WO2014167841A1 - Solar cell apparatus and method for manufacturing same - Google Patents

Solar cell apparatus and method for manufacturing same Download PDF

Info

Publication number
WO2014167841A1
WO2014167841A1 PCT/JP2014/002010 JP2014002010W WO2014167841A1 WO 2014167841 A1 WO2014167841 A1 WO 2014167841A1 JP 2014002010 W JP2014002010 W JP 2014002010W WO 2014167841 A1 WO2014167841 A1 WO 2014167841A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
plastic material
cell device
translucent plastic
translucent
Prior art date
Application number
PCT/JP2014/002010
Other languages
French (fr)
Japanese (ja)
Inventor
一博 登
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/440,882 priority Critical patent/US10050163B2/en
Priority to JP2014540252A priority patent/JP5834201B2/en
Priority to EP14782604.4A priority patent/EP2913921B1/en
Publication of WO2014167841A1 publication Critical patent/WO2014167841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell device including a light-transmitting plastic material having a curved surface and a manufacturing method thereof.
  • a solar battery usually has a solar battery cell and a translucent member, and light that has passed through the translucent member enters the solar battery cell.
  • planar laminated body 6 of the solar battery device including the solar battery cells 2 is fixed to the fixed body with the frame bodies 7 provided on both sides thereof (see Patent Document 1).
  • the solar battery device 11 shown in FIG. 14 includes the solar battery cell 2 and a translucent plastic material 12 having curved surfaces at both left and right ends, and is fixed to the fixed body by the frame portions 14 at both left and right ends. Fixed.
  • a gap is generated between the installation site of the solar cell device and the installation portion, It was not made to adhere to an installation part.
  • wind and rain entered the space formed between the solar cell device and the fixed body.
  • useless space was generated.
  • the translucent member of the solar cell device has a curved surface structure corresponding to the curved surface shape of a construction site such as an automobile roof.
  • a solar cell device including a translucent member having a curved structure is likely to have a problem that a bending strength is insufficient at a portion where the radius of curvature of the translucent member is small and cracks or cracks are generated in the solar cell.
  • the translucent member of the currently provided solar cell device is often a glass substrate. Therefore, the weight of the solar cell device for automobile roof is at least 30 kg. As a result, there is a problem that the fuel efficiency of an automobile in which the solar cell device is attached to the automobile roof is deteriorated.
  • Patent Literature there is also an attempt to provide a solar cell device having a structural strength that can withstand wind pressure by using a light-weight polycarbonate transparent resin material 12 instead of a glass substrate.
  • Patent Document 1 describes that a solar cell device including a light-transmitting plastic material 12 having a curved surface as shown in FIG. 14 has the same strength as a solar cell device using a light-transmitting member of tempered glass. Has been. Thereby, the problem that the solar cell device is destroyed by the wind pressure is solved.
  • the solar battery device shown in FIG. 14 is fixed to a fixed body by a frame portion 14 provided on a part (two sides on the left and right sides) of the outer periphery of the sealing region of the solar battery cell 2.
  • the frame portion 14 is provided only at a part of the outer periphery of the sealing region of the solar battery cell 2, the structural strength of the solar battery device fixed to the fixed body is not sufficient.
  • the solar cell device is preferably arranged so that the incident angle of sunlight with respect to the light receiving surface is perpendicular. This is to increase the amount of power generation.
  • the solar cell device described in Patent Document 1 needs to adjust the angle of the light receiving surface of the solar cell device by using a frame or a frame for fixing the solar cell device to the fixed body. For example, when installing the solar cell device described in Patent Document 1 on a flat roof such as a factory or on a flat place such as the ground, a solar cell device is used by using a gantry or a frame according to the angle of sunlight. It was necessary to adjust the angle of the light receiving surface.
  • the present invention provides a solar battery device that suppresses contamination of solar cells even when installed outdoors, and maintains the power generation amount of the solar cells for a long period of time.
  • the present invention provides a solar battery device having a solar battery cell and a translucent plastic material, wherein the translucent plastic material and the fixed body constitute a sealed space, and is a double-sided light receiving type. These solar cells can be placed in a sealed space.
  • the sealed space is configured so that dirt caused by wind and rain or dust does not enter. And it is preferable to give light reflectivity to the surface of the installation area
  • a first aspect of the present invention is a translucent plastic material, a translucent backsheet, a sealing region of the translucent plastic material, and the translucent backsheet, which are electrically connected to each other by an interconnector.
  • a solar battery device comprising a plurality of connected double-sided light receiving solar cells and a transparent filling resin surrounding the plurality of solar cells.
  • the translucent plastic material has a dome-shaped curved surface, and a frame is molded on the bottom surface of the dome.
  • the translucent plastic material can constitute a sealed space by fixing the frame body to an installation region of a fixed body on which the solar cell device is installed.
  • the translucent back sheet, the solar battery cell, and the transparent filling resin are disposed in the sealed space.
  • the surface of the installation area of the fixed body constituting the sealed space has light reflectivity.
  • the fixed body is a vehicle body including a roof of an automobile, and that the solar battery device is fixed to the vehicle body of the automobile roof, thereby preventing outside wind and rain from entering the vehicle.
  • the to-be-fixed body is a vehicle body including a roof including a slide plate that takes light into a vehicle, and a light reflector is provided on a surface of the slide plate facing the solar cell device. preferable.
  • a second aspect of the present invention is a translucent plastic plate, a translucent backsheet, a sealing region of the translucent plastic material, and the translucent backsheet that are interconnected by an interconnector.
  • the laminate is disposed between the translucent plastic plate, the translucent backsheet, the sealing region of the translucent plastic material, and the translucent backsheet, and is interconnected with each other. It is preferable to obtain a laminate of a plurality of double-sided light receiving solar cells electrically connected to each other, a transparent filling resin surrounding the plurality of solar cells, and an elastic resin sheet by pressure laminating.
  • a light-transmitting plastic material and a fixed body constitute a sealed space, and a double-sided light receiving solar cell is mounted in the sealed space. Therefore, even if the solar battery device is installed outdoors, the solar battery cells mounted in the sealed space are less likely to be contaminated. Moreover, since a sealed space can be comprised with a translucent plastic material and a to-be-fixed body, the stand and frame for exclusive use for fixing a solar cell apparatus are not required.
  • the light reflected by the surface of the installation area of the fixed body may enter the double-sided light receiving solar cell. it can. Thereby, the electric power generation amount by a photovoltaic cell can be raised. Moreover, since it is comprised so that the stain
  • the solar battery device of the present invention has a high power generation amount of the solar battery cell and high power generation efficiency per unit area. And since it is comprised so that the stain
  • FIG. 1 Sectional view of solar cell device of Embodiment 1 Sectional view of solar cell device of Embodiment 1 Sectional view of solar cell device of Embodiment 1
  • FIG. The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1.
  • FIG. 1 The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1.
  • FIG. The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1.
  • FIG. The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1.
  • FIG. The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1.
  • FIG. Sectional drawing of the solar cell device of Embodiment 2 Sectional view of solar cell device of Embodiment 3
  • Sectional view of solar cell device of Embodiment 4 Sectional view of solar cell device of Embodiment 5 Detailed cross-sectional view of a double-sided solar cell device Sectional view of a conventional solar cell device A perspective view of a conventional solar cell device
  • FIGS. 1A to 1C are a top view (FIG. 1A) and a cross-sectional view (FIG. 1B (AA cross-sectional view in FIG. 1A) and FIG. 1C (BB cross-sectional view in FIG. 1A) of the solar cell device of Embodiment 1. ).
  • the solar cell device 11 shown in FIGS. 1A to 1C includes a plurality of double-sided light receiving solar cells 22.
  • the solar cells 22 adjacent to each other are connected in series, with the light receiving surface electrode on the front side of one solar cell 22 and the light receiving surface electrode on the back side of the other solar cell 22 electrically connected by the interconnector 1. Electrical connection.
  • the solar battery device 11 shown in FIGS. 1A to 1C has a transparent filling resin 3 surrounding a plurality of solar battery cells 22.
  • the solar cell device 11 shown in FIGS. 1A to 1C includes a translucent plastic material 12 disposed on the light receiving surface side of a plurality of solar cells 22 that perform double-sided power generation via a transparent filling resin 3, and a back surface. It has the translucent back sheet
  • FIG. 13 shows an example of a stacked configuration in the sealing region 15 of the solar cell device of the first embodiment.
  • the solar cell device according to Embodiment 1 includes, from the light receiving surface side, translucent plastic material 12, transparent filling resin 3, solar battery cell 22 that performs double-sided power generation, and transparent filling resin. 3 and a translucent backsheet 25.
  • the pair of transparent filling resins 3 surround the solar battery cell 22 that performs double-sided power generation.
  • an adhesion layer 46 is formed on the surface of the translucent plastic material 12 facing the solar battery cell 22, and a waterproof film 45 is formed on the surface layer of the translucent plastic material 12 that comes into contact with the outside air. Yes.
  • the waterproof film 45 has waterproofness, moisture resistance, ability to improve hardness, UV shielding ability, and the like.
  • Examples of the material of the waterproof film 45 include an organic material having excellent translucency such as acrylic and fluorine, and a metal thin film such as gold.
  • the metal thin film may have a slight decrease in translucency.
  • the material of the translucent plastic material 12 is made of a resin that can secure a light transmission amount necessary for the double-sided light receiving solar cell 22 to generate power, and may include polycarbonate or acrylic resin (PMMA).
  • An antireflection film may be formed on the surface of the translucent plastic material 12 (interface with the waterproof film 45).
  • the thickness of the translucent plastic material 12 in the solar cell device 11 of Embodiment 1 is 5 mm.
  • a gas barrier layer having a water vapor transmission rate of 0.2 g / m 2 ⁇ day or less is formed on the front surface, back surface, or both surfaces of the translucent plastic material 12. This is because the translucent plastic material 12 has a higher moisture permeability and water absorption rate than the glass substrate.
  • a gas barrier layer having a water vapor transmission rate of 0.2 g / m 2 ⁇ day or less it is possible to suppress hydrolysis of the transparent filling resin 3 due to moisture that has passed through the translucent plastic material 12. When the transparent filling resin 3 is hydrolyzed, the adhesion between the translucent plastic material 12 and the transparent filling resin 3 is reduced.
  • moisture that has penetrated the transparent plastic material 12 through the transparent plastic material 12 has undergone a volume change due to a temperature change during use, and the transparent plastic material 12 and the transparent filled resin 3 are separated. It peels and further the peeling part is expanded. Furthermore, the water
  • the double-sided light-receiving solar cell 22 is a solar cell that converts sunlight incident from both sides into electricity, and is represented by HIT (registered trademark, Panasonic Corporation).
  • the double-sided light receiving solar cell 22 has, for example, a structure in which a P layer amorphous layer is provided on one surface of N-type single crystal silicon and an N layer amorphous layer is provided on the other surface.
  • the thickness of the solar battery cell 22 that performs double-sided power generation in the solar battery device 11 of the first embodiment is 130 ⁇ m.
  • Solar cell 22 in solar cell device 11 of Embodiment 1 includes a p-type single crystal silicon substrate having a resistivity of 1 ⁇ ⁇ cm and a thickness of about 350 ⁇ m.
  • a texture structure (not shown) is formed on both surfaces of the p-type single crystal silicon substrate.
  • the texture structure is an uneven shape that reduces light reflection on the surface.
  • the texture structure is formed, for example, by wet etching the surface of the silicon substrate with an alkaline solution.
  • the solar battery cell 22 may include a silicon substrate such as a polycrystalline silicon substrate instead of the single crystal silicon substrate. A texture structure can be formed on the surface of the polycrystalline silicon substrate using an acid solution. Further, the solar battery cell 22 may include a compound semiconductor such as GaAs or Ge instead of the silicon substrate, whereby the solar battery cell 22 becomes a compound solar battery.
  • An n-type layer is formed on one surface side of the p-type single crystal silicon substrate included in the solar battery cell 22.
  • the n-type layer may have a thickness from one surface of the p-type single crystal silicon substrate to a depth of about 1 ⁇ m.
  • the n-type layer is formed by exposing one surface of a p-type single crystal silicon substrate to phosphorus oxychloride gas (POCl3 gas) at about 900 ° C. and thermally diffusing P (phosphorus).
  • PSG phosphorus glass
  • the solar battery cell 22 has an antireflection film formed on the light receiving surface of the p-type single crystal silicon substrate.
  • the antireflection film is made of, for example, SiNx and can be formed by a plasma CVD method.
  • the solar battery cell 22 has a finger-shaped Ag electrode disposed on the antireflection film.
  • the Ag electrode is formed by printing an Ag paste and performing a heat treatment. By heat treatment, Ag penetrates SiNx as an antireflection film, and Ag is brought into contact with the surface of the n-type layer. Such heat treatment is referred to as fire-through (penetration firing).
  • a back electrode made of Al is arranged on the other surface (back surface) side of the p-type single crystal silicon substrate included in the solar battery cell 22.
  • the back electrode made of Al is formed by screen-printing Al paste on the back surface of the p-type single crystal silicon substrate.
  • Al is thermally diffused in the silicon substrate by performing a heat treatment at about 700 ° C. for a short time. Thereby, a p-type layer in which Al is highly doped is also formed.
  • the solar battery cell 22 that performs double-sided power generation having a double-sided amorphous layer in a silicon substrate and an Ag wiring on the silicon substrate is obtained.
  • the transparent filling resin 3 is a resin layer surrounding the solar battery cell 22; normally, the pair of transparent filling resins 3 sandwich the solar battery cell 22 from above and below.
  • the thickness of the transparent filling resin 3 in the solar cell device 11 of Embodiment 1 is 0.6 mm.
  • the transparent filling resin 3 includes a copolymer of ethylene as a main component and a monomer copolymerizable therewith.
  • copolymers include copolymers of ethylene and vinyl esters such as vinyl acetate and vinyl propionate; ethylene and methyl acrylate, ethyl acrylate, isobutyl acrylate, nbutyl acrylate, methyl methacrylate Copolymers with unsaturated carboxylic acids such as, or their ionomers; Copolymers of ethylene with ⁇ -olefins such as propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene Or a mixture of two or more of these. More typically, the transparent filling resin 3 includes an ethylene vinyl acetate copolymer resin (EVA).
  • EVA ethylene vinyl acetate copolymer resin
  • the transparent filling resin 3 may be a crosslinked product of a resin composition containing the copolymer and a crosslinking agent.
  • the crosslinking agent is, for example, an organic peroxide, and preferably has a decomposition temperature (temperature at which the half-life is 1 hour) of 90 to 180 ° C.
  • organic peroxides examples include t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, t-butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t- Butylperoxy) hexane, di-t-butylperoxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3,1,1-bis (t-butylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, t-butyl hydroperoxide, p -Mentane hydroperoxide, benzoyl peroxide, p-clobenzoyl peroxide, t-butyl per
  • the transparent filling resin 3 may be a crosslinked body of a resin composition containing a crosslinking aid together with the copolymer and the crosslinking agent.
  • the crosslinking aid can easily promote the crosslinking reaction. Examples of the crosslinking aid include triallyl cyanurate, triallyl isocyanurate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate divinylbenzene, diallyl phthalate and the like.
  • the transparent filling resin 3 may be a reaction product of a resin composition containing the copolymer and an adhesion promoter.
  • the adhesion promoter enhances the adhesion between the translucent plastic material 12 and the transparent filling resin 3.
  • the adhesion promoter is a silane coupling agent. Examples of the silane coupling agent include vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and the like.
  • the end group of the silane coupling agent contained in the transparent filling resin 3 and the hydroxyl group (OH group) on the surface of the translucent plastic material 12 cause hydrolysis / polymerization reaction, thereby transparent to the translucent plastic material 12. Adhesion between the filled resins 3 is developed.
  • the adhesion between the transparent filling resin 3 and the translucent plastic material 12, or the adhesion between the transparent filling resin 3 and the translucent back sheet 25. May decrease and peeling may occur. For this reason, there are cases where the panel strength during transportation and use cannot be ensured, the aesthetic appearance is impaired, and the electrical characteristics of the solar cell device are deteriorated.
  • the transparent filling resin 3 may further contain other various additives.
  • the additive include an ultraviolet absorber, a light stabilizer, and an antioxidant for preventing deterioration due to ultraviolet rays in sunlight.
  • the UV absorber 2-hydroxy-4-methoxybenzophenone, 2--2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone Benzophenone series, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5- Examples include benzotriazoles such as t-octylphenyl) benzotriazole, and salicylic acid esters such as phenyl salicylate and p-octylphenyl salicylate.
  • light stabilizers include hindered amines.
  • the antioxidant include hindered phenols and
  • Examples of the translucent back sheet 25 include a PET film, a polyester film, a glass cloth transparent film, an acrylic film, a vinyl chloride film, and the like.
  • the translucent backsheet 25 may be a laminated film obtained by laminating a transparent conductive material such as ITO or ZnO on these films.
  • the thickness of the translucent back sheet 25 in the solar cell device of Embodiment 1 is 0.05 mm.
  • the solar cell device 11 includes a light-transmitting plastic material 12 and a fixed body 24 to form a sealed space 20. That is, since the translucent plastic material 12 has a dome-shaped curved surface structure, the sealed space 20 can be configured.
  • the translucent plastic material 12 has a frame portion (edge portion) 14 on the bottom surface of the dome.
  • the translucent plastic material 12 is fixed to the installation region 19 of the fixed body 24 via the frame portion 14.
  • the frame portion 14 may be fixed to the fixed body 24 with a fixing screw 21 or an adhesive.
  • the frame portion 14 of the translucent plastic material 12 preferably surrounds the four sides of the installation area 19. This is to improve the sealing performance of the sealed space 20.
  • the aluminum frame as a frame for fixing a solar cell apparatus, or the exclusive frame for fixing the ground and the roof Is not required.
  • the to-be-fixed body 24 which fixes the solar cell apparatus 11 is not specifically limited, it can be the ground, a concrete member, a building, the roof of a motor vehicle, etc.
  • a double-sided light receiving solar cell 22 is disposed on the inner surface of the sealed space 20 of the translucent plastic material 12.
  • a region where the solar cells 22 are arranged is referred to as a sealing region 15.
  • the solar battery cell 22 is surrounded by the transparent filling resin 3.
  • the solar battery cell 22 and the transparent filling resin 3 are disposed between the sealing region 15 of the translucent plastic material 12 and the translucent back sheet 25.
  • a light reflector 23 is disposed on the surface of the installation region 19 of the fixed body 24 constituting the sealed space 20.
  • the sunlight reflected by the light reflector 23 enters the double-sided light receiving solar cell 22 and is photoelectrically converted.
  • the light reflector 23 is disposed in the sealed space formed by the translucent plastic material 12, it is prevented from being contaminated by wind and rain or dust from the external environment. As a result, light reflectivity is maintained. As a result, the power generation amount of the solar battery cell 22 can be maintained for a long time.
  • the surface of the sealing region 15 of the translucent plastic material 12 fixed to the fixed body 24 in the solar cell device of Embodiment 1 is not parallel to the surface of the fixed body 24 (see FIG. 1B).
  • the surface of the sealing region 15 of the translucent plastic material 12 may be set so that the incident angle of sunlight is close to a right angle so that the amount of power generated by the solar battery cell 22 is maximized. preferable. What is necessary is just to adjust the shape of the shaping
  • the translucent plastic material 12 can form a sealed body and a sealed space, even if it is installed on the roof of an automobile or a house, the interior of the automatic shop or the house Can be sealed (suppresses wind and rain and dust). Furthermore, the angle of the surface of the sealing region can be adjusted by appropriately setting the shape of the translucent plastic material. Therefore, the maximum power generation amount of the solar battery cell can be obtained by setting the shape of the translucent plastic material so that the incident angle of sunlight is orthogonal to the surface of the sealing region.
  • the solar cell device of Embodiment 1 can shut off the solar cells 22 from the outside air that is affected by wind and rain and dust, and can provide a highly reliable solar cell device.
  • FIG. 1 A manufacturing flow of the solar cell device of Embodiment 1 will be described with reference to FIGS. 2A to 2C, FIGS. 3A to 3C, FIGS. 4A, 4B, 5A, 5B, and 6.
  • FIG. 2A to 2C A manufacturing flow of the solar cell device of Embodiment 1 will be described with reference to FIGS. 2A to 2C, FIGS. 3A to 3C, FIGS. 4A, 4B, 5A, 5B, and 6.
  • FIG. 1 A manufacturing flow of the solar cell device of Embodiment 1 will be described with reference to FIGS. 2A to 2C, FIGS. 3A to 3C, FIGS. 4A, 4B, 5A, 5B, and 6.
  • a flat translucent plastic material 12 is prepared.
  • the flat translucent plastic material 12 is molded to constitute the translucent plastic material 12 having a curved surface.
  • the translucent plastic material 12 is required to have high light transmissivity, and the UV wavelength band can be absorbed by the material properties, but the average light transmittance of the entire wavelength of sunlight is preferably 95 to 98%.
  • a film made of the transparent filling resin 3 cut to a predetermined size is attached to the translucent plastic material 12 at room temperature.
  • the thickness of the film made of the transparent filling resin 3 is appropriately set depending on the thickness of the solar battery cell 22, the curved shape of the translucent plastic material 12, and the like, for example, in the range of 0.2 to 2 mm. Then, it is set to 0.6 mm.
  • membrane which consists of transparent filling resin 3 may be 1 sheet
  • the interconnector 1 connects the plurality of solar cells 22 to each other. That is, the front electrode of one solar battery cell 22 and the back electrode of the other solar battery cell 22 are connected by the interconnector 1.
  • the interconnector 1 is bonded to the front surface electrode or the back surface electrode of the solar battery cell 22 with the bonding material 26.
  • the bonding material 26 is generally a solder material such as SnPb, SnAgCu, or SnAgBi, an anisotropic conductive film called ACF (anisotropic conductive film), or an epoxy called main material called NCP (nonisotropic conductive paste). An adhesive paste or the like is used.
  • the bonding material 26 In order to join the interconnector 1 to the front electrode and the back electrode of the solar battery cell 22 with the bonding material 26, 1) printing, applying, and attaching the bonding material 26 to the front electrode and the back electrode of the solar battery cell 22. 2) Align the interconnector 1 on the front and back electrodes of the solar cell 22, and 3) Simultaneously connect the interconnector 1 to the solar cell 22 from both sides of the solar cell 22 with a heating and pressing head. The both sides of the battery cell 22 are pressure-bonded, and the bonding material 26 is melted and solidified. As a general pressure bonding condition, for example, pressure bonding is performed at 170 to 250 ° C. for 5 to 10 seconds. Each of the solar cells 22 is joined, and the plurality of solar cells 22 are electrically connected in series.
  • the plurality of solar cells 22 connected by the interconnector 1 are aligned on the transparent filling resin 3. It is preferable to provide an alignment recognition mark at a predetermined position of the translucent plastic material 12 in advance. Based on the recognition mark, a plurality of solar cells 22 can be collectively disposed on the transparent filling resin 3. Since a plurality of solar cells 22 are mounted together, attention is paid to defects such as damage to the solar cells 22 and disconnection of the interconnector 1.
  • the transparent filling resin 3 to be paired is mounted on the plurality of solar cells 22 while being aligned.
  • a cut is made in the transparent filling resin 3, and the lead-out portion 1a of the interconnector 1 is pulled out.
  • the translucent back sheet 25 is mounted while being aligned with the transparent filling resin 3 on the plurality of solar cells 22.
  • a cut is made in the translucent back sheet 25 and the lead-out portion 1a portion of the interconnector 1 is pulled out.
  • a laminate in which the translucent plastic material 12, the pair of transparent filling resins 3, the solar battery cells 22, and the translucent back sheet 25 are laminated is obtained.
  • the laminate obtained in FIG. 3C is laminated to obtain an integrated laminate.
  • pressure is applied to the laminate obtained in FIG. 3C through the elastic material sheet 44.
  • a uniform pressure can be applied to the translucent plastic material 12.
  • the antireflection film and gas barrier layer formed on the translucent plastic material 12 may absorb moisture. It is preferable to remove the moisture from the translucent plastic material 12 so that the moisture absorbed is not generated as bubbles by heating in the laminating process.
  • the laminate may be previously dried at 120 ° C. for 5 hours. The laminate is preferably stored in a sealed state together with silica gel and used in the laminating step immediately after opening.
  • the above-mentioned laminate is heated by the lower heating metal plate 31 and the upper heater 27 to a temperature not higher than the glass transition temperature (for example, 150 ° C.) of the translucent plastic material 12.
  • the transparent filling resin 3 of the laminate is sufficiently melted.
  • the internal pressure of the vacuum pressurizing furnace 28 and the vacuum furnace 29 is lowered to 130 Pa or less as a guide so that the crosslinking reaction of the transparent filling resin 3 does not start.
  • the evacuation process inside the vacuum pressurizing furnace 28 and the vacuum furnace 29 is performed for 10 to 30 minutes.
  • the elastic material sheet 44 contacts the translucent back sheet 25.
  • the internal pressure of the vacuum pressurizing furnace 28 and the internal pressure of the vacuum furnace 29 are controlled to be the same, the elastic material sheet 44 hardly pressurizes the translucent backsheet 25. Therefore, the crosslinking reaction does not start.
  • the pressurizing time is, for example, 5 to 15 minutes. Further, hot air (up to 200 ° C.) can be introduced into the vacuum pressurizing furnace 28 so that the crosslinking reaction of the transparent filling resin 3 proceeds sufficiently in a short time.
  • the transparent filling resin 3 undergoes a crosslinking reaction, and the translucent plastic material 12, the solar battery cell 22, and the translucent back sheet 25 are in close contact and integrated to form a laminate. Thereafter, it is put into a curing step of about 100 to 150 ° C., and is performed for about 30 to 90 minutes so that the crosslinking reaction of the transparent filling resin 3 is completed.
  • a terminal box 32 is attached to the translucent backsheet 25 as shown in FIG. 4B.
  • the inside of the terminal box 32 is normally insulated and waterproof / moisture-proofed with silicone grease.
  • the electric power generated by the solar battery cell 22 is electrically drawn out by the interconnector 1 and drawn out to the outside by the lead-out part 1a.
  • the lead portion 1a is electrically connected to the terminal box 32 using solder, a welding method, or the like.
  • Interconnector 1 is connected to external wiring by terminal box 32.
  • solar cell devices 11 (FIGS. 1A to 1C) are electrically connected via a terminal box 32, and a solar cell system is configured by a plurality of solar cell devices 11 that are electrically connected.
  • the transparent plastic material 12 of the laminate obtained in FIG. 4B is molded into a shape having a predetermined curved surface, and the frame portion 14 (FIGS. 1A to 1C). ). This is called a vacuum forming process.
  • the laminated body obtained in FIG. 4B is baked in order to remove moisture in the translucent plastic material 12.
  • the baking temperature is set to be equal to or lower than the glass transition temperature of the translucent plastic material 12, and is generally about 100 to 150 ° C.
  • the peripheral portion of the translucent plastic material 12 immediately after being taken out from the baking furnace is sandwiched and fixed by the fixing frame 33 of the vacuum forming machine.
  • the solar battery cell 22 is set so as to face the molding die 34 (see FIG. 5A).
  • the temperature of the upper heater 27a and the lower heater 27d is raised to heat the translucent plastic material 12.
  • the temperature of the upper heater 27a and the lower heater 27d is set so that the temperature of the translucent plastic material 12 is 150 to 200 ° C. which is equal to or higher than the glass transition temperature (Tg) of the material of the translucent plastic material 12 ( For example, it is set in the range of 300 to 500 ° C.). Thereby, it becomes easy to mold the translucent plastic material 12 into a desired shape.
  • Tg glass transition temperature
  • the temperature of the heater 27b provided in the mold 34 and the temperature of the heater 27c of the mold mounting base 36 are also increased (see FIG. 5B).
  • the temperature of the heater 27b and the heater 27c is preferably a temperature at which the translucent plastic material 12 can be easily deformed and can be cured by cooling.
  • the member constituting the lower heater 27d is moved.
  • the translucent plastic material 12 and the fixed frame 33 can be moved to the mold 34 (a state that does not interfere with the movement).
  • the translucent plastic material 12 is molded into a desired shape by vacuum forming.
  • the fixing frame 33 is lowered, and the translucent plastic material 12 integrated with the solar battery cell 22 is brought into contact with the top portion 34a (see FIG. 5B) of the mold 34. Further, the fixed frame 33 is continuously lowered.
  • a vacuum pump connected to the vacuum hole 35 sucks air from the plurality of vacuum holes 35 on the surface of the molding die 34.
  • the translucent plastic material 12 softened by heating comes into contact with the mold 34 while being lowered by the fixed frame 33. Since air is sucked from the vacuum hole 35, the softened translucent plastic material 12 is in close contact with the mold 34. As a result, the shape of the mold 34 is transferred to the translucent plastic material 12.
  • the heat of the translucent plastic material 12 that has contacted the molding die 34 moves to the molding die 34.
  • the translucent plastic material 12 is cured by a decrease in temperature.
  • air may be blown from the outside using a fan or the like.
  • the translucent plastic material 12 After confirming that the translucent plastic material 12 is 70 ° C. or less and has been sufficiently cured, air is blown out through the vacuum holes 35, and the molding die 34 and the translucent plastic material 12 are released from each other by air blow. Further, the translucent plastic material 12 is raised by the fixing frame 33 to separate the mold 34 from the translucent plastic material 12.
  • the solar cell device 11 (FIG. 1) of Embodiment 1 is obtained by this series of vacuum forming.
  • the solar cell device of the first embodiment has a translucent plastic material 12 having a dome-shaped curved surface, and has a frame portion (edge portion) 14 on the bottom surface of the dome.
  • FIG. 6 shows a cross section of the translucent plastic material 12 and the molding machine. As shown in FIG. 1, the obtained solar cell device has a dome-shaped translucent plastic material 12.
  • a desired curved surface can be formed on the translucent plastic material by molding the translucent plastic material of the solar cell device by a method of pressing the translucent plastic material against a molding die provided with a vacuum hole.
  • the solar cell device of Embodiment 2 has a curved surface 12a that is concave with respect to the external space in a portion (side surface portion) other than the sealing region 15 of the translucent plastic material 12 of the solar battery cell 22.
  • the area of the installation region 19 can be made smaller than the area of the sealing region 15 of the solar battery cell 22. If the area of the installation region 19 is reduced, the area ratio of the sealing region 15 of the solar battery cell 22 to the area of the fixed body 24 can be increased. As a result, the installation efficiency of the solar cell device is increased.
  • the sunlight 37 reflected by the surface of the fixed body 24 outside the installation area 19 is directed to the side surface of the translucent plastic material 12.
  • the incident angle of becomes large. Therefore, less light is reflected from the side surfaces.
  • the sunlight 37 reflected from the surface of the fixed body 24 outside the installation region 19 is likely to enter the double-sided light receiving solar cell 22, and the power generation amount of the solar cell 22 can be increased.
  • FIG. 8 shows the solar cell device of the third embodiment.
  • the solar cell device of the third embodiment has a curved surface 12 b that is convex with respect to the external space on the surface of the sealing region 15 of the light-transmitting plastic material 12 of the solar battery cell 22.
  • the rigidity of the solar battery device is improved.
  • region 15 of the photovoltaic cell 22 can also be closely approached by adjusting the surface angle of the convex-shaped curved surface 12b. Thereby, even if the solar altitude changes throughout the year or the sun moves throughout the day, the reflectance on the surface of the sealing region 15 of the solar cells 22 is always reduced, The amount of power generation can be improved.
  • the solar cell device of the third embodiment is similar to the solar cell device of the first embodiment.
  • Translucent backsheet 25, solar battery cell 22, translucent film on which antireflection film and gas barrier layer are formed The plastic laminate 12 and the transparent filling resin 3 typified by EVA are laminated to obtain an integrated laminate (lamination process). 2) The obtained laminate is vacuum molded (vacuum molding process). Can be manufactured.
  • Fig. 9 shows the lamination process.
  • the solar cell device of Embodiment 3 has a convex curved surface 12b in the sealing region 15 of the solar battery cell 22 (see FIG. 8). Therefore, in the laminating step, the solar battery cell 22 that performs double-sided power generation is attached to the convex curved surface 12b of the translucent plastic material 12 having the convex curved surface 12b.
  • This laminating method is a method applying a general “decorative film construction method”.
  • the curved surface laminator 42 has an upper frame 42a and a lower frame 42b, and a heating die 43 having a concave shape.
  • the translucent plastic material 12 having the convex curved surface 12b is placed on the heating die 43 having the concave shape inside the curved laminator 42. Further, in the same flow as that shown in FIGS. 2 and 3, the solar cell 22 and the transparent filling resin 3 are placed on the translucent plastic material 12 having the convex curved surface 12 b placed on the heating mold 43. Then, a translucent back sheet 25 or the like is set to obtain a laminate.
  • the upper frame 42 a including the elastic material sheet 44 is lowered, and the obtained laminate is wrapped with the elastic sheet 44.
  • the internal pressure of the vacuum furnace 29 and the internal pressure of the vacuum pressurizing furnace 28 are set to 130 Pa or less. Then, the temperature of the heater 27 and the heating mold 43 is raised, and the transparent filling resin 3 is heated to 40 to 80 ° C. Next, air is introduced into the vacuum pressurizing furnace 28, and the internal pressure is set to about 0.5 to 2 atmospheres. In this state, the temperature of the heater 27 and the heating mold is raised to 100 to 150 ° C. and heated while applying pressure to the transparent filling resin 3 to crosslink the transparent filling resin 3.
  • FIG. 10 shows the vacuum forming process. Similar to the vacuum molding step shown in FIG. 6, the translucent plastic material 12 is brought into close contact with the molding die 34 so that the translucent plastic material 12 has a desired curved shape.
  • the molding die 34 includes a plurality of split molds (a split middle mold 34b and a split outer mold 34c), which can be split and removed. Therefore, after the vacuum forming step shown in FIG. 10 is completed, the divided middle die 34b is first moved from the forming die 34 downward and removed. Next, the divided outer mold 34c remaining inside the molded light-transmitting plastic material can be pulled out after being moved to the center side. Thus, the translucent plastic material 12 having the concave curved surface 12a on the side surface can be formed, and the mold 34 can be easily removed.
  • the center (0: 0) split type of the (X: Y) matrix is removed, and then the split type of (1: 0) (-1: 0) (0: 1) (0: -1) is changed.
  • the split mold of (1: 1) (-1: -1) (1: -1) (-1: 1) is removed.
  • FIG. 11 shows a solar cell device according to the fourth embodiment.
  • the solar cell device of the fourth embodiment is an application of the solar cell device of the first embodiment, and is fixed to a chassis 38 of an automobile roof as a fixed body.
  • the frame portion 14 of the translucent plastic material 12 of the solar cell device is fixed to the chassis 38 with an adhesive 39.
  • the solar cell device is fixed to the chassis 38, so that the interior of the automobile is sealed, and the entry of rain and wind from the outside into the interior of the automobile is suppressed.
  • the chassis recess 38 a in the chassis 38 by providing a chassis recess 38 a in the chassis 38, rainwater flows outside the vehicle along the chassis recess 38 a of the chassis 38.
  • the solar cell device of the fourth embodiment may be fixed to a chassis 38 of a car roof having a sunroof (a skylight for taking light from outside into the car).
  • the solar cell device of the fourth embodiment can be configured by a light transmitting member except for the solar cells 22 that perform double-sided power generation and the interconnector 1. Therefore, even if the solar cell device of Embodiment 4 is attached to the chassis 38 of the automobile roof, the function as a sunroof can be maintained.
  • the slide plate 41 can be provided on the interior ceiling board 40 disposed under the chassis 38.
  • sunlight can be taken into the vehicle via the sunroof, and when the slide plate 41 is closed, the slide plate 41 is blocked and sunlight is not taken into the vehicle.
  • a light reflector 23 on the surface of the slide plate 41 facing the solar cell device.
  • the sunlight 37 that has passed through the sunroof is reflected by the light reflector 23 and can enter the back surface of the solar battery cell 22 that performs double-sided power generation.
  • FIG. 12 shows a solar cell device according to the fifth embodiment.
  • the solar cell device according to the fifth embodiment includes the prism reflection sheet 50 disposed on the fixed body 24 around the installation region 19 of the solar cell device, but the other configuration is the solar cell according to the first embodiment. It is the same as the device.
  • the prism reflection sheet 50 is, for example, a prism reflection sheet.
  • a triangular prism is formed on the surface of the prism reflection sheet.
  • the prism reflection sheet 50 is a film in which a white silicone resin, epoxy resin, urethane rubber film, a resin plate made of white painted polycarbonate or acrylic, or a liquid mixed with highly reflective shell powder is coated.
  • the power generation amount of the double-sided light receiving solar cell 22 can be increased by, for example, 10 to 20%.
  • the solar cell device of the present invention has a translucent plastic material having a dome-shaped curved surface and a frame (edge) formed on the bottom surface of the dome. Therefore, the inside of the dome can be made a sealed space by fixing the frame of the translucent plastic material to the fixed body. Therefore, it can prevent that the photovoltaic cell arrange
  • the solar cell device of the present invention is lightweight and highly rigid.
  • the solar cell device of the present invention can be used as a solar cell device for general home use, commercial use, and on-vehicle use.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell apparatus wherein contamination of solar cells is suppressed and a power generation quantity of the solar cells is maintained for a long period of time, even if the solar cell apparatus is disposed outside. The apparatus is provided with: a light transmitting plastic material; a light transmitting back sheet; a plurality of bifacial solar cells that are electrically connected to each other by means of interconnectors; and a transparent filled resin that surrounds the solar cells. The light transmitting plastic material has a curved surface, and capable of constituting a hermetically closed space by being fixed to a disposition region of a body having the solar cell apparatus disposed thereon, and the light transmitting back sheet, the solar cells, and the transparent filled resin are disposed in the hermetically closed space.

Description

太陽電池装置およびその製造方法Solar cell device and manufacturing method thereof
 本発明は、曲面を有する透光性プラスチック材を含む太陽電池装置およびその製造方法に関する。 The present invention relates to a solar cell device including a light-transmitting plastic material having a curved surface and a manufacturing method thereof.
 近年、太陽電池はクリーンなエネルギー源として多くの関心が寄せられている。特に、発電効率の高いシリコン太陽電池は、住宅や車などのハイエンド市場向けの電力用の最有力候補として、様々な設置方法や施工部位が検討されている。太陽電池は、通常、太陽電池セルと透光性部材とを有し、透光性部材を通過した光が太陽電池セルに入射する。 In recent years, solar cells have received a lot of attention as a clean energy source. In particular, silicon solar cells with high power generation efficiency have been studied for various installation methods and construction sites as the most promising candidates for electric power for high-end markets such as houses and cars. A solar battery usually has a solar battery cell and a translucent member, and light that has passed through the translucent member enters the solar battery cell.
 現在提供されている主流の太陽電池装置の多くは、平面状の透光性部材を有する。つまり、図15に示されるように、太陽電池セル2を含む太陽電池装置の平面の積層体6を、その両サイドに設けた枠体7で被固定体に固定する(特許文献1参照)。 Many of the mainstream solar cell devices currently provided have a planar light-transmitting member. That is, as shown in FIG. 15, the planar laminated body 6 of the solar battery device including the solar battery cells 2 is fixed to the fixed body with the frame bodies 7 provided on both sides thereof (see Patent Document 1).
 一方で、透光性部材を曲面にした太陽電池装置も提案されている(特許文献1)。図14に示された太陽電池装置11は、太陽電池セル2と、左右の両端部に曲面を有する透光性プラスチック材12とを有し、左右の両端部の枠部14で被固定体に固定される。図14に示される太陽電池装置を、自動車ルーフ、瓦一体型や建材一体型の住宅、船舶等に固定しようとすると、太陽電池装置の取り付け部位と被設置部との間に隙間が生じ、被設置部に密着させられなかった。その結果、太陽電池装置の取り付け部位において被固定体との間に生じた空間に、風雨が入ったりした。また、無駄なスペースが生じたりした。さらには、外観上の美観も損なわれるといった問題が生じていた。 On the other hand, a solar cell device in which a translucent member is curved has also been proposed (Patent Document 1). The solar battery device 11 shown in FIG. 14 includes the solar battery cell 2 and a translucent plastic material 12 having curved surfaces at both left and right ends, and is fixed to the fixed body by the frame portions 14 at both left and right ends. Fixed. When the solar cell device shown in FIG. 14 is fixed to an automobile roof, a roof tile-integrated or building-material-integrated house, a ship, or the like, a gap is generated between the installation site of the solar cell device and the installation portion, It was not made to adhere to an installation part. As a result, wind and rain entered the space formed between the solar cell device and the fixed body. In addition, useless space was generated. Furthermore, there has been a problem that the aesthetic appearance is also impaired.
 このように、太陽電池装置の透光性部材を自動車ルーフなどの施工部位の曲面形状に対応した曲面構造にすることが望まれる場合がある。しかしながら、曲面構造を有する透光性部材を含む太陽電池装置は、透光性部材の曲率半径の小さい箇所において曲げ強度が不足し、太陽電池セルにクラックや割れが発生するという問題が生じやすい。 As described above, it may be desired that the translucent member of the solar cell device has a curved surface structure corresponding to the curved surface shape of a construction site such as an automobile roof. However, a solar cell device including a translucent member having a curved structure is likely to have a problem that a bending strength is insufficient at a portion where the radius of curvature of the translucent member is small and cracks or cracks are generated in the solar cell.
 一方、現在提供されている太陽電池装置の透光性部材はガラス基板であることが多い。そのため、自動車ルーフ用の太陽電池装置の重量は、少なくとも30kgとなる。その結果、太陽電池装置を自動車用ルーフに取り付けた自動車の燃費が悪くなるという問題が生じている。これに対して、ガラス基板の代わりに、重量の軽いポリカーボネイト製の透光性プラスチック材12を用いて、風圧に堪えられる構造的強度を有する太陽電池装置を提供しようとする試みもある(特許文献1)。 On the other hand, the translucent member of the currently provided solar cell device is often a glass substrate. Therefore, the weight of the solar cell device for automobile roof is at least 30 kg. As a result, there is a problem that the fuel efficiency of an automobile in which the solar cell device is attached to the automobile roof is deteriorated. On the other hand, there is also an attempt to provide a solar cell device having a structural strength that can withstand wind pressure by using a light-weight polycarbonate transparent resin material 12 instead of a glass substrate (Patent Literature). 1).
特開平10-229215号公報JP-A-10-229215
 特許文献1には、図14に示すように曲面を有する透光性プラスチック材12を具備する太陽電池装置は、強化ガラスの透光性部材を用いた太陽電池装置と同等の強度を有すると記載されている。それにより、風圧により太陽電池装置が破壊されるという課題を解決するとしている。 Patent Document 1 describes that a solar cell device including a light-transmitting plastic material 12 having a curved surface as shown in FIG. 14 has the same strength as a solar cell device using a light-transmitting member of tempered glass. Has been. Thereby, the problem that the solar cell device is destroyed by the wind pressure is solved.
 図14に示される太陽電池装置は、太陽電池セル2の封止領域の外周の一部(左右の二辺)に設けた枠部14で、被固定体に固定される。しかしながら、太陽電池セル2の封止領域の外周の一部にのみ枠部14を設けているため、被固定体に固定された太陽電池装置の構造強度が十分ではなかった。また、被固定体に固定されていない部分(上下の二辺)を介して、太陽電池装置の内部に風雨や砂塵が舞い込むという問題があった。そのため、特許文献1に記載の太陽電池装置を、自動車の車内や家屋の室内を密閉するための部材(屋根など)として用いることはできなかった。 The solar battery device shown in FIG. 14 is fixed to a fixed body by a frame portion 14 provided on a part (two sides on the left and right sides) of the outer periphery of the sealing region of the solar battery cell 2. However, since the frame portion 14 is provided only at a part of the outer periphery of the sealing region of the solar battery cell 2, the structural strength of the solar battery device fixed to the fixed body is not sufficient. In addition, there is a problem that wind and rain and dust fall into the inside of the solar cell device via portions (upper and lower sides) that are not fixed to the fixed body. Therefore, the solar cell device described in Patent Document 1 cannot be used as a member (such as a roof) for sealing the inside of a car or the interior of a house.
 また、太陽電池装置は、その受光面に対する太陽光の入射角度を直角になるように配置されることが好ましい。発電量を高めるためである。しかしながら、特許文献1に記載の太陽電池装置は、太陽電池装置を被固定体に固定するための架台や枠体を用いて、太陽電池装置の受光面の角度を調整する必要があった。例えば、工場などの陸屋根や、地面などのフラットな場所に、特許文献1に記載の太陽電池装置を設置する場合は、太陽光の角度に応じて、架台や枠体を用いて、太陽電池装置の受光面の角度を調整する必要があった。 Also, the solar cell device is preferably arranged so that the incident angle of sunlight with respect to the light receiving surface is perpendicular. This is to increase the amount of power generation. However, the solar cell device described in Patent Document 1 needs to adjust the angle of the light receiving surface of the solar cell device by using a frame or a frame for fixing the solar cell device to the fixed body. For example, when installing the solar cell device described in Patent Document 1 on a flat roof such as a factory or on a flat place such as the ground, a solar cell device is used by using a gantry or a frame according to the angle of sunlight. It was necessary to adjust the angle of the light receiving surface.
 そこで本発明は、屋外に設置されても、太陽電池セルが汚染されることを抑制し、太陽電池セルの発電量を長期に維持する太陽電池装置を提供する。 Therefore, the present invention provides a solar battery device that suppresses contamination of solar cells even when installed outdoors, and maintains the power generation amount of the solar cells for a long period of time.
 本発明は、上記従来の課題に鑑み、太陽電池セルと、透光性プラスチック材と、を有する太陽電池装置において、透光性プラスチック材と被固定体とで密閉空間を構成し、両面受光型の太陽電池セルを密閉空間に配置可能とする。密閉空間には、風雨や砂塵による汚れが侵入しないように構成される。そして、密閉空間を構成する被固定体の設置領域の表面に光反射性を付与することが好ましい。 In view of the above-described conventional problems, the present invention provides a solar battery device having a solar battery cell and a translucent plastic material, wherein the translucent plastic material and the fixed body constitute a sealed space, and is a double-sided light receiving type. These solar cells can be placed in a sealed space. The sealed space is configured so that dirt caused by wind and rain or dust does not enter. And it is preferable to give light reflectivity to the surface of the installation area | region of the to-be-fixed body which comprises sealed space.
 本願発明の第1は、透光性プラスチック材と、透光性バックシートと、前記透光性プラスチック材の封止領域と前記透光性バックシートとの間に配置され、互いにインターコネクタで電気接続された複数の両面受光型の太陽電池セルと、前記複数の太陽電池セルを包囲する透明充填樹脂と、を具備する太陽電池装置を提供する。前記透光性プラスチック材はドーム状の曲面を有し、前記ドームの底面に枠体が成型されている。前記透光性プラスチック材は、太陽電池装置を設置する被固定体の設置領域に前記枠体が固定されることで密閉空間を構成することができる。前記透光性バックシートと、前記太陽電池セルと、前記透明充填樹脂とは、前記密閉空間に配置される。 A first aspect of the present invention is a translucent plastic material, a translucent backsheet, a sealing region of the translucent plastic material, and the translucent backsheet, which are electrically connected to each other by an interconnector. Provided is a solar battery device comprising a plurality of connected double-sided light receiving solar cells and a transparent filling resin surrounding the plurality of solar cells. The translucent plastic material has a dome-shaped curved surface, and a frame is molded on the bottom surface of the dome. The translucent plastic material can constitute a sealed space by fixing the frame body to an installation region of a fixed body on which the solar cell device is installed. The translucent back sheet, the solar battery cell, and the transparent filling resin are disposed in the sealed space.
 前記密閉空間を構成する前記被固定体の前記設置領域の表面は、光反射性を有することが好ましい。 It is preferable that the surface of the installation area of the fixed body constituting the sealed space has light reflectivity.
 前記被固定体は、自動車の屋根を含む車体であり、前記太陽電池装置が、前記自動車の屋根の車体に固定されることで、外気の風雨が車内に入ることが防止されることが好ましい。 It is preferable that the fixed body is a vehicle body including a roof of an automobile, and that the solar battery device is fixed to the vehicle body of the automobile roof, thereby preventing outside wind and rain from entering the vehicle.
 さらに、前記被固定体は、自動車の車内に光を取り入れるスライド板を含む屋根を含む車体であり、前記スライド板の太陽電池装置と対向する面には、光反射体が具備されていることが好ましい。 Furthermore, the to-be-fixed body is a vehicle body including a roof including a slide plate that takes light into a vehicle, and a light reflector is provided on a surface of the slide plate facing the solar cell device. preferable.
 本願発明の第2は、透光性プラスチック板と、透光性バックシートと、前記透光性プラスチック材の封止領域と前記透光性バックシートとの間に配置され、互いにインターコネクタで電気接続された複数の両面受光型の太陽電池セルと、前記複数の太陽電池セルを包囲する透明充填樹脂とを含む積層体を用意する工程と;前記積層体を、真空穴を設けた成形型に押し付けて、前記透光性プラスチック板を屈曲させて、透光性プラスチック材を得る工程とを含む、太陽電池装置の製造方法を提供する。 A second aspect of the present invention is a translucent plastic plate, a translucent backsheet, a sealing region of the translucent plastic material, and the translucent backsheet that are interconnected by an interconnector. Preparing a laminated body including a plurality of connected double-sided light receiving solar cells and a transparent filling resin surrounding the plurality of solar cells; and forming the laminated body into a mold provided with vacuum holes And a step of bending the light-transmitting plastic plate to obtain a light-transmitting plastic material.
 上記製造方法において、積層体は、透光性プラスチック板と、透光性バックシートと、前記透光性プラスチック材の封止領域と前記透光性バックシートとの間に配置され、互いにインターコネクタで電気接続された複数の両面受光型の太陽電池セルと、前記複数の太陽電池セルを包囲する透明充填樹脂と、弾性のある樹脂シートとの積層物を加圧ラミネートして得ることが好ましい。 In the above manufacturing method, the laminate is disposed between the translucent plastic plate, the translucent backsheet, the sealing region of the translucent plastic material, and the translucent backsheet, and is interconnected with each other. It is preferable to obtain a laminate of a plurality of double-sided light receiving solar cells electrically connected to each other, a transparent filling resin surrounding the plurality of solar cells, and an elastic resin sheet by pressure laminating.
 以上のように、本願発明の太陽電池装置は、透光性プラスチック材と被固定体とで密閉空間を構成し、密閉空間に両面受光型の太陽電池セルを装着する。そのため、太陽電池装置を屋外に設置しても、密閉空間内に装着された太陽電池セルが汚染されにくくなる。また、透光性プラスチック材と被固定体とで密閉空間を構成することができるので、太陽電池装置を固定するための専用の架台や枠体を必要としない。 As described above, in the solar cell device of the present invention, a light-transmitting plastic material and a fixed body constitute a sealed space, and a double-sided light receiving solar cell is mounted in the sealed space. Therefore, even if the solar battery device is installed outdoors, the solar battery cells mounted in the sealed space are less likely to be contaminated. Moreover, since a sealed space can be comprised with a translucent plastic material and a to-be-fixed body, the stand and frame for exclusive use for fixing a solar cell apparatus are not required.
 また、密閉空間を構成する被固定体の設置領域の表面に光反射体を設けることで、被固定体の設置領域の表面で反射した光が、両面受光型の太陽電池セルに入射することができる。それにより、太陽電池セルによる発電量を高めることができる。また、密閉空間には、風雨や砂塵による汚れが侵入しないように構成されているので、光反射性が低下しない。そのため、太陽電池セルによる発電量の低下が抑制できる。 Further, by providing a light reflector on the surface of the installation area of the fixed body constituting the sealed space, the light reflected by the surface of the installation area of the fixed body may enter the double-sided light receiving solar cell. it can. Thereby, the electric power generation amount by a photovoltaic cell can be raised. Moreover, since it is comprised so that the stain | pollution | contamination by a wind and rain and dust may not enter into sealed space, light reflectivity does not fall. Therefore, a decrease in the amount of power generated by the solar battery cell can be suppressed.
 このように、本発明の太陽電池装置は、太陽電池セルの発電量が高く、単位面積当りの発電効率が高い。そして、太陽電池セルを配置した密閉空間内に風雨や砂塵による汚れが侵入しないように構成されているので、自動車の車内や家屋の室内を密閉するための部材として用いることができる。 As described above, the solar battery device of the present invention has a high power generation amount of the solar battery cell and high power generation efficiency per unit area. And since it is comprised so that the stain | pollution | contamination by a wind and rain and dust may not penetrate | invade in the sealed space which has arrange | positioned the photovoltaic cell, it can be used as a member for sealing the inside of the vehicle interior of a car or a house.
実施の形態1の太陽電池装置の上面図Top view of solar cell device of Embodiment 1 実施の形態1の太陽電池装置の断面図Sectional view of solar cell device of Embodiment 1 実施の形態1の太陽電池装置の断面図Sectional view of solar cell device of Embodiment 1 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態1の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 1. FIG. 実施の形態2の太陽電池装置の断面図Sectional drawing of the solar cell device of Embodiment 2 実施の形態3の太陽電池装置の断面図Sectional view of solar cell device of Embodiment 3 実施の形態3の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 3. 実施の形態3の太陽電池装置の製造フローを示す図The figure which shows the manufacturing flow of the solar cell apparatus of Embodiment 3. 実施の形態4の太陽電池装置の断面図Sectional view of solar cell device of Embodiment 4 実施の形態5の太陽電池装置の断面図Sectional view of solar cell device of Embodiment 5 両面太陽電池装置の詳細断面図Detailed cross-sectional view of a double-sided solar cell device 従来の太陽電池装置の断面図Sectional view of a conventional solar cell device 従来の太陽電池装置の斜視図A perspective view of a conventional solar cell device
 以下に、本発明の実施の形態を、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[実施の形態1]
 図1A~Cは、実施の形態1の太陽電池装置の上面図(図1A)および断面図(図1B(図1AにおけるA-A断面図)と図1C(図1AにおけるB-B断面図))である。図1A~Cに示される太陽電池装置11は、複数個の両面受光型の太陽電池セル22を含む。互いに隣接する太陽電池セル22は、一方の太陽電池セル22の表側の受光面電極と、他方の太陽電池セル22の裏側の受光面電極とがインターコネクタ1によって電気的に接続されて、直列に電気接続されている。また、図1A~Cに示される太陽電池装置11は、複数の太陽電池セル22を包囲する透明充填樹脂3を有する。
[Embodiment 1]
1A to 1C are a top view (FIG. 1A) and a cross-sectional view (FIG. 1B (AA cross-sectional view in FIG. 1A) and FIG. 1C (BB cross-sectional view in FIG. 1A) of the solar cell device of Embodiment 1. ). The solar cell device 11 shown in FIGS. 1A to 1C includes a plurality of double-sided light receiving solar cells 22. The solar cells 22 adjacent to each other are connected in series, with the light receiving surface electrode on the front side of one solar cell 22 and the light receiving surface electrode on the back side of the other solar cell 22 electrically connected by the interconnector 1. Electrical connection. Further, the solar battery device 11 shown in FIGS. 1A to 1C has a transparent filling resin 3 surrounding a plurality of solar battery cells 22.
 さらに、図1A~Cに示される太陽電池装置11は、複数個の両面発電を行う太陽電池セル22の受光面側に透明充填樹脂3を介して配置された透光性プラスチック材12と、裏面側に透明充填樹脂3を介して配置された透光性バックシート25とを有し、これらが一体化されている。 Further, the solar cell device 11 shown in FIGS. 1A to 1C includes a translucent plastic material 12 disposed on the light receiving surface side of a plurality of solar cells 22 that perform double-sided power generation via a transparent filling resin 3, and a back surface. It has the translucent back sheet | seat 25 arrange | positioned through the transparent filling resin 3 in the side, and these are integrated.
 図13に、実施の形態1の太陽電池装置の封止領域15における積層構成の例を示す。図13に示されるように、実施の形態1の太陽電池装置は、受光面側から、透光性プラスチック材12と、透明充填樹脂3と、両面発電を行う太陽電池セル22と、透明充填樹脂3と、透光性バックシート25とを具備する。一対の透明充填樹脂3は、両面発電を行う太陽電池セル22を包囲する。さらに、透光性プラスチック材12の太陽電池セル22と対向する面には密着層46が成膜されており、透光性プラスチック材12の外気に触れる表層には防水膜45が成膜されている。 FIG. 13 shows an example of a stacked configuration in the sealing region 15 of the solar cell device of the first embodiment. As shown in FIG. 13, the solar cell device according to Embodiment 1 includes, from the light receiving surface side, translucent plastic material 12, transparent filling resin 3, solar battery cell 22 that performs double-sided power generation, and transparent filling resin. 3 and a translucent backsheet 25. The pair of transparent filling resins 3 surround the solar battery cell 22 that performs double-sided power generation. Further, an adhesion layer 46 is formed on the surface of the translucent plastic material 12 facing the solar battery cell 22, and a waterproof film 45 is formed on the surface layer of the translucent plastic material 12 that comes into contact with the outside air. Yes.
 防水膜45は、防水性、耐湿性、硬度向上能、UV遮蔽能などを有する。防水膜45の材料の例には、アクリル系、フッ素系などの透光性に優れる有機材料や、金などの金属薄膜などが含まれる。金属薄膜は、透光性が若干低下する場合がある。 The waterproof film 45 has waterproofness, moisture resistance, ability to improve hardness, UV shielding ability, and the like. Examples of the material of the waterproof film 45 include an organic material having excellent translucency such as acrylic and fluorine, and a metal thin film such as gold. The metal thin film may have a slight decrease in translucency.
 透光性プラスチック材12の材料は、両面受光型の太陽電池セル22が発電するために必要な光透過量を確保できる樹脂からなり、ポリカーボネイトまたはアクリル樹脂(PMMA)などを含みうる。透光性プラスチック材12の表面(防水膜45との界面)には、反射防止膜が成膜されていてもよい。実施の形態1の太陽電池装置11における透光性プラスチック材12の厚みは、5mmである。 The material of the translucent plastic material 12 is made of a resin that can secure a light transmission amount necessary for the double-sided light receiving solar cell 22 to generate power, and may include polycarbonate or acrylic resin (PMMA). An antireflection film may be formed on the surface of the translucent plastic material 12 (interface with the waterproof film 45). The thickness of the translucent plastic material 12 in the solar cell device 11 of Embodiment 1 is 5 mm.
 さらに、透光性プラスチック材12の表面、裏面または両面に、水蒸気透過率が0.2g/m・day以下のガスバリア層が成膜されていることが好ましい。透光性プラスチック材12は、ガラス基板と比べて、水分透過率および吸水率が高いためである。水蒸気透過率が0.2g/m・day以下のガスバリア層を成膜することで、透光性プラスチック材12を透過した水分によって透明充填樹脂3が加水分解することを抑制することができる。透明充填樹脂3が加水分解すると、透光性プラスチック材12と透明充填樹脂3との密着力が低下する。また、透光性プラスチック材12を透過して透明充填樹脂3との界面に侵入した水分は、使用時の温度変化により体積変化を起こして、透光性プラスチック材12と透明充填樹脂3とを剥離させ、さらにはその剥離箇所を拡大させる。さらには、透光性プラスチック材12と透明充填樹脂3を透過した水分が太陽電池セルの表面を劣化させたり、太陽電池セル間の接合部を劣化させることがある。 Furthermore, it is preferable that a gas barrier layer having a water vapor transmission rate of 0.2 g / m 2 · day or less is formed on the front surface, back surface, or both surfaces of the translucent plastic material 12. This is because the translucent plastic material 12 has a higher moisture permeability and water absorption rate than the glass substrate. By forming a gas barrier layer having a water vapor transmission rate of 0.2 g / m 2 · day or less, it is possible to suppress hydrolysis of the transparent filling resin 3 due to moisture that has passed through the translucent plastic material 12. When the transparent filling resin 3 is hydrolyzed, the adhesion between the translucent plastic material 12 and the transparent filling resin 3 is reduced. In addition, moisture that has penetrated the transparent plastic material 12 through the transparent plastic material 12 has undergone a volume change due to a temperature change during use, and the transparent plastic material 12 and the transparent filled resin 3 are separated. It peels and further the peeling part is expanded. Furthermore, the water | moisture content which permeate | transmitted the translucent plastic material 12 and the transparent filling resin 3 may degrade the surface of a photovoltaic cell, or may degrade the junction part between photovoltaic cells.
 両面受光型の太陽電池セル22は、両面から入射した太陽光を電気に変換する太陽電池セルであり、HIT(商標登録、パナソニック株式会社)などに代表される。両面受光型の太陽電池セル22は、例えば、N型単結晶シリコンの一方の面にP層アモルファス層を設け、他方の面にN層アモルファス層を設けた構造を有する。実施の形態1の太陽電池装置11における両面発電を行う太陽電池セル22の厚みは130μmである。 The double-sided light-receiving solar cell 22 is a solar cell that converts sunlight incident from both sides into electricity, and is represented by HIT (registered trademark, Panasonic Corporation). The double-sided light receiving solar cell 22 has, for example, a structure in which a P layer amorphous layer is provided on one surface of N-type single crystal silicon and an N layer amorphous layer is provided on the other surface. The thickness of the solar battery cell 22 that performs double-sided power generation in the solar battery device 11 of the first embodiment is 130 μm.
 実施の形態1の太陽電池装置11における太陽電池セル22は、抵抗率が1Ω・cm、厚さが約350μmのp型単結晶シリコン基板を含む。p型単結晶シリコン基板の両面には、テクスチャー構造(不図示)が形成されている。テクスチャー構造は、その表面における光反射を低減させる凹凸形状である。テクスチャー構造は、例えば、シリコン基板の表面をアルカリ溶液でウェットエッチングして形成される。 Solar cell 22 in solar cell device 11 of Embodiment 1 includes a p-type single crystal silicon substrate having a resistivity of 1 Ω · cm and a thickness of about 350 μm. A texture structure (not shown) is formed on both surfaces of the p-type single crystal silicon substrate. The texture structure is an uneven shape that reduces light reflection on the surface. The texture structure is formed, for example, by wet etching the surface of the silicon substrate with an alkaline solution.
 太陽電池セル22は、単結晶シリコン基板に代えて、多結晶シリコン基板などのシリコン基板を含んでいてもよい。多結晶シリコン基板の表面には、酸溶液を用いてテクスチャー構造を形成することができる。さらに、太陽電池セル22は、シリコン基板に代えて、GaAsやGeなどの化合物系半導体を含んでいてもよく、それにより太陽電池セル22は化合物系太陽電池となる。 The solar battery cell 22 may include a silicon substrate such as a polycrystalline silicon substrate instead of the single crystal silicon substrate. A texture structure can be formed on the surface of the polycrystalline silicon substrate using an acid solution. Further, the solar battery cell 22 may include a compound semiconductor such as GaAs or Ge instead of the silicon substrate, whereby the solar battery cell 22 becomes a compound solar battery.
 太陽電池セル22に含まれるp型単結晶シリコン基板の一方の表面側には、n型層が形成されている。n型層は、p型単結晶シリコン基板の一方の表面から深さ約1μmまでの厚みでありうる。n型層は、p型単結晶シリコン基板の一方の表面を、約900℃でオキシ塩化リンガス(POCl3ガス)に曝して、P(リン)を熱拡散して形成する。オキシ塩化リンガスの代わりに、リンガラス(PSG)を用いる場合もある。 An n-type layer is formed on one surface side of the p-type single crystal silicon substrate included in the solar battery cell 22. The n-type layer may have a thickness from one surface of the p-type single crystal silicon substrate to a depth of about 1 μm. The n-type layer is formed by exposing one surface of a p-type single crystal silicon substrate to phosphorus oxychloride gas (POCl3 gas) at about 900 ° C. and thermally diffusing P (phosphorus). In some cases, phosphorus glass (PSG) is used instead of phosphorus oxychloride gas.
 太陽電池セル22は、p型単結晶シリコン基板の受光面上に成膜された反射防止膜を有する。反射防止膜とは、例えば、SiNxからなり、プラズマCVD法により形成されうる。さらに、太陽電池セル22は、反射防止膜上に配置されたフィンガー状のAg電極を有する。Ag電極は、Agペーストを印刷し、熱処理を行うことで形成する。熱処理によって、Agを反射防止膜であるSiNx中に貫通させ、n型層の表面にAgを接触させる。このような熱処理を、ファイアースルー(貫通焼成)と称する。 The solar battery cell 22 has an antireflection film formed on the light receiving surface of the p-type single crystal silicon substrate. The antireflection film is made of, for example, SiNx and can be formed by a plasma CVD method. Furthermore, the solar battery cell 22 has a finger-shaped Ag electrode disposed on the antireflection film. The Ag electrode is formed by printing an Ag paste and performing a heat treatment. By heat treatment, Ag penetrates SiNx as an antireflection film, and Ag is brought into contact with the surface of the n-type layer. Such heat treatment is referred to as fire-through (penetration firing).
 太陽電池セル22に含まれるp型単結晶シリコン基板の他方の表面(裏面)側には、Alからなる裏面電極が配置される。Alからなる裏面電極は、p型単結晶シリコン基板の裏面にAlペーストをスクリーン印刷することにより形成される。さらに、約700℃で短時間加熱処理をすることで、シリコン基板にAlが熱拡散する。それにより、Alがハイドープされたp型層も合わせて形成される。 A back electrode made of Al is arranged on the other surface (back surface) side of the p-type single crystal silicon substrate included in the solar battery cell 22. The back electrode made of Al is formed by screen-printing Al paste on the back surface of the p-type single crystal silicon substrate. Furthermore, Al is thermally diffused in the silicon substrate by performing a heat treatment at about 700 ° C. for a short time. Thereby, a p-type layer in which Al is highly doped is also formed.
 これらの工程によって、シリコン基板内に両面アモルファス層を持ち、シリコン基板上にAg配線を有する、両面発電を行う太陽電池セル22が得られる。 Through these steps, the solar battery cell 22 that performs double-sided power generation having a double-sided amorphous layer in a silicon substrate and an Ag wiring on the silicon substrate is obtained.
 透明充填樹脂3は、太陽電池セル22を包囲する樹脂層であり;通常は、一対の透明充填樹脂3が、太陽電池セル22を上下から挟み込む。実施の形態1の太陽電池装置11における透明充填樹脂3の厚みは、それぞれ0.6mmである。 The transparent filling resin 3 is a resin layer surrounding the solar battery cell 22; normally, the pair of transparent filling resins 3 sandwich the solar battery cell 22 from above and below. The thickness of the transparent filling resin 3 in the solar cell device 11 of Embodiment 1 is 0.6 mm.
 透明充填樹脂3は、エチレンを主成分とし、これと共重合可能な単量体との共重合体を含む。共重合体の例には、エチレンと、酢酸ビニル、プロピオン酸ビニル等のビニルエステルとの共重合体;エチレンと、アクリル酸メチル、アクリル酸エチル、アクリル酸イソブチル、アクリル酸nブチル、メタクリル酸メチル等の不飽和カルボン酸との共重合体、またはそのアイオノマー;エチレンと、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンなどのα-オレフィンとの共重合体;あるいはこれらの2種以上の混合物などが含まれる。より典型的には、透明充填樹脂3は、エチレン酢酸ビニル共重合樹脂(EVA)を含む。 The transparent filling resin 3 includes a copolymer of ethylene as a main component and a monomer copolymerizable therewith. Examples of copolymers include copolymers of ethylene and vinyl esters such as vinyl acetate and vinyl propionate; ethylene and methyl acrylate, ethyl acrylate, isobutyl acrylate, nbutyl acrylate, methyl methacrylate Copolymers with unsaturated carboxylic acids such as, or their ionomers; Copolymers of ethylene with α-olefins such as propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene Or a mixture of two or more of these. More typically, the transparent filling resin 3 includes an ethylene vinyl acetate copolymer resin (EVA).
 透明充填樹脂3には、前記共重合体と架橋剤とを含む樹脂組成物の架橋体であってもよい。架橋剤は、例えば有機過酸化物であり、分解温度(半減期が1時間である温度)が90~180℃であることが好ましい。有機過酸化物の例には、t-ブチルパーオキシイソプロピルカーボネイト、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3,1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、メチルエチルケトンパーオキサイド、2,5-ジメチルヘキシル-2,5-ビスパーオキシベンゾエート、t-ブチルハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、p-クロベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、ヒドロキシヘプチルパーオキサイド、ジシクロヘキサノンパーオキサイドなどが挙げられる。 The transparent filling resin 3 may be a crosslinked product of a resin composition containing the copolymer and a crosslinking agent. The crosslinking agent is, for example, an organic peroxide, and preferably has a decomposition temperature (temperature at which the half-life is 1 hour) of 90 to 180 ° C. Examples of organic peroxides include t-butyl peroxyisopropyl carbonate, t-butyl peroxyacetate, t-butyl peroxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t- Butylperoxy) hexane, di-t-butylperoxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3,1,1-bis (t-butylperoxy) -3 , 3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-bisperoxybenzoate, t-butyl hydroperoxide, p -Mentane hydroperoxide, benzoyl peroxide, p-clobenzoyl peroxide, t-butyl peroxyisobutyrate, hydro Shi heptyl peroxide, such as dicyclohexanone peroxide.
 また、透明充填樹脂3には、前記共重合体と架橋剤とともに、架橋助剤を含む樹脂組成物の架橋体であってもよい。架橋助剤は架橋反応を容易に進行させることができる。架橋助剤の例には、トリアリルシアヌレート、トリアリルイソシアヌレート、エチレングリコールジメタクリルレート、トリメチロールプロパントリメタクリレートジビニルベンゼン、ジアリルフタレートなどが挙げられる。 Further, the transparent filling resin 3 may be a crosslinked body of a resin composition containing a crosslinking aid together with the copolymer and the crosslinking agent. The crosslinking aid can easily promote the crosslinking reaction. Examples of the crosslinking aid include triallyl cyanurate, triallyl isocyanurate, ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate divinylbenzene, diallyl phthalate and the like.
 さらに透明充填樹脂3は、前記共重合体と接着促進剤とを含む樹脂組成物の反応物であってもよい。接着促進剤は、透光性プラスチック材12と透明充填樹脂3との密着性を高める。接着促進剤は、シランカップリング剤などである。シランカップリング剤の例には、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランなどが含まれる。 Further, the transparent filling resin 3 may be a reaction product of a resin composition containing the copolymer and an adhesion promoter. The adhesion promoter enhances the adhesion between the translucent plastic material 12 and the transparent filling resin 3. The adhesion promoter is a silane coupling agent. Examples of the silane coupling agent include vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and the like.
 透明充填樹脂3に含まれるシランカップリング剤の末端基と、透光性プラスチック材12の表面の水酸基(OH基)とが加水分解・重合反応を起すことにより、透光性プラスチック材12と透明充填樹脂3間の密着力が発現する。 The end group of the silane coupling agent contained in the transparent filling resin 3 and the hydroxyl group (OH group) on the surface of the translucent plastic material 12 cause hydrolysis / polymerization reaction, thereby transparent to the translucent plastic material 12. Adhesion between the filled resins 3 is developed.
 透明充填樹脂3にシランカップリング剤が添加されていない場合には、透明充填樹脂3と透光性プラスチック材12との密着力、または透明充填樹脂3と透光性バックシート25との密着力が低下し、剥離が生じることがある。そのため、運搬・使用時のパネル強度を確保することができなかったり、外観上の美観が損なわれたり、太陽電池装置の電気特性が低下するといった問題が生じることがある。 When no silane coupling agent is added to the transparent filling resin 3, the adhesion between the transparent filling resin 3 and the translucent plastic material 12, or the adhesion between the transparent filling resin 3 and the translucent back sheet 25. May decrease and peeling may occur. For this reason, there are cases where the panel strength during transportation and use cannot be ensured, the aesthetic appearance is impaired, and the electrical characteristics of the solar cell device are deteriorated.
 透明充填樹脂3には、さらにその他の各種添加剤が配合されていてもよい。添加剤の例には、太陽光中の紫外線による劣化を防ぐ為の、紫外線吸収剤、光安定剤、酸化防止剤などが挙げられる。紫外線吸収剤としては、2-ヒドロキシ-4-メトキシベンゾフェノン、2-2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2-カルボキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン等のベンゾフェノン系、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系、フェニルサリチレート、p-オクチルフェニルサリチレート等のサリチル酸エステル系のものが挙げられる。光安定剤としてはヒンダードアミン系のものが挙げられる。また、酸化防止剤としては、ヒンダードフェノール系やホスファイト系のものが挙げられる。 The transparent filling resin 3 may further contain other various additives. Examples of the additive include an ultraviolet absorber, a light stabilizer, and an antioxidant for preventing deterioration due to ultraviolet rays in sunlight. As the UV absorber, 2-hydroxy-4-methoxybenzophenone, 2--2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2-carboxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone Benzophenone series, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5- Examples include benzotriazoles such as t-octylphenyl) benzotriazole, and salicylic acid esters such as phenyl salicylate and p-octylphenyl salicylate. Examples of light stabilizers include hindered amines. Examples of the antioxidant include hindered phenols and phosphites.
 透光性バックシート25の例には、PETフィルム、ポリエステルフィルム、ガラスクロス透明フィルム、アクリルフィルム、塩化ビニルフィルムなどが含まれる。また、透光性バックシート25は、これらのフィルムに、ITOやZnOなどの透明導電性材料を積層した積層フィルムであってもよい。実施の形態1の太陽電池装置における透光性バックシート25の厚みは、0.05mmである。 Examples of the translucent back sheet 25 include a PET film, a polyester film, a glass cloth transparent film, an acrylic film, a vinyl chloride film, and the like. The translucent backsheet 25 may be a laminated film obtained by laminating a transparent conductive material such as ITO or ZnO on these films. The thickness of the translucent back sheet 25 in the solar cell device of Embodiment 1 is 0.05 mm.
 実施の形態1の太陽電池装置11は、図1A~Cに示されるように、透光性プラスチック材12と被固定体24とで密閉空間20を構成する。つまり、透光性プラスチック材12はドーム状の曲面構造を有しているので、密閉空間20を構成することができる。 As shown in FIGS. 1A to 1C, the solar cell device 11 according to Embodiment 1 includes a light-transmitting plastic material 12 and a fixed body 24 to form a sealed space 20. That is, since the translucent plastic material 12 has a dome-shaped curved surface structure, the sealed space 20 can be configured.
 また、透光性プラスチック材12は、ドームの底面に枠部(ふち部)14を有している。透光性プラスチック材12は、枠部14を介して被固定体24の設置領域19に固定される。透光性プラスチック材12を被固定体24に固定するには、被固定体24に枠部14を固定ビス21や接着剤などで固定すればよい。透光性プラスチック材12の枠部14は、設置領域19の四方を囲むことが好ましい。密閉空間20の密閉性を高めるためである。 The translucent plastic material 12 has a frame portion (edge portion) 14 on the bottom surface of the dome. The translucent plastic material 12 is fixed to the installation region 19 of the fixed body 24 via the frame portion 14. In order to fix the translucent plastic material 12 to the fixed body 24, the frame portion 14 may be fixed to the fixed body 24 with a fixing screw 21 or an adhesive. The frame portion 14 of the translucent plastic material 12 preferably surrounds the four sides of the installation area 19. This is to improve the sealing performance of the sealed space 20.
 このように、透光性プラスチック材12の枠部14を被固定体24に固定するため、太陽電池装置を固定するための枠体としてのアルミフレームや、地面や屋根とを固定する専用の架台が必要とされない。 Thus, in order to fix the frame part 14 of the translucent plastic material 12 to the to-be-fixed body 24, the aluminum frame as a frame for fixing a solar cell apparatus, or the exclusive frame for fixing the ground and the roof Is not required.
 太陽電池装置11を固定する被固定体24は、特に限定されないが、地面、コンクリート部材、建築物や自動車の屋根などでありうる。 Although the to-be-fixed body 24 which fixes the solar cell apparatus 11 is not specifically limited, it can be the ground, a concrete member, a building, the roof of a motor vehicle, etc.
 透光性プラスチック材12の密閉空間20の内面に、両面受光型の太陽電池セル22が配置される。太陽電池セル22が配置される領域を封止領域15と称する。太陽電池セル22は、透明充填樹脂3に包囲されている。太陽電池セル22と透明充填樹脂3とは、透光性プラスチック材12の封止領域15と透光性バックシート25との間に配置されている。密閉空間20の密閉性を高めることで、太陽電池装置を屋外に設置したときに、密閉空間20に設けた太陽電池セル22が風雨や砂塵により汚染されることを防止できる。 A double-sided light receiving solar cell 22 is disposed on the inner surface of the sealed space 20 of the translucent plastic material 12. A region where the solar cells 22 are arranged is referred to as a sealing region 15. The solar battery cell 22 is surrounded by the transparent filling resin 3. The solar battery cell 22 and the transparent filling resin 3 are disposed between the sealing region 15 of the translucent plastic material 12 and the translucent back sheet 25. By improving the sealing property of the sealed space 20, it is possible to prevent the solar cells 22 provided in the sealed space 20 from being contaminated by wind and rain or dust when the solar battery device is installed outdoors.
 密閉空間20を構成する被固定体24の設置領域19の表面には、光反射体23が配置されていることが好ましい。このように、密閉空間24に光反射体23を配置することで、設置領域19の表面に光反射性を付与する。光反射体23が反射した太陽光は、両面受光型の太陽電池セル22に入射して光電変換される。また、光反射体23は、透光性プラスチック材12が構成する密閉空間に配置されているため、外部環境からの風雨や砂塵で汚れることが防止される。その結果、光反射性が維持される。その結果、太陽電池セル22の発電量を長期に亘って維持することができる。 It is preferable that a light reflector 23 is disposed on the surface of the installation region 19 of the fixed body 24 constituting the sealed space 20. Thus, by arranging the light reflector 23 in the sealed space 24, light reflectivity is imparted to the surface of the installation region 19. The sunlight reflected by the light reflector 23 enters the double-sided light receiving solar cell 22 and is photoelectrically converted. In addition, since the light reflector 23 is disposed in the sealed space formed by the translucent plastic material 12, it is prevented from being contaminated by wind and rain or dust from the external environment. As a result, light reflectivity is maintained. As a result, the power generation amount of the solar battery cell 22 can be maintained for a long time.
 実施の形態1の太陽電池装置の、被固定体24に固定されている透光性プラスチック材12の封止領域15の表面は、被固定体24の表面と平行ではない(図1B参照)。具体的には、太陽電池セル22による発電量が最大となるように、透光性プラスチック材12の封止領域15の表面が、太陽光の入射角度が直角に近くなるように設定することが好ましい。封止領域15の表面の角度は、透光性プラスチック材12の成型の形状を調整すればよい。 The surface of the sealing region 15 of the translucent plastic material 12 fixed to the fixed body 24 in the solar cell device of Embodiment 1 is not parallel to the surface of the fixed body 24 (see FIG. 1B). Specifically, the surface of the sealing region 15 of the translucent plastic material 12 may be set so that the incident angle of sunlight is close to a right angle so that the amount of power generated by the solar battery cell 22 is maximized. preferable. What is necessary is just to adjust the shape of the shaping | molding of the translucent plastic material 12 for the angle of the surface of the sealing area | region 15. FIG.
 このように、実施の形態1の太陽電池装置11は、透光性プラスチック材12が被固定体と密閉空間を構成できるので、自動車や家屋の屋根に設置しても、自動屋の車内や家屋の室内を密閉する(風雨や砂塵が舞い込むことを抑制する)ことができる。さらには、透光性プラスチック材の形状を適宜設定することで、封止領域の表面の角度を調整することができる。そのため、太陽光の入射角度が封止領域の表面に対して直交するように、透光性プラスチック材の形状を設定することで、太陽電池セルの最大発電量を得ることができる。 As described above, in the solar cell device 11 according to the first embodiment, since the translucent plastic material 12 can form a sealed body and a sealed space, even if it is installed on the roof of an automobile or a house, the interior of the automatic shop or the house Can be sealed (suppresses wind and rain and dust). Furthermore, the angle of the surface of the sealing region can be adjusted by appropriately setting the shape of the translucent plastic material. Therefore, the maximum power generation amount of the solar battery cell can be obtained by setting the shape of the translucent plastic material so that the incident angle of sunlight is orthogonal to the surface of the sealing region.
 実施の形態1の太陽電池装置は、このような構成により、太陽電池セル22を、風雨や砂塵の舞う外気から遮断することができ、信頼性の高い太陽電池装置を提供できる。 With such a configuration, the solar cell device of Embodiment 1 can shut off the solar cells 22 from the outside air that is affected by wind and rain and dust, and can provide a highly reliable solar cell device.
[太陽電池装置の製造方法]
 実施の形態1の太陽電池装置の製造フローを図2A~図2C、図3A~図3C、図4A、図4B、図5A、図5B、および、図6を用いて説明する。
[Method for Manufacturing Solar Cell Device]
A manufacturing flow of the solar cell device of Embodiment 1 will be described with reference to FIGS. 2A to 2C, FIGS. 3A to 3C, FIGS. 4A, 4B, 5A, 5B, and 6. FIG.
 図2Aに示すように、平板の透光性プラスチック材12を準備する。平板の透光性プラスチック材12は、成型されることで、曲面を有する透光性プラスチック材12を構成する。透光性プラスチック材12は高い光透過性を要求され、UV波長帯は材料特性により吸収されうるが、太陽光の波長全体の平均光透過率は95~98%であることが好ましい。 As shown in FIG. 2A, a flat translucent plastic material 12 is prepared. The flat translucent plastic material 12 is molded to constitute the translucent plastic material 12 having a curved surface. The translucent plastic material 12 is required to have high light transmissivity, and the UV wavelength band can be absorbed by the material properties, but the average light transmittance of the entire wavelength of sunlight is preferably 95 to 98%.
 次に、図2Bに示すように、所定の大きさにカットされた透明充填樹脂3からなる膜を、透光性プラスチック材12に常温下で貼り付ける。透明充填樹脂3からなる膜の厚みは、太陽電池セル22の厚みや透光性プラスチック材12の曲面形状などによって適宜設定され、例えば0.2~2mmの範囲に設定され、本実施の形態1では0.6mmとしている。また、透明充填樹脂3からなる膜は、1枚であっても、2枚以上の積層体であってもよく;さらに、領域毎にその枚数を違えてもよい。 Next, as shown in FIG. 2B, a film made of the transparent filling resin 3 cut to a predetermined size is attached to the translucent plastic material 12 at room temperature. The thickness of the film made of the transparent filling resin 3 is appropriately set depending on the thickness of the solar battery cell 22, the curved shape of the translucent plastic material 12, and the like, for example, in the range of 0.2 to 2 mm. Then, it is set to 0.6 mm. Moreover, the film | membrane which consists of transparent filling resin 3 may be 1 sheet | seat, or may be a laminated body of 2 or more sheets; Furthermore, the number may differ for every area | region.
 図2Cに示すように、複数の太陽電池セル22同士の間を、インターコネクタ1で接続する。つまり、一方の太陽電池セル22の表面電極と、他方の太陽電池セル22の裏面電極とを、インターコネクタ1で接続する。インターコネクタ1は、接合材料26で太陽電池セル22の表面電極または裏面電極と接合される。 As shown in FIG. 2C, the interconnector 1 connects the plurality of solar cells 22 to each other. That is, the front electrode of one solar battery cell 22 and the back electrode of the other solar battery cell 22 are connected by the interconnector 1. The interconnector 1 is bonded to the front surface electrode or the back surface electrode of the solar battery cell 22 with the bonding material 26.
 太陽電池セル22が発電した電力を取り出すために、太陽電池セル22の表面電極および裏面電極と、インターコネクタ1との間に、電気的な導通と、温度サイクルや高温高湿試験に耐える機械的な接合強度が必要である。そのため、接合材料26は、一般的にSnPbやSnAgCuやSnAgBiなどのはんだ材料や、ACF(anisotropic conductive film)と呼ばれる異方性導電フィルムや、NCP(non anisotropic conductive paste)と呼ばれるエポキシを主材とする接着用ペーストなどが用いられる。 In order to take out the electric power generated by the solar battery cell 22, electrical continuity between the front and back electrodes of the solar battery cell 22 and the interconnector 1, and a mechanical device that can withstand a temperature cycle and a high temperature and high humidity test. High bonding strength is required. Therefore, the bonding material 26 is generally a solder material such as SnPb, SnAgCu, or SnAgBi, an anisotropic conductive film called ACF (anisotropic conductive film), or an epoxy called main material called NCP (nonisotropic conductive paste). An adhesive paste or the like is used.
 インターコネクタ1を、接合材料26で太陽電池セル22の表面電極および裏面電極に接合するには、1)接合材料26を、太陽電池セル22の表面電極および裏面電極に、印刷、塗布、貼り付けなどにより供給し、2)太陽電池セル22の表面電極および裏面電極上に、インターコネクタ1を位置合わせし、3)加熱加圧ヘッドで、太陽電池セル22の両面から同時に、インターコネクタ1を太陽電池セル22の両面に圧着し、接合材料26を溶融後凝固させる。一般的な圧着条件は、例えば170~250℃で5~10秒間圧着する。太陽電池セル22のそれぞれに接合を行って、複数の太陽電池セル22を電気的に直列に接続する。 In order to join the interconnector 1 to the front electrode and the back electrode of the solar battery cell 22 with the bonding material 26, 1) printing, applying, and attaching the bonding material 26 to the front electrode and the back electrode of the solar battery cell 22. 2) Align the interconnector 1 on the front and back electrodes of the solar cell 22, and 3) Simultaneously connect the interconnector 1 to the solar cell 22 from both sides of the solar cell 22 with a heating and pressing head. The both sides of the battery cell 22 are pressure-bonded, and the bonding material 26 is melted and solidified. As a general pressure bonding condition, for example, pressure bonding is performed at 170 to 250 ° C. for 5 to 10 seconds. Each of the solar cells 22 is joined, and the plurality of solar cells 22 are electrically connected in series.
 次工程として、図3Aに示すように、透明充填樹脂3の上に、インターコネクタ1で接続された複数の太陽電池セル22を位置合わせする。透光性プラスチック材料12の所定位置に、あらかじめ位置合わせ用認識マークを設けておくことが好ましい。認識マークを基準に、複数の太陽電池セル22を一括して、透明充填樹脂3の上に配置することができる。複数の太陽電池セル22を一括してマウントするので、太陽電池セル22へのダメージや、インターコネクタ1の断線などの不良に注意する。 As a next step, as shown in FIG. 3A, the plurality of solar cells 22 connected by the interconnector 1 are aligned on the transparent filling resin 3. It is preferable to provide an alignment recognition mark at a predetermined position of the translucent plastic material 12 in advance. Based on the recognition mark, a plurality of solar cells 22 can be collectively disposed on the transparent filling resin 3. Since a plurality of solar cells 22 are mounted together, attention is paid to defects such as damage to the solar cells 22 and disconnection of the interconnector 1.
 次に、図3Bに示すように、複数の太陽電池セル22上に、対となる透明充填樹脂3を位置合わせしながらマウントする。透明充填樹脂3に切り込みをいれて、インターコネクタ1の引き出し部1aを外部に引き出す。 Next, as shown in FIG. 3B, the transparent filling resin 3 to be paired is mounted on the plurality of solar cells 22 while being aligned. A cut is made in the transparent filling resin 3, and the lead-out portion 1a of the interconnector 1 is pulled out.
 次に、図3Cに示すように、透光性バックシート25を、複数の太陽電池セル22上の透明充填樹脂3に位置合わせしながらマウントする。透光性バックシート25に切り込みをいれ、インターコネクタ1の引き出し部1a部分を外部に引き出す。このようにして、透光性プラスチック材12と、一対の透明充填樹脂3と、太陽電池セル22と、透光性バックシート25とが積層された積層物を得る。 Next, as shown in FIG. 3C, the translucent back sheet 25 is mounted while being aligned with the transparent filling resin 3 on the plurality of solar cells 22. A cut is made in the translucent back sheet 25 and the lead-out portion 1a portion of the interconnector 1 is pulled out. In this way, a laminate in which the translucent plastic material 12, the pair of transparent filling resins 3, the solar battery cells 22, and the translucent back sheet 25 are laminated is obtained.
 次工程として、図4Aに示すように、図3Cで得られた積層物をラミネートして、一体化された積層体を得る。図4Aに示されるラミネート工程において、図3Cで得られた積層物に、弾性材料シート44を介して圧力を加える。弾性材料シート44を介して積層物を加圧することで、透光性プラスチック材12に均一な圧力を加えることができる。 As the next step, as shown in FIG. 4A, the laminate obtained in FIG. 3C is laminated to obtain an integrated laminate. In the laminating process shown in FIG. 4A, pressure is applied to the laminate obtained in FIG. 3C through the elastic material sheet 44. By pressing the laminate through the elastic material sheet 44, a uniform pressure can be applied to the translucent plastic material 12.
 透光性プラスチック材12に成膜されている反射防止膜およびガスバリア層は、水分を吸収していることがある。吸水されている水分が、ラミネート工程における加熱によって気泡として発生することがないように、透光性プラスチック材12から水分を除去しておくことが好ましい。透光性プラスチック材12から水分を除去するには、例えば、予め積層体を120℃で5h乾燥を行えばよい。積層体は、シリカゲルと共に密閉して保管し、開封直後にラミネート工程に使用することが好ましい。 The antireflection film and gas barrier layer formed on the translucent plastic material 12 may absorb moisture. It is preferable to remove the moisture from the translucent plastic material 12 so that the moisture absorbed is not generated as bubbles by heating in the laminating process. In order to remove moisture from the translucent plastic material 12, for example, the laminate may be previously dried at 120 ° C. for 5 hours. The laminate is preferably stored in a sealed state together with silica gel and used in the laminating step immediately after opening.
 図4Aに示されるラミネート工程では、透光性プラスチック材12のガラス転移温度(例えば、150℃)以下の温度に、下部の加熱金属板31および上部のヒータ27で上述の積層物で加熱する。それにより、積層物の透明充填樹脂3を充分に溶融させる。そのとき、透明充填樹脂3の架橋反応が開始しないように、真空加圧炉28と真空炉29の内圧を下げて、目安として130Pa以下とする。具体的には、真空加圧炉28と真空炉29の内部の真空引き工程を10~30分間行う。 In the laminating step shown in FIG. 4A, the above-mentioned laminate is heated by the lower heating metal plate 31 and the upper heater 27 to a temperature not higher than the glass transition temperature (for example, 150 ° C.) of the translucent plastic material 12. Thereby, the transparent filling resin 3 of the laminate is sufficiently melted. At that time, the internal pressure of the vacuum pressurizing furnace 28 and the vacuum furnace 29 is lowered to 130 Pa or less as a guide so that the crosslinking reaction of the transparent filling resin 3 does not start. Specifically, the evacuation process inside the vacuum pressurizing furnace 28 and the vacuum furnace 29 is performed for 10 to 30 minutes.
 ラミネート工程で、弾性材料シート44が透光性バックシート25に接触する。しかしながら、真空加圧炉28の内圧と、真空炉29の内圧とが同一になるように制御しているため、弾性材料シート44による透光性バックシート25への加圧はほとんどない。よって、架橋反応は開始しない。 In the laminating process, the elastic material sheet 44 contacts the translucent back sheet 25. However, since the internal pressure of the vacuum pressurizing furnace 28 and the internal pressure of the vacuum furnace 29 are controlled to be the same, the elastic material sheet 44 hardly pressurizes the translucent backsheet 25. Therefore, the crosslinking reaction does not start.
 次に、真空炉29の真空を維持したまま、真空加圧炉28に空気を入れて、真空加圧炉28の内圧を0.5気圧~最大2気圧の範囲に調整する。その結果、弾性材料シート44が透光性バックシート25を加圧し、透明充填樹脂3の架橋反応が充分に進行する。加圧時間は、例えば5~15分間である。また、透明充填樹脂3の架橋反応が短時間で充分に進行するように、真空加圧炉28に、常温の空気ではなく、ホットエアー(最高200℃まで)を入れることもできる。 Next, while maintaining the vacuum of the vacuum furnace 29, air is introduced into the vacuum pressurizing furnace 28 to adjust the internal pressure of the vacuum pressurizing furnace 28 to a range of 0.5 atm to a maximum of 2 atm. As a result, the elastic material sheet 44 pressurizes the translucent back sheet 25, and the crosslinking reaction of the transparent filling resin 3 proceeds sufficiently. The pressurizing time is, for example, 5 to 15 minutes. Further, hot air (up to 200 ° C.) can be introduced into the vacuum pressurizing furnace 28 so that the crosslinking reaction of the transparent filling resin 3 proceeds sufficiently in a short time.
 このようなラミネート工程により、透明充填樹脂3が架橋反応をおこし、透光性プラスチック材12と太陽電池セル22と透光性バックシート25間が密着し、一体化して積層体となる。その後、100~150℃程度のキュア工程に投入し、透明充填樹脂3の架橋反応が完了するように30~90分程度行う。 By such a laminating process, the transparent filling resin 3 undergoes a crosslinking reaction, and the translucent plastic material 12, the solar battery cell 22, and the translucent back sheet 25 are in close contact and integrated to form a laminate. Thereafter, it is put into a curing step of about 100 to 150 ° C., and is performed for about 30 to 90 minutes so that the crosslinking reaction of the transparent filling resin 3 is completed.
 次工程として、図4Bに示すように、透光性バックシート25に端子箱32を取り付ける。端子箱32内は、通常、シリコーングリースで絶縁および防水防湿処理されている。太陽電池セル22で発電された電力は、インターコネクタ1にて電気的に引き出され、引き出し部1aで外部に引き出される。引き出し部1aは、端子箱32に、はんだや溶接工法などを用いて電気的に結線される。 As a next step, a terminal box 32 is attached to the translucent backsheet 25 as shown in FIG. 4B. The inside of the terminal box 32 is normally insulated and waterproof / moisture-proofed with silicone grease. The electric power generated by the solar battery cell 22 is electrically drawn out by the interconnector 1 and drawn out to the outside by the lead-out part 1a. The lead portion 1a is electrically connected to the terminal box 32 using solder, a welding method, or the like.
 インターコネクタ1は、端子箱32で外部配線と接続される。例えば、端子箱32を介して太陽電池装置11(図1A~C)同士を電気的に結線し、電気的に接続した複数の太陽電池装置11で太陽電池システムが構成される。 Interconnector 1 is connected to external wiring by terminal box 32. For example, solar cell devices 11 (FIGS. 1A to 1C) are electrically connected via a terminal box 32, and a solar cell system is configured by a plurality of solar cell devices 11 that are electrically connected.
 次工程として、図5A、図5Bに示すように、図4Bで得られた積層体の透光性プラスチック材12を、所定の曲面を有する形状に成型するとともに、枠部14(図1A~Cを参照)を成型する。これを、真空成形工程と称する。 As the next step, as shown in FIGS. 5A and 5B, the transparent plastic material 12 of the laminate obtained in FIG. 4B is molded into a shape having a predetermined curved surface, and the frame portion 14 (FIGS. 1A to 1C). ). This is called a vacuum forming process.
 真空成形工程の第1工程として、透光性プラスチック材12内の水分を除去するために、図4Bで得られた積層体をベーク処理する。ベーク温度は、透光性プラスチック材12の材料のガラス転位温度以下に設定し、一般的に100~150℃程度にする。高湿環境化で保管されていた透光性プラスチック材12のベーク時間は、特に限定されないが、「厚み(mm)の2乗値×1時間」以内に設定する。例えば、透光性プラスチック材12の厚みが5mmの場合、25(=5×5)時間以下を目安にする。低湿環境化で適正に保管されていた透光性プラスチック材12の場合5mm厚みの場合、ベーク時間は5~10時間程度でよい。 As the first step of the vacuum forming step, the laminated body obtained in FIG. 4B is baked in order to remove moisture in the translucent plastic material 12. The baking temperature is set to be equal to or lower than the glass transition temperature of the translucent plastic material 12, and is generally about 100 to 150 ° C. The baking time of the translucent plastic material 12 stored in a high humidity environment is not particularly limited, but is set within “square value of thickness (mm) × 1 hour”. For example, when the thickness of the translucent plastic material 12 is 5 mm, the time is 25 (= 5 × 5) hours or less. In the case of the translucent plastic material 12 properly stored in a low-humidity environment, when the thickness is 5 mm, the baking time may be about 5 to 10 hours.
 真空成形工程の第2工程として、ベーク炉から取り出した直後の透光性プラスチック材12の周縁部を、真空成形機の固定枠33で挟み込んで固定する。そのとき、太陽電池セル22が成形型34に対向するようにセットする(図5A参照)。 As the second step of the vacuum forming step, the peripheral portion of the translucent plastic material 12 immediately after being taken out from the baking furnace is sandwiched and fixed by the fixing frame 33 of the vacuum forming machine. At that time, the solar battery cell 22 is set so as to face the molding die 34 (see FIG. 5A).
 真空成形工程の第3工程として、上側ヒータ27aと下側ヒータ27dの温度を上昇させて、透光性プラスチック材12を加温する。透光性プラスチック材12の温度が、透光性プラスチック材12の材料のガラス転移温度(Tg)以上の150~200℃になるように、上側ヒータ27a及び下側ヒータ27dの温度を設定する(例えば、300~500℃の範囲に設定する)。それにより、透光性プラスチック材12を所望の形状に成型しやすくなる。 As the third step of the vacuum forming step, the temperature of the upper heater 27a and the lower heater 27d is raised to heat the translucent plastic material 12. The temperature of the upper heater 27a and the lower heater 27d is set so that the temperature of the translucent plastic material 12 is 150 to 200 ° C. which is equal to or higher than the glass transition temperature (Tg) of the material of the translucent plastic material 12 ( For example, it is set in the range of 300 to 500 ° C.). Thereby, it becomes easy to mold the translucent plastic material 12 into a desired shape.
 同時に、成形型34内に設けられたヒータ27bの温度と成形型取付台36のヒータ27cの温度も上昇させる(図5B参照)。ヒータ27bやヒータ27cの温度は、透光性プラスチック材12を変形させやすい温度であって、冷却により硬化可能な温度であることが好ましい。 At the same time, the temperature of the heater 27b provided in the mold 34 and the temperature of the heater 27c of the mold mounting base 36 are also increased (see FIG. 5B). The temperature of the heater 27b and the heater 27c is preferably a temperature at which the translucent plastic material 12 can be easily deformed and can be cured by cooling.
 真空成形工程の第4工程として、透光性プラスチック材12が所定温度に達した(例えば、約1~3分間かけて150~180℃とする)後に、下側ヒータ27dを構成する部材を移動させて、透光性プラスチック材12と固定枠33とを成形型34にまで移動可能な状態(移動に干渉しない状態)とする。 As the fourth step of the vacuum forming step, after the translucent plastic material 12 reaches a predetermined temperature (for example, 150 to 180 ° C. over about 1 to 3 minutes), the member constituting the lower heater 27d is moved. Thus, the translucent plastic material 12 and the fixed frame 33 can be moved to the mold 34 (a state that does not interfere with the movement).
 そして、図6に示すように、透光性プラスチック材12を真空成形によって所望の形状に成型する。固定枠33を下降させ、太陽電池セル22と一体化している透光性プラスチック材12を成形型34の頭頂部34a(図5B参照)に接触させる。さらに、固定枠33を継続的に下降させる。固定枠33が頭頂部34aに接触したとき、真空穴35に接続している真空ポンプが、成形型34の表面に複数ある真空穴35から空気を吸引する。 Then, as shown in FIG. 6, the translucent plastic material 12 is molded into a desired shape by vacuum forming. The fixing frame 33 is lowered, and the translucent plastic material 12 integrated with the solar battery cell 22 is brought into contact with the top portion 34a (see FIG. 5B) of the mold 34. Further, the fixed frame 33 is continuously lowered. When the fixed frame 33 comes into contact with the top 34 a, a vacuum pump connected to the vacuum hole 35 sucks air from the plurality of vacuum holes 35 on the surface of the molding die 34.
 加熱により軟化した透光性プラスチック材12は、固定枠33によって下降されながら、成形型34に接触する。真空穴35から空気が吸引されているので、軟化した透光性プラスチック材12は成形型34に密着する。その結果、成形型34の形状が、透光性プラスチック材12に転写される。 The translucent plastic material 12 softened by heating comes into contact with the mold 34 while being lowered by the fixed frame 33. Since air is sucked from the vacuum hole 35, the softened translucent plastic material 12 is in close contact with the mold 34. As a result, the shape of the mold 34 is transferred to the translucent plastic material 12.
 成形型34に接触した透光性プラスチック材12の熱は、成形型34に移動する。その結果、透光性プラスチック材12は、温度の低下により硬化する。効率的に透光性プラスチック材12の温度を低下させるために、外部から扇風機などを用いてエアーをブローしてもよい。 The heat of the translucent plastic material 12 that has contacted the molding die 34 moves to the molding die 34. As a result, the translucent plastic material 12 is cured by a decrease in temperature. In order to efficiently lower the temperature of the translucent plastic material 12, air may be blown from the outside using a fan or the like.
 透光性プラスチック材12が70℃以下になり、十分に硬化したことを確認した後に、真空穴35を通して空気を吹き出し、エアーブローにより成形型34と透光性プラスチック材12とを離型させる。さらに、固定枠33によって透光性プラスチック材12を上昇させて、成形型34と透光性プラスチック材12を離間させる。 After confirming that the translucent plastic material 12 is 70 ° C. or less and has been sufficiently cured, air is blown out through the vacuum holes 35, and the molding die 34 and the translucent plastic material 12 are released from each other by air blow. Further, the translucent plastic material 12 is raised by the fixing frame 33 to separate the mold 34 from the translucent plastic material 12.
 次に、固定枠33による透光性プラスチック材12の固定を解除し、透光性プラスチック材12を取り外す。この一連の真空成型によって実施の形態1の太陽電池装置11(図1)が得られる。実施の形態1の太陽電池装置は、ドーム状の曲面を有する透光性プラスチック材12を有し、かつそのドームの底面に枠部(ふち部)14を有する。図6は、透光性プラスチック材12と成型器の断面を示しているが、図1に示されるように、得られる太陽電池装置はドーム状の透光性プラスチック材12を有する。 Next, the fixing of the translucent plastic material 12 by the fixing frame 33 is released, and the translucent plastic material 12 is removed. The solar cell device 11 (FIG. 1) of Embodiment 1 is obtained by this series of vacuum forming. The solar cell device of the first embodiment has a translucent plastic material 12 having a dome-shaped curved surface, and has a frame portion (edge portion) 14 on the bottom surface of the dome. FIG. 6 shows a cross section of the translucent plastic material 12 and the molding machine. As shown in FIG. 1, the obtained solar cell device has a dome-shaped translucent plastic material 12.
 このように、太陽電池装置の透光性プラスチック材を、真空穴を設けた成形型に押し付ける方法で成型することで、透光性プラスチック材に、所望の曲面を形成できる。 Thus, a desired curved surface can be formed on the translucent plastic material by molding the translucent plastic material of the solar cell device by a method of pressing the translucent plastic material against a molding die provided with a vacuum hole.
[実施の形態2]
 図7に、実施の形態2の太陽電池装置を示す。実施の形態2の太陽電池装置は、太陽電池セル22の透光性プラスチック材12の封止領域15以外の部分(側面部分)に、外部空間に対して凹状の曲面12aを有する。側面に凹状の曲面12aを設けることにより、太陽電池セル22の封止領域15の面積より、設置領域19の面積を小さくすることができる。設置領域19の面積を小さくすれば、被固定体24の面積に対する、太陽電池セル22の封止領域15の面積比率を高めることができる。その結果、太陽電池装置の設置効率が高まる。
[Embodiment 2]
In FIG. 7, the solar cell apparatus of Embodiment 2 is shown. The solar cell device of Embodiment 2 has a curved surface 12a that is concave with respect to the external space in a portion (side surface portion) other than the sealing region 15 of the translucent plastic material 12 of the solar battery cell 22. By providing the concave curved surface 12 a on the side surface, the area of the installation region 19 can be made smaller than the area of the sealing region 15 of the solar battery cell 22. If the area of the installation region 19 is reduced, the area ratio of the sealing region 15 of the solar battery cell 22 to the area of the fixed body 24 can be increased. As a result, the installation efficiency of the solar cell device is increased.
 また、透光性プラスチック材12の側面部分に凹状の曲面12aを設けることにより、設置領域19の外部の被固定体24の表面で反射した太陽光37の、透光性プラスチック材12の側面への入射角度が大きくなる。そのため、側面で反射する光が少なくなる。その結果、設置領域19の外側の被固定体24の表面で反射した太陽光37が両面受光型の太陽電池セル22に入射しやすくなり、太陽電池セル22の発電量を増加させることができる。 Further, by providing the concave curved surface 12 a on the side surface portion of the translucent plastic material 12, the sunlight 37 reflected by the surface of the fixed body 24 outside the installation area 19 is directed to the side surface of the translucent plastic material 12. The incident angle of becomes large. Therefore, less light is reflected from the side surfaces. As a result, the sunlight 37 reflected from the surface of the fixed body 24 outside the installation region 19 is likely to enter the double-sided light receiving solar cell 22, and the power generation amount of the solar cell 22 can be increased.
[実施の形態3]
 図8に、実施の形態3の太陽電池装置を示す。実施の形態3の太陽電池装置は、太陽電池セル22の透光性プラスチック材12の封止領域15の表面に、外部空間に対して凸状の曲面12bを有する。太陽電池セル22の封止領域15に凸状の曲面12bを設けることによって、太陽電池装置の剛性が向上する。また、凸状の曲面12bの面角度を調整して、太陽電池セル22の封止領域15の表面への太陽光の入射角度をより直角に近づけることもできる。それにより、一年を通じての太陽高度の変化や、1日を通じての太陽の移動があっても、常に太陽電池セル22の封止領域15の表面での反射率を低減し、太陽電池セル22の発電量を向上させることができる。
[Embodiment 3]
FIG. 8 shows the solar cell device of the third embodiment. The solar cell device of the third embodiment has a curved surface 12 b that is convex with respect to the external space on the surface of the sealing region 15 of the light-transmitting plastic material 12 of the solar battery cell 22. By providing the convex curved surface 12b in the sealing region 15 of the solar battery cell 22, the rigidity of the solar battery device is improved. Moreover, the incident angle of the sunlight to the surface of the sealing area | region 15 of the photovoltaic cell 22 can also be closely approached by adjusting the surface angle of the convex-shaped curved surface 12b. Thereby, even if the solar altitude changes throughout the year or the sun moves throughout the day, the reflectance on the surface of the sealing region 15 of the solar cells 22 is always reduced, The amount of power generation can be improved.
 実施の形態3の太陽電池装置は、実施の形態1の太陽電池装置と同様に、1)透光性バックシート25と、太陽電池セル22と、反射防止膜およびガスバリア層が形成された透光性プラスチック材12と、EVAに代表される透明充填樹脂3をラミネートして、一体化された積層体を得て(ラミネート工程)、2)得られた積層体を真空成型する(真空成型工程)ことで製造されうる。 The solar cell device of the third embodiment is similar to the solar cell device of the first embodiment. 1) Translucent backsheet 25, solar battery cell 22, translucent film on which antireflection film and gas barrier layer are formed The plastic laminate 12 and the transparent filling resin 3 typified by EVA are laminated to obtain an integrated laminate (lamination process). 2) The obtained laminate is vacuum molded (vacuum molding process). Can be manufactured.
 図9に、ラミネート工程を示す。実施の形態3の太陽電池装置は、太陽電池セル22の封止領域15に凸状の曲面12bを有する(図8参照)。そのため、ラミネート工程において、凸状の曲面12bを有する透光性プラスチック材12の凸状の曲面12bに、両面発電を行う太陽電池セル22を貼り付ける。このラミネート法は、一般的な「加飾フィルム工法」を応用した方法である。 Fig. 9 shows the lamination process. The solar cell device of Embodiment 3 has a convex curved surface 12b in the sealing region 15 of the solar battery cell 22 (see FIG. 8). Therefore, in the laminating step, the solar battery cell 22 that performs double-sided power generation is attached to the convex curved surface 12b of the translucent plastic material 12 having the convex curved surface 12b. This laminating method is a method applying a general “decorative film construction method”.
 曲面ラミネータ42は、上枠42aおよび下枠42bと、凹形状を有する加熱型43と、を有する。曲面ラミネータ42の装置内部の凹形状を有する加熱型43に、凸状の曲面12bを有する透光性プラスチック材12を載置する。さらに、図2および図3に示されるフローと同様のフローで、加熱型43に載置された、凸状の曲面12bを有する透光性プラスチック材12に、太陽電池セル22、透明充填樹脂3、透光性バックシート25などをセットして積層物を得る。 The curved surface laminator 42 has an upper frame 42a and a lower frame 42b, and a heating die 43 having a concave shape. The translucent plastic material 12 having the convex curved surface 12b is placed on the heating die 43 having the concave shape inside the curved laminator 42. Further, in the same flow as that shown in FIGS. 2 and 3, the solar cell 22 and the transparent filling resin 3 are placed on the translucent plastic material 12 having the convex curved surface 12 b placed on the heating mold 43. Then, a translucent back sheet 25 or the like is set to obtain a laminate.
 次に、弾性材料シート44を具備する上枠42aを下降させて、得られた積層物を弾性体シート44で包み込む。 Next, the upper frame 42 a including the elastic material sheet 44 is lowered, and the obtained laminate is wrapped with the elastic sheet 44.
 次に、真空炉29の内圧と真空加圧炉28の内圧とを130Pa以下にする。そして、ヒータ27と加熱型43の温度を上昇させて、透明充填樹脂3を加熱して40~80℃とする。次に、真空加圧炉28に空気をいれて、内圧を0.5気圧から2気圧程度にする。その状態で、ヒータ27と加熱型の温度を100~150℃まで上昇させ、透明充填樹脂3に圧力を加えながら加熱させ、透明充填樹脂3を架橋させる。 Next, the internal pressure of the vacuum furnace 29 and the internal pressure of the vacuum pressurizing furnace 28 are set to 130 Pa or less. Then, the temperature of the heater 27 and the heating mold 43 is raised, and the transparent filling resin 3 is heated to 40 to 80 ° C. Next, air is introduced into the vacuum pressurizing furnace 28, and the internal pressure is set to about 0.5 to 2 atmospheres. In this state, the temperature of the heater 27 and the heating mold is raised to 100 to 150 ° C. and heated while applying pressure to the transparent filling resin 3 to crosslink the transparent filling resin 3.
 その後、ヒータ27及び加熱型43の温度を下げて、真空加圧炉28及び真空炉29を大気圧に戻す。上枠42aと下枠42bを開くことにより、凸状の曲面12bを有する透光性プラスチック材12を含む積層体を得ることができる。 Thereafter, the temperature of the heater 27 and the heating mold 43 is lowered, and the vacuum pressurizing furnace 28 and the vacuum furnace 29 are returned to the atmospheric pressure. By opening the upper frame 42a and the lower frame 42b, a laminate including the translucent plastic material 12 having the convex curved surface 12b can be obtained.
 図10に、真空成型工程を示す。図6に示される真空成型工程と同様に、成形型34に透光性プラスチック材12を密着させて、透光性プラスチック材12を所望の曲面形状にする。成形型34は、複数の分割型(分割中型34bと分割外型34c)からなり、それらを分割して取り外すことができる。そこで、図10に示される真空成型工程の完了後に、まず成形型34から、分割中型34bを図中下方向に移動させて取り外す。次に、成型した透光性プラスチック材の内部に残った分割外型34cを、中心側に移動させた後に引き抜くことができる。このようにして、側面に凹状の曲面12aを有する透光性プラスチック材12を形成し、容易に成型型34を除去することができる。 FIG. 10 shows the vacuum forming process. Similar to the vacuum molding step shown in FIG. 6, the translucent plastic material 12 is brought into close contact with the molding die 34 so that the translucent plastic material 12 has a desired curved shape. The molding die 34 includes a plurality of split molds (a split middle mold 34b and a split outer mold 34c), which can be split and removed. Therefore, after the vacuum forming step shown in FIG. 10 is completed, the divided middle die 34b is first moved from the forming die 34 downward and removed. Next, the divided outer mold 34c remaining inside the molded light-transmitting plastic material can be pulled out after being moved to the center side. Thus, the translucent plastic material 12 having the concave curved surface 12a on the side surface can be formed, and the mold 34 can be easily removed.
 例えば、成形型34は、成型型取り付け台36からみたときに、(X:Y)行列で3×3=9分割されている。まず、(X:Y)行列の中央(0:0)の分割型を取り外し、次に、(1:0)(-1:0)(0:1)(0:-1)の分割型を取り外す。それから、(1:1)(-1:-1)(1:-1)(-1:1)の分割型を取り外す。 For example, the mold 34 is divided by 3 × 3 = 9 in the (X: Y) matrix when viewed from the mold mounting base 36. First, the center (0: 0) split type of the (X: Y) matrix is removed, and then the split type of (1: 0) (-1: 0) (0: 1) (0: -1) is changed. Remove. Then, the split mold of (1: 1) (-1: -1) (1: -1) (-1: 1) is removed.
[実施の形態4]
 図11に、実施の形態4の太陽電池装置を示す。実施の形態4の太陽電池装置は、実施の形態1の太陽電池装置の応用であり、被固定体としての自動車の屋根の車台38に固定されている。具体的には、太陽電池装置の透光性プラスチック材12の枠部14が、接着剤39によって車台38に固定されている。
[Embodiment 4]
FIG. 11 shows a solar cell device according to the fourth embodiment. The solar cell device of the fourth embodiment is an application of the solar cell device of the first embodiment, and is fixed to a chassis 38 of an automobile roof as a fixed body. Specifically, the frame portion 14 of the translucent plastic material 12 of the solar cell device is fixed to the chassis 38 with an adhesive 39.
 太陽電池装置が車台38に固定されることで、自動車の室内が密閉されて、自動車の室内に外部からの雨風の侵入が抑制される。特に、図11に示されるように、車台38に車台凹部38aを設けておくことで、雨水は、車台38の車台凹部38aに沿って車外に流れて行く。 The solar cell device is fixed to the chassis 38, so that the interior of the automobile is sealed, and the entry of rain and wind from the outside into the interior of the automobile is suppressed. In particular, as shown in FIG. 11, by providing a chassis recess 38 a in the chassis 38, rainwater flows outside the vehicle along the chassis recess 38 a of the chassis 38.
 また、サンルーフ(外部からの光を車内に取り込むための天窓)を有する自動車の屋根の車台38に、実施の形態4の太陽電池装置を固定してもよい。実施の形態4の太陽電池装置は、両面発電を行う太陽電池セル22とインターコネクタ1以外は、光透過させる部材で構成されうる。そのため、実施の形態4の太陽電池装置を自動車の屋根の車台38に取り付けても、サンルーフとしての機能が維持できる。 Further, the solar cell device of the fourth embodiment may be fixed to a chassis 38 of a car roof having a sunroof (a skylight for taking light from outside into the car). The solar cell device of the fourth embodiment can be configured by a light transmitting member except for the solar cells 22 that perform double-sided power generation and the interconnector 1. Therefore, even if the solar cell device of Embodiment 4 is attached to the chassis 38 of the automobile roof, the function as a sunroof can be maintained.
 また、実施の形態4の太陽電池装置を、サンルーフを有する自動車の屋根の車台38に固定した場合には、車台38の下に配置される車内天井板40にスライド板41を設けることができる。スライド板41を開けるとサンルーフを介して車内に太陽光を取り込むことができ、スライド板41を閉じるとスライド板41に遮られて車内に太陽光を取り込まれない。 Further, when the solar cell device according to the fourth embodiment is fixed to the chassis 38 of the roof of the automobile having a sunroof, the slide plate 41 can be provided on the interior ceiling board 40 disposed under the chassis 38. When the slide plate 41 is opened, sunlight can be taken into the vehicle via the sunroof, and when the slide plate 41 is closed, the slide plate 41 is blocked and sunlight is not taken into the vehicle.
 スライド板41の太陽電池装置と対向する面には、光反射体23を設けることが好ましい。スライド板41を閉じたときに、サンルーフを透過した太陽光37が光反射体23で反射して、両面発電を行う太陽電池セル22の裏面に入射することができる。その結果、両面発電を行う太陽電池セル22の発電量の増加を図ることができる。 It is preferable to provide a light reflector 23 on the surface of the slide plate 41 facing the solar cell device. When the slide plate 41 is closed, the sunlight 37 that has passed through the sunroof is reflected by the light reflector 23 and can enter the back surface of the solar battery cell 22 that performs double-sided power generation. As a result, it is possible to increase the power generation amount of the solar battery cell 22 that performs double-sided power generation.
[実施の形態5]
 図12に、実施の形態5の太陽電池装置を示す。実施の形態5の太陽電池装置は、太陽電池装置の設置領域19の周囲の、被固定体24の上に配置されたプリズム反射シート50を有するが、その他の構成は実施の形態1の太陽電池装置と同様である。プリズム反射シート50は、例えば、プリズム反射シートである。プリズム反射シートは、例えば、その表面に三角プリズムが形成されている。
[Embodiment 5]
FIG. 12 shows a solar cell device according to the fifth embodiment. The solar cell device according to the fifth embodiment includes the prism reflection sheet 50 disposed on the fixed body 24 around the installation region 19 of the solar cell device, but the other configuration is the solar cell according to the first embodiment. It is the same as the device. The prism reflection sheet 50 is, for example, a prism reflection sheet. For example, a triangular prism is formed on the surface of the prism reflection sheet.
 プリズム反射シート50は、白色のシリコーン樹脂、エポキシ樹脂、ウレタンゴムのフィルムや、白色塗装したポリカーボネイトやアクリルなどの樹脂板や、高反射の貝殻粉を混入した液体を塗装したフィルムである。 The prism reflection sheet 50 is a film in which a white silicone resin, epoxy resin, urethane rubber film, a resin plate made of white painted polycarbonate or acrylic, or a liquid mixed with highly reflective shell powder is coated.
 プリズム反射シート50にて入射した太陽光37を、両面受光型の太陽電池セル22に向かって反射させて、発電量を増加させることができる。両面受光型の太陽電池セル22の発電量を、例えば10~20%増加させることができる。 It is possible to increase the amount of power generation by reflecting the sunlight 37 incident on the prism reflection sheet 50 toward the double-sided light receiving solar cell 22. The power generation amount of the double-sided light receiving solar cell 22 can be increased by, for example, 10 to 20%.
 2013年4月10日出願の特願2013-082309の日本出願に基づく優先権を主張する。本日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 Claims priority based on Japanese application of Japanese Patent Application No. 2013-082309 filed on April 10, 2013. The disclosures of the specification, drawings and abstract contained in this Japanese application are all incorporated herein.
 本発明の太陽電池装置は、ドーム状の曲面を有し、かつそのドームの底面に枠(ふち)が成型された透光性プラスチック材を有する。そのため、透光性プラスチック材の枠を被固定体に固定することで、ドーム内を密閉空間とすることができる。そのため、密閉空間に配置された太陽電池セルが、外部空間から(外気の風雨で)汚染されることが防止できる。また、本発明の太陽電池装置は軽量かつ剛性が高い。本発明の太陽電池装置は、一般家庭向けおよび商業用および車載用の太陽電池装置として用いることができる。 The solar cell device of the present invention has a translucent plastic material having a dome-shaped curved surface and a frame (edge) formed on the bottom surface of the dome. Therefore, the inside of the dome can be made a sealed space by fixing the frame of the translucent plastic material to the fixed body. Therefore, it can prevent that the photovoltaic cell arrange | positioned in sealed space is contaminated from external space (by the wind and rain of external air). Moreover, the solar cell device of the present invention is lightweight and highly rigid. The solar cell device of the present invention can be used as a solar cell device for general home use, commercial use, and on-vehicle use.
 1 インターコネクタ 
 1a 引き出し部 
 2 太陽電池セル 
 3 透明充填樹脂 
 6 積層体 
 7 枠体 
 11 太陽電池装置 
 12 透光性プラスチック材 
 12a 凹状の曲面 
 12b 凸状の曲面 
 14 枠部 
 15 封止領域 
 19 設置領域 
 20 密閉空間 
 21 固定ビス 
 22 太陽電池セル 
 23 光反射体 
 24 被固定体 
 25 透光性バックシート 
 26 接合材料 
 27 ヒータ
 27a 上側ヒータ
 27b,27c ヒータ
 27d 下側ヒータ
 28 真空加圧炉 
 29 真空炉 
 31 加熱金属板 
 32 端子箱 
 33 固定枠 
 34 成形型 
 34a 頭頂部 
 34b 分割中型 
 34c 分割外型 
 35 真空穴 
 36 成形型取付台 
 37 太陽光 
 37a 反射光 
 38 車台 
 38a 車台凹部 
 39 接着剤 
 40 車内天井板 
 41 スライド板 
 42 曲面ラミネータ 
 42a 上枠 
 42b 下枠 
 43 加熱型 
 44 弾性材料シート 
 45 防水膜 
 46 密着層 
 50 プリズム反射シート 
 
1 Interconnector
1a Drawer
2 Solar cells
3 Transparent filling resin
6 Laminate
7 Frame
11 Solar cell device
12 Translucent plastic material
12a Concave curved surface
12b Convex curved surface
14 Frame
15 Sealing area
19 Installation area
20 sealed space
21 Fixed screw
22 Solar cells
23 Light reflector
24 Fixed object
25 Translucent back sheet
26 Bonding materials
27 heater 27a upper heater 27b, 27c heater 27d lower heater 28 vacuum pressurizing furnace
29 Vacuum furnace
31 Heated metal plate
32 terminal box
33 Fixed frame
34 Mold
34a crown
34b Medium size
34c Outside division type
35 Vacuum hole
36 Mold mounting base
37 sunlight
37a Reflected light
38 chassis
38a Carcass recess
39 Adhesive
40 Car interior ceiling board
41 Slide plate
42 Curved Laminator
42a Upper frame
42b Bottom frame
43 Heating type
44 Elastic material sheet
45 Waterproof membrane
46 Adhesive layer
50 Prism reflection sheet

Claims (11)

  1.  透光性プラスチック材と、透光性バックシートと、前記透光性プラスチック材の封止領域と前記透光性バックシートとの間に配置され、互いにインターコネクタで電気接続された複数の両面受光型の太陽電池セルと、前記複数の太陽電池セルを包囲する透明充填樹脂と、を具備する太陽電池装置において、
     前記透光性プラスチック材はドーム状の曲面を有し、前記ドームの底面に枠体が成型されており、
     前記透光性プラスチック材は、太陽電池装置を設置する被固定体の設置領域に前記枠体が固定されることで、密閉空間を構成することができ、
     前記透光性バックシートと、前記太陽電池セルと、前記透明充填樹脂とは、前記密閉空間に配置される、太陽電池装置。
    Translucent plastic material, translucent backsheet, and a plurality of double-sided light receiving elements disposed between the translucent plastic material sealing region and translucent backsheet, and electrically connected to each other through an interconnector In a solar battery device comprising a solar battery cell of a type and a transparent filling resin surrounding the plurality of solar battery cells,
    The translucent plastic material has a dome-shaped curved surface, and a frame is molded on the bottom surface of the dome,
    The translucent plastic material can constitute a sealed space by fixing the frame body to an installation region of a fixed body on which a solar cell device is installed,
    The translucent back sheet, the solar battery cell, and the transparent filling resin are solar battery devices arranged in the sealed space.
  2.  前記密閉空間を構成する前記被固定体の設置領域には光反射体が具備される、請求項1に記載の太陽電池装置。 The solar cell device according to claim 1, wherein a light reflector is provided in an installation area of the fixed body constituting the sealed space.
  3.  前記太陽電池装置が、前記被固定体の設置領域に固定されているときに、
     前記透光性プラスチック材の前記封止領域の表面は、前記被固定体の設置領域の表面と平行でなく、太陽光の入射角度が直交により近くなるように前記被固定体の表面の角度が設定されている、請求項1に記載の太陽電池装置。
    When the solar cell device is fixed to an installation area of the fixed body,
    The surface of the sealing region of the translucent plastic material is not parallel to the surface of the mounting region of the fixed body, and the angle of the surface of the fixed body is such that the incident angle of sunlight is closer to orthogonal. The solar cell device according to claim 1, which is set.
  4.  前記透光性プラスチック材の前記封止領域以外の面が、太陽光を効率的に密閉空間に導けるように、外部空間に対して凹状の曲面を有する、請求項1に記載の太陽電池装置。 2. The solar cell device according to claim 1, wherein a surface of the translucent plastic material other than the sealing region has a concave curved surface with respect to the external space so that sunlight can be efficiently guided to the sealed space.
  5.  前記透光性プラスチック材の前記封止領域以外の面が、外部空間に対して凹状の曲面を有し、
     前記透光性プラスチック材の前記封止領域の面積よりも、前記被固定体の前記設置領域の面積が小さい、請求項1に記載の太陽電池装置。
    A surface other than the sealing region of the translucent plastic material has a curved surface that is concave with respect to the external space,
    The solar cell device according to claim 1, wherein an area of the installation region of the fixed body is smaller than an area of the sealing region of the translucent plastic material.
  6.  前記透光性プラスチック材の前記封止領域が、太陽電池装置の剛性を高めるように、外部空間に対して凸状の曲面を有する、請求項1に記載の太陽電池装置。 The solar cell device according to claim 1, wherein the sealing region of the translucent plastic material has a curved surface that is convex with respect to the external space so as to increase the rigidity of the solar cell device.
  7.  前記被固定体は、自動車の屋根を含む車体であり、
     前記太陽電池装置が、前記自動車の屋根の車体に固定されることで、外気の風雨が車内に入ることが防止される、請求項1に記載の太陽電池装置。
    The fixed body is a vehicle body including a roof of an automobile,
    The solar cell device according to claim 1, wherein the solar cell device is fixed to a vehicle body of the roof of the automobile, thereby preventing wind and rain of outside air from entering the vehicle.
  8.  前記被固定体は、自動車の車内に光を取り入れるスライド板を含む屋根を含む車体であり、
     前記スライド板の太陽電池装置と対向する面には、光反射体が具備されている、請求項7に記載の太陽電池装置。
    The to-be-fixed body is a vehicle body including a roof including a slide plate that takes light into a car.
    The solar cell device according to claim 7, wherein a light reflector is provided on a surface of the slide plate facing the solar cell device.
  9.  前記被固定体の前記設置領域の周囲には、凹凸形状のプリズム反射シートが設けられ、プリズム反射シートで反射された太陽光を太陽電池装置に入射させる、請求項1に記載の太陽電池装置。 The solar cell device according to claim 1, wherein an uneven prism reflection sheet is provided around the installation area of the fixed body, and sunlight reflected by the prism reflection sheet is incident on the solar cell device.
  10.  請求項1に記載する太陽電池装置の製造方法であって、
     透光性プラスチック板と、前記透光性バックシートと、前記複数の太陽電池セルと、前記透明充填樹脂とを含む積層体を用意する工程と、
     前記積層体を、真空穴を設けた成形型に押し付けて、前記透光性プラスチック板を屈曲させて、前記透光性プラスチック材を得る工程と、
     を含む、製造方法。
    It is a manufacturing method of the solar cell device according to claim 1,
    Preparing a laminate including a translucent plastic plate, the translucent backsheet, the plurality of solar cells, and the transparent filling resin;
    Pressing the laminate against a mold having a vacuum hole to bend the translucent plastic plate to obtain the translucent plastic material; and
    Manufacturing method.
  11.  請求項10に記載する太陽電池装置の製造方法であって、
     前記積層体は、前記透光性プラスチック板と、前記透光性バックシートと、前記複数の太陽電池セルと、前記透明充填樹脂と、弾性のある樹脂シートとの積層物を加圧ラミネートして得る、製造方法。
    It is a manufacturing method of the solar cell device according to claim 10,
    The laminate is formed by pressure laminating a laminate of the translucent plastic plate, the translucent backsheet, the plurality of solar cells, the transparent filling resin, and an elastic resin sheet. A manufacturing method to obtain.
PCT/JP2014/002010 2013-04-10 2014-04-08 Solar cell apparatus and method for manufacturing same WO2014167841A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/440,882 US10050163B2 (en) 2013-04-10 2014-04-08 Solar cell apparatus and method for manufacturing same
JP2014540252A JP5834201B2 (en) 2013-04-10 2014-04-08 Solar cell device and manufacturing method thereof
EP14782604.4A EP2913921B1 (en) 2013-04-10 2014-04-08 Solar cell apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-082309 2013-04-10
JP2013082309 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014167841A1 true WO2014167841A1 (en) 2014-10-16

Family

ID=51689262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002010 WO2014167841A1 (en) 2013-04-10 2014-04-08 Solar cell apparatus and method for manufacturing same

Country Status (4)

Country Link
US (1) US10050163B2 (en)
EP (1) EP2913921B1 (en)
JP (1) JP5834201B2 (en)
WO (1) WO2014167841A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333299A (en) * 2014-11-10 2015-02-04 沙嫣 Solar cell module installation support, system and installation method
JP2016171271A (en) * 2015-03-16 2016-09-23 株式会社豊田自動織機 Solar battery module, mounting structure for the same and vehicle containing the mounting structure
KR20160116745A (en) * 2015-03-31 2016-10-10 엘지전자 주식회사 Junction box and solar cell module including the same
JP2017011085A (en) * 2015-06-22 2017-01-12 株式会社豊田自動織機 solar panel
JP2017073466A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 On-vehicle solar battery module
US20170141723A1 (en) * 2014-07-25 2017-05-18 Sekisui Chemical Co., Ltd. Power generation device provided with secondary battery
JP2021103726A (en) * 2019-12-25 2021-07-15 長州産業株式会社 Solar cell module and manufacturing thereof, and installation method
JP2023163113A (en) * 2022-04-27 2023-11-09 深▲セン▼市華宝新能源股▲フン▼有限公司 Light reflecting member and solar power generation system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150206789A1 (en) * 2014-01-17 2015-07-23 Nanya Technology Corporation Method of modifying polysilicon layer through nitrogen incorporation for isolation structure
US11626526B2 (en) * 2014-08-25 2023-04-11 Daniel S. Clark 3D printed three-dimensional photovoltaic module
CN107209294A (en) * 2015-02-12 2017-09-26 博立多媒体控股有限公司 concentrating solar system
US10424680B2 (en) 2015-12-14 2019-09-24 Solarcity Corporation System for targeted annealing of PV cells
KR102514784B1 (en) * 2015-12-23 2023-03-28 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Solar cell module
CN107953772B (en) * 2016-10-18 2023-12-08 南京金邦动力科技有限公司 Mounting structure of solar panel in automobile charging system
US20180337298A1 (en) * 2017-05-16 2018-11-22 AlphaBio Centrix LLC Patch and manufacturing method thereof
DE102021113996A1 (en) * 2021-05-31 2022-12-01 Hs Holding Gmbh Substructure for a solar module, solar module system with it and method for building the substructure and the solar module system
US11973162B2 (en) * 2021-11-30 2024-04-30 Golden Solar (Quanzhou) New Energy Technology Co., Ltd. Manufacturing method for flexible silicon-based cell module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126850U (en) * 1986-01-31 1987-08-12
JPH0463655U (en) * 1990-10-09 1992-05-29
JPH065901A (en) * 1992-06-19 1994-01-14 Kiyoshi Numata Solar battery module and manufacture thereof
CH683730A5 (en) * 1991-09-06 1994-04-29 Troesch Glas Ag Curved solar module - has semiconductor cells bonded in place by a transparent adhesive mass
JPH10229215A (en) 1997-02-14 1998-08-25 Sharp Corp Solar battery module
US6331031B1 (en) * 1999-08-06 2001-12-18 Webasto Vehicle Systems International Gmbh Solar motor vehicle roof
JP2002270881A (en) * 2001-03-08 2002-09-20 Nissan Motor Co Ltd Solar battery panel and its manufacturing method
JP2012195489A (en) * 2011-03-17 2012-10-11 PVG Solutions株式会社 Solar cell module and solar cell array

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982963A (en) * 1974-08-05 1976-09-28 Solar Power Corporation Solar battery maintainer
US4152174A (en) * 1977-11-17 1979-05-01 Ludlow Ogden R Photoelectric cell using an improved photoelectric plate and plate array
JPS625671A (en) * 1985-07-02 1987-01-12 Sanyo Electric Co Ltd Manufacture of photovoltaic device
DE3538986C3 (en) * 1985-11-02 1994-11-24 Deutsche Aerospace Method of manufacturing a solar generator
JPS62126850A (en) 1985-11-27 1987-06-09 Ricoh Co Ltd Flat type brushless motor
JP2577292Y2 (en) * 1990-04-28 1998-07-23 日本電気ホームエレクトロニクス株式会社 Rare gas discharge lamp
JPH0463655A (en) 1990-06-29 1992-02-28 Mitsui Seiki Kogyo Co Ltd Quill driving device
US20050133082A1 (en) * 2003-12-20 2005-06-23 Konold Annemarie H. Integrated solar energy roofing construction panel
US7915523B2 (en) * 2005-09-20 2011-03-29 Rou Farhadieh Compact solar apparatus for producing electricity and method of producing electricity using a compact solar apparatus
JP2009534856A (en) * 2006-04-21 2009-09-24 サンパワー・コーポレイション,システムズ Solar collector with reflective surface
US20110132423A1 (en) * 2006-10-11 2011-06-09 Gamma Solar Photovoltaic solar module comprising bifacial solar cells
FR2957952A1 (en) 2010-03-23 2011-09-30 Luxol Photovoltaics HIGHLY GALBE PHOTOVOLTAIC ELEMENT
US8742250B2 (en) * 2010-08-09 2014-06-03 Palo Alto Research Center Incorporated Stationary sunlight redirecting system for increasing the efficiency of fixed-tilt PV farm
KR101299504B1 (en) * 2010-09-20 2013-08-29 엘지전자 주식회사 Photovoltaic module
US20120285505A9 (en) * 2010-10-26 2012-11-15 Mccoy Jr Richard W Transducer and method using photovoltaic cells
US20130160824A1 (en) * 2011-12-21 2013-06-27 Solopower, Inc. Roof integrated solar module assembly
JP5804106B2 (en) * 2013-03-08 2015-11-04 株式会社豊田自動織機 solar panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126850U (en) * 1986-01-31 1987-08-12
JPH0463655U (en) * 1990-10-09 1992-05-29
CH683730A5 (en) * 1991-09-06 1994-04-29 Troesch Glas Ag Curved solar module - has semiconductor cells bonded in place by a transparent adhesive mass
JPH065901A (en) * 1992-06-19 1994-01-14 Kiyoshi Numata Solar battery module and manufacture thereof
JPH10229215A (en) 1997-02-14 1998-08-25 Sharp Corp Solar battery module
US6331031B1 (en) * 1999-08-06 2001-12-18 Webasto Vehicle Systems International Gmbh Solar motor vehicle roof
JP2002270881A (en) * 2001-03-08 2002-09-20 Nissan Motor Co Ltd Solar battery panel and its manufacturing method
JP2012195489A (en) * 2011-03-17 2012-10-11 PVG Solutions株式会社 Solar cell module and solar cell array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913921A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141723A1 (en) * 2014-07-25 2017-05-18 Sekisui Chemical Co., Ltd. Power generation device provided with secondary battery
CN104333299A (en) * 2014-11-10 2015-02-04 沙嫣 Solar cell module installation support, system and installation method
JP2016171271A (en) * 2015-03-16 2016-09-23 株式会社豊田自動織機 Solar battery module, mounting structure for the same and vehicle containing the mounting structure
KR20160116745A (en) * 2015-03-31 2016-10-10 엘지전자 주식회사 Junction box and solar cell module including the same
KR102339975B1 (en) * 2015-03-31 2021-12-15 엘지전자 주식회사 Junction box and solar cell module including the same
JP2017011085A (en) * 2015-06-22 2017-01-12 株式会社豊田自動織機 solar panel
JP2017073466A (en) * 2015-10-07 2017-04-13 トヨタ自動車株式会社 On-vehicle solar battery module
JP2021103726A (en) * 2019-12-25 2021-07-15 長州産業株式会社 Solar cell module and manufacturing thereof, and installation method
JP2023163113A (en) * 2022-04-27 2023-11-09 深▲セン▼市華宝新能源股▲フン▼有限公司 Light reflecting member and solar power generation system

Also Published As

Publication number Publication date
EP2913921A1 (en) 2015-09-02
EP2913921B1 (en) 2017-03-01
JP5834201B2 (en) 2015-12-16
US10050163B2 (en) 2018-08-14
US20150295109A1 (en) 2015-10-15
EP2913921A4 (en) 2016-03-23
JPWO2014167841A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5834201B2 (en) Solar cell device and manufacturing method thereof
US5508205A (en) Method of making and utilizing partially cured photovoltaic assemblies
US5478402A (en) Solar cell modules and method of making same
JP2915327B2 (en) Solar cell module and method of manufacturing the same
CN101728437B (en) Backboard with packaging function and solar panel using same
JP2004288677A (en) Solar battery module subassembly and double glass solar battery module
EP2648229A1 (en) Solar cell module and production method therefor
AU2008305083A1 (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit and solar cell manufacturing method
JP2009033130A (en) Solar battery module and manufacturing method of the same
JP3448198B2 (en) Method of manufacturing solar cell module
JP2013110420A (en) Solar cell with conductive material, connection structure, and method for connecting solar cells
JP5560860B2 (en) Solar cell module
JP2005277187A (en) Solar battery module
JP2019197878A (en) Power generation mechanism and manufacturing method thereof, and power generation apparatus
JPH09116182A (en) Solar battery module and manufacture of solar battery module
JP2002111014A (en) Solar light generating plastic module
JP2014132615A (en) Solar cell module
JP2001244486A (en) Solar battery module
JP3363367B2 (en) Cover glass structure for solar cell module
JP2009081278A (en) Solar cell, concentrating photovoltaic power generation module, concentrating photovoltaic power generation unit, and solar cell manufacturing method
JPH11112007A (en) Solar cell module and its manufacture
JP2006278702A (en) Solar cell module and its manufacturing process
JP2001060706A (en) Method for manufacture of solar cell module
JP3856224B2 (en) Manufacturing method of solar cell module
JP2014179513A (en) Solar battery module and manufacturing method for the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014540252

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14440882

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014782604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014782604

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE