WO2014167735A1 - Degassing device - Google Patents

Degassing device Download PDF

Info

Publication number
WO2014167735A1
WO2014167735A1 PCT/JP2013/061126 JP2013061126W WO2014167735A1 WO 2014167735 A1 WO2014167735 A1 WO 2014167735A1 JP 2013061126 W JP2013061126 W JP 2013061126W WO 2014167735 A1 WO2014167735 A1 WO 2014167735A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
detection unit
closing valve
exhaust passage
cavity
Prior art date
Application number
PCT/JP2013/061126
Other languages
French (fr)
Japanese (ja)
Inventor
森川 巌
Original Assignee
株式会社ダイエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイエンジニアリング filed Critical 株式会社ダイエンジニアリング
Priority to PCT/JP2013/061126 priority Critical patent/WO2014167735A1/en
Publication of WO2014167735A1 publication Critical patent/WO2014167735A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • B22D17/145Venting means therefor

Definitions

  • the present invention relates to a gas venting device used for venting air or gas such as cavities out of a mold in die casting.
  • a pressure receiving pin and a closing valve are sequentially arranged in the exhaust passage communicating with the cavity of the mold from the cavity side to the discharge port side of the exhaust passage, and span the pressure receiving pin and the closing valve.
  • the rotation lever is provided, and the operation of the pressure receiving pin pushed out by the flow pressure of the molten metal flowing into the exhaust passage is transmitted to the closing valve via the rotation lever with a delay, and the closing valve is pushed out of the pressure receiving pin.
  • There is one that is pushed out from the exhaust passage to the extrusion side with a delay from the timing, and closes the closing valve for example, see Patent Document 1).
  • An object of the present invention is to provide a gas venting device that can reliably close the closing valve even if the injection speed is reduced immediately before completion of filling the molten metal. It is intended.
  • the present invention is a degassing apparatus incorporated in a die casting machine, and is provided in the middle of the exhaust passage, which communicates with the cavity and exhausts the gas in the cavity.
  • a detecting portion for detecting the tip of the molten metal flowing in from the cavity a closing valve provided in the exhaust passage on the downstream side of the detecting portion in the flow direction of the gas and the molten metal, and the closing valve in the exhaust passage.
  • An exhaust port provided on the downstream side of the gas flow direction, and the closing valve is closed before the molten metal tip of the molten metal reaches the closing valve based on a signal output from the detection unit.
  • the exhaust passage is closed by moving.
  • the detection unit disposed in the middle of the exhaust passage detects that the molten metal has flowed into the exhaust passage from the cavity, and based on the output signal.
  • the exhaust passage is closed by the closing valve before the molten metal reaches the closing valve along the exhaust passage, regardless of the injection speed of the molten metal into the cavity.
  • the molten metal does not enter the exhaust port on the downstream side of the valve. Therefore, it is possible to provide a gas venting device that can reliably close the closing valve even if the injection speed is reduced immediately before the completion of the molten metal filling.
  • the closure valve can be reliably closed even without the impact load of the molten metal, and no complicated know-how is required. It is possible to reliably prevent the molten metal from entering the exhaust port on the downstream side of the closing valve. Furthermore, since there is no impact load due to the molten metal, it is possible to prevent the parts from being damaged and to operate stably over a long period of time.
  • a gas venting apparatus A according to an embodiment of the present invention is incorporated into molds D1 and D2 of a die casting machine D and is formed on a split surface PL of the molds D1 and D2. Is used for extracting air or gas G from the molds D1 and D2. More specifically, the degassing apparatus A according to the embodiment of the present invention includes an exhaust passage 1 provided so as to communicate with the cavity C of the molds D1 and D2, and a tip of the molten metal M provided in the middle of the exhaust passage 1.
  • the detection unit 2 a closing valve 3 provided downstream of the detection unit 2 in the flow direction of the gas G and the molten metal M in the middle of the exhaust passage 1, and a downstream side of the gas G in the flow direction of the gas G from the closing valve 3 in the exhaust passage 1 And an exhaust port 4 provided as a main component.
  • the molds D1 and D2 are composed of a fixed mold and a movable mold, and are placed so that they can be opened and closed by facing each other.
  • the fixed mold D1 has an injection sleeve D3 in which a molten metal such as an aluminum alloy, a magnesium alloy, or a zinc alloy is poured as a molten metal M, and an injection piston D4 that moves along the injection sleeve D3. .
  • the molten metal M in the injection sleeve D3 is pressed and filled into the cavity C from the runner D5 by the operation of the injection piston D4, and the gas pressure in the cavity C increases accordingly.
  • the molten metal M is pushed out from the gate D6 and flows into the exhaust passage 1 of the gas venting apparatus A described later.
  • the injection process of the molten metal M according to the moving distance and speed of the injection piston D4 will be described with reference to the injection operation diagram of the molten metal M shown in FIG.
  • the injection speed of the molten metal M gradually increases, and the air, gas G, and the like in the cavity C reach the low-speed injection region B1 that passes through the closing valve 3.
  • the injection speed of the molten metal M further increases and reaches the high-speed injection region B2 in which the molten metal M is filled in the cavity C.
  • the deceleration region B3 where the injection speed is reduced.
  • symbol D11 is an extrusion pin and D12 is a press board.
  • the degassing device A is composed of a fixed part A1 and a movable part A2.
  • the fixed part A1 and the movable part A2 are opposed to the molds D1 and D2, and they are opened and closed as the molds D1 and D2 open and close. It is attached to be free.
  • a fixed part A1 is attached to a fixed mold D1
  • a movable part A2 is attached to a movable mold D2.
  • An exhaust passage 1 to be described later is formed on the opposing surface of the fixed portion A1 and the movable portion A2 so as to communicate with the cavity C through the gate D6.
  • a pair of gates D6 is formed on the dividing surface PL of the movable mold D2 so as to continue to the left and right ends of the cavity C.
  • the exhaust passage 1 includes one or both of the split surface PL of the fixed mold D1 or the movable mold D2 and one or both of the fixed surface A1 or the movable surface A2 of the degassing device A.
  • the gas vent groove is formed over the inside of the fixed portion A1 of the gas venting device A and allows air, gas G, and molten metal M in the cavity C to flow toward the closing valve 3 described later.
  • a pair of first passages formed along the dividing surface PL of the movable mold D2 so as to be continuous with the pair of gates D6.
  • a first coupling portion 1b formed from the split surface PL of the movable mold D2 to the opposite surface of the movable portion A2 so as to be continuous with the end of the first branching portion 1a, the first coupling portion 1a;
  • a pair of second branch portions 1c formed along the facing surface of the movable portion A2 so as to be continuous with the end of the portion 1b, and fixed from the facing surface of the movable portion A2 so as to be continuous with the end of the second branch portion 1c.
  • a second coupling portion 1d formed over the inside of the portion A1.
  • a detection unit 2 In the middle of the exhaust passage 1, a detection unit 2, a closing valve 3, and an exhaust port 4 which will be described later are sequentially arranged from the cavity C side to the outside.
  • the flow speed of the molten metal tip of the molten metal M toward the closing valve 3 is reduced to a predetermined speed. It is preferable to form the flow resistance portion 11.
  • the length from the disposition position of the detection unit 2 to the disposition position of the closing valve 3 in the exhaust passage 1 is set to a predetermined value, and the cross-sectional area of the exhaust passage 1 and the area of the injection piston D4 are set.
  • the detection unit 2 is a sensor for detecting the tip of the molten metal M flowing into the exhaust passage 1 from the cavity C, and controls the operation of a closing valve 3 described later based on a detection signal output from the detection unit 2. ing.
  • the detection unit 2 it is possible to use an electrical sensor or a sensor that detects physical quantities such as light, temperature, pressure, and sound and converts them into signals.
  • a terminal 2 a is arranged in the middle of the first branch 1 a of the exhaust passage 1 as shown in FIGS. 1 and 3 (a) and 3 (b). As shown in FIGS.
  • the molten metal M comes into contact with the terminal 2a to be in an energized state and outputs a detection signal to electrically control the closing valve 3. . That is, as shown in FIG. 3A, at the start of filling of the molten metal M into the cavity C by the operation of the injection piston D4, the molten metal M does not come into contact with the terminal 2a of the detection unit 2, so that the energized state does not occur. No sensing signal is output to the closing valve 3 described later. Further, as shown in FIG. 3B, a detection signal for closing the closing valve 3 is output when the terminal of the molten metal M comes into contact with the terminal 2 a of the detection unit 2 and is energized. It is configured.
  • the closing valve 3 is an on-off valve for closing a part of the exhaust passage 1, and the valve body 3 a is disposed so as to be capable of reciprocating, and the valve body 3 a is closed based on a signal output from the detection unit 2.
  • the valve body 3a is controlled to move (open) in the valve opening direction after the molds D1 and D2 are opened (moved in the direction).
  • the closing valve 3 As a specific example of the closing valve 3, as shown in FIGS. 2A and 2B, it is arranged in the middle of the second coupling portion 1 d of the exhaust passage 1.
  • the valve body 3a of the closing valve 3 is stopped at the open position when the molten metal M is filled into the cavity C by the operation of the injection piston D4.
  • FIG. 3A the valve body 3a of the closing valve 3 is stopped at the open position when the molten metal M is filled into the cavity C by the operation of the injection piston D4.
  • FIG. 3A the valve body 3a of the closing valve 3 is stopped at the open position when
  • valve body 3 a of the closing valve 3 is closed before the molten metal tip of the molten metal M reaches the closing valve 3 based on the signal output from the detection unit 2. Accordingly, the passage of the molten metal M is stopped at the second coupling portion 1d of the exhaust passage 1.
  • a closing cylinder chamber 3b and an opening cylinder chamber 3c are separately formed around the valve body 3a of the closing valve 3, and the closing cylinder chamber 3b is formed separately.
  • the valve body 3a is opened or closed by the internal pressure difference of the opening cylinder chamber 3c.
  • the exhaust port 4 is disposed at the downstream end of the exhaust passage 1 in the fixing part A1 of the gas venting apparatus A, and is configured to exhaust air or gas G that has communicated with the outside and passed through the closing valve 3 to the outside. Yes. Specific examples of the exhaust port 4 are arranged at the end of the exhaust passage 1 and the end of the second coupling portion 1d as shown in FIGS. .
  • a suction pipe 4 a is connected to the exhaust port 4, and a vacuum suction means 5 such as a vacuum pump is disposed.
  • the gas G in the cavity C is discharged from the exhaust passage 1 using the vacuum by the vacuum suction means 5. It is preferable to forcibly exhaust. That is, it is preferable to incorporate the gas venting apparatus A into the vacuum die casting machine D.
  • the vacuum suction means 5 such as a vacuum pump is in electrical communication with the power source 6.
  • the power source 6 is used not only for the vacuum suction means 5, but also for the terminal 2a of the detector 2 and the electromagnetic valve 7 for closing the valve body 3a of the closing valve 3. It is electrically communicated and controlled for operation based on a control unit (not shown).
  • the closing electromagnetic valve 7 includes a valve body 7 a, a valve chamber 7 b in which the valve body 7 a is movably disposed, and a terminal of the detection unit 2 via the power supply 6. And a solenoid 7c electrically connected to 2a.
  • the valve chamber 7b of the electromagnetic valve 7 communicates with the closing cylinder chamber 3b of the closing valve 3 through the through-hole 7d, and is connected to an air supply source (not shown) by connecting a closing air supply pipe 8. ing.
  • the valve element 7a of the electromagnetic valve 7 for closing is operated by opening the valve element 7a when the terminal 2a of the detecting unit 2 and the hot metal tip of the molten metal M come into contact with each other and starting to energize the solenoid 7c from the power source 6.
  • the closing air 8a is instantaneously supplied (spouted) from the supply source to the closing cylinder chamber 3b of the closing valve 3 through the closing supply pipe 8 and the through hole 7d, and the impact load and the closing cylinder chamber 3b are supplied.
  • the valve body 3a of the closing valve 3 is closed by increasing the internal pressure. Furthermore, an opening air supply pipe 9 is connected to the opening cylinder chamber 3c of the closing valve 3 so as to communicate with an opening electromagnetic valve (not shown) and an air supply source (not shown).
  • the electromagnetic valve for opening is opened after the movable mold D2 is opened from the fixed mold D1 and the cast product is taken out, and the opening air 9a from the air supply source is opened.
  • the valve body 3a of the closing valve 3 is opened by the impact load and the increase of the internal pressure of the opening cylinder chamber 3c.
  • the power source 6 is connected to the die casting machine D to energize the detection unit 2 and the vacuum suction means 5 from the power source 6 (DC 24V) before the tip of the molten metal M reaches the detection unit 2 from the cavity C. It is preferable to control the power supply 6 to stop the energization from the power source 6 to the detector 2 and the vacuum suction means 5 after starting the operation and closing the closing valve 3.
  • the explanation will be given with reference to the injection operation diagram of the molten metal M shown in FIG. 4. After the injection speed of the molten metal reaches the low-speed injection region B1 as the injection piston D4 starts to move, the detection unit 2 The energization of the vacuum suction means 5 is started approximately at the same time or later.
  • the energization to the detection unit 2 and the vacuum suction means 5 is stopped. That is, the terminal 2 a of the detection unit 2 is applied from the power source 6 before the tip of the molten metal M reaches from the cavity C, and the energization from the power source 6 is cut off after the closing valve 3 is closed.
  • the molten metal M is filled into the cavity C by the operation of the injection piston D4, and after this filling, the molten metal M flows into the exhaust passage 1 from the cavity C. 1 detects that the molten metal tip of the molten metal M has arrived, and closes the closing valve 3 based on the output signal. Thereby, before the molten metal M reaches the closing valve 3 along the exhaust passage 1 regardless of the injection speed of the molten metal M into the cavity C due to the operation of the injection piston D4, the exhaust passage 1 Therefore, the molten metal M does not enter the exhaust port 4 on the downstream side of the closing valve 3.
  • the closing valve 3 can be reliably closed. As a result, even if there is no impact load of the molten metal M, the closing valve 3 can be reliably closed, and complicated know-how is not required, and the molten metal M enters the exhaust port 4 on the downstream side of the closing valve 3. Can be reliably prevented. Furthermore, since there is no impact load due to the molten metal M, it is possible to prevent the parts from being damaged and to operate stably over a long period of time.
  • the closing valve 3 when the terminal 2a is provided as the detection unit 2, and the tip of the molten metal M contacts the terminal 2a and is energized, when the closing valve 3 is electrically controlled, the closing valve 3 can be quickly operated with a simple structure. Can be closed. As a result, the structure of the entire apparatus can be simplified and the manufacturing cost can be reduced.
  • the power supply 6 is provided to energize the terminal 2a of the detection unit 2, and the power supply 6 is detected from the power supply 6 before the molten metal M reaches the detection unit 2 from the cavity C in conjunction with the die casting machine D.
  • the shutoff valve 3 is closed and then controlled to cut off the energization from the power source 6 to the terminal 2a of the detection unit 2
  • the gas G from the cavity C is controlled.
  • the closing valve 3 is energized. Does not close. Therefore, malfunction of the closing valve 3 can be prevented. As a result, high-performance vacuum die casting can be realized with certainty.
  • the terminals 2a of the pair of detectors 2 are arranged on both the fixed mold D1 and the movable mold D2 where the cavity C is formed. Yes.
  • a current-carrying pin 2b made of a conductive material such as a metal is used as the detection unit 2, and the current-carrying pin 2b is attached to the fixed-side mold D1 and the movable-side mold D2.
  • the terminals 2 a formed at the respective tips are attached so as to face each other with a gap S having a predetermined dimension (about 1 mm) in the exhaust passage 1.
  • An insulating material 2c is installed between the energization pin 2b, the fixed mold D1 and the movable mold D2.
  • a terminal 2a is applied to the end of the pin 2b through a power source 6 by connecting a conducting wire 6a in electrical communication with a solenoid 7c of an electromagnetic valve 7 for closing the valve body 3a of the closing valve 3. ing.
  • the molten metal M flows into the exhaust passage 1 from the cavity C, and as shown in FIG.
  • the tip of the molten metal M flows into the gap S formed between the two terminals 2a, the terminals 2a are energized with the tip of the molten metal M interposed therebetween, and the solenoid 7c of the solenoid valve 7 is energized.
  • the valve body 7a of the electromagnetic valve 7 is opened, and the closing air 8a is instantaneously supplied (spouted) from the air supply source toward the closing cylinder chamber 3b of the closing valve 3, so that the internal pressure of the closing cylinder chamber 3b is increased.
  • the valve body 3a of the closing valve 3 is closed at a stretch.
  • the exhaust passage 1 is closed and the molten metal M from the cavity C cannot pass toward the exhaust port 4.
  • the molten metal M traveling from the detection unit 2 to the closure valve 3 is located between the installation position of the detection unit 2 and the installation position of the closure valve 3.
  • the length from the position where the detection unit 2 is disposed in the exhaust passage 1 to the position where the closing valve 3 is disposed is set to 15 cm or more. Is set to 0.007 to 0.014 times the area of the injection piston D4.
  • the flow rate of the molten metal tip of the molten metal M from the detection unit 2 toward the closing valve 3 was measured by an experiment.
  • the length from the arrangement position of the detection unit 2 in the first branch portion 1a of the exhaust passage 1 to the arrangement position of the closing valve 3 in the second coupling portion 1d of the exhaust passage 1 is set to 17 cm, and the cross-sectional area of the exhaust passage 1 is set. Is set to 0.38 cm 2 and the outer diameter of the injection piston D4 is 60 mm, the area is 28.3 cm 2 , and the cross-sectional area of the exhaust passage 1 is set to about 0.014 times the area of the injection piston D4.
  • the shape from the position where the detector 2 is disposed to the position where the closing valve 3 is disposed in the exhaust passage 1 is formed by combining a plurality of branch channels 11a and a plurality of coupled channels 11b.
  • the injection speed of the molten metal M is 0.25 m / s in the low-speed injection region B1, 2.0 m / s in the high-speed injection region B2, and the cavity C
  • the speed is reduced to 1.0 m / s in the deceleration area B3 where the injection speed is reduced immediately before the filling of the molten metal M to the molten metal M, the molten metal M flowing from the detection unit 2 to the closing valve 3 in the subsequent final deceleration area B4. It was found that the previous flow velocity was reduced to 0.2 to 0.3 m / s.
  • the time from when the solenoid valve 7 was energized to when the closing valve 3 was closed was 0.006 seconds.
  • the molten metal M passes through the flow resistance unit 11 before reaching the closing valve 3 along the exhaust passage 1, so that the molten metal M passes through the flow resistance unit 11.
  • the flow rate of the hot water tip is reduced, and the closing valve 3 can be closed with a time margin. Accordingly, it is possible to reliably prevent the molten metal M from entering the downstream exhaust port 4 beyond the closing valve 3. As a result, there is an advantage that high-performance vacuum die casting can be reliably realized by reliable degassing.
  • the terminal 2a ′ of the detection unit 2 is connected to either the fixed mold D1 or the movable mold D2 in which the cavity C is formed.
  • the arrangement is different from that of the first embodiment shown in FIGS. 1 to 4, and other configurations are the same as those of the first embodiment.
  • a pair of terminals 2 a ′ of the detection unit 2 are arranged along the respective exhaust passages 1 so as to face the exhaust passage 1 on the dividing surface PL of the fixed mold D 1.
  • the gas G and the molten metal M are arranged so as to line up in a direction intersecting the flow direction.
  • a pair of terminals 2a of the detection unit 2 are arranged on the dividing surface PL of the fixed mold D1 so as to face the exhaust passage 1, and along each exhaust passage 1, the gas G and It arrange
  • the opening / closing movement of the movable mold D2 with respect to the fixed mold D1 is less likely to affect the terminal 2a 'of the detection unit 2, and troubles such as disconnection are caused. Decrease.
  • the opening and closing movement of the movable mold D2 does not affect the terminal 2a ′ of the detection unit 2 at all, and troubles such as disconnection are greatly increased. To decrease. Therefore, it is possible to simplify the arrangement structure of the detection unit 2 and prevent the occurrence of a failure. As a result, there are advantages over the first embodiment shown in FIGS. 1 to 4 that it can be used for a long period of time, and maintenance is easy and economical.
  • the operation of the electromagnetic valve 7 supplies the closing air 8a to the closing valve 3 to close the valve body 3a of the closing valve 3.
  • a driving source of the closing valve 3 may be provided and directly opened and closed.
  • an electrical sensor is used as the detection unit 2
  • the present invention is not limited to this, and a sensor that detects a physical quantity such as light, temperature, pressure, and sound and converts it into a signal is used instead of the electrical sensor. May be.
  • a Degassing device 1 Exhaust passage 2 Detection unit 2a, 2a 'Terminal 3 Closing valve 4 Exhaust port 5 Vacuum suction means 6 Power source 11 Flow resistance unit C Cavity D Die-casting machine D1 Fixed mold D2 Movable mold G Gas M Molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

Provided is a degassing device in which a closure valve can be reliably closed even if an injection rate decreases right before molten-metal filling is completed. A molten metal (M) flows from a cavity (C) into an evacuation passage (1), a detection unit (2) disposed part of the way down said evacuation passage (1) detects when the leading edge of the molten metal (M) has reached said detection unit (2), and the closure valve (3) is closed on the basis of an output signal from the detection unit (2). The evacuation passage (1) is thus closed by the closure valve (3) before the leading edge of the molten metal (M) reaches the closure valve (3) via the evacuation passage (1), regardless of the rate at which the molten metal (M) is injected into the cavity (C). As such, the molten metal (M) does not reach an evacuation port (4) downstream of the closure valve (3).

Description

ガス抜き装置Gas venting device
 本発明は、ダイカスト鋳造において、キャビティなどの空気やガスを鋳型の外へ抜くために用いられるガス抜き装置に関する。 The present invention relates to a gas venting device used for venting air or gas such as cavities out of a mold in die casting.
 従来、この種のガス抜き装置として、金型のキャビティに連通する排気通路中に、受圧ピンと閉塞バルブが、排気通路のキャビティ側から排出口側に向かって順次配置され、受圧ピンと閉塞バルブに亘って回動レバーが備えられ、排気通路中に流入した溶湯の流動圧で押出された受圧ピンの作動が回動レバーを介して閉塞バルブに遅延して伝えられ、閉塞バルブが受圧ピンの押し出しのタイミングよりも遅延して、排気通路から押出し側に押出され、閉塞バルブを閉鎖させるものがある(例えば、特許文献1参照)。 Conventionally, as this type of gas venting device, a pressure receiving pin and a closing valve are sequentially arranged in the exhaust passage communicating with the cavity of the mold from the cavity side to the discharge port side of the exhaust passage, and span the pressure receiving pin and the closing valve. The rotation lever is provided, and the operation of the pressure receiving pin pushed out by the flow pressure of the molten metal flowing into the exhaust passage is transmitted to the closing valve via the rotation lever with a delay, and the closing valve is pushed out of the pressure receiving pin. There is one that is pushed out from the exhaust passage to the extrusion side with a delay from the timing, and closes the closing valve (for example, see Patent Document 1).
特開2000-094112号公報JP 2000-094112 A
 ところで、近年のダイカストマシンは、金型寿命の改善やバリの低減等を行うため、溶湯の充填完了直前における射出速度の減速制御が急速に進歩している。つまり、溶湯の充填完了直前に射出速度を減速することで、鋳型(金型)寿命の改善やバリの低減などを図っている。
 しかし、従来のガス抜き装置では、溶湯の衝撃荷重で動作するメカバルブにより閉鎖バルブを閉鎖させるため、溶湯の充填完了直前に射出速度が1m/s以下に減速すると、受圧ピンに対する衝撃荷重が十分に発生しなかった。それにより、回動レバーも回動しないから閉鎖バルブを閉鎖できず、溶湯が排出口に浸入するおそれがあるという問題があった。
 また、これと逆に、受圧ピンに対する衝撃荷重が大き過ぎると、受圧ピンで勢い良く回動レバーを回動させるため、回動レバーが破損するおそれがあるという問題があった。
By the way, in recent years, in order to improve die life and reduce burrs and the like in die casting machines, the deceleration control of the injection speed immediately before the completion of the filling of the molten metal is progressing rapidly. In other words, by reducing the injection speed immediately before the completion of the molten metal filling, the mold (mold) life is improved and burrs are reduced.
However, in the conventional gas venting device, since the closing valve is closed by a mechanical valve that operates with the impact load of the molten metal, if the injection speed is reduced to 1 m / s or less immediately before the filling of the molten metal is completed, the impact load on the pressure receiving pin is sufficient. Did not occur. As a result, there is a problem that the closing valve cannot be closed because the rotating lever does not rotate, and the molten metal may enter the discharge port.
On the other hand, if the impact load on the pressure receiving pin is too large, the rotation lever is vigorously rotated by the pressure receiving pin, which may cause damage to the rotation lever.
 本発明は、このような問題に対処することを課題とするものであり、溶湯の充填完了直前に射出速度が減速しても閉鎖バルブを確実に閉鎖可能なガス抜き装置を提供すること、などを目的とするものである。 An object of the present invention is to provide a gas venting device that can reliably close the closing valve even if the injection speed is reduced immediately before completion of filling the molten metal. It is intended.
 このような目的を達成するために本発明は、ダイカストマシンに組み込まれるガス抜き装置であって、キャビティと連通して前記キャビティ内のガスを排気する排気通路と、前記排気通路の途中に設けられて前記キャビティから流入した溶湯の湯先を検出する検出部と、前記排気通路において前記検出部よりも前記ガス及び前記溶湯の流れ方向下流側に設けられる閉鎖バルブと、前記排気通路において前記閉鎖バルブよりも前記ガスの流れ方向下流側に設けられる排気口と、を備え、前記閉鎖バルブは、前記検出部から出力される信号に基づいて前記溶湯の前記湯先が前記閉鎖バルブに至る前に閉動して前記排気通路を閉鎖させることを特徴とする。 In order to achieve such an object, the present invention is a degassing apparatus incorporated in a die casting machine, and is provided in the middle of the exhaust passage, which communicates with the cavity and exhausts the gas in the cavity. A detecting portion for detecting the tip of the molten metal flowing in from the cavity, a closing valve provided in the exhaust passage on the downstream side of the detecting portion in the flow direction of the gas and the molten metal, and the closing valve in the exhaust passage. An exhaust port provided on the downstream side of the gas flow direction, and the closing valve is closed before the molten metal tip of the molten metal reaches the closing valve based on a signal output from the detection unit. The exhaust passage is closed by moving.
 前述した特徴を有する本発明は、キャビティから溶湯が排気通路に流入し、排気通路の途中に配置された検出部で、溶湯の湯先が到達したことを検出して、その出力信号に基づいて閉鎖バルブを閉動させることにより、キャビティへの溶湯の射出速度に関係なく、溶湯の湯先が排気通路に沿って閉鎖バルブに到着する前に、閉鎖バルブで排気通路が閉鎖されるため、閉鎖バルブよりも下流側の排気口に溶湯が侵入しない。
 したがって、溶湯の充填完了直前に射出速度が減速しても閉鎖バルブを確実に閉鎖可能なガス抜き装置を提供することができる。
 その結果、溶湯の衝撃荷重で動作するメカバルブにより閉鎖バルブを閉鎖させる従来のものに比べ、溶湯の衝撃荷重がなくても閉鎖バルブを確実に閉鎖させることができ、複雑なノウハウを必要とせず、溶湯が閉鎖バルブよりも下流側の排気口に侵入することを確実に阻止できる。
 さらに、溶湯による衝撃荷重がないため、部品の破損を防止できて長期に亘り安定して作動させることができる。
In the present invention having the above-described features, the detection unit disposed in the middle of the exhaust passage detects that the molten metal has flowed into the exhaust passage from the cavity, and based on the output signal. By closing the closing valve, the exhaust passage is closed by the closing valve before the molten metal reaches the closing valve along the exhaust passage, regardless of the injection speed of the molten metal into the cavity. The molten metal does not enter the exhaust port on the downstream side of the valve.
Therefore, it is possible to provide a gas venting device that can reliably close the closing valve even if the injection speed is reduced immediately before the completion of the molten metal filling.
As a result, compared to the conventional valve that closes the closing valve with a mechanical valve that operates with the impact load of the molten metal, the closure valve can be reliably closed even without the impact load of the molten metal, and no complicated know-how is required. It is possible to reliably prevent the molten metal from entering the exhaust port on the downstream side of the closing valve.
Furthermore, since there is no impact load due to the molten metal, it is possible to prevent the parts from being damaged and to operate stably over a long period of time.
本発明の実施形態に係るガス抜き装置の全体構成を示す説明図であり、鋳型全体の縦断側面図である。It is explanatory drawing which shows the whole structure of the degassing apparatus which concerns on embodiment of this invention, and is a vertical side view of the whole casting_mold | template. 鋳型を展開した状態の正面図であり、(a)が固定側の鋳型、(b)が可動側のである。It is a front view of the state which expand | deployed the casting_mold | template, (a) is a casting_mold | template of a stationary side, (b) is a movable side. ガス抜き装置の概要を示す説明図であり、(a)が閉鎖バルブ開状態の部分拡大縦断側面図、(b)が閉鎖バルブ閉状態の部分拡大縦断側面図である。It is explanatory drawing which shows the outline | summary of a degassing apparatus, (a) is a partial expansion vertical side view of a closed valve open state, (b) is a partial expansion vertical side view of a closed valve closed state. 溶湯の射出動作図である。It is an injection operation | movement figure of a molten metal. 本発明の他の実施例に係るガス抜き装置において鋳型を展開した状態の正面図であり、(a)が固定側の鋳型、(b)が可動側のである。It is a front view in the state where a mold was developed in a degassing device concerning other examples of the present invention, and (a) is a fixed side mold and (b) is a movable side.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 本発明の実施形態に係るガス抜き装置Aは、図1~図3に示すように、ダイカストマシンDの鋳型D1,D2に組み込まれて、鋳型D1,D2の分割面PLに形成されるキャビティCなどの空気やガスGを鋳型D1,D2の外へ抜くために用いられるものである。
 詳しく説明すると、本発明の実施形態に係るガス抜き装置Aは、鋳型D1,D2のキャビティCと連通するように設けられる排気通路1と、排気通路1の途中に設けられる溶湯Mの湯先の検出部2と、排気通路1の途中において検出部2よりもガスG及び溶湯Mの流れ方向下流側に設けられる閉鎖バルブ3と、排気通路1において閉鎖バルブ3よりもガスGの流れ方向下流側に設けられる排気口4と、を主要な構成要素として備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 3, a gas venting apparatus A according to an embodiment of the present invention is incorporated into molds D1 and D2 of a die casting machine D and is formed on a split surface PL of the molds D1 and D2. Is used for extracting air or gas G from the molds D1 and D2.
More specifically, the degassing apparatus A according to the embodiment of the present invention includes an exhaust passage 1 provided so as to communicate with the cavity C of the molds D1 and D2, and a tip of the molten metal M provided in the middle of the exhaust passage 1. The detection unit 2, a closing valve 3 provided downstream of the detection unit 2 in the flow direction of the gas G and the molten metal M in the middle of the exhaust passage 1, and a downstream side of the gas G in the flow direction of the gas G from the closing valve 3 in the exhaust passage 1 And an exhaust port 4 provided as a main component.
 鋳型D1,D2は、固定側の金型と可動側の金型からなり、それらを対向させて開閉移動自在となるように設置されている。
 固定側の鋳型D1には、例えばアルミニウム合金、マグネシウム合金、亜鉛合金などの溶融金属が溶湯Mとして注湯される射出スリーブD3と、射出スリーブD3に沿って移動する射出ピストンD4を有している。
 射出スリーブD3内の溶湯Mは、射出ピストンD4の作動により、ランナーD5からキャビティCに圧入されて充填され、それに伴ってキャビティC内のガス圧が上昇する。キャビティCに充填後に溶湯Mは、ゲートD6から押し出されて後述するガス抜き装置Aの排気通路1に流入する。
The molds D1 and D2 are composed of a fixed mold and a movable mold, and are placed so that they can be opened and closed by facing each other.
The fixed mold D1 has an injection sleeve D3 in which a molten metal such as an aluminum alloy, a magnesium alloy, or a zinc alloy is poured as a molten metal M, and an injection piston D4 that moves along the injection sleeve D3. .
The molten metal M in the injection sleeve D3 is pressed and filled into the cavity C from the runner D5 by the operation of the injection piston D4, and the gas pressure in the cavity C increases accordingly. After filling the cavity C, the molten metal M is pushed out from the gate D6 and flows into the exhaust passage 1 of the gas venting apparatus A described later.
 次に、射出ピストンD4の移動距離及び速度に伴う溶湯Mの射出工程を、図4に示される溶湯Mの射出動作図で説明する。
 先ず、射出ピストンD4の移動開始に伴って、溶湯Mの射出速度は徐々に上昇し、キャビティC内の空気やガスGなどが閉鎖バルブ3を通過する低速射出領域B1に到達する。これに続き、溶湯Mの射出速度は更に上昇して、キャビティC内に溶湯Mが充填される高速射出領域B2に到達する。その後、キャビティCへの溶湯Mの充填が完了直前になると、射出速度を減速させる減速領域B3に到達する。その後、溶湯Mの射出速度は更に減速されて、溶湯Mが検出部2から閉鎖バルブ3に向かう最終減速領域B4に到達する。
 また、図1及び図2において、符号D11は押し出しピンであり、D12は押圧板である。
Next, the injection process of the molten metal M according to the moving distance and speed of the injection piston D4 will be described with reference to the injection operation diagram of the molten metal M shown in FIG.
First, as the injection piston D4 starts to move, the injection speed of the molten metal M gradually increases, and the air, gas G, and the like in the cavity C reach the low-speed injection region B1 that passes through the closing valve 3. Following this, the injection speed of the molten metal M further increases and reaches the high-speed injection region B2 in which the molten metal M is filled in the cavity C. Thereafter, when the molten metal M is filled into the cavity C just before completion, it reaches the deceleration region B3 where the injection speed is reduced. Thereafter, the injection speed of the molten metal M is further reduced, and the molten metal M reaches the final deceleration region B4 from the detection unit 2 toward the closing valve 3.
Moreover, in FIG.1 and FIG.2, the code | symbol D11 is an extrusion pin and D12 is a press board.
 ガス抜き装置Aは、固定部A1と可動部A2とからなり、鋳型D1,D2に対して固定部A1及び可動部A2をそれらが対向するとともに、鋳型D1,D2の開閉動に伴って開閉移動自在となるように取り付けられている。
 ガス抜き装置Aの具体例としては、図1~図3に示されるように、固定側の鋳型D1に固定部A1が取り付けられ、可動側の鋳型D2に可動部A2が取り付けられている。固定部A1と可動部A2の対向面には、後述する排気通路1がゲートD6を介しキャビティCと連通するように形成されている。ゲートD6は、図2(a)(b)に示されるように、可動側の鋳型D2の分割面PLにキャビティCの左右端部に連続するように一対形成されている。
The degassing device A is composed of a fixed part A1 and a movable part A2. The fixed part A1 and the movable part A2 are opposed to the molds D1 and D2, and they are opened and closed as the molds D1 and D2 open and close. It is attached to be free.
As a specific example of the gas venting apparatus A, as shown in FIGS. 1 to 3, a fixed part A1 is attached to a fixed mold D1, and a movable part A2 is attached to a movable mold D2. An exhaust passage 1 to be described later is formed on the opposing surface of the fixed portion A1 and the movable portion A2 so as to communicate with the cavity C through the gate D6. As shown in FIGS. 2A and 2B, a pair of gates D6 is formed on the dividing surface PL of the movable mold D2 so as to continue to the left and right ends of the cavity C.
 排気通路1は、固定側の鋳型D1又は可動側の鋳型D2の分割面PLのいずれか一方若しくは両方と、ガス抜き装置Aの固定部A1又は可動部A2の対向面のいずれか一方若しくは両方と、ガス抜き装置Aの固定部A1の内部に亘って形成され、キャビティC内の空気やガスG及び溶湯Mを後述する閉鎖バルブ3へ向けて流すガス抜き溝である。
 排気通路1の具体例としては、図2(a)(b)に示されるように、一対のゲートD6と連続するように可動側の鋳型D2の分割面PLに沿って形成される一対の第一分岐部1aと、第一分岐部1aの末端と連続するように可動側の鋳型D2の分割面PLから可動部A2の対向面に亘って形成される第一結合部1bと、第一結合部1bの末端と連続するように可動部A2の対向面に沿って形成される一対の第二分岐部1cと、第二分岐部1cの末端と連続するように可動部A2の対向面から固定部A1の内部に亘って形成される第二結合部1dと、から構成されている。
 排気通路1の途中には、後述する検出部2と閉鎖バルブ3と排気口4が、キャビティC側から外部に向かって順次配置されている。
 さらに、排気通路1において、検出部2の配設位置と閉鎖バルブ3の配設位置との間には、閉鎖バルブ3に向かう溶湯Mの湯先の流動速度が所定速度まで減速されるように流量抵抗部11を形成することが好ましい。
 流量抵抗部11としては、排気通路1における検出部2の配設位置から閉鎖バルブ3の配設位置までの長さを所定に設定するとともに、排気通路1の断面積と射出ピストンD4の面積との比率を所定に設定すること、排気通路1における検出部2の配設位置から閉鎖バルブ3の配設位置までの形状を設定すること、検出部2の配設位置と閉鎖バルブ3の配設位置の間に溶湯Mの湯先が遅延されるように凹溝部を追加形成すること、閉鎖バルブ3を軽量化すること、などが挙げられ、これらの中から一つを選択して実行するか、又は複数を組み合わせて実行することが好ましい。
The exhaust passage 1 includes one or both of the split surface PL of the fixed mold D1 or the movable mold D2 and one or both of the fixed surface A1 or the movable surface A2 of the degassing device A. The gas vent groove is formed over the inside of the fixed portion A1 of the gas venting device A and allows air, gas G, and molten metal M in the cavity C to flow toward the closing valve 3 described later.
As a specific example of the exhaust passage 1, as shown in FIGS. 2 (a) and 2 (b), a pair of first passages formed along the dividing surface PL of the movable mold D2 so as to be continuous with the pair of gates D6. A first coupling portion 1b formed from the split surface PL of the movable mold D2 to the opposite surface of the movable portion A2 so as to be continuous with the end of the first branching portion 1a, the first coupling portion 1a; A pair of second branch portions 1c formed along the facing surface of the movable portion A2 so as to be continuous with the end of the portion 1b, and fixed from the facing surface of the movable portion A2 so as to be continuous with the end of the second branch portion 1c. And a second coupling portion 1d formed over the inside of the portion A1.
In the middle of the exhaust passage 1, a detection unit 2, a closing valve 3, and an exhaust port 4 which will be described later are sequentially arranged from the cavity C side to the outside.
Further, in the exhaust passage 1, between the position where the detector 2 is disposed and the position where the closing valve 3 is disposed, the flow speed of the molten metal tip of the molten metal M toward the closing valve 3 is reduced to a predetermined speed. It is preferable to form the flow resistance portion 11.
As the flow resistance unit 11, the length from the disposition position of the detection unit 2 to the disposition position of the closing valve 3 in the exhaust passage 1 is set to a predetermined value, and the cross-sectional area of the exhaust passage 1 and the area of the injection piston D4 are set. Is set to a predetermined ratio, the shape of the exhaust passage 1 from the position where the detection unit 2 is disposed to the position where the closing valve 3 is disposed, the position where the detection unit 2 is disposed and the position where the closing valve 3 is disposed For example, an additional groove is formed so that the tip of the molten metal M is delayed between positions, and the weight of the closing valve 3 is reduced. Or a combination of the above is preferable.
 検出部2は、キャビティCから排気通路1に流入した溶湯Mの湯先を検出するための感知器であり、検出部2から出力される検知信号に基づいて後述する閉鎖バルブ3を作動制御している。検出部2としては、電気的な感知器や、その他に光・温度・圧力・音などの物理量を検出して信号に変えるセンサーを用いることが可能である。
 検出部2の具体例としては、図1及び図3(a)(b)に示されるように、排気通路1の第一分岐部1aの途中に端子2aが配置されている。図3(a)(b)に示されるように、端子2aに溶湯Mの湯先が接触することで通電状態となり、検知信号を出力して閉鎖バルブ3を電気的に作動制御することが好ましい。
 すなわち、図3(a)に示されるように、射出ピストンD4の作動によるキャビティCへの溶湯Mの充填開始時には、検出部2の端子2aに溶湯Mが接触しないために通電状態とならず、後述する閉鎖バルブ3へ感知信号は出力されない。また、図3(b)に示されるように、検出部2の端子2aに溶湯Mの湯先が接触して通電することにより、閉鎖バルブ3を閉動させるための検知信号を出力するように構成されている。
The detection unit 2 is a sensor for detecting the tip of the molten metal M flowing into the exhaust passage 1 from the cavity C, and controls the operation of a closing valve 3 described later based on a detection signal output from the detection unit 2. ing. As the detection unit 2, it is possible to use an electrical sensor or a sensor that detects physical quantities such as light, temperature, pressure, and sound and converts them into signals.
As a specific example of the detection unit 2, a terminal 2 a is arranged in the middle of the first branch 1 a of the exhaust passage 1 as shown in FIGS. 1 and 3 (a) and 3 (b). As shown in FIGS. 3 (a) and 3 (b), it is preferable that the molten metal M comes into contact with the terminal 2a to be in an energized state and outputs a detection signal to electrically control the closing valve 3. .
That is, as shown in FIG. 3A, at the start of filling of the molten metal M into the cavity C by the operation of the injection piston D4, the molten metal M does not come into contact with the terminal 2a of the detection unit 2, so that the energized state does not occur. No sensing signal is output to the closing valve 3 described later. Further, as shown in FIG. 3B, a detection signal for closing the closing valve 3 is output when the terminal of the molten metal M comes into contact with the terminal 2 a of the detection unit 2 and is energized. It is configured.
 閉鎖バルブ3は、排気通路1の一部を閉鎖させるための開閉弁であり、その弁体3aが往復動自在に配置され、検出部2から出力される信号に基づいて弁体3aを閉弁方向へ移動(閉動)させ、鋳型D1,D2が型開きした後に、弁体3aを開弁方向へ移動(開動)させるように制御されている。
 閉鎖バルブ3の具体例としては、図2(a)(b)に示されるように、排気通路1の第二結合部1dの途中に配置されている。閉鎖バルブ3の弁体3aは、図3(a)に示されるように、射出ピストンD4の作動によるキャビティCへの溶湯Mの充填開始時には、弁体3aが開動位置に停止している。しかし、図3(b)に示されるように、検出部2から出力される信号に基づいて溶湯Mの湯先が閉鎖バルブ3に至る前には、閉鎖バルブ3の弁体3aを閉動することにより、排気通路1の第二結合部1dで溶湯Mの通過を停止させている。
 さらに、図3(a)(b)に示される例では、閉鎖バルブ3の弁体3aの周囲に、閉動用シリンダー室3bと開動用シリンダー室3cがそれぞれ別個に形成され、閉動用シリンダー室3b及び開動用シリンダー室3cの内圧差により、弁体3aを開動又は閉動させている。
The closing valve 3 is an on-off valve for closing a part of the exhaust passage 1, and the valve body 3 a is disposed so as to be capable of reciprocating, and the valve body 3 a is closed based on a signal output from the detection unit 2. The valve body 3a is controlled to move (open) in the valve opening direction after the molds D1 and D2 are opened (moved in the direction).
As a specific example of the closing valve 3, as shown in FIGS. 2A and 2B, it is arranged in the middle of the second coupling portion 1 d of the exhaust passage 1. As shown in FIG. 3A, the valve body 3a of the closing valve 3 is stopped at the open position when the molten metal M is filled into the cavity C by the operation of the injection piston D4. However, as shown in FIG. 3B, the valve body 3 a of the closing valve 3 is closed before the molten metal tip of the molten metal M reaches the closing valve 3 based on the signal output from the detection unit 2. Accordingly, the passage of the molten metal M is stopped at the second coupling portion 1d of the exhaust passage 1.
Further, in the example shown in FIGS. 3A and 3B, a closing cylinder chamber 3b and an opening cylinder chamber 3c are separately formed around the valve body 3a of the closing valve 3, and the closing cylinder chamber 3b is formed separately. The valve body 3a is opened or closed by the internal pressure difference of the opening cylinder chamber 3c.
 排気口4は、ガス抜き装置Aの固定部A1において排気通路1の下流端に配置され、外部と連通して閉鎖バルブ3を通過した空気やガスGが外部へ排気されるように構成されている。
 排気口4の具体例としては、図2(a)(b)及び図3(a)(b)に示されるように、排気通路1の末端と第二結合部1dの末端に配置されている。排気口4には、吸引パイプ4aを配管接続して、真空ポンプなどからなる真空吸引手段5が配設され、真空吸引手段5による真空を利用して排気通路1からキャビティC内のガスGを強制的に排気することが好ましい。すなわち、ガス抜き装置Aを真空ダイカストマシンDに組み込むことが好ましい。
 また、真空ポンプなどの真空吸引手段5は、電源6と電気的に連通している。
The exhaust port 4 is disposed at the downstream end of the exhaust passage 1 in the fixing part A1 of the gas venting apparatus A, and is configured to exhaust air or gas G that has communicated with the outside and passed through the closing valve 3 to the outside. Yes.
Specific examples of the exhaust port 4 are arranged at the end of the exhaust passage 1 and the end of the second coupling portion 1d as shown in FIGS. . A suction pipe 4 a is connected to the exhaust port 4, and a vacuum suction means 5 such as a vacuum pump is disposed. The gas G in the cavity C is discharged from the exhaust passage 1 using the vacuum by the vacuum suction means 5. It is preferable to forcibly exhaust. That is, it is preferable to incorporate the gas venting apparatus A into the vacuum die casting machine D.
The vacuum suction means 5 such as a vacuum pump is in electrical communication with the power source 6.
 図3(a)(b)に示される例では、電源6は、真空吸引手段5に加え、検出部2の端子2aと、閉鎖バルブ3の弁体3aを閉動させる電磁弁7などにも電気的に連通し、制御部(図示しない)に基づいて作動制御されている。
 閉動用の電磁弁7は、図3(b)に示されるように、その弁体7aと、弁体7aが移動自在に配置される弁室7bと、電源6を介して検出部2の端子2aと電気的に接続されるソレノイド7cと、を有している。電磁弁7の弁室7bは、通孔7dを介して閉鎖バルブ3の閉動用シリンダー室3bと連通するとともに、閉動用の給気パイプ8が接続されてエアー供給源(図示しない)と連通させている。閉動用の電磁弁7の弁体7aは、検出部2の端子2aと溶湯Mの湯先が接触して、電源6からソレノイド7cに通電開始されることにより、弁体7aを開動させ、エアー供給源から閉動用エアー8aが閉動用の給気パイプ8及び通孔7dを介して閉鎖バルブ3の閉動用シリンダー室3bへ向け瞬時に供給(噴出)し、その衝撃荷重と閉動用シリンダー室3bの内圧上昇で、閉鎖バルブ3の弁体3aを閉動させている。
 さらに、閉鎖バルブ3の開動用シリンダー室3cには、開動用の給気パイプ9が接続されて開動用の電磁弁(図示しない)及びエアー供給源(図示しない)と連通させている。開動用の電磁弁は、固定側の鋳型D1から可動側の鋳型D2を型開きして、鋳造製品を取り出した後に通電開始され、エアー供給源から開動用エアー9aが開動用の給気パイプ9を介して閉鎖バルブ3の開動用シリンダー室3cへ向けに供給(噴出)し、その衝撃荷重と開動用シリンダー室3cの内圧上昇で、閉鎖バルブ3の弁体3aを開動させている。
In the example shown in FIGS. 3 (a) and 3 (b), the power source 6 is used not only for the vacuum suction means 5, but also for the terminal 2a of the detector 2 and the electromagnetic valve 7 for closing the valve body 3a of the closing valve 3. It is electrically communicated and controlled for operation based on a control unit (not shown).
As shown in FIG. 3B, the closing electromagnetic valve 7 includes a valve body 7 a, a valve chamber 7 b in which the valve body 7 a is movably disposed, and a terminal of the detection unit 2 via the power supply 6. And a solenoid 7c electrically connected to 2a. The valve chamber 7b of the electromagnetic valve 7 communicates with the closing cylinder chamber 3b of the closing valve 3 through the through-hole 7d, and is connected to an air supply source (not shown) by connecting a closing air supply pipe 8. ing. The valve element 7a of the electromagnetic valve 7 for closing is operated by opening the valve element 7a when the terminal 2a of the detecting unit 2 and the hot metal tip of the molten metal M come into contact with each other and starting to energize the solenoid 7c from the power source 6. The closing air 8a is instantaneously supplied (spouted) from the supply source to the closing cylinder chamber 3b of the closing valve 3 through the closing supply pipe 8 and the through hole 7d, and the impact load and the closing cylinder chamber 3b are supplied. The valve body 3a of the closing valve 3 is closed by increasing the internal pressure.
Furthermore, an opening air supply pipe 9 is connected to the opening cylinder chamber 3c of the closing valve 3 so as to communicate with an opening electromagnetic valve (not shown) and an air supply source (not shown). The electromagnetic valve for opening is opened after the movable mold D2 is opened from the fixed mold D1 and the cast product is taken out, and the opening air 9a from the air supply source is opened. The valve body 3a of the closing valve 3 is opened by the impact load and the increase of the internal pressure of the opening cylinder chamber 3c.
 また、電源6は、ダイカストマシンDと連動させて、キャビティCから溶湯Mの湯先が検出部2へ到達する前に、電源6から検出部2及び真空吸引手段5への通電(直流24V)を開始し、閉鎖バルブ3を閉動した後に、電源6から検出部2及び真空吸引手段5への通電を停止するように制御されることが好ましい。
 その具体例としては、図4に示される溶湯Mの射出動作図で説明すると、射出ピストンD4の移動開始に伴って、溶湯Mの射出速度が低速射出領域B1に到達してから、検出部2への通電を開始し、それと略同時か又はそれより遅れて真空吸引手段5への通電を開始する。その後、溶湯Mの射出速度が高速射出領域B2、減速領域B3及び最終減速領域B4に到達した後に、検出部2及び真空吸引手段5への通電を停止させている。
 つまり、検出部2の端子2aは、キャビティCから溶湯Mの湯先が到達する前に電源6から印加され、閉鎖バルブ3を閉動した後に電源6からの通電が遮断される。
In addition, the power source 6 is connected to the die casting machine D to energize the detection unit 2 and the vacuum suction means 5 from the power source 6 (DC 24V) before the tip of the molten metal M reaches the detection unit 2 from the cavity C. It is preferable to control the power supply 6 to stop the energization from the power source 6 to the detector 2 and the vacuum suction means 5 after starting the operation and closing the closing valve 3.
As a specific example, the explanation will be given with reference to the injection operation diagram of the molten metal M shown in FIG. 4. After the injection speed of the molten metal reaches the low-speed injection region B1 as the injection piston D4 starts to move, the detection unit 2 The energization of the vacuum suction means 5 is started approximately at the same time or later. Then, after the injection speed of the molten metal M has reached the high-speed injection region B2, the deceleration region B3, and the final deceleration region B4, the energization to the detection unit 2 and the vacuum suction means 5 is stopped.
That is, the terminal 2 a of the detection unit 2 is applied from the power source 6 before the tip of the molten metal M reaches from the cavity C, and the energization from the power source 6 is cut off after the closing valve 3 is closed.
 このような本発明の実施形態に係るガス抜き装置Aによると、射出ピストンD4の作動によりキャビティCに溶湯Mが充填され、この充填後にキャビティCから溶湯Mが排気通路1に流入し、排気通路1の途中に配置された検出部2で、溶湯Mの湯先が到達したことを検出して、その出力信号に基づいて閉鎖バルブ3を閉動させる。それにより、射出ピストンD4の作動によるキャビティCへの溶湯Mの射出速度に関係なく、溶湯Mの湯先が排気通路1に沿って閉鎖バルブ3に到着する前に、閉鎖バルブ3で排気通路1が閉鎖されるため、閉鎖バルブ3よりも下流側の排気口4に溶湯Mが侵入しない。
 したがって、溶湯Mの充填完了直前に射出速度が減速しても閉鎖バルブ3を確実に閉鎖させることができる。
 その結果、溶湯Mの衝撃荷重がなくても閉鎖バルブ3を確実に閉鎖させることができ、複雑なノウハウを必要とせず、溶湯Mが閉鎖バルブ3よりも下流側の排気口4に侵入することを確実に阻止できる。
 さらに、溶湯Mによる衝撃荷重がないため、部品の破損を防止できて長期に亘り安定して作動させることができる。
According to the gas venting apparatus A according to the embodiment of the present invention, the molten metal M is filled into the cavity C by the operation of the injection piston D4, and after this filling, the molten metal M flows into the exhaust passage 1 from the cavity C. 1 detects that the molten metal tip of the molten metal M has arrived, and closes the closing valve 3 based on the output signal. Thereby, before the molten metal M reaches the closing valve 3 along the exhaust passage 1 regardless of the injection speed of the molten metal M into the cavity C due to the operation of the injection piston D4, the exhaust passage 1 Therefore, the molten metal M does not enter the exhaust port 4 on the downstream side of the closing valve 3.
Therefore, even if the injection speed is reduced immediately before the filling of the molten metal M is completed, the closing valve 3 can be reliably closed.
As a result, even if there is no impact load of the molten metal M, the closing valve 3 can be reliably closed, and complicated know-how is not required, and the molten metal M enters the exhaust port 4 on the downstream side of the closing valve 3. Can be reliably prevented.
Furthermore, since there is no impact load due to the molten metal M, it is possible to prevent the parts from being damaged and to operate stably over a long period of time.
 特に、排気通路1の排気口4に真空吸引手段5が接続される場合には、溶湯Mの充填完了直前に射出速度が減速しても溶湯Mが真空吸引手段5へ侵入することを確実に阻止することができる。
 その結果、溶湯Mの侵入による真空吸引手段5の故障を確実に防止することができ、高性能な真空ダイカストを実現できる。
In particular, when the vacuum suction means 5 is connected to the exhaust port 4 of the exhaust passage 1, it is ensured that the molten metal M enters the vacuum suction means 5 even if the injection speed is reduced immediately before the filling of the molten metal M is completed. Can be blocked.
As a result, failure of the vacuum suction means 5 due to the penetration of the molten metal M can be surely prevented, and high-performance vacuum die casting can be realized.
 さらに、検出部2として端子2aを設け、端子2aに溶湯Mの湯先が接触し通電することで、閉鎖バルブ3を電気的に作動制御する場合には、簡単な構造で閉鎖バルブ3を素早く閉動させることができる。
 その結果、装置全体の構造を簡素化できて製造コストの低減化も図れる。
Further, when the terminal 2a is provided as the detection unit 2, and the tip of the molten metal M contacts the terminal 2a and is energized, when the closing valve 3 is electrically controlled, the closing valve 3 can be quickly operated with a simple structure. Can be closed.
As a result, the structure of the entire apparatus can be simplified and the manufacturing cost can be reduced.
 また、検出部2の端子2aに通電する電源6を備え、電源6は、ダイカストマシンDと連動させて、キャビティCから溶湯Mの湯先が検出部2へ到達する前に、電源6から検出部2の端子2aへの通電を開始し、閉鎖バルブ3を閉動した後に、電源6から検出部2の端子2aへの通電を遮断するように制御される場合には、キャビティCからガスGを排気させる必要があるタイミングのみ通電して、その他のタイミングで、溶湯Bとは異なる離型剤の気化ガスや水分などの導電材料が検出部2の端子2aと接触しても、閉鎖バルブ3が閉動しない。
 したがって、閉鎖バルブ3の誤動作を防止することができる。
 その結果、高性能な真空ダイカストを確実に実現できる。
In addition, the power supply 6 is provided to energize the terminal 2a of the detection unit 2, and the power supply 6 is detected from the power supply 6 before the molten metal M reaches the detection unit 2 from the cavity C in conjunction with the die casting machine D. When energization to the terminal 2a of the unit 2 is started and the shutoff valve 3 is closed and then controlled to cut off the energization from the power source 6 to the terminal 2a of the detection unit 2, the gas G from the cavity C is controlled. Even when a conductive material such as vaporized gas or moisture of a release agent different from the molten metal B contacts the terminal 2a of the detection unit 2 at the other timing, the closing valve 3 is energized. Does not close.
Therefore, malfunction of the closing valve 3 can be prevented.
As a result, high-performance vacuum die casting can be realized with certainty.
 次に、本発明の各実施例を図面に基づいて説明する。
 この実施例1は、図1~図3に示すように、キャビティCが形成される固定側の鋳型D1及び可動側の鋳型D2の両方に、一対の検出部2の端子2aをそれぞれ配置している。
 図3(a)(b)に示される例では、検出部2として金属などの導電材料で製造された通電ピン2bが用いられ、固定側の鋳型D1と可動側の鋳型D2に通電ピン2bを、それぞれ先端に形成される端子2a同士が、排気通路1内において所定寸法(約1mm)の隙間Sを挟んで対向するように取り付けている。通電ピン2bと固定側の鋳型D1及び可動側の鋳型D2の間には、絶縁材2cが設置されている。
 ピン2bの末端には、電源6を経由して、閉鎖バルブ3の弁体3aを閉動させる電磁弁7のソレノイド7cと電気的に連通する通電線6aを接続して、端子2aが印加されている。
Next, each embodiment of the present invention will be described with reference to the drawings.
In the first embodiment, as shown in FIGS. 1 to 3, the terminals 2a of the pair of detectors 2 are arranged on both the fixed mold D1 and the movable mold D2 where the cavity C is formed. Yes.
In the example shown in FIGS. 3A and 3B, a current-carrying pin 2b made of a conductive material such as a metal is used as the detection unit 2, and the current-carrying pin 2b is attached to the fixed-side mold D1 and the movable-side mold D2. The terminals 2 a formed at the respective tips are attached so as to face each other with a gap S having a predetermined dimension (about 1 mm) in the exhaust passage 1. An insulating material 2c is installed between the energization pin 2b, the fixed mold D1 and the movable mold D2.
A terminal 2a is applied to the end of the pin 2b through a power source 6 by connecting a conducting wire 6a in electrical communication with a solenoid 7c of an electromagnetic valve 7 for closing the valve body 3a of the closing valve 3. ing.
 このような本発明の実施例1に係るガス抜き装置Aによると、キャビティCから溶湯Mが排気通路1に流入し、図3(b)に示されるように、排気通路1の途中において検出部2の端子2aの間に形成される隙間Sに、溶湯Mの湯先が流入し、端子2a同士が溶湯Mの湯先を挟んで通電し、電磁弁7のソレノイド7cが通電される。
 それにより、電磁弁7の弁体7aが開動し、エアー供給源から閉動用エアー8aが閉鎖バルブ3の閉動用シリンダー室3bへ向け瞬時に供給(噴出)され、閉動用シリンダー室3bの内圧が一気に上昇して、閉鎖バルブ3の弁体3aを閉動させる。
 その結果として、排気通路1が閉鎖されてキャビティCからの溶湯Mは、排気口4に向けて通過不能となる。
According to the gas venting apparatus A according to the first embodiment of the present invention, the molten metal M flows into the exhaust passage 1 from the cavity C, and as shown in FIG. The tip of the molten metal M flows into the gap S formed between the two terminals 2a, the terminals 2a are energized with the tip of the molten metal M interposed therebetween, and the solenoid 7c of the solenoid valve 7 is energized.
As a result, the valve body 7a of the electromagnetic valve 7 is opened, and the closing air 8a is instantaneously supplied (spouted) from the air supply source toward the closing cylinder chamber 3b of the closing valve 3, so that the internal pressure of the closing cylinder chamber 3b is increased. The valve body 3a of the closing valve 3 is closed at a stretch.
As a result, the exhaust passage 1 is closed and the molten metal M from the cavity C cannot pass toward the exhaust port 4.
 さらに、図1~図3に示される例では、排気通路1において、検出部2の配設位置と閉鎖バルブ3の配設位置との間に、検出部2から閉鎖バルブ3に向かう溶湯Mの湯先の流動速度を所定速度まで減速させる流量抵抗部11として、排気通路1における検出部2の配設位置から閉鎖バルブ3の配設位置までの長さを15cm以上に設定し、排気通路1の断面積を射出ピストンD4の面積の0.007~0.014倍に設定している。
 その具体例として、実験により、検出部2から閉鎖バルブ3に向かう溶湯Mの湯先の流動速度を測定した。
 排気通路1の第一分岐部1aにおける検出部2の配置位置から、排気通路1の第二結合部1dにおける閉鎖バルブ3の配置位置までの長さを17cmと設定し、排気通路1の断面積を0.38cm2と設定し、射出ピストンD4の外形が60mmである場合、その面積が28.3cm2となり、排気通路1の断面積は射出ピストンD4の面積の約0.014倍に設定される。
 さらに加えて、排気通路1における検出部2の配設位置から閉鎖バルブ3の配設位置までの形状として、複数の分岐流路11aと複数の結合流路11bを組み合わせて形成すること、検出部2の配設位置と閉鎖バルブ3の配設位置の間に湯先遅延用の凹溝部11cを追加形成すること、閉鎖バルブ3の内部を空洞にして軽量化を図ること、閉鎖バルブ3及び電磁弁7の配設位置を近接させることを実行した。
 これらの設定によれば、図4に示される溶湯Mの射出動作図において、溶湯Mの射出速度が低速射出領域B1で0.25m/s、高速射出領域B2で2.0m/s、キャビティCへの溶湯Mの充填完了直前に射出速度を減速させる減速領域B3で1.0m/sに減速した場合には、その後の最終減速領域B4で検出部2から閉鎖バルブ3に向かう溶湯Mの湯先の流動速度は、0.2~0.3m/sに減速されていることが解った。また、電磁弁7が通電してから閉鎖バルブ3が閉動完了するまでの時間は、0.006秒であった。
Further, in the example shown in FIGS. 1 to 3, in the exhaust passage 1, the molten metal M traveling from the detection unit 2 to the closure valve 3 is located between the installation position of the detection unit 2 and the installation position of the closure valve 3. As the flow rate resistance unit 11 for reducing the flow rate of the hot water to a predetermined speed, the length from the position where the detection unit 2 is disposed in the exhaust passage 1 to the position where the closing valve 3 is disposed is set to 15 cm or more. Is set to 0.007 to 0.014 times the area of the injection piston D4.
As a specific example, the flow rate of the molten metal tip of the molten metal M from the detection unit 2 toward the closing valve 3 was measured by an experiment.
The length from the arrangement position of the detection unit 2 in the first branch portion 1a of the exhaust passage 1 to the arrangement position of the closing valve 3 in the second coupling portion 1d of the exhaust passage 1 is set to 17 cm, and the cross-sectional area of the exhaust passage 1 is set. Is set to 0.38 cm 2 and the outer diameter of the injection piston D4 is 60 mm, the area is 28.3 cm 2 , and the cross-sectional area of the exhaust passage 1 is set to about 0.014 times the area of the injection piston D4. The
In addition, the shape from the position where the detector 2 is disposed to the position where the closing valve 3 is disposed in the exhaust passage 1 is formed by combining a plurality of branch channels 11a and a plurality of coupled channels 11b. 2 is formed between the disposition position of 2 and the disposition position of the closing valve 3, a recess groove 11 c for delaying the molten metal tip is formed, the inside of the closing valve 3 is hollowed to reduce the weight, the closing valve 3 and the electromagnetic Making the arrangement | positioning position of the valve 7 close was performed.
According to these settings, in the injection operation diagram of the molten metal M shown in FIG. 4, the injection speed of the molten metal M is 0.25 m / s in the low-speed injection region B1, 2.0 m / s in the high-speed injection region B2, and the cavity C When the speed is reduced to 1.0 m / s in the deceleration area B3 where the injection speed is reduced immediately before the filling of the molten metal M to the molten metal M, the molten metal M flowing from the detection unit 2 to the closing valve 3 in the subsequent final deceleration area B4. It was found that the previous flow velocity was reduced to 0.2 to 0.3 m / s. The time from when the solenoid valve 7 was energized to when the closing valve 3 was closed was 0.006 seconds.
 このような図示例のガス抜き装置Aによると、排気通路1に沿って溶湯Mの湯先が検出部2を越え、閉鎖バルブ3に至る前に流量抵抗部11を通過することにより、溶湯Mの湯先の流動速度が減速して、閉鎖バルブ3は時間的な余裕をもって閉じることが可能となる。
 したがって、溶湯Mの湯先が閉鎖バルブ3を越えて下流側の排気口4に侵入することを確実に防止することができる。
 その結果、確実なガス抜きによって高性能な真空ダイカストを確実に実現できるという利点がある。
According to the gas venting apparatus A of the illustrated example, the molten metal M passes through the flow resistance unit 11 before reaching the closing valve 3 along the exhaust passage 1, so that the molten metal M passes through the flow resistance unit 11. The flow rate of the hot water tip is reduced, and the closing valve 3 can be closed with a time margin.
Accordingly, it is possible to reliably prevent the molten metal M from entering the downstream exhaust port 4 beyond the closing valve 3.
As a result, there is an advantage that high-performance vacuum die casting can be reliably realized by reliable degassing.
 この実施例2は、図5(a)(b)に示すように、キャビティCが形成される固定側の鋳型D1又は可動側の鋳型D2のいずれか一方に、検出部2の端子2a′を配置した構成が、図1~図4に示した実施例1とは異なり、それ以外の構成は実施例1と同じものである。
 特に、固定側の鋳型D1に検出部2の端子2a′を配置することが好ましい。
 図5(a)(b)に示される例では、固定側の鋳型D1の分割面PLに、排気通路1と対向するように検出部2の端子2a′を一対、それぞれの排気通路1に沿って、ガスG及び溶湯Mの流れ方向と交差する方向へ並ぶように配置している。
 また、その他の例として図示しないが、固定側の鋳型D1の分割面PLに、排気通路1と対向するように検出部2の端子2aを一対、それぞれの排気通路1に沿って、ガスG及び溶湯Mの流れ方向へ並ぶように配置したり、可動側の鋳型D2の分割面PLに排気通路1に沿って検出部2の端子2aを一対、それぞれガスG及び溶湯Mの流れ方向と交差する方向へ並ぶように配置するか、又はガスG及び溶湯Mの流れ方向へ並ぶように配置したりすることも可能である。
In the second embodiment, as shown in FIGS. 5A and 5B, the terminal 2a ′ of the detection unit 2 is connected to either the fixed mold D1 or the movable mold D2 in which the cavity C is formed. The arrangement is different from that of the first embodiment shown in FIGS. 1 to 4, and other configurations are the same as those of the first embodiment.
In particular, it is preferable to arrange the terminal 2a 'of the detection unit 2 on the fixed mold D1.
In the example shown in FIGS. 5A and 5B, a pair of terminals 2 a ′ of the detection unit 2 are arranged along the respective exhaust passages 1 so as to face the exhaust passage 1 on the dividing surface PL of the fixed mold D 1. The gas G and the molten metal M are arranged so as to line up in a direction intersecting the flow direction.
Although not shown as another example, a pair of terminals 2a of the detection unit 2 are arranged on the dividing surface PL of the fixed mold D1 so as to face the exhaust passage 1, and along each exhaust passage 1, the gas G and It arrange | positions so that it may be located in a line with the flow direction of the molten metal M, or it has crossed the flow direction of the gas G and the molten metal M respectively with a pair of terminal 2a of the detection part 2 along the exhaust path 1 to the dividing surface PL of the movable mold D2. It is also possible to arrange them so as to line up in the direction or arrange them so as to line up in the flow direction of the gas G and the molten metal M.
 このような本発明の実施例2に係るガス抜き装置Aによると、固定側の鋳型D1に対する可動側の鋳型D2の開閉移動が検出部2の端子2a′に影響し難くなり、断線などのトラブルが減少する。特に、固定側の鋳型D1に検出部2の端子2a′を配置する場合には、可動側の鋳型D2の開閉移動が検出部2の端子2a′に全く影響せず、断線などのトラブルが大幅に減少する。
 したがって、検出部2の配置構造を簡素化して故障の発生を防止することができる。
 その結果、図1~図4に示した実施例1よりも、長期に亘って使用でき、メンテナンスも容易で経済的であるという利点がある。
According to the gas venting apparatus A according to the second embodiment of the present invention, the opening / closing movement of the movable mold D2 with respect to the fixed mold D1 is less likely to affect the terminal 2a 'of the detection unit 2, and troubles such as disconnection are caused. Decrease. In particular, when the terminal 2a ′ of the detection unit 2 is arranged in the fixed mold D1, the opening and closing movement of the movable mold D2 does not affect the terminal 2a ′ of the detection unit 2 at all, and troubles such as disconnection are greatly increased. To decrease.
Therefore, it is possible to simplify the arrangement structure of the detection unit 2 and prevent the occurrence of a failure.
As a result, there are advantages over the first embodiment shown in FIGS. 1 to 4 that it can be used for a long period of time, and maintenance is easy and economical.
 なお、前示実施例では、電磁弁7の作動により閉動用エアー8aを閉鎖バルブ3へ供給して閉鎖バルブ3の弁体3aを閉動させたが、これに限定されず、電磁弁7に代えて閉鎖バルブ3の駆動源を設けて直接的に開閉動させても良い。
 さらに、検出部2として電気的な感知器を用いたが、これに限定されず、電気的な感知器に代えて光・温度・圧力・音などの物理量を検出して信号に変えるセンサーを用いても良い。
In the previous embodiment, the operation of the electromagnetic valve 7 supplies the closing air 8a to the closing valve 3 to close the valve body 3a of the closing valve 3. However, the present invention is not limited to this. Instead, a driving source of the closing valve 3 may be provided and directly opened and closed.
Further, although an electrical sensor is used as the detection unit 2, the present invention is not limited to this, and a sensor that detects a physical quantity such as light, temperature, pressure, and sound and converts it into a signal is used instead of the electrical sensor. May be.
 A ガス抜き装置            1 排気通路
 2 検出部               2a,2a′ 端子
 3 閉鎖バルブ             4 排気口
 5 真空吸引手段            6 電源
 11 流量抵抗部            C キャビティ
 D ダイカストマシン          D1 固定側の鋳型
 D2 可動側の鋳型           G ガス
 M 溶湯
A Degassing device 1 Exhaust passage 2 Detection unit 2a, 2a 'Terminal 3 Closing valve 4 Exhaust port 5 Vacuum suction means 6 Power source 11 Flow resistance unit C Cavity D Die-casting machine D1 Fixed mold D2 Movable mold G Gas M Molten metal

Claims (6)

  1.  ダイカストマシンに組み込まれるガス抜き装置であって、
     キャビティと連通して前記キャビティ内のガスを排気する排気通路と、
     前記排気通路の途中に設けられて前記キャビティから流入した溶湯の湯先を検出する検出部と、
     前記排気通路において前記検出部よりも前記ガス及び前記溶湯の流れ方向下流側に設けられる閉鎖バルブと、
     前記排気通路において前記閉鎖バルブよりも前記ガスの流れ方向下流側に設けられる排気口と、を備え、
     前記閉鎖バルブは、前記検出部から出力される信号に基づいて前記溶湯の前記湯先が前記閉鎖バルブに至る前に閉動して前記排気通路を閉鎖させることを特徴とするガス抜き装置。
    A gas venting device incorporated in a die casting machine,
    An exhaust passage communicating with the cavity and exhausting the gas in the cavity;
    A detection unit that is provided in the middle of the exhaust passage and detects a molten metal tip flowing from the cavity;
    A closing valve provided on the downstream side in the flow direction of the gas and the molten metal from the detection unit in the exhaust passage;
    An exhaust port provided downstream of the closing valve in the exhaust passage in the gas flow direction,
    The degassing device, wherein the closing valve is closed before the molten metal tip of the molten metal reaches the closing valve based on a signal output from the detection unit to close the exhaust passage.
  2.  前記排気通路の前記排気口に真空吸引手段が接続されることを特徴とする請求項1記載のガス抜き装置。 The degassing device according to claim 1, wherein a vacuum suction means is connected to the exhaust port of the exhaust passage.
  3.  前記検出部として端子を設け、前記端子に前記溶湯の前記湯先が接触し通電することで、前記閉鎖バルブを電気的に作動制御することを特徴とする請求項1又は2記載のガス抜き装置。 The degassing device according to claim 1 or 2, wherein a terminal is provided as the detection unit, and the closing valve is electrically controlled by contacting the terminal with the tip of the molten metal and energizing the terminal. .
  4.  前記検出部の前記端子に通電する電源を備え、
     前記電源は、前記ダイカストマシンと連動させて、前記キャビティから前記溶湯の前記湯先が前記検出部へ到達する前に、前記電源から前記検出部の前記端子への通電を開始し、前記閉鎖バルブを閉動した後に、前記電源から前記検出部の前記端子への通電を遮断するように制御されることを特徴とする請求項3記載のガス抜き装置。
    A power supply for energizing the terminal of the detection unit;
    The power source is interlocked with the die casting machine to start energization from the power source to the terminal of the detection unit before the molten metal tip of the molten metal reaches the detection unit from the cavity, and the closing valve The degassing device according to claim 3, wherein the degassing device is controlled so as to cut off the energization from the power source to the terminal of the detection unit after closing.
  5.  前記排気通路において、前記検出部の配設位置と前記閉鎖バルブの配設位置との間に、前記閉鎖バルブに向かう前記溶湯の前記湯先の流動速度が減速されるように流量抵抗部を形成することを特徴とする請求項1、2、3又は4記載のガス抜き装置。 In the exhaust passage, a flow resistance unit is formed between the position of the detection unit and the position of the closure valve so that the flow rate of the molten metal flow toward the closure valve is reduced. The degassing apparatus according to claim 1, 2, 3 or 4.
  6.  前記キャビティが形成される固定側の鋳型又は可動側の鋳型のいずれか一方に、前記検出部の前記端子を配置することを特徴とする請求項3、4又は5記載のガス抜き装置。 The gas venting device according to claim 3, 4 or 5, wherein the terminal of the detection unit is arranged in either one of a fixed mold and a movable mold on which the cavity is formed.
PCT/JP2013/061126 2013-04-12 2013-04-12 Degassing device WO2014167735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061126 WO2014167735A1 (en) 2013-04-12 2013-04-12 Degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061126 WO2014167735A1 (en) 2013-04-12 2013-04-12 Degassing device

Publications (1)

Publication Number Publication Date
WO2014167735A1 true WO2014167735A1 (en) 2014-10-16

Family

ID=51689162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061126 WO2014167735A1 (en) 2013-04-12 2013-04-12 Degassing device

Country Status (1)

Country Link
WO (1) WO2014167735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085058A1 (en) * 2020-10-20 2022-04-28 株式会社ダイエンジニアリング Valve device, mold, and die casting apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206837A (en) * 2010-03-30 2011-10-20 Die Engineering:Kk Degassing apparatus for die
JP2011255408A (en) * 2010-06-10 2011-12-22 Die Engineering:Kk Method of high-quality die casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206837A (en) * 2010-03-30 2011-10-20 Die Engineering:Kk Degassing apparatus for die
JP2011255408A (en) * 2010-06-10 2011-12-22 Die Engineering:Kk Method of high-quality die casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085058A1 (en) * 2020-10-20 2022-04-28 株式会社ダイエンジニアリング Valve device, mold, and die casting apparatus

Similar Documents

Publication Publication Date Title
WO2016135843A1 (en) Casting device and casting method
JP2010172898A (en) Venting device of chill vent for die casting
CN104841906A (en) Vacuum die casting system and vacuumizing method thereof
WO2014167735A1 (en) Degassing device
JP2005066696A (en) Die-casting machine or injection molding machine
JP2004337932A (en) Die-casting apparatus and casting method
JPH08294763A (en) Vacuum die casting apparatus
JP2007268550A (en) Vacuum die casting apparatus and vacuum die casting method
JP2014213372A (en) Degassing device for die casting
EP0475645B1 (en) Method for controlling gas venting arrangement in injection molding apparatus, and device for controlling the same
JP5544436B2 (en) Gas vent unit
JP2637733B2 (en) Die casting machine
CN111069560B (en) Flow passage structure
JP2009241103A (en) Molding machine
JP3655992B2 (en) Vacuum die casting apparatus and casting method
JP5136211B2 (en) Vacuum die casting apparatus and vacuum die casting method
JPH11245011A (en) Vacuum die-cast equipment
JP2001047187A (en) Degassing device for die casting
JP2007203361A (en) Casting method and casting equipment
JP2002096149A (en) Venting device for die-casting metal die
JP4519304B2 (en) Degassing method and die-casting device in mold
JP2006026698A (en) Instrument for measuring inner pressure of cavity in die for die casting
JP2016155163A (en) Casting device and casting method
JP2002096151A (en) Venting device for metal die
JP5203782B2 (en) Molding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP