to bend by the pressure received from the hydraulic oil and open the valve hole. The longer the distance between the piston rod and the valve hole, the easier it is to bend and the valve hole to be opened easily. In other words, if the distance between the piston rod and the valve hole is short, the pressure side check valve is difficult to bend, and a large pressure is required to open the pressure side check valve.
  • the present invention provides a damping force variable damper capable of suitably adjusting the damping force by opening and closing the hydraulic oil channel that generates a damping force by generating a flow resistance in the working oil with good responsiveness by the valve means. Is an issue.
  • the present invention is slidably accommodated in a cylinder filled with hydraulic oil, and divides the cylinder into a first fluid chamber and a second fluid chamber in a sliding direction, and the first fluid.
  • a damping force variable damper having a piston assembly in which a hydraulic fluid passage through which the hydraulic fluid can flow is communicated with a chamber and the second fluid chamber, and the hydraulic fluid passage is openable and closable
  • the piston assembly includes a piston body in which a valve hole forming a part of the hydraulic oil passage is formed, a coil that generates magnetic force when power is supplied, and a valve that opens and closes the valve hole.
  • the valve means has an opening / closing part that extends from the outer periphery toward the center, opens and closes the valve hole, and is attracted to the piston body side by the magnetic force,
  • a length along the opening / closing part from an operating point that receives pressure from the hydraulic oil flowing through the valve hole to the outer peripheral part is longer than a distance from the operating point to the outer peripheral part. It is characterized by.
  • the length of the opening and closing part of the valve means for opening and closing the hydraulic oil flow path through which the hydraulic oil that generates the damping force acting on the piston assembly can be increased, and the flexible opening and closing part is low in rigidity. It can be.
  • the opening / closing part with low rigidity bends quickly in response to changes in the pressure of the hydraulic oil flowing through the hydraulic oil flow path, and therefore operates with good response to changes in the pressure of the hydraulic oil flowing through the hydraulic oil flow path.
  • the oil channel can be opened and closed. Therefore, the opening / closing part having low rigidity can adjust the damping force acting on the piston assembly with good responsiveness.
  • the opening / closing part of the present invention is characterized in that it extends in a spiral shape from the outer peripheral part toward the center side.
  • an opening / closing part that is curved in a spiral shape from the outer peripheral part toward the center side.
  • the opening / closing portion having such a shape, the length along the opening / closing portion from the operating point to the outer peripheral portion can be increased.
  • valve means of the present invention is configured such that at least one second valve plate is disposed while at least two first valve plates are laminated, and the first valve plate and the second valve plate are: An outer edge portion that forms the outer peripheral portion by stacking, and a movable portion that forms the opening and closing portion by stacking, and at least a part of the movable portion of the second valve plate is formed by the first valve. It overlaps with at least one part of two said movable parts which a plate adjoins.
  • the opening and closing parts of the valve means are configured to interfere with each other in the direction in which the adjacent opening and closing parts are bent by the second valve plate. As a result, it is avoided that one opening / closing part opens and closes the hydraulic oil flow path alone, and all the hydraulic oil flow paths open and close simultaneously. Therefore, the step change of the damping force generated by opening and closing the plurality of hydraulic oil passages in steps is suppressed.
  • the present invention is characterized in that a plurality of the valve holes are formed in the piston main body, and an opening / closing auxiliary member is provided that is disposed across all the opening / closing portions that respectively open and close the plurality of valve holes. .
  • an opening / closing auxiliary member disposed across all of the plurality of opening / closing portions formed in the valve means, thereby making it possible to simultaneously open / close the plurality of valve holes. Therefore, it is avoided that one opening / closing part opens and closes the hydraulic oil passage alone, and all the hydraulic oil passages open and close at the same time. And the step change of the damping force which arises when a some hydraulic fluid flow path opens and closes in steps is suppressed.
  • valve means of the present invention is configured by laminating at least two first valve plates, and the first valve plate is laminated with an outer edge portion that forms the outer peripheral portion, and is laminated with the opening / closing portion.
  • the opening / closing auxiliary member is disposed between the stacked first valve plates.
  • the opening / closing auxiliary member disposed across all the opening / closing portions formed in the valve means can be disposed between the stacked first valve plates.
  • valve hole of the present invention is characterized in that it is formed closer to the center than the coil provided so as to surround the piston body.
  • the valve hole can be arranged near the center. Therefore, the distance from the outer peripheral portion to the valve hole can be increased, and thereby the length along the opening / closing portion from the operating point to the outer peripheral portion can be increased.
  • variable damping force damper that can suitably adjust the damping force by opening and closing the hydraulic fluid passage that generates a flow resistance in the hydraulic oil to generate a damping force with a valve means.
  • FIG. 1 It is a block diagram of a damping force variable damper. It is a perspective view which shows the structure of a piston assembly. It is sectional drawing of a piston assembly.
  • A) is a perspective view which shows the structure of a laminated valve
  • (b) is a top view of a 1st valve plate
  • (c) is a top view of a 2nd valve plate.
  • (A) is a perspective view showing a lifter
  • (b) is a plan view showing a lifter provided on the first valve plate
  • (c) shows a lifter provided between the stacked first valve plates. It is sectional drawing.
  • FIG. 1 is a configuration diagram of a damping force variable damper
  • FIG. 2 is a perspective view showing a structure of a piston assembly
  • FIG. 3 is a sectional view of the piston assembly.
  • the damping force variable damper 10 of this embodiment is a shock absorber that actively changes the damping force and absorbs vibrations generated in the vehicle 11.
  • the damping force variable damper 10 includes a cylindrical cylinder 12, a piston assembly 14 slidably accommodated in the cylinder 12, and a piston rod connected to the piston assembly 14 and protruding from the upper end portion 12 a of the cylinder 12. 16.
  • the up-down direction (Up, Down) of the damping force variable damper 10 is set with the upper end portion 12a side from which the piston rod 16 protrudes as the upper side (Up).
  • a coil 15 connected to the control unit 22 (Cont.) Via the wire harness 21 is provided in the piston assembly 14.
  • the coil 15 is configured to be supplied with electric power from a power source 24 such as a battery (Batt.).
  • the inside of the cylinder 12 is filled with a liquid (hydraulic oil 13), and the piston assembly 14 is slidable in the vertical direction (in the axial direction of the cylinder 12) indicated by an arrow.
  • the inside of the cylinder 12 is divided into a first fluid chamber (upper hydraulic chamber 31) and a second fluid chamber (lower hydraulic chamber 32) on the upper end portion 12a side by the piston assembly 14. It is partitioned in the sliding direction (vertical direction).
  • the damping force variable damper 10 configured as described above causes the piston assembly 14 to slide in the direction of the arrow (vertical direction) within the cylinder 12 when a pressure for displacing the piston rod 16 is applied from the vehicle 11.
  • a damping force is generated by moving the hydraulic oil 13 between the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32.
  • the lower hydraulic pressure chamber 32 of the cylinder 12 is partitioned from the reserve chamber 60 by the bottom valve 100.
  • the bottom valve 100 is formed with a plurality of communication passages 100a communicating with the lower hydraulic pressure chamber 32 and the reserve chamber 60.
  • the plurality of communication passages 100a are either the first control valve 110a or the second control valve 110b. On the other hand, it is opened and closed.
  • the first control valve 110 a is opened when the pressure of the hydraulic oil 13 in the lower hydraulic pressure chamber 32 (hereinafter referred to as “lower chamber hydraulic pressure”) becomes lower than a predetermined pressure, and the first control valve 110 a is opened from the reserve chamber 60.
  • This is a check valve that permits the flow of the hydraulic oil 13 in one direction toward the lower hydraulic pressure chamber 32.
  • the second control valve 110b opens when the lower chamber hydraulic pressure becomes higher than a predetermined pressure, and permits the flow of the hydraulic oil 13 in one direction from the lower hydraulic chamber 32 to the reserve chamber 60. This is a check valve.
  • the pressure of the hydraulic oil 13 in the upper hydraulic pressure chamber 31 is hereinafter referred to as “upper hydraulic pressure”.
  • the reserve chamber 60 is partitioned by a gas chamber 61 that is filled with appropriately pressurized gas and a free piston 60a.
  • the free piston 60a is slidable in the cylinder 12 in the vertical direction.
  • the pressure of the gas filled in the gas chamber 61 is applied to the hydraulic oil 13 filled in the lower hydraulic pressure chamber 32 and the upper hydraulic pressure chamber 31, and the lower chamber hydraulic pressure and the upper chamber hydraulic pressure are set to the gas chamber. 61 is maintained equal to the pressure of the gas charged in the gas.
  • the damping force variable damper 10 operates with the atmospheric pressure of the gas filled in the gas chamber 61 as the initial internal pressure.
  • the damping force variable damper 10 of the present embodiment changes the damping force by adjusting the flow resistance of the hydraulic oil 13 flowing between the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32 defined by the piston assembly 14.
  • the piston assembly 14 is structured as shown in FIGS. As shown in FIGS. 2 and 3, the piston assembly 14 includes, from the piston rod 16 side, a piston main body 18 in which the coil 15 is sheathed, a seal core 17 a, valve means (laminated valve 20), a nonmagnetic stopper 17 b, and a conveyor. Pistons 30 are arranged in series in this order.
  • An outer yoke 17 is disposed around the piston body 18, and the coil 15 is sealed in the outer yoke 17 by a seal core 17a. Further, a female thread is formed on the piston body 18 and a male thread is formed on the piston rod 16, and the piston rod 16 is screwed into the piston body 18 and fastened and fixed. In addition, as shown in FIG. 3, it is preferable that the outer yoke 17, the piston main body 18, and the seal core 17a are appropriately liquid-tightly sealed with a seal member such as an O-ring 19.
  • a plurality of valve holes 18a penetrates the piston body 18 in the axial direction, and the laminated valve 20 is configured to open and close the valve holes 18a. Details of the laminated valve 20 will be described later.
  • the nonmagnetic stopper 17b and the convex piston 30 are attached to the piston body 18 by nonmagnetic bolts 18b fastened and fixed to the piston body 18.
  • the laminated valve 20 is sandwiched and fixed between the nonmagnetic stopper 17b and the piston body 18. As shown in FIG. 3, the nonmagnetic stopper 17b is formed with a space region 17b1 into which the hydraulic oil 13 that has passed through the laminated valve 20 flows, at a position facing the valve hole 18a of the piston body 18. preferable.
  • a piston ring 30a made of an elastic body such as rubber is mounted on the outer periphery of the convex piston 30.
  • the piston ring 30 a closes the gap between the peripheral wall of the cylinder 12 and the piston assembly 14. With this configuration, the piston assembly 14 slides on the cylinder 12.
  • the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32 of the cylinder 12 are liquid-tightly divided by the piston ring 30a.
  • positioned between the convex piston 30 and the nonmagnetic stopper 17b may be sufficient.
  • the non-magnetic stopper 17b, the spacer member 33, and the conveyor piston 30 each have a flow path for the hydraulic oil 13, and the flow paths communicate with each other to form the hydraulic oil flow path 130.
  • a communication hole 171 that connects the valve hole 18 a of the piston body 18 and the upper hydraulic pressure chamber 31 is also formed in the outer yoke 17.
  • the hydraulic fluid passage 130 formed in the nonmagnetic stopper 17b communicates the space region 17b1 into which the hydraulic fluid 13 flows and the lower hydraulic pressure chamber 32, and the hydraulic fluid 13 that has flowed into the spatial region 17b1 flows into the hydraulic fluid passage. It is preferable to be configured to flow into the lower hydraulic pressure chamber 32 via 130. With this configuration, the hydraulic fluid passage 130 including the communication hole 171, the valve hole 18 a, and the space region 17 b 1 is formed, and the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32 communicate with each other through the hydraulic fluid passage 130.
  • the damping force variable damper 10 of the present embodiment has a hydraulic oil flow path 130 (communication hole 171, valve hole 18a, space in the direction from the upper hydraulic pressure chamber 31 toward the lower hydraulic pressure chamber 32 or in the opposite direction.
  • a damping force that attenuates the displacement of the piston assembly 14 is generated by the flow path resistance of the hydraulic oil 13 (see FIG. 1) that flows through the region 17b1).
  • the piston body 18 is preferably formed of a magnetic material such as a steel material. If the piston body 18 is a magnetic body, when power is supplied to the coil 15, an electromagnet having the piston body 18 as an iron core is formed and magnetic force is generated. Further, the magnetic piston body 18 is itself magnetized.
  • the piston assembly 14 provided in the damping force variable damper 10 of the present embodiment is configured as shown in FIGS. Then, the valve hole 18 a formed in the piston body 18 is closed by the laminated valve 20, and a damping force is generated by the channel resistance generated when the hydraulic oil 13 flowing through the valve hole 18 a pushes the laminated valve 20 open.
  • FIG. 4 (a) is a perspective view showing the structure of the laminated valve
  • FIG. 4 (b) is a plan view of the first valve plate
  • FIG. 4 (c) is a plan view of the second valve plate.
  • 5A is a perspective view showing the lifter
  • FIG. 5B is a plan view showing the lifter disposed on the first valve plate
  • FIG. 5C is a view between the stacked first valve plates. It is sectional drawing which shows the lifter arrange
  • first valve plates 200 are laminated, and one or more sheets are provided between the laminated first valve plates 200.
  • the second valve plate 201 is provided.
  • the plurality of first valve plates 200 may be fixed to each other by bonding, welding, or the like, or in a state of being pressed by the nonmagnetic stopper 17b (see FIG. 2) and the piston body 18 without being fixed to each other.
  • a configuration provided in the damping force variable damper 10 may be used.
  • the number of first valve plates 200 (about 10 to 30) is not limited.
  • the laminated valve 20 has an opening / closing portion 20a that is bent and elastically deformed so as to open and close the valve hole 18a of the piston body 18 (open and close the valve hole 18a).
  • the opening / closing portion 20a extends from the outer peripheral portion 20b formed in an annular shape toward the center, and is pressed from the piston body 18 side by the hydraulic oil 13 (see FIG. 1) flowing through the valve hole 18a, as shown in FIG.
  • the valve hole 18a is opened by bending so as to enter a gap (retreat space 17b2) appropriately formed in the nonmagnetic stopper 17b.
  • the opening / closing part 20a of the laminated valve 20 is pushed open by the hydraulic oil 13 flowing through the valve hole 18a.
  • the opening / closing part 20a of the laminated valve 20 preferably has an elastic force that returns to the valve hole 18a. With such a configuration, the opening / closing part 20a can open and close the valve hole 18a. As described above, since the valve hole 18a is a part of the hydraulic oil passage 130 (see FIG. 3), the opening / closing portion 20a of the laminated valve 20 opens and closes the hydraulic oil passage 130.
  • the first valve plate 200 is a thin plate-like member, and as shown in FIG. 4B, movable parts 200a are formed so as to correspond to the number and positions of the valve holes 18a of the piston main body 18.
  • the movable part 200a extends from the annular outer edge part 200b that forms the outer peripheral part 20b of the laminated valve 20 when laminated to the center, and a slit 200c is formed between the movable part 200a and the adjacent movable part 200a. Yes.
  • one movable part 200a is formed between the two slits 200c, and is configured so that the plurality of movable parts 200a do not interfere with each other.
  • the opening / closing portion 20a is formed by the portion where the movable portions 200a are laminated. Is done.
  • the edge part by the side of the outer edge part 200b may be formed circularly, for example.
  • the slit 200c By forming the slit 200c having such a shape, stress concentration does not occur on the outer edge portion 200b side of the slit 200c, and the first valve plate 200 is damaged such that the outer edge portion 200b is broken from the slit 200c. It becomes difficult to do.
  • the first valve plate 200 of the present embodiment is formed with a spiral curve toward the center so that the slit 200c wraps around the outer edge portion 200b in the circumferential direction. Accordingly, the movable portion 200a extends from the outer edge portion 200b toward the center side in a spiral shape, and exhibits a curved shape. Furthermore, since the opening / closing part 20a of the laminated valve 20 is formed by laminating the movable part 200a, the opening / closing part 20a of the laminated valve 20 is also extended from the outer peripheral part 20b toward the center side, and is spirally formed. It becomes a curved shape that curves.
  • the movable portion 200a is configured to bend in a direction away from the piston body 18 by pressure received from the hydraulic oil 13 (see FIG. 1) flowing through the valve hole 18a. Further, the movable portion 200a has a length (reference numeral L1) from a position where the pressure is received from the hydraulic oil 13 (action point P1) to a fixed end P2 on the outer edge portion 200b side (indicated by a two-dot chain line in FIG. 4B). The longer it is, the easier it is to bend.
  • the length L1 here indicates a length along the movable portion 200a, and indicates a length (flexible length) that can be actually bent.
  • the valve hole 18a is opened even if the pressure input to the action point P1 is small.
  • the first valve plate 200 having a low rigidity of the movable portion 200a can be obtained. Since the movable portion 200a is formed on the center side from the fixed end P2, the outer edge portion 200b is located outside the fixed end P2.
  • the length (length L1) along the movable portion 200a indicates, for example, the length along an imaginary line that connects the midpoints between the slits 200c on both sides of one movable portion 200a. Shall. Alternatively, it may be a length along one of the slits 200c.
  • the movable part 200a having a spiral shape extending from the action point P1 is longer than the length L2 of the movable part 200a having a shape linearly extending from the action point P1 in the radial direction of the first valve plate 200. Can be lengthened. Therefore, the movable part 200a having a shape that spirals from the action point P1 is more easily bent than the movable part having a shape that linearly extends in the radial direction from the action point P1.
  • the length L2 of the movable portion 200a in which the movable portion 200a linearly extends from the action point P1 in the radial direction of the first valve plate 200 is the distance from the action point P1 to the fixed end P2, and the action point The distance is from P1 to the outer edge portion 200b.
  • the laminated valve 20 of the present embodiment is formed by laminating the first valve plate 200. That is, the outer edge portion 200b of the first valve plate 200 is laminated to form the outer peripheral portion 20b of the laminated valve 20, and the movable portion 200a of the first valve plate 200 is laminated to form the opening / closing portion 20a of the laminated valve 20. .
  • the opening / closing part 20a of the laminated valve 20 is an opening / closing part from a position that closes the valve hole 18a (a position that receives pressure from the hydraulic oil 13 and corresponds to the operating point P1 of the first valve plate 200) to the outer peripheral part 20b.
  • the length L1 along 20a is formed longer than the length L2 corresponding to the distance from the action point P1 to the outer peripheral portion 20b.
  • the opening / closing part 20a formed in this way has low rigidity and is easily bent
  • the opening / closing part 20a of the laminated valve 20 of the present embodiment has low rigidity and is easily bent.
  • the opening / closing part 20a having low rigidity can open and close the valve hole 18a with high responsiveness in accordance with a change in pressure received from the hydraulic oil 13 flowing through the valve hole 18a.
  • the first valve plate 200 of the present embodiment is preferably formed of a magnetic material such as a steel plate. If the first valve plate 200 is a magnetic body, the movable portion 200a is attracted toward the piston body 18 when electric power is supplied to the coil 15 (see FIG. 1) to generate magnetic force. Therefore, the opening / closing portion 20 a that is attracted to the piston main body 18 by the magnetic force generated when electric power is supplied to the coil 15 can be provided. Furthermore, if the piston body 18 is a magnetic body, the opening / closing part 20a can be adsorbed to the magnetized piston body 18.
  • the generated magnetic force is adjusted by adjusting the power supplied to the coil 15. Therefore, by adjusting the electric power supplied to the coil 15, the adsorption force when the opening / closing part 20a is adsorbed by the piston body 18 is adjusted.
  • the hydraulic oil 13 flowing through the valve hole 18a becomes difficult to bend the opening / closing portion 20a, and the valve hole 18a is hardly opened. Accordingly, the flow resistance of the hydraulic oil 13 flowing through the valve hole 18a is increased, and the damping force acting on the piston assembly 14 (see FIG. 2) is increased. Conversely, when the magnetic force attracting the opening / closing portion 20a to the piston body 18 is weakened, the hydraulic oil 13 flowing through the valve hole 18a easily deflects the opening / closing portion 20a, and the valve hole 18a is easily opened.
  • the flow resistance of the hydraulic oil 13 flowing through the valve hole 18a is reduced, and the damping force acting on the piston assembly 14 is reduced.
  • the opening / closing portion 20a can be made magnetic, and the damping force acting on the piston assembly 14 can be adjusted.
  • the responsiveness of opening / closing the valve hole 18a when the magnetic force attracting the opening / closing portion 20a to the piston body 18 is weakened is improved.
  • the laminated valve 20 also has one opening / closing part with respect to one valve hole 18a. 20a is formed. Therefore, each valve hole 18a is opened and closed independently, and the timing at which each valve hole 18a opens and closes may not be synchronized. For example, when each valve hole 18a is opened in order, the damping force changes (decreases) each time the valve hole 18a is opened, so that the damping force of the damping force variable damper 10 (see FIG. 1) changes (decreases) stepwise. As a result, irregular vibration may occur in the vehicle 11 (see FIG. 1), resulting in a decrease in ride comfort.
  • the laminated valve 20 has a configuration in which all the valve holes 18a are simultaneously opened and closed. Therefore, at least one second valve plate 201 is disposed between the stacked first valve plates 200 in the stacked valve 20 of the present embodiment. As shown in FIG. 4C, the second valve plate 201 has substantially the same shape as the first valve plate 200, and the movable parts 201a correspond to the number and positions of the movable parts 200a of the first valve plate 200. Is formed.
  • the movable portion 201a extends from an annular outer edge portion 201b having the same outer diameter as the first valve plate 200 toward the center, and a slit 201c is formed between the movable portion 201a and the adjacent movable portion 201a.
  • the slit 201c of the second valve plate 201 is also formed in a spiral curve toward the center so as to circulate in the circumferential direction from the outer edge portion 201b, and the movable portion 201a is also spiral-shaped toward the center side from the outer edge portion 201b. It extends so as to wrap around and exhibits a curved shape.
  • the movable portion 201a of the second valve plate 201 has an end portion (tip portion t1) on the center side spreading in the circumferential direction.
  • the fixed end portion P3 of the second valve plate 201 (indicated by a two-dot chain line in FIG. 4C) has the same shape as the fixed end P2 of the first valve plate 200, the respective fixed ends P2,
  • the tip t1 of the movable portion 201a of the second valve plate 201 is adjacent to the two movable portions 200a of the first valve plate 200. It is configured to overlap over a part of the.
  • the second valve plate 201 having such a shape When the second valve plate 201 having such a shape is disposed between the stacked first valve plates 200, one movable part 200 a of the first valve plate 200 is moved to the movable part of the second valve plate 201. Through 201a, it interferes with the adjacent movable part 200a in the direction of bending (in the direction of deformation).
  • the laminated valve 20 is configured such that the adjacent opening / closing portions 20a interfere with each other in the bending direction. Therefore, even if the pressure sufficient for one opening / closing part 20a of the laminated valve 20 to bend is received from the hydraulic oil 13 (see FIG. 1), the bending of the opening / closing part 20a is restricted by the adjacent opening / closing part 20a.
  • bulb 20 may be sufficient.
  • the lifter 25 is, for example, a sheet metal member that is formed in a disc shape (ring) that closes the valve hole 18a, and is preferably open at the center so that the non-magnetic bolt 18b (see FIG. 2) can be inserted therethrough.
  • the lifter 25 is preferably formed so as to extend over all the movable parts 200a of the first valve plate 200 constituting the laminated valve 20, and the lifter 25 is configured by this configuration.
  • the spacer member 210 is preferably disposed at a position facing the outer peripheral portion 20b (see FIG. 4A) of the laminated valve 20.
  • the laminated valve 20 is connected to all the opening / closing parts 20 a by lifters 25. Therefore, even if the pressure sufficient for one opening / closing part 20a of the laminated valve 20 to be bent is received from the hydraulic oil 13 (see FIG. 1), the bending of the opening / closing part 20a is restricted by the lifter 25. And when the laminated valve 20 receives sufficient pressure from the hydraulic oil 13 for all the opening / closing parts 20a to bend, all the opening / closing parts 20a are bent and all the valve holes 18a are simultaneously opened. Therefore, the damping force with respect to the operation of the piston assembly 14 (see FIG. 1) changes at a stretch, and the reduction in riding comfort that occurs when the damping force changes stepwise is suppressed. Thus, by providing the lifter 25, the opening / closing part 20a of the laminated valve 20 is configured to be able to open and close the valve hole 18a of the piston body 18 simultaneously.
  • the lifter 25 is a member having a function equivalent to that of the second valve plate 201 shown in FIG. Accordingly, the lifter 25 may be provided instead of the second valve plate 201, or the second valve plate 201 and the lifter 25 may be provided together. Further, as illustrated in FIG. 5C, a configuration may be employed in which the lifter 25 is disposed between the stacked first valve plates 200. In this case, as shown in FIG. 5C, a configuration may be employed in which a spacer member 210 having an annular shape with the same thickness as the lifter 25 is disposed around the lifter 25. The spacer member 210 is preferably disposed on the outer edge portion 200b (see FIG. 4B).
  • At least one of the movable parts 200a of the first valve plate 200 and at least one of the movable parts 201a of the second valve plate 201 have through holes. It is preferable that H1 is formed. Furthermore, in the laminated valve 20, it is preferable that the through holes H1 of all the first valve plates 200 and the through holes H1 of the second valve plates 201 communicate with each other.
  • the laminated valve 20 is disposed on the lower hydraulic pressure chamber 32 side of the piston body 18, and the opening / closing portion 20 a (see FIG. 4A) is pressure from the hydraulic fluid 13 from the lower hydraulic pressure chamber 32 side.
  • the valve hole 18a is not opened even if it is received. Therefore, through holes H1 are provided in the first valve plate 200 and the second valve plate 201 to secure a flow path through which the hydraulic oil 13 flows from the lower hydraulic pressure chamber 32 to the upper hydraulic pressure chamber 31. Accordingly, when the pressure of the hydraulic oil 13 in the lower hydraulic pressure chamber 32 is higher than the pressure of the hydraulic oil 13 in the upper hydraulic pressure chamber 31, the hydraulic oil 13 in the lower hydraulic pressure chamber 32 can be caused to flow into the upper hydraulic pressure chamber 31. it can.
  • FIG.5 (b) it is preferable that the through-hole H1 is formed also in the lifter 25. As shown in FIG.
  • the damping force variable damper 10 (see FIG. 1) of the present embodiment has a magnetic force that attracts the opening / closing portion 20a (see FIG. 4 (a)) of the laminated valve 20 to the piston body 18 (see FIG. 2).
  • the adjustment adjusts the damping force for the operation of the piston assembly 14 (see FIG. 2).
  • the laminated valve 20 is formed by laminating a plurality of first valve plates 200 (see FIG. 4B), and the opening / closing part 20a is a movable part 200a of the first valve plate 200 (see FIG. 4B). ) Are laminated.
  • the movable portion 200a of the first valve plate 200 has a curved shape that extends and curves in a spiral shape from the outer edge portion 200b (see FIG.
  • the length L1 from the action point P1 receiving the pressure of FIG. 1) to the fixed end P2 on the outer edge 200b (see FIG. 4B) side is set to be long. Specifically, the length L1 (flexible length) from the action point P1 to the fixed end P2 is longer than the length L2 when the action point P1 extends linearly in the radial direction of the first valve plate 200. Is set.
  • the opening / closing part 20a (see FIG. 4A) of the laminated valve 20 has a length L1 from the action point P1 to the outer peripheral part 20b (see FIG. 4A), which is from the action point P1 to the outer peripheral part 20b. It is set longer than the distance (length L2). Therefore, the laminated valve 20 (see FIG. 4A) has a low rigidity of the opening / closing part 20a. Therefore, when the magnetic force attracting the opening / closing portion 20a to the piston body 18 is weak, the laminated valve 20 can open and close the valve hole 18a (see FIG. 4A) with high response.
  • the laminated valve 20 (see FIG. 4A) in which at least one second valve plate 201 (see FIG. 4C) is disposed between the laminated first valve plates 200 (see FIG. 4B). Reference).
  • the laminated valve 20 can open and close all the valve holes 18a (see FIG. 4A) at the same time, and the problem that occurs in the vehicle 11 (see FIG. 1) when the valve holes 18a open and close in stages. A decrease in ride comfort due to regular vibration is suppressed.
  • the laminated valve 20 is provided with a lifter 25 disposed across all the opening / closing portions 20a. As a result, the laminated valve 20 can open and close all of the valve holes 18a at the same time, and a decrease in riding comfort due to irregular vibration generated in the vehicle 11 when the valve holes 18a are opened and closed in stages is suppressed.
  • the piston assembly 14 (see FIG. 2) of the present embodiment is configured such that the coil 15 (see FIG. 1) is externally mounted on the outer periphery of the piston main body 18 (see FIG. 2).
  • the valve hole 18a is formed on the inner peripheral side (center side) of the coil 15.
  • the valve hole 18a can be formed in the position away from the outer periphery of the piston main body 18, and the length L1 (flexible length) of the movable part 200a shown in FIG.4 (b) can be lengthened. Accordingly, the movable portion 200a can be easily bent with low rigidity, and the rigidity of the opening / closing portion 20a (see FIG. 4A) of the laminated valve 20 can be reduced.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed in design without departing from the spirit of the invention.
  • the shape of the first valve plate 200 shown in FIG. 4B and the shape of the second valve plate 201 shown in FIG. 4C are merely examples, and are required for the damping force variable damper 10 (see FIG. 1).
  • the movable portions 200a and 201a may have any shape as long as the shape has rigidity sufficient to satisfy the performance to be performed.
  • the number of second valve plates 201 (see FIG. 4B) disposed in the laminated valve 20 (see FIG. 2) is not limited to one, and two or more second valve plates 201 are disposed.
  • the laminated valve 20 may be disposed.
  • valve means provided in the damping force variable damper 10 is a laminated valve (see FIG. 2) in which the first valve plate 200 (see FIG. 4 (b)) is laminated.
  • the valve means may be formed integrally with the opening / closing portion 20a (see FIG. 4A).
  • the member corresponding to the second valve plate 201 may be configured to be attached to the end.
  • the tip portion t1 (see FIG. 4C) of the movable portion 201a is the first valve plate. It was set as the structure which straddles over two adjacent movable parts 200a of 200. FIG. However, it is sufficient that at least a part of the movable portion 201a of the second valve plate 201 overlaps with two adjacent movable portions 200a of the first valve plate 200, and the tip portion t1 has two adjacent movable portions. It is not limited to the structure which overlaps over the part 200a.
  • variable damping force damper 10 of the present embodiment is a monotube damper in which the reserve chamber 60 and the gas chamber 61 are formed in the cylinder 12, but the reserve chamber 60 and the gas chamber 61 are used. May be a twin tube type formed outside the cylinder 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

A variable damping force damper is configured so that a piston assembly, which is housed within a cylinder in a slidable manner and which divides the cylinder into an upper hydraulic chamber and a lower hydraulic chamber, is configured so as to include: a piston body (18) which has valve holes (18a) through which hydraulic oil flows between the upper hydraulic chamber and the lower hydraulic chamber; and a laminated valve (20) which opens and closes the valve holes (18a). The variable damping force damper is characterized in that the laminated valve (20) has an outer peripheral section (20b) and opening/closing sections (20a), the opening/closing sections (20a) being extended from the outer peripheral section (20b) toward the center of the laminated valve (20) and opening and closing the valve holes (18a), the opening/closing sections (20a) being each configured in such a manner that the distance (L1) measured from the point (P1) of application, to which the pressure of the hydraulic oil flowing through the valve holes (18a) is applied, to the outer peripheral section (20b) measured along the opening/closing section (20a) is greater than a distance (L2) corresponding to the distance from the point (P1) of application to the outer peripheral section (20b).

Description

減衰力可変ダンパVariable damping force damper
 本発明は、減衰力可変ダンパに関する。 The present invention relates to a damping force variable damper.
 例えば特許文献1には、シリンダ内を摺動するピストン(ピストン組立体)に形成されるバルブ孔を圧側チェックバルブ(開閉部)で開閉することによって減衰力を調節する油圧緩衝器(減衰力可変ダンパ)が記載されている。
 この圧側チェックバルブは、電磁ソレノイドに電力が供給されたときに生じる磁力の調節で開閉の強度が調節され、これによって減衰力が調節される。
For example, Patent Document 1 discloses a hydraulic shock absorber (variable damping force) that adjusts damping force by opening and closing a valve hole formed in a piston (piston assembly) that slides in a cylinder with a compression side check valve (opening / closing portion). Damper) is described.
The pressure check valve adjusts the opening / closing strength by adjusting the magnetic force generated when electric power is supplied to the electromagnetic solenoid, thereby adjusting the damping force.
特公平1-47323号公報Japanese Examined Patent Publication No. 1-47323
 特許文献1に記載される油圧緩衝器の圧側チェックバルブは、ピストンの中心となるピストンロッドから径方向に延設されており、バルブ孔を流通する作動油の圧力で押し開けられるように構成されている。圧側チェックバルブは作動油から受ける圧力で撓んでバルブ孔を開放する構成であり、ピストンロッドとバルブ孔の距離が長いほど撓みやすく、バルブ孔を開放しやすい。換言すると、ピストンロッドとバルブ孔の距離が短いと圧側チェックバルブが撓みにくくなり、圧側チェックバルブを押し開くために大きな圧力が必要になる。 The pressure side check valve of the hydraulic shock absorber described in Patent Document 1 extends in a radial direction from a piston rod that is the center of a piston, and is configured to be pushed open by the pressure of hydraulic oil flowing through the valve hole. ing. The pressure-side check valve is configured to bend by the pressure received from the hydraulic oil and open the valve hole. The longer the distance between the piston rod and the valve hole, the easier it is to bend and the valve hole to be opened easily. In other words, if the distance between the piston rod and the valve hole is short, the pressure side check valve is difficult to bend, and a large pressure is required to open the pressure side check valve.
 つまり、ピストンロッドとバルブ孔の距離が短いと、電磁ソレノイドに電力が供給されて生じる磁力が弱くても圧側チェックバルブを押し開くために大きな圧力が必要になり、バルブ孔を流通する作動油の圧力の変化に対する圧側チェックバルブの応答性が低下する。このように応答性が低下すると、速やかな減衰力の調節が不可能になり、当該油圧緩衝器が備わる車両の乗り心地が低下するという問題が生じる。 In other words, if the distance between the piston rod and the valve hole is short, even if the magnetic force generated by supplying power to the electromagnetic solenoid is weak, a large pressure is required to push open the pressure side check valve. The response of the pressure side check valve to the change of pressure is lowered. When the responsiveness is reduced as described above, it becomes impossible to quickly adjust the damping force, which causes a problem that the riding comfort of the vehicle equipped with the hydraulic shock absorber is lowered.
 そこで本発明は、作動油に流路抵抗を生じさせて減衰力を発生させる作動油流路をバルブ手段で応答性よく開閉して減衰力を好適に調節可能な減衰力可変ダンパを提供することを課題とする。 Therefore, the present invention provides a damping force variable damper capable of suitably adjusting the damping force by opening and closing the hydraulic oil channel that generates a damping force by generating a flow resistance in the working oil with good responsiveness by the valve means. Is an issue.
 前記課題を解決するため本発明は、作動油が充填されているシリンダに摺動可能に収納されて前記シリンダを摺動方向に第1流体室と第2流体室に区画するとともに前記第1流体室と前記第2流体室を連通して前記作動油が流通可能な作動油流路が形成されているピストン組立体を有し、前記作動油流路が開閉可能に構成される減衰力可変ダンパとする。そして、前記ピストン組立体は、前記作動油流路の一部をなすバルブ孔が形成されているピストン本体と、電力が供給されたときに磁力を発生するコイルと、前記バルブ孔を開閉するバルブ手段と、を含んで構成され、前記バルブ手段は、外周部から中心に向かって延設されて前記バルブ孔を開閉し、前記磁力で前記ピストン本体の側に吸引される開閉部を有し、前記開閉部は、前記バルブ孔を流通する前記作動油から圧力を受ける作用点から前記外周部までの当該開閉部に沿った長さが、前記作用点から前記外周部までの距離よりも長いことを特徴とする。 In order to solve the above-mentioned problem, the present invention is slidably accommodated in a cylinder filled with hydraulic oil, and divides the cylinder into a first fluid chamber and a second fluid chamber in a sliding direction, and the first fluid. A damping force variable damper having a piston assembly in which a hydraulic fluid passage through which the hydraulic fluid can flow is communicated with a chamber and the second fluid chamber, and the hydraulic fluid passage is openable and closable And The piston assembly includes a piston body in which a valve hole forming a part of the hydraulic oil passage is formed, a coil that generates magnetic force when power is supplied, and a valve that opens and closes the valve hole. The valve means has an opening / closing part that extends from the outer periphery toward the center, opens and closes the valve hole, and is attracted to the piston body side by the magnetic force, In the opening / closing part, a length along the opening / closing part from an operating point that receives pressure from the hydraulic oil flowing through the valve hole to the outer peripheral part is longer than a distance from the operating point to the outer peripheral part. It is characterized by.
 本発明によると、ピストン組立体に作用する減衰力を生じさせる作動油が流通する作動油流路を開閉するバルブ手段の開閉部の長さを長くすることができ、剛性が低く撓みやすい開閉部とすることができる。剛性が低い開閉部は、作動油流路を流通する作動油の圧力の変化に速やかに対応して撓むため、作動油流路を流通する作動油の圧力の変化に対して応答性よく作動油流路を開閉することができる。したがって、剛性が低い開閉部は、ピストン組立体に作用する減衰力を応答性よく調節できる。 According to the present invention, the length of the opening and closing part of the valve means for opening and closing the hydraulic oil flow path through which the hydraulic oil that generates the damping force acting on the piston assembly can be increased, and the flexible opening and closing part is low in rigidity. It can be. The opening / closing part with low rigidity bends quickly in response to changes in the pressure of the hydraulic oil flowing through the hydraulic oil flow path, and therefore operates with good response to changes in the pressure of the hydraulic oil flowing through the hydraulic oil flow path. The oil channel can be opened and closed. Therefore, the opening / closing part having low rigidity can adjust the damping force acting on the piston assembly with good responsiveness.
 また、本発明の前記開閉部は、前記外周部から中心の側に向かって渦巻状に湾曲して延設されていることを特徴とする。 Further, the opening / closing part of the present invention is characterized in that it extends in a spiral shape from the outer peripheral part toward the center side.
 本発明によると、外周部から中心の側に向かって渦巻状に湾曲する形状の開閉部とすることができる。このような形状の開閉部とすることによって、作用点から外周部までの開閉部に沿った長さを長くすることができる。 According to the present invention, it is possible to provide an opening / closing part that is curved in a spiral shape from the outer peripheral part toward the center side. By using the opening / closing portion having such a shape, the length along the opening / closing portion from the operating point to the outer peripheral portion can be increased.
 また、本発明の前記バルブ手段は、少なくとも2つの第1バルブプレートが積層する間に少なくとも1つの第2バルブプレートが配設されて構成され、前記第1バルブプレートと前記第2バルブプレートは、積層して前記外周部を形成する外縁部と、積層して前記開閉部を形成する可動部と、をそれぞれ有し、前記第2バルブプレートの前記可動部の少なくとも一部が、前記第1バルブプレートの隣接する2つの前記可動部の少なくとも一部に重なっていることを特徴とする。 Further, the valve means of the present invention is configured such that at least one second valve plate is disposed while at least two first valve plates are laminated, and the first valve plate and the second valve plate are: An outer edge portion that forms the outer peripheral portion by stacking, and a movable portion that forms the opening and closing portion by stacking, and at least a part of the movable portion of the second valve plate is formed by the first valve. It overlaps with at least one part of two said movable parts which a plate adjoins.
 本発明によると、バルブ手段の開閉部は、第2バルブプレートによって、隣接する開閉部が撓む方向に互いに干渉するように構成される。これによって、1つの開閉部が単独で作動油流路を開閉することが回避され、全ての作動油流路が同時に開閉する構成になる。したがって、複数の作動油流路が段階的に開閉することによって生じる減衰力の段階的な変化が抑制される。 According to the present invention, the opening and closing parts of the valve means are configured to interfere with each other in the direction in which the adjacent opening and closing parts are bent by the second valve plate. As a result, it is avoided that one opening / closing part opens and closes the hydraulic oil flow path alone, and all the hydraulic oil flow paths open and close simultaneously. Therefore, the step change of the damping force generated by opening and closing the plurality of hydraulic oil passages in steps is suppressed.
 また、本発明は、前記ピストン本体に複数の前記バルブ孔が形成され、複数の前記バルブ孔をそれぞれ開閉する全ての前記開閉部にまたがって配設される開閉補助部材が備わることを特徴とする。 Further, the present invention is characterized in that a plurality of the valve holes are formed in the piston main body, and an opening / closing auxiliary member is provided that is disposed across all the opening / closing portions that respectively open and close the plurality of valve holes. .
 本発明によると、バルブ手段に形成される複数の開閉部の全てにまたがって配設される開閉補助部材が備わり、これによって複数のバルブ孔を一斉に開閉させることが可能になる。したがって、1つの開閉部が単独で作動油流路を開閉することが回避され、全ての作動油流路が同時に開閉する構成になる。そして、複数の作動油流路が段階的に開閉することによって生じる減衰力の段階的な変化が抑制される。 According to the present invention, there is provided an opening / closing auxiliary member disposed across all of the plurality of opening / closing portions formed in the valve means, thereby making it possible to simultaneously open / close the plurality of valve holes. Therefore, it is avoided that one opening / closing part opens and closes the hydraulic oil passage alone, and all the hydraulic oil passages open and close at the same time. And the step change of the damping force which arises when a some hydraulic fluid flow path opens and closes in steps is suppressed.
 また、本発明の前記バルブ手段は、少なくとも2つの第1バルブプレートが積層されて構成され、前記第1バルブプレートは、積層して前記外周部を形成する外縁部と、積層して前記開閉部を形成する可動部と、をそれぞれ有し、前記開閉補助部材は、積層されている前記第1バルブプレートの間に配設されていることを特徴とする。 Further, the valve means of the present invention is configured by laminating at least two first valve plates, and the first valve plate is laminated with an outer edge portion that forms the outer peripheral portion, and is laminated with the opening / closing portion. The opening / closing auxiliary member is disposed between the stacked first valve plates.
 本発明によると、バルブ手段に形成される開閉部の全てにまたがって配設される開閉補助部材を、積層される第1バルブプレートの間に配設できる。 According to the present invention, the opening / closing auxiliary member disposed across all the opening / closing portions formed in the valve means can be disposed between the stacked first valve plates.
 また、本発明の前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする。 Further, the valve hole of the present invention is characterized in that it is formed closer to the center than the coil provided so as to surround the piston body.
 本発明によると、バルブ孔よりも中心の側にはコイル等を配置するスペースが不要になるためバルブ孔を中心に寄せて配置できる。したがって、外周部からバルブ孔までの距離を長くすることができ、これによって、作用点から外周部まで開閉部に沿った長さを長くすることができる。 According to the present invention, since a space for arranging a coil or the like is not required on the center side of the valve hole, the valve hole can be arranged near the center. Therefore, the distance from the outer peripheral portion to the valve hole can be increased, and thereby the length along the opening / closing portion from the operating point to the outer peripheral portion can be increased.
 本発明によると、作動油に流路抵抗を生じさせて減衰力を発生させる作動油流路をバルブ手段で応答性よく開閉して減衰力を好適に調節可能な減衰力可変ダンパを提供できる。 According to the present invention, it is possible to provide a variable damping force damper that can suitably adjust the damping force by opening and closing the hydraulic fluid passage that generates a flow resistance in the hydraulic oil to generate a damping force with a valve means.
減衰力可変ダンパの構成図である。It is a block diagram of a damping force variable damper. ピストン組立体の構造を示す斜視図である。It is a perspective view which shows the structure of a piston assembly. ピストン組立体の断面図である。It is sectional drawing of a piston assembly. (a)は積層バルブの構造を示す斜視図、(b)は第1バルブプレートの平面図、(c)は第2バルブプレートの平面図である。(A) is a perspective view which shows the structure of a laminated valve, (b) is a top view of a 1st valve plate, (c) is a top view of a 2nd valve plate. (a)はリフターを示す斜視図、(b)は第1バルブプレートに配設されるリフターを示す平面図、(c)は積層された第1バルブプレートの間に配設されるリフターを示す断面図である。(A) is a perspective view showing a lifter, (b) is a plan view showing a lifter provided on the first valve plate, and (c) shows a lifter provided between the stacked first valve plates. It is sectional drawing.
 以下、適宜図面を参照しながら、本発明の実施形態を詳細に説明する。
 図1は減衰力可変ダンパの構成図、図2はピストン組立体の構造を示す斜視図、図3はピストン組立体の断面図である。
 図1~3に示すように、本実施形態の減衰力可変ダンパ10は、能動的に減衰力を変化して車両11に生じる振動を吸収する緩衝装置である。
 減衰力可変ダンパ10は、円筒状のシリンダ12と、シリンダ12内に摺動自在に収納されるピストン組立体14と、ピストン組立体14に連結されてシリンダ12の上端部12aから突出するピストンロッド16を備える。
 なお、本実施形態においては、ピストンロッド16が突出する上端部12aの側を上方(Up)として減衰力可変ダンパ10の上下方向(Up,Down)を設定する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
FIG. 1 is a configuration diagram of a damping force variable damper, FIG. 2 is a perspective view showing a structure of a piston assembly, and FIG. 3 is a sectional view of the piston assembly.
As shown in FIGS. 1 to 3, the damping force variable damper 10 of this embodiment is a shock absorber that actively changes the damping force and absorbs vibrations generated in the vehicle 11.
The damping force variable damper 10 includes a cylindrical cylinder 12, a piston assembly 14 slidably accommodated in the cylinder 12, and a piston rod connected to the piston assembly 14 and protruding from the upper end portion 12 a of the cylinder 12. 16.
In the present embodiment, the up-down direction (Up, Down) of the damping force variable damper 10 is set with the upper end portion 12a side from which the piston rod 16 protrudes as the upper side (Up).
 また、ピストン組立体14の内部には、ワイヤハーネス21を介して制御部22(Cont.)に接続されるコイル15が備わる。そして、このコイル15にはバッテリ(Batt.)等の電源24から電力が供給されるように構成される。 In addition, a coil 15 connected to the control unit 22 (Cont.) Via the wire harness 21 is provided in the piston assembly 14. The coil 15 is configured to be supplied with electric power from a power source 24 such as a battery (Batt.).
 シリンダ12の内部には液体(作動油13)が充填されており、ピストン組立体14は、矢印で示す上下方向(シリンダ12の軸線方向)に摺動可能に備わっている。そして、シリンダ12の内部は、ピストン組立体14によって、上端部12a側の第1流体室(上液圧室31)と、第2流体室(下液圧室32)に、ピストン組立体14の摺動方向(上下方向)に区画される。 The inside of the cylinder 12 is filled with a liquid (hydraulic oil 13), and the piston assembly 14 is slidable in the vertical direction (in the axial direction of the cylinder 12) indicated by an arrow. The inside of the cylinder 12 is divided into a first fluid chamber (upper hydraulic chamber 31) and a second fluid chamber (lower hydraulic chamber 32) on the upper end portion 12a side by the piston assembly 14. It is partitioned in the sliding direction (vertical direction).
 このように構成される減衰力可変ダンパ10は、車両11からピストンロッド16を変位させる圧力が印加されたときに、シリンダ12内でピストン組立体14を矢印方向(上下方向)に摺動させて作動油13を上液圧室31と下液圧室32の間で移動させることによって減衰力を生じる。 The damping force variable damper 10 configured as described above causes the piston assembly 14 to slide in the direction of the arrow (vertical direction) within the cylinder 12 when a pressure for displacing the piston rod 16 is applied from the vehicle 11. A damping force is generated by moving the hydraulic oil 13 between the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32.
 また、シリンダ12の下液圧室32は、ボトムバルブ100によってリザーブ室60と区画されている。ボトムバルブ100には、下液圧室32とリザーブ室60を連通する複数の連通路100aが形成されており、複数の連通路100aは、第1制御弁110aまたは第2制御弁110bのいずれか一方で開閉される。 Further, the lower hydraulic pressure chamber 32 of the cylinder 12 is partitioned from the reserve chamber 60 by the bottom valve 100. The bottom valve 100 is formed with a plurality of communication passages 100a communicating with the lower hydraulic pressure chamber 32 and the reserve chamber 60. The plurality of communication passages 100a are either the first control valve 110a or the second control valve 110b. On the other hand, it is opened and closed.
 第1制御弁110aは、下液圧室32における作動油13の圧力(以下、「下室液圧」と称する)が所定の圧力よりも低くなったときに開弁して、リザーブ室60から下液圧室32に向かう一方向の作動油13の流通を許可する逆止弁である。また、第2制御弁110bは、下室液圧が所定の圧力よりも高くなったときに開弁して、下液圧室32からリザーブ室60に向かう一方向の作動油13の流通を許可する逆止弁である。
 なお、上液圧室31における作動油13の圧力を、以下、「上室液圧」と称する。
The first control valve 110 a is opened when the pressure of the hydraulic oil 13 in the lower hydraulic pressure chamber 32 (hereinafter referred to as “lower chamber hydraulic pressure”) becomes lower than a predetermined pressure, and the first control valve 110 a is opened from the reserve chamber 60. This is a check valve that permits the flow of the hydraulic oil 13 in one direction toward the lower hydraulic pressure chamber 32. Further, the second control valve 110b opens when the lower chamber hydraulic pressure becomes higher than a predetermined pressure, and permits the flow of the hydraulic oil 13 in one direction from the lower hydraulic chamber 32 to the reserve chamber 60. This is a check valve.
The pressure of the hydraulic oil 13 in the upper hydraulic pressure chamber 31 is hereinafter referred to as “upper hydraulic pressure”.
 また、リザーブ室60は、適宜与圧されたガスが充填されるガス室61とフリーピストン60aによって区画されている。フリーピストン60aはシリンダ12内を上下方向に摺動可能に備わる。この構成によって、ガス室61に充填されているガスの気圧が下液圧室32および上液圧室31に充填される作動油13に付与され、下室液圧および上室液圧がガス室61に充填されているガスの気圧と等しく維持される。
 減衰力可変ダンパ10は、ガス室61に充填されているガスの気圧を初期内圧として作動する。
The reserve chamber 60 is partitioned by a gas chamber 61 that is filled with appropriately pressurized gas and a free piston 60a. The free piston 60a is slidable in the cylinder 12 in the vertical direction. With this configuration, the pressure of the gas filled in the gas chamber 61 is applied to the hydraulic oil 13 filled in the lower hydraulic pressure chamber 32 and the upper hydraulic pressure chamber 31, and the lower chamber hydraulic pressure and the upper chamber hydraulic pressure are set to the gas chamber. 61 is maintained equal to the pressure of the gas charged in the gas.
The damping force variable damper 10 operates with the atmospheric pressure of the gas filled in the gas chamber 61 as the initial internal pressure.
 本実施形態の減衰力可変ダンパ10は、ピストン組立体14で区画される上液圧室31と下液圧室32の間を流通する作動油13の流路抵抗の調節で減衰力を変化させる構造であり、ピストン組立体14は図2,3に示すように構成される。
 図2,3に示すように、ピストン組立体14は、ピストンロッド16の側から、コイル15が外装されるピストン本体18、シールコア17a、バルブ手段(積層バルブ20)、非磁性ストッパー17b、およびコンベピストン30がこの順に直列に配設される。
The damping force variable damper 10 of the present embodiment changes the damping force by adjusting the flow resistance of the hydraulic oil 13 flowing between the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32 defined by the piston assembly 14. The piston assembly 14 is structured as shown in FIGS.
As shown in FIGS. 2 and 3, the piston assembly 14 includes, from the piston rod 16 side, a piston main body 18 in which the coil 15 is sheathed, a seal core 17 a, valve means (laminated valve 20), a nonmagnetic stopper 17 b, and a conveyor. Pistons 30 are arranged in series in this order.
 ピストン本体18の周囲にはアウターヨーク17が配設され、シールコア17aによってアウターヨーク17内にコイル15が密封される。
 また、ピストン本体18に雌ねじが形成されるとともにピストンロッド16に雄ねじが形成され、ピストン本体18にピストンロッド16がねじ込まれて締結固定される。
 なお、図3に示すように、アウターヨーク17と、ピストン本体18と、シールコア17aと、の間が、Oリング19などのシール部材で、適宜液密に密封されていることが好ましい。
An outer yoke 17 is disposed around the piston body 18, and the coil 15 is sealed in the outer yoke 17 by a seal core 17a.
Further, a female thread is formed on the piston body 18 and a male thread is formed on the piston rod 16, and the piston rod 16 is screwed into the piston body 18 and fastened and fixed.
In addition, as shown in FIG. 3, it is preferable that the outer yoke 17, the piston main body 18, and the seal core 17a are appropriately liquid-tightly sealed with a seal member such as an O-ring 19.
 ピストン本体18には、複数のバルブ孔18aが軸線方向に貫通し、積層バルブ20はバルブ孔18aを開閉するように構成される。積層バルブ20の詳細は後記する。
 非磁性ストッパー17bとコンベピストン30は、ピストン本体18に締結固定される非磁性ボルト18bによってピストン本体18に取り付けられる。そして、積層バルブ20は、非磁性ストッパー17bとピストン本体18に挟持されて固定される。
 なお、図3に示すように、非磁性ストッパー17bには、ピストン本体18のバルブ孔18aと対向する位置に、積層バルブ20を通過した作動油13が流れ込む空間領域17b1が形成されていることが好ましい。
A plurality of valve holes 18a penetrates the piston body 18 in the axial direction, and the laminated valve 20 is configured to open and close the valve holes 18a. Details of the laminated valve 20 will be described later.
The nonmagnetic stopper 17b and the convex piston 30 are attached to the piston body 18 by nonmagnetic bolts 18b fastened and fixed to the piston body 18. The laminated valve 20 is sandwiched and fixed between the nonmagnetic stopper 17b and the piston body 18.
As shown in FIG. 3, the nonmagnetic stopper 17b is formed with a space region 17b1 into which the hydraulic oil 13 that has passed through the laminated valve 20 flows, at a position facing the valve hole 18a of the piston body 18. preferable.
 また、コンベピストン30の外周には、ゴムなどの弾性体からなるピストンリング30aが環装される。ピストンリング30aはシリンダ12の周壁とピストン組立体14の間隙を閉塞し、この構成によって、ピストン組立体14がシリンダ12を摺動する。また、ピストンリング30aによって、シリンダ12の上液圧室31と下液圧室32が液密に区画される。 Further, a piston ring 30a made of an elastic body such as rubber is mounted on the outer periphery of the convex piston 30. The piston ring 30 a closes the gap between the peripheral wall of the cylinder 12 and the piston assembly 14. With this configuration, the piston assembly 14 slides on the cylinder 12. In addition, the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32 of the cylinder 12 are liquid-tightly divided by the piston ring 30a.
 なお、コンベピストン30と非磁性ストッパー17bの間にスペーサ部材33が配設される構成であってもよい。
 また、非磁性ストッパー17b、スペーサ部材33、およびコンベピストン30には、それぞれ作動油13の流路が形成され、それらの流路が連通して作動油流路130が形成されることが好ましい。さらに、アウターヨーク17にもピストン本体18のバルブ孔18aと上液圧室31を連通する連通孔171が形成されることが好ましい。
 そして、非磁性ストッパー17bに形成される作動油流路130は、作動油13が流れ込む空間領域17b1と下液圧室32を連通し、空間領域17b1に流れこんだ作動油13が作動油流路130を経由して下液圧室32に流入するように構成されることが好ましい。この構成によって、連通孔171、バルブ孔18a、空間領域17b1を含んだ作動油流路130が形成され、上液圧室31と下液圧室32が作動油流路130によって連通する。
In addition, the structure by which the spacer member 33 is arrange | positioned between the convex piston 30 and the nonmagnetic stopper 17b may be sufficient.
Further, it is preferable that the non-magnetic stopper 17b, the spacer member 33, and the conveyor piston 30 each have a flow path for the hydraulic oil 13, and the flow paths communicate with each other to form the hydraulic oil flow path 130. Furthermore, it is preferable that a communication hole 171 that connects the valve hole 18 a of the piston body 18 and the upper hydraulic pressure chamber 31 is also formed in the outer yoke 17.
The hydraulic fluid passage 130 formed in the nonmagnetic stopper 17b communicates the space region 17b1 into which the hydraulic fluid 13 flows and the lower hydraulic pressure chamber 32, and the hydraulic fluid 13 that has flowed into the spatial region 17b1 flows into the hydraulic fluid passage. It is preferable to be configured to flow into the lower hydraulic pressure chamber 32 via 130. With this configuration, the hydraulic fluid passage 130 including the communication hole 171, the valve hole 18 a, and the space region 17 b 1 is formed, and the upper hydraulic pressure chamber 31 and the lower hydraulic pressure chamber 32 communicate with each other through the hydraulic fluid passage 130.
 そして、本実施形態の減衰力可変ダンパ10は、上液圧室31から下液圧室32に向かう方向に、またはその逆方向に、作動油流路130(連通孔171,バルブ孔18a,空間領域17b1)を流通する作動油13(図1参照)の流路抵抗で、ピストン組立体14の変位を減衰する減衰力(つまり、ピストン組立体14に作用する減衰力)を発生する。 The damping force variable damper 10 of the present embodiment has a hydraulic oil flow path 130 (communication hole 171, valve hole 18a, space in the direction from the upper hydraulic pressure chamber 31 toward the lower hydraulic pressure chamber 32 or in the opposite direction. A damping force that attenuates the displacement of the piston assembly 14 (that is, a damping force that acts on the piston assembly 14) is generated by the flow path resistance of the hydraulic oil 13 (see FIG. 1) that flows through the region 17b1).
 また、ピストン本体18は、鋼材などの磁性体で形成されることが好ましい。ピストン本体18が磁性体であれば、コイル15に電力が供給されたときにピストン本体18を鉄心とする電磁石が形成されて磁力が発生する。さらに、磁性体のピストン本体18はそれ自体が磁化する。 The piston body 18 is preferably formed of a magnetic material such as a steel material. If the piston body 18 is a magnetic body, when power is supplied to the coil 15, an electromagnet having the piston body 18 as an iron core is formed and magnetic force is generated. Further, the magnetic piston body 18 is itself magnetized.
 本実施形態の減衰力可変ダンパ10に備わるピストン組立体14は、図2,3に示すように構成される。そして、ピストン本体18に形成されるバルブ孔18aを積層バルブ20で閉塞し、バルブ孔18aを流通する作動油13が積層バルブ20を押し開けるときに生じる流路抵抗で減衰力を生じさせる。 The piston assembly 14 provided in the damping force variable damper 10 of the present embodiment is configured as shown in FIGS. Then, the valve hole 18 a formed in the piston body 18 is closed by the laminated valve 20, and a damping force is generated by the channel resistance generated when the hydraulic oil 13 flowing through the valve hole 18 a pushes the laminated valve 20 open.
 図4(a)は積層バルブの構造を示す斜視図、図4(b)は第1バルブプレートの平面図、図4(c)は第2バルブプレートの平面図である。また、図5(a)はリフターを示す斜視図、図5(b)は第1バルブプレートに配設されるリフターを示す平面図、図5(c)は積層された第1バルブプレートの間に配設されるリフターを示す断面図である。 4 (a) is a perspective view showing the structure of the laminated valve, FIG. 4 (b) is a plan view of the first valve plate, and FIG. 4 (c) is a plan view of the second valve plate. 5A is a perspective view showing the lifter, FIG. 5B is a plan view showing the lifter disposed on the first valve plate, and FIG. 5C is a view between the stacked first valve plates. It is sectional drawing which shows the lifter arrange | positioned by.
 図4(a)に示すように、積層バルブ20は、複数(10~30枚程度)の第1バルブプレート200が積層され、さらに、積層されている第1バルブプレート200の間に1枚以上の第2バルブプレート201が配設されて構成される。
 なお、複数の第1バルブプレート200は接着や溶接などで互いに固着されていてもよいし、互いに固着されることなく、非磁性ストッパー17b(図2参照)とピストン本体18で押圧された状態で減衰力可変ダンパ10(図1参照)に備わる構成であってもよい。また、第1バルブプレート200の枚数(10~30枚程度)は限定されない。
As shown in FIG. 4A, in the laminated valve 20, a plurality (about 10 to 30) of first valve plates 200 are laminated, and one or more sheets are provided between the laminated first valve plates 200. The second valve plate 201 is provided.
The plurality of first valve plates 200 may be fixed to each other by bonding, welding, or the like, or in a state of being pressed by the nonmagnetic stopper 17b (see FIG. 2) and the piston body 18 without being fixed to each other. A configuration provided in the damping force variable damper 10 (see FIG. 1) may be used. Further, the number of first valve plates 200 (about 10 to 30) is not limited.
 積層バルブ20は、ピストン本体18のバルブ孔18aを開放および閉塞するように(バルブ孔18aを開閉するように)撓んで弾性変形する開閉部20aを有する。開閉部20aは円環状に形成される外周部20bから中心に向かって延出し、バルブ孔18aを流通する作動油13(図1参照)によってピストン本体18の側から押圧され、図3に示すように非磁性ストッパー17bに適宜形成される隙間(退避用スペース17b2)に入り込むように撓んでバルブ孔18aを開放する。
 このように、積層バルブ20の開閉部20aは、バルブ孔18aを流通する作動油13によって押し開けられる。
 また、積層バルブ20の開閉部20aは、バルブ孔18aの側に復帰する弾性力を有することが好ましく、このような構成によって、開閉部20aは、バルブ孔18aを開閉可能になる。
 前記したようにバルブ孔18aは作動油流路130(図3参照)の一部であるため、積層バルブ20の開閉部20aは作動油流路130を開閉することになる。
The laminated valve 20 has an opening / closing portion 20a that is bent and elastically deformed so as to open and close the valve hole 18a of the piston body 18 (open and close the valve hole 18a). The opening / closing portion 20a extends from the outer peripheral portion 20b formed in an annular shape toward the center, and is pressed from the piston body 18 side by the hydraulic oil 13 (see FIG. 1) flowing through the valve hole 18a, as shown in FIG. The valve hole 18a is opened by bending so as to enter a gap (retreat space 17b2) appropriately formed in the nonmagnetic stopper 17b.
Thus, the opening / closing part 20a of the laminated valve 20 is pushed open by the hydraulic oil 13 flowing through the valve hole 18a.
The opening / closing part 20a of the laminated valve 20 preferably has an elastic force that returns to the valve hole 18a. With such a configuration, the opening / closing part 20a can open and close the valve hole 18a.
As described above, since the valve hole 18a is a part of the hydraulic oil passage 130 (see FIG. 3), the opening / closing portion 20a of the laminated valve 20 opens and closes the hydraulic oil passage 130.
 第1バルブプレート200は薄い板状の部材であり、図4(b)に示すように、ピストン本体18のバルブ孔18aの数と位置に対応するように可動部200aが形成されている。可動部200aは、積層されたときに積層バルブ20の外周部20bを形成する円環状の外縁部200bから中央に向かって延設され、隣接する可動部200aとの間にスリット200cが形成されている。 The first valve plate 200 is a thin plate-like member, and as shown in FIG. 4B, movable parts 200a are formed so as to correspond to the number and positions of the valve holes 18a of the piston main body 18. The movable part 200a extends from the annular outer edge part 200b that forms the outer peripheral part 20b of the laminated valve 20 when laminated to the center, and a slit 200c is formed between the movable part 200a and the adjacent movable part 200a. Yes.
 つまり、1つの可動部200aは2つのスリット200cの間に形成され、複数の可動部200aが互いに干渉しないように構成される。
 そして、1つの可動部200aが1つのバルブ孔18aを閉塞するように構成され、第1バルブプレート200が積層してなる積層バルブ20は、可動部200aが積層された部分によって開閉部20aが形成される。
 なお、スリット200cは、外縁部200b側の端部が、例えば円形に形成されていてもよい。このような形状のスリット200cが形成されることによって、スリット200cの外縁部200b側に応力集中が発生せず、第1バルブプレート200は、スリット200cから外縁部200bが破断するなどの破損が発生しにくくなる。
That is, one movable part 200a is formed between the two slits 200c, and is configured so that the plurality of movable parts 200a do not interfere with each other.
In the laminated valve 20 in which one movable portion 200a is configured to close one valve hole 18a and the first valve plate 200 is laminated, the opening / closing portion 20a is formed by the portion where the movable portions 200a are laminated. Is done.
In addition, as for the slit 200c, the edge part by the side of the outer edge part 200b may be formed circularly, for example. By forming the slit 200c having such a shape, stress concentration does not occur on the outer edge portion 200b side of the slit 200c, and the first valve plate 200 is damaged such that the outer edge portion 200b is broken from the slit 200c. It becomes difficult to do.
 また、本実施形態の第1バルブプレート200は、スリット200cが外縁部200bから周方向に回り込むように中心に向かう渦巻状の曲線で形成される。
 これによって、可動部200aは、外縁部200bから中心の側に向かって渦巻状に回り込むように延設され、湾曲した曲線形状を呈する。
 さらに、積層バルブ20の開閉部20aは可動部200aが積層されて形成されるため、積層バルブ20の開閉部20aも、外周部20bから中心の側に向かって回り込むように延設され、渦巻状に湾曲する曲線形状になる。
In addition, the first valve plate 200 of the present embodiment is formed with a spiral curve toward the center so that the slit 200c wraps around the outer edge portion 200b in the circumferential direction.
Accordingly, the movable portion 200a extends from the outer edge portion 200b toward the center side in a spiral shape, and exhibits a curved shape.
Furthermore, since the opening / closing part 20a of the laminated valve 20 is formed by laminating the movable part 200a, the opening / closing part 20a of the laminated valve 20 is also extended from the outer peripheral part 20b toward the center side, and is spirally formed. It becomes a curved shape that curves.
 可動部200aは、バルブ孔18aを流通する作動油13(図1参照)から受ける圧力でピストン本体18から離反する方向に撓むように構成される。
 また、可動部200aは、作動油13から圧力を受ける位置(作用点P1)から、外縁部200b側の固定端P2(図4(b)に二点鎖線で示す)までの長さ(符号L1で示す)が長いほど撓みやすくなる。ここでいう長さL1は、可動部200aに沿った長さを示し、実際に撓むことができる長さ(可撓長さ)を示す。
 つまり、作用点P1から固定端P2まで、可動部200aに沿った長さ(可撓長さ)L1が長ければ、作用点P1に入力される圧力が小さくてもバルブ孔18aが開放されることになり、可動部200aの剛性が低い第1バルブプレート200とすることができる。
 なお、固定端P2から中心の側に可動部200aが形成されるため、固定端P2よりも外側が外縁部200bになる。
The movable portion 200a is configured to bend in a direction away from the piston body 18 by pressure received from the hydraulic oil 13 (see FIG. 1) flowing through the valve hole 18a.
Further, the movable portion 200a has a length (reference numeral L1) from a position where the pressure is received from the hydraulic oil 13 (action point P1) to a fixed end P2 on the outer edge portion 200b side (indicated by a two-dot chain line in FIG. 4B). The longer it is, the easier it is to bend. The length L1 here indicates a length along the movable portion 200a, and indicates a length (flexible length) that can be actually bent.
That is, if the length (flexible length) L1 along the movable part 200a is long from the action point P1 to the fixed end P2, the valve hole 18a is opened even if the pressure input to the action point P1 is small. Thus, the first valve plate 200 having a low rigidity of the movable portion 200a can be obtained.
Since the movable portion 200a is formed on the center side from the fixed end P2, the outer edge portion 200b is located outside the fixed end P2.
 なお、本実施形態において、可動部200aに沿った長さ(長さL1)は、例えば、1つの可動部200aの両側のスリット200c間の中点を結んだ仮想線に沿った長さを示すものとする。または、どちらか一方のスリット200cに沿った長さとしてもよい。 In the present embodiment, the length (length L1) along the movable portion 200a indicates, for example, the length along an imaginary line that connects the midpoints between the slits 200c on both sides of one movable portion 200a. Shall. Alternatively, it may be a length along one of the slits 200c.
 例えば、作用点P1から渦巻状に広がる形状の可動部200aは、作用点P1から第1バルブプレート200の径方向に直線状に広がる形状の可動部200aの長さL2に比べ、その長さL1を長くすることができる。したがって、作用点P1から渦巻状に広がる形状の可動部200aは、作用点P1から径方向に直線状に広がる形状の可動部よりも撓みやすくなる。
 なお、可動部200aが、作用点P1から第1バルブプレート200の径方向に直線状に広がる形状の可動部200aの長さL2は、作用点P1から固定端P2までの距離であり、作用点P1から外縁部200bまでの距離になる。
For example, the movable part 200a having a spiral shape extending from the action point P1 is longer than the length L2 of the movable part 200a having a shape linearly extending from the action point P1 in the radial direction of the first valve plate 200. Can be lengthened. Therefore, the movable part 200a having a shape that spirals from the action point P1 is more easily bent than the movable part having a shape that linearly extends in the radial direction from the action point P1.
Note that the length L2 of the movable portion 200a in which the movable portion 200a linearly extends from the action point P1 in the radial direction of the first valve plate 200 is the distance from the action point P1 to the fixed end P2, and the action point The distance is from P1 to the outer edge portion 200b.
 そして、本実施形態の積層バルブ20は第1バルブプレート200が積層されて形成される。つまり、第1バルブプレート200の外縁部200bが積層されて積層バルブ20の外周部20bが形成され、第1バルブプレート200の可動部200aが積層されて積層バルブ20の開閉部20aが形成される。積層バルブ20の開閉部20aは、バルブ孔18aを閉塞する位置(作動油13から圧力を受ける位置であり、第1バルブプレート200の作用点P1に相当する位置)から外周部20bまで、開閉部20aに沿った長さL1が、作用点P1から外周部20bまでの距離に相当する長さL2よりも長く形成される。 And, the laminated valve 20 of the present embodiment is formed by laminating the first valve plate 200. That is, the outer edge portion 200b of the first valve plate 200 is laminated to form the outer peripheral portion 20b of the laminated valve 20, and the movable portion 200a of the first valve plate 200 is laminated to form the opening / closing portion 20a of the laminated valve 20. . The opening / closing part 20a of the laminated valve 20 is an opening / closing part from a position that closes the valve hole 18a (a position that receives pressure from the hydraulic oil 13 and corresponds to the operating point P1 of the first valve plate 200) to the outer peripheral part 20b. The length L1 along 20a is formed longer than the length L2 corresponding to the distance from the action point P1 to the outer peripheral portion 20b.
 このように形成される開閉部20aは剛性が低く撓みやすいため、本実施形態の積層バルブ20の開閉部20aは、剛性が低く撓みやすくなる。
 剛性が低い開閉部20aは、バルブ孔18aを流通する作動油13から受ける圧力の変化に応じて高い応答性でバルブ孔18aを開閉可能となる。
Since the opening / closing part 20a formed in this way has low rigidity and is easily bent, the opening / closing part 20a of the laminated valve 20 of the present embodiment has low rigidity and is easily bent.
The opening / closing part 20a having low rigidity can open and close the valve hole 18a with high responsiveness in accordance with a change in pressure received from the hydraulic oil 13 flowing through the valve hole 18a.
 また、本実施形態の第1バルブプレート200は鋼板など磁性体で形成されることが好ましい。第1バルブプレート200が磁性体であれば、コイル15(図1参照)に電力が供給されて磁力が発生したとき可動部200aはピストン本体18の側に吸引される。
 したがって、コイル15に電力が供給されたときに発生する磁力でピストン本体18の側に吸引される開閉部20aとすることができる。さらに、ピストン本体18が磁性体であれば、磁化したピストン本体18に開閉部20aを吸着させることができる。
The first valve plate 200 of the present embodiment is preferably formed of a magnetic material such as a steel plate. If the first valve plate 200 is a magnetic body, the movable portion 200a is attracted toward the piston body 18 when electric power is supplied to the coil 15 (see FIG. 1) to generate magnetic force.
Therefore, the opening / closing portion 20 a that is attracted to the piston main body 18 by the magnetic force generated when electric power is supplied to the coil 15 can be provided. Furthermore, if the piston body 18 is a magnetic body, the opening / closing part 20a can be adsorbed to the magnetized piston body 18.
 さらに、コイル15に供給される電力が調節されることによって、発生する磁力が調節される。したがって、コイル15に供給される電力が調節されることによって、開閉部20aがピストン本体18に吸着されるときの吸着力が調節される。 Furthermore, the generated magnetic force is adjusted by adjusting the power supplied to the coil 15. Therefore, by adjusting the electric power supplied to the coil 15, the adsorption force when the opening / closing part 20a is adsorbed by the piston body 18 is adjusted.
 例えば、開閉部20aをピストン本体18に吸着する磁力が強くなると、バルブ孔18aを流通する作動油13が開閉部20aを撓ませにくくなり、バルブ孔18aが開放されにくい状態になる。したがって、バルブ孔18aを流通する作動油13の流路抵抗が大きくなってピストン組立体14(図2参照)に作用する減衰力が大きくなる。
 逆に開閉部20aをピストン本体18に吸着する磁力が弱くなると、バルブ孔18aを流通する作動油13が開閉部20aを撓ませやすくなり、バルブ孔18aが開放されやすい状態になる。したがって、バルブ孔18aを流通する作動油13の流路抵抗が小さくなってピストン組立体14に作用する減衰力が小さくなる。
 このように、第1バルブプレート200を磁性体にすることによって開閉部20aを磁性体にすることができ、ピストン組立体14に作用する減衰力の調節が可能になる。
 また、剛性の低い開閉部20aとすることによって、開閉部20aをピストン本体18に吸着する磁力が弱くなったときにバルブ孔18aを開閉する応答性が向上する。
For example, when the magnetic force that attracts the opening / closing portion 20a to the piston body 18 becomes strong, the hydraulic oil 13 flowing through the valve hole 18a becomes difficult to bend the opening / closing portion 20a, and the valve hole 18a is hardly opened. Accordingly, the flow resistance of the hydraulic oil 13 flowing through the valve hole 18a is increased, and the damping force acting on the piston assembly 14 (see FIG. 2) is increased.
Conversely, when the magnetic force attracting the opening / closing portion 20a to the piston body 18 is weakened, the hydraulic oil 13 flowing through the valve hole 18a easily deflects the opening / closing portion 20a, and the valve hole 18a is easily opened. Therefore, the flow resistance of the hydraulic oil 13 flowing through the valve hole 18a is reduced, and the damping force acting on the piston assembly 14 is reduced.
Thus, by making the first valve plate 200 magnetic, the opening / closing portion 20a can be made magnetic, and the damping force acting on the piston assembly 14 can be adjusted.
In addition, by using the opening / closing portion 20a having low rigidity, the responsiveness of opening / closing the valve hole 18a when the magnetic force attracting the opening / closing portion 20a to the piston body 18 is weakened is improved.
 また、本実施形態の第1バルブプレート200は、1つのバルブ孔18aに対して1つの可動部200aが形成されているため、積層バルブ20にも1つのバルブ孔18aに対して1つの開閉部20aが形成される。したがって、各バルブ孔18aはそれぞれ単独に開放および閉塞されることになり、各バルブ孔18aが開閉するタイミングが同期しない場合がある。
 例えば、各バルブ孔18aが順に開放されると開放のたびに減衰力が変化(減少)するため、減衰力可変ダンパ10(図1参照)の減衰力が段階的に変化(減少)する。これによって、車両11(図1参照)に不規則な振動が発生し乗り心地が低下する場合がある。
Moreover, since the 1st valve plate 200 of this embodiment has one movable part 200a with respect to one valve hole 18a, the laminated valve 20 also has one opening / closing part with respect to one valve hole 18a. 20a is formed. Therefore, each valve hole 18a is opened and closed independently, and the timing at which each valve hole 18a opens and closes may not be synchronized.
For example, when each valve hole 18a is opened in order, the damping force changes (decreases) each time the valve hole 18a is opened, so that the damping force of the damping force variable damper 10 (see FIG. 1) changes (decreases) stepwise. As a result, irregular vibration may occur in the vehicle 11 (see FIG. 1), resulting in a decrease in ride comfort.
 このため、積層バルブ20は、全てのバルブ孔18aが同時に開放および閉塞する構成であることが好ましい。
 そこで、本実施形態の積層バルブ20には、積層された第1バルブプレート200の間に少なくとも1枚の第2バルブプレート201が配設される。
 図4(c)に示すように、第2バルブプレート201は、第1バルブプレート200とほぼ同じ形状であり、第1バルブプレート200の可動部200aの数と位置に対応するように可動部201aが形成されている。可動部201aは、第1バルブプレート200の外径と等しい円環状の外縁部201bから中央に向かって延設され、隣接する可動部201aとの間にスリット201cが形成されている。
For this reason, it is preferable that the laminated valve 20 has a configuration in which all the valve holes 18a are simultaneously opened and closed.
Therefore, at least one second valve plate 201 is disposed between the stacked first valve plates 200 in the stacked valve 20 of the present embodiment.
As shown in FIG. 4C, the second valve plate 201 has substantially the same shape as the first valve plate 200, and the movable parts 201a correspond to the number and positions of the movable parts 200a of the first valve plate 200. Is formed. The movable portion 201a extends from an annular outer edge portion 201b having the same outer diameter as the first valve plate 200 toward the center, and a slit 201c is formed between the movable portion 201a and the adjacent movable portion 201a.
 また、第2バルブプレート201のスリット201cも、外縁部201bから周方向に回り込むように中心に向かう渦巻状の曲線で形成され、可動部201aも、外縁部201bから中心の側に向かって渦巻状に回り込むように延設されて湾曲した曲線形状を呈する。 In addition, the slit 201c of the second valve plate 201 is also formed in a spiral curve toward the center so as to circulate in the circumferential direction from the outer edge portion 201b, and the movable portion 201a is also spiral-shaped toward the center side from the outer edge portion 201b. It extends so as to wrap around and exhibits a curved shape.
 さらに、第2バルブプレート201の可動部201aは、中心側の端部(先端部t1)が周方向に広がっている。
 具体的には、第2バルブプレート201の固定端部P3(図4(c)に二点鎖線で示す)が第1バルブプレート200の固定端P2と同じ形状の場合、それぞれの固定端P2,P3が一致するように第1バルブプレート200と第2バルブプレート201が重ね合わさるとき、第2バルブプレート201の可動部201aの先端部t1が、第1バルブプレート200の隣接する2つの可動部200aの一部にまたがって重なるように構成される。
Further, the movable portion 201a of the second valve plate 201 has an end portion (tip portion t1) on the center side spreading in the circumferential direction.
Specifically, when the fixed end portion P3 of the second valve plate 201 (indicated by a two-dot chain line in FIG. 4C) has the same shape as the fixed end P2 of the first valve plate 200, the respective fixed ends P2, When the first valve plate 200 and the second valve plate 201 are overlapped so that P3 coincides, the tip t1 of the movable portion 201a of the second valve plate 201 is adjacent to the two movable portions 200a of the first valve plate 200. It is configured to overlap over a part of the.
 このような形状の第2バルブプレート201が、積層された第1バルブプレート200の間に配設されると、第1バルブプレート200の1つの可動部200aは、第2バルブプレート201の可動部201aを介して、隣り合う可動部200aと撓む方向(変形する方向に)に干渉するようになる。
 そして、積層バルブ20は、隣り合う開閉部20aが、撓む方向に互いに干渉するように構成される。したがって、積層バルブ20の1つの開閉部20aが撓むのに充分な圧力を作動油13(図1参照)から受けても、その開閉部20aの撓みは隣接する開閉部20aによって規制される。
 そして、積層バルブ20は、全ての開閉部20aが撓むのに充分な圧力を作動油13から受けたときに、全ての開閉部20aが撓んで全てのバルブ孔18aが同時に開放される。よって、ピストン組立体14(図1参照)の動作に対する減衰力は一気に変化し、減衰力が段階的に変化するときに生じる乗り心地の低下は抑制される。
When the second valve plate 201 having such a shape is disposed between the stacked first valve plates 200, one movable part 200 a of the first valve plate 200 is moved to the movable part of the second valve plate 201. Through 201a, it interferes with the adjacent movable part 200a in the direction of bending (in the direction of deformation).
The laminated valve 20 is configured such that the adjacent opening / closing portions 20a interfere with each other in the bending direction. Therefore, even if the pressure sufficient for one opening / closing part 20a of the laminated valve 20 to bend is received from the hydraulic oil 13 (see FIG. 1), the bending of the opening / closing part 20a is restricted by the adjacent opening / closing part 20a.
And when the laminated valve 20 receives sufficient pressure from the hydraulic oil 13 for all the opening / closing parts 20a to bend, all the opening / closing parts 20a are bent and all the valve holes 18a are simultaneously opened. Therefore, the damping force with respect to the operation of the piston assembly 14 (see FIG. 1) changes at a stretch, and a decrease in riding comfort that occurs when the damping force changes stepwise is suppressed.
 また、図5(a)に示すように、ピストン本体18と積層バルブ20の間に開閉補助部材(リフター25)が備わる構成であってもよい。
 リフター25は、例えば、バルブ孔18aを閉塞する円盤(円環)状に形成される板金部材であり、非磁性ボルト18b(図2参照)が挿通するように中心が開口していることが好ましい。
 また、図5(b)に示すように、リフター25は、積層バルブ20を構成する第1バルブプレート200の全ての可動部200aにまたがるように形成されていることが好ましく、この構成によってリフター25は、積層バルブ20の全ての開閉部20aにまたがって配設される。
 なお、リフター25の中心に形成される開口部の周囲に、積層バルブ20の中心部に嵌合する凸状部25aが形成される構成とすれば、リフター25の位置ずれを効果的に回避することができる。
 また、図5(a)に示すように、リフター25の周囲に、当該リフター25と同じ厚みで円環状を呈するスペーサ部材210が配設される構成であってもよい。スペーサ部材210は、積層バルブ20の外周部20b(図4(a)参照)に相対する位置に配設されることが好ましい。
Moreover, as shown to Fig.5 (a), the structure provided with the opening-and-closing auxiliary member (lifter 25) between the piston main body 18 and the lamination | stacking valve | bulb 20 may be sufficient.
The lifter 25 is, for example, a sheet metal member that is formed in a disc shape (ring) that closes the valve hole 18a, and is preferably open at the center so that the non-magnetic bolt 18b (see FIG. 2) can be inserted therethrough. .
Further, as shown in FIG. 5B, the lifter 25 is preferably formed so as to extend over all the movable parts 200a of the first valve plate 200 constituting the laminated valve 20, and the lifter 25 is configured by this configuration. Is disposed across all the opening / closing portions 20a of the laminated valve 20.
In addition, if it is set as the structure by which the convex-shaped part 25a fitted to the center part of the laminated valve 20 is formed around the opening part formed in the center of the lifter 25, the position shift of the lifter 25 is avoided effectively. be able to.
Moreover, as shown to Fig.5 (a), the structure by which the spacer member 210 which exhibits the annular | circular shape by the same thickness as the said lifter 25 is arrange | positioned around the lifter 25 may be sufficient. The spacer member 210 is preferably disposed at a position facing the outer peripheral portion 20b (see FIG. 4A) of the laminated valve 20.
 積層バルブ20は、リフター25によって全ての開閉部20aが接続される。したがって、積層バルブ20の1つの開閉部20aが撓むのに充分な圧力を作動油13(図1参照)から受けても、その開閉部20aの撓みはリフター25で規制される。
 そして、積層バルブ20は、全ての開閉部20aが撓むのに充分な圧力を作動油13から受けたときに、全ての開閉部20aが撓んで全てのバルブ孔18aが同時に開放される。よって、ピストン組立体14(図1参照)の動作に対する減衰力が一気に変化し、減衰力が段階的に変化するときに生じる乗り心地の低下は抑制される。
 このように、リフター25が備わることによって、積層バルブ20の開閉部20aは、ピストン本体18のバルブ孔18aを同時に開閉可能に構成される。
The laminated valve 20 is connected to all the opening / closing parts 20 a by lifters 25. Therefore, even if the pressure sufficient for one opening / closing part 20a of the laminated valve 20 to be bent is received from the hydraulic oil 13 (see FIG. 1), the bending of the opening / closing part 20a is restricted by the lifter 25.
And when the laminated valve 20 receives sufficient pressure from the hydraulic oil 13 for all the opening / closing parts 20a to bend, all the opening / closing parts 20a are bent and all the valve holes 18a are simultaneously opened. Therefore, the damping force with respect to the operation of the piston assembly 14 (see FIG. 1) changes at a stretch, and the reduction in riding comfort that occurs when the damping force changes stepwise is suppressed.
Thus, by providing the lifter 25, the opening / closing part 20a of the laminated valve 20 is configured to be able to open and close the valve hole 18a of the piston body 18 simultaneously.
 また、リフター25は、図4(c)に示す第2バルブプレート201と同等の機能を有する部材である。したがって、第2バルブプレート201の代わりにリフター25が備わる構成であってもよいし、第2バルブプレート201とリフター25がともに備わる構成であってもよい。
 さらに、図5(c)に示すように、積層されている第1バルブプレート200の間にリフター25が配設される構成であってもよい。この場合、図5(c)に示すように、リフター25の周囲に、当該リフター25と同じ厚みで円環状を呈するスペーサ部材210が配設される構成であってもよい。スペーサ部材210は、外縁部200b(図4(b)参照)に配設されることが好ましい。
The lifter 25 is a member having a function equivalent to that of the second valve plate 201 shown in FIG. Accordingly, the lifter 25 may be provided instead of the second valve plate 201, or the second valve plate 201 and the lifter 25 may be provided together.
Further, as illustrated in FIG. 5C, a configuration may be employed in which the lifter 25 is disposed between the stacked first valve plates 200. In this case, as shown in FIG. 5C, a configuration may be employed in which a spacer member 210 having an annular shape with the same thickness as the lifter 25 is disposed around the lifter 25. The spacer member 210 is preferably disposed on the outer edge portion 200b (see FIG. 4B).
 なお、図4(b),図4(c)に示すように、第1バルブプレート200の可動部200aの少なくとも1つ、および第2バルブプレート201の可動部201aの少なくとも1つに、貫通孔H1が形成されていることが好ましい。
 さらに、積層バルブ20においては、全ての第1バルブプレート200の貫通孔H1および第2バルブプレート201の貫通孔H1が連通していることが好ましい。
4B and 4C, at least one of the movable parts 200a of the first valve plate 200 and at least one of the movable parts 201a of the second valve plate 201 have through holes. It is preferable that H1 is formed.
Furthermore, in the laminated valve 20, it is preferable that the through holes H1 of all the first valve plates 200 and the through holes H1 of the second valve plates 201 communicate with each other.
 図3に示すように、積層バルブ20はピストン本体18の下液圧室32側に配設され、開閉部20a(図4(a)参照)は下液圧室32側から作動油13による圧力を受けても撓まずバルブ孔18aは開放されない。
 そこで、第1バルブプレート200および第2バルブプレート201に貫通孔H1を設けて、下液圧室32から上液圧室31に作動油13が流通する流路を確保する。
 これによって、下液圧室32における作動油13の圧力が上液圧室31における作動油13の圧力より高いとき、下液圧室32の作動油13を上液圧室31に流入させることができる。
 なお、図5(b)に示すように、リフター25にも貫通孔H1が形成されていることが好ましい。
As shown in FIG. 3, the laminated valve 20 is disposed on the lower hydraulic pressure chamber 32 side of the piston body 18, and the opening / closing portion 20 a (see FIG. 4A) is pressure from the hydraulic fluid 13 from the lower hydraulic pressure chamber 32 side. The valve hole 18a is not opened even if it is received.
Therefore, through holes H1 are provided in the first valve plate 200 and the second valve plate 201 to secure a flow path through which the hydraulic oil 13 flows from the lower hydraulic pressure chamber 32 to the upper hydraulic pressure chamber 31.
Accordingly, when the pressure of the hydraulic oil 13 in the lower hydraulic pressure chamber 32 is higher than the pressure of the hydraulic oil 13 in the upper hydraulic pressure chamber 31, the hydraulic oil 13 in the lower hydraulic pressure chamber 32 can be caused to flow into the upper hydraulic pressure chamber 31. it can.
In addition, as shown in FIG.5 (b), it is preferable that the through-hole H1 is formed also in the lifter 25. As shown in FIG.
 以上のように、本実施形態の減衰力可変ダンパ10(図1参照)は、積層バルブ20の開閉部20a(図4(a)参照)をピストン本体18(図2参照)に吸着する磁力の調節によって、ピストン組立体14(図2参照)の動作に対する減衰力が調節される。
 そして、積層バルブ20は、複数の第1バルブプレート200(図4(b)参照)が積層されて形成され、開閉部20aは、第1バルブプレート200の可動部200a(図4(b)参照)が積層されて形成される。
 第1バルブプレート200の可動部200aは、外縁部200b(図4(b)参照)から中心の側に向かって渦巻状に回り込むように延設されて湾曲した曲線形状を呈し、作動油13(図1参照)の圧力を受ける作用点P1から外縁部200b(図4(b)参照)側の固定端P2までの長さL1が長く設定される。具体的には、作用点P1から固定端P2までの長さL1(可撓長さ)が、作用点P1から第1バルブプレート200の径方向に直線状に広がる場合の長さL2よりも長く設定される。
As described above, the damping force variable damper 10 (see FIG. 1) of the present embodiment has a magnetic force that attracts the opening / closing portion 20a (see FIG. 4 (a)) of the laminated valve 20 to the piston body 18 (see FIG. 2). The adjustment adjusts the damping force for the operation of the piston assembly 14 (see FIG. 2).
The laminated valve 20 is formed by laminating a plurality of first valve plates 200 (see FIG. 4B), and the opening / closing part 20a is a movable part 200a of the first valve plate 200 (see FIG. 4B). ) Are laminated.
The movable portion 200a of the first valve plate 200 has a curved shape that extends and curves in a spiral shape from the outer edge portion 200b (see FIG. 4B) toward the center side, and the hydraulic oil 13 ( The length L1 from the action point P1 receiving the pressure of FIG. 1) to the fixed end P2 on the outer edge 200b (see FIG. 4B) side is set to be long. Specifically, the length L1 (flexible length) from the action point P1 to the fixed end P2 is longer than the length L2 when the action point P1 extends linearly in the radial direction of the first valve plate 200. Is set.
 つまり、積層バルブ20の開閉部20a(図4(a)参照)は、作用点P1から外周部20b(図4(a)参照)までの長さL1が、作用点P1から外周部20bまでの距離(長さL2)よりも長く設定される。
 したがって、開閉部20aの剛性が低い積層バルブ20(図4(a)参照)になる。
 よって、開閉部20aをピストン本体18に吸着する磁力が弱いときには、バルブ孔18a(図4(a)参照)を高いレスポンスで開閉可能な積層バルブ20とすることができる。
That is, the opening / closing part 20a (see FIG. 4A) of the laminated valve 20 has a length L1 from the action point P1 to the outer peripheral part 20b (see FIG. 4A), which is from the action point P1 to the outer peripheral part 20b. It is set longer than the distance (length L2).
Therefore, the laminated valve 20 (see FIG. 4A) has a low rigidity of the opening / closing part 20a.
Therefore, when the magnetic force attracting the opening / closing portion 20a to the piston body 18 is weak, the laminated valve 20 can open and close the valve hole 18a (see FIG. 4A) with high response.
 また、積層した第1バルブプレート200(図4(b)参照)の間に少なくとも1つの第2バルブプレート201(図4(c)参照)が配設される積層バルブ20(図4(a)参照)とした。
 これによって、積層バルブ20は、バルブ孔18a(図4(a)参照)の全てを同時に開閉することができ、バルブ孔18aが段階的に開閉するときに車両11(図1参照)に生じる不規則な振動による乗り心地の低下が抑制される。
 また、図5(a),図5(b)に示すように、積層バルブ20に、全ての開閉部20aにまたがって配設されるリフター25が備わる構成とした。
 これによって、積層バルブ20は、バルブ孔18aの全てを同時に開閉することができ、バルブ孔18aが段階的に開閉するときに車両11に生じる不規則な振動による乗り心地の低下が抑制される。
Further, the laminated valve 20 (see FIG. 4A) in which at least one second valve plate 201 (see FIG. 4C) is disposed between the laminated first valve plates 200 (see FIG. 4B). Reference).
As a result, the laminated valve 20 can open and close all the valve holes 18a (see FIG. 4A) at the same time, and the problem that occurs in the vehicle 11 (see FIG. 1) when the valve holes 18a open and close in stages. A decrease in ride comfort due to regular vibration is suppressed.
Further, as shown in FIGS. 5 (a) and 5 (b), the laminated valve 20 is provided with a lifter 25 disposed across all the opening / closing portions 20a.
As a result, the laminated valve 20 can open and close all of the valve holes 18a at the same time, and a decrease in riding comfort due to irregular vibration generated in the vehicle 11 when the valve holes 18a are opened and closed in stages is suppressed.
 また、本実施形態のピストン組立体14(図2参照)は、ピストン本体18(図2参照)の外周に、コイル15(図1参照)が外装される構成とした。これによってバルブ孔18aはコイル15よりも内周側(中心の側)に形成される。このような構成にすることで、バルブ孔18aよりも中心の側にコイル15等を配設する必要がなく、バルブ孔18aを中心に近づけて配置できる。そして、バルブ孔18aをピストン本体18の外周から離した位置に形成することができ、図4(b)に示す可動部200aの長さL1(可撓長さ)を長くできる。したがって、剛性が低く容易に撓む可動部200aとすることができ、積層バルブ20の開閉部20a(図4(a)参照)の剛性を低くすることができる。 Further, the piston assembly 14 (see FIG. 2) of the present embodiment is configured such that the coil 15 (see FIG. 1) is externally mounted on the outer periphery of the piston main body 18 (see FIG. 2). Thus, the valve hole 18a is formed on the inner peripheral side (center side) of the coil 15. With such a configuration, it is not necessary to dispose the coil 15 or the like on the center side of the valve hole 18a, and the valve hole 18a can be disposed close to the center. And the valve hole 18a can be formed in the position away from the outer periphery of the piston main body 18, and the length L1 (flexible length) of the movable part 200a shown in FIG.4 (b) can be lengthened. Accordingly, the movable portion 200a can be easily bent with low rigidity, and the rigidity of the opening / closing portion 20a (see FIG. 4A) of the laminated valve 20 can be reduced.
 なお、本発明は、前記した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。
 例えば、図4(b)に示す第1バルブプレート200の形状、および図4(c)に示す第2バルブプレート201の形状は一例に過ぎず、減衰力可変ダンパ10(図1参照)に要求される性能を満たす剛性となる形状であれば可動部200a,201aはどのような形状であってもよい。
The present invention is not limited to the above-described embodiment, and can be appropriately changed in design without departing from the spirit of the invention.
For example, the shape of the first valve plate 200 shown in FIG. 4B and the shape of the second valve plate 201 shown in FIG. 4C are merely examples, and are required for the damping force variable damper 10 (see FIG. 1). The movable portions 200a and 201a may have any shape as long as the shape has rigidity sufficient to satisfy the performance to be performed.
 また、積層バルブ20(図2参照)に配設される第2バルブプレート201(図4(b)参照)の数は1つに限定されるものではなく、2つ以上の第2バルブプレート201が配設される積層バルブ20であってもよい。 Further, the number of second valve plates 201 (see FIG. 4B) disposed in the laminated valve 20 (see FIG. 2) is not limited to one, and two or more second valve plates 201 are disposed. The laminated valve 20 may be disposed.
 また、減衰力可変ダンパ10(図1参照)に備わるバルブ手段は、第1バルブプレート200(図4(b)参照)が積層された積層バルブ(図2参照)としたが、同等の形状の開閉部20a(図4(a)参照)を有して一体に形成されるバルブ手段であってもよい。この場合、第2バルブプレート201(図4(c)参照)に相当する部材は、端部に取り付けられる構成とすればよい。 Further, the valve means provided in the damping force variable damper 10 (see FIG. 1) is a laminated valve (see FIG. 2) in which the first valve plate 200 (see FIG. 4 (b)) is laminated. The valve means may be formed integrally with the opening / closing portion 20a (see FIG. 4A). In this case, the member corresponding to the second valve plate 201 (see FIG. 4C) may be configured to be attached to the end.
 また、本実施形態の第2バルブプレート201(図4(c)参照)は、可動部201a(図4(c)参照)の先端部t1(図4(c)参照)が、第1バルブプレート200の隣接する2つの可動部200aにまたがって重なる構成とした。
 しかしながら、第2バルブプレート201の可動部201aの少なくとも一部が、第1バルブプレート200の隣接する2つの可動部200aにまたがって重なる構成であればよく、先端部t1が、隣接する2つの可動部200aにまたがって重なる構成に限定されるものではない。
Further, in the second valve plate 201 (see FIG. 4C) of the present embodiment, the tip portion t1 (see FIG. 4C) of the movable portion 201a (see FIG. 4C) is the first valve plate. It was set as the structure which straddles over two adjacent movable parts 200a of 200. FIG.
However, it is sufficient that at least a part of the movable portion 201a of the second valve plate 201 overlaps with two adjacent movable portions 200a of the first valve plate 200, and the tip portion t1 has two adjacent movable portions. It is not limited to the structure which overlaps over the part 200a.
 また、本実施形態の減衰力可変ダンパ10は、図1に示すように、リザーブ室60とガス室61がシリンダ12内に形成されているモノチューブダンパとしたが、リザーブ室60およびガス室61がシリンダ12の外部に形成されるツインチューブ式であってもよい。 Further, as shown in FIG. 1, the variable damping force damper 10 of the present embodiment is a monotube damper in which the reserve chamber 60 and the gas chamber 61 are formed in the cylinder 12, but the reserve chamber 60 and the gas chamber 61 are used. May be a twin tube type formed outside the cylinder 12.
 10  減衰力可変ダンパ
 12  シリンダ
 13  作動油
 14  ピストン組立体
 15  コイル
 18  ピストン本体
 18a バルブ孔(作動油流路)
 20  積層バルブ(バルブ手段)
 20a 開閉部
 20b 外周部
 25  リフター(開閉補助部材)
 31  上液圧室(第1流体室)
 32  下液圧室(第2流体室)
 130 作動油流路
 200 第1バルブプレート
 201 第2バルブプレート
 200a,201a 可動部
 200b,201b 外縁部
 P1  作用点
 L1  長さ(作用点から外周部まで開閉部に沿った長さ)
 L2  長さ(作用点から外周部までの距離)
DESCRIPTION OF SYMBOLS 10 Damping force variable damper 12 Cylinder 13 Hydraulic oil 14 Piston assembly 15 Coil 18 Piston main body 18a Valve hole (hydraulic oil flow path)
20 Stacked valve (valve means)
20a Opening / closing part 20b Outer peripheral part 25 Lifter (opening / closing auxiliary member)
31 Upper hydraulic chamber (first fluid chamber)
32 Lower hydraulic pressure chamber (second fluid chamber)
130 hydraulic oil passage 200 first valve plate 201 second valve plate 200a, 201a movable part 200b, 201b outer edge part P1 action point L1 length (length along the opening / closing part from the action point to the outer peripheral part)
L2 length (distance from the point of action to the outer periphery)

Claims (13)

  1.  作動油が充填されているシリンダに摺動可能に収納されて前記シリンダを摺動方向に第1流体室と第2流体室に区画するとともに前記第1流体室と前記第2流体室を連通して前記作動油が流通可能な作動油流路が形成されているピストン組立体を有し、
     前記作動油流路が開閉可能に構成される減衰力可変ダンパにおいて、
     前記ピストン組立体は、
     前記作動油流路の一部をなすバルブ孔が形成されているピストン本体と、
     電力が供給されたときに磁力を発生するコイルと、
     前記バルブ孔を開閉するバルブ手段と、を含んで構成され、
     前記バルブ手段は、
     外周部から中心に向かって延設されて前記バルブ孔を開閉し、前記磁力で前記ピストン本体の側に吸引される開閉部を有し、
     前記開閉部は、前記バルブ孔を流通する前記作動油から圧力を受ける作用点から前記外周部までの当該開閉部に沿った長さが、前記作用点から前記外周部までの距離よりも長いことを特徴とする減衰力可変ダンパ。
    The cylinder is filled with hydraulic oil and is slidably accommodated to divide the cylinder into a first fluid chamber and a second fluid chamber in a sliding direction, and the first fluid chamber and the second fluid chamber communicate with each other. A piston assembly in which a hydraulic fluid passage through which the hydraulic fluid can flow is formed,
    In the damping force variable damper configured to be able to open and close the hydraulic oil flow path,
    The piston assembly includes:
    A piston body in which a valve hole forming a part of the hydraulic oil flow path is formed;
    A coil that generates magnetic force when power is supplied;
    Valve means for opening and closing the valve hole,
    The valve means includes
    An opening / closing portion that extends from the outer periphery toward the center, opens and closes the valve hole, and is attracted to the piston body by the magnetic force;
    In the opening / closing part, a length along the opening / closing part from an operating point that receives pressure from the hydraulic oil flowing through the valve hole to the outer peripheral part is longer than a distance from the operating point to the outer peripheral part. A damper with variable damping force.
  2.  前記開閉部は、前記外周部から中心の側に向かって渦巻状に湾曲して延設されていることを特徴とする請求項1に記載の減衰力可変ダンパ。 2. The damping force variable damper according to claim 1, wherein the opening / closing portion extends in a spiral shape from the outer peripheral portion toward the center side.
  3.  前記バルブ手段は、
     少なくとも2つの第1バルブプレートが積層する間に少なくとも1つの第2バルブプレートが配設されて構成され、
     前記第1バルブプレートと前記第2バルブプレートは、積層して前記外周部を形成する外縁部と、積層して前記開閉部を形成する可動部と、をそれぞれ有し、
     前記第2バルブプレートの前記可動部の少なくとも一部が、前記第1バルブプレートの隣接する2つの前記可動部の少なくとも一部に重なっていることを特徴とする請求項1又は請求項2に記載の減衰力可変ダンパ。
    The valve means includes
    At least one second valve plate is disposed between at least two first valve plates,
    The first valve plate and the second valve plate each have an outer edge portion that is stacked to form the outer peripheral portion, and a movable portion that is stacked to form the opening / closing portion,
    The at least part of the movable part of the second valve plate overlaps at least a part of two adjacent movable parts of the first valve plate. Variable damping force damper.
  4.  前記ピストン本体に複数の前記バルブ孔が形成され、
     複数の前記バルブ孔をそれぞれ開閉する全ての前記開閉部にまたがって配設される開閉補助部材が備わることを特徴とする請求項1又は請求項2に記載の減衰力可変ダンパ。
    A plurality of the valve holes are formed in the piston body,
    The damping force variable damper according to claim 1 or 2, further comprising an opening / closing auxiliary member disposed across all the opening / closing portions that respectively open and close the plurality of valve holes.
  5.  前記バルブ手段は、
     少なくとも2つの第1バルブプレートが積層されて構成され、
     前記第1バルブプレートは、積層して前記外周部を形成する外縁部と、積層して前記開閉部を形成する可動部と、をそれぞれ有し、
     前記開閉補助部材は、積層される前記第1バルブプレートの間に配設されていることを特徴とする請求項4に記載の減衰力可変ダンパ。
    The valve means includes
    At least two first valve plates are stacked,
    The first valve plate has an outer edge portion that is laminated to form the outer peripheral portion, and a movable portion that is laminated to form the opening and closing portion, respectively.
    The damping force variable damper according to claim 4, wherein the opening / closing auxiliary member is disposed between the stacked first valve plates.
  6.  前記ピストン本体に複数の前記バルブ孔が形成され、
     複数の前記バルブ孔をそれぞれ開閉する全ての前記開閉部にまたがって配設される開閉補助部材が備わることを特徴とする請求項3に記載の減衰力可変ダンパ。
    A plurality of the valve holes are formed in the piston body,
    The damping force variable damper according to claim 3, further comprising an opening / closing assisting member disposed across all the opening / closing portions that respectively open and close the plurality of valve holes.
  7.  前記開閉補助部材は、積層される前記第1バルブプレートの間に配設されていることを特徴とする請求項6に記載の減衰力可変ダンパ。 The variable damping force damper according to claim 6, wherein the opening / closing auxiliary member is disposed between the stacked first valve plates.
  8.  前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする請求項1又は請求項2に記載の減衰力可変ダンパ。 3. The damping force variable damper according to claim 1, wherein the valve hole is formed closer to a center side than the coil provided to surround the piston body.
  9.  前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする請求項3に記載の減衰力可変ダンパ。 4. The variable damping force damper according to claim 3, wherein the valve hole is formed closer to the center than the coil provided so as to surround the piston body.
  10.  前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする請求項4に記載の減衰力可変ダンパ。 5. The damping force variable damper according to claim 4, wherein the valve hole is formed closer to a center side than the coil provided to surround the piston body.
  11.  前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする請求項5に記載の減衰力可変ダンパ。 6. The damping force variable damper according to claim 5, wherein the valve hole is formed closer to a center side than the coil provided so as to surround the piston main body.
  12.  前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする請求項6に記載の減衰力可変ダンパ。 The damping force variable damper according to claim 6, wherein the valve hole is formed closer to a center side than the coil provided so as to surround the piston main body.
  13.  前記バルブ孔は、前記ピストン本体を取り囲むように備わる前記コイルよりも中心の側に形成されていることを特徴とする請求項7に記載の減衰力可変ダンパ。 The damping force variable damper according to claim 7, wherein the valve hole is formed at a center side of the coil provided so as to surround the piston main body.
PCT/JP2014/057383 2013-04-08 2014-03-18 Variable damping force damper WO2014167959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480020054.2A CN105102851B (en) 2013-04-08 2014-03-18 Damping force variable shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013080637 2013-04-08
JP2013-080637 2013-04-08

Publications (1)

Publication Number Publication Date
WO2014167959A1 true WO2014167959A1 (en) 2014-10-16

Family

ID=51689372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057383 WO2014167959A1 (en) 2013-04-08 2014-03-18 Variable damping force damper

Country Status (2)

Country Link
CN (1) CN105102851B (en)
WO (1) WO2014167959A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493105B2 (en) 2020-02-03 2022-11-08 DRiV Automotive Inc. Method and device for manufacturing a monotube shock absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690195A (en) * 1996-07-29 1997-11-25 General Motors Corporation Alternating state pressure regulation valved damper
JPH11294515A (en) * 1998-02-12 1999-10-29 Kayaba Ind Co Ltd Damping force generating structure
JPH11344069A (en) * 1998-04-01 1999-12-14 Kayaba Ind Co Ltd Damping force generating structure of hydraulic shock absorber
JP2007225023A (en) * 2006-02-23 2007-09-06 Honda Motor Co Ltd Variable attenuating force damper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100526674C (en) * 2004-05-25 2009-08-12 日产自动车株式会社 Hydraulic shock absorber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690195A (en) * 1996-07-29 1997-11-25 General Motors Corporation Alternating state pressure regulation valved damper
JPH11294515A (en) * 1998-02-12 1999-10-29 Kayaba Ind Co Ltd Damping force generating structure
JPH11344069A (en) * 1998-04-01 1999-12-14 Kayaba Ind Co Ltd Damping force generating structure of hydraulic shock absorber
JP2007225023A (en) * 2006-02-23 2007-09-06 Honda Motor Co Ltd Variable attenuating force damper

Also Published As

Publication number Publication date
CN105102851A (en) 2015-11-25
CN105102851B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5732126B2 (en) Variable damping force damper
JP2011075060A (en) Damping force adjustment type shock absorber
US10352390B2 (en) Damper and method of assembling damper
US9441702B2 (en) Magnetorheological fluid damper
US11255400B2 (en) Damping force adjustable shock absorber
US9328791B2 (en) Variable damping force damper
EP2518364A1 (en) Shock absorber
US20230032430A1 (en) Solenoid, damping force adjustment mechanism, and damping force adjustable shock absorber
CN103003606A (en) Gas pressure regulating valve
EP2037149B1 (en) Piston valve assembly of continuous damping control damper
WO2018163444A1 (en) Pressure buffering device
WO2014167959A1 (en) Variable damping force damper
CN102606790B (en) Especially for the actuator of the Electromagnetically activatable of the adjustable orifice valve of vibration damper
US11231082B2 (en) Hydraulic damping device
JP4728862B2 (en) Magnetorheological fluid damper
EP2143971A2 (en) Piston valve assembly and damper including the same
JP2013213588A (en) Damping force adjustment type shock absorber
JP5661019B2 (en) Variable damping force damper
JP2015175520A (en) Variable damping force damper
EP2770227A2 (en) Damping force control valve and shock absorber
JP2015206458A (en) damper device
US20190128360A1 (en) Damping force-adjusting valve and shock absorber
KR102678383B1 (en) Damping Force Variable Valve Assembly and Damping Force Variable Shock Absorber having it
JP5563863B2 (en) Variable damping force damper
KR101913142B1 (en) Damping force adjusting device for shock absorber and shock absorber assembly including the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020054.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP