WO2014167884A1 - Diffraction grating, diffraction grating element, and charged particle beam device equipped with same - Google Patents

Diffraction grating, diffraction grating element, and charged particle beam device equipped with same Download PDF

Info

Publication number
WO2014167884A1
WO2014167884A1 PCT/JP2014/052332 JP2014052332W WO2014167884A1 WO 2014167884 A1 WO2014167884 A1 WO 2014167884A1 JP 2014052332 W JP2014052332 W JP 2014052332W WO 2014167884 A1 WO2014167884 A1 WO 2014167884A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction
diffraction grating
grating
charged particle
particle beam
Prior art date
Application number
PCT/JP2014/052332
Other languages
French (fr)
Japanese (ja)
Inventor
研 原田
照生 孝橋
智広 岩根
央和 玉置
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014167884A1 publication Critical patent/WO2014167884A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes

Definitions

  • the present invention relates to a diffraction grating used to generate a charged particle helical wave, a diffraction grating element comprising the grating, or a charged particle beam apparatus including the diffraction grating element.
  • ⁇ Spiral wave> In a coherent optical system, the phase of a propagating light wave is uniquely determined. Surfaces with the same phase are called wavefronts, and wave types such as plane waves and spherical waves are classified based on the shape of the wavefront. There are cases where the phase has a singular point that is not uniquely determined. For example, a spiral wave having a helical shape centered on an axis having an equiphase surface (generally parallel to the optical axis). This is a phase state where the phase changes by an integral multiple of 2 ⁇ when the azimuth is rotated once, with the singular point at the center (helical axis) when viewed along a plane perpendicular to the wave propagation direction. It is a wave that has.
  • Fig. 1 shows a spiral wave 21 classified as a plane wave.
  • the phase is singular on the helical axis 22 and the phase cannot be determined.
  • This spiral wave is called a Laguerre-Gaussian beam or optical vortex (Hikari Uzu) in optics, and propagates while maintaining the orbital angular momentum. It applies a force to the isophase plane (wavefront) in the vertical direction. Can do. Therefore, it becomes possible to give momentum to the irradiation target, and it has been put into practical use as a manipulation technique such as optical tweezers for manipulating particles having a size of about a cell, for example. It has also been put to practical use as laser processing and super-resolution microspectroscopy.
  • the spiral wave (electron spiral wave) in the electron beam propagates while maintaining the orbital angular momentum, and is expected to create an unprecedented field of application as an electron beam probe (incident beam).
  • an electron beam probe incident beam
  • the electron beam has the fundamental drawback that it is not sensitive to the magnetization parallel to the propagation direction, but the possibility of observing the magnetization in the electron beam propagation direction is possible with the electron spiral wave.
  • a diffraction grating including edge dislocations generates a spiral wave (having a spiral phase surface) as a diffraction wave (FIG. 2).
  • the spiral wave 21 forms a ring-shaped diffraction spot 97 in place of the normal point-shaped diffraction spot 99 in the diffraction image 9. That is, if the diffraction grating 91 including edge dislocations is irradiated with the plane wave 23 and can be spatially separated on the diffraction surface, the desired spiral wave 21 can be extracted.
  • the present application relates to a method and apparatus (diffraction grating) for using this spiral wave as a probe (incident beam) of a transmission type charged particle beam apparatus.
  • the helical degree of the helical wave is determined by the order of the edge dislocation, and the positive or negative of the helical degree or the polarity (right-handed or left-handed of the spiral) is determined by the positive / negative of the edge-shaped dislocation. That is, it is possible to control the helical wave generated by the edge dislocation.
  • the diffraction point of the spiral wave is generated on both the left and right sides, and higher-order diffraction points are generated according to the contrast of the diffraction grating, which corresponds to a high-frequency spiral wave. It is possible to generate a plurality of types of helical waves from a diffraction grating including a dislocation (see FIGS. 4 and 5). On the other hand, the intensity of the generated spiral wave is dispersed and weakened.
  • a fork type diffraction grating including edge dislocations can be described as an interference fringe between a helical wavefront and a plane wave.
  • one grid is inserted in the positive value portion on the y-axis.
  • the end points of this lattice are the cores of edge dislocations. This interference relationship can be easily described by geometric optics.
  • a plane wave propagating at an angle ⁇ x is expressed by ⁇ p
  • a helical wave ⁇ s propagating on the optical axis is expressed by Equations 1 and 2.
  • is the wavelength of the wave
  • the amplitude of the plane wave and the spiral wave is 1, and the distribution is uniform.
  • the handling of the amplitude is the same in the following formulas 1 and 2 unless otherwise specified.
  • ⁇ included in the phase term of the plane wave is a phase value at the point O where observation is performed, and is an initial phase value when the interference fringes are formed.
  • n hm takes an integer value by the degree of spiraling, and the magnitude of the value indicates the strength of winding of the spiral, and the direction of winding of the spiral (right-handed or left-handed when viewed in the propagation direction) depending on the value of the value.
  • This n hm corresponds to the quantum number of the orbital angular momentum, and is known as a topological charge in the Laguerre Gaussian beam.
  • is the phase value at the beginning of winding of the helix.
  • the interference fringes including edge dislocations expressed by Equation 3 have a shape in which the modulation of Equation 5 is added to Equation 4, which is an interference fringe when two plane waves interfere with each other by being inclined by a relative angle ⁇ x . .
  • a grating figure expressed as “grating that characterizes a diffraction grating”, “basic grating”, and the like means that it is determined based on the interference fringes represented by Equation 4, and is proposed in the present application.
  • the lower part of the lattice figure is drawn so as to correspond to this.
  • FIG. 4 shows a fork-type diffraction grating having a spiral degree of 5 and an electron diffraction image thereof.
  • the left side of FIG. 4A is an electron microscope image of a diffraction grating obtained by calculating a lattice pattern based on Equation 3 and processing a silicon nitride membrane (thickness: 200 nm) using a focused ion beam apparatus. Five lattices are inserted from the upper side in the figure and concentrated in the center. That is, this concentrated portion is the position of the core of the edge dislocation, and the order is fifth. The degree of helix and the degree of edge dislocation agree.
  • the edge dislocation lattice When the helical degree is negative, the edge dislocation lattice is inserted from the lower side. White portions in the image are gaps that transmit electron beams, and black portions in between are the trunks of the lattice.
  • the lattice spacing of the basic lattice (lower part on the left side of FIG. 4A) is 400 nm.
  • FIG. 4 (a) is a small-angle electron diffraction image (recorded at a camera length of 1500 m) on the right side, showing up to five convenient diffraction spots of 0th order, ⁇ 1st order, and ⁇ 2nd order.
  • the fact that the ⁇ 1st order and ⁇ 2nd order diffraction spots are in a ring shape is proof that an electron spiral wave is generated. Since a fork-type diffraction grating having a spiral degree of 5 is used, the ⁇ first order spots are ⁇ 5 degree spiral waves, and the ⁇ second order spots are ⁇ 10 degree spiral waves.
  • the ring diameter increases with the degree of helix.
  • Fig. 4 (b) shows the calculation results.
  • the left side of FIG. 4B is the calculation result based on the fork-type diffraction grating on the left side of FIG. 4A
  • the right side of FIG. 4B is the 0th order, ⁇ 1st order, and ⁇ 2nd order diffraction images, respectively.
  • It is a simulation result.
  • the ⁇ 1st-order diffraction spots correspond well with the experimental results, and the diameters of the ring-shaped spots are almost the same.
  • the ⁇ 2nd-order diffraction image is extremely weak, but this does not cause streak in the diffraction image obtained by the simulation, so that the harmonics appear in the diffraction grating on the left side of FIG. This is because a sinusoidal intensity distribution that does not cause the problem is given.
  • harmonics it has been confirmed that high-order diffraction spots such as ⁇ 2nd order and ⁇ 3rd order are generated.
  • FIG. 5 shows fork-type gratings having a spiral degree of 1, 3, 5, 7, and 9 and their electron diffraction images (from the ⁇ 1st order to the + 4th order).
  • the number of edge dislocation lattices inserted corresponding to the degree of helix increases. Since the high-order diffraction spot becomes extremely dark, a plurality of diffraction images with different exposures are combined and displayed. Since it is a small-angle electron diffraction image (recorded at a camera length of 1500 m) with a large camera length, the outer shape of the fork-type grating is also reflected in the diffraction image, and the shape of each diffraction spot is not a circle but a square ring.
  • the ring diameter of the diffraction spot directly represents the helical degree of the helical wave.
  • the generation of the electron spiral wave itself can be realized with an electron microscope.
  • the ring-shaped diffraction spot can be used as a probe for a scanning electron microscope as it is.
  • an electron spiral wave with a degree of helicality immediately corresponding to the diffraction spot is obtained.
  • An observation image using can be obtained.
  • the irradiation optical system can be modified significantly (fork-type grating insertion, diffracted electron beam selection on the diffraction image plane, and imaging system for use as a probe). Or a propagation distance) is required.
  • magnification on the sample is not large, a part of the imaging system, such as an objective lens, can be used as the irradiation optical system, but the sample is inserted into an appropriate position other than the predetermined position for fine movement. This is a limitation.
  • the diffraction grating of the present application is a diffraction grating that is used in a charged particle beam apparatus and generates a diffraction phenomenon in the charged particle beam, and the diffraction grating includes a plurality of diffraction gratings in the grating plane of the diffraction grating. It is characterized by having a shape including the edge dislocation.
  • the charged particle beam apparatus of the present application is characterized in that, in the above, using the diffraction grating, the sample is irradiated with a diffracted charged particle beam for observation or processing.
  • the diffraction grating element of the present application is a diffraction grating element composed of a plurality of diffraction gratings that generate a diffraction phenomenon in a charged particle beam, and the plurality of diffraction gratings in the diffraction grating element are arranged in one plane.
  • the plurality of diffraction gratings have a shape including edge dislocations in each grating plane.
  • the charged particle beam apparatus of the present application is characterized in that, in the above, the sample is irradiated with a diffracted charged particle beam and observed or processed using the diffraction grating element.
  • the charged particle beam device of the present application holds a light source of a charged particle beam, an irradiation optical system for irradiating the sample with a charged particle beam emitted from the light source, and a sample irradiated with the charged particle beam.
  • a charged particle beam device having an imaging lens system for forming an image of the sample, wherein the charged particle beam device is more charged than the sample holding device on an optical axis of the charged particle beam device.
  • a diffraction grating that generates a diffraction phenomenon in the charged particle beam on the upstream side in the traveling direction of the particle beam and has a shape including a plurality of edge dislocations in the lattice plane, or is diffracted by the charged particle beam
  • a diffraction grating element composed of a plurality of diffraction gratings for generating a phenomenon, wherein the plurality of diffraction gratings are arranged in one plane, and the plurality of diffraction gratings include an edge dislocation in each grating plane.
  • Times forming shape Grating element characterized in that it comprises a.
  • a spiral wave that can be used as a charged particle beam probe in a charged particle beam apparatus can be created.
  • FIG. 3 is a schematic diagram of a diffraction grating in which fork-type gratings that generate spiral waves having a degree of spiral of 2, 3, and 1 are linearly arranged. It is a conceptual diagram of the design point of Fig.6 (a). It is a simulation result of the diffraction grating containing the core of three edge dislocations of FIG. 6, and its diffraction image.
  • FIG. 3 is a schematic diagram of a diffraction grating in which fork-type gratings that generate spiral waves having a degree of spiral of 2, 3, and 1 are linearly arranged. It is a conceptual diagram of the design point of Fig.6 (a). It is a simulation result of the diffraction grating containing the core of three edge dislocations of FIG. 6, and its diffraction image.
  • FIG. 5 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate spiral waves having spiral degrees of 2, 1, and 3 at an angle of 45 degrees from the upper right to the lower left are arranged linearly.
  • FIG. 4 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate spiral waves having a degree of spiral of 2, 2, and 2 at an oblique angle of 45 degrees from the upper right to the lower left are linearly arranged.
  • FIG. 5 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate helical waves having a degree of spiral of 2, 2, and 2 are arranged in a straight line in the same direction as the basic grating.
  • FIG. 4 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate helical waves having a spiral degree of 2, 2, and 2 at an angle of 90 degrees with a basic grating are arranged linearly. It is a schematic diagram of a diffraction grating element in which diffraction gratings having ninth-order, first-order, and fifth-order edge dislocations are arranged. It is a schematic diagram of a diffraction grating element in which diffraction gratings having first-order, ninth-order, and fifth-order edge dislocations are arranged. It is a figure which shows the example which aligned the phase of the basic grating of a diffraction grating.
  • FIG. 9 is a schematic diagram of a diffraction grating and a diffraction grating element, and a simulation result of a diffraction image, illustrating Example 7.
  • FIG. 9 It is the figure which copied the diffraction grating shown to Fig.17 (a), and the 0th-order and +/- 1 order simulation result.
  • FIG. 9 is a schematic diagram of a diffraction grating and a diffraction grating element, and a simulation result of a diffraction image, illustrating Example 8.
  • FIG. 9 is a schematic diagram of a diffraction grating and a diffraction grating element, and a simulation result of a diffraction image, illustrating Example 8.
  • FIG. 10 is a schematic diagram of a diffraction grating and a diffraction grating element and a simulation result of a diffraction image for explaining Example 9.
  • FIG. 10 It is the figure which copied the diffraction grating shown in Drawing 19 (a), and the 0th order, ⁇ 1st order, and ⁇ 2nd order simulation result.
  • FIG. 10 is a schematic diagram of a diffraction grating and a diffraction grating element and a simulation result of a diffraction image for explaining Example 10.
  • FIG. 10 is a schematic diagram of a diffraction grating and a diffraction grating element and a simulation result of a diffraction image for explaining Example 10.
  • the present application proposes the following (1) to (3) as optical elements for generating a spiral wave.
  • the following (1) to (3) are possible.
  • (1) By using a fork-type grating having a plurality of edge dislocations and generating ring-shaped diffraction spots having different spirals, that is, different diameters, superimposed on diffraction spot positions of the same order, they are transmitted on the diffraction image plane.
  • a spiral wave that can be used as a probe for a charged particle beam device (2)
  • a spiral wave that can be used as a probe for a charged particle beam device (3) by utilizing the fact that small-angle diffraction also reflects the shape of the diffraction grating, the outer shape of the plurality of diffraction gratings is appropriately selected, or the arrangement of the plurality of diffraction gratings is optimized to obtain a diffraction image. Creates a spiral wave that can be used as a probe for a transmission charged particle beam device on the surface, It becomes possible.
  • the diffraction grating referred to in the present application mainly refers to a diffraction grating that does not have a lens action on the beam of the charged particle beam apparatus.
  • a plurality of spiral axes of a spiral wave can be distributed on a plane, and each coordinate on the xy plane can be handled independently including (x m , y m ), including the degree of spiral. That is, the phase term of Formula 2 indicating a spiral wave may be changed to Formula 6.
  • Equation 7 the intensity distribution of the interference fringes having a plurality of edge dislocations, that is, the grating pattern of the fork type diffraction grating is shown in Equation 7.
  • each edge dislocation corresponding to the position of the helical axis of the helical wave
  • the phase of the fundamental lattice at that position is Affect each other, and therefore, different from the case where there is one edge dislocation (Equation 3, or FIGS. 4 and 5), it varies in various ways. However, adjustment is possible by the position (x m , y m ) of each core and the phase term ⁇ of the plane wave.
  • Equation 3 In the simplest case expressed by Equation 3, or in the diffraction grating including one edge dislocation illustrated in FIGS. 4 and 5, there is no problem.
  • the diffraction grating including a plurality of edge dislocations As described above, the cores of the second and third edge dislocations are not always located at the trunk portion of the lattice.
  • an appropriate lattice pattern may be drawn by adjusting the core positions (x m , y m ) of the second and third edge dislocations and the phase term ⁇ .
  • FIG. 6 shows a straight line of fork-type gratings that generate spiral waves with spiral degrees of 2, 3, and 1, respectively, at an angle of 45 degrees diagonally from upper right to lower left, that is, at an angle of 45 degrees with the orientation of the basic grating. It is a schematic diagram of the arrange
  • FIG. 6A shows a diffraction grating pattern calculated based on Equation 7, which corresponds to a design drawing.
  • FIG. 6B is a conceptual diagram depicting the design point of FIG. 6A in an easy-to-understand manner.
  • the outer shape is a 45 degree diagonal angle from the upper right to the lower left with respect to the circular lattice.
  • FIG. 7 is a simulation result of a diffraction grating including the three edge dislocation cores of FIG. 6 and its diffraction image.
  • the ring-shaped diffraction spots observed or calculated in FIGS. 4 and 5 are not generated. That is, the diffraction spot from the diffraction grating including the cores of the three edge dislocations indicates a spiral wave that can irradiate the region, and can be used as a probe in a transmission type charged particle beam apparatus. I understand that.
  • FIG. 6A illustrates a diffraction grating including a core of three edge dislocations, but the present application does not limit the number of edge dislocations to three. If a large number of edge dislocations are arranged in a range where an incident wave such as an electron beam can be irradiated, the number of spiral waves superimposed on one diffraction spot position increases, and a high density and uniform area irradiation probe can be obtained.
  • FIG. 6A shows a fork type diffraction grating that can generate a plurality of spiral waves having different spiral degrees by superimposing them on one diffraction spot position on the diffraction image plane.
  • FIG. 8 shows a diffraction grating having an angle of 45 degrees obliquely from the upper right to the lower left, that is, a diffraction grating having an angle of 45 degrees with the orientation of the basic grating, as in FIG.
  • FIG. 8B is a schematic diagram of a fork-type diffraction grating in which edge dislocations for generating spiral waves of 2, 1, and 3 and spiral waves of degrees 2, 2, and 2 are arranged in a straight line. The position of the core of the edge dislocation is adjusted so as to be approximately at the center of the trunk of the lattice, as in FIG.
  • FIG. 8 shows that a plurality of spirals can be arbitrarily selected in size and position.
  • FIG. 9 is an example of a diffraction grating having a plurality of edge dislocations as in FIG.
  • the three edge dislocations are all secondary dislocations and form a straight line, but in FIG. 9A, the arrangement is vertical (same orientation (parallel) to the lattice of the basic lattice).
  • the horizontal direction (vertical (90 degrees) with the basic lattice). It is the same as in FIGS. 8 and 6A that the position of the edge dislocation is adjusted so as to be approximately at the center of the trunk of the lattice.
  • FIG. 9 is an example of a diffraction grating having a plurality of edge dislocations as in FIG.
  • the three edge dislocations are all secondary dislocations and form a straight line, but in FIG. 9A, the arrangement is vertical (same orientation (parallel) to the lattice of the basic lattice).
  • the horizontal direction (vertical (90 degrees) with the basic lattice
  • the basic grating is located in the lower part of the core of the lowest secondary edge dislocation, and the influence of the basic grating on the diffraction grating as a whole is small. This corresponds to the fact that the diffraction spot has a spread in the diffraction image.
  • FIG. 9 shows that the orientation of the array of cores of a plurality of edge dislocations can be designed.
  • FIG. 10 shows an example of a diffraction grating element in which three diffraction gratings are arranged on one plane.
  • FIG. 10A shows a diffraction grating element in which diffraction gratings having ninth-order, first-order, and fifth-order edge dislocations are arranged clockwise from above.
  • FIG. 10B shows a diffraction grating element in which diffraction gratings having first-order, ninth-order, and fifth-order edge dislocations are arranged clockwise from above.
  • FIG. 10B shows an arrangement in which each basic lattice is rotated by ⁇ 5 degrees.
  • the orientation in which the diffraction spot is formed in the diffraction image also changes with the orientation of the basic grating, which is effective for area irradiation.
  • the diffraction grating having the lower right 9th-order edge dislocation gives an azimuth angle of 5 degrees clockwise
  • the diffraction grating having the lower left 5th-order edge dislocation gives an azimuth angle of 5 degrees counterclockwise.
  • FIG. 10 illustrates a diffraction grating element including a diffraction grating having three edge dislocations, but the present application is not limited to three.
  • the diffraction grating including a plurality of edge dislocations shown in FIGS. 6, 8, and 9 there is one basic grating, and a ring-shaped spiral wave is formed in the diffraction spot of the diffraction image based on the periodicity and phase of the basic grating.
  • a plurality of waves to be generated are superimposed.
  • the phases of the plurality of waves are unified by the basic lattice.
  • the periodicity and phase of each basic grating are arbitrary and are not uniquely determined. That is, even if diffraction gratings having edge dislocations of the same order are arranged, if diffraction gratings with the phase of each basic grating shifted by ⁇ are arranged, the diffraction spot is weakened due to interference in the diffraction image and the diffraction spot becomes dark. Become. This can be used to control the intensity of the diffraction spot.
  • FIG. 11 shows a basic grating (white broken line grating) superimposed on the diffraction grating element of FIG.
  • the lower side of the three diffraction gratings (having 9th-order, 1st-order, and 5th-order edge dislocations clockwise from the top) is a portion of the basic grating. It can be seen that the trunk (black line) of this basic lattice coincides with the white broken lines of the basic lattice (see arrows). That is, the three diffraction gratings have the same basic grating.
  • FIG. 12 shows an example in which the phases of the basic grating are not aligned.
  • FIG. 12 shows the same combination of diffraction gratings as in FIG. 11, but the positions of the lower first-order and fifth-order diffraction gratings are exactly 1 ⁇ 4 period of the basic grating (the first order grating is +1/4 period, The fifth-order lattice is shifted by 1 ⁇ 4 period) in the horizontal direction in the figure. That is, the phases of the basic grating are not aligned.
  • FIG. 13 shows the experimental results (FIG. 13 (a)) and the simulation results (FIG. 13 (b)).
  • the phases of the basic gratings described above are substantially matched.
  • the effect of the spiral wave is the largest at the core of the edge dislocation and decreases as it moves away from it, but basically the effect continues to infinity. . Therefore, even if the basic gratings coincide with each other, when the diffraction grating is actually manufactured with a finite size, the influence remains on the period and phase of the basic grating. This problem is more conspicuous as the lattice has a higher degree of spiralness, that is, a higher degree of edge dislocations.
  • the diffraction image is shown on the right side of FIG. Although the four diffraction spots from the ⁇ 1st order to the second order are shown, in the experimental result of FIG. 13A, the three ring-shaped diffraction spots are not arranged on the concentric circles. The center position is shifted. This is because the position of each diffraction grating and the slight deviation of the above-mentioned basic grating appear sharply in the image because of the small-angle diffraction. However, the experimental results indicate that three ring-shaped diffraction spots are superimposed on one diffraction spot position, and the idea of the present application is realized.
  • the simulation result of FIG. 13B also shows that the ⁇ 1st-order diffraction spot does not have the ring shape seen in FIG. 4B, and spreads, and region irradiation can be performed using this diffraction spot. It is shown that.
  • a method of blurring a ring-shaped diffraction spot that is, a plurality of methods effective for area irradiation.
  • a method of increasing the opening angle of the incident wave incident on the diffraction grating or the diffraction grating element to widen the spot diameter on the diffraction image plane, that is, the distribution of the spiral wave, and the focus of the lens that forms the diffraction image There is a method of causing the diffraction image itself to blur by shifting. Since both are controlled by the optical system upstream of the sample, it can be adjusted independently of the imaging condition of the sample (for example, adjustment of magnification or adjustment of focus).
  • FIG. 14 shows another example of the diffraction grating element 93 in which a plurality of diffraction gratings 91 having different outer shapes are arranged on a plane.
  • a diffraction image that generates a spiral wave is small-angle diffraction, and the outer shape and arrangement position of the diffraction grating are reflected in the diffraction image.
  • the difference in the azimuth angle of each diffraction grating, the difference in the outer shape of each diffraction grating, and the order of the edge dislocation possessed by each diffraction grating as seen from the position of the optical axis 2 of the irradiation probe to the diffraction grating element are superimposed on one diffraction spot of the diffraction image to generate a spiral wave of region irradiation.
  • FIG. 15 is an example of a charged particle beam apparatus provided with a diffraction grating element 93 for irradiating a sample with a spiral wave.
  • a transmission electron microscope is illustrated as an example, it is not limited to an electron microscope.
  • the diffraction grating element 93 disposed in the irradiation optical system is adjusted by, for example, the first condenser lens 41 for the irradiation opening angle and the irradiation angle with the optical axis 2.
  • a diffraction image of the diffraction grating element 93 is formed on the sample by the second condenser lens 42 below the diffraction grating element 93.
  • a diffraction spot to be used for observation as a probe is selected by, for example, the diaphragm 15 and irradiated on the sample.
  • the electron beam that has passed through the sample 3 passes through the objective lens 5 and the imaging lens system (61, 62, 63, 64) on the lower side thereof, is enlarged to a predetermined magnification, and forms an image on the image receiving surface 89.
  • the sample image 35 is observed on a screen of an image data monitor 76, for example, via a detector 79 and a controller 78, or stored as image data in a recording device 77.
  • the assumed charged particle beam apparatus includes a beam deflection system, an evacuation system, and the like. However, since there is no direct relationship with the present application, illustration and description are omitted.
  • FIG. 16 shows a schematic diagram of the diffraction grating and the diffraction grating element described up to Example 6 and an example of a simulation result of the diffraction image.
  • FIGS. 16A, 16B, and 16C show edge dislocation gratings (left figure) having orders of 1st order, 5th order, and 9th order, respectively, and waves (in this case, charged particles) transmitted through the respective diffraction gratings. It is a simulation result (right figure) of the diffraction image by line.
  • the 0th-order diffraction spot corresponding to the transmitted wave is located at the center of the diffraction image, and the diffraction spots corresponding to the 1st- to 4th-order diffraction waves are shown on the right and left sides, respectively. Centering on the 0th order spot, for example, the right side corresponds to a positive diffraction spot and the left side corresponds to a negative diffraction spot.
  • Each diffraction spot has a characteristic ring shape, which indicates that the diffraction spot is a spiral wave having a spiral degree determined by the diffraction order and the edge dislocation order.
  • the helical degree is represented by the product of the order of diffraction spots and the order of edge dislocations.
  • the diffraction spot of the spiral wave has a spiral degree of 1 degree, 2 degrees, 3 degrees, and 4 degrees in the right direction from the 0th order spot.
  • FIG. In the right direction it is a diffraction spot of a spiral wave having a spiral degree of 5, 10, 10, 15, and 20 degrees. It can be seen that the ring diameter of the spiral diffraction spot increases corresponding to the degree of helix.
  • FIG. 16D is also a schematic diagram of the diffraction grating and the diffraction grating element up to Example 6 and a diagram showing an example of the simulation result of the diffraction image.
  • FIG. 16D shows an example (left figure) of an edge dislocation grating element composed of three edge dislocation gratings of the first order, the fifth order, and the ninth order, and a wave transmitted through the diffraction grating element (
  • a spiral wave By generating ring-shaped diffraction spots having different spirals, that is, having different diameters, with the same center in the same diffraction plane, a spiral wave can be generated by superimposing them so as to irradiate a spatial region in the form of a plane wave.
  • the plane wave refers to a wave (in this case, a charged particle beam) having a certain irradiation region as used in a transmission electron microscope (TEM) or the like.
  • the irradiation spiral probe is suitable for a normal transmission electron microscope that is not a scanning type.
  • the left figure in FIG. 16D is displayed at a different magnification from the left figures in FIGS. 16A to 16C for convenience of display, but the relationship between the magnifications is a scale bar of 5 ⁇ m in the figure. It is shown and clarified.
  • the magnification of the diffraction image is the same in FIGS.
  • Example 7 in order to generate a suitable irradiation spiral probe in a transmission electron microscope or the like using a spiral wave as an irradiation probe based on the above idea, the center of the ring-shaped diffraction spot by the spiral wave is the same.
  • ring-shaped diffraction spots having different diameters are generated in the same diffraction plane, and are superimposed to generate a spiral wave that can irradiate a spatial region in a plane wave shape.
  • the spiral wave is generated and the spiral wave is generated so that the spatial region can be irradiated in a plane wave shape. It is characterized by that.
  • a diffraction grating element provided with a plurality of edge dislocation gratings having the same order of edge dislocations, the basic lattice spacing, and the lattice orientation, and having different outer diameters (diameters) of the gratings is used.
  • a charged particle beam apparatus is used that observes or processes a sample by irradiating the sample with a charged particle beam diffracted by the diffraction grating element.
  • the diffraction grating elements used in this Example 7 have the same degree of spiraling, but there are a plurality of types of lattice plane sizes of the edge dislocation gratings constituting the diffraction grating elements, so that the diffraction grating elements are generated from the respective diffraction waves.
  • the ring-shaped diffraction spots have different diameters. Therefore, by superimposing ring-shaped diffraction spots with the same spiral degree and different spot diameters on the same plane, a spiral wave can be generated that can irradiate a spatial region in a plane wave form with the same spiral degree. it can.
  • the degree of spiraling is uniform, the strength of the interaction between the irradiated sample and the irradiated spiral wave probe is constant within the irradiated region, allowing observation of the sample with a more uniform contrast or processing of the sample. It becomes.
  • FIG. 17A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 7 and a simulation result of a diffraction image.
  • FIG. 17B is a diagram (image diagram) showing a copy of the diffraction grating shown in FIG. 17A and the 0th and ⁇ 1st order simulation results.
  • each of the diffraction gratings has third-order edge dislocations, and the basic lattice spacing and the lattice orientation are the same.
  • the left side of FIG. 17 shows an edge dislocation grating
  • the right side of FIG. 17 shows a simulation result of a diffraction image by a wave (in this case, a charged particle beam) transmitted through each diffraction grating.
  • the 0th-order diffraction spot corresponding to the transmitted wave is located at the center of the diffraction image, and the diffraction spots corresponding to the 1st- to 4th-order diffraction waves are shown on the left and right, respectively.
  • the configuration of the above figure is the same as that of FIG.
  • the relationship of diffraction images by the wave (charged particle beam) transmitted through the diffraction grating or the diffraction grating element and the diffraction grating in the explanatory diagrams of the present application is the same in the subsequent drawings unless otherwise specified.
  • FIG. 17 (a) are the cases where the outer diameter of the lattice plane changes in order of large (RL), medium (RM), and small (RS) in this order, These are edge dislocation gratings and diffraction images from the gratings when the area of the grating changes from large to medium to small.
  • FIG. 17A and FIG. 17B it can be seen that the ring diameter of the ring-shaped diffraction spot increases as the grating outer diameter decreases.
  • the first-order and second-order diffraction spots look like multiple rings, but the outer ring of these multiple rings is the Fraunhofer diffraction created by the aperture shape. Is equivalent to In this embodiment, a ring-shaped diffraction spot corresponding to the main maximum of the innermost Fraunhofer diffraction is considered.
  • FIG. 17 (D) shows an example of a diffraction grating element having a plurality of types in the size of the lattice plane of the edge dislocation grating.
  • the left diagram of FIG. 17A (D) shows the diffraction gratings (A) to (C) of FIG. 17 (a) arranged on the same plane with the same basic grating spacing and grating orientation. It is a diffraction grating element.
  • (D) in FIG. 17A is a diffraction grating element in which diffraction gratings having large (RL), medium (RM), and small (RS) outer diameters are arranged counterclockwise from above.
  • 17A is a diffraction image by a wave (charged particle beam) transmitted through the diffraction grating element in the left figure. Ring diffraction spots having the same spiral degree but different ring diameters are diffracted the same. It is shown that a spiral wave is generated that can be generated in a plane and superimposed to irradiate a spatial region in a plane wave shape.
  • the ⁇ 1st-order diffraction spot is not a ring shape but a plane wave incident probe that irradiates a region. In other words, the ring-shaped central portion (core portion) of the ⁇ 1st-order diffraction spot is small.
  • the edge dislocation lattice image of FIG. 17 (d) is displayed at a different magnification from the left figure of FIGS. 17 (a) to 17 (c), but the relationship between the magnifications is a scale bar of 5 ⁇ m. Is shown in the figure to clarify.
  • the magnification of the diffraction image is the same in FIGS.
  • ring-shaped diffraction spots having different diameters can be obtained on the same diffraction plane even if the order of the edge dislocations is the same. Therefore, the ring-shaped diffraction spots from the respective edge-shaped dislocation gratings are superimposed, and a plane wave irradiation spiral probe suitable for a normal transmission electron microscope or the like is generated.
  • FIG. 18A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 8, and a simulation result of a diffraction image.
  • FIG. 18B is a diagram (image diagram) showing a copy of the diffraction grating shown in FIG. 18A and simulation results of the 0th order and ⁇ 1st order.
  • (A) and (B) of FIG. 18 (a) each have a third-order edge dislocation, and the three edge dislocation lattices having the same basic lattice interval and lattice orientation and different outer diameters are in the same plane.
  • FIG. 18 (a) has a larger display magnification than those of FIGS. 16 and 17 (a), and corresponds to the first-order and second-order diffracted waves respectively on the left and right with the zeroth-order diffraction spot as the center. Only diffraction spots are shown.
  • the diffraction image is a Fraunhofer diffraction image with an infinite propagation distance, and the information on the grating position is lost, and the information is only the direction and the interval (spatial frequency). Therefore, in a diffraction grating element having a plurality of diffraction gratings having different sizes, the position of each diffraction grating on the same plane theoretically does not matter.
  • the diffraction gratings are arranged in the direction perpendicular to the orientation of the basic grating (in this case, in the lateral direction), and the ring-shaped diffraction spots of the ring-shaped diffraction spots are reliably ensured even in an actual apparatus. It is an example of the diffraction grating element comprised so that a center might correspond.
  • FIG. 19A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 9, and a simulation result of a diffraction image.
  • FIG. 19B is a diagram (image diagram) showing the diffraction grating shown in FIG. 19A and the simulation results of the 0th order, ⁇ 1st order, and ⁇ 2nd order.
  • FIG. 19A shows a case where the number of diffraction gratings having a small diffraction grating surface is larger than the number of diffraction gratings having a large diffraction grating surface ((B) in FIG. 19A). ), (C)).
  • the number of diffraction gratings having a certain area is smaller than the number of diffraction gratings having a smaller area.
  • it is suitable for generating a spiral probe capable of irradiating a plane wave-like space region.
  • the intensity (amount) of the wave (here, charged particle beam) diffracted from the smaller diffraction grating surface is small. Since the diffraction spot diffracted from the smaller diffraction grating surface becomes a diffraction spot having a large ring diameter in the diffraction plane, the intensity of the ring-shaped diffraction spot is further reduced.
  • (A) in FIG. 19 (a) is an example of one diffraction grating (RL only) having a large diffraction grating surface
  • (B) in FIG. 19 (a) has a relatively large grating surface size.
  • This is an example of a diffraction grating element in which large (RL), medium (RM), and small (RS) diffraction gratings are arranged at an angle of 45 degrees with respect to the orientation of the basic grating. Comparing (A) and (B) in FIG. 19A, the intensity of the innermost ring is strong for the ⁇ 1st-order or second-order ring-shaped diffraction spots, and (A) in FIG.
  • FIG. 19A (B) a ring-shaped diffraction spot by a diffraction grating having a small size is located outside the innermost ring-shaped spot. This means that the ring-shaped contrast corresponding to the submaximal of Fraunhofer diffraction seen in (A) of FIG. 19 (a) has disappeared, that is, the superposition of a plurality of ring-shaped diffraction spots.
  • FIG. 19A is an example of a diffraction grating element when the number of diffraction gratings having a small diffraction grating surface is large.
  • FIG. 19A (C) it can be seen that the intensity at the outer periphery of the ring-shaped diffraction spot is increased as compared with (B).
  • the arrangement of each lattice has fourfold symmetry. That is, in the figure, small lattices (RS) are arranged on the upper, lower, left and right sides of the large lattice (RL), and middle lattices (RM) are disposed obliquely on the upper right, lower right, upper left, and lower left of the large lattice (RL). Has been. In this way, in FIG.
  • the diffraction grating having a certain area with respect to the optical axis is smaller. It can be said that it is provided closer to the diffraction grating having the area.
  • Example 10 As mentioned in Example 9, increasing the size of the irradiation region of the wave (charged particle beam in this case) that irradiates the diffraction grating element means a decrease in intensity per unit area of the irradiation probe. Therefore, it is important to efficiently arrange a plurality of diffraction gratings having different grating plane sizes in the wave irradiation region.
  • “efficient” means that the gaps between the lattices or the area of the gaps are arranged to be small.
  • FIG. 20A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 10 and a simulation result of a diffraction image.
  • FIG. 20B is a diagram (image diagram) showing a copy of the diffraction grating shown in FIG. 20A and the 0th and ⁇ 1st order simulation results.
  • FIG. 20A shows a case where a diffraction grating (RM) having a medium grating surface is arranged in four directions of a diffraction grating (RL) having a large grating surface, and further, a grating is provided at the periphery thereof.
  • a diffraction grating (RS) having a small surface size is arranged.
  • a diffraction grating element including one grating (RL) having a relatively large diffraction surface, four intermediate gratings (RM), and 20 small gratings (RS).
  • middle grids are arranged on the upper, lower, left, and right sides of the larger grid (RL), and five smaller grids (RS) are arranged on the upper right, lower right, upper left, and lower left of the large grid (RL).
  • RS small lattice group consisting of is arranged.
  • the number of diffraction surfaces is not limited to the exemplified number as long as it has a plurality of gratings having relatively different sizes.
  • the diffraction image of FIG. 20A has four times at each diffraction grating position.
  • the lattice pattern corresponding to the symmetry is more prominent than (C) in FIG. 19A (see also (A) in FIG. 20B and (C) in FIG. 19A).
  • This is a manifestation of the effect of increasing the intensity of the diffraction image.
  • the intensity distribution of the diffraction image having the lattice pattern is used as an irradiation probe for the sample, new artifacts are introduced in observation and processing. There is a fear. This is due to the fact that Fraunhofer diffraction with an infinite propagation distance is not possible in Example 7.
  • FIG. 20A An example in which the positions of the diffraction gratings are randomized to reduce the symmetry is shown in FIG.
  • the number of diffraction gratings is not changed between (A) and (B) in FIG.
  • the center of the large lattice (RL) and the center of the middle lattice (RM) are not arranged in a straight line, and are below the large lattice (RL).
  • the middle grid (RM) is displaced.
  • the lattice (RM) on the right side of the large lattice (RL) is shifted.
  • the small lattice groups are arranged diagonally in the upper right, lower right, upper left, and lower left of the large lattice (RL), but the arrangement positions are not symmetrical. For example, the line connecting the center of the large lattice (RL) and the center of the small lattice (RS) is not regularly arranged.
  • the diffraction image of FIG. 20A (B) is the same as the diffraction image of FIG. 20A (A), and the ring-shaped diffraction spots have the same spread, and the four-fold symmetry pattern disappears. Is clear.
  • FIG. 21 is an example of a charged particle beam apparatus including a diffraction grating element 94 for irradiating a sample with a spiral wave. Drawing and explanation are made with a transmission electron microscope as an example, but the present application is not limited to an electron microscope.
  • the diffraction grating element 94 arranged in the irradiation optical system imitates the shape of (D) of FIG. 17A as an example.
  • the electron beam 27 irradiating the diffraction grating element 94 is adjusted by, for example, the first condenser lens 41 to adjust the irradiation opening angle and the irradiation angle with the optical axis 2.
  • the irradiation region of the electron beam 27 that irradiates the diffraction grating element 94 is adjusted so that the edge dislocation included in each diffraction grating 91 on the diffraction grating element 94 is included in the irradiation region.
  • a diffraction image of the diffraction grating element 94 is formed on the sample by the second condenser lens 42 below the diffraction grating element 94.
  • a diffraction spot to be used for observation as an irradiation probe for the sample is selected by, for example, the diaphragm 15 and irradiated onto the sample 3.
  • the electron beam 27 that has passed through the sample 3 passes through the objective lens 5 and the imaging lens system (61, 62, 63, 64) on the lower side thereof, is enlarged to a predetermined magnification, and forms an image on the image receiving surface 89.
  • the sample image 35 can be observed on a screen of an image data monitor 76, for example, via a detector 79 and a controller 78, and can also be stored as image data in a recording device 77.
  • the assumed charged particle beam apparatus includes a beam deflection system, a vacuum exhaust system, and the like, but illustration and description of these facilities are omitted in the present application.
  • Electron source 15 ... Aperture, 17 ... Control system of aperture, 18 ... Vacuum container, 19 ... Control system of electron source, 2 ... Optical axis, 21 ... Spiral wave, 23 ... Plane wave, 3 ... Sample, 35 ... Sample 39 ... control system of sample holding device, 40 ... acceleration tube, 41 ... first condenser lens, 42 ... second condenser lens, 47 ... control system of second condenser lens, 48 ... control system of first condenser lens 49 ... Accelerating tube control system, 5 ... Objective lens, 51 ... System control computer, 52 ... System control computer monitor, 53 ... System control computer interface, 59 ...
  • Objective lens control system 61 ... First intermediate lens 62 ... second intermediate lens, 63 ... first projection lens, 64 ... second projection lens, 66 ... second projection lens control system, 67 ... first projection lens control system, 68 ... second intermediate , 69 ... control system of the first intermediate lens, 71 ... image surface of the sample by the objective lens (first image surface), 72 ... image surface of the sample by the first intermediate lens (second image surface), 73 ... image surface (third image surface) of sample by second intermediate lens, 74 ... image surface (fourth image surface) of sample by first projection lens, 76 ... monitor for image data, 77 ... image data recording device, 78 DESCRIPTION OF SYMBOLS ... Image data controller, 79 ...
  • Image detector 89 ... Image-receiving surface, 9 ... Diffraction image, 91 ... Diffraction grating, 93 ... Diffraction grating element, 95 ... Basic grating, 96 ... Control of diffraction grating or diffraction grating element holding device System 97 ... Ring diffraction spot, 99 ... Point diffraction spot

Abstract

This charged particle beam device generates an electron vortex beam by passing a charged particle beam through (A) a diffraction grating which includes a plurality of edge dislocations of differing orders, or (B) a diffraction grating element comprising a plurality of diffraction gratings which include edge dislocations of differing orders. The electron vortex beam has a plurality of ring-like diffraction spots of differing diameters which overlap on the diffraction image plane, and therefore is suited to devices for which it is necessary to irradiate a wide sample region, such as a transmission electron microscope.

Description

回折格子、または回折格子素子、またはそれらを備えた荷電粒子線装置Diffraction grating, or diffraction grating element, or charged particle beam apparatus including the same
 本願発明は、荷電粒子らせん波を生成するために使用する回折格子、またはその格子からなる回折格子素子、またはそれらを備えた荷電粒子線装置に関する。 The present invention relates to a diffraction grating used to generate a charged particle helical wave, a diffraction grating element comprising the grating, or a charged particle beam apparatus including the diffraction grating element.
 <らせん波>
 コヒーレントな光学系においては、伝播する光波の位相は一意に定まる。その位相が等しい面を波面と呼び、その波面の形状から平面波、球面波など波動の分類が成されている。位相が一意に定まらない特異点を持つ場合も存在する。例えば、等位相面がある軸(一般に光軸に平行)を中心にらせん形状をしたらせん波である。これは波の伝播方向に垂直な平面で切って見た場合に、特異点を中心(らせんの軸)として、方位角を1回転させたときに位相が2πの整数倍だけ変化する位相状態を持つ波のことである。
<Spiral wave>
In a coherent optical system, the phase of a propagating light wave is uniquely determined. Surfaces with the same phase are called wavefronts, and wave types such as plane waves and spherical waves are classified based on the shape of the wavefront. There are cases where the phase has a singular point that is not uniquely determined. For example, a spiral wave having a helical shape centered on an axis having an equiphase surface (generally parallel to the optical axis). This is a phase state where the phase changes by an integral multiple of 2π when the azimuth is rotated once, with the singular point at the center (helical axis) when viewed along a plane perpendicular to the wave propagation direction. It is a wave that has.
 図1に平面波に分類されるらせん波21を示す。図から明らかな様に、らせん軸22上は位相の特異点となっており位相を定めることができない。このらせん波は、光学ではラゲール・ガウシアンビームや光渦(ひかりうず)と呼ばれ、軌道角運動量を保持したまま伝播する光波であり、等位相面(波面)に垂直方向に力を作用させることができる。そのため、照射対象に対して運動量を与えることが可能となり、例えば細胞程度の大きさの粒子を操作する光ピンセットなどのマニピュレーション技術として実用化されている。また、レーザー加工や超解像顕微分光法としても実用化されている。 Fig. 1 shows a spiral wave 21 classified as a plane wave. As is apparent from the figure, the phase is singular on the helical axis 22 and the phase cannot be determined. This spiral wave is called a Laguerre-Gaussian beam or optical vortex (Hikari Uzu) in optics, and propagates while maintaining the orbital angular momentum. It applies a force to the isophase plane (wavefront) in the vertical direction. Can do. Therefore, it becomes possible to give momentum to the irradiation target, and it has been put into practical use as a manipulation technique such as optical tweezers for manipulating particles having a size of about a cell, for example. It has also been put to practical use as laser processing and super-resolution microspectroscopy.
 さらには、位相特異点であるらせん軸の部分に複数の軌道角運動量を内在できる(トポロジカルチャージ(本願では簡単のため『らせん度』と呼ぶことにする)としてらせんの巻きの強さを選べる)ことから量子情報通信の分野や、X線では磁性状態や原子配列の立体像の解析など、物性解析、構造解析に新たな技術的展開が期待されている。 Furthermore, multiple orbital angular momentums can be inherent in the portion of the helical axis that is the phase singularity (the helical winding strength can be selected as a topological charge (referred to as “helicality” for simplicity in this application)) Therefore, new technical developments are expected in the field of quantum information communication and in physical properties analysis and structural analysis such as analysis of magnetic images and solid images of atomic arrangements in X-rays.
 電子線におけるらせん波(電子らせん波)は、軌道角運動量を保持したまま電子線が伝播するので、今までにない電子線のプローブ(入射ビーム)としての応用分野を生み出すと期待されている。例えば、磁化測定における高感度化や3次元状態の計測、たんぱく質分子や糖鎖の高コントラスト・高分解能観察などである。とりわけ、磁化観察においては、電子線は伝播方向と平行な磁化に対しては感度を持たない原理的な欠点を持っているが、電子らせん波では電子線の伝播方向の磁化を観察できる可能性がある。また、観測だけでなく、軌道角運動量を利用した加工や磁化制御などにも適用の可能性がある。そのため、スピン偏極電子線と並んで、次世代の電子線装置のプローブとして脚光を浴び始めている。 The spiral wave (electron spiral wave) in the electron beam propagates while maintaining the orbital angular momentum, and is expected to create an unprecedented field of application as an electron beam probe (incident beam). For example, high sensitivity in magnetization measurement, measurement of a three-dimensional state, high-contrast / high-resolution observation of protein molecules and sugar chains, and the like. In particular, in the magnetization observation, the electron beam has the fundamental drawback that it is not sensitive to the magnetization parallel to the propagation direction, but the possibility of observing the magnetization in the electron beam propagation direction is possible with the electron spiral wave. There is. In addition to observation, there is a possibility of application to machining and magnetization control using orbital angular momentum. Therefore, along with the spin-polarized electron beam, it has begun to attract attention as a probe for the next-generation electron beam apparatus.
 <らせん波の生成>
 刃状転位を含む回折格子は回折波としてらせん波(位相面がらせん状を成している)を生成することが知られている(図2)。このらせん波21は、回折像9では通常の点状の回折スポット99に代わり、リング状の回折スポット97を成す。すなわち、刃状転位を含む回折格子91を、平面波23で照射し、回折面で空間的に分離できれば、所望のらせん波21を取り出すことができる。本願は、このらせん波を透過型荷電粒子線装置のプローブ(入射ビーム)とするための方法、装置(回折格子)に関するものである。
<Generation of spiral waves>
It is known that a diffraction grating including edge dislocations generates a spiral wave (having a spiral phase surface) as a diffraction wave (FIG. 2). The spiral wave 21 forms a ring-shaped diffraction spot 97 in place of the normal point-shaped diffraction spot 99 in the diffraction image 9. That is, if the diffraction grating 91 including edge dislocations is irradiated with the plane wave 23 and can be spatially separated on the diffraction surface, the desired spiral wave 21 can be extracted. The present application relates to a method and apparatus (diffraction grating) for using this spiral wave as a probe (incident beam) of a transmission type charged particle beam apparatus.
 図4及び図5は本願発明者が発明に先立ち、実験した結果を示す図である。刃状転位の次数によってらせん波のらせん度が定まり、刃状転位の正負によってらせん度の正負、あるいは極性(らせんの右巻き、左巻き)も定まる。すなわち、刃状転位によって生成するらせん波を制御することが可能である。回折像では、らせん波の回折点は左右両方に発生すること、回折格子のコントラストに応じて高次の回折点が発生し、それらが高い度数のらせん波に該当することから、1枚の刃状転位を含む回折格子から、複数の種類のらせん波を生成させることが可能である(図4、図5参照)。反面、生成するらせん波の強度は分散され弱められる。 4 and 5 are diagrams showing the results of experiments conducted by the inventor prior to the invention. The helical degree of the helical wave is determined by the order of the edge dislocation, and the positive or negative of the helical degree or the polarity (right-handed or left-handed of the spiral) is determined by the positive / negative of the edge-shaped dislocation. That is, it is possible to control the helical wave generated by the edge dislocation. In the diffraction image, the diffraction point of the spiral wave is generated on both the left and right sides, and higher-order diffraction points are generated according to the contrast of the diffraction grating, which corresponds to a high-frequency spiral wave. It is possible to generate a plurality of types of helical waves from a diffraction grating including a dislocation (see FIGS. 4 and 5). On the other hand, the intensity of the generated spiral wave is dispersed and weakened.
 <フォーク型格子>
 本末転倒の議論となるが、刃状転位を含むフォーク型回折格子はらせん型の波面と平面波との干渉縞として記述することができる。
<Fork lattice>
Although it is a discussion of tipping over at the end, a fork type diffraction grating including edge dislocations can be described as an interference fringe between a helical wavefront and a plane wave.
 図3に光軸2上を伝播するらせん波21とx軸方向に角度α傾斜して伝播する平面波23が、xy平面上に刃状転位を含む干渉縞を形成する様子を示す。図中y軸上の正値の部分に、1本の格子が挿入されている。この格子の端点が刃状転位のコアになっている。この干渉の関係は幾何光学で簡単に記述することができる。 Plane wave 23 of spiral waves 21 and angularly alpha x tilt in the x-axis direction propagation propagating on the optical axis 2 in FIG. 3, showing how to form an interference pattern including edge dislocations on the xy plane. In the drawing, one grid is inserted in the positive value portion on the y-axis. The end points of this lattice are the cores of edge dislocations. This interference relationship can be easily described by geometric optics.
 角度αだけ傾斜して伝播する平面波をΦ、光軸上を伝播するらせん波Φを数式1と数式2で表す。但し、λを波の波長とし、平面波もらせん波も振幅は1で分布は均一と仮定している。振幅に関する取り扱いは、特に断らない限り以後の数式1及び数式2においても同様である。 A plane wave propagating at an angle α x is expressed by Φ p , and a helical wave Φ s propagating on the optical axis is expressed by Equations 1 and 2. However, it is assumed that λ is the wavelength of the wave, the amplitude of the plane wave and the spiral wave is 1, and the distribution is uniform. The handling of the amplitude is the same in the following formulas 1 and 2 unless otherwise specified.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで平面波の位相項に含まれるηは、観察を行なうO点での位相値であり、干渉縞を形成するときの初期位相の値である。また、nhmはらせん度で整数値をとり、値の大きさがらせんの巻きの強さ、値の正負によりらせんの巻く方向(伝播方向に見て右巻きか左巻きか)を示す。このnhmは軌道角運動量の量子数に該当し、ラゲール・ガウシアンビームではトポロジカルチャージとして知られている。φはらせんの巻き始めの位相値である。 Here, η included in the phase term of the plane wave is a phase value at the point O where observation is performed, and is an initial phase value when the interference fringes are formed. Further, n hm takes an integer value by the degree of spiraling, and the magnitude of the value indicates the strength of winding of the spiral, and the direction of winding of the spiral (right-handed or left-handed when viewed in the propagation direction) depending on the value of the value. This n hm corresponds to the quantum number of the orbital angular momentum, and is known as a topological charge in the Laguerre Gaussian beam. φ is the phase value at the beginning of winding of the helix.
 図3の下部では、最も簡単な場合として、nhm= 1、η= 0、φ= 0の場合の干渉縞を描いている。その強度分布は数式3のごとく表される。 In the lower part of FIG. 3, as the simplest case, interference fringes in the case of n hm = 1, η = 0, and φ = 0 are drawn. The intensity distribution is expressed as Equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 数式3で表される刃状転位を含む干渉縞は、2つの平面波が相対角度αだけ傾斜して干渉したときの干渉縞である数式4に数式5の変調が加わった形をしている。 The interference fringes including edge dislocations expressed by Equation 3 have a shape in which the modulation of Equation 5 is added to Equation 4, which is an interference fringe when two plane waves interfere with each other by being inclined by a relative angle α x . .
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 特に断らない限り、本願において「回折格子を特徴付ける格子」、「基本格子」などと表現する格子図形は数式4で表される干渉縞に基づいて定められることを意味しており、本願で提案する格子図形の下方部がこれに該当する様に描かれている。 Unless otherwise noted, in the present application, a grating figure expressed as “grating that characterizes a diffraction grating”, “basic grating”, and the like means that it is determined based on the interference fringes represented by Equation 4, and is proposed in the present application. The lower part of the lattice figure is drawn so as to correspond to this.
 <フォーク型回折格子を用いたらせん波生成>
 例えば、電子線においてらせん波を生成させる方法は、主に(1)(2)の2通りが実現されている。
(1)らせん状の位相板を透過させる[非特許文献1]
(2)刃状転位を含む回折格子(フォーク型回折格子)を用いる[非特許文献2]
 本願は、上記(2)の方法に関連するものである。これ以降、主に電子顕微鏡を用いた説明を行なうが、本願は電子線に限定するものではなく、イオンビームを含む荷電粒子線装置に対して成されたものである。
<Generation of spiral wave using fork type diffraction grating>
For example, there are mainly two methods (1) and (2) for generating a spiral wave in an electron beam.
(1) Transmitting through a spiral phase plate [Non-patent Document 1]
(2) A diffraction grating (fork type diffraction grating) including edge dislocations is used [Non-Patent Document 2].
The present application relates to the method (2). Hereinafter, the description will be made mainly using an electron microscope. However, the present application is not limited to an electron beam, but is applied to a charged particle beam apparatus including an ion beam.
 次に実例を示す。図4はらせん度5のフォーク型回折格子とその電子回折像である。図4(a)左側は、数式3に基づいて格子パターンを計算し、収束イオンビーム装置により窒化シリコンメンブレン(厚さ200nm)に加工を行なった回折格子の電子顕微鏡像である。図中上側より格子が5本挿入され、中央部に集中している。すなわち、この集中部が刃状転位のコアの位置であり、次数は5次である。らせん度と刃状転位の次数は一致している。らせん度が負値の場合は、刃状転位の格子は、下側から挿入されることになる。像中白い部分が電子線を透過させる隙間であり、間の黒い部分が格子の幹部である。基本格子(図4(a)左側の下部)の格子間隔は400nmである。 Next is an example. FIG. 4 shows a fork-type diffraction grating having a spiral degree of 5 and an electron diffraction image thereof. The left side of FIG. 4A is an electron microscope image of a diffraction grating obtained by calculating a lattice pattern based on Equation 3 and processing a silicon nitride membrane (thickness: 200 nm) using a focused ion beam apparatus. Five lattices are inserted from the upper side in the figure and concentrated in the center. That is, this concentrated portion is the position of the core of the edge dislocation, and the order is fifth. The degree of helix and the degree of edge dislocation agree. When the helical degree is negative, the edge dislocation lattice is inserted from the lower side. White portions in the image are gaps that transmit electron beams, and black portions in between are the trunks of the lattice. The lattice spacing of the basic lattice (lower part on the left side of FIG. 4A) is 400 nm.
 図4(a)右側は小角電子回折像(カメラ長1500mで記録)であり、0次、±1次、±2次の、都合5つの回折スポットまでを示している。±1次、±2次の回折スポットがリング状になっていることが、電子らせん波が発生していることの証明である。らせん度5のフォーク型回折格子を用いているので、±1次のスポットはそれぞれ±5度のらせん波、±2次のスポットはそれぞれ±10度のらせん波である。らせん度に応じてリングの直径が大きくなっている。 4 (a) is a small-angle electron diffraction image (recorded at a camera length of 1500 m) on the right side, showing up to five convenient diffraction spots of 0th order, ± 1st order, and ± 2nd order. The fact that the ± 1st order and ± 2nd order diffraction spots are in a ring shape is proof that an electron spiral wave is generated. Since a fork-type diffraction grating having a spiral degree of 5 is used, the ± first order spots are ± 5 degree spiral waves, and the ± second order spots are ± 10 degree spiral waves. The ring diameter increases with the degree of helix.
 図4(b)は計算結果である。図4(b)左側が図4(a)左側のフォーク型回折格子の元となった計算結果、図4(b)の右側は、それぞれ0次、±1次、±2次の回折像のシミュレーション結果である。±1次の回折スポットは実験結果とよく対応しており、リング状スポットの径もほぼ一致している。計算結果において±2次の回折像が、極端に弱くなっているが、これは、シミュレーションによる回折像にストリークを生じさせないため、元となった図4(b)左側の回折格子に、高調波を生じない正弦調の強度分布を与えたためである。高調波が生じる場合には、±2次、±3次などの高次の回折スポットが生じることを確認している。 Fig. 4 (b) shows the calculation results. The left side of FIG. 4B is the calculation result based on the fork-type diffraction grating on the left side of FIG. 4A, and the right side of FIG. 4B is the 0th order, ± 1st order, and ± 2nd order diffraction images, respectively. It is a simulation result. The ± 1st-order diffraction spots correspond well with the experimental results, and the diameters of the ring-shaped spots are almost the same. In the calculation result, the ± 2nd-order diffraction image is extremely weak, but this does not cause streak in the diffraction image obtained by the simulation, so that the harmonics appear in the diffraction grating on the left side of FIG. This is because a sinusoidal intensity distribution that does not cause the problem is given. When harmonics are generated, it has been confirmed that high-order diffraction spots such as ± 2nd order and ± 3rd order are generated.
 図5はらせん度1、3、5、7、9のフォーク型格子とその電子回折像(-1次から+4次まで)である。らせん度に対応して挿入される刃状転位の格子数が増えている。高次の回折スポットは、極端に暗くなるため、露光を変えた複数枚の回折像を合成して表示している。カメラ長の大きな小角電子回折像(カメラ長1500mで記録)であるため、フォーク型格子の外形が回折像にも反映され、各回折スポットの形状が円形ではなく方形のリングとなっている。しかし、基本的な考え方に相違はなく、回折次数が高くなるほどリング径が大きくなること、らせん度の大きいフォーク型回折格子であるほどリング径が大きくなることは、先の図4と同じである。すなわち、回折スポットのリング径は、らせん波のらせん度を直接表していることがわかる。 FIG. 5 shows fork-type gratings having a spiral degree of 1, 3, 5, 7, and 9 and their electron diffraction images (from the −1st order to the + 4th order). The number of edge dislocation lattices inserted corresponding to the degree of helix increases. Since the high-order diffraction spot becomes extremely dark, a plurality of diffraction images with different exposures are combined and displayed. Since it is a small-angle electron diffraction image (recorded at a camera length of 1500 m) with a large camera length, the outer shape of the fork-type grating is also reflected in the diffraction image, and the shape of each diffraction spot is not a circle but a square ring. However, there is no difference in the basic concept, and the ring diameter increases as the diffraction order increases, and the ring diameter increases as the spiral type fork diffraction grating increases, as in FIG. . That is, it can be seen that the ring diameter of the diffraction spot directly represents the helical degree of the helical wave.
US2012/0153144US2012 / 0153144
 先の実験結果で示したごとく、電子らせん波を生成させること自体は、電子顕微鏡でも実現可能である。リング状の回折スポットは、そのまま、走査型電子顕微鏡のプローブとして利用可能なものであり、リング状の回折点を試料上に照射し走査することで直ちに回折スポットに応じたらせん度の電子らせん波を用いた観察画像を得ることができる。 As shown in the previous experimental results, the generation of the electron spiral wave itself can be realized with an electron microscope. The ring-shaped diffraction spot can be used as a probe for a scanning electron microscope as it is. By irradiating the sample with a ring-shaped diffraction spot and scanning it, an electron spiral wave with a degree of helicality immediately corresponding to the diffraction spot is obtained. An observation image using can be obtained.
 しかし、透過型電子顕微鏡ではある程度の領域を照射しなければならないため、回折点をそのまま利用することには無理がある。試料上ある程度の領域を照射可能な電子線とするためには、リング状の回折点を抽出し、フォーク型回折格子の像面まで伝播させて所定の度数、極性のらせん波に戻さなければならない。少なくとも正負いずれかの極性の回折スポットのみに絞り込んだ後、フォーク型回折格子の像面近傍までは伝播させなければならない。これはらせん波を生成・選択した後に、試料に照射するまでにさらにもう一段階の光学系を要することを意味する。これは、使用可能な電子レンズ等光学素子の数、位置が限られた電子顕微鏡や荷電粒子線装置にとってはかなり厳しい制約となる。 However, since a transmission electron microscope must irradiate a certain area, it is impossible to use a diffraction spot as it is. In order to make an electron beam that can irradiate a certain area on the sample, it is necessary to extract a ring-shaped diffraction point and propagate it to the image plane of the fork-shaped diffraction grating to return it to a spiral wave with a predetermined frequency and polarity. . After narrowing down to at least a positive or negative diffraction spot, it must propagate to the vicinity of the image plane of the fork type diffraction grating. This means that after generating and selecting a spiral wave, an additional optical system is required before the sample is irradiated. This is a considerably severe restriction for an electron microscope or a charged particle beam apparatus in which the number and positions of optical elements such as an electron lens that can be used are limited.
 試料への所定の拡大倍率を維持する場合には、照射光学系に大幅な改造(フォーク型格子の挿入とその回折像面での回折電子線の取捨選択、そしてプローブとするための結像系あるいは伝播距離)が必要となる。 In order to maintain the specified magnification on the sample, the irradiation optical system can be modified significantly (fork-type grating insertion, diffracted electron beam selection on the diffraction image plane, and imaging system for use as a probe). Or a propagation distance) is required.
 試料への拡大倍率が大きくない場合には、対物レンズなど結像系の一部を照射光学系として流用することも可能となるが、試料を所定の位置以外の適切な位置に挿入し、微動させなければならないことなどが制約となる。 If the magnification on the sample is not large, a part of the imaging system, such as an objective lens, can be used as the irradiation optical system, but the sample is inserted into an appropriate position other than the predetermined position for fine movement. This is a limitation.
 いずれにしても、現在得られている電子らせん波を透過型電子顕微鏡のプローブとして利用するには、走査型と異なり制約が大きい。 In any case, unlike the scanning type, there are many restrictions on using the currently obtained electron spiral wave as a probe for a transmission electron microscope.
 上記課題を解決するため、本願の回折格子は、荷電粒子線装置に用いられ、荷電粒子線に回折現象を発生させる回折格子であって、前記回折格子は、前記回折格子の格子面内において複数の刃状転位を含む形状を成していることを特徴とする。 In order to solve the above problems, the diffraction grating of the present application is a diffraction grating that is used in a charged particle beam apparatus and generates a diffraction phenomenon in the charged particle beam, and the diffraction grating includes a plurality of diffraction gratings in the grating plane of the diffraction grating. It is characterized by having a shape including the edge dislocation.
 また、本願の荷電粒子線装置は上記において、前記回折格子を用いて、回折された荷電粒子線を試料に照射し観察もしくは加工することを特徴とする。 Also, the charged particle beam apparatus of the present application is characterized in that, in the above, using the diffraction grating, the sample is irradiated with a diffracted charged particle beam for observation or processing.
 また、本願の回折格子素子は、荷電粒子線に回折現象を発生させる複数の回折格子から構成される回折格子素子であって、前記回折格子素子における前記複数の回折格子が1つの平面内に配置されるとともに、前記複数の回折格子がそれぞれの格子面内に刃状転位を含む形状を成していることを特徴とする。 The diffraction grating element of the present application is a diffraction grating element composed of a plurality of diffraction gratings that generate a diffraction phenomenon in a charged particle beam, and the plurality of diffraction gratings in the diffraction grating element are arranged in one plane. In addition, the plurality of diffraction gratings have a shape including edge dislocations in each grating plane.
 また、本願の荷電粒子線装置は上記において、前記回折格子素子を用いて、回折された荷電粒子線を試料に照射し観察もしくは加工することを特徴とする。 The charged particle beam apparatus of the present application is characterized in that, in the above, the sample is irradiated with a diffracted charged particle beam and observed or processed using the diffraction grating element.
 また、本願の荷電粒子線装置は、荷電粒子線の光源と、前記光源から放出される荷電粒子線を試料に照射するための照射光学系と、前記荷電粒子線が照射する試料を保持するための試料保持装置と、前記試料の像を結像するための結像レンズ系と、を有する荷電粒子線装置であって、前記荷電粒子線装置の光軸上で前記試料保持装置よりも前記荷電粒子線の進行方向上流側において、前記荷電粒子線に回折現象を発生させる回折格子であって該格子面内に複数の刃状転位を含む形状を有する回折格子、あるいは、前記荷電粒子線に回折現象を発生させる複数の回折格子から構成される回折格子素子であって該複数の回折格子が1つの平面内に配置されるとともに該複数の回折格子がそれぞれの格子面内に刃状転位を含む形状を成している回折格子素子、を備えることを特徴とする。 The charged particle beam device of the present application holds a light source of a charged particle beam, an irradiation optical system for irradiating the sample with a charged particle beam emitted from the light source, and a sample irradiated with the charged particle beam. A charged particle beam device having an imaging lens system for forming an image of the sample, wherein the charged particle beam device is more charged than the sample holding device on an optical axis of the charged particle beam device. A diffraction grating that generates a diffraction phenomenon in the charged particle beam on the upstream side in the traveling direction of the particle beam and has a shape including a plurality of edge dislocations in the lattice plane, or is diffracted by the charged particle beam A diffraction grating element composed of a plurality of diffraction gratings for generating a phenomenon, wherein the plurality of diffraction gratings are arranged in one plane, and the plurality of diffraction gratings include an edge dislocation in each grating plane. Times forming shape Grating element, characterized in that it comprises a.
 本願発明により、荷電粒子線装置における荷電粒子線プローブとして利用可能ならせん波を作り出すことができる。 According to the present invention, a spiral wave that can be used as a charged particle beam probe in a charged particle beam apparatus can be created.
らせん波(平面状)の模式図である。It is a schematic diagram of a spiral wave (planar shape). 刃状転位(3次)回折格子かららせん波が生成される様子を示す模式図である。It is a schematic diagram which shows a mode that a helical wave is produced | generated from an edge dislocation (third order) diffraction grating. らせん波と平面波との干渉による刃状転位を含む干渉縞の形成を示す模式図である。It is a schematic diagram which shows formation of the interference fringe containing edge dislocation by interference with a helical wave and a plane wave. 5次のフォーク型回折格子と小角電子回折像である。It is a 5th-order fork type diffraction grating and a small angle electron diffraction image. 5次のフォーク型回折格子と小角電子回折像である。It is a 5th-order fork type diffraction grating and a small angle electron diffraction image. 上から順に、1次、3次、5次、7次、9次のフォーク型回折格子と各々の小角電子回折像である。The first-order, third-order, fifth-order, seventh-order, and ninth-order fork diffraction gratings and their respective small-angle electron diffraction images are shown in order from the top. らせん度2、3、1のらせん波を生成させるフォーク型格子を直線状に配置した回折格子の模式図である。FIG. 3 is a schematic diagram of a diffraction grating in which fork-type gratings that generate spiral waves having a degree of spiral of 2, 3, and 1 are linearly arranged. 図6(a)の設計ポイントの概念図である。It is a conceptual diagram of the design point of Fig.6 (a). 図6の3つの刃状転位のコアを含む回折格子とその回折像のシミュレーション結果である。It is a simulation result of the diffraction grating containing the core of three edge dislocations of FIG. 6, and its diffraction image. 右上から左下に斜め45度の角度でらせん度2、1、3のらせん波を生成させる刃状転位を直線状に配置したフォーク型回折格子の模式図である。FIG. 5 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate spiral waves having spiral degrees of 2, 1, and 3 at an angle of 45 degrees from the upper right to the lower left are arranged linearly. 右上から左下に斜め45度の角度でらせん度2、2、2のらせん波を生成させる刃状転位を直線状に配置したフォーク型回折格子の模式図である。FIG. 4 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate spiral waves having a degree of spiral of 2, 2, and 2 at an oblique angle of 45 degrees from the upper right to the lower left are linearly arranged. 基本格子と同方向にらせん度2、2、2のらせん波を生成させる刃状転位を直線状に配置したフォーク型回折格子の模式図である。FIG. 5 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate helical waves having a degree of spiral of 2, 2, and 2 are arranged in a straight line in the same direction as the basic grating. 基本格子と90度の角度でらせん度2、2、2のらせん波を生成させる刃状転位を直線状に配置したフォーク型回折格子の模式図である。FIG. 4 is a schematic diagram of a fork-type diffraction grating in which edge dislocations that generate helical waves having a spiral degree of 2, 2, and 2 at an angle of 90 degrees with a basic grating are arranged linearly. 9次、1次、5次の刃状転位を持つ回折格子を並べた回折格子素子の模式図である。It is a schematic diagram of a diffraction grating element in which diffraction gratings having ninth-order, first-order, and fifth-order edge dislocations are arranged. 1次、9次、5次の刃状転位を持つ回折格子を並べた回折格子素子の模式図である。It is a schematic diagram of a diffraction grating element in which diffraction gratings having first-order, ninth-order, and fifth-order edge dislocations are arranged. 回折格子の基本格子の位相を揃えた例を示す図である。It is a figure which shows the example which aligned the phase of the basic grating of a diffraction grating. 回折格子の基本格子の位相をずらして配置した例を示す図である。It is a figure which shows the example arrange | positioned shifting the phase of the fundamental grating of a diffraction grating. 回折格子素子の実験結果を示す図である。It is a figure which shows the experimental result of a diffraction grating element. 回折格子素子のシミュレーション結果を示す図である。It is a figure which shows the simulation result of a diffraction grating element. 複数の外形の異なる回折格子を平面上に配列した回折格子素子の模式図である。It is a schematic diagram of a diffraction grating element in which a plurality of diffraction gratings having different external shapes are arranged on a plane. 回折格子素子を備えた透過型電子顕微鏡の一例を示す模式図である。It is a schematic diagram which shows an example of the transmission electron microscope provided with the diffraction grating element. 実施例6までで説明した回折格子および回折格子素子の模式図および回折像のシミュレーション結果の一例を示す図である。It is a figure which shows an example of the schematic diagram of a diffraction grating and a diffraction grating element demonstrated to Example 6, and the simulation result of a diffraction image. 実施例7を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。FIG. 9 is a schematic diagram of a diffraction grating and a diffraction grating element, and a simulation result of a diffraction image, illustrating Example 7. FIG. 図17(a)に示す回折格子および0次、±1次のシミュレーション結果を模写した図である。It is the figure which copied the diffraction grating shown to Fig.17 (a), and the 0th-order and +/- 1 order simulation result. 実施例8を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。FIG. 9 is a schematic diagram of a diffraction grating and a diffraction grating element, and a simulation result of a diffraction image, illustrating Example 8. FIG. 図18(a)に示す回折格子および0次、±1次のシミュレーション結果を模写した図である。It is the figure which copied the diffraction grating shown to Fig.18 (a), and the 0th-order and +/- 1st-order simulation result. 実施例9を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。FIG. 10 is a schematic diagram of a diffraction grating and a diffraction grating element and a simulation result of a diffraction image for explaining Example 9. FIG. 図19(a)に示す回折格子および0次、±1次、±2次のシミュレーション結果を模写した図である。It is the figure which copied the diffraction grating shown in Drawing 19 (a), and the 0th order, ± 1st order, and ± 2nd order simulation result. 実施例10を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。FIG. 10 is a schematic diagram of a diffraction grating and a diffraction grating element and a simulation result of a diffraction image for explaining Example 10. FIG. 図20(a)に示す回折格子および0次、±1次のシミュレーション結果を模写した図である。It is the figure which copied the diffraction grating shown in Fig.20 (a), and the 0th-order and +/- 1st-order simulation result. 回折格子素子を備えた透過型電子顕微鏡の一例を示す模式図である。It is a schematic diagram which shows an example of the transmission electron microscope provided with the diffraction grating element.
 本願は、らせん波を生成するための光学素子として、以下(1)から(3)を提案するものである。
(1)複数の刃状転位を有するフォーク型格子、
(2)もしくは、一度に荷電粒子線照射を行なえる様複数のフォーク型回折格子を平面上に配置した回折格子素子、
(3)あるいは、複数の回折格子の外形を適切かつ様々な形状にしたもの、もしくは、複数の回折格子の平面上の配置を適正化した回折格子素子、
を提案するものである。
The present application proposes the following (1) to (3) as optical elements for generating a spiral wave.
(1) Fork-type lattice having a plurality of edge dislocations,
(2) Or a diffraction grating element in which a plurality of fork-type diffraction gratings are arranged on a plane so that charged particle beam irradiation can be performed at once.
(3) Alternatively, a plurality of diffraction gratings having appropriate and various outer shapes, or a diffraction grating element in which the arrangement of a plurality of diffraction gratings on a plane is optimized,
This is a proposal.
 そして本願によれば、以下(1)から(3)に示すことが可能になる。
(1)複数の刃状転位を有するフォーク型格子を用いてらせん度の異なる、つまり径の異なるリング状回折スポットを同じ次数の回折スポット位置に重畳して生成させることにより、回折像面において透過型荷電粒子線装置のプローブとして利用可能ならせん波を作り出す、
(2)もしくは、複数のフォーク型回折格子の電子回折像を、一度に生成させることによって、らせん度の異なる回折スポットを同じ次数の回折スポット位置に重畳して生成させること、回折像面において透過型荷電粒子線装置のプローブとして利用可能ならせん波を作り出す、
(3)あるいは、小角回折が回折格子の形状も反映させることを利用して、複数の回折格子の外形を適切に選択する、もしくは、複数の回折格子の配置を適正化することにより、回折像面において透過型荷電粒子線装置のプローブとして利用可能ならせん波を作り出す、
ことが可能となる。
According to the present application, the following (1) to (3) are possible.
(1) By using a fork-type grating having a plurality of edge dislocations and generating ring-shaped diffraction spots having different spirals, that is, different diameters, superimposed on diffraction spot positions of the same order, they are transmitted on the diffraction image plane. A spiral wave that can be used as a probe for a charged particle beam device
(2) Alternatively, it is possible to generate electron diffraction images of a plurality of fork-type diffraction gratings at a time so that diffraction spots having different spiralities are superimposed on diffraction spot positions of the same order and transmitted on the diffraction image plane. A spiral wave that can be used as a probe for a charged particle beam device
(3) Alternatively, by utilizing the fact that small-angle diffraction also reflects the shape of the diffraction grating, the outer shape of the plurality of diffraction gratings is appropriately selected, or the arrangement of the plurality of diffraction gratings is optimized to obtain a diffraction image. Creates a spiral wave that can be used as a probe for a transmission charged particle beam device on the surface,
It becomes possible.
 またこれらは電子線(電子波)などの荷電粒子線や、光波、X線、その他の波動においても、らせん波を作成するための素子として有効なものである。主に電子線装置(特に電子顕微鏡)を例示した説明が主となるが、本願は電子線に限定するものではない。また、本願でいう回折格子は、主として、荷電粒子線装置のビームに対してレンズ作用がないものを指している。 These are also effective as elements for creating spiral waves in charged particle beams such as electron beams (electron waves), light waves, X-rays, and other waves. Although the description which mainly illustrated the electron beam apparatus (especially electron microscope) becomes main, this application is not limited to an electron beam. In addition, the diffraction grating referred to in the present application mainly refers to a diffraction grating that does not have a lens action on the beam of the charged particle beam apparatus.
 <複数の刃状転位を持つフォーク型回折格子>
 らせん波のらせん軸は平面上に複数分布させることが可能であり、各々のxy平面上の座標を(x、y)として、らせん度を含めて、それぞれ独立に取り扱える。すなわち、らせん波を示す数式2の位相項を数式6と変更すればよい。
<Fork type diffraction grating with multiple edge dislocations>
A plurality of spiral axes of a spiral wave can be distributed on a plane, and each coordinate on the xy plane can be handled independently including (x m , y m ), including the degree of spiral. That is, the phase term of Formula 2 indicating a spiral wave may be changed to Formula 6.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、改めて複数の刃状転位を持つ干渉縞の強度分布、すなわち、フォーク型回折格子の格子パターンを数式7に示す。 Here, the intensity distribution of the interference fringes having a plurality of edge dislocations, that is, the grating pattern of the fork type diffraction grating is shown in Equation 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 刃状転位の数が複数の場合には、各々の刃状転位のコアの位置(らせん波のらせん軸の位置に該当)とその位置における基本格子の位相との関係は、らせん波同士の位相が互いに影響を及ぼしあうため、刃状転位が1つの場合(数式3、あるいは図4や図5)と異なり、様々に変化する。しかし、それぞれのコアの位置(x、y)、および平面波の位相項ηにより調節が可能である。 When there are multiple edge dislocations, the relationship between the core position of each edge dislocation (corresponding to the position of the helical axis of the helical wave) and the phase of the fundamental lattice at that position is Affect each other, and therefore, different from the case where there is one edge dislocation (Equation 3, or FIGS. 4 and 5), it varies in various ways. However, adjustment is possible by the position (x m , y m ) of each core and the phase term η of the plane wave.
 数式3で表される最も簡単な場合、あるいは図4や図5で例示した1つの刃状転位を含む回折格子では問題とならなかったが、上述のごとく、複数の刃状転位を含む回折格子では第2、第3の刃状転位のコアが格子の幹の部分に位置するとは限らない。実際の回折格子製作においては、格子の機械的な強度を考慮する必要があり、刃状転位のコアは格子の幹の中央部近傍に位置させることが望ましい。この場合、第2、第3の刃状転位のコア位置(x、y)、および位相項ηを調節して適切な格子図形を描けばよい。 In the simplest case expressed by Equation 3, or in the diffraction grating including one edge dislocation illustrated in FIGS. 4 and 5, there is no problem. However, as described above, the diffraction grating including a plurality of edge dislocations. Then, the cores of the second and third edge dislocations are not always located at the trunk portion of the lattice. In actual diffraction grating fabrication, it is necessary to consider the mechanical strength of the grating, and it is desirable that the edge dislocation core be positioned near the center of the trunk of the grating. In this case, an appropriate lattice pattern may be drawn by adjusting the core positions (x m , y m ) of the second and third edge dislocations and the phase term η.
 <実施例1>
 図6は右上から左下に斜め45度の角度で、すなわち基本格子の方位と45度の角度をなして、それぞれ、らせん度2、3、1のらせん波を生成させるフォーク型格子を直線状に配置した回折格子の模式図である。図6(a)は数式7に基づき計算された回折格子のパターンであり、いわば設計図に該当する。図6(b)は、図6(a)の設計ポイントをわかりやすく描いた概念図で、外形が円形の格子に対して右上から左下に斜め45度の角度で、次数2、3、1の刃状転位が直線状に配列していることを示している。また、円の右下側のハッチングを施した部分は、この回折格子の基本格子の部分であることを示している。以降、図の解像度に依存せず回折格子の特徴を明らかにするため、図6(b)のような描画を各々の回折格子に添図する。
<Example 1>
FIG. 6 shows a straight line of fork-type gratings that generate spiral waves with spiral degrees of 2, 3, and 1, respectively, at an angle of 45 degrees diagonally from upper right to lower left, that is, at an angle of 45 degrees with the orientation of the basic grating. It is a schematic diagram of the arrange | positioned diffraction grating. FIG. 6A shows a diffraction grating pattern calculated based on Equation 7, which corresponds to a design drawing. FIG. 6B is a conceptual diagram depicting the design point of FIG. 6A in an easy-to-understand manner. The outer shape is a 45 degree diagonal angle from the upper right to the lower left with respect to the circular lattice. It shows that the edge dislocations are arranged in a straight line. Further, the hatched portion on the lower right side of the circle indicates that this is the basic grating portion of this diffraction grating. Thereafter, in order to clarify the characteristics of the diffraction gratings without depending on the resolution of the drawing, a drawing as shown in FIG. 6B is attached to each diffraction grating.
 図7は図6の3つの刃状転位のコアを含む回折格子とその回折像のシミュレーション結果である。図4、図5で観察された、あるいは計算されたリング状の回折スポットは生じていない。すなわち、この3つの刃状転位のコアを含む回折格子からの回折スポットは、領域を照射可能ならせん波となっていることを示しており、透過型荷電粒子線装置におけるプローブとして利用可能であることがわかる。 FIG. 7 is a simulation result of a diffraction grating including the three edge dislocation cores of FIG. 6 and its diffraction image. The ring-shaped diffraction spots observed or calculated in FIGS. 4 and 5 are not generated. That is, the diffraction spot from the diffraction grating including the cores of the three edge dislocations indicates a spiral wave that can irradiate the region, and can be used as a probe in a transmission type charged particle beam apparatus. I understand that.
 図6(a)の3つの刃状転位の部分を拡大してみると、刃状転位のコアは、下側の基本格子の幹部のほぼ中央部に位置していることがわかる。これは格子の機械的強度を保つため、刃状転位の位置が格子の幹部のほぼ中央部に来るように、数式7に基づいて各々の刃状転位の位置と平面波の位相を調整した結果である。 When the three edge dislocations in FIG. 6 (a) are enlarged, it can be seen that the core of the edge dislocation is located almost at the center of the trunk of the lower basic lattice. This is the result of adjusting the position of each edge dislocation and the phase of the plane wave based on Equation 7 so that the position of the edge dislocation is almost at the center of the trunk of the lattice in order to maintain the mechanical strength of the grating. is there.
 図6(a)では、3つの刃状転位のコアを含む回折格子を例示したが、本願は刃状転位を3つに限定するものではない。電子線など入射波が照射できる範囲に数多くの刃状転位を配置した方が、1つの回折スポット位置に重畳させられるらせん波の数が増え、高い密度で均一な領域照射プローブとできる。 FIG. 6A illustrates a diffraction grating including a core of three edge dislocations, but the present application does not limit the number of edge dislocations to three. If a large number of edge dislocations are arranged in a range where an incident wave such as an electron beam can be irradiated, the number of spiral waves superimposed on one diffraction spot position increases, and a high density and uniform area irradiation probe can be obtained.
 以上の様に、図6(a)は、複数のらせん度の異なるらせん波を、回折像面の1つの回折スポット位置に重畳させて発生させることができるフォーク型回折格子である。 As described above, FIG. 6A shows a fork type diffraction grating that can generate a plurality of spiral waves having different spiral degrees by superimposing them on one diffraction spot position on the diffraction image plane.
 <実施例2>
 図8は図6(a)と同様に、右上から左下に斜め45度の角度で、すなわち基本格子の方位と45度の角度を成した回折格子で、それぞれ、図8(a)はらせん度2、1、3のらせん波を、図8(b)はらせん度2、2、2のらせん波を、生成させる刃状転位を直線状に配置したフォーク型回折格子の模式図である。刃状転位のコアの位置が格子の幹部のほぼ中央部に来るように調整されていることも図6(a)と同様である。
<Example 2>
FIG. 8 shows a diffraction grating having an angle of 45 degrees obliquely from the upper right to the lower left, that is, a diffraction grating having an angle of 45 degrees with the orientation of the basic grating, as in FIG. FIG. 8B is a schematic diagram of a fork-type diffraction grating in which edge dislocations for generating spiral waves of 2, 1, and 3 and spiral waves of degrees 2, 2, and 2 are arranged in a straight line. The position of the core of the edge dislocation is adjusted so as to be approximately at the center of the trunk of the lattice, as in FIG.
 以上の様に、図8は複数のらせん度はその大きさ、位置を任意に選べることを示している。この様に利用する回折格子を設計することによって、回折像面の1つの回折スポット位置に重畳させて発生させるらせん波の分布や密度を調整・制御することができる。 As described above, FIG. 8 shows that a plurality of spirals can be arbitrarily selected in size and position. By designing the diffraction grating to be used in this way, it is possible to adjust and control the distribution and density of the spiral wave generated by being superimposed on one diffraction spot position on the diffraction image plane.
 <実施例3>
 図9も図8と同様に、複数の刃状転位を持つ回折格子の例である。図9では、3つの刃状転位は皆2次の転位で直線状を成しているが、その配列は図9(a)では垂直方向(基本格子の格子と同方位(平行))、図9(b)では水平方向(基本格子の格子と垂直(90度))である。刃状転位の位置が格子の幹部のほぼ中央部に来るように調整されていることは図8および図6(a)と同様である。図9(a)では、基本格子は一番下の2次の刃状転位のコアの下側の部分に位置することになり、全体として基本格子が回折格子に与える影響は小さくなる。これは回折像において、回折スポットが広がりを持つことに対応する。
<Example 3>
FIG. 9 is an example of a diffraction grating having a plurality of edge dislocations as in FIG. In FIG. 9, the three edge dislocations are all secondary dislocations and form a straight line, but in FIG. 9A, the arrangement is vertical (same orientation (parallel) to the lattice of the basic lattice). In 9 (b), the horizontal direction (vertical (90 degrees) with the basic lattice). It is the same as in FIGS. 8 and 6A that the position of the edge dislocation is adjusted so as to be approximately at the center of the trunk of the lattice. In FIG. 9A, the basic grating is located in the lower part of the core of the lowest secondary edge dislocation, and the influence of the basic grating on the diffraction grating as a whole is small. This corresponds to the fact that the diffraction spot has a spread in the diffraction image.
 以上の様に、図9は複数の刃状転位のコアの配列の方位を設計できることを示している。この様に利用する回折格子を設計することによって、回折像面の1つの回折スポット位置に重畳させて発生させるらせん波の分布や密度を調整・制御することができることは、前実施例と同様である。 As described above, FIG. 9 shows that the orientation of the array of cores of a plurality of edge dislocations can be designed. By designing a diffraction grating to be used in this way, it is possible to adjust and control the distribution and density of the spiral wave generated by superimposing on one diffraction spot position on the diffraction image plane, as in the previous embodiment. is there.
 <実施例4>
 図10は、3枚の回折格子が1枚の平面上に配置された回折格子素子の例である。図10(a)は上から時計周りに、9次、1次、5次の刃状転位を持つ回折格子を並べた回折格子素子である。図10(b)は同様に、上から時計周りに1次、9次、5次の刃状転位を持つ回折格子を並べた回折格子素子である。ただし、図10(b)はそれぞれの基本格子を±5度ずつ回転させた配置を示している。
<Example 4>
FIG. 10 shows an example of a diffraction grating element in which three diffraction gratings are arranged on one plane. FIG. 10A shows a diffraction grating element in which diffraction gratings having ninth-order, first-order, and fifth-order edge dislocations are arranged clockwise from above. Similarly, FIG. 10B shows a diffraction grating element in which diffraction gratings having first-order, ninth-order, and fifth-order edge dislocations are arranged clockwise from above. However, FIG. 10B shows an arrangement in which each basic lattice is rotated by ± 5 degrees.
 この例は、任意に選んだ複数の回折格子を、電子線など入射波が照射できる範囲に配置さえすれば、回折像面で1つの回折スポット位置に複数のらせん波を重畳させることが可能であり、設計の簡便さにおいて前実施例よりも有利である。選択する刃状転位の次数、配置する回折格子の数、配置する位置、それぞれの回折格子の基本格子の方位などに任意性がある。特にそれぞれの回折格子の基本格子の方位を少しずらして配置すると、回折像で回折スポットを形成する方位も基本格子の方位に伴って変化するので、領域照射には有効である。図10(b)では、右下9次の刃状転位を持つ回折格子は時計方向に5度、左下5次の刃状転位を持つ回折格子は反時計方向に5度の方位角を与えている。これら角度や転位の次数は、一例であり、本願はこれらの値に限定するものではない。 In this example, it is possible to superimpose a plurality of spiral waves on one diffraction spot position on the diffraction image plane as long as a plurality of arbitrarily selected diffraction gratings are arranged in a range where incident waves such as electron beams can be irradiated. There is an advantage over the previous embodiment in the simplicity of design. The degree of edge dislocation to be selected, the number of diffraction gratings to be arranged, the positions to be arranged, the orientation of the basic grating of each diffraction grating, and the like are arbitrary. In particular, if the orientations of the basic gratings of the respective diffraction gratings are slightly shifted from each other, the orientation in which the diffraction spot is formed in the diffraction image also changes with the orientation of the basic grating, which is effective for area irradiation. In FIG. 10B, the diffraction grating having the lower right 9th-order edge dislocation gives an azimuth angle of 5 degrees clockwise, and the diffraction grating having the lower left 5th-order edge dislocation gives an azimuth angle of 5 degrees counterclockwise. Yes. These angles and the order of dislocations are examples, and the present application is not limited to these values.
 図10では、3つの刃状転位を持つ回折格子から構成される回折格子素子を例示したが、本願は3つに限定するものではない。電子線など入射波が照射できる範囲に数多くの回折格子を配置した方が、1つの回折スポット位置に重畳させられるらせん波の数が増え、高い密度で均一な領域照射プローブとできる。 FIG. 10 illustrates a diffraction grating element including a diffraction grating having three edge dislocations, but the present application is not limited to three. When a large number of diffraction gratings are arranged in a range where incident waves such as electron beams can be irradiated, the number of spiral waves superimposed on one diffraction spot position increases, and a high-density and uniform area irradiation probe can be obtained.
 ここで、図10に示した回折格子素子と図6、8、9に示した複数の刃状転位を含む回折格子との差異を検討しておく。図6、8、9に示した複数の刃状転位を含む回折格子では、基本格子は1つであり、基本格子の周期性、位相に基づき回折像の回折スポットにリング状のらせん波を形成する複数の波が重畳して生成している。これら複数の波の位相は、基本格子により統一されている。 Here, the difference between the diffraction grating element shown in FIG. 10 and the diffraction grating including a plurality of edge dislocations shown in FIGS. In the diffraction grating including a plurality of edge dislocations shown in FIGS. 6, 8, and 9, there is one basic grating, and a ring-shaped spiral wave is formed in the diffraction spot of the diffraction image based on the periodicity and phase of the basic grating. A plurality of waves to be generated are superimposed. The phases of the plurality of waves are unified by the basic lattice.
 一方、複数の回折格子からなる回折格子素子では、各々の基本格子の周期性、位相は任意であり、一意に定まらない。すなわち、同じ次数の刃状転位を持つ回折格子を並べても、各々の基本格子の位相がπずれた状態の回折格子を配置した場合には、回折像中で干渉のため弱められ回折スポットが暗くなる。これを利用して回折スポットの強度をコントロールできる。回折スポットの強度コントロールという点では、これは利点となり得るが、一般には回折スポットは透過スポットと比較して強度に劣り、回折スポットをプローブとして用いる観察は、像のSN比の向上が課題となると考えられているので、各々の回折格子の基本格子の位相は揃った方が望ましい。つまり、回折スポットの強度は大きい方が望ましい。 On the other hand, in the diffraction grating element composed of a plurality of diffraction gratings, the periodicity and phase of each basic grating are arbitrary and are not uniquely determined. That is, even if diffraction gratings having edge dislocations of the same order are arranged, if diffraction gratings with the phase of each basic grating shifted by π are arranged, the diffraction spot is weakened due to interference in the diffraction image and the diffraction spot becomes dark. Become. This can be used to control the intensity of the diffraction spot. This can be an advantage in terms of controlling the intensity of the diffraction spot, but in general, the diffraction spot is inferior in intensity compared to the transmission spot, and the observation using the diffraction spot as a probe has a problem of improving the S / N ratio of the image. Therefore, it is desirable that the phases of the fundamental gratings of the respective diffraction gratings are aligned. That is, it is desirable that the intensity of the diffraction spot is large.
 そこで、回折格子の基本格子の位相を揃えた例を図11に示す。図11は、図10(a)の回折格子素子に、基本格子(白い破線格子)を重畳させて描いている。3つの回折格子(上から時計周りに、9次、1次、5次の刃状転位を持つ)の下側が基本格子の部分である。この基本格子の幹部(黒線)が、基本格子の白破線と一致していることがわかる(矢印参照)。すなわち、3つの回折格子は、それぞれの基本格子が一致している。 Therefore, an example in which the phases of the basic gratings of the diffraction grating are aligned is shown in FIG. FIG. 11 shows a basic grating (white broken line grating) superimposed on the diffraction grating element of FIG. The lower side of the three diffraction gratings (having 9th-order, 1st-order, and 5th-order edge dislocations clockwise from the top) is a portion of the basic grating. It can be seen that the trunk (black line) of this basic lattice coincides with the white broken lines of the basic lattice (see arrows). That is, the three diffraction gratings have the same basic grating.
 一方、図12は基本格子の位相が揃っていない場合の例である。図12は図11と同じ回折格子の組み合わせであるが、下側の1次と5次の回折格子の位置が、ちょうど基本格子の1/4周期分(1次の格子は+1/4周期、5次の格子は‐1/4周期)だけ、それぞれ図中横方向にずれている。つまり、基本格子の位相は揃っていない。 On the other hand, FIG. 12 shows an example in which the phases of the basic grating are not aligned. FIG. 12 shows the same combination of diffraction gratings as in FIG. 11, but the positions of the lower first-order and fifth-order diffraction gratings are exactly ¼ period of the basic grating (the first order grating is +1/4 period, The fifth-order lattice is shifted by ¼ period) in the horizontal direction in the figure. That is, the phases of the basic grating are not aligned.
 実際に回折格子素子を設計製作する際には、上述のごとく、基本格子が統一されていること(図11参照)が望ましい。 When actually designing and manufacturing a diffraction grating element, it is desirable that the basic grating is unified (see FIG. 11) as described above.
 図13に、実験結果(図13(a))とシミュレーション結果(図13(b))を示す。前述の基本格子の位相は、ほぼ合わせてある。刃状転位を含むフォーク型回折格子の設計において、らせん波の影響は、刃状転位のコアの部分が最大で、ここから離れるほど小さくはなるが、基本的にその影響は無限遠まで継続する。従って、基本格子は一致していても、現実に有限な大きさで回折格子を製作する場合には、基本格子の周期、位相などにその影響が残存してしまう。この問題はらせん度が大きな、すなわち刃状転位の次数が大きい格子ほど顕著である。 FIG. 13 shows the experimental results (FIG. 13 (a)) and the simulation results (FIG. 13 (b)). The phases of the basic gratings described above are substantially matched. In the design of a fork-type diffraction grating including edge dislocations, the effect of the spiral wave is the largest at the core of the edge dislocation and decreases as it moves away from it, but basically the effect continues to infinity. . Therefore, even if the basic gratings coincide with each other, when the diffraction grating is actually manufactured with a finite size, the influence remains on the period and phase of the basic grating. This problem is more conspicuous as the lattice has a higher degree of spiralness, that is, a higher degree of edge dislocations.
 図13の右側に回折像を示す。-1次から2次までの4つの回折スポットを示しているが、図13(a)の実験結果では、3つのリング状の回折スポットは、同心円上には配列しておらず、少しだけその中心位置がずれている。これは、各々の回折格子の位置、および上述の基本格子のわずかなずれが、小角回折であるため鋭敏に像中に現れたものである。しかし、実験結果は3つのリング状の回折スポットが1つの回折スポット位置に重畳されていることを示しており、本願のアイデアが実現されている。 The diffraction image is shown on the right side of FIG. Although the four diffraction spots from the −1st order to the second order are shown, in the experimental result of FIG. 13A, the three ring-shaped diffraction spots are not arranged on the concentric circles. The center position is shifted. This is because the position of each diffraction grating and the slight deviation of the above-mentioned basic grating appear sharply in the image because of the small-angle diffraction. However, the experimental results indicate that three ring-shaped diffraction spots are superimposed on one diffraction spot position, and the idea of the present application is realized.
 図13(b)のシミュレーション結果も±1次の回折スポットが、先の図4(b)で見られたリング状にはならず広がりを示しており、この回折スポットを用いて領域照射が可能であることを示している。 The simulation result of FIG. 13B also shows that the ± 1st-order diffraction spot does not have the ring shape seen in FIG. 4B, and spreads, and region irradiation can be performed using this diffraction spot. It is shown that.
 その他、図示はしないが実際の実験系においては、リング状の回折スポットをにじませる方法、すなわち、実効的に領域照射に有効な複数の方法がある。例えば、回折格子、あるいは回折格子素子に入射する入射波の開き角を大きくし、回折像面でのスポット径、すなわちらせん波の分布を広くする方法、また、回折像を結像するレンズのフォーカスをずらすことによって、回折像自体をにじませる方法、などがある。いずれも、試料よりも上流側の光学系による制御であるため、試料の結像条件(例えば倍率の調整やフォーカスの調整)とは、独立に調整可能である。 In addition, although not shown in the drawings, in an actual experimental system, there are a method of blurring a ring-shaped diffraction spot, that is, a plurality of methods effective for area irradiation. For example, a method of increasing the opening angle of the incident wave incident on the diffraction grating or the diffraction grating element to widen the spot diameter on the diffraction image plane, that is, the distribution of the spiral wave, and the focus of the lens that forms the diffraction image There is a method of causing the diffraction image itself to blur by shifting. Since both are controlled by the optical system upstream of the sample, it can be adjusted independently of the imaging condition of the sample (for example, adjustment of magnification or adjustment of focus).
 <実施例5>
 図14は、複数の外形の異なる回折格子91を平面上に配列した回折格子素子93の先述とは別の例である。らせん波を生成する回折像が小角回折であり、回折格子の外形や配置位置が、回折像中に反映されることを利用した構成である。回折格子素子への照射プローブの光軸2位置から見た、各回折格子の方位角の違い、各回折格子外形の違い、各回折格子の持つ刃状転位の次数の違い(但し、図14には描いていない)、などが回折像の1つの回折スポット上に重畳されて、領域照射のらせん波を生成する。
<Example 5>
FIG. 14 shows another example of the diffraction grating element 93 in which a plurality of diffraction gratings 91 having different outer shapes are arranged on a plane. A diffraction image that generates a spiral wave is small-angle diffraction, and the outer shape and arrangement position of the diffraction grating are reflected in the diffraction image. The difference in the azimuth angle of each diffraction grating, the difference in the outer shape of each diffraction grating, and the order of the edge dislocation possessed by each diffraction grating as seen from the position of the optical axis 2 of the irradiation probe to the diffraction grating element (however, FIG. , Etc.) are superimposed on one diffraction spot of the diffraction image to generate a spiral wave of region irradiation.
 <実施例6>
 図15は、らせん波を試料に照射するための回折格子素子93を備えた荷電粒子線装置の一例である。透過型電子顕微鏡を例に描いているが、電子顕微鏡に限定するものではない。
<Example 6>
FIG. 15 is an example of a charged particle beam apparatus provided with a diffraction grating element 93 for irradiating a sample with a spiral wave. Although a transmission electron microscope is illustrated as an example, it is not limited to an electron microscope.
 照射光学系中に配置された回折格子素子93は、例えば第1コンデンサレンズ41によって照射の開き角や光軸2との照射角度を調整される。回折格子素子93の下側の第2コンデンサレンズ42によって回折格子素子93の回折像が試料上に結像される。プローブとして観察に用いたい回折スポットを、例えば絞り15により選択し、試料上に照射する。試料3を透過した電子線は、対物レンズ5、およびその下側の結像レンズ系(61,62,63,64)を経て、所定の倍率に拡大され、受像面89に結像される。試料の像35は、検出器79とコントローラ78を経て、例えば画像データモニタ76画面上で観察されたり、記録装置77に画像データとして格納される。 The diffraction grating element 93 disposed in the irradiation optical system is adjusted by, for example, the first condenser lens 41 for the irradiation opening angle and the irradiation angle with the optical axis 2. A diffraction image of the diffraction grating element 93 is formed on the sample by the second condenser lens 42 below the diffraction grating element 93. A diffraction spot to be used for observation as a probe is selected by, for example, the diaphragm 15 and irradiated on the sample. The electron beam that has passed through the sample 3 passes through the objective lens 5 and the imaging lens system (61, 62, 63, 64) on the lower side thereof, is enlarged to a predetermined magnification, and forms an image on the image receiving surface 89. The sample image 35 is observed on a screen of an image data monitor 76, for example, via a detector 79 and a controller 78, or stored as image data in a recording device 77.
 これら装置は、全体としてシステム化されており、オペレータはモニタ52画面上で装置の制御状態を確認するとともに、インターフェース53を介して、システム制御コンピュータ51を用いて、電子源1、加速管40、各レンズ(41、42、5、61、62、63、64)、試料3、絞り15、検出器79などを制御できる。なお、想定される荷電粒子線装置は、ビームの偏向系や真空排気系などを備えているが、本願と直接の関係が無いため、図示、および説明は割愛する。 These apparatuses are systematized as a whole, and an operator confirms the control state of the apparatus on the monitor 52 screen, and uses the system control computer 51 via the interface 53 to use the electron source 1, the acceleration tube 40, Each lens (41, 42, 5, 61, 62, 63, 64), sample 3, diaphragm 15, detector 79, etc. can be controlled. The assumed charged particle beam apparatus includes a beam deflection system, an evacuation system, and the like. However, since there is no direct relationship with the present application, illustration and description are omitted.
 <実施例7>
 まず、図16に、実施例6までで説明した回折格子および回折格子素子の模式図および回折像のシミュレーション結果の一例を示す。図16(A)、(B)、(C)は、それぞれ次数が1次、5次、9次からなる刃状転位格子(左図)とそれぞれの回折格子を透過した波動(ここでは荷電粒子線)による回折像のシミュレーション結果(右図)である。右図では透過波に対応した0次の回折スポットが回折像中心に位置し、その左右それぞれに1次から4次までの回折波に対応した回折スポットが示されている。0次スポットを中心に例えば右側が正、左側が負の回折スポットに該当する。
<Example 7>
First, FIG. 16 shows a schematic diagram of the diffraction grating and the diffraction grating element described up to Example 6 and an example of a simulation result of the diffraction image. FIGS. 16A, 16B, and 16C show edge dislocation gratings (left figure) having orders of 1st order, 5th order, and 9th order, respectively, and waves (in this case, charged particles) transmitted through the respective diffraction gratings. It is a simulation result (right figure) of the diffraction image by line. In the right figure, the 0th-order diffraction spot corresponding to the transmitted wave is located at the center of the diffraction image, and the diffraction spots corresponding to the 1st- to 4th-order diffraction waves are shown on the right and left sides, respectively. Centering on the 0th order spot, for example, the right side corresponds to a positive diffraction spot and the left side corresponds to a negative diffraction spot.
 それぞれの回折スポットは特徴的なリング形状をしているが、これは回折の次数と刃状転位の次数で定められたらせん度を持ったらせん波による回折スポットであることを示している。一般に、らせん度は、回折スポットの次数と刃状転位の次数の積で表される。たとえば、図16(A)では0次スポットから右方向に、らせん度、1度、2度、3度、4度のらせん波の回折スポットであり、図16(B)では、0次スポットから右方向に、らせん度、5度、10度、15度、20度のらせん波の回折スポットである。らせん度に対応して、らせん波の回折スポットのリング径が大きくなることがわかる。 Each diffraction spot has a characteristic ring shape, which indicates that the diffraction spot is a spiral wave having a spiral degree determined by the diffraction order and the edge dislocation order. In general, the helical degree is represented by the product of the order of diffraction spots and the order of edge dislocations. For example, in FIG. 16A, the diffraction spot of the spiral wave has a spiral degree of 1 degree, 2 degrees, 3 degrees, and 4 degrees in the right direction from the 0th order spot. In FIG. In the right direction, it is a diffraction spot of a spiral wave having a spiral degree of 5, 10, 10, 15, and 20 degrees. It can be seen that the ring diameter of the spiral diffraction spot increases corresponding to the degree of helix.
 図16(D)も実施例6までの回折格子および回折格子素子の模式図および回折像のシミュレーション結果の一例を示した図である。図16(D)は、次数が1次、5次、9次からなる3つの刃状転位格子から構成される刃状転位格子素子の例(左図)とその回折格子素子を透過した波動(ここでは荷電粒子線)による回折像のシミュレーション結果(右図)である。らせん度の異なる、すなわち径の異なるリング状回折スポットを同一回折面内に中心を同じくして生成させることにより、重畳させて平面波状に空間領域を照射可能ならせん波を生成するものである。ここでいう、平面波とは透過型電子顕微鏡(TEM)等で用いるような、ある程度の照射領域をもつ波動(ここでは荷電粒子線)のことを指す。 FIG. 16D is also a schematic diagram of the diffraction grating and the diffraction grating element up to Example 6 and a diagram showing an example of the simulation result of the diffraction image. FIG. 16D shows an example (left figure) of an edge dislocation grating element composed of three edge dislocation gratings of the first order, the fifth order, and the ninth order, and a wave transmitted through the diffraction grating element ( Here is a simulation result (right figure) of a diffraction image by charged particle beams. By generating ring-shaped diffraction spots having different spirals, that is, having different diameters, with the same center in the same diffraction plane, a spiral wave can be generated by superimposing them so as to irradiate a spatial region in the form of a plane wave. Here, the plane wave refers to a wave (in this case, a charged particle beam) having a certain irradiation region as used in a transmission electron microscope (TEM) or the like.
 平面波状の照射領域が生成されるため、走査型ではない通常の透過型電子顕微鏡などに好適な照射らせん波プローブとなる。図16(D)の左図は、表示の都合のため図16(A)から(C)の左図とは異なる倍率で表示しているが、その倍率の関係は5μmのスケールバーを図中に示して明らかにしている。回折像の倍率は図16(A)から(D)で同じである。 Since a plane wave-shaped irradiation region is generated, the irradiation spiral probe is suitable for a normal transmission electron microscope that is not a scanning type. The left figure in FIG. 16D is displayed at a different magnification from the left figures in FIGS. 16A to 16C for convenience of display, but the relationship between the magnifications is a scale bar of 5 μm in the figure. It is shown and clarified. The magnification of the diffraction image is the same in FIGS.
 本実施例7は、上記の思想を踏まえて、らせん波を照射プローブとして用いる、透過型電子顕微鏡などにおいて好適な照射らせん波プローブを生成するため、らせん波によるリング状回折スポットについて、中心が同一で径の異なるリング状回折スポットを同一回折面内に生成させ、重畳させて平面波状に空間領域を照射可能ならせん波を生成するものである。さらに、本実施例を含む以降の実施例では重畳されるリング状回折スポットのらせん度を同一にすることにより、らせん度が揃い、かつ、平面波状に空間領域を照射可能ならせん波を生成することを特徴としている。 In Example 7, in order to generate a suitable irradiation spiral probe in a transmission electron microscope or the like using a spiral wave as an irradiation probe based on the above idea, the center of the ring-shaped diffraction spot by the spiral wave is the same. In this case, ring-shaped diffraction spots having different diameters are generated in the same diffraction plane, and are superimposed to generate a spiral wave that can irradiate a spatial region in a plane wave shape. Further, in the following embodiments including this embodiment, by making the spiral degree of the ring-shaped diffraction spots to be superimposed the same, the spiral wave is generated and the spiral wave is generated so that the spatial region can be irradiated in a plane wave shape. It is characterized by that.
 すなわち具体的には、刃状転位の次数と基本格子間隔と格子方位とが同じで、かつ格子の外径(径)が異なる刃状転位格子が複数設けられた回折格子素子を用いる。また、その回折格子素子によって回折された荷電粒子線を試料に照射することによって、その試料を観察もしくは加工する荷電粒子線装置を用いる。 That is, specifically, a diffraction grating element provided with a plurality of edge dislocation gratings having the same order of edge dislocations, the basic lattice spacing, and the lattice orientation, and having different outer diameters (diameters) of the gratings is used. Further, a charged particle beam apparatus is used that observes or processes a sample by irradiating the sample with a charged particle beam diffracted by the diffraction grating element.
 本実施例7で用いる回折格子素子は、らせん度は同じであるが、回折格子素子を構成する刃状転位格子の格子面の大きさに複数の種類があるため、それぞれの回折波から生成されるリング状回折スポットの径が異なる。したがって、らせん度が同一でかつスポット径の異なるリング状回折スポットを、同一平面上で重畳することにより、らせん度が揃ったまま、平面波状に空間領域を照射可能ならせん波を生成することができる。さらに、らせん度が揃っているため、照射される領域内において被照射試料と照射らせん波プローブとの相互作用の強さが一定となり、より均一なコントラストによる試料の観察、あるいは試料の加工が可能となる。 The diffraction grating elements used in this Example 7 have the same degree of spiraling, but there are a plurality of types of lattice plane sizes of the edge dislocation gratings constituting the diffraction grating elements, so that the diffraction grating elements are generated from the respective diffraction waves. The ring-shaped diffraction spots have different diameters. Therefore, by superimposing ring-shaped diffraction spots with the same spiral degree and different spot diameters on the same plane, a spiral wave can be generated that can irradiate a spatial region in a plane wave form with the same spiral degree. it can. Furthermore, since the degree of spiraling is uniform, the strength of the interaction between the irradiated sample and the irradiated spiral wave probe is constant within the irradiated region, allowing observation of the sample with a more uniform contrast or processing of the sample. It becomes.
 図17(a)および図17(b)を参照しながら本実施例を説明する。図17(a)は、実施例7を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。図17(b)は、図17(a)に示す回折格子および0次、±1次のシミュレーション結果を模写した図(イメージ図)である。図17(a)の(A)から(D)に示すように、それぞれ3次の刃状転位を持つ回折格子で、基本格子間隔および格子の方位は同一である。図17の左側は刃状転位格子を示し、図17の右側はそれぞれの回折格子を透過した波動(ここでは荷電粒子線)による回折像のシミュレーション結果である。 The present embodiment will be described with reference to FIGS. 17 (a) and 17 (b). FIG. 17A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 7 and a simulation result of a diffraction image. FIG. 17B is a diagram (image diagram) showing a copy of the diffraction grating shown in FIG. 17A and the 0th and ± 1st order simulation results. As shown in FIGS. 17A to 17D, each of the diffraction gratings has third-order edge dislocations, and the basic lattice spacing and the lattice orientation are the same. The left side of FIG. 17 shows an edge dislocation grating, and the right side of FIG. 17 shows a simulation result of a diffraction image by a wave (in this case, a charged particle beam) transmitted through each diffraction grating.
 図17の右図では透過波に対応した0次の回折スポットが回折像中心に位置し、その左右それぞれに1次から4次までの回折波に対応した回折スポットが示されている。以上の図の構成は図16と同様である。本願の説明図における回折格子あるいは回折格子素子および回折格子を透過した波動(荷電粒子線)による回折像の関係は、特に断らない限り以降の図においても同様である。 In the right diagram of FIG. 17, the 0th-order diffraction spot corresponding to the transmitted wave is located at the center of the diffraction image, and the diffraction spots corresponding to the 1st- to 4th-order diffraction waves are shown on the left and right, respectively. The configuration of the above figure is the same as that of FIG. The relationship of diffraction images by the wave (charged particle beam) transmitted through the diffraction grating or the diffraction grating element and the diffraction grating in the explanatory diagrams of the present application is the same in the subsequent drawings unless otherwise specified.
 図17(a)の(A)、(B)、(C)は、順に、格子面の外径が大(RL)、中(RM)、小(RS)と相対的に変化した場合、すなわち、格子の面積が大、中、小と変化している場合の刃状転位格子とその格子からの回折像である。図17(a)および図17(b)に示すとおり、格子外径が小さくなるほど、リング状回折スポットのリング径が大きくなることがわかる。ただし、図17(a)の(A)から(C)で、1次、2次回折スポットが多重のリング状に見えるが、この多重のリングのうち外側のリングは開口形状の作るフラウンホーファー回折の副極大に相当する。本実施例で考察するのは、一番内側のフラウンホーファー回折の主極大に相当するリング状回折スポットである。 (A), (B), and (C) in FIG. 17 (a) are the cases where the outer diameter of the lattice plane changes in order of large (RL), medium (RM), and small (RS) in this order, These are edge dislocation gratings and diffraction images from the gratings when the area of the grating changes from large to medium to small. As shown in FIG. 17A and FIG. 17B, it can be seen that the ring diameter of the ring-shaped diffraction spot increases as the grating outer diameter decreases. However, in FIGS. 17A to 17C, the first-order and second-order diffraction spots look like multiple rings, but the outer ring of these multiple rings is the Fraunhofer diffraction created by the aperture shape. Is equivalent to In this embodiment, a ring-shaped diffraction spot corresponding to the main maximum of the innermost Fraunhofer diffraction is considered.
 そして、図17(a)の(D)に、刃状転位格子の格子面の大きさに複数の種類がある回折格子素子の例を示す。図17(a)の(D)の左図は図17(a)の(A)から(C)の回折格子を、基本格子間隔と格子の方位を同一にした状態で、同一平面に配した回折格子素子である。図17(a)の(D)は、上から反時計周りに格子面の外径が大(RL)、中(RM)、小(RS)の回折格子を並べた回折格子素子である。図17(a)の(D)の右図は、左図の回折格子素子を透過した波動(荷電粒子線)による回折像で、らせん度は同じでリング径の異なるリング状回折スポットを同一回折面内に生成させ、重畳させて平面波状に空間領域を照射可能ならせん波を生成することを示している。特に±1次の回折スポットはリング状ではなく領域を照射する平面波状の入射プローブになっている。別の言い方をすれば、±1次の回折スポットは、リング状の中心部(コアの部分)が小さくなっている。 FIG. 17 (D) shows an example of a diffraction grating element having a plurality of types in the size of the lattice plane of the edge dislocation grating. The left diagram of FIG. 17A (D) shows the diffraction gratings (A) to (C) of FIG. 17 (a) arranged on the same plane with the same basic grating spacing and grating orientation. It is a diffraction grating element. (D) in FIG. 17A is a diffraction grating element in which diffraction gratings having large (RL), medium (RM), and small (RS) outer diameters are arranged counterclockwise from above. The right figure in (D) of FIG. 17A is a diffraction image by a wave (charged particle beam) transmitted through the diffraction grating element in the left figure. Ring diffraction spots having the same spiral degree but different ring diameters are diffracted the same. It is shown that a spiral wave is generated that can be generated in a plane and superimposed to irradiate a spatial region in a plane wave shape. In particular, the ± 1st-order diffraction spot is not a ring shape but a plane wave incident probe that irradiates a region. In other words, the ring-shaped central portion (core portion) of the ± 1st-order diffraction spot is small.
 表示の都合のため、図17(d)の刃状転位格子像は図17(a)から(c)の左図とは異なる倍率で表示しているが、その倍率の関係は5μmのスケールバーを図中に示して明らかにしている。回折像の倍率は図17の(a)から(d)で同じである。 For the convenience of display, the edge dislocation lattice image of FIG. 17 (d) is displayed at a different magnification from the left figure of FIGS. 17 (a) to 17 (c), but the relationship between the magnifications is a scale bar of 5 μm. Is shown in the figure to clarify. The magnification of the diffraction image is the same in FIGS.
 この様に、外径の異なる刃状転位格子から構成される回折格子素子を用いれば、刃状転位の次数が同じであっても、径の異なるリング状回折スポットが同一回折平面上に得られるので、各刃状転位格子からのリング状回折スポットが重畳され、通常の透過型電子顕微鏡などに好適な平面波状の照射らせん波プローブが生成される。 In this way, if diffraction grating elements composed of edge dislocation gratings having different outer diameters are used, ring-shaped diffraction spots having different diameters can be obtained on the same diffraction plane even if the order of the edge dislocations is the same. Therefore, the ring-shaped diffraction spots from the respective edge-shaped dislocation gratings are superimposed, and a plane wave irradiation spiral probe suitable for a normal transmission electron microscope or the like is generated.
 <実施例8>
 図18(a)および図18(b)を参照しながら本実施例を説明する。図18(a)は、実施例8を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。図18(b)は、図18(a)に示す回折格子および0次、±1次のシミュレーション結果を模写した図(イメージ図)である。図18(a)の(A)、(B)は、それぞれ3次の刃状転位を持ち、基本格子間隔と格子方位が同一で、かつ外径の異なる3つの刃状転位格子が、同一平面上で、かつ、基本格子の方位と垂直方向に配された回折格子素子の例(図中左側)と、その回折格子素子を透過した波動(ここでは荷電粒子線)による回折像のシミュレーション結果である。図18(a)の右側の回折像は、図16、図17(a)よりも表示倍率が大きく、0次の回折スポットを中心に左右にそれぞれに1次と2次の回折波に対応した回折スポットのみを示している。
<Example 8>
The present embodiment will be described with reference to FIGS. 18 (a) and 18 (b). FIG. 18A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 8, and a simulation result of a diffraction image. FIG. 18B is a diagram (image diagram) showing a copy of the diffraction grating shown in FIG. 18A and simulation results of the 0th order and ± 1st order. (A) and (B) of FIG. 18 (a) each have a third-order edge dislocation, and the three edge dislocation lattices having the same basic lattice interval and lattice orientation and different outer diameters are in the same plane. Above, an example of a diffraction grating element (left side in the figure) arranged in a direction perpendicular to the orientation of the basic grating, and a simulation result of a diffraction image by a wave (charged particle beam in this case) transmitted through the diffraction grating element is there. The diffraction pattern on the right side of FIG. 18 (a) has a larger display magnification than those of FIGS. 16 and 17 (a), and corresponds to the first-order and second-order diffracted waves respectively on the left and right with the zeroth-order diffraction spot as the center. Only diffraction spots are shown.
 また、図18(a)の(A)では、刃状転位格子の配列が、図中左側から格子面の大きさが大(RL)、中(RM)、小(RS)の順に並んでいるのに対し、図18(a)の(B)では、図中左側から、小(RS)、中(RM)、大(RL)の順に並んでいる。しかし、回折像(右図)は、図18(a)の(A)と(B)とで顕著な差は見られない(図18(b)も参照)。この理由として、回折像は伝播距離が無限大のフラウンホーファー回折像であり、格子位置の情報が失われ、方位と間隔(空間周波数)だけの情報になっていることが挙げられる。従って、大きさの異なる複数の回折格子を有する回折格子素子において、理論上、それぞれの回折格子を同一平面上のどの位置に配置するかは問題とならない。 Further, in (A) of FIG. 18 (a), the arrangement of the edge dislocation lattices is arranged in the order of large (RL), medium (RM), and small (RS) from the left side in the drawing. On the other hand, in (B) of FIG. 18A, they are arranged in the order of small (RS), medium (RM), and large (RL) from the left side in the figure. However, in the diffraction image (right figure), there is no significant difference between (A) and (B) in FIG. 18A (see also FIG. 18B). The reason for this is that the diffraction image is a Fraunhofer diffraction image with an infinite propagation distance, and the information on the grating position is lost, and the information is only the direction and the interval (spatial frequency). Therefore, in a diffraction grating element having a plurality of diffraction gratings having different sizes, the position of each diffraction grating on the same plane theoretically does not matter.
 しかし、実際の装置においては、伝播距離無限大のフラウンホーファー回折は実現不可能であり、有限距離でのフラウンホーファー回折像の観察となるため、実験条件によっては光軸との位置関係が、各リング状回折スポットの中心ずれとして反映される場合がある。そのため、本実施例8の図18(a)では、各回折格子を基本格子の方位と垂直方向(ここでは、横方向)に配列させ、実際の装置においても、確実に各リング状回折スポットの中心が一致するように構成した回折格子素子の例である。 However, in an actual device, Fraunhofer diffraction with an infinite propagation distance is not feasible, and it becomes an observation of a Fraunhofer diffraction image at a finite distance, so the positional relationship with the optical axis depends on the experimental conditions. This may be reflected as the center deviation of the ring-shaped diffraction spot. Therefore, in FIG. 18A of the eighth embodiment, the diffraction gratings are arranged in the direction perpendicular to the orientation of the basic grating (in this case, in the lateral direction), and the ring-shaped diffraction spots of the ring-shaped diffraction spots are reliably ensured even in an actual apparatus. It is an example of the diffraction grating element comprised so that a center might correspond.
 <実施例9>
 図19(a)および図19(b)を参照しながら本実施例を説明する。図19(a)は、実施例9を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。図19(b)は、図19(a)に示す回折格子および0次、±1次、±2次のシミュレーション結果を模写した図(イメージ図)である。
<Example 9>
The present embodiment will be described with reference to FIGS. 19 (a) and 19 (b). FIG. 19A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 9, and a simulation result of a diffraction image. FIG. 19B is a diagram (image diagram) showing the diffraction grating shown in FIG. 19A and the simulation results of the 0th order, ± 1st order, and ± 2nd order.
 図19(a)は、回折格子面の大きさが小さい回折格子の数が、回折格子面の大きさが大きい回折格子の数よりも多い場合を示している(図19(a)の(B)、(C))。言い換えれば、ある面積を有する回折格子の個数が、より小さい面積を有する回折格子の個数よりも少ない場合を示している。この場合、平面波状の空間領域を照射可能ならせん波プローブを生成するのに好適である。 FIG. 19A shows a case where the number of diffraction gratings having a small diffraction grating surface is larger than the number of diffraction gratings having a large diffraction grating surface ((B) in FIG. 19A). ), (C)). In other words, the number of diffraction gratings having a certain area is smaller than the number of diffraction gratings having a smaller area. In this case, it is suitable for generating a spiral probe capable of irradiating a plane wave-like space region.
 回折格子面が他の回折格子より相対的に小さい場合には、その小なる回折格子面から回折される波動(ここでは荷電粒子線)の強度(量)は小さくなる。そして、その小なる回折格子面から回折された回折スポットは、回折平面内で大きなリング径の回折スポットとなるため、そのリング状回折スポットの強度はさらに小さくなる。 When the diffraction grating surface is relatively smaller than other diffraction gratings, the intensity (amount) of the wave (here, charged particle beam) diffracted from the smaller diffraction grating surface is small. Since the diffraction spot diffracted from the smaller diffraction grating surface becomes a diffraction spot having a large ring diameter in the diffraction plane, the intensity of the ring-shaped diffraction spot is further reduced.
 たとえば、図19(a)の(A)は、回折格子面の大きな1つの回折格子(RLのみ)の例であり、図19(a)の(B)は格子面の大きさが相対的に大(RL)、中(RM)、小(RS)の回折格子がそれぞれ1つずつ、基本格子の方位に対して45度の角度で配置された回折格子素子での例である。図19(a)の(A)と(B)を比較すると、±1次もしくは2次のリング状回折スポットについては、一番内側のリングの強度が強く、図19(a)の(A)、(B)ともに大きな変化はない(図19(b)の(A)、(B)も参照)。図19(a)の(B)において、一番内側のリング状スポットの外側に小なる大きさの回折格子によるリング状回折スポットが位置している。これは図19(a)の(A)に見られたフラウンホーファー回折の副極大に相当するリング状コントラストが消失していることとなり、すなわち複数のリング状回折スポットの重畳を示している。 For example, (A) in FIG. 19 (a) is an example of one diffraction grating (RL only) having a large diffraction grating surface, and (B) in FIG. 19 (a) has a relatively large grating surface size. This is an example of a diffraction grating element in which large (RL), medium (RM), and small (RS) diffraction gratings are arranged at an angle of 45 degrees with respect to the orientation of the basic grating. Comparing (A) and (B) in FIG. 19A, the intensity of the innermost ring is strong for the ± 1st-order or second-order ring-shaped diffraction spots, and (A) in FIG. , (B) are not significantly changed (see also (A), (B) of FIG. 19B). In FIG. 19A (B), a ring-shaped diffraction spot by a diffraction grating having a small size is located outside the innermost ring-shaped spot. This means that the ring-shaped contrast corresponding to the submaximal of Fraunhofer diffraction seen in (A) of FIG. 19 (a) has disappeared, that is, the superposition of a plurality of ring-shaped diffraction spots.
 しかし、回折格子面が小さい回折格子からの寄与は、相対的に小さいことがわかる。図19(a)の(C)は、回折格子面が小さい回折格子の数を多数とした場合の回折格子素子の例である。具体的には、回折面の大きさが相対的に大なる格子(RL)が1つ、中なる格子(RM)が4つ、小なる格子(RS)が4つからなる回折格子素子での例である。 However, it can be seen that the contribution from a diffraction grating having a small diffraction grating surface is relatively small. (C) in FIG. 19A is an example of a diffraction grating element when the number of diffraction gratings having a small diffraction grating surface is large. Specifically, a diffraction grating element having one grating (RL) having a relatively large diffraction surface, four middle gratings (RM), and four smaller gratings (RS). It is an example.
 図19(a)の(C)では、(B)と比較してリング状回折スポットの外周部での強度が増加していることがわかる。図19(a)の(C)では各格子の配置が四回対称性を持っている。すなわち、図中、大なる格子(RL)の上下左右に小なる格子(RS)が配置され、大なる格子(RL)の斜め右上、右下、左上、左下に中なる格子(RM)が配置されている。このように、図19(a)の(C)では各格子の配置が四回対称性を持っているため、回折像中にも四回対称性に対応した格子パターンが見える(図19(b)の(C)も参照)。これは、パターンの形成が見える程度にリング状回折スポットの外周部の強度が増していることを意味している。 In FIG. 19A (C), it can be seen that the intensity at the outer periphery of the ring-shaped diffraction spot is increased as compared with (B). In FIG. 19A (C), the arrangement of each lattice has fourfold symmetry. That is, in the figure, small lattices (RS) are arranged on the upper, lower, left and right sides of the large lattice (RL), and middle lattices (RM) are disposed obliquely on the upper right, lower right, upper left, and lower left of the large lattice (RL). Has been. In this way, in FIG. 19C (C), since the arrangement of each grating has a four-fold symmetry, a grating pattern corresponding to the four-fold symmetry can be seen in the diffraction image (FIG. 19B). (See also (C))). This means that the intensity of the outer periphery of the ring-shaped diffraction spot is increased to such an extent that the formation of the pattern can be seen.
 なお、ここで、例えば、図19(a)の(B)大(RL)および中(RM)に着眼すれば、光軸(図21参照)に対し、ある面積を有する回折格子が、より小さい面積を有する回折格子よりも近くに設けられていると言える。 Here, for example, when focusing on (B) large (RL) and medium (RM) in FIG. 19A, the diffraction grating having a certain area with respect to the optical axis (see FIG. 21) is smaller. It can be said that it is provided closer to the diffraction grating having the area.
 <実施例10>
 実施例9にて言及した通り、回折格子素子を照射する波動(ここでは荷電粒子線)の照射領域の大きさを広げることは、照射プローブの単位面積当たりの強度の減少を意味する。そのため、波動の照射領域内に、格子面の大きさの異なる複数の回折格子を効率的に配置することが重要である。ここでいう効率的とは、例えば格子間の隙間、もしくは隙間の面積が小さくなるように配置することを意味する。
<Example 10>
As mentioned in Example 9, increasing the size of the irradiation region of the wave (charged particle beam in this case) that irradiates the diffraction grating element means a decrease in intensity per unit area of the irradiation probe. Therefore, it is important to efficiently arrange a plurality of diffraction gratings having different grating plane sizes in the wave irradiation region. Here, “efficient” means that the gaps between the lattices or the area of the gaps are arranged to be small.
 図20(a)および図20(b)を参照しながら本実施例を説明する。図20(a)は、実施例10を説明する回折格子および回折格子素子の模式図および回折像のシミュレーション結果である。図20(b)は、図20(a)に示す回折格子および0次、±1次のシミュレーション結果を模写した図(イメージ図)である。 The present embodiment will be described with reference to FIGS. 20 (a) and 20 (b). FIG. 20A is a schematic diagram of a diffraction grating and a diffraction grating element for explaining Example 10 and a simulation result of a diffraction image. FIG. 20B is a diagram (image diagram) showing a copy of the diffraction grating shown in FIG. 20A and the 0th and ± 1st order simulation results.
 図20(a)の(A)は、格子面の大きさが大きな回折格子(RL)の四方に格子面の大きさが中なる回折格子(RM)を配置し、さらにその周辺部に、格子面の大きさが小なる回折格子(RS)を配置した例である。例えば、回折面の大きさが相対的に大なる格子(RL)が1個、中なる格子(RM)が4個、小なる格子(RS)が20個からなる回折格子素子での例である。例えば、大なる格子(RL)の上下左右に中なる格子(RM)が配置され、大なる格子(RL)の斜め右上、右下、左上、左下に、それぞれ、5つの小なる格子(RS)からなる小なる格子群が配置されている。もちろん、回折面の大きさが相対的に大きさの異なる格子を複数有するものであれば、例示したそれぞれの個数に限定されるものではない。 In FIG. 20A, (A) shows a case where a diffraction grating (RM) having a medium grating surface is arranged in four directions of a diffraction grating (RL) having a large grating surface, and further, a grating is provided at the periphery thereof. This is an example in which a diffraction grating (RS) having a small surface size is arranged. For example, this is an example of a diffraction grating element including one grating (RL) having a relatively large diffraction surface, four intermediate gratings (RM), and 20 small gratings (RS). . For example, middle grids (RM) are arranged on the upper, lower, left, and right sides of the larger grid (RL), and five smaller grids (RS) are arranged on the upper right, lower right, upper left, and lower left of the large grid (RL). A small lattice group consisting of is arranged. Of course, the number of diffraction surfaces is not limited to the exemplified number as long as it has a plurality of gratings having relatively different sizes.
 図20(a)の(A)の回折像と図19(a)の(C)の回折像を比較すると、図20(a)の(A)の回折像ではそれぞれの回折格子位置の四回対称性に対応した格子パターンが、図19(a)の(C)より顕著になっている(図20(b)の(A)、図19(a)の(C)も参照)。これは回折像の強度が増加した効果の現れであるが、この格子状パターンを持った回折像の強度分布を試料への照射プローブとする場合には、観察、および加工において新たなアーティファクトを導入する恐れがある。これは、実施例7にて伝播距離無限大のフラウンホーファー回折が実現不可であることに起因する。 When comparing the diffraction image of FIG. 20A with the diffraction image of FIG. 19C, the diffraction image of FIG. 20A has four times at each diffraction grating position. The lattice pattern corresponding to the symmetry is more prominent than (C) in FIG. 19A (see also (A) in FIG. 20B and (C) in FIG. 19A). This is a manifestation of the effect of increasing the intensity of the diffraction image. However, when the intensity distribution of the diffraction image having the lattice pattern is used as an irradiation probe for the sample, new artifacts are introduced in observation and processing. There is a fear. This is due to the fact that Fraunhofer diffraction with an infinite propagation distance is not possible in Example 7.
 そのため、各回折格子の位置をランダムにし、対称性を低下させた例が図20(a)の(B)である。比較のため、各回折格子の数は図20(a)の(A)と(B)とで変化させていない。図20(a)の(B)では、大なる格子(RL)の中心と中なる格子(RM)の中心が直線状に並ぶように配置されておらず、大なる格子(RL)の下の中なる格子(RM)がずれて配置されている。また、大なる格子(RL)の右の中なる格子(RM)がずれて配置されている。そして、小なる格子群は、大なる格子(RL)の斜め右上、右下、左上、左下に、配置されているが、配置位置は、対称的ではない。例えば、大なる格子(RL)の中心と小なる格子(RS)の中心を結ぶ線は、規則的に配置されていない。そして、図20(a)の(B)の回折像は、図20(a)の(A)の回折像と比較すると、リング状回折スポットの広がりは同じで、四回対称パターンがなくなったことが明らかである。このように、格子面の大きさの異なる複数の回折格子を効果的に配置することにより、上述したアーティファクトを回避しつつ、同じらせん度を持ち、かつ空間的に広がった領域を持つらせん波の照射プローブを実現できる。 Therefore, an example in which the positions of the diffraction gratings are randomized to reduce the symmetry is shown in FIG. For comparison, the number of diffraction gratings is not changed between (A) and (B) in FIG. In (B) of FIG. 20A, the center of the large lattice (RL) and the center of the middle lattice (RM) are not arranged in a straight line, and are below the large lattice (RL). The middle grid (RM) is displaced. Also, the lattice (RM) on the right side of the large lattice (RL) is shifted. The small lattice groups are arranged diagonally in the upper right, lower right, upper left, and lower left of the large lattice (RL), but the arrangement positions are not symmetrical. For example, the line connecting the center of the large lattice (RL) and the center of the small lattice (RS) is not regularly arranged. The diffraction image of FIG. 20A (B) is the same as the diffraction image of FIG. 20A (A), and the ring-shaped diffraction spots have the same spread, and the four-fold symmetry pattern disappears. Is clear. In this way, by effectively arranging a plurality of diffraction gratings having different grating plane sizes, the spiral wave having the same spiral degree and a spatially widened area can be avoided while avoiding the above-mentioned artifact. An irradiation probe can be realized.
 <実施例11>
 図21は、らせん波を試料に照射するための回折格子素子94を備えた荷電粒子線装置の一例である。透過型電子顕微鏡を例に描画、説明を行うが、本願は電子顕微鏡に限定するものではない。
<Example 11>
FIG. 21 is an example of a charged particle beam apparatus including a diffraction grating element 94 for irradiating a sample with a spiral wave. Drawing and explanation are made with a transmission electron microscope as an example, but the present application is not limited to an electron microscope.
 まず、照射光学系中に配置された回折格子素子94は、一例として図17(a)の(D)の形状を模している。これも勿論、この形状に限定するものではない。回折格子素子94を照射する電子線27は、例えば第1コンデンサレンズ41によって照射の開き角や光軸2との照射角度を調整される。このとき、回折格子素子94を照射する電子線27の照射領域は回折格子素子94上の各回折格子91に含まれている刃状転位をその照射領域内に含む様に調整される。回折格子素子94の下側の第2コンデンサレンズ42によって回折格子素子94の回折像が試料上に結像される。 First, the diffraction grating element 94 arranged in the irradiation optical system imitates the shape of (D) of FIG. 17A as an example. Of course, the shape is not limited to this. The electron beam 27 irradiating the diffraction grating element 94 is adjusted by, for example, the first condenser lens 41 to adjust the irradiation opening angle and the irradiation angle with the optical axis 2. At this time, the irradiation region of the electron beam 27 that irradiates the diffraction grating element 94 is adjusted so that the edge dislocation included in each diffraction grating 91 on the diffraction grating element 94 is included in the irradiation region. A diffraction image of the diffraction grating element 94 is formed on the sample by the second condenser lens 42 below the diffraction grating element 94.
 そして、試料への照射プローブとして観察に用いたい回折スポットを、例えば絞り15により選択し、試料3上に照射する。試料3を透過した電子線27は、対物レンズ5、およびその下側の結像レンズ系(61,62,63,64)を経て、所定の倍率に拡大され、受像面89に結像される。試料の像35は、検出器79とコントローラ78を経て、例えば画像データモニタ76画面上で観察でき、また記録装置77に画像データとして格納することもできる。 Then, a diffraction spot to be used for observation as an irradiation probe for the sample is selected by, for example, the diaphragm 15 and irradiated onto the sample 3. The electron beam 27 that has passed through the sample 3 passes through the objective lens 5 and the imaging lens system (61, 62, 63, 64) on the lower side thereof, is enlarged to a predetermined magnification, and forms an image on the image receiving surface 89. . The sample image 35 can be observed on a screen of an image data monitor 76, for example, via a detector 79 and a controller 78, and can also be stored as image data in a recording device 77.
 これら装置は、全体としてシステム化されており、オペレータはモニタ52画面上で装置の制御状態を確認するとともに、インターフェース53を介して、システム制御コンピュータ51を用いて、電子源1、加速管40、各レンズ(41、42、5、61、62、63、64)、試料3、絞り15、検出器79、および回折格子素子94などを制御できる。 These apparatuses are systematized as a whole, and an operator confirms the control state of the apparatus on the monitor 52 screen, and uses the system control computer 51 via the interface 53 to use the electron source 1, the acceleration tube 40, Each lens (41, 42, 5, 61, 62, 63, 64), the sample 3, the diaphragm 15, the detector 79, the diffraction grating element 94, and the like can be controlled.
 なお、想定される荷電粒子線装置は、ビームの偏向系や真空排気系などを備えているが、これらの設備の図示および説明は、本願において割愛する。 Note that the assumed charged particle beam apparatus includes a beam deflection system, a vacuum exhaust system, and the like, but illustration and description of these facilities are omitted in the present application.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
1…電子源、15…絞り、17…絞りの制御系、18…真空容器、19…電子源の制御系、2…光軸、21…らせん波、23…平面波、3…試料、35…試料の像、39…試料保持装置の制御系、40…加速管、41…第1コンデンサレンズ、42…第2コンデンサレンズ、47…第2コンデンサレンズの制御系、48…第1コンデンサレンズの制御系、49…加速管の制御系、5…対物レンズ、51…システム制御コンピュータ、52…システム制御コンピュータのモニタ、53…システム制御コンピュータのインターフェース、59…対物レンズの制御系、61…第1中間レンズ、62…第2中間レンズ、63…第1投射レンズ、64…第2投射レンズ、66…第2投射レンズの制御系、67…第1投射レンズの制御系、68…第2中間レンズの制御系、69…第1中間レンズの制御系、71…対物レンズによる試料の像面(第1像面)、72…第1中間レンズによる試料の像面(第2像面)、73…第2中間レンズによる試料の像面(第3像面)、74…第1投射レンズによる試料の像面(第4像面)、76…画像データ用モニタ、77…画像データ記録装置、78…画像データコントローラ、79…画像検出器、89…受像面、9…回折像、91…回折格子、93…回折格子素子、95…基本格子、96…回折格子あるいは回折格子素子の保持装置の制御系、97…リング状回折スポット、99…点状回折スポット
 
DESCRIPTION OF SYMBOLS 1 ... Electron source, 15 ... Aperture, 17 ... Control system of aperture, 18 ... Vacuum container, 19 ... Control system of electron source, 2 ... Optical axis, 21 ... Spiral wave, 23 ... Plane wave, 3 ... Sample, 35 ... Sample 39 ... control system of sample holding device, 40 ... acceleration tube, 41 ... first condenser lens, 42 ... second condenser lens, 47 ... control system of second condenser lens, 48 ... control system of first condenser lens 49 ... Accelerating tube control system, 5 ... Objective lens, 51 ... System control computer, 52 ... System control computer monitor, 53 ... System control computer interface, 59 ... Objective lens control system, 61 ... First intermediate lens 62 ... second intermediate lens, 63 ... first projection lens, 64 ... second projection lens, 66 ... second projection lens control system, 67 ... first projection lens control system, 68 ... second intermediate , 69 ... control system of the first intermediate lens, 71 ... image surface of the sample by the objective lens (first image surface), 72 ... image surface of the sample by the first intermediate lens (second image surface), 73 ... image surface (third image surface) of sample by second intermediate lens, 74 ... image surface (fourth image surface) of sample by first projection lens, 76 ... monitor for image data, 77 ... image data recording device, 78 DESCRIPTION OF SYMBOLS ... Image data controller, 79 ... Image detector, 89 ... Image-receiving surface, 9 ... Diffraction image, 91 ... Diffraction grating, 93 ... Diffraction grating element, 95 ... Basic grating, 96 ... Control of diffraction grating or diffraction grating element holding device System 97 ... Ring diffraction spot, 99 ... Point diffraction spot

Claims (21)

  1.  荷電粒子線装置に用いられ、荷電粒子線に回折現象を発生させる回折格子であって、
     前記回折格子は、前記回折格子の格子面内において複数の刃状転位を含む形状を成していることを特徴とする回折格子。
    A diffraction grating that is used in a charged particle beam device and generates a diffraction phenomenon in a charged particle beam,
    The diffraction grating has a shape including a plurality of edge dislocations in a grating plane of the diffraction grating.
  2.  請求項1において、
     前記刃状転位を特徴付ける格子の分岐した幹の方位は、前記回折格子を特徴付ける格子の方位と同方向であることを特徴とする回折格子。
    In claim 1,
    The diffraction grating characterized in that the orientation of the branched trunk of the grating characterizing the edge dislocation is the same direction as the orientation of the grating characterizing the diffraction grating.
  3.  請求項1において、
     前記複数の刃状転位のそれぞれのコアは、前記回折格子を特徴付ける格子の幹の中央部分に存在することを特徴とする回折格子。
    In claim 1,
    Each of the cores of the plurality of edge dislocations exists in a central portion of a trunk of the grating characterizing the diffraction grating.
  4.  請求項1において、
     前記複数の刃状転位のコアは直線上に配列することを特徴とする回折格子。
    In claim 1,
    The diffraction grating, wherein the cores of the plurality of edge dislocations are arranged on a straight line.
  5.  請求項4において、
     前記複数の刃状転位のコアを結ぶ直線は、前記回折格子を特徴付ける格子の方位であることを特徴とする回折格子。
    In claim 4,
    The diffraction grating, wherein a straight line connecting the cores of the plurality of edge dislocations is an orientation of the grating characterizing the diffraction grating.
  6.  請求項4において、
     前記複数の刃状転位のコアを結ぶ直線は、前記回折格子を特徴付ける格子の方位と45度の角度を成すことを特徴とする回折格子。
    In claim 4,
    A diffraction grating characterized in that a straight line connecting the cores of the plurality of edge dislocations forms an angle of 45 degrees with the orientation of the grating characterizing the diffraction grating.
  7.  請求項4において、
     前記複数の刃状転位のそれぞれのコアを結ぶ直線は、前記回折格子を特徴付ける格子の方位と90度の角度を成すことを特徴とする回折格子。
    In claim 4,
    A diffraction grating characterized in that a straight line connecting each core of the plurality of edge dislocations forms an angle of 90 degrees with the orientation of the grating characterizing the diffraction grating.
  8.  荷電粒子線に回折現象を発生させる複数の回折格子から構成される回折格子素子であって、
     前記回折格子素子における前記複数の回折格子が1つの平面内に配置されるとともに、
     前記複数の回折格子がそれぞれの格子面内に刃状転位を含む形状を成していることを特徴とする回折格子素子。
    A diffraction grating element composed of a plurality of diffraction gratings that generate a diffraction phenomenon in a charged particle beam,
    The plurality of diffraction gratings in the diffraction grating element are arranged in one plane;
    The diffraction grating element, wherein the plurality of diffraction gratings have a shape including edge dislocations in each grating plane.
  9.  請求項8において、
     前記複数の回折格子においてそれぞれの回折格子を特徴付ける格子の方位が同方向であることを特徴とする回折格子素子。
    In claim 8,
    The diffraction grating element characterized in that the orientations of the gratings characterizing each diffraction grating in the plurality of diffraction gratings are the same direction.
  10.  請求項9において、
     前記複数の回折格子のそれぞれが含む前記刃状転位において、前記刃状転位を特徴付ける格子の分岐した幹の方位が、前記回折格子を特徴付ける格子の方位と同方向であることを特徴とする回折格子素子。
    In claim 9,
    In the edge dislocation included in each of the plurality of diffraction gratings, the direction of the branched trunk of the grating characterizing the edge dislocation is the same as the direction of the grating characterizing the diffraction grating. element.
  11.  請求項9において、
     前記複数の回折格子においてそれぞれの回折格子を特徴付ける格子が、同周期かつ同位相の配列であることを特徴とする回折格子素子。
    In claim 9,
    The diffraction grating element characterized in that the gratings characterizing each diffraction grating in the plurality of diffraction gratings are arranged in the same period and in the same phase.
  12.  請求項1において、
     前記回折格子を用いて、回折された荷電粒子線を試料に照射し観察もしくは加工することを特徴とする荷電粒子線装置。
    In claim 1,
    A charged particle beam apparatus, wherein the sample is irradiated with a diffracted charged particle beam and observed or processed using the diffraction grating.
  13.  請求項8において、
     前記回折格子素子を用いて、回折された荷電粒子線を試料に照射し観察もしくは加工することを特徴とする荷電粒子線装置。
    In claim 8,
    A charged particle beam apparatus for observing or processing a sample by irradiating a sample with a diffracted charged particle beam using the diffraction grating element.
  14.  荷電粒子線の光源と、前記光源から放出される荷電粒子線を試料に照射するための照射光学系と、前記荷電粒子線が照射する試料を保持するための試料保持装置と、前記試料の像を結像するための結像レンズ系と、を有する荷電粒子線装置であって、
     前記荷電粒子線装置の光軸上で前記試料保持装置よりも前記荷電粒子線の進行方向上流側において、前記荷電粒子線に回折現象を発生させる回折格子であって該格子面内に複数の刃状転位を含む形状を有する回折格子、あるいは、前記荷電粒子線に回折現象を発生させる複数の回折格子から構成される回折格子素子であって該複数の回折格子が1つの平面内に配置されるとともに該複数の回折格子がそれぞれの格子面内に刃状転位を含む形状を成している回折格子素子、を備えることを特徴とする荷電粒子線装置。
    A charged particle beam light source, an irradiation optical system for irradiating the sample with the charged particle beam emitted from the light source, a sample holding device for holding the sample irradiated with the charged particle beam, and an image of the sample A charged particle beam device having an imaging lens system for imaging
    A diffraction grating for generating a diffraction phenomenon in the charged particle beam on the optical axis of the charged particle beam apparatus on the upstream side in the traveling direction of the charged particle beam with respect to the sample holding device, and a plurality of blades in the grating plane A diffraction grating element having a shape including a dislocation, or a diffraction grating element composed of a plurality of diffraction gratings that generate a diffraction phenomenon in the charged particle beam, wherein the plurality of diffraction gratings are arranged in one plane A charged particle beam apparatus comprising: a diffraction grating element in which the plurality of diffraction gratings have a shape including edge dislocations in each grating plane.
  15.  請求項14において、
     前記荷電粒子線装置において、
     前記回折格子あるいは前記回折格子素子を透過し回折現象により複数のリング形状からなる回折スポットの内の1つの回折スポットを、
     照射荷電粒子線として前記試料に照射し観察もしくは加工することを特徴とする荷電粒子線装置。
    In claim 14,
    In the charged particle beam device,
    One diffraction spot among diffraction spots which are transmitted through the diffraction grating or the diffraction grating element and have a ring shape due to a diffraction phenomenon,
    A charged particle beam apparatus characterized by irradiating and observing or processing the sample as an irradiation charged particle beam.
  16.  請求項8において、
     前記複数の回折格子においてそれぞれの格子面に同じ次数の刃状転位を含んでいることを特徴とする回折格子素子。
    In claim 8,
    In the plurality of diffraction gratings, each grating plane includes edge dislocations of the same order.
  17.  請求項8において、
     前記複数の回折格子においてそれぞれの格子を特徴付ける格子間隔が同じことを特徴とする回折格子素子。
    In claim 8,
    A diffraction grating element characterized in that the plurality of diffraction gratings have the same grating interval characterizing each grating.
  18.  請求項8において、
     前記複数の回折格子においてそれぞれの格子の径が異なることを特徴とする回折格子素子。
    In claim 8,
    A diffraction grating element, wherein the plurality of diffraction gratings have different diameters.
  19.  請求項8において、
     前記複数の回折格子において、第一の面積を有する回折格子と、前記第一の面積よりも相対的に小さい第二の面積を有する回折格子とを有し、
     前記第一の面積を有する回折格子の個数が前記第二の面積を有する回折格子の個数よりも少ないことを特徴とする回折格子素子。
    In claim 8,
    In the plurality of diffraction gratings, the diffraction grating having a first area, and a diffraction grating having a second area relatively smaller than the first area,
    The number of diffraction gratings having the first area is smaller than the number of diffraction gratings having the second area.
  20.  請求項8において、
     前記複数の回折格子において、第一の面積を有する回折格子と、前記第一の面積よりも相対的に小さい第二の面積を有する回折格子とを有し、
     照射される前記荷電粒子線の光軸に対し、前記第一の面積を有する回折格子が前記第二の面積を有する回折格子よりも近くに設けられたことを特徴とする回折格子素子。
    In claim 8,
    In the plurality of diffraction gratings, the diffraction grating having a first area, and a diffraction grating having a second area relatively smaller than the first area,
    A diffraction grating element, wherein the diffraction grating having the first area is provided closer to the optical axis of the charged particle beam to be irradiated than the diffraction grating having the second area.
  21.  請求項14において、
     前記回折格子素子は、第一の面積を有する回折格子と、前記第一の面積よりも相対的に小さい第二の面積を有する回折格子とを有し、
     照射される前記荷電粒子線の光軸に対し、前記第一の面積を有する回折格子が前記第二の面積を有する回折格子よりも近くに設けられたことを特徴とする荷電粒子線装置。
     
    In claim 14,
    The diffraction grating element has a diffraction grating having a first area and a diffraction grating having a second area relatively smaller than the first area,
    A charged particle beam apparatus, wherein a diffraction grating having the first area is provided closer to an optical axis of the charged particle beam to be irradiated than a diffraction grating having the second area.
PCT/JP2014/052332 2013-04-12 2014-01-31 Diffraction grating, diffraction grating element, and charged particle beam device equipped with same WO2014167884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/061007 WO2014167699A1 (en) 2013-04-12 2013-04-12 Diffraction grating, diffraction grating element, and charged particle beam device equipped with same
JPPCT/JP2013/061007 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014167884A1 true WO2014167884A1 (en) 2014-10-16

Family

ID=51689132

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/061007 WO2014167699A1 (en) 2013-04-12 2013-04-12 Diffraction grating, diffraction grating element, and charged particle beam device equipped with same
PCT/JP2014/052332 WO2014167884A1 (en) 2013-04-12 2014-01-31 Diffraction grating, diffraction grating element, and charged particle beam device equipped with same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061007 WO2014167699A1 (en) 2013-04-12 2013-04-12 Diffraction grating, diffraction grating element, and charged particle beam device equipped with same

Country Status (1)

Country Link
WO (2) WO2014167699A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503067A (en) * 2014-11-19 2018-02-01 ネックスジェン・パートナーズ・アイピー・リミテッド・ライアビリティ・カンパニーNxGen Partners IP, LLC System and method for detecting matter using orbital angular momentum signature
WO2018198613A1 (en) * 2017-04-28 2018-11-01 国立研究開発法人理化学研究所 Holography reproduction method and program
CN108931829A (en) * 2017-05-27 2018-12-04 中国科学院微电子研究所 A kind of monopole vortex grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153144A1 (en) * 2012-02-14 2012-06-21 Mcmorran Benjamin System and method for producing and using multiple electron beams with quantized orbital angular momentum in an electron microscope
WO2013046257A1 (en) * 2011-09-28 2013-04-04 株式会社日立製作所 Zone plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046257A1 (en) * 2011-09-28 2013-04-04 株式会社日立製作所 Zone plate
US20120153144A1 (en) * 2012-02-14 2012-06-21 Mcmorran Benjamin System and method for producing and using multiple electron beams with quantized orbital angular momentum in an electron microscope

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. J. MCMORRAN ET AL.: "Electron Vortex Beams with High Quanta of Orbital Angular Momentum", SCIENCE, vol. 331, 2011, pages 192 - 195 *
J. VERBEEK ET AL.: "Production and application of electron vortex beams", NATURE, vol. 467, 2010, pages 301 - 304 *
M. UCHIDA ET AL.: "Generation of electron beams carrying orbital angular momentum", NATURE, vol. 464, 2010, pages 737 - 739 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503067A (en) * 2014-11-19 2018-02-01 ネックスジェン・パートナーズ・アイピー・リミテッド・ライアビリティ・カンパニーNxGen Partners IP, LLC System and method for detecting matter using orbital angular momentum signature
WO2018198613A1 (en) * 2017-04-28 2018-11-01 国立研究開発法人理化学研究所 Holography reproduction method and program
US11024482B2 (en) 2017-04-28 2021-06-01 Riken Holography reconstruction method and program
CN108931829A (en) * 2017-05-27 2018-12-04 中国科学院微电子研究所 A kind of monopole vortex grating
CN108931829B (en) * 2017-05-27 2020-06-30 中国科学院微电子研究所 Monopole vortex grating

Also Published As

Publication number Publication date
WO2014167699A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
Zuo et al. Advanced transmission electron microscopy
Harvey et al. Efficient diffractive phase optics for electrons
JP5771695B2 (en) Zone plate and irradiation apparatus using the same
Grillo et al. Holographic generation of highly twisted electron beams
US11024482B2 (en) Holography reconstruction method and program
Oxley et al. Ultra-high resolution electron microscopy
Shiloh et al. Nanostructuring of electron beams
WO2014167884A1 (en) Diffraction grating, diffraction grating element, and charged particle beam device equipped with same
Roitman et al. Shaping of electron beams using sculpted thin films
Thirunavukkarasu et al. Normal modes and mode transformation of pure electron vortex beams
JP7244829B2 (en) interference electron microscope
JP6931931B2 (en) Particle beam device, observation method, and diffraction grating
Clark et al. Symmetry-constrained electron vortex propagation
Hettler et al. Quasi non-diffractive electron Bessel beams using direct phase masks with applications in electron microscopy
Niermann et al. Creating arrays of electron vortices
Schroer et al. Hard X‐Ray Scanning Microscopy with Coherent Diffraction Contrast
Lider X-ray holography
JP6244381B2 (en) Charged particle beam apparatus, irradiation method, and diffraction grating
Ishii et al. Soft-X-ray vortex beam detected by inline holography
Gao et al. Focal shift of cylindrical vector axisymmetric Bessel-modulated Gaussian beam with radial variance phase wavefront
De Caro et al. Keyhole electron diffractive imaging (KEDI)
WO2016051443A1 (en) Diffraction-grating device, irradiating apparatus, and irradiation method
Bleloch et al. Lens aberrations: diagnosis and correction
Williams et al. High-resolution TEM
Xia et al. Generation and propagation characteristics of a localized hollow beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP