WO2014167725A1 - Control device of vehicle - Google Patents

Control device of vehicle Download PDF

Info

Publication number
WO2014167725A1
WO2014167725A1 PCT/JP2013/061111 JP2013061111W WO2014167725A1 WO 2014167725 A1 WO2014167725 A1 WO 2014167725A1 JP 2013061111 W JP2013061111 W JP 2013061111W WO 2014167725 A1 WO2014167725 A1 WO 2014167725A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
cylinder
expansion stroke
torque
valve
Prior art date
Application number
PCT/JP2013/061111
Other languages
French (fr)
Japanese (ja)
Inventor
小島 進
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/061111 priority Critical patent/WO2014167725A1/en
Publication of WO2014167725A1 publication Critical patent/WO2014167725A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0095Synchronisation of the cylinders during engine shutdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/007Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation using inertial reverse rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/06Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
    • F02N2200/061Battery state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle control apparatus including a clutch provided in a power transmission path between an engine and an electric motor.
  • a vehicle including an engine, an electric motor, and a clutch that is provided in a power transmission path between the engine and the electric motor and can disconnect the engine from driving wheels is well known.
  • the engine is stopped with the clutch released.
  • Various methods for starting the engine from such a state have been proposed.
  • Patent Document 1 in the vehicle as described above, when the engine is requested to start, slip control of the clutch is performed, so that the output torque of the electric motor (if not specifically distinguished, power and force are agreed)
  • a technique for cranking an engine and starting the engine is disclosed.
  • Patent Document 1 when starting a direct injection engine, fuel is injected into the cylinder of the engine stopped in the expansion stroke and ignited, so that the engine rotation speed is increased by the explosion torque and the engine is started. A so-called ignition start technique has also been proposed.
  • the present invention has been made in the background of the above circumstances, and an object of the present invention is to provide a vehicle control device capable of improving engine startability when starting an engine by ignition start. .
  • the subject matter of the first invention for achieving the above object is: (a) Control of a vehicle including a soot engine, an electric motor, and a clutch provided in a power transmission path between the engine and the electric motor. (B) ⁇ ⁇ ⁇ ⁇ When starting the engine, after burning the cylinder of the engine stopped in the compression stroke and negatively rotating the engine, the cylinder of the engine in the expansion stroke is burned. The reverse rotation start is performed to rotate the engine forward.
  • the cylinder in the expansion stroke is compressed again due to the negative rotation of the engine due to the reverse rotation start, and a high explosion torque can be obtained at the first explosion of the cylinder.
  • the cylinder containing a large amount of combustion gas in the reverse rotation start is burned, so the explosion torque at the time of combustion of the cylinder is reduced. Therefore, by suppressing the explosion torque of the second or third explosion, the increase in engine rotation speed is relaxed, the occurrence of overshoot is suppressed, and the clutch is quickly fully engaged. Therefore, the engine startability can be improved when the engine is started by the ignition start.
  • the second invention is the vehicle control apparatus according to the first invention, wherein the reverse rotation start is performed when any cylinder of the engine is stopped in a predetermined region sandwiching a top dead center. Is to do. In this way, if any cylinder of the engine is stopped in a predetermined region across the top dead center, even if the engine cylinder stopped in the expansion stroke is burned, the engine friction torque is increased. Whereas it may be difficult to obtain a sufficient explosion torque to overcome, engine startability can be improved by performing reverse start.
  • the fuel is injected into the cylinder of the engine in the expansion stroke when the engine is negatively rotated. There is to do in between.
  • the fuel injection is performed in a state where air flow is generated in the cylinder due to the negative rotation, thereby promoting the homogenization of the air-fuel mixture in the cylinder in the expansion stroke. Therefore, the initial explosion of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the initial explosion, so that the engine startability can be improved.
  • the ignition of the cylinder of the engine in the expansion stroke is a negative rotation of the engine. There is to do when the speed is slowing down. If it does in this way, it will burn with the air compression of the cylinder in an expansion stroke advanced.
  • the first explosion of the cylinder in the expansion stroke is generated in a state where the reaction torque accompanying the negative rotation of the engine is small. Therefore, the first explosion itself of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the first explosion, so that the engine startability can be further improved.
  • the clutch when the engine rotates forward during the reverse rotation start, the clutch is directed to engagement. And controlling the speed of the engine to increase. If it does in this way, the output torque of the motor at the time of controlling a clutch toward engagement will be suppressed by performing reverse rotation start first. Therefore, when the motor is running, the output torque of the electric motor secured for starting the engine is suppressed, and the motor running area is expanded. In addition, since the occurrence of overshoot is suppressed by performing reverse rotation start, the clutch is quickly fully engaged. Therefore, the engine startability can be improved when the engine is started by the ignition start.
  • the engine when any one of the cylinders of the engine is stopped in a predetermined region sandwiching the top dead center, when the engine is started, the engine is first stopped in the expansion stroke. This is a case where any cylinder of the engine is stopped in a region where even if the cylinder of the engine is burned, an explosion torque that can exceed the friction torque of the engine cannot be generated. In this way, the engine startability can be improved by performing the reverse rotation when any cylinder of the engine is stopped in a predetermined region across the top dead center.
  • the vehicle includes a transmission that forms part of a power transmission path between the electric motor and the drive wheels.
  • the transmission includes a manual transmission such as a known synchronous mesh type parallel twin-shaft transmission having a plurality of pairs of transmission gears that are always meshed between two shafts, various automatic transmissions (planetary gear automatic transmission, synchronous mesh). Type parallel two-shaft automatic transmission, DCT, CVT, etc.).
  • This automatic transmission is constituted by an automatic transmission alone, an automatic transmission having a fluid transmission, or an automatic transmission having a sub-transmission.
  • a vehicle 10 is a hybrid vehicle including an engine 14 that functions as a driving force source for traveling and an electric motor MG.
  • the power transmission device 12 includes an engine connecting / disconnecting clutch K0 (hereinafter referred to as a clutch K0), a torque converter 16, an automatic transmission 18 and the like in order from the engine 14 side in a transmission case 20 as a non-rotating member. ing.
  • the power transmission device 12 is connected to a propeller shaft 26 connected to a transmission output shaft 24 that is an output rotating member of the automatic transmission 18, a differential gear 28 connected to the propeller shaft 26, and the differential gear 28. And a pair of axles 30 and the like.
  • the pump impeller 16a of the torque converter 16 is connected to the engine connecting shaft 32 via the clutch K0 and is directly connected to the electric motor MG.
  • the turbine impeller 16 b of the torque converter 16 is directly connected to a transmission input shaft 34 that is an input rotation member of the automatic transmission 18.
  • the pump impeller 16a is rotationally driven by the engine 14 (and / or the electric motor MG) to generate hydraulic pressure for executing the shift control of the automatic transmission 18, the engagement release control of the clutch K0, and the like.
  • a mechanical oil pump 22 is connected.
  • the power transmission device 12 configured in this way is suitably used for, for example, the FR type vehicle 10. In the power transmission device 12, the power of the engine 14 (the torque and the force are synonymous unless otherwise distinguished) is applied between the crankshaft 36 (see FIG.
  • the power transmission device 12 constitutes a power transmission path from the engine 14 to the drive wheel 38.
  • the automatic transmission 18 constitutes a part of the power transmission path between the engine 14 and the electric motor MG and the drive wheels 38, and the power from the driving power source for driving (the engine 14 and the electric motor MG) is directed to the drive wheels 38.
  • the electric motor MG is a so-called motor generator having a function as a motor that generates mechanical power from electric energy and a function as a generator that generates electric energy from mechanical energy.
  • the electric motor MG generates driving power using electric energy supplied from the power storage device 44 via the inverter 42 instead of or in addition to the engine 14.
  • the electric motor MG converts the power of the engine 14 and the driven force input from the drive wheel 38 side into electric energy by regeneration, and stores the electric energy in the power storage device 44 via the inverter 42.
  • the electric motor MG is connected to a power transmission path between the clutch K0 and the torque converter 16, and power is transmitted between the electric motor MG and the pump impeller 16a. Therefore, the electric motor MG is connected to the transmission input shaft 34 of the automatic transmission 18 so as to be able to transmit power without using the clutch K0.
  • the engine 14 is a known direct-injection type four-cycle gasoline engine that directly injects fuel into each cylinder (cylinder) 50, for example.
  • the engine 14 includes a combustion chamber 52 provided between a cylinder head and a piston, an intake pipe 54 connected to an intake port of the combustion chamber 52, and an exhaust pipe 56 connected to an exhaust port of the combustion chamber 52.
  • a fuel injection device 58 provided in the cylinder head for directly injecting fuel F into the combustion chamber 52; an ignition device 60 for igniting an air-fuel mixture in the combustion chamber 52; and an intake valve for opening or closing the intake port of the combustion chamber 52 62, an exhaust valve 64 that opens or closes the exhaust port of the combustion chamber 52, an intake valve drive device 66 that opens and closes by reciprocating the intake valve 62 in synchronization with the rotation of the crankshaft 36, and an exhaust valve 64 And an exhaust valve driving device 68 that opens and closes by reciprocating in synchronization with the rotation of the crankshaft 36.
  • An electronic throttle valve 70 is provided in the intake pipe 54 of the engine 14, and the electronic throttle valve 70 is opened and closed by a throttle actuator 72.
  • the fuel F is injected and supplied from the fuel injection device 58 to the intake air sucked into the combustion chamber 52 from the intake pipe 54 to form a mixture, and the mixture is ignited and burned by the ignition device 60. .
  • the engine 14 is driven, and the air-fuel mixture after combustion is sent into the exhaust pipe 56 as exhaust gas.
  • An arrow A1 indicates the most retarded state (most retarded position) in which the valve opening timing VTin of the intake valve 62 is shifted by the maximum in the retarded direction by the intake valve driving device 66.
  • an arrow A2 indicates a most advanced angle state (most advanced angle position) in which the valve opening timing VTin of the intake valve 62 is shifted by the maximum in the advance direction by the intake valve driving device 66.
  • the most retarded position of the intake valve 62 is, for example, a reference position when the engine is stopped due to ignition off. In the present embodiment, for example, at the time of engine start accompanying idling on or during idling, the valve opening timing VTin of the intake valve 62 is set as the reference position.
  • valve opening timing VTin of the intake valve 62 is shifted in the advance direction.
  • the valve opening timing VTin of the intake valve 62 can be changed within the range of the arrow AR by the intake valve driving device 66.
  • the vehicle 10 is provided with an electronic control device 90 including a control device for the vehicle 10 related to, for example, the engagement release control of the clutch K0 and the start control of the engine 14.
  • the electronic control unit 90 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the CPU uses a temporary storage function of the RAM and follows a program stored in the ROM in advance.
  • Various controls of the vehicle 10 are executed by performing signal processing.
  • the electronic control unit 90 performs output control of the engine 14, drive control of the motor MG including regeneration control of the motor MG, shift control of the automatic transmission 18, torque capacity control of the clutch K0, and the like.
  • the electronic control unit 90 includes various sensors (for example, an engine rotational speed sensor 74, a turbine rotational speed sensor 76, an output shaft rotational speed sensor 78, an electric motor rotational speed sensor 80, an accelerator opening sensor 82). , Various signals (for example, the engine rotation speed Ne and the crank angle Acr, which are the rotation speed of the engine 14, the turbine rotation speed) based on the detection values by the throttle sensor 84, the air flow meter 86, the intake valve side cam position sensor 88, the battery sensor 89, and the like.
  • sensors for example, an engine rotational speed sensor 74, a turbine rotational speed sensor 76, an output shaft rotational speed sensor 78, an electric motor rotational speed sensor 80, an accelerator opening sensor 82.
  • Various signals for example, the engine rotation speed Ne and the crank angle Acr, which are the rotation speed of the engine 14, the turbine rotation speed
  • the engine control command signal Se for controlling the output of the engine 14, the motor control command signal Sm for controlling the operation of the motor MG, the clutch K 0,
  • a hydraulic command signal Sp for operating an electromagnetic valve (solenoid valve) or the like included in the hydraulic control circuit 40 to control the hydraulic actuator of the automatic transmission 18 includes a fuel injection device 58, an ignition device 60, and an intake valve drive. It is output to the engine 66, the engine control device such as the throttle actuator 72, the inverter 42, the hydraulic control circuit 40, etc.
  • FIG. 4 is a functional block diagram for explaining a main part of the control function by the electronic control unit 90.
  • the hybrid control means that is, the hybrid control unit 92 controls a function as an engine drive control unit that controls driving of the engine 14 and an operation as a driving force source or a generator by the electric motor MG via the inverter 42.
  • a function as an electric motor operation control unit is included, and hybrid drive control by the engine 14 and the electric motor MG is executed by these control functions.
  • the hybrid control unit 92 calculates a required driving force Fdtgt as a required driving amount for the vehicle 10 by the driver based on the accelerator opening ⁇ acc and the vehicle speed V.
  • the hybrid control unit 92 uses only the electric motor MG as a driving power source for traveling with the clutch K0 released.
  • a traveling motor (EV traveling) is performed.
  • the hybrid control unit 92 uses at least the engine 14 for traveling with the clutch K0 engaged.
  • An engine traveling that travels as a driving force source that is, a hybrid traveling (EHV traveling) is performed.
  • the engine 14 is cranked by the electric motor MG by controlling the released clutch K0 toward the engagement, and the fuel supply or the engine ignition is performed. And the engine 14 is started.
  • the clutch K0 is controlled so that a K0 torque for transmitting an engine starting torque, which is a torque necessary for starting the engine, to the engine 14 side can be obtained. Since the engine start torque corresponds to the MG torque Tm that flows to the engine 14 side via the clutch K0, the MG torque Tm that flows to the drive wheel 38 side is reduced by that amount.
  • the hybrid control unit 92 When a part of the engine starting torque is covered by the ignition start, it is preferable to perform the ignition start in order to move the stopped piston. That is, it is suitable for suppressing the MG compensation torque to overcome the friction torque of the engine 14 at the start of the engine start by the explosion torque accompanying the start of ignition. Therefore, when restart of the engine 14 is requested during EV traveling, the hybrid control unit 92 first performs ignition start and rotates the engine 14. Thereafter, the hybrid control unit 92 increases the engine rotational speed Ne by the electric motor MG by controlling the clutch K0 toward engagement. Then, after the engine rotation speed Ne is synchronized with the motor rotation speed Nmg, the hybrid control unit 92 completely engages the clutch K0 and shifts to EHV traveling.
  • the friction torque of the engine 14 at the time of starting the engine is a compression torque corresponding to the pumping loss, a mechanical friction torque corresponding to the sliding resistance, and a mechanical friction torque of the intake valve driving device 66 and the exhaust valve driving device 68. Total torque.
  • the friction torque of the engine 14 at the start of the engine start when moving the stopped piston is exclusively the sliding resistance and the mechanical friction torque of the intake valve driving device 66 and the like because the engine rotational speed Ne is extremely low. Become.
  • the hybrid control unit 92 operates the intake valve drive device 66 to change the valve opening timing VTin of the intake valve 62 to the advance side prior to starting ignition of the cylinder C.
  • the hybrid control unit 92 causes the cylinder B to burn by starting ignition and causes the engine 14 to rotate in the forward direction in a state where the cylinder B in the expansion stroke is compressed. Thereby, coupled with the fact that the exhaust valve 64 is not immediately opened, an explosion torque sufficient to exceed the friction torque of the engine 14 is generated.
  • the hybrid control unit 92 increases the engine rotational speed Ne by controlling the clutch K0 toward engagement when the engine 14 is normally rotated in the ignition start by the reverse rotation start.
  • the ignition start is already performed and the cylinder C containing a large amount of combustion gas is burned, so that the engine rotation speed Ne is increased.
  • the compression of the cylinder B in the expansion stroke due to the negative rotation of the engine 14 is maximized when the negative rotation stops.
  • the reaction force against the positive rotation force becomes zero. Therefore, the hybrid control unit 92, when starting the reverse rotation, when the negative rotation speed of the engine 14 is decreasing (for example, when the negative rotation speed approaches zero or when the negative rotation stops).
  • the cylinder B in the expansion stroke is ignited.
  • the reaction torque is suppressed as much as possible, the cylinder B in the expansion stroke is burned, and the engine 14 is properly rotated in the forward direction.
  • the hybrid control unit 92 performs ignition of the cylinder B in the expansion stroke until the cylinder B in the expansion stroke reaches the top dead center in the reverse rotation start. Thereby, reverse rotation start is performed appropriately.
  • the traveling state determination means determines whether or not there is an engine stop request for requesting the stop of the engine 14 on the assumption of restart. For example, the traveling state determination unit 94 determines that the required driving force Fdtgt is within a range that can be covered only by the output of the electric motor MG during EHV traveling, or the discharge restriction of the power storage device 44, the charging request of the power storage device 44, the engine 14 and the like. When the warm-up request is canceled and EV traveling is performed, it is determined that there is an engine stop request on the assumption of restart.
  • the engine state determination unit 96 determines, for example, whether any cylinder of the stopped engine 14 is stopped at TDC. Further, the engine state determination unit 96 determines whether or not the rotation of the engine 14 has actually started reverse rotation by the start of reverse rotation start by the hybrid control unit 92, for example. Further, the engine state determination unit 96 determines whether or not the ignition condition for the cylinder in the expansion stroke is satisfied after fuel is injected into the cylinder in the expansion stroke that is executed in the reverse rotation start by the hybrid control unit 92, for example. To do. That is, the engine state determination unit 96 determines whether or not ignition to the cylinder in the expansion stroke has become possible. This ignition condition is, for example, whether the cylinder in the expansion stroke has not reached TDC and the negative rotation speed of the engine has been reduced or stopped in the engine 14 in reverse rotation.
  • FIG. 6 is a flowchart for explaining a main part of the control operation of the electronic control unit 90, that is, a control operation for improving the engine startability at the time of engine start by ignition start, for example, an extremely short cycle of about several msec to several tens msec. It is executed repeatedly in time.
  • step (hereinafter, step is omitted) S10 corresponding to the traveling state determination unit 94 it is determined whether there is an engine stop request based on restart, for example. If the determination in S10 is negative, this routine is terminated. If the determination is positive, in S20 corresponding to the engine state determination unit 96, for example, the valve opening timing VTin of the intake valve 62 matches the engine restart. It is determined whether or not there is. If the determination in S20 is negative, in S30 corresponding to the hybrid control unit 92, for example, the intake valve driving device 66 is operated, and the valve opening timing VTin of the intake valve 62 is changed to the advance side. After execution of S30, the process returns to S20.
  • S20 If the determination in S20 is affirmative, for example, both fuel injection and ignition for the engine 14 are stopped in S40 corresponding to the hybrid control unit 92.
  • S50 corresponding to the engine state determination unit 96, for example, the crank angle Acr of the stopped engine 14 is detected.
  • S60 corresponding to the engine state determination unit 96, for example, it is determined whether any cylinder of the stopped engine 14 is stopped at TDC. If the determination in S60 is negative, it is determined in S70 corresponding to the traveling state determination unit 94, for example, whether there is an engine restart request. If the determination in S70 is negative, this S70 is repeatedly executed.
  • S110 is repeatedly executed. If the determination in S110 is negative, this S110 is repeatedly executed. If the determination is affirmative, in S120 corresponding to the hybrid control unit 92, for example, fuel injection is executed for a cylinder in the expansion stroke. Next, in S130 corresponding to the engine state determination unit 96, for example, it is determined whether or not an ignition condition for a cylinder in the expansion stroke is satisfied. If the determination in S130 is negative, this S130 is repeatedly executed. If the determination is positive, in S140 corresponding to the hybrid control unit 92, for example, ignition is executed for a cylinder in the expansion stroke.
  • the fuel injection to the cylinder in the expansion stroke is performed while the engine 14 is rotating negatively, so that the fuel flows in a state where air flow is generated in the cylinder due to the negative rotation. It is injected and the homogenization of the air-fuel mixture in the cylinder in the expansion stroke is promoted. Therefore, the initial explosion of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the initial explosion, so that the engine startability can be improved.
  • the ignition of the cylinder in the expansion stroke is performed when the speed of the negative rotation of the engine 14 is decreasing, so that the air compression of the cylinder in the expansion stroke proceeds. It is burned in the state.
  • the first explosion of the cylinder in the expansion stroke is generated in a state where the reaction torque accompanying the negative rotation of the engine is small. Therefore, the first explosion itself of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the first explosion, so that the engine startability can be further improved.
  • the cylinder in the expansion stroke is ignited until the cylinder in the expansion stroke reaches the top dead center. Startability can be improved.
  • the engine rotational speed Ne is increased by controlling the clutch K0 toward the engagement, so that the clutch K0 is performed by performing the reverse rotation first.
  • the MG torque Tm when controlling toward the engagement is suppressed. Therefore, during EV travel, the MG torque Tm secured for engine start is suppressed, and the EV travel range is expanded.
  • the clutch K0 is quickly fully engaged. Therefore, the engine startability can be improved when the engine is started by the ignition start.
  • the state in which the cylinder of the engine 14 is stopped at the TDC is illustrated as an aspect of the reverse rotation start, but the present invention is not limited to this aspect.
  • the reverse rotation start may be performed even when the vehicle is stopped with a certain degree of deviation from the TDC.
  • the exhaust valve 64 is not immediately opened during forward rotation, ignition occurs because the crank angle Acr is small with respect to TDC.
  • the forward rotation does not start even if the engine is started.
  • the exhaust valve 64 is used.
  • the reverse rotation start is executed in the same manner as when the vehicle is stopped in accordance with the TDC. That is, reverse rotation start is performed when any cylinder of the engine 14 is stopped in a predetermined region across the TDC.
  • the valve opening timing VTin of the intake valve 62 is advanced with respect to the most retarded position that is the reference position. It is not restricted to this aspect.
  • the intake valve drive device 66 is a mechanism that can change the valve opening timing VTin of the intake valve 62 even when the engine is stopped, such as an electrically controlled valve opening / closing mechanism, the engine is started after the engine is stopped and before the engine is restarted.
  • the valve opening timing VTin of the intake valve 62 may be advanced during the period until. That is, S20 and S30 may be completed before S100 is executed.
  • the intermediate position matches the engine restart. If it is a position, S20 and S30 may not be present.
  • the intake valve driving device 66 does not need to have the function of the valve timing changing mechanism VVT.
  • it is determined in S110 whether or not the rotation of the engine 14 has started reverse rotation but this is not a limitation.
  • the execution contents of each step, the execution order thereof, and the like can be changed as appropriate without departing from the scope.
  • the 6-cylinder engine is exemplified to explain the reverse start, but the engine to which the present invention is applied is not limited to this 6-cylinder engine.
  • a 5-cylinder engine or an 8-cylinder engine may be used.
  • the intake valve driving device 66 has the function of the valve timing changing mechanism VVT.
  • the exhaust valve driving device 68 also changes the valve timing changing mechanism VTex of the exhaust valve 64. You may have a function of VVT.
  • the valve timing changing mechanism VVT in the exhaust valve driving device 68 for example, when starting ignition with respect to a cylinder in the expansion stroke in reverse rotation start, the valve opening timing VTex of the exhaust valve 64 may be retarded. In this way, since the opening of the exhaust valve 64 is delayed when the cylinder in the expansion stroke is combusted, the explosion torque when the engine 14 is normally rotated in the reverse rotation start can be obtained more sufficiently.
  • the function of the valve timing changing mechanism VVT in the above-described embodiment is to advance or retard both the valve opening time and the valve closing time, but is not limited to this mode.
  • the intake valve driving device 66 has the function of a valve timing changing mechanism VVT that can be electromagnetically controlled to open and close the valve independently of the rotation of the crankshaft 36 without being mechanically connected to the crankshaft 36. May be. In such a case, it is possible to advance only the valve closing time without changing the valve opening time of the intake valve 62, or to delay only the valve opening time without changing the valve closing time of the exhaust valve 64.
  • the clutch K0 is completely engaged after the engine rotation speed Ne and the motor rotation speed Nmg are synchronized.
  • the present invention is not limited to this.
  • the clutch K0 since the increase in the engine rotational speed Ne is moderated by the reverse rotation start, the clutch K0 may be completely engaged when the engine rotational speed Ne is changing toward synchronization with the electric motor rotational speed Nmg. . In this way, although it is somewhat disadvantageous for suppressing the shock, the response of starting the engine is improved.
  • the vehicle 10 is provided with the torque converter 16 and the automatic transmission 18, but the torque converter 16 and the automatic transmission 18 are not necessarily provided.
  • Vehicle 14 Engine 62: Intake valve 66: Intake valve drive device (valve timing changing mechanism) 90: Electronic control device (control device) K0: Engine disconnection clutch (clutch) MG: Electric motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The present invention improves engine startability when an engine is started up by ignition startup. A cylinder in an expansion stroke is recompressed by negative rotation of an engine (14) caused by reverse-rotation startup, and high explosion torque can be achieved during the initial explosion of the cylinder. Combustion is caused in the cylinder containing a large amount of combustion gas of the reverse-rotation startup after the initial explosion of the cylinder in the expansion stroke, and the explosion torque during the cylinder combustion is therefore reduced. Therefore, the explosion torque of the second or third explosion is suppressed, thereby lessening the increase in engine speed (Ne), minimizing the occurrence of overshooting, and ensuring that a clutch (K0) is fully engaged quickly.

Description

車両の制御装置Vehicle control device
 本発明は、エンジンと電動機との間の動力伝達経路に設けられたクラッチを備える車両の制御装置に関するものである。 The present invention relates to a vehicle control apparatus including a clutch provided in a power transmission path between an engine and an electric motor.
 エンジンと、電動機と、そのエンジンとその電動機との間の動力伝達経路に設けられてエンジンを駆動輪から切り離すことができるクラッチとを備える車両が良く知られている。このような車両では、クラッチを解放した状態でエンジンが停止させられる。そのような状態からエンジンを始動する種々の手法が提案されている。例えば、特許文献1には、上述したような車両において、エンジンの始動が要求されると、クラッチをスリップ制御することで、電動機の出力トルク(特に区別しない場合は、パワーも力も同意)にてエンジンをクランキングしてエンジンを始動する技術が開示されている。又、特許文献1には、直噴エンジンのエンジン始動に際して、膨張行程にて停止しているエンジンの気筒内に燃料噴射し且つ点火することで、爆発トルクによってエンジン回転速度を上昇させて始動する所謂着火始動を行う技術も提案されている。 2. Description of the Related Art A vehicle including an engine, an electric motor, and a clutch that is provided in a power transmission path between the engine and the electric motor and can disconnect the engine from driving wheels is well known. In such a vehicle, the engine is stopped with the clutch released. Various methods for starting the engine from such a state have been proposed. For example, in Patent Document 1, in the vehicle as described above, when the engine is requested to start, slip control of the clutch is performed, so that the output torque of the electric motor (if not specifically distinguished, power and force are agreed) A technique for cranking an engine and starting the engine is disclosed. Further, in Patent Document 1, when starting a direct injection engine, fuel is injected into the cylinder of the engine stopped in the expansion stroke and ignited, so that the engine rotation speed is increased by the explosion torque and the engine is started. A so-called ignition start technique has also been proposed.
特表2009-527411号公報Special table 2009-527411 特開2004-28046号公報Japanese Patent Laid-Open No. 2004-28046
 ところで、クラッチのスリップ制御によるエンジン始動では、エンジン回転速度が電動機回転速度と同期したところでそのクラッチを完全係合して、エンジン走行に移行することが良く知られている。一方で、着火始動によるエンジン始動では、膨張行程にて停止している気筒の位置によっては、エンジンのフリクショントルクに打ち勝ってエンジン回転速度を上昇させられる程の十分な爆発トルクを得られない可能性がある。又、着火始動によるエンジン始動では、エンジンの爆発トルクによってエンジン回転速度を上昇させるので、クラッチのスリップ制御によるエンジン始動と比べて、エンジン回転速度の上昇が急峻となり易い。その為、エンジン回転速度が電動機回転速度を超えるオーバーシュートが発生することで、クラッチの完全係合が遅れてエンジン走行への移行が遅くなる恐れがある。このことは、例えばクラッチのスリップ制御によるエンジン始動と着火始動によるエンジン始動とを組み合わせて実行した場合でも、同様に、エンジン走行への移行が遅くなる恐れがある。尚、上述したような課題は未公知であり、膨張行程にある気筒の初爆時に高い爆発トルクが得られると共に、速やかにエンジン走行へ移行させることについて未だ提案されていない。 By the way, it is well known that in engine start by slip control of the clutch, when the engine speed is synchronized with the motor speed, the clutch is completely engaged and the engine is shifted to engine running. On the other hand, depending on the position of the cylinder that is stopped in the expansion stroke, there is a possibility that sufficient explosion torque cannot be obtained to overcome the engine friction torque and increase the engine rotation speed. There is. Further, in the engine start by the ignition start, the engine rotation speed is increased by the engine explosion torque. Therefore, the engine rotation speed is likely to increase sharply compared to the engine start by the clutch slip control. Therefore, when an overshoot occurs in which the engine rotation speed exceeds the motor rotation speed, the complete engagement of the clutch may be delayed, and the transition to engine running may be delayed. For example, even when the engine start by the slip control of the clutch and the engine start by the ignition start are executed in combination, there is a possibility that the shift to the engine running is delayed similarly. The above-described problem is not known, and a high explosion torque is obtained at the time of the first explosion of the cylinder in the expansion stroke, and it has not yet been proposed to quickly shift to engine running.
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、着火始動によるエンジン始動に際して、エンジン始動性を向上させることができる車両の制御装置を提供することにある。 The present invention has been made in the background of the above circumstances, and an object of the present invention is to provide a vehicle control device capable of improving engine startability when starting an engine by ignition start. .
 前記目的を達成する為の第1の発明の要旨とするところは、(a) エンジンと、電動機と、そのエンジンとその電動機との間の動力伝達経路に設けられたクラッチとを備える車両の制御装置であって、(b) 前記エンジンの始動に際して、圧縮行程にて停止しているそのエンジンの気筒を燃焼させてそのエンジンを負回転させた後に、膨張行程にあるそのエンジンの気筒を燃焼させてそのエンジンを正回転させる逆転始動を行うことにある。 The subject matter of the first invention for achieving the above object is: (a) Control of a vehicle including a soot engine, an electric motor, and a clutch provided in a power transmission path between the engine and the electric motor. (B) に 際 し て When starting the engine, after burning the cylinder of the engine stopped in the compression stroke and negatively rotating the engine, the cylinder of the engine in the expansion stroke is burned. The reverse rotation start is performed to rotate the engine forward.
 このようにすれば、逆転始動によるエンジンの負回転により膨張行程にある気筒は再び圧縮されており、その気筒の初爆時に高い爆発トルクを得ることができる。又、膨張行程にある気筒の初爆後には、逆転始動での燃焼ガスが多く含まれる気筒を燃焼させることになるので、その気筒の燃焼時の爆発トルクが小さくされる。従って、2爆目或いは3爆目の爆発トルクが抑えられることで、エンジン回転速度の上昇が緩められてオーバーシュートの発生が抑制され、速やかにクラッチが完全係合される。よって、着火始動によるエンジン始動に際して、エンジン始動性を向上させることができる。 In this way, the cylinder in the expansion stroke is compressed again due to the negative rotation of the engine due to the reverse rotation start, and a high explosion torque can be obtained at the first explosion of the cylinder. Further, after the initial explosion of the cylinder in the expansion stroke, the cylinder containing a large amount of combustion gas in the reverse rotation start is burned, so the explosion torque at the time of combustion of the cylinder is reduced. Therefore, by suppressing the explosion torque of the second or third explosion, the increase in engine rotation speed is relaxed, the occurrence of overshoot is suppressed, and the clutch is quickly fully engaged. Therefore, the engine startability can be improved when the engine is started by the ignition start.
 ここで、第2の発明は、前記第1の発明に記載の車両の制御装置において、前記エンジンの何れかの気筒が上死点を挟む所定領域にて停止している場合に、前記逆転始動を行うことにある。このようにすれば、エンジンの何れかの気筒が上死点を挟む所定領域にて停止している場合には膨張行程にて停止しているエンジンの気筒を燃焼させてもエンジンのフリクショントルクに打ち勝つ程の十分な爆発トルクを得られ難い可能性があることに対して、逆転始動を行うことでエンジン始動性を向上させることができる。 Here, the second invention is the vehicle control apparatus according to the first invention, wherein the reverse rotation start is performed when any cylinder of the engine is stopped in a predetermined region sandwiching a top dead center. Is to do. In this way, if any cylinder of the engine is stopped in a predetermined region across the top dead center, even if the engine cylinder stopped in the expansion stroke is burned, the engine friction torque is increased. Whereas it may be difficult to obtain a sufficient explosion torque to overcome, engine startability can be improved by performing reverse start.
 また、第3の発明は、前記第1の発明又は第2の発明に記載の車両の制御装置において、前記膨張行程にある前記エンジンの気筒への燃料噴射は、そのエンジンが負回転している間に行うことにある。このようにすれば、負回転によって気筒内に空気流動が発生した状態で燃料噴射されることで、膨張行程にある気筒内の混合気の均質化が促進される。従って、膨張行程にある気筒の初爆自体が発生し易く、又、その初爆時に高い爆発トルクが得られ易くなり、エンジン始動性を向上させることができる。 According to a third aspect of the present invention, in the vehicle control device according to the first or second aspect of the invention, the fuel is injected into the cylinder of the engine in the expansion stroke when the engine is negatively rotated. There is to do in between. In this way, the fuel injection is performed in a state where air flow is generated in the cylinder due to the negative rotation, thereby promoting the homogenization of the air-fuel mixture in the cylinder in the expansion stroke. Therefore, the initial explosion of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the initial explosion, so that the engine startability can be improved.
 また、第4の発明は、前記第1の発明乃至第3の発明の何れか1つに記載の車両の制御装置において、前記膨張行程にある前記エンジンの気筒の点火は、そのエンジンの負回転の速度が低下しているときに行うことにある。このようにすれば、膨張行程にある気筒の空気圧縮が進んだ状態で燃焼される。又、エンジンの負回転に伴う反力トルクが小さい状態で膨張行程にある気筒の初爆が発生させられる。従って、膨張行程にある気筒の初爆自体が発生し易く、又、その初爆時に高い爆発トルクが得られ易くなり、よりエンジン始動性を向上させることができる。 According to a fourth aspect of the present invention, in the vehicle control device according to any one of the first to third aspects of the present invention, the ignition of the cylinder of the engine in the expansion stroke is a negative rotation of the engine. There is to do when the speed is slowing down. If it does in this way, it will burn with the air compression of the cylinder in an expansion stroke advanced. In addition, the first explosion of the cylinder in the expansion stroke is generated in a state where the reaction torque accompanying the negative rotation of the engine is small. Therefore, the first explosion itself of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the first explosion, so that the engine startability can be further improved.
 また、第5の発明は、前記第1の発明乃至第4の発明の何れか1つに記載の車両の制御装置において、前記膨張行程にある前記エンジンの気筒の点火は、その膨張行程にあるそのエンジンの気筒が上死点に達するまでに行うことにある。このようにすれば、逆転始動が適切に実行されて、エンジン始動性を向上させることができる。 According to a fifth aspect of the present invention, in the vehicle control device according to any one of the first to fourth aspects, the ignition of the cylinder of the engine in the expansion stroke is in the expansion stroke. This is to be done before the engine cylinder reaches top dead center. If it does in this way, reverse rotation start is performed appropriately and an engine startability can be improved.
 また、第6の発明は、前記第1の発明乃至第5の発明の何れか1つに記載の車両の制御装置において、前記エンジンの吸気弁の開弁時期を変更する弁タイミング変更機構を備え、前記圧縮行程にて停止している前記エンジンの気筒の燃焼は、前記弁タイミング変更機構により前記吸気弁の開弁時期が進角されている状態で行うことにある。このようにすれば、吸気弁が確実に閉弁している状態で、圧縮行程にて停止している気筒を燃焼させることができる。 According to a sixth aspect of the present invention, in the vehicle control device according to any one of the first to fifth aspects, a valve timing changing mechanism for changing a valve opening timing of the intake valve of the engine. The combustion of the cylinders of the engine stopped in the compression stroke is performed in a state where the valve opening timing of the intake valve is advanced by the valve timing changing mechanism. In this way, it is possible to burn the cylinder that is stopped in the compression stroke while the intake valve is securely closed.
 また、第7の発明は、前記第1の発明乃至第6の発明の何れか1つに記載の車両の制御装置において、前記逆転始動において前記エンジンが正回転したら、前記クラッチを係合に向けて制御することでそのエンジンの回転速度を上昇させることにある。このようにすれば、先に逆転始動を行うことで、クラッチを係合に向けて制御するときの電動機の出力トルクが抑制される。従って、モータ走行時に、エンジン始動の為に担保しておく電動機の出力トルクが抑制され、モータ走行領域が拡大する。また、逆転始動を行うことでオーバーシュートの発生が抑制されるので、速やかにクラッチが完全係合される。よって、着火始動によるエンジン始動に際して、エンジン始動性を向上させることができる。 According to a seventh aspect of the present invention, in the vehicle control device according to any one of the first to sixth aspects, when the engine rotates forward during the reverse rotation start, the clutch is directed to engagement. And controlling the speed of the engine to increase. If it does in this way, the output torque of the motor at the time of controlling a clutch toward engagement will be suppressed by performing reverse rotation start first. Therefore, when the motor is running, the output torque of the electric motor secured for starting the engine is suppressed, and the motor running area is expanded. In addition, since the occurrence of overshoot is suppressed by performing reverse rotation start, the clutch is quickly fully engaged. Therefore, the engine startability can be improved when the engine is started by the ignition start.
本発明が適用される車両に備えられた動力伝達装置の概略構成を説明する図であると共に、車両における制御系統の要部を説明する図である。It is a figure explaining the schematic structure of the power transmission device with which the present invention was equipped, and the principal part of the control system in vehicles. 図1のエンジンの概略構成を説明する図であると共に、車両における制御系統のうちでエンジンにおける制御系統の要部を説明する図である。It is a figure explaining the schematic structure of the engine of FIG. 1, and is a figure explaining the principal part of the control system in an engine among the control systems in a vehicle. 吸気弁及び排気弁の各開弁時期を説明する為の図である。It is a figure for demonstrating each valve opening time of an intake valve and an exhaust valve. 電子制御装置の制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function of an electronic controller. TDC停止時の着火始動を説明する為の図である。It is a figure for demonstrating the ignition start at the time of TDC stop. 電子制御装置の制御作動の要部すなわち着火始動によるエンジン始動に際してエンジン始動性を向上させる為の制御作動を説明するフローチャートである。It is a flowchart explaining the control operation | movement for improving the engine startability at the time of the engine start by the ignition control start, ie, the main part of the control operation of an electronic controller.
 本発明において、好適には、前記エンジンの何れかの気筒が上死点を挟む所定領域にて停止している場合とは、そのエンジンの始動に際して、初めに、膨張行程にて停止しているそのエンジンの気筒を燃焼させても、そのエンジンのフリクショントルクを超えられるだけの爆発トルクを発生させられない領域にそのエンジンの何れかの気筒が停止している場合である。このようにすれば、エンジンの何れかの気筒が上死点を挟む所定領域にて停止している場合に、逆転始動を行うことでエンジン始動性を向上させることができる。 In the present invention, preferably, when any one of the cylinders of the engine is stopped in a predetermined region sandwiching the top dead center, when the engine is started, the engine is first stopped in the expansion stroke. This is a case where any cylinder of the engine is stopped in a region where even if the cylinder of the engine is burned, an explosion torque that can exceed the friction torque of the engine cannot be generated. In this way, the engine startability can be improved by performing the reverse rotation when any cylinder of the engine is stopped in a predetermined region across the top dead center.
 また、好適には、前記車両は、前記電動機と駆動輪との間の動力伝達経路の一部を構成する変速機を備えている。前記変速機は、常時噛み合う複数対の変速ギヤを2軸間に備える公知の同期噛合型平行2軸式変速機などの手動変速機、種々の自動変速機(遊星歯車式自動変速機、同期噛合型平行2軸式自動変速機、DCT、CVT等)などである。この自動変速機は、自動変速機単体、流体式伝動装置を有する自動変速機、或いは副変速機を有する自動変速機などにより構成される。 Also preferably, the vehicle includes a transmission that forms part of a power transmission path between the electric motor and the drive wheels. The transmission includes a manual transmission such as a known synchronous mesh type parallel twin-shaft transmission having a plurality of pairs of transmission gears that are always meshed between two shafts, various automatic transmissions (planetary gear automatic transmission, synchronous mesh). Type parallel two-shaft automatic transmission, DCT, CVT, etc.). This automatic transmission is constituted by an automatic transmission alone, an automatic transmission having a fluid transmission, or an automatic transmission having a sub-transmission.
 また、好適には、前記エンジンは、例えば燃料の燃焼によって動力を発生するガソリンエンジン等の内燃機関である。また、前記クラッチは、前記エンジンを前記駆動輪から切り離すことができる、湿式或いは乾式の係合装置である。 Preferably, the engine is an internal combustion engine such as a gasoline engine that generates power by burning fuel. The clutch is a wet or dry engagement device that can disconnect the engine from the drive wheel.
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明が適用される車両10に備えられた動力伝達装置12の概略構成を説明する図であると共に、車両10における各種制御の為の制御系統の要部を説明する図である。又、図2は、特に、図1のエンジン14の概略構成を説明する図であると共に、車両10における制御系統のうちでエンジン14における出力制御等の為の制御系統の要部を説明する図である。 FIG. 1 is a diagram illustrating a schematic configuration of a power transmission device 12 provided in a vehicle 10 to which the present invention is applied, and a diagram illustrating a main part of a control system for various controls in the vehicle 10. . 2 is a diagram for explaining a schematic configuration of the engine 14 of FIG. 1 in particular, and a diagram for explaining a main part of a control system for output control and the like in the engine 14 among the control systems in the vehicle 10. It is.
 図1において、車両10は、走行用駆動力源として機能するエンジン14及び電動機MGを備えたハイブリッド車両である。動力伝達装置12は、非回転部材としてのトランスミッションケース20内において、エンジン14側から順番に、エンジン断接用クラッチK0(以下、クラッチK0という)、トルクコンバータ16、及び自動変速機18等を備えている。また、動力伝達装置12は、自動変速機18の出力回転部材である変速機出力軸24に連結されたプロペラシャフト26、そのプロペラシャフト26に連結されたディファレンシャルギヤ28、そのディファレンシャルギヤ28に連結された1対の車軸30等を備えている。トルクコンバータ16のポンプ翼車16aは、クラッチK0を介してエンジン連結軸32と連結されていると共に、直接的に電動機MGと連結されている。トルクコンバータ16のタービン翼車16bは、自動変速機18の入力回転部材である変速機入力軸34と直接的に連結されている。ポンプ翼車16aには、エンジン14(及び/又は電動機MG)によって回転駆動されることにより、自動変速機18の変速制御やクラッチK0の係合解放制御などを実行する為の作動油圧を発生する機械式のオイルポンプ22が連結されている。このように構成された動力伝達装置12は、例えばFR型の車両10に好適に用いられる。動力伝達装置12において、エンジン14の動力(特に区別しない場合にはトルクや力も同義)は、クラッチK0が係合された場合に、エンジン14のクランク軸36(図2参照)とクラッチK0とを連結するエンジン連結軸32から、クラッチK0、トルクコンバータ16、自動変速機18、プロペラシャフト26、ディファレンシャルギヤ28、及び1対の車軸30等を順次介して1対の駆動輪38へ伝達される。このように、動力伝達装置12は、エンジン14から駆動輪38までの動力伝達経路を構成する。 In FIG. 1, a vehicle 10 is a hybrid vehicle including an engine 14 that functions as a driving force source for traveling and an electric motor MG. The power transmission device 12 includes an engine connecting / disconnecting clutch K0 (hereinafter referred to as a clutch K0), a torque converter 16, an automatic transmission 18 and the like in order from the engine 14 side in a transmission case 20 as a non-rotating member. ing. The power transmission device 12 is connected to a propeller shaft 26 connected to a transmission output shaft 24 that is an output rotating member of the automatic transmission 18, a differential gear 28 connected to the propeller shaft 26, and the differential gear 28. And a pair of axles 30 and the like. The pump impeller 16a of the torque converter 16 is connected to the engine connecting shaft 32 via the clutch K0 and is directly connected to the electric motor MG. The turbine impeller 16 b of the torque converter 16 is directly connected to a transmission input shaft 34 that is an input rotation member of the automatic transmission 18. The pump impeller 16a is rotationally driven by the engine 14 (and / or the electric motor MG) to generate hydraulic pressure for executing the shift control of the automatic transmission 18, the engagement release control of the clutch K0, and the like. A mechanical oil pump 22 is connected. The power transmission device 12 configured in this way is suitably used for, for example, the FR type vehicle 10. In the power transmission device 12, the power of the engine 14 (the torque and the force are synonymous unless otherwise distinguished) is applied between the crankshaft 36 (see FIG. 2) of the engine 14 and the clutch K0 when the clutch K0 is engaged. It is transmitted from the engine connecting shaft 32 to be connected to the pair of driving wheels 38 via the clutch K0, the torque converter 16, the automatic transmission 18, the propeller shaft 26, the differential gear 28, the pair of axles 30, and the like in order. Thus, the power transmission device 12 constitutes a power transmission path from the engine 14 to the drive wheel 38.
 自動変速機18は、エンジン14及び電動機MGと駆動輪38との間の動力伝達経路の一部を構成し、走行用駆動力源(エンジン14及び電動機MG)からの動力を駆動輪38側へ伝達する変速機である。自動変速機18は、例えば変速比γ(=変速機入力回転速度Nin/変速機出力回転速度Nout)が異なる複数の変速段が選択的に成立させられる公知の遊星歯車式多段変速機、或いは変速比γが無段階に連続的に変化させられる公知の無段変速機などである。 The automatic transmission 18 constitutes a part of the power transmission path between the engine 14 and the electric motor MG and the drive wheels 38, and the power from the driving power source for driving (the engine 14 and the electric motor MG) is directed to the drive wheels 38. A transmission for transmission. The automatic transmission 18 is, for example, a known planetary gear type multi-stage transmission in which a plurality of shift stages having different gear ratios γ (= transmission input rotation speed Nin / transmission output rotation speed Nout) are selectively established, or a shift A known continuously variable transmission or the like in which the ratio γ is continuously changed continuously.
 電動機MGは、電気エネルギから機械的な動力を発生させる発動機としての機能及び機械的なエネルギーから電気エネルギを発生させる発電機としての機能を有する所謂モータジェネレータである。電動機MGは、エンジン14に替えて或いはエンジン14に加えて、インバータ42を介して蓄電装置44から供給される電気エネルギにより走行用の動力を発生する。電動機MGは、エンジン14の動力や駆動輪38側から入力される被駆動力を回生により電気エネルギに変換し、その電気エネルギをインバータ42を介して蓄電装置44に蓄積する。電動機MGは、クラッチK0とトルクコンバータ16との間の動力伝達経路に連結されており、電動機MGとポンプ翼車16aとの間では、相互に動力が伝達される。従って、電動機MGは、クラッチK0を介することなく自動変速機18の変速機入力軸34と動力伝達可能に連結されている。 The electric motor MG is a so-called motor generator having a function as a motor that generates mechanical power from electric energy and a function as a generator that generates electric energy from mechanical energy. The electric motor MG generates driving power using electric energy supplied from the power storage device 44 via the inverter 42 instead of or in addition to the engine 14. The electric motor MG converts the power of the engine 14 and the driven force input from the drive wheel 38 side into electric energy by regeneration, and stores the electric energy in the power storage device 44 via the inverter 42. The electric motor MG is connected to a power transmission path between the clutch K0 and the torque converter 16, and power is transmitted between the electric motor MG and the pump impeller 16a. Therefore, the electric motor MG is connected to the transmission input shaft 34 of the automatic transmission 18 so as to be able to transmit power without using the clutch K0.
 クラッチK0は、例えば湿式多板型の油圧式摩擦係合装置であり、オイルポンプ22が発生する油圧を元圧とし油圧制御回路40によって係合解放制御される。その係合解放制御においては、例えば油圧制御回路40内のリニヤソレノイドバルブ等の調圧により、クラッチK0のトルク容量(以下、K0トルクという)が変化させられる。クラッチK0の係合状態では、エンジン連結軸32を介してポンプ翼車16aとエンジン14とが一体的に回転させられる。一方で、クラッチK0の解放状態では、エンジン14とポンプ翼車16aとの間の動力伝達が遮断される。すなわち、クラッチK0を解放することでエンジン14と駆動輪38とが切り離される。電動機MGはポンプ翼車16aに連結されているので、クラッチK0は、エンジン14と電動機MGとの間の動力伝達経路に設けられて、その動力伝達経路を断接するクラッチとしても機能する。 The clutch K0 is, for example, a wet multi-plate hydraulic friction engagement device, and is engaged / released controlled by the hydraulic control circuit 40 using the hydraulic pressure generated by the oil pump 22 as a source pressure. In the engagement release control, the torque capacity of the clutch K0 (hereinafter referred to as K0 torque) is changed by adjusting the pressure of a linear solenoid valve or the like in the hydraulic control circuit 40, for example. In the engaged state of the clutch K0, the pump impeller 16a and the engine 14 are integrally rotated via the engine connecting shaft 32. On the other hand, in the released state of the clutch K0, power transmission between the engine 14 and the pump impeller 16a is interrupted. That is, the engine 14 and the driving wheel 38 are disconnected by releasing the clutch K0. Since the electric motor MG is connected to the pump impeller 16a, the clutch K0 is provided in a power transmission path between the engine 14 and the electric motor MG, and also functions as a clutch that connects and disconnects the power transmission path.
 図2において、エンジン14は、例えば各気筒(シリンダ)50内に燃料を直接噴射する直噴式の公知の4サイクルガソリンエンジンである。このエンジン14は、シリンダヘッドとピストンとの間に設けられた燃焼室52と、燃焼室52の吸気ポートに接続された吸気管54と、燃焼室52の排気ポートに接続された排気管56と、シリンダヘッドに設けられ燃焼室52に燃料Fを直接噴射する燃料噴射装置58と、燃焼室52内の混合気に点火する点火装置60と、燃焼室52の吸気ポートを開放又は閉塞させる吸気弁62と、燃焼室52の排気ポートを開放または閉塞させる排気弁64と、吸気弁62をクランク軸36の回転に同期して往復運動させることにより開閉作動させる吸気弁駆動装置66と、排気弁64をクランク軸36の回転に同期して往復運動させることにより開閉作動させる排気弁駆動装置68とを備えている。 2, the engine 14 is a known direct-injection type four-cycle gasoline engine that directly injects fuel into each cylinder (cylinder) 50, for example. The engine 14 includes a combustion chamber 52 provided between a cylinder head and a piston, an intake pipe 54 connected to an intake port of the combustion chamber 52, and an exhaust pipe 56 connected to an exhaust port of the combustion chamber 52. A fuel injection device 58 provided in the cylinder head for directly injecting fuel F into the combustion chamber 52; an ignition device 60 for igniting an air-fuel mixture in the combustion chamber 52; and an intake valve for opening or closing the intake port of the combustion chamber 52 62, an exhaust valve 64 that opens or closes the exhaust port of the combustion chamber 52, an intake valve drive device 66 that opens and closes by reciprocating the intake valve 62 in synchronization with the rotation of the crankshaft 36, and an exhaust valve 64 And an exhaust valve driving device 68 that opens and closes by reciprocating in synchronization with the rotation of the crankshaft 36.
 エンジン14の吸気管54内には、電子スロットル弁70が設けられており、その電子スロットル弁70はスロットルアクチュエータ72により開閉作動させられる。このエンジン14では、吸気管54から燃焼室52に吸入される吸入空気に燃料噴射装置58から燃料Fが噴射供給されて混合気が形成され、その混合気が点火装置60により点火されて燃焼する。これにより、エンジン14は駆動され、燃焼後の混合気は排出ガスとして排気管56内へと送り出される。 An electronic throttle valve 70 is provided in the intake pipe 54 of the engine 14, and the electronic throttle valve 70 is opened and closed by a throttle actuator 72. In the engine 14, the fuel F is injected and supplied from the fuel injection device 58 to the intake air sucked into the combustion chamber 52 from the intake pipe 54 to form a mixture, and the mixture is ignited and burned by the ignition device 60. . Thereby, the engine 14 is driven, and the air-fuel mixture after combustion is sent into the exhaust pipe 56 as exhaust gas.
 吸気弁駆動装置66は、吸気弁62の開弁時期VTin等を適宜変更する機能も備えており、例えば吸気弁62の開弁時期VTinを変更する弁タイミング変更機構VVTとしても機能する。吸気弁駆動装置66の作動原理としては種々のものが一般的に知られている。例えば、吸気弁駆動装置66は、クランク軸36の回転に連動するカム機構であって、互いに異なる形状の複数のカムの何れかを油圧制御又は電動制御により選択的に用いて吸気弁62を開閉作動させる機構であっても良く、或いはクランク軸36の回転に連動するカム機構とそのカム機構のカムの位相を油圧制御又は電動制御で変更する機構とを併せて活用し吸気弁62を開閉作動させるものであっても良い。要するに、吸気弁駆動装置66は例えば上記カム機構を主体として構成されており、吸気弁62の開きタイミングと閉じタイミングとの両方を進角させ又は遅角させる機能を有するものであれば良い。 The intake valve driving device 66 also has a function of appropriately changing the valve opening timing VTin of the intake valve 62, for example, and also functions as a valve timing changing mechanism VVT that changes the valve opening timing VTin of the intake valve 62, for example. Various types of operating principles of the intake valve driving device 66 are generally known. For example, the intake valve drive device 66 is a cam mechanism that interlocks with the rotation of the crankshaft 36, and selectively opens or closes the intake valve 62 by using one of a plurality of cams having different shapes by hydraulic control or electric control. The intake valve 62 may be opened and closed by utilizing a cam mechanism that is linked to the rotation of the crankshaft 36 and a mechanism that changes the cam phase of the cam mechanism by hydraulic control or electric control. It may be made to do. In short, the intake valve driving device 66 is configured mainly by the cam mechanism, for example, and may have any function of advancing or retarding both the opening timing and closing timing of the intake valve 62.
 図3は、吸気弁62の開弁時期VTin及び排気弁64の開弁時期VTexを説明する為の図である。図3において、矢印A1及び矢印A2は、吸気弁62の開弁時期VTinすなわち吸気弁62が開いているクランク角度Acrの範囲を示している。又、矢印Bは、排気弁64の開弁時期VTexすなわち排気弁64が開いているクランク角度Acrの範囲を示している。本実施例における開弁時期VTは、弁が開く時点(開弁時点)から弁が閉じる時点(閉弁時点)までの開弁中の期間(開弁期間)であり、開弁時点を示すものではない。矢印A1は、吸気弁駆動装置66により吸気弁62の開弁時期VTinが遅角方向へ最大ずらされた最遅角状態(最遅角位置)を示している。一方で、矢印A2は、吸気弁駆動装置66により吸気弁62の開弁時期VTinが進角方向へ最大ずらされた最進角状態(最進角位置)を示している。上記吸気弁62の最遅角位置は、例えばイグニッションオフによるエンジン停止時の基準位置である。本実施例では、例えばイグニッションオンに伴うエンジン始動時やアイドル運転時などには、吸気弁62の開弁時期VTinが基準位置とされる。又、例えばエンジン14の中負荷域での運転時には、吸気弁62の開弁時期VTinが進角方向へずらされる。このように、本実施例のエンジン14においては、吸気弁駆動装置66により吸気弁62の開弁時期VTinを矢印ARの範囲内で変更することができる。 FIG. 3 is a diagram for explaining the opening timing VTin of the intake valve 62 and the opening timing VTex of the exhaust valve 64. In FIG. 3, the arrows A1 and A2 indicate the valve opening timing VTin of the intake valve 62, that is, the range of the crank angle Acr in which the intake valve 62 is open. An arrow B indicates the valve opening timing VTex of the exhaust valve 64, that is, the range of the crank angle Acr at which the exhaust valve 64 is open. The valve opening timing VT in the present embodiment is a period during which the valve is opened (valve opening time) from the time when the valve opens (valve opening time) to the time when the valve closes (valve closing time), and indicates the valve opening time. is not. An arrow A1 indicates the most retarded state (most retarded position) in which the valve opening timing VTin of the intake valve 62 is shifted by the maximum in the retarded direction by the intake valve driving device 66. On the other hand, an arrow A2 indicates a most advanced angle state (most advanced angle position) in which the valve opening timing VTin of the intake valve 62 is shifted by the maximum in the advance direction by the intake valve driving device 66. The most retarded position of the intake valve 62 is, for example, a reference position when the engine is stopped due to ignition off. In the present embodiment, for example, at the time of engine start accompanying idling on or during idling, the valve opening timing VTin of the intake valve 62 is set as the reference position. For example, when the engine 14 is operated in the middle load range, the valve opening timing VTin of the intake valve 62 is shifted in the advance direction. As described above, in the engine 14 of this embodiment, the valve opening timing VTin of the intake valve 62 can be changed within the range of the arrow AR by the intake valve driving device 66.
 図1,2に戻り、車両10には、例えばクラッチK0の係合解放制御やエンジン14の始動制御などに関連する車両10の制御装置を含む電子制御装置90が備えられている。電子制御装置90は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置90は、エンジン14の出力制御、電動機MGの回生制御を含む電動機MGの駆動制御、自動変速機18の変速制御、クラッチK0のトルク容量制御等を実行するようになっており、必要に応じてエンジン制御用や電動機制御用や油圧制御用等に分けて構成される。電子制御装置90には、図1,2に示すように、各種センサ(例えばエンジン回転速度センサ74、タービン回転速度センサ76、出力軸回転速度センサ78、電動機回転速度センサ80、アクセル開度センサ82、スロットルセンサ84、エアフローメータ86、吸気弁側カムポジションセンサ88、バッテリセンサ89など)による検出値に基づく各種信号(例えばエンジン14の回転速度であるエンジン回転速度Ne及びクランク角度Acr、タービン回転速度Ntすなわち変速機入力軸36の回転速度である変速機入力回転速度Nin、車速Vに対応する変速機出力軸24の回転速度である変速機出力回転速度Nout、電動機MGの回転速度である電動機回転速度Nm、運転者による車両10に対する駆動要求量に対応するアクセル開度θacc、電子スロットル弁70の開き角度を表すスロットル弁開度θth、エンジン14の吸入空気量Qair、カムシャフト角度Aca、蓄電装置44の充電状態(充電容量)SOCなど)が、それぞれ供給される。電子制御装置90からは、図1,2に示すように、例えばエンジン14の出力制御の為のエンジン出力制御指令信号Se、電動機MGの作動を制御する為の電動機制御指令信号Sm、クラッチK0や自動変速機18の油圧アクチュエータを制御する為に油圧制御回路40に含まれる電磁弁(ソレノイドバルブ)等を作動させる為の油圧指令信号Spなどが、燃料噴射装置58、点火装置60、吸気弁駆動装置66、スロットルアクチュエータ72等のエンジン制御装置、インバータ42、油圧制御回路40などへそれぞれ出力される。 1 and 2, the vehicle 10 is provided with an electronic control device 90 including a control device for the vehicle 10 related to, for example, the engagement release control of the clutch K0 and the start control of the engine 14. The electronic control unit 90 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. The CPU uses a temporary storage function of the RAM and follows a program stored in the ROM in advance. Various controls of the vehicle 10 are executed by performing signal processing. For example, the electronic control unit 90 performs output control of the engine 14, drive control of the motor MG including regeneration control of the motor MG, shift control of the automatic transmission 18, torque capacity control of the clutch K0, and the like. If necessary, it is configured separately for engine control, motor control, hydraulic control, and the like. As shown in FIGS. 1 and 2, the electronic control unit 90 includes various sensors (for example, an engine rotational speed sensor 74, a turbine rotational speed sensor 76, an output shaft rotational speed sensor 78, an electric motor rotational speed sensor 80, an accelerator opening sensor 82). , Various signals (for example, the engine rotation speed Ne and the crank angle Acr, which are the rotation speed of the engine 14, the turbine rotation speed) based on the detection values by the throttle sensor 84, the air flow meter 86, the intake valve side cam position sensor 88, the battery sensor 89, and the like. Nt, that is, the transmission input rotation speed Nin that is the rotation speed of the transmission input shaft 36, the transmission output rotation speed Nout that is the rotation speed of the transmission output shaft 24 corresponding to the vehicle speed V, and the motor rotation that is the rotation speed of the motor MG. Speed Nm, accelerator opening θacc corresponding to the driver's demand for driving the vehicle 10, Throttle valve opening θth representing the opening angle of the throttle valve 70, the intake air amount Qair of the engine 14, the camshaft angle Aca, state of charge of the power storage device 44 such as a (charging capacity) SOC) is supplied. As shown in FIGS. 1 and 2, for example, the engine control command signal Se for controlling the output of the engine 14, the motor control command signal Sm for controlling the operation of the motor MG, the clutch K 0, A hydraulic command signal Sp for operating an electromagnetic valve (solenoid valve) or the like included in the hydraulic control circuit 40 to control the hydraulic actuator of the automatic transmission 18 includes a fuel injection device 58, an ignition device 60, and an intake valve drive. It is output to the engine 66, the engine control device such as the throttle actuator 72, the inverter 42, the hydraulic control circuit 40, etc.
 図4は、電子制御装置90による制御機能の要部を説明する機能ブロック線図である。図4において、ハイブリッド制御手段すなわちハイブリッド制御部92は、エンジン14の駆動を制御するエンジン駆動制御部としての機能と、インバータ42を介して電動機MGによる駆動力源又は発電機としての作動を制御する電動機作動制御部としての機能を含んでおり、それら制御機能によりエンジン14及び電動機MGによるハイブリッド駆動制御等を実行する。例えば、ハイブリッド制御部92は、アクセル開度θaccや車速Vに基づいて運転者による車両10に対する駆動要求量としての要求駆動力Fdtgtを算出する。そして、ハイブリッド制御部92は、伝達損失、補機負荷、自動変速機18の変速比γ、蓄電装置44の充電容量SOC等を考慮して、その要求駆動力Fdtgtが得られる走行用駆動力源(エンジン14及び電動機MG)の出力となるようにその走行用駆動力源を制御する指令信号(エンジン出力制御指令信号Se及び電動機制御指令信号Sm)を出力する。前記駆動要求量としては、駆動輪38における要求駆動力Fdtgt[N]の他に、駆動輪38における要求駆動トルク[Nm]、駆動輪38における要求駆動パワー[W]、変速機出力軸24における要求変速機出力トルク等を用いることもできる。又、駆動要求量として、単にアクセル開度θacc[%]や吸入空気量Qair[g/sec]等を用いることもできる。 FIG. 4 is a functional block diagram for explaining a main part of the control function by the electronic control unit 90. In FIG. 4, the hybrid control means, that is, the hybrid control unit 92 controls a function as an engine drive control unit that controls driving of the engine 14 and an operation as a driving force source or a generator by the electric motor MG via the inverter 42. A function as an electric motor operation control unit is included, and hybrid drive control by the engine 14 and the electric motor MG is executed by these control functions. For example, the hybrid control unit 92 calculates a required driving force Fdtgt as a required driving amount for the vehicle 10 by the driver based on the accelerator opening θacc and the vehicle speed V. Then, the hybrid control unit 92 considers transmission loss, auxiliary load, gear ratio γ of the automatic transmission 18, charge capacity SOC of the power storage device 44, and the like, and a driving power source for driving that can obtain the required driving force Fdtgt. Command signals (engine output control command signal Se and motor control command signal Sm) for controlling the driving force source for traveling are output so as to be the output of (engine 14 and motor MG). The required drive amount includes, in addition to the required drive force Fdtgt [N] in the drive wheel 38, the required drive torque [Nm] in the drive wheel 38, the required drive power [W] in the drive wheel 38, and the transmission output shaft 24. The required transmission output torque or the like can also be used. Further, the accelerator opening degree θacc [%], the intake air amount Qair [g / sec], or the like can also be used as the required drive amount.
 具体的には、ハイブリッド制御部92は、例えば要求駆動力Fdtgtが電動機MGの出力のみで賄える範囲の場合には、クラッチK0を解放させた状態で、電動機MGのみを走行用の駆動力源として走行するモータ走行(EV走行)を行う。一方で、ハイブリッド制御部92は、例えば要求駆動力Fdtgtが少なくともエンジン14の出力を用いないと賄えない範囲の場合には、クラッチK0を係合させた状態で、少なくともエンジン14を走行用の駆動力源として走行するエンジン走行すなわちハイブリッド走行(EHV走行)を行う。また、ハイブリッド制御部92は、例えば充電容量SOCや蓄電装置温度から算出された放電可能な電力に基づいて蓄電装置44の放電が制限された為にEV走行できない場合、蓄電装置44の充電が要求された場合、或いはエンジン14やエンジン14に関連する機器の暖機が必要な場合等には、エンジン14を作動させる。 Specifically, for example, when the required driving force Fdtgt is within a range that can be covered only by the output of the electric motor MG, the hybrid control unit 92 uses only the electric motor MG as a driving power source for traveling with the clutch K0 released. A traveling motor (EV traveling) is performed. On the other hand, for example, when the required driving force Fdtgt is in a range that cannot be covered unless at least the output of the engine 14 is used, the hybrid control unit 92 uses at least the engine 14 for traveling with the clutch K0 engaged. An engine traveling that travels as a driving force source, that is, a hybrid traveling (EHV traveling) is performed. In addition, the hybrid control unit 92 requests charging of the power storage device 44 when EV driving cannot be performed because discharge of the power storage device 44 is restricted based on, for example, dischargeable power calculated from the charge capacity SOC or the power storage device temperature. If the engine 14 or the equipment related to the engine 14 needs to be warmed up, the engine 14 is operated.
 ここで、ハイブリッド制御部92によるエンジン14を始動する方法としては、例えば解放されているクラッチK0を係合に向けて制御することで電動機MGによってエンジン14をクランキングしつつ、燃料供給やエンジン点火などを開始してエンジン14を始動する。この始動方法では、エンジン始動に必要なトルクであるエンジン始動トルクをエンジン14側へ伝達する為のK0トルクが得られるように、クラッチK0が制御される。上記エンジン始動トルクは、クラッチK0を介してエンジン14側へ流れる分のMGトルクTmに相当することから、その分だけ駆動輪38側へ流れる分のMGトルクTmが減少させられる。その為、この始動方法では、駆動トルクの落ち込みを抑制する為に、要求駆動トルクを満たす為に必要なMGトルクTmに加えて、エンジン始動トルクをエンジン14側へ伝達する為のK0トルクに相当するMGトルク分が増大される(以下、この増大分をK0補償トルク(或いはMG補償トルク)という)。 Here, as a method for starting the engine 14 by the hybrid control unit 92, for example, the engine 14 is cranked by the electric motor MG by controlling the released clutch K0 toward the engagement, and the fuel supply or the engine ignition is performed. And the engine 14 is started. In this starting method, the clutch K0 is controlled so that a K0 torque for transmitting an engine starting torque, which is a torque necessary for starting the engine, to the engine 14 side can be obtained. Since the engine start torque corresponds to the MG torque Tm that flows to the engine 14 side via the clutch K0, the MG torque Tm that flows to the drive wheel 38 side is reduced by that amount. For this reason, this starting method corresponds to K0 torque for transmitting the engine starting torque to the engine 14 side in addition to the MG torque Tm necessary for satisfying the required driving torque in order to suppress the drop of the driving torque. MG torque to be increased (hereinafter, this increase is referred to as K0 compensation torque (or MG compensation torque)).
 本実施例のEV走行では、電動機MGが出力することができる最大のMGトルクTmに対して、エンジン始動に備えてMG補償トルクを担保しておく分だけ、EV走行領域が縮小される。見方を換えれば、MG補償トルクを抑制できれば、EV走行領域を拡大することができる。そこで、ハイブリッド制御部92は、クラッチK0を係合に向けて制御する始動方法に加え、着火始動によるエンジン始動を実行する。つまり、ハイブリッド制御部92は、着火始動を行うことによって、エンジン始動トルクの一部を賄う。着火始動によるエンジン始動方法では、例えば膨張行程にて停止しているエンジン14の気筒内に燃料を噴射し且つ点火(着火)することでその気筒を燃焼させ、発生した爆発トルクによってピストンを押し下げてクランク軸36を回転させることでエンジン14を始動する。 In the EV traveling according to the present embodiment, the EV traveling region is reduced by as much as the MG compensation torque is secured in preparation for the engine start with respect to the maximum MG torque Tm that the electric motor MG can output. In other words, if the MG compensation torque can be suppressed, the EV travel range can be expanded. Therefore, the hybrid control unit 92 executes engine start by ignition start in addition to the start method for controlling the clutch K0 toward engagement. That is, the hybrid control unit 92 covers a part of the engine starting torque by performing the ignition start. In the engine starting method by ignition start, for example, fuel is injected into the cylinder of the engine 14 stopped in the expansion stroke and ignited (ignition) to burn the cylinder, and the piston is pushed down by the generated explosion torque. The engine 14 is started by rotating the crankshaft 36.
 着火始動にてエンジン始動トルクの一部を賄う場合、停止しているピストンを動かす為に着火始動を行うことが好適である。つまり、着火始動に伴う爆発トルクによって、エンジン始動開始時のエンジン14のフリクショントルクを乗り越えることが、MG補償トルクを抑制することにとって好適である。従って、ハイブリッド制御部92は、EV走行中にエンジン14の再始動が要求された場合には、先ず、着火始動を行ってエンジン14を回転させる。その後、ハイブリッド制御部92は、クラッチK0を係合に向けて制御することで電動機MGによってエンジン回転速度Neを上昇させる。そして、ハイブリッド制御部92は、エンジン回転速度Neが電動機回転速度Nmgと同期した後に、クラッチK0を完全係合してEHV走行へ移行する。尚、エンジン始動時のエンジン14のフリクショントルクは、ポンピングロスに相当するコンプレッショントルクと、摺動抵抗に相当するメカニカルフリクショントルクと、吸気弁駆動装置66及び排気弁駆動装置68のメカニカルフリクショントルクとの合計トルクである。但し、停止しているピストンを動かすときのエンジン始動開始時のエンジン14のフリクショントルクは、エンジン回転速度Neが極めて低速であるので、専ら摺動抵抗や吸気弁駆動装置66等のメカニカルフリクショントルクとなる。 When a part of the engine starting torque is covered by the ignition start, it is preferable to perform the ignition start in order to move the stopped piston. That is, it is suitable for suppressing the MG compensation torque to overcome the friction torque of the engine 14 at the start of the engine start by the explosion torque accompanying the start of ignition. Therefore, when restart of the engine 14 is requested during EV traveling, the hybrid control unit 92 first performs ignition start and rotates the engine 14. Thereafter, the hybrid control unit 92 increases the engine rotational speed Ne by the electric motor MG by controlling the clutch K0 toward engagement. Then, after the engine rotation speed Ne is synchronized with the motor rotation speed Nmg, the hybrid control unit 92 completely engages the clutch K0 and shifts to EHV traveling. The friction torque of the engine 14 at the time of starting the engine is a compression torque corresponding to the pumping loss, a mechanical friction torque corresponding to the sliding resistance, and a mechanical friction torque of the intake valve driving device 66 and the exhaust valve driving device 68. Total torque. However, the friction torque of the engine 14 at the start of the engine start when moving the stopped piston is exclusively the sliding resistance and the mechanical friction torque of the intake valve driving device 66 and the like because the engine rotational speed Ne is extremely low. Become.
 ところで、エンジン14の始動に際して、初めに、着火始動によって膨張行程にて停止している気筒を燃焼させても、エンジン14のフリクショントルクを超えられるだけの爆発トルクを発生させられない領域にエンジン14の何れかの気筒が停止している場合がある。例えば、図5(a)に示すように、エンジン14の何れかの気筒が上死点(TDC)にて停止している場合である。図5は、6気筒エンジンを例示して、TDC停止時の着火始動を説明する為の図である。 By the way, when the engine 14 is started, first, even if the cylinder stopped in the expansion stroke by the ignition start is burned, the engine 14 is in a region where the explosion torque sufficient to exceed the friction torque of the engine 14 cannot be generated. Any of the cylinders may be stopped. For example, as shown in FIG. 5A, this is a case where any cylinder of the engine 14 is stopped at the top dead center (TDC). FIG. 5 is a diagram for explaining the ignition start when the TDC is stopped, exemplifying a 6-cylinder engine.
 図5(a)において、ある気筒AがTDCにて停止する場合、膨張行程にて停止している気筒Bは排気弁64が開弁直前とされている。その為、その気筒Bに対して着火始動を行っても、排気弁64が直ぐには開弁されないような位置で着火始動される場合と比べて、爆発トルクは小さくされる。そうすると、この着火始動では、エンジン14のフリクショントルクを超えられるだけの爆発トルクを発生させられない可能性がある。そこで、ハイブリッド制御部92は、着火始動によるエンジン始動に際して、圧縮行程にて停止している気筒Cを燃焼させてエンジン14を負回転させた後に、膨張行程にある気筒Bを燃焼させてエンジン14を正回転させる逆転始動を行う。エンジン14の負回転は、例えば車両走行時にエンジン14が回転駆動するときの回転を正回転とした場合に、その正回転とは逆の方向への回転である。従って、エンジン14を負回転させることは、エンジン14を逆転させることである。 In FIG. 5A, when a cylinder A stops at TDC, the cylinder B stopped in the expansion stroke has the exhaust valve 64 immediately before opening. Therefore, even if the ignition is started for the cylinder B, the explosion torque is made smaller than when the ignition is started at a position where the exhaust valve 64 is not immediately opened. Then, in this ignition start, there is a possibility that an explosion torque sufficient to exceed the friction torque of the engine 14 may not be generated. Therefore, when the engine is started by the ignition start, the hybrid control unit 92 burns the cylinder C stopped in the compression stroke and negatively rotates the engine 14, and then burns the cylinder B in the expansion stroke to burn the engine 14 Perform reverse rotation starting to rotate forward. The negative rotation of the engine 14 is, for example, a rotation in a direction opposite to the positive rotation when the rotation when the engine 14 is driven to rotate during traveling of the vehicle is a positive rotation. Therefore, negatively rotating the engine 14 is to reverse the engine 14.
 この際、図5(a)に示すように、吸気弁62の開弁時期VTinが、例えばイグニッションオフによるエンジン停止時の基準位置である最遅角位置とされると、圧縮行程にて停止している気筒Cは吸気弁62が未だ開弁中とされる。その為、その気筒Cに対して着火始動を行っても、吸気弁62が閉弁されている場合と比べて、爆発トルクは小さくされる。そうすると、この着火始動では、エンジン14を負回転させられない可能性がある。そこで、ハイブリッド制御部92は、図5(b)に示すように、気筒Cに対する着火始動に先立って、吸気弁駆動装置66を作動させて吸気弁62の開弁時期VTinを進角側へ変更して、その気筒Cを密封する。例えば、ハイブリッド制御部92は、吸気弁62の開弁時期VTinを最進角位置へ変更する。そして、ハイブリッド制御部92は、図5(c)に示すように、吸気弁駆動装置66により吸気弁62の開弁時期VTinが進角されている状態で、着火始動により圧縮行程にて停止している気筒Cを燃焼させてエンジン14を負回転させる。これにより、ある気筒AがTDCにて停止する状態が回避されると共に、膨張行程にある気筒Bでは空気が再び圧縮される。 At this time, as shown in FIG. 5 (a), if the valve opening timing VTin of the intake valve 62 is set to the most retarded position which is a reference position when the engine is stopped by ignition off, for example, the intake valve 62 stops in the compression stroke. In the cylinder C, the intake valve 62 is still open. For this reason, even if the ignition start is performed for the cylinder C, the explosion torque is reduced as compared with the case where the intake valve 62 is closed. Then, in this ignition start, the engine 14 may not be rotated negatively. Therefore, as shown in FIG. 5 (b), the hybrid control unit 92 operates the intake valve drive device 66 to change the valve opening timing VTin of the intake valve 62 to the advance side prior to starting ignition of the cylinder C. Then, the cylinder C is sealed. For example, the hybrid control unit 92 changes the valve opening timing VTin of the intake valve 62 to the most advanced position. Then, as shown in FIG. 5C, the hybrid control unit 92 stops in the compression stroke by the ignition start in a state in which the valve opening timing VTin of the intake valve 62 is advanced by the intake valve driving device 66. The cylinder C is burned and the engine 14 is rotated negatively. As a result, a state in which a certain cylinder A stops at TDC is avoided, and air is compressed again in the cylinder B in the expansion stroke.
 その後、ハイブリッド制御部92は、図5(d)に示すように、膨張行程にある気筒Bが圧縮された状態で、着火始動によりその気筒Bを燃焼させてエンジン14を正回転させる。これにより、排気弁64が直ぐに開弁されないことと相俟って、エンジン14のフリクショントルクを超えられるだけの十分な爆発トルクが発生させられる。ハイブリッド制御部92は、逆転始動による着火始動においてエンジン14が正回転したら、クラッチK0を係合に向けて制御することでエンジン回転速度Neを上昇させる。この際、気筒Bを初爆としたときの3爆目は、既に着火始動が行われて多くの燃焼ガスが含まれている気筒Cを燃焼させることになるので、エンジン回転速度Neの上昇が緩められ、エンジン回転速度Neが電動機回転速度Nmを超えるオーバーシュートの発生が抑制される。従って、クラッチK0を完全係合するタイミングが早められ、速やかにEHV走行へ移行することができる。よって、エンジン14の始動性が向上させられることに加え、加速応答性やドライバビリティが向上させられる。 Thereafter, as shown in FIG. 5 (d), the hybrid control unit 92 causes the cylinder B to burn by starting ignition and causes the engine 14 to rotate in the forward direction in a state where the cylinder B in the expansion stroke is compressed. Thereby, coupled with the fact that the exhaust valve 64 is not immediately opened, an explosion torque sufficient to exceed the friction torque of the engine 14 is generated. The hybrid control unit 92 increases the engine rotational speed Ne by controlling the clutch K0 toward engagement when the engine 14 is normally rotated in the ignition start by the reverse rotation start. At this time, in the third explosion when the cylinder B is the first explosion, the ignition start is already performed and the cylinder C containing a large amount of combustion gas is burned, so that the engine rotation speed Ne is increased. Therefore, the occurrence of an overshoot in which the engine speed Ne exceeds the motor speed Nm is suppressed. Accordingly, the timing for completely engaging the clutch K0 is advanced, and the vehicle can quickly shift to EHV traveling. Therefore, in addition to improving the startability of the engine 14, acceleration response and drivability are improved.
 ここで、気筒Cに対する着火始動によりエンジン14が負回転しているときには、膨張行程にある気筒Bでは燃焼室52内の空気が流動している状態とされる。そこで、ハイブリッド制御部92は、逆転始動において、エンジン14が負回転している間に、膨張行程にある気筒Bへの燃料噴射を行う。これにより、膨張行程にある気筒Bの燃焼室52内の混合気の均質化が促進されて、十分な爆発トルクが発生させられる。 Here, when the engine 14 is rotating negatively due to the ignition start for the cylinder C, the air in the combustion chamber 52 is in a flowing state in the cylinder B in the expansion stroke. Therefore, the hybrid control unit 92 performs fuel injection to the cylinder B in the expansion stroke while the engine 14 is negatively rotating in the reverse rotation start. Thereby, the homogenization of the air-fuel mixture in the combustion chamber 52 of the cylinder B in the expansion stroke is promoted, and a sufficient explosion torque is generated.
 又、エンジン14の負回転による膨張行程にある気筒Bの圧縮は、その負回転が停止した時点が最大になると考えられる。加えて、その負回転が停止した時点は、正回転させる力に対する反力が零になると考えられる。そこで、ハイブリッド制御部92は、逆転始動において、エンジン14の負回転の速度が低下しているときに(例えば負回転の速度が零に近づいたときに、或いは負回転が停止したときに)、膨張行程にある気筒Bの点火を行う。これにより、空気圧縮が可及的に大きくされたところで膨張行程にある気筒Bが燃焼させられて、十分な爆発トルクが発生させられる。又、反力トルクが可及的に抑制されたところで膨張行程にある気筒Bが燃焼させられて、エンジン14の正回転が適切に行われる。 Also, it is considered that the compression of the cylinder B in the expansion stroke due to the negative rotation of the engine 14 is maximized when the negative rotation stops. In addition, when the negative rotation stops, it is considered that the reaction force against the positive rotation force becomes zero. Therefore, the hybrid control unit 92, when starting the reverse rotation, when the negative rotation speed of the engine 14 is decreasing (for example, when the negative rotation speed approaches zero or when the negative rotation stops). The cylinder B in the expansion stroke is ignited. As a result, when the air compression is increased as much as possible, the cylinder B in the expansion stroke is burned, and a sufficient explosion torque is generated. Further, when the reaction torque is suppressed as much as possible, the cylinder B in the expansion stroke is burned, and the engine 14 is properly rotated in the forward direction.
 又、エンジン14の負回転を正回転に適切に反転させるには、気筒Bが膨張行程にある間に気筒Bにおいて着火始動を行う必要がある。そこで、ハイブリッド制御部92は、逆転始動において、膨張行程にある気筒Bが上死点に達するまでに、膨張行程にある気筒Bの点火を行う。これにより、逆転始動が適切に実行される。 Further, in order to properly reverse the negative rotation of the engine 14 to the positive rotation, it is necessary to start ignition in the cylinder B while the cylinder B is in the expansion stroke. Therefore, the hybrid control unit 92 performs ignition of the cylinder B in the expansion stroke until the cylinder B in the expansion stroke reaches the top dead center in the reverse rotation start. Thereby, reverse rotation start is performed appropriately.
 より具体的には、図4に戻り、走行状態判定手段すなわち走行状態判定部94は、例えば再始動を前提とした、エンジン14の停止を要求するエンジン停止要求が有るか否かを判定する。例えば、走行状態判定部94は、EHV走行中に要求駆動力Fdtgtが電動機MGの出力のみで賄える範囲となった場合、或いは蓄電装置44の放電制限や蓄電装置44の充電要求やエンジン14等の暖機要求が解除され且つEV走行を行う場合などには、再始動を前提としたエンジン停止要求が有ると判定する。 More specifically, returning to FIG. 4, the traveling state determination means, that is, the traveling state determination unit 94 determines whether or not there is an engine stop request for requesting the stop of the engine 14 on the assumption of restart. For example, the traveling state determination unit 94 determines that the required driving force Fdtgt is within a range that can be covered only by the output of the electric motor MG during EHV traveling, or the discharge restriction of the power storage device 44, the charging request of the power storage device 44, the engine 14 and the like. When the warm-up request is canceled and EV traveling is performed, it is determined that there is an engine stop request on the assumption of restart.
 走行状態判定部94は、例えば一時的に停止したエンジン14の再始動を要求するエンジン再始動要求が有るか否かを判定する。例えば、走行状態判定部94は、EV走行中に、要求駆動力Fdtgtが少なくともエンジン14の出力を用いないと賄えない範囲となった場合、蓄電装置44の放電制限が為された場合、或いは蓄電装置44の充電要求が為された場合などには、エンジン再始動要求が有ると判定する。 The traveling state determination unit 94 determines whether or not there is an engine restart request for requesting restart of the engine 14 that has been temporarily stopped, for example. For example, the traveling state determination unit 94 may determine that the required driving force Fdtgt is in a range that cannot be covered unless at least the output of the engine 14 is used during EV traveling, or the discharge limitation of the power storage device 44 is performed, or When a request for charging the power storage device 44 is made, it is determined that there is an engine restart request.
 エンジン状態判定手段すなわちエンジン状態判定部96は、例えば走行状態判定部94により再始動を前提としたエンジン停止要求が有ると判定された場合には、或いは走行状態判定部94によりエンジン再始動要求が有ると判定された場合には、吸気弁62の開弁時期VTinがエンジン再始動に合致しているか否かを判定する。例えば、エンジン状態判定部96は、吸気弁62の開弁時期VTinが最遅角位置に対して所定量以上進角しているか否かに基づいて、或いは吸気弁62の開弁時期VTinが最進角位置とされているか否かに基づいて、吸気弁62の開弁時期VTinがエンジン再始動に合致しているか否かを判定する。 The engine state determination means, that is, the engine state determination unit 96, for example, when it is determined by the traveling state determination unit 94 that there is an engine stop request on the premise of restarting, or the traveling state determination unit 94 issues an engine restart request. If it is determined that there is, it is determined whether or not the opening timing VTin of the intake valve 62 matches the engine restart. For example, the engine state determination unit 96 determines whether or not the opening timing VTin of the intake valve 62 is advanced by a predetermined amount or more with respect to the most retarded position, or the opening timing VTin of the intake valve 62 is the maximum. It is determined whether or not the opening timing VTin of the intake valve 62 matches the engine restart based on whether or not the advance angle position is set.
 エンジン状態判定部96は、例えば停止しているエンジン14の何れかの気筒がTDCにて停止しているか否かを判定する。又、エンジン状態判定部96は、例えばハイブリッド制御部92による逆転始動の開始によって実際にエンジン14の回転が逆転を開始したか否かを判定する。又、エンジン状態判定部96は、例えばハイブリッド制御部92による逆転始動において実行される膨張行程にある気筒への燃料噴射後に、その膨張行程にある気筒への点火条件が成立したか否かを判定する。つまり、エンジン状態判定部96は、膨張行程にある気筒への点火が可能になったか否かを判定する。この点火条件は、例えば逆転中のエンジン14において、膨張行程にある気筒がTDCに到達しておらず、且つ、エンジンの負回転の速度が低下或いは停止したかである。 The engine state determination unit 96 determines, for example, whether any cylinder of the stopped engine 14 is stopped at TDC. Further, the engine state determination unit 96 determines whether or not the rotation of the engine 14 has actually started reverse rotation by the start of reverse rotation start by the hybrid control unit 92, for example. Further, the engine state determination unit 96 determines whether or not the ignition condition for the cylinder in the expansion stroke is satisfied after fuel is injected into the cylinder in the expansion stroke that is executed in the reverse rotation start by the hybrid control unit 92, for example. To do. That is, the engine state determination unit 96 determines whether or not ignition to the cylinder in the expansion stroke has become possible. This ignition condition is, for example, whether the cylinder in the expansion stroke has not reached TDC and the negative rotation speed of the engine has been reduced or stopped in the engine 14 in reverse rotation.
 ハイブリッド制御部92は、走行状態判定部94によりエンジン再始動要求が有ると判定され、且つエンジン状態判定部96により停止しているエンジン14の何れかの気筒がTDCにて停止していると判定された場合には、吸気弁62の開弁時期VTinを進角させた状態にて、逆転始動による着火始動を行う。 The hybrid control unit 92 determines that there is an engine restart request by the traveling state determination unit 94 and determines that any cylinder of the engine 14 stopped by the engine state determination unit 96 is stopped at TDC. In the case where it is determined, the ignition start by the reverse rotation start is performed in a state where the valve opening timing VTin of the intake valve 62 is advanced.
 図6は、電子制御装置90の制御作動の要部すなわち着火始動によるエンジン始動に際してエンジン始動性を向上させる為の制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。 FIG. 6 is a flowchart for explaining a main part of the control operation of the electronic control unit 90, that is, a control operation for improving the engine startability at the time of engine start by ignition start, for example, an extremely short cycle of about several msec to several tens msec. It is executed repeatedly in time.
 図6において、先ず、走行状態判定部94に対応するステップ(以下、ステップを省略する)S10において、例えば再始動を前提としたエンジン停止要求が有るか否かが判定される。このS10の判断が否定される場合は本ルーチンが終了させられるが肯定される場合はエンジン状態判定部96に対応するS20において、例えば吸気弁62の開弁時期VTinがエンジン再始動に合致しているか否かが判定される。このS20の判断が否定される場合はハイブリッド制御部92に対応するS30において、例えば吸気弁駆動装置66が作動させられて吸気弁62の開弁時期VTinが進角側へ変更される。このS30の実行後は、前記S20へ戻される。上記S20の判断が肯定される場合はハイブリッド制御部92に対応するS40において、例えばエンジン14に対する燃料噴射及び点火が共に停止させられる。次いで、エンジン状態判定部96に対応するS50において、例えば停止しているエンジン14のクランク角度Acrが検出される。次いで、エンジン状態判定部96に対応するS60において、例えば停止しているエンジン14の何れかの気筒がTDCにて停止しているか否かが判定される。このS60の判断が否定される場合は走行状態判定部94に対応するS70において、例えばエンジン再始動要求が有るか否かが判定される。このS70の判断が否定される場合はこのS70が繰り返し実行されるが肯定される場合はハイブリッド制御部92に対応するS80において、例えば膨張行程にて停止している気筒に対して着火始動が実行される。一方で、上記S60の判断が肯定される場合は走行状態判定部94に対応するS90において、例えばエンジン再始動要求が有るか否かが判定される。このS90の判断が否定される場合はこのS90が繰り返し実行されるが肯定される場合はハイブリッド制御部92に対応するS100において、例えば圧縮行程にて停止している気筒に対して燃料噴射及び点火が実行されて逆転始動が開始される。次いで、エンジン状態判定部96に対応するS110において、例えばエンジン14の回転が逆転を開始したか否かが判定される。このS110の判断が否定される場合はこのS110が繰り返し実行されるが肯定される場合はハイブリッド制御部92に対応するS120において、例えば膨張行程にある気筒に対して燃料噴射が実行される。次いで、エンジン状態判定部96に対応するS130において、例えば上記膨張行程にある気筒への点火条件が成立したか否かが判定される。このS130の判断が否定される場合はこのS130が繰り返し実行されるが肯定される場合はハイブリッド制御部92に対応するS140において、例えば膨張行程にある気筒に対して点火が実行される。 In FIG. 6, first, in step (hereinafter, step is omitted) S10 corresponding to the traveling state determination unit 94, it is determined whether there is an engine stop request based on restart, for example. If the determination in S10 is negative, this routine is terminated. If the determination is positive, in S20 corresponding to the engine state determination unit 96, for example, the valve opening timing VTin of the intake valve 62 matches the engine restart. It is determined whether or not there is. If the determination in S20 is negative, in S30 corresponding to the hybrid control unit 92, for example, the intake valve driving device 66 is operated, and the valve opening timing VTin of the intake valve 62 is changed to the advance side. After execution of S30, the process returns to S20. If the determination in S20 is affirmative, for example, both fuel injection and ignition for the engine 14 are stopped in S40 corresponding to the hybrid control unit 92. Next, in S50 corresponding to the engine state determination unit 96, for example, the crank angle Acr of the stopped engine 14 is detected. Next, in S60 corresponding to the engine state determination unit 96, for example, it is determined whether any cylinder of the stopped engine 14 is stopped at TDC. If the determination in S60 is negative, it is determined in S70 corresponding to the traveling state determination unit 94, for example, whether there is an engine restart request. If the determination in S70 is negative, this S70 is repeatedly executed. If the determination is affirmative, in S80 corresponding to the hybrid control unit 92, for example, ignition start is executed for a cylinder stopped in the expansion stroke. Is done. On the other hand, when the determination in S60 is affirmed, it is determined in S90 corresponding to the traveling state determination unit 94 whether, for example, there is an engine restart request. If the determination in S90 is negative, this S90 is repeatedly executed, but if the determination is affirmative, in S100 corresponding to the hybrid control unit 92, for example, fuel injection and ignition for a cylinder stopped in the compression stroke, for example. Is executed and the reverse rotation start is started. Next, in S110 corresponding to the engine state determination unit 96, for example, it is determined whether or not the rotation of the engine 14 has started reverse rotation. If the determination in S110 is negative, this S110 is repeatedly executed. If the determination is affirmative, in S120 corresponding to the hybrid control unit 92, for example, fuel injection is executed for a cylinder in the expansion stroke. Next, in S130 corresponding to the engine state determination unit 96, for example, it is determined whether or not an ignition condition for a cylinder in the expansion stroke is satisfied. If the determination in S130 is negative, this S130 is repeatedly executed. If the determination is positive, in S140 corresponding to the hybrid control unit 92, for example, ignition is executed for a cylinder in the expansion stroke.
 上述のように、本実施例によれば、逆転始動によるエンジン14の負回転により膨張行程にある気筒は再び圧縮されており、その気筒の初爆時に高い爆発トルクを得ることができる。又、膨張行程にある気筒の初爆後には、逆転始動での燃焼ガスが多く含まれる気筒を燃焼させることになるので、その気筒の燃焼時の爆発トルクが小さくされる。従って、2爆目或いは3爆目の爆発トルクが抑えられることで、エンジン回転速度Neの上昇が緩められてオーバーシュートの発生が抑制され、速やかにクラッチK0が完全係合される。よって、着火始動によるエンジン始動に際して、エンジン始動性を向上させることができる。 As described above, according to the present embodiment, the cylinder in the expansion stroke is compressed again due to the negative rotation of the engine 14 by the reverse rotation start, and a high explosion torque can be obtained at the first explosion of the cylinder. Further, after the initial explosion of the cylinder in the expansion stroke, the cylinder containing a large amount of combustion gas in the reverse rotation start is burned, so the explosion torque at the time of combustion of the cylinder is reduced. Accordingly, by suppressing the explosion torque of the second or third explosion, the increase in the engine rotational speed Ne is loosened, the occurrence of overshoot is suppressed, and the clutch K0 is fully engaged immediately. Therefore, the engine startability can be improved when the engine is started by the ignition start.
 また、本実施例によれば、エンジン14の何れかの気筒が上死点にて停止している場合に、逆転始動を行うので、エンジン始動性を向上させることができる。 Further, according to the present embodiment, when any cylinder of the engine 14 is stopped at the top dead center, the reverse rotation is performed, so that the engine startability can be improved.
 また、本実施例によれば、逆転始動において、膨張行程にある気筒への燃料噴射はエンジン14が負回転している間に行うので、負回転によって気筒内に空気流動が発生した状態で燃料噴射され、膨張行程にある気筒内の混合気の均質化が促進される。従って、膨張行程にある気筒の初爆自体が発生し易く、又、その初爆時に高い爆発トルクが得られ易くなり、エンジン始動性を向上させることができる。 Further, according to the present embodiment, in the reverse rotation start, the fuel injection to the cylinder in the expansion stroke is performed while the engine 14 is rotating negatively, so that the fuel flows in a state where air flow is generated in the cylinder due to the negative rotation. It is injected and the homogenization of the air-fuel mixture in the cylinder in the expansion stroke is promoted. Therefore, the initial explosion of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the initial explosion, so that the engine startability can be improved.
 また、本実施例によれば、逆転始動において、膨張行程にある気筒の点火は、エンジン14の負回転の速度が低下しているときに行われるので、膨張行程にある気筒の空気圧縮が進んだ状態で燃焼される。又、エンジンの負回転に伴う反力トルクが小さい状態で膨張行程にある気筒の初爆が発生させられる。従って、膨張行程にある気筒の初爆自体が発生し易く、又、その初爆時に高い爆発トルクが得られ易くなり、よりエンジン始動性を向上させることができる。 Further, according to this embodiment, in the reverse rotation start, the ignition of the cylinder in the expansion stroke is performed when the speed of the negative rotation of the engine 14 is decreasing, so that the air compression of the cylinder in the expansion stroke proceeds. It is burned in the state. In addition, the first explosion of the cylinder in the expansion stroke is generated in a state where the reaction torque accompanying the negative rotation of the engine is small. Therefore, the first explosion itself of the cylinder in the expansion stroke is likely to occur, and a high explosion torque is easily obtained at the first explosion, so that the engine startability can be further improved.
 また、本実施例によれば、逆転始動において、膨張行程にある気筒の点火は、その膨張行程にある気筒が上死点に達するまでに行われるので、逆転始動が適切に実行されて、エンジン始動性を向上させることができる。 Further, according to the present embodiment, in the reverse rotation start, the cylinder in the expansion stroke is ignited until the cylinder in the expansion stroke reaches the top dead center. Startability can be improved.
 また、本実施例によれば、逆転始動において、圧縮行程にて停止している気筒の燃焼は、吸気弁駆動装置66により吸気弁62の開弁時期VTinが進角されている状態で行われるので、吸気弁62が確実に閉弁している状態で、圧縮行程にて停止している気筒が燃焼させられる。 Further, according to this embodiment, in the reverse rotation start, the combustion of the cylinders stopped in the compression stroke is performed in a state where the valve opening timing VTin of the intake valve 62 is advanced by the intake valve driving device 66. Therefore, the cylinder stopped in the compression stroke is combusted while the intake valve 62 is securely closed.
 また、本実施例によれば、逆転始動においてエンジン14が正回転したら、クラッチK0を係合に向けて制御することでエンジン回転速度Neを上昇させるので、先に逆転始動を行うことによってクラッチK0を係合に向けて制御するときのMGトルクTmが抑制される。従って、EV走行時に、エンジン始動の為に担保しておくMGトルクTmが抑制され、EV走行領域が拡大する。また、逆転始動を行うことによってオーバーシュートの発生が抑制されるので、速やかにクラッチK0が完全係合される。よって、着火始動によるエンジン始動に際して、エンジン始動性を向上させることができる。 Further, according to the present embodiment, when the engine 14 is normally rotated in the reverse rotation start, the engine rotational speed Ne is increased by controlling the clutch K0 toward the engagement, so that the clutch K0 is performed by performing the reverse rotation first. The MG torque Tm when controlling toward the engagement is suppressed. Therefore, during EV travel, the MG torque Tm secured for engine start is suppressed, and the EV travel range is expanded. In addition, since the occurrence of overshoot is suppressed by performing reverse rotation start, the clutch K0 is quickly fully engaged. Therefore, the engine startability can be improved when the engine is started by the ignition start.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。 As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.
 例えば、前述の実施例では、逆転始動する態様として、エンジン14の気筒がTDCに停止している状態を例示したが、この態様に限らない。例えば、TDCに対してある程度ずれて停止している状態であっても、逆転始動しても良い。例えば、TDCに対してある程度ずれて膨張行程にて停止している気筒では、正転時に排気弁64が直ぐには開弁されない位置にあるものの、TDCに対してクランク角度Acrが小さい為に、着火始動しても正回転が開始されない恐れがある。又、ある気筒がTDCに対して圧縮行程側へある程度ずれて停止している状態で、その気筒に先行して膨張行程にて停止している気筒に対して着火始動を行う場合、排気弁64の開弁がそのずれ分だけ遅れるものの、依然として十分な爆発トルクが得られない恐れがある。従って、TDCに対してある程度ずれて停止している状態でも、TDCに一致して停止している状態と同様に、逆転始動を実行するのである。つまり、エンジン14の何れかの気筒がTDCを挟む所定領域にて停止している場合に、逆転始動を行う。エンジン14の何れかの気筒がTDCを挟む所定領域にて停止している場合とは、エンジン始動に際して、初めに、膨張行程にて停止している気筒を燃焼させても、エンジン14のフリクショントルクを超えられるだけの爆発トルクを発生させられない領域にエンジン14の何れかの気筒が停止している場合である。これによって、エンジン14の何れかの気筒がTDCを挟む所定領域にて停止している場合に、逆転始動を行うことでエンジン始動性を向上させることができる。 For example, in the above-described embodiment, the state in which the cylinder of the engine 14 is stopped at the TDC is illustrated as an aspect of the reverse rotation start, but the present invention is not limited to this aspect. For example, the reverse rotation start may be performed even when the vehicle is stopped with a certain degree of deviation from the TDC. For example, in a cylinder that deviates to some extent from TDC and stops in the expansion stroke, although the exhaust valve 64 is not immediately opened during forward rotation, ignition occurs because the crank angle Acr is small with respect to TDC. There is a possibility that the forward rotation does not start even if the engine is started. In addition, when an ignition start is performed on a cylinder that is stopped in the expansion stroke prior to the cylinder in a state where the cylinder is stopped to some extent toward the compression stroke with respect to TDC, the exhaust valve 64 is used. However, there is a possibility that sufficient explosion torque cannot be obtained. Therefore, even when the vehicle is stopped with a certain degree of deviation from the TDC, the reverse rotation start is executed in the same manner as when the vehicle is stopped in accordance with the TDC. That is, reverse rotation start is performed when any cylinder of the engine 14 is stopped in a predetermined region across the TDC. When one of the cylinders of the engine 14 is stopped in a predetermined region sandwiching the TDC, when the engine is started, the friction torque of the engine 14 is set even if the cylinder stopped in the expansion stroke is first burned. This is a case where one of the cylinders of the engine 14 is stopped in a region where an explosion torque sufficient to exceed the range cannot be generated. Accordingly, when any cylinder of the engine 14 is stopped in a predetermined region sandwiching the TDC, the engine startability can be improved by performing the reverse rotation start.
 また、前述の実施例における図6のフローチャートでは、S20及びS30において、エンジン停止の際に、基準位置である最遅角位置に対して吸気弁62の開弁時期VTinを進角させたが、この態様に限らない。例えば、電動制御式の弁開閉機構などのように吸気弁駆動装置66がエンジン停止中にも吸気弁62の開弁時期VTinを変更できる機構であるならば、エンジン停止後からエンジン再始動開始前までの期間にて、吸気弁62の開弁時期VTinを進角させても良い。つまり、S20及びS30は、S100が実行される前までに完了されれば良い。又、イグニッションオフによるエンジン停止時の吸気弁62の基準位置が最遅角位置と最進角位置との間の中間位置とされているときに、その中間位置がエンジン再始動に合致している位置であるような場合には、S20及びS30はなくても良い。尚、吸気弁62の基準位置が元々エンジン再始動に合致している位置であれば、吸気弁駆動装置66は、弁タイミング変更機構VVTの機能を有している必要はない。これとは別に、図6のフローチャートでは、S110において、エンジン14の回転が逆転を開始したか否かを判定したが、この態様に限らない。例えば、このS110では、エンジン14の回転が逆回転中であるか否かを判定しても良い。このように、図6のフローチャートにおいて、各ステップの実行内容やその実行順等は差し支えのない範囲で適宜変更することができる。 In the flowchart of FIG. 6 in the above-described embodiment, in S20 and S30, when the engine is stopped, the valve opening timing VTin of the intake valve 62 is advanced with respect to the most retarded position that is the reference position. It is not restricted to this aspect. For example, if the intake valve drive device 66 is a mechanism that can change the valve opening timing VTin of the intake valve 62 even when the engine is stopped, such as an electrically controlled valve opening / closing mechanism, the engine is started after the engine is stopped and before the engine is restarted. The valve opening timing VTin of the intake valve 62 may be advanced during the period until. That is, S20 and S30 may be completed before S100 is executed. In addition, when the reference position of the intake valve 62 when the engine is stopped due to the ignition off is an intermediate position between the most retarded angle position and the most advanced angle position, the intermediate position matches the engine restart. If it is a position, S20 and S30 may not be present. Note that if the reference position of the intake valve 62 originally matches the engine restart, the intake valve driving device 66 does not need to have the function of the valve timing changing mechanism VVT. Apart from this, in the flowchart of FIG. 6, it is determined in S110 whether or not the rotation of the engine 14 has started reverse rotation, but this is not a limitation. For example, in S110, it may be determined whether or not the rotation of the engine 14 is reverse. As described above, in the flowchart of FIG. 6, the execution contents of each step, the execution order thereof, and the like can be changed as appropriate without departing from the scope.
 また、前述の実施例では、図5に示すように、6気筒エンジンを例示して逆転始動を説明したが、本発明が適用されるエンジンはこの6気筒エンジンに限らない。例えば、5気筒エンジンや8気筒エンジンなどであっても良い。 In the above-described embodiment, as shown in FIG. 5, the 6-cylinder engine is exemplified to explain the reverse start, but the engine to which the present invention is applied is not limited to this 6-cylinder engine. For example, a 5-cylinder engine or an 8-cylinder engine may be used.
 また、前述の実施例では、吸気弁駆動装置66のみが弁タイミング変更機構VVTの機能を有していたが、排気弁駆動装置68も排気弁64の開弁時期VTexを変更する弁タイミング変更機構VVTの機能を有しても良い。排気弁駆動装置68における弁タイミング変更機構VVTの機能により、例えば逆転始動において膨張行程にある気筒に対して着火始動するときには、排気弁64の開弁時期VTexを遅角させても良い。このようにすれば、膨張行程にある気筒を燃焼するときに排気弁64の開弁が遅れさせられるので、逆転始動においてエンジン14を正回転させるときの爆発トルクが一層十分に得られる。 In the above-described embodiment, only the intake valve driving device 66 has the function of the valve timing changing mechanism VVT. However, the exhaust valve driving device 68 also changes the valve timing changing mechanism VTex of the exhaust valve 64. You may have a function of VVT. With the function of the valve timing changing mechanism VVT in the exhaust valve driving device 68, for example, when starting ignition with respect to a cylinder in the expansion stroke in reverse rotation start, the valve opening timing VTex of the exhaust valve 64 may be retarded. In this way, since the opening of the exhaust valve 64 is delayed when the cylinder in the expansion stroke is combusted, the explosion torque when the engine 14 is normally rotated in the reverse rotation start can be obtained more sufficiently.
 また、前述の実施例における弁タイミング変更機構VVTの機能は、開弁時点と閉弁時点との両方を進角させ又は遅角させるものであったが、この態様に限らない。例えば、吸気弁駆動装置66は、クランク軸36と機械的に連結されることなく、そのクランク軸36の回転とは独立に弁の開閉を電磁制御できる弁タイミング変更機構VVTの機能を有していても良い。このような場合、吸気弁62の開弁時点はそのままで閉弁時点のみを進角させたり、排気弁64の閉弁時点はそのままで開弁時点のみを遅角させたりすることができる。 Further, the function of the valve timing changing mechanism VVT in the above-described embodiment is to advance or retard both the valve opening time and the valve closing time, but is not limited to this mode. For example, the intake valve driving device 66 has the function of a valve timing changing mechanism VVT that can be electromagnetically controlled to open and close the valve independently of the rotation of the crankshaft 36 without being mechanically connected to the crankshaft 36. May be. In such a case, it is possible to advance only the valve closing time without changing the valve opening time of the intake valve 62, or to delay only the valve opening time without changing the valve closing time of the exhaust valve 64.
 また、前述の実施例では、エンジン回転速度Neと電動機回転速度Nmgとが同期してからクラッチK0を完全係合させたが、これに限らない。例えば、逆転始動によってエンジン回転速度Neの上昇が緩められているので、エンジン回転速度Neが電動機回転速度Nmgとの同期に向かって変化しているときに、クラッチK0を完全係合させても良い。このようにすれば、ショックの抑制には多少不利になるものの、エンジン始動の応答性が向上させられる。 In the above-described embodiment, the clutch K0 is completely engaged after the engine rotation speed Ne and the motor rotation speed Nmg are synchronized. However, the present invention is not limited to this. For example, since the increase in the engine rotational speed Ne is moderated by the reverse rotation start, the clutch K0 may be completely engaged when the engine rotational speed Ne is changing toward synchronization with the electric motor rotational speed Nmg. . In this way, although it is somewhat disadvantageous for suppressing the shock, the response of starting the engine is improved.
 また、前述の実施例では、着火始動を実行し、電動機MGによってエンジン14を始動させたが、この態様に限らない。例えば、着火始動にてアシストしつつ、電動機MGとは別に設けられたスタータモータによってエンジン14を始動するものであっても良い。又、例えば着火始動のみでエンジン始動できるのであれば、電動機MG(或いはスタータ)によってエンジン14を始動させる必要はない。要は、エンジン14を始動する際に、着火始動が実行されるものであれば、本発明は適用され得る。 In the above-described embodiment, the ignition start is executed and the engine 14 is started by the electric motor MG. However, the present invention is not limited to this mode. For example, the engine 14 may be started by a starter motor provided separately from the electric motor MG while assisting by ignition start. For example, if the engine can be started only by starting ignition, it is not necessary to start the engine 14 by the electric motor MG (or starter). In short, the present invention can be applied as long as ignition start is executed when the engine 14 is started.
 また、前述の実施例において、車両10には、トルクコンバータ16や自動変速機18が設けられていたが、このトルクコンバータ16や自動変速機18は必ずしも設けられなくても良い。 In the above-described embodiment, the vehicle 10 is provided with the torque converter 16 and the automatic transmission 18, but the torque converter 16 and the automatic transmission 18 are not necessarily provided.
 尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 It should be noted that what has been described above is only one embodiment, and the present invention can be carried out in various modifications and improvements based on the knowledge of those skilled in the art.
10:車両
14:エンジン
62:吸気弁
66:吸気弁駆動装置(弁タイミング変更機構)
90:電子制御装置(制御装置)
K0:エンジン断接用クラッチ(クラッチ)
MG:電動機
10: Vehicle 14: Engine 62: Intake valve 66: Intake valve drive device (valve timing changing mechanism)
90: Electronic control device (control device)
K0: Engine disconnection clutch (clutch)
MG: Electric motor

Claims (7)

  1.  エンジンと、電動機と、該エンジンと該電動機との間の動力伝達経路に設けられたクラッチとを備える車両の制御装置であって、
     前記エンジンの始動に際して、圧縮行程にて停止している該エンジンの気筒を燃焼させて該エンジンを負回転させた後に、膨張行程にある該エンジンの気筒を燃焼させて該エンジンを正回転させる逆転始動を行うことを特徴とする車両の制御装置。
    A vehicle control device comprising an engine, an electric motor, and a clutch provided in a power transmission path between the engine and the electric motor,
    When the engine is started, the engine cylinder stopped in the compression stroke is burned to rotate the engine negatively, and then the engine cylinder in the expansion stroke is burned to rotate the engine forward. A control apparatus for a vehicle, characterized by starting.
  2.  前記エンジンの何れかの気筒が上死点を挟む所定領域にて停止している場合に、前記逆転始動を行うことを特徴とする請求項1に記載の車両の制御装置。 2. The vehicle control device according to claim 1, wherein the reverse rotation start is performed when any cylinder of the engine is stopped in a predetermined region sandwiching a top dead center.
  3.  前記膨張行程にある前記エンジンの気筒への燃料噴射は、該エンジンが負回転している間に行うことを特徴とする請求項1又は2に記載の車両の制御装置。 3. The vehicle control device according to claim 1, wherein the fuel injection to the cylinder of the engine in the expansion stroke is performed while the engine is negatively rotating.
  4.  前記膨張行程にある前記エンジンの気筒の点火は、該エンジンの負回転の速度が低下しているときに行うことを特徴とする請求項1乃至3の何れか1項に記載の車両の制御装置。 4. The vehicle control device according to claim 1, wherein ignition of the cylinder of the engine in the expansion stroke is performed when a negative rotation speed of the engine is decreasing. 5. .
  5.  前記膨張行程にある前記エンジンの気筒の点火は、該膨張行程にある該エンジンの気筒が上死点に達するまでに行うことを特徴とする請求項1乃至4の何れか1項に記載の車両の制御装置。 The vehicle according to any one of claims 1 to 4, wherein the ignition of the cylinder of the engine in the expansion stroke is performed until the cylinder of the engine in the expansion stroke reaches a top dead center. Control device.
  6.  前記エンジンの吸気弁の開弁時期を変更する弁タイミング変更機構を備え、
     前記圧縮行程にて停止している前記エンジンの気筒の燃焼は、前記弁タイミング変更機構により前記吸気弁の開弁時期が進角されている状態で行うことを特徴とする請求項1乃至5の何れか1項に記載の車両の制御装置。
    A valve timing changing mechanism for changing the opening timing of the intake valve of the engine,
    6. The combustion of the cylinder of the engine stopped in the compression stroke is performed in a state where the valve opening timing of the intake valve is advanced by the valve timing changing mechanism. The vehicle control device according to any one of the preceding claims.
  7.  前記逆転始動において前記エンジンが正回転したら、前記クラッチを係合に向けて制御することで該エンジンの回転速度を上昇させることを特徴とする請求項1乃至6の何れか1項に記載の車両の制御装置。 The vehicle according to any one of claims 1 to 6, wherein when the engine rotates forward during the reverse rotation start, the rotation speed of the engine is increased by controlling the clutch toward engagement. Control device.
PCT/JP2013/061111 2013-04-12 2013-04-12 Control device of vehicle WO2014167725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061111 WO2014167725A1 (en) 2013-04-12 2013-04-12 Control device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061111 WO2014167725A1 (en) 2013-04-12 2013-04-12 Control device of vehicle

Publications (1)

Publication Number Publication Date
WO2014167725A1 true WO2014167725A1 (en) 2014-10-16

Family

ID=51689152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061111 WO2014167725A1 (en) 2013-04-12 2013-04-12 Control device of vehicle

Country Status (1)

Country Link
WO (1) WO2014167725A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105370470A (en) * 2015-12-28 2016-03-02 安徽江淮汽车股份有限公司 Automobile clutch signal control system
CN107781088A (en) * 2016-08-31 2018-03-09 丰田自动车株式会社 The control device of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163827A (en) * 2006-12-28 2008-07-17 Mazda Motor Corp Engine starting control device
JP2009097374A (en) * 2007-10-15 2009-05-07 Mazda Motor Corp Engine starting device
JP2010070050A (en) * 2008-09-18 2010-04-02 Aisin Seiki Co Ltd Driving device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163827A (en) * 2006-12-28 2008-07-17 Mazda Motor Corp Engine starting control device
JP2009097374A (en) * 2007-10-15 2009-05-07 Mazda Motor Corp Engine starting device
JP2010070050A (en) * 2008-09-18 2010-04-02 Aisin Seiki Co Ltd Driving device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105370470A (en) * 2015-12-28 2016-03-02 安徽江淮汽车股份有限公司 Automobile clutch signal control system
CN107781088A (en) * 2016-08-31 2018-03-09 丰田自动车株式会社 The control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP6036994B2 (en) Vehicle control device
JP5724975B2 (en) Control device for vehicle
US9260111B2 (en) Hybrid vehicle control device
US8924065B2 (en) Hybrid vehicle control apparatus
US9404468B2 (en) Method and system for torque control
US9409569B2 (en) Control device for vehicle drive device
JP2014054886A (en) Vehicle control device
US20140094340A1 (en) Control device and control method for vehicle
JP6191552B2 (en) Automatic stop control device for internal combustion engine
JP5742665B2 (en) Control device for hybrid vehicle
WO2014167725A1 (en) Control device of vehicle
WO2013030986A1 (en) Engine stop control device for hybrid vehicle
JP2015017543A (en) Vehicle control device
JP5983372B2 (en) Vehicle control device
JP2023112833A (en) Hybrid vehicle
JP2023117138A (en) Hybrid vehicle
JP2023107085A (en) engine device
JP2023100427A (en) engine device
JP2023123118A (en) engine device
JP2023102577A (en) engine device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP