WO2013030986A1 - Engine stop control device for hybrid vehicle - Google Patents

Engine stop control device for hybrid vehicle Download PDF

Info

Publication number
WO2013030986A1
WO2013030986A1 PCT/JP2011/069794 JP2011069794W WO2013030986A1 WO 2013030986 A1 WO2013030986 A1 WO 2013030986A1 JP 2011069794 W JP2011069794 W JP 2011069794W WO 2013030986 A1 WO2013030986 A1 WO 2013030986A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinders
compression tdc
stopped
crankshaft
Prior art date
Application number
PCT/JP2011/069794
Other languages
French (fr)
Japanese (ja)
Inventor
小島 進
直器 仲西
幸彦 出塩
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/069794 priority Critical patent/WO2013030986A1/en
Publication of WO2013030986A1 publication Critical patent/WO2013030986A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • B60Y2300/432Control of engine fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an engine stop control device for a hybrid vehicle including a direct injection engine capable of starting ignition.
  • a four-cycle direct injection engine that has multiple cylinders and directly injects fuel into the cylinder, and (b) a disconnect that connects (connects and disconnects) the direct injection engine to the power transmission path. And (c) a rotating machine that functions as at least an electric motor, and (d) a hybrid vehicle that can use the direct injection engine and the rotating machine as a driving force source for traveling. Yes.
  • the hybrid vehicle described in Patent Document 1 is one example, and a friction clutch is connected (friction engagement) while a motor traveling using only a rotating machine as a driving force source to rotate a crankshaft of a direct injection engine,
  • a friction clutch is connected (friction engagement) while a motor traveling using only a rotating machine as a driving force source to rotate a crankshaft of a direct injection engine
  • fuel is injected into the cylinder in the expansion stroke and ignition is started.
  • the technology is described.
  • the engine can be started on its own by just starting the ignition, but if necessary, it is possible to connect a connecting / disconnecting device when starting the engine and assist cranking with a rotating machine.
  • the assist torque can be greatly reduced by starting ignition.
  • the maximum torque of the rotating machine can be reduced, and the size and fuel consumption can be reduced.
  • the first invention has (a) a four-cycle direct injection engine having a plurality of cylinders and directly injecting fuel into the cylinders, and (b) a power transmission to the direct injection engine.
  • a connection / disconnection device that connects / disconnects to / from the path, and (c) a rotating machine that functions as at least an electric motor, and (d) uses the direct injection engine and the rotating machine as a driving force source for traveling.
  • a hybrid vehicle that can be used, (e) when stopping the direct-injection engine by stopping the connection / disconnection device during traveling, the connection / disconnection device once disconnected is temporarily connected to the crankshaft of the direct-injection engine.
  • crank angle at which the crankshaft is stopped is that the piston of any cylinder has stopped at the compression TDC, which is the top dead center after the compression stroke. Assumed And exhaust valves of any other cylinder in the expansion stroke, characterized in that the determined at different angles depending on whether a closed state.
  • the direct injection engine has six or more cylinders and the piston of any cylinder is assumed to have stopped at the compression TDC.
  • the crankshaft is stopped at a crank angle at which the piston of any cylinder is in the vicinity of its compression TDC.
  • the direct injection engine has a number of cylinders of six cylinders or less, and when the piston of any cylinder is stopped at the compression TDC, When none of the cylinders is in the expansion stroke and does not satisfy the ignition start condition in which the exhaust valve is closed, the piston of any cylinder passes through the compression TDC and has a crank angle at which the intermediate position of the expansion stroke is reached. The crankshaft is stopped.
  • the second aspect of the invention is a case where a direct injection engine having 6 cylinders or more is provided.
  • the piston of any cylinder stops at the compression TDC, any other cylinder is in the expansion stroke and the exhaust valve is closed.
  • proper ignition start is performed by injecting fuel into the cylinder with the exhaust valve closed in the expansion process. It can be carried out.
  • the amount of air in the cylinder increases compared to when stopping at an intermediate position of the expansion stroke that has passed through the compression TDC as in the third aspect of the invention.
  • a large rotational energy can be obtained at the first explosion, and the assist torque by the rotating machine at the time of starting can be further reduced.
  • the third invention is a case where a direct injection engine of 6 cylinders or less is provided, and when any of the other cylinders does not satisfy the ignition start condition when it is assumed that the piston of any cylinder stops at the compression TDC, Since the ignition start cannot be performed when the crankshaft is stopped at the compression TDC, the crankshaft is stopped at a crank angle at which the piston of any cylinder passes through the compression TDC and becomes an intermediate position in the expansion stroke. Thereby, ignition start can be performed similarly to the past.
  • both the second and third inventions include 6 cylinders.
  • the deviation of the crank angle of each cylinder is 720 °.
  • ⁇ 6 120 °
  • the crank angle of the preceding cylinder is about compression TDC + 120 °
  • the opening timing of the exhaust valve is compression TDC
  • FIG. 6 is a diagram for explaining the operation of a V-type 8-cylinder engine, in which (a) ⁇ is a stroke diagram showing the operating state of eight cylinders, and (b) is a diagram explaining the operating state of a cylinder in the vicinity of (a) ⁇ when TDC is stopped.
  • (C) is a diagram for explaining the operating state of the cylinder in the vicinity of the 45 ATDC stop in a (a).
  • 5 is a diagram for explaining ignition start from the time of TDC stop in FIG. 5
  • (a) is a diagram for explaining the state change of the cylinder near the compression TDC
  • (b) corresponds to the change in the operating state of each part with (a). It is an example of the time chart shown.
  • FIG. 1 is a stroke diagram showing the operating state of eight cylinders
  • (b) is a diagram explaining the operating state of a cylinder in the vicinity of (a) ⁇ when TDC is stopped.
  • (C) is a diagram for explaining the operating state of the
  • FIG. 5 is a diagram for explaining ignition start from 45ATDC stop in FIG. 5,
  • (a) is a diagram for explaining a change in the state of a cylinder in the vicinity of the compression TDC
  • (b) ⁇ is a diagram corresponding to (a) It is an example of the time chart shown. It is a figure explaining the piston position of the cylinder immediately before when it assumes that the piston of any cylinder of the direct-injection engine of various cylinder numbers stopped by compression TDC (0 degree). It is a figure which shows the result of having calculated
  • required the relationship between the crank angle (0 degree compression TDC) in an expansion stroke, and the positional energy (pumping energy) by pumping in the direct-injection engine of various cylinder numbers.
  • FIG. 5 is a diagram illustrating the operation of an in-line four-cylinder engine, where (a) is a stroke diagram illustrating the operating state of four cylinders, and (b) is a diagram illustrating the operating state of a cylinder in the vicinity of (a) when TDC stops.
  • C) is a diagram for explaining the operating state of the cylinder in the vicinity of the 90 ATDC stop in (a). It is a figure explaining the engine stop control at the time of applying this invention to the hybrid vehicle which has a 4-cylinder engine of FIG. 10, and is a flowchart used instead of FIG. It is an example of the time chart which shows the change of the operation state of each part when engine stop control is performed according to the flowchart of FIG.
  • the present invention is applied to various types of hybrid vehicles such as a parallel type, a series type, a split type, a one-motor type, and a two-motor type in which a direct injection engine is connected to a power transmission path by a connecting / disconnecting device.
  • the present invention is applied to engine stop control when stopping a direct injection engine in a motor travel mode in which only a rotating machine is used as a driving force source or during vehicle deceleration.
  • a single-plate type or multi-plate type friction engagement clutch is preferably used, but the direct injection engine can be connected to a power transmission path to rotate or the power transmission can be cut off.
  • Various means can be employed.
  • the hybrid vehicle of the present invention can use a direct-injection engine and a rotating machine as a driving power source for traveling, and the rotating machine can alternatively use the functions of both an electric motor and a generator.
  • a motor generator is preferably used.
  • the direct injection engine engines having various numbers of cylinders such as 2 cylinders, 3 cylinders, 4 cylinders, 5 cylinders, 6 cylinders, 7 cylinders, 8 cylinders, and 12 cylinders can be used.
  • a connecting / disconnecting device When stopping the direct injection engine, a connecting / disconnecting device is temporarily connected to rotate the crankshaft, but immediately after the engine stops, a pumping action (a spring-like action due to compression of air in the cylinder) is generally obtained.
  • the pumping energy positional energy
  • the pumping energy varies depending on the crank angle, and there are positions where it is easy to stop and positions where it is difficult to stop. That is, it is difficult to stop at the part where the pumping energy is changing, and it is easy to stop at the low and flat minimum region, so the connection of the connecting / disconnecting device to stop the crankshaft at a predetermined angle in consideration of the pumping energy It is desirable to determine timing, connection torque, and connection time.
  • connection timing of the connecting / disconnecting device may be before the crankshaft is completely stopped or after it is completely stopped. Although it is desirable to rotate the crankshaft by connecting the connecting / disconnecting device within the time when the pumping action can be obtained, it can be done after the pumping action is no longer obtained. The present invention can be applied even when it is not possible.
  • crank angle at which the crankshaft is stopped satisfies the ignition start condition in which any of the cylinders is in the expansion stroke and the exhaust valve is closed when it is assumed that the piston of any of the cylinders stops at the compression TDC.
  • the crank angle at which the piston of any cylinder is near its compression TDC is determined.
  • the piston of any cylinder passes through the compression TDC at a crank angle at which the intermediate position of the expansion stroke is reached. Stop the crankshaft.
  • variable valve timing device that changes the closing timing of the exhaust valve, and the above determination differs depending on the closing timing of the exhaust valve, for example, it is determined whether or not the ignition start condition is satisfied based on the earliest closing timing Although the stop position of the crankshaft may be determined, switching means for switching the crank angle for stopping the crankshaft according to the actual closing timing of the exhaust valve may be provided.
  • crank angle at which the piston of any cylinder is always near the compression TDC
  • the crankshaft may be stopped, as in the case of the third invention, the ignition is started even when the piston of any cylinder passes through the compression TDC and stops at the crank angle at the intermediate position of the expansion stroke. It is possible to perform both of them depending on conditions.
  • the crankshaft can be stopped by the balance in the rotational direction and the friction of the engine. Further, since the crankshaft rotates reversely by the pumping action before the compression TDC, it is desirable to connect the connecting / disconnecting device and rotate the crankshaft to the vicinity of the compression TDC before starting the reverse rotation.
  • the vicinity of the compression TDC means that the crankshaft stops in such a state that it rides on the peak of the pumping energy, and is usually within a range of about compression TDC ⁇ 10 °.
  • the crankshaft is stopped at a crank angle at which the piston of any cylinder passes through the compression TDC and becomes an intermediate position in the expansion stroke.
  • the pumping energy shown in FIG. Therefore, it is desirable that the pumping energy is set within a flat and minimal region.
  • the intake valve is in the expansion stroke and the intake valve is closed.
  • the intake valve is rotated by a predetermined angle from the compression TDC and from the opening timing angle (EVO) of the intake valve. The range up to several tens of degrees is desirable.
  • a range of about 110 ° is desirable.
  • a range of about 40 ° to 80 ° from the compression TDC is appropriate, and a range of about 60 ° to 80 ° is desirable.
  • the pumping energy is automatically stopped at the valley portion where the pumping energy is low. It is also possible to simply disengage from the vicinity and stop at any intermediate position.
  • FIG. 1 is a schematic configuration diagram including a skeleton diagram of a drive system of a hybrid vehicle 10 to which the present invention is preferably applied.
  • the hybrid vehicle 10 includes a direct injection engine 12 that directly injects fuel into a cylinder and a motor generator MG that functions as an electric motor and a generator as driving power sources for traveling.
  • the outputs of the direct injection engine 12 and the motor generator MG are transmitted from the torque converter 14 which is a fluid transmission device to the automatic transmission 20 via the turbine shaft 16 and the C1 clutch 18, and further to the output shaft 22, the difference It is transmitted to the left and right drive wheels 26 via the dynamic gear device 24.
  • the torque converter 14 includes a lockup clutch (L / U clutch) 30 that directly connects the pump impeller and the turbine impeller, and an oil pump 32 is integrally connected to the pump impeller. It is rotationally driven mechanically by the jet engine 12 and the motor generator MG. Motor generator MG corresponds to a rotating machine.
  • a K0 clutch 34 is provided between the direct injection engine 12 and the motor generator MG via a damper 38 to directly connect them.
  • the K0 clutch 34 is a single-plate or multi-plate friction clutch that is frictionally engaged by a hydraulic cylinder, and is engaged and released by the hydraulic control device 28.
  • the K0 clutch 34 is disposed in the oil chamber 40 of the torque converter 14. It is arranged in an oil bath state.
  • the K0 clutch 34 is a hydraulic friction engagement device, and functions as a connection / disconnection device that connects or disconnects the direct injection engine 12 with respect to the power transmission path.
  • Motor generator MG is connected to battery 44 via inverter 42.
  • the automatic transmission 20 is a stepped automatic transmission such as a planetary gear type in which a plurality of gear stages having different gear ratios are established depending on the disengagement state of a plurality of hydraulic friction engagement devices (clutch and brake).
  • the shift control is performed by an electromagnetic hydraulic control valve, a switching valve or the like provided in the hydraulic control device 28.
  • the C1 clutch 18 functions as an input clutch of the automatic transmission 20 and is similarly subjected to engagement / release control by the hydraulic control device 28.
  • the direct injection engine 12 has a plurality of cylinders that are sequentially exploded at a uniform crank angle interval.
  • a V-type 8-cylinder four-cycle gasoline engine is used.
  • gasoline high-pressure fine particles
  • the ignition device 47 is ignited at this timing, the air-fuel mixture in the cylinder 100 explodes and burns, and the piston 110 is pushed downward.
  • the intake passage 102 is connected to an electronic throttle valve 45, which is an intake air amount adjustment valve, via a surge tank 103. From the intake passage 102 to the cylinder according to the opening of the electronic throttle valve 45 (throttle valve opening). The amount of intake air flowing into 100, that is, the engine output is controlled.
  • the piston 110 is fitted in the cylinder 100 so as to be slidable in the axial direction, and is connected to a crankpin 116 of the crankshaft 114 via a connecting rod 112 so as to be relatively rotatable.
  • the crankshaft 114 is rotationally driven as indicated by an arrow R.
  • the crankshaft 114 is rotatably supported by a bearing in the journal portion 118, and integrally includes a crank arm 120 that connects the journal portion 118 and the crankpin 116.
  • the crankshaft 114 is rotated twice (720 °), and the intake stroke, the compression stroke, the expansion (explosion) stroke, and the exhaust stroke are performed.
  • the shaft 114 is continuously rotated.
  • the pistons 110 of the eight cylinders 100 are configured such that the crank angles are shifted by 90 °, and the eight cylinders 100 are sequentially exploded and rotated each time the crankshaft 114 rotates 90 °. Torque is generated.
  • gasoline is injected into the cylinder 100 by the fuel injection device 46 and ignited by the ignition device 47, whereby the mixture in the cylinder 100 is ignited to start combustion. Start is possible.
  • the direct injection engine 12 can be started only by ignition start. However, even when the friction is large, the start assist when cranking and starting the crankshaft 114 is started. Since the torque can be reduced, the maximum torque of the motor generator MG that generates the assist torque is reduced, and the size and fuel consumption can be reduced.
  • FIG. 5 is a diagram for explaining the operation of the direct injection engine 12 in more detail.
  • FIG. 5A is a stroke diagram showing the operation state of the eight cylinders 100 in relation to the crank angle ⁇ .
  • the lower cylinder 100 is operated in advance. That is, in the order of cylinder No 2 ⁇ No 4 ⁇ No 5 ⁇ No 6 ⁇ No 3 ⁇ No 7 ⁇ No 8 ⁇ No 1, every time the crank angle ⁇ rotates 90 °, the crankshaft 114 is continuously rotated.
  • the No. 4 cylinder 100 is in the expansion stroke, and the exhaust valve 108 is closed before the opening timing angle EVO (for example, 110 ° to 160 °) of the exhaust valve 108. Therefore, as shown in FIG.
  • the fuel can be injected into the cylinder 100 and ignited to start (ignition start).
  • IVC is a closing timing angle of the intake valve 104 in the compression process, and the intake valve 104 is closed in the expansion stroke.
  • the pumping energy is potential energy generated by the action of an air spring generated when the air sucked into the cylinder 100 is compressed in the compression stroke. In any case, there is a mountain near the compression TDC. There is a high possibility that the crankshaft 114 stops in a low flat minimum region between them (see (c) in FIG. 5), but it stops in the vicinity of the compression TDC with a probability of about 10%.
  • the crankshaft 114 stops in a state where it rides on the pumping energy peak due to the balance of the rotational direction and the friction of the direct injection engine 12.
  • the stop position of the crankshaft 114 can be positively adjusted so that it stops near the compression TDC.
  • the graph of FIG. 9 is obtained approximately and is not necessarily accurate, and varies depending on the specifications of each part of the direct injection engine 12 and the opening / closing timing of the intake valve 104 and the exhaust valve 108. It can be considered as shown in FIG.
  • FIG. 6 shows a case where the ignition is started in a state where the piston 110 of the No. 4 cylinder 100 is stopped at a crank angle ⁇ of about 90 ° (more precisely, compression TDC + 90 °) as shown in FIG.
  • (A) is a diagram for explaining the state change of the cylinder 100 in the vicinity of No4,
  • (b) ⁇ ⁇ is an example of a time chart showing the change in the operating state of each part, both parenthesized symbols correspond to each other. That is, when the direct injection engine 12 stopped in the state of (i) is started again at the time of transition to the engine running mode, at the time of accelerator operation, at the time of starting, etc., as shown in (ii) The fuel is injected into the No.
  • a K0 clutch 34 is disposed between the direct injection engine 12 and the motor generator MG.
  • the K0 clutch 34 When the K0 clutch 34 is disconnected, the direct injection engine 12 is disconnected from the power transmission path and stopped. . Further, by connecting the K0 clutch 34, it is possible to assist the motor generator MG and the kinetic energy of the vehicle.
  • the direct injection engine 12 can be appropriately started to start ignition simply by assisting cranking by the motor generator MG over an angle range of about 50 ° to 60 °.
  • crankshaft 114 when the crankshaft 114 is stopped in the vicinity of the compression TDC as shown in FIG. 5B, a rotational torque is applied to the crankshaft 114, as shown in FIG.
  • the stop position of the crankshaft 114 can be positively adjusted so that any one of the cylinders 100 stops at the intermediate position.
  • FIG. 7 shows a case where ignition is started in a state where the piston 110 of the No. 7 cylinder 100 is positioned at a crank angle ⁇ of about 45 ° (more precisely, compression TDC + 45 °) as described above.
  • the figure explaining the state change of the cylinder 100, (b) is an example of a time chart showing the change in the operating state of each part, and the reference numerals in parentheses correspond to each other. That is, when the direct injection engine 12 stopped in the state of (i) is started again at the time of transition to the engine running mode, at the time of accelerator operation, at the time of starting, etc., as shown in (ii) The fuel is injected into the No. 7 cylinder 100 and ignited to start (ignition start).
  • the subsequent No. 8 cylinder 100 is pressurized by compression.
  • the crank angle ⁇ of the No. 7 cylinder 100 at the start of ignition is about 45 °, and the amount of air in the No. 7 cylinder 100 is smaller than that of the ignition cylinder No. 4 in FIG.
  • the K0 clutch 34 is connected to assist the cranking by the motor generator MG.
  • (iv) is a state in which the subsequent No. 8 cylinder 100 reaches the compression TDC and is ignited. Since the air in the No. 8 cylinder 100 is set to substantially atmospheric pressure while the engine is stopped, the amount of air is It is relatively small and complete explosion energy cannot be obtained. For this reason, as shown in (v) IV, the motor generator MG still needs assistance even after an explosion and rotation. After that, when the third No. 1 cylinder 100 counting from No. 7 reaches the compression TDC as shown in (vi) and is ignited, complete explosion energy can be obtained for the first time. No assistance is required. Thereafter, the cylinder 100 is stably rotated by causing the subsequent cylinder 100 to explode every 90 ° rotation.
  • crankshaft 114 rotates until the No. 1 cylinder 100 exceeds the compression TDC, then the crankshaft 114 can be rotated by itself.
  • the direct injection engine 12 can be appropriately started to ignite.
  • the immediately following No. 8 cylinder 100 can also be ignited and exploded, so that the engine speed NE increases smoothly in combination with the assist by the motor generator MG. Compared to 6, the starting time is shortened.
  • the assist torque for the ignition start is reduced. Further, the maximum torque of the motor generator MG can be further reduced, and further downsizing and fuel consumption can be achieved.
  • FIG. 8 is a diagram showing the piston position (crank angle ⁇ a) of the immediately preceding cylinder 100 when the piston 110 of any cylinder 100 of the direct-injection engine 12 having various cylinder numbers stops at the compression TDC. ° is the compression TDC, and the crank angle ⁇ advances clockwise.
  • crank angle ⁇ a of the immediately preceding cylinder 100 is 90 °
  • crank angle ⁇ a 60 ° in the case of 12 cylinders
  • 7 Crank angle ⁇ a 103 ° in the case of cylinders
  • crank angle ⁇ a 120 ° in the case of 6 cylinders, both of which are expansion strokes.
  • the exhaust valve opening timing angle EVO is about 140 °
  • the exhaust valve 108 is closed, and any of them can start ignition.
  • the exhaust valve opening timing angle EVO is appropriately determined or made variable within a range of, for example, about 110 ° to 160 °. Therefore, if the exhaust valve opening timing angle EVO is set to 120 ° or less, the case of 6 cylinders Will not be able to start ignition.
  • the electronic control unit 70 includes a so-called microcomputer having a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in advance in the ROM while using a temporary storage function of the RAM.
  • a signal representing the accelerator pedal operation amount (accelerator operation amount) Acc is supplied from the accelerator operation amount sensor 48 to the electronic control unit 70. Further, from the engine rotation speed sensor 50, the MG rotation speed sensor 52, the turbine rotation speed sensor 54, the vehicle speed sensor 56, and the crank angle sensor 58, the rotation speed (engine rotation speed) NE of the direct injection engine 12 and the rotation of the motor generator MG, respectively.
  • the electronic control unit 70 is functionally provided with hybrid control means 72, shift control means 74, and engine stop control means 80.
  • the hybrid control means 72 controls the operation of the direct injection engine 12 and the motor generator MG, for example, an engine travel mode in which only the direct injection engine 12 travels as a driving power source, or travels using only the motor generator MG as a driving power source.
  • a plurality of predetermined driving modes such as an engine driving mode using both the motor driving mode and the motor driving mode are switched in accordance with the driving state such as the accelerator operation amount Acc and the vehicle speed V.
  • the shift control means 74 controls an electromagnetic hydraulic control valve, a switching valve and the like provided in the hydraulic control device 28 to switch the engagement / disengagement state of the plurality of hydraulic friction engagement devices. These gear stages are switched in accordance with a predetermined shift map with the operating state such as the accelerator operation amount Acc and the vehicle speed V as parameters.
  • the engine stop control means 80 stops the direct injection engine 12 at the time of switching from the engine + motor running mode to the motor running mode, at the time of inertia running during the engine + motor running mode or the engine running mode, at the time of deceleration, at the time of stopping, etc.
  • the crankshaft 114 is stopped at a crank angle ⁇ at which the piston 110 of any one of the cylinders 100 is near the compression TDC.
  • the engine stop control means 80 further includes an engine stop means 82, a crank angle determination means 84, and a clutch engagement means 86, and performs signal processing according to the flowchart of FIG. Steps S2 and S3 in FIG.
  • steps S4 and S5 correspond to the crank angle determination means 84
  • steps S6 and S7 correspond to the clutch engagement means 86.
  • the clutch engaging means 86 functions as a connection control means for temporarily connecting the K0 clutch 34.
  • step S1 of FIG. 3 it is determined whether or not an engine stop condition is satisfied.
  • engine stop condition is satisfied when the engine stop condition is satisfied, such as when switching from the engine + motor drive mode to the motor drive mode or during deceleration in the engine drive mode
  • engine stop control in step S2 and subsequent steps is executed.
  • the basic conditions for stop control such as intermittent operation conditions for turning on (running) and turning off (stopping) the direct injection engine 12 and the engine cooling water temperature being equal to or higher than a predetermined temperature are satisfied. Need to be.
  • the time t1 in the time chart of FIG. 4 is the time when the determination in step S1 is YES (positive) and the engine stop control is started.
  • FIG. 4 is a diagram showing changes in the operating state of each part when the engine stop control is performed due to inertial traveling with the accelerator off during traveling in the engine + motor traveling mode.
  • the crank angle ⁇ is the compression TDC.
  • FIG. 9 is a graph showing changes in the crank angle ⁇ from the intermediate position of the compression stroke 90 ° before the compression TDC to the compression TDC as 0 °, and the crank angles ⁇ of the eight cylinders 100 that reach the compression TDC at 90 ° intervals It is the figure which showed the change of and connected continuously.
  • the K0 clutch pressure is the engagement hydraulic pressure of the K0 clutch 34, and is the maximum pressure (line pressure) at time t1 during running in the engine + motor running mode, and the K0 clutch 34 is fully engaged.
  • the K0 clutch pressure corresponds to the engagement torque of the K0 clutch 34, that is, the connection torque that connects the direct injection engine 12 to the power transmission path.
  • step S2 the K0 clutch 34 is disconnected to disconnect the direct injection engine 12 from the power transmission path.
  • the K0 clutch pressure is gradually reduced to zero.
  • step S3 stop processing of the direct injection engine 12 is executed. In this stop process, the fuel injection from the fuel injection device 46 is stopped (fuel cut), and the ignition control of the ignition device 47 is stopped. Thereby, coupled with the fact that the direct injection engine 12 is disconnected from the power transmission path in step S2, the engine rotational speed NE gradually decreases.
  • the disconnection process of the K0 clutch 34 in step S2 and the fuel cut in step S3 may be performed after the fuel cut, but may be performed in parallel at the same time, or the fuel cut may be performed first. If the fuel has already been cut due to accelerator OFF or the like, the fuel cut may be continued.
  • step S4 it is determined whether or not the rotation of the direct injection engine 12 has stopped substantially, specifically, whether or not the engine speed NE has become equal to or less than a predetermined value NE1 of about 100 rpm, for example.
  • step S5 is executed to determine whether or not the cylinder 100 in the latter half of the compression stroke exists based on the crank angle ⁇ .
  • the latter half of the compression stroke is, for example, in the range from 90 ° before it to the compression TDC with reference to the compression TDC. In this embodiment having the eight-cylinder direct injection engine 12, any cylinder 100 is always in the latter half of the compression stroke.
  • the crank angle of the cylinder 100 in which the piston 110 is positioned before the compression TDC is obtained by engaging the K0 clutch 34 with a predetermined engagement torque for a predetermined engagement time.
  • the crankshaft 114 is rotated and stopped so that ⁇ is in the vicinity of the compression TDC (for example, compression TDC ⁇ 10 ° or less). That is, the K0 clutch 34 is engaged so that the crankshaft 114 stops in a state where it rides on the peak of pumping energy shown in FIG.
  • One of the engagement torque and the engagement time for example, the engagement torque may be determined in advance, and only the other may be determined based on the crank angle ⁇ stop.
  • the torque (MG torque) TMG of the motor generator MG is changed to the engagement torque of the K0 clutch 34 in order to prevent the drive torque from fluctuating due to the rotational resistance accompanying the rotation of the crankshaft 114 due to the engagement of the K0 clutch 34. Compensation control that increases correspondingly may be performed as necessary.
  • step S8 it is determined whether or not the crankshaft 114 has stopped at a crank angle ⁇ at which the piston 110 of any one of the cylinders 100 is near the compression TDC.
  • ignition can be started as shown in FIG.
  • the time t2 in FIG. 4 is the time when the determination of step S6 is YES (affirmed) and the clutch engagement control of step S7 is started.
  • the crankshaft 114 is rotated by the clutch engagement control, and the compression TDC It is a case where it is stopped in the vicinity.
  • step S9 is executed to determine whether or not the compression TDC has been exceeded. That is, it is determined whether the crankshaft 114 has returned without being able to ride on the compression TDC regardless of the clutch engagement control in step S7 or whether the crankshaft 114 has passed over the compression TDC by the clutch engagement control. However, when it cannot return to the compression TDC and returns, the process from step S7 is executed again. In addition, when the vehicle has passed over the compression TDC, step S4 and the subsequent steps are executed, and the engagement control of the K0 clutch 34 is performed so that the next cylinder 100 before reaching the compression TDC stops near the compression TDC. The crankshaft 114 is rotated. In the second and subsequent engagement control of the K0 clutch 34, the engagement torque and the engagement time may be finely adjusted based on the result of the previous engagement control.
  • the crank angle ⁇ of the cylinder 100 immediately before the cylinder 100 stopped in the vicinity of the compression TDC becomes about compression TDC + 90 °, and fuel injection and ignition are performed on the cylinder 100. As shown, the ignition start can be performed appropriately.
  • ignition start is performed as shown in FIG.
  • the crankshaft 114 is stopped at a crank angle ⁇ at which the piston 110 of any cylinder 100 is in the vicinity of the compression TDC, fuel injection and ignition are performed on the preceding cylinder 100.
  • the ignition start can be performed appropriately, and the application range of the ignition start is expanded to increase the degree of freedom of control.
  • the immediately preceding cylinder 100 is stopped at around compression TDC + 90 °, as shown in FIG. 7, it is compared with an ignition start when stopping at an intermediate position (compression TDC + 45 °) where the pumping energy is low.
  • compression TDC + 45 ° the amount of air in the cylinder 100 at the time of the first explosion is large, and a large rotational energy can be obtained at the first explosion.
  • the assist torque by the motor generator MG at the time of starting can be further reduced, and the maximum torque of the motor generator MG can be further reduced to further reduce the size and fuel consumption.
  • FIGS. 10 to 12 show an embodiment in which an in-line four-cylinder four-cycle gasoline engine is used as the direct injection engine 12, and FIG. 10 is a view corresponding to FIG.
  • the stroke diagram showing the operating states of the four cylinders 100 in relation to the crank angle ⁇
  • the cylinders 100 positioned in the upper part of the drawing are operated in advance. That is, in the order of cylinder No1 ⁇ No3 ⁇ No4 ⁇ No2, every time the crank angle ⁇ rotates 180 °, the combustion is caused by explosion, and the crankshaft 114 is continuously rotated.
  • the No. 3 cylinder 100 is a compression TDC in this figure, and the crank angle ⁇ of the No. 1 cylinder 100 immediately before the preceding is about 180 ° (more precisely, the compression TDC + 180 °). Since the No. 1 cylinder 100 has passed the expansion stroke and the exhaust valve 108 is open, it is not possible to start ignition in this state. That is, in the case of the four-cylinder direct injection engine 12, when any one of the cylinders 100 is stopped at the compression TDC, any other cylinder 100 is in the expansion stroke and the exhaust valve 108 is closed. The starting condition is not satisfied.
  • crankshaft 114 is likely to stop in a very small region (a range of about 50 ° to 120 °), but it stops in the vicinity of the compression TDC with a probability of about 10%.
  • crank angle ⁇ at which any one of the cylinders 100 is in the vicinity of the compression TDC in this way, ignition start at the time of restart is impossible.
  • FIG. 10 shows the operation of the cylinder 100 in the vicinity thereof when 90ATDC is stopped in a, that is, when any cylinder 100 is stopped at an intermediate position rotated about 90 ° from the compression TDC.
  • the No. 4 cylinder 100 is stopped at around 90 °.
  • the No. 4 cylinder 100 is in the expansion stroke, and the exhaust valve 108 is closed before the opening timing angle EVO of the exhaust valve 108. Therefore, fuel is injected into the No. 4 cylinder 100, and ignition is started (ignition). Start).
  • any cylinder 100 is about 50 ° to 120 °.
  • the crankshaft 114 is stopped at the crank angle ⁇ which is an intermediate position, even when the crankshaft 114 is stopped near the compression TDC as shown in FIG. (C)
  • the stop position of the crankshaft 114 can be adjusted so that one of the cylinders 100 stops at the intermediate position, as shown in (c) IV.
  • FIG. 11 is a flowchart relating to engine stop control in the case of having the four-cylinder direct injection engine 12 as described above, and is executed by the engine stop control means 80 instead of the flowchart of FIG.
  • steps R2 and R3 in FIG. 11 correspond to the engine stop means 82
  • steps R4 and R5 correspond to the crank angle determination means 84
  • step R6 corresponds to the clutch engagement means 86.
  • Steps R1 to R3 in FIG. 11 are the same as steps S1 to S3 in FIG. 3.
  • the intermediate position is, for example, in the range of about 50 ° to 120 ° from the compression TDC, and preferably in the range of about 70 ° to 110 °.
  • the crankshaft 114 is stopped at a crank angle ⁇ at which any one of the cylinders 100 is at the intermediate position, the ignition start can be performed by fuel injection and ignition to the cylinder 100, and thus the process ends. To do.
  • step R6 the clutch engagement control in step R6 is executed. To do.
  • this clutch engagement control by engaging the K0 clutch 34 with a predetermined engagement torque for a predetermined engagement time, the piston 110 stopped in the vicinity of the compression TDC is released from the compression TDC, and the intermediate The crankshaft 114 is rotated and stopped so as to reach the position. That is, the crankshaft 114 stopped in a state where it rides on the pumping energy peak shown in FIG. 9 is detached from the pumping energy peak and stops in a low flat minimum region between the peaks.
  • the K0 clutch 34 is engaged.
  • the crankshaft 114 automatically stops at an intermediate position of about 50 ° to 120 ° when separated from the peak of the pumping energy, so the engagement torque and engagement time of the K0 clutch 34 are constant in advance.
  • One of the engagement torque and the engagement time for example, the engagement torque may be determined in advance, and only the other may be determined based on the crank angle ⁇ stop. It is also possible to perform learning correction on these set values so as to stop at the intermediate position.
  • the engagement torque and the engagement time may be set so that the rotation is stopped in an angle range of about 70 ° to 110 ° where a relatively large rotational energy can be expected at the start of ignition. good.
  • the torque (MG torque) TMG of the motor generator MG is changed to the engagement torque of the K0 clutch 34 in order to prevent the drive torque from fluctuating due to the rotational resistance accompanying the rotation of the crankshaft 114 due to the engagement of the K0 clutch 34. Compensation control that increases correspondingly may be performed as necessary.
  • FIG. 12 is a diagram showing changes in the operating states of the respective parts when the engine stop control is performed with the accelerator OFF coasting during the engine + motor running mode as in FIG. 6 is a time chart when the crankshaft 114 is stopped at a crank angle ⁇ at which the piston 110 of any cylinder 100 is at an intermediate position in the expansion stroke by performing the clutch engagement control once.
  • the time t1 is the time when the determination of step R1 is YES and the engine stop control is started
  • the time t2 is the time when the determination of step R5 is NO and the engagement control of the K0 clutch 34 is started.
  • the crank angle ⁇ is a diagram showing a change in the crank angle ⁇ from the compression TDC to an angular position rotated by 180 ° with the compression TDC being 0 °.
  • the crank angle ⁇ of the four cylinders 100 that reach the compression TDC at intervals of 180 ° is shown in FIG. It is the figure which showed the change of crank angle (PHI) continuously connected.
  • any of the other cylinders 100 is in the expansion stroke and does not satisfy the ignition start condition in which the exhaust valve 108 is closed.
  • the direct-injection engine 12 is provided and the direct-injection engine 12 is stopped by disengaging the direct-injection engine 12 while the vehicle is running, the once-disconnected K0 clutch 34 is temporarily connected to the crankshaft 114.
  • the piston 110 of any cylinder 100 passes through the compression TDC, and the crankshaft 114 is stopped at a crank angle ⁇ that is an intermediate position in the expansion stroke. Accordingly, it is possible to appropriately start ignition by performing fuel injection and ignition on the cylinder 100 stopped at an intermediate position in the expansion stroke.

Abstract

A hybrid vehicle (10) comprises an eight-cylinder direct-injection engine (12) in which, if it is assumed that the piston (110) of one of the cylinders (100) has stopped at the compression TDC, the immediately preceding cylinder (100) is in the expansion stroke and the exhaust valve (108) thereof is in a closed state. In this hybrid vehicle, at the time of stopping the direct-injection engine (12) by disconnecting a K0 clutch (34) during vehicle drive, the piston (110) of one of the cylinders (100) is made to stop at a crank angle (Φ) near the compression TDC thereof by temporarily connecting the once-disconnected K0 clutch (34) and rotating the crankshaft (114). In this case, the crank angle (Φ) of the immediately preceding cylinder (100) will be around 90° greater than the compression TDC, and ignition startup can be performed suitably by injecting fuel into and igniting this cylinder (100). Because ignition startup can be performed even in cases where one of the cylinders (100) has been stopped at an intermediate position in the expansion stroke (around 45° greater than the compression TDC), the application range of ignition startup is widened and the degree of freedom in control is increased.

Description

ハイブリッド車両のエンジン停止制御装置Engine stop control device for hybrid vehicle
 本発明は、着火始動が可能な直噴エンジンを備えているハイブリッド車両のエンジン停止制御装置に関するものである。 The present invention relates to an engine stop control device for a hybrid vehicle including a direct injection engine capable of starting ignition.
 (a) 複数の気筒を有するとともに、その気筒内に燃料を直接噴射する4サイクルの直噴エンジンと、(b) その直噴エンジンを動力伝達経路に対して断接(接続・遮断)する断接装置と、(c) 少なくとも電動モータとして機能する回転機と、を有し、(d) 前記直噴エンジンおよび前記回転機を走行用の駆動力源として用いることができるハイブリッド車両が知られている。特許文献1に記載のハイブリッド車両はその一例で、回転機のみを駆動力源として走行するモータ走行中に摩擦クラッチを接続(摩擦係合)して直噴エンジンのクランク軸を回転させ、何れかの気筒のピストンが膨張行程(爆発行程)の中間位置となる所定のクランク角度となるように調整することにより、エンジン始動時に、その膨張行程の気筒内に燃料を噴射して点火する着火始動の技術が記載されている。直噴エンジンのフリクションが小さい場合など、着火始動だけでエンジンを自力で始動できる場合があるが、必要に応じてエンジン始動時に断接装置を接続して回転機によりクランキングをアシストすることも可能で、着火始動によりアシストトルクを大幅に低減できる。これにより、回転機の最大トルクが低減されて小型化や低燃費化を図ることができる。 (a) A four-cycle direct injection engine that has multiple cylinders and directly injects fuel into the cylinder, and (b) a disconnect that connects (connects and disconnects) the direct injection engine to the power transmission path. And (c) a rotating machine that functions as at least an electric motor, and (d) a hybrid vehicle that can use the direct injection engine and the rotating machine as a driving force source for traveling. Yes. The hybrid vehicle described in Patent Document 1 is one example, and a friction clutch is connected (friction engagement) while a motor traveling using only a rotating machine as a driving force source to rotate a crankshaft of a direct injection engine, By adjusting so that the piston of the cylinder of the cylinder has a predetermined crank angle that is an intermediate position of the expansion stroke (explosion stroke), at the start of the engine, fuel is injected into the cylinder in the expansion stroke and ignition is started. The technology is described. In some cases, such as when the friction of a direct injection engine is small, the engine can be started on its own by just starting the ignition, but if necessary, it is possible to connect a connecting / disconnecting device when starting the engine and assist cranking with a rotating machine. Thus, the assist torque can be greatly reduced by starting ignition. As a result, the maximum torque of the rotating machine can be reduced, and the size and fuel consumption can be reduced.
特表2009-527411号公報Special table 2009-527411
 ところで、このような従来の着火始動は、何れかの気筒のピストンが膨張行程の中間位置となるクランク角度で行われるようになっており、圧縮行程後の上死点である圧縮TDC(Top Dead Center;上死点)付近でピストンが停止するクランク角度では着火始動が不可とされていた。このため、常に何れかの気筒のピストンが膨張行程の中間位置となるようにクランク角度を調整する必要があり、例えば何れかの気筒のピストンが圧縮TDC付近で停止した場合には、そのピストンが膨張行程の中間位置まで進行するようにクランク軸を回転させる必要があった。 By the way, such a conventional ignition start is performed at a crank angle at which the piston of any cylinder is at an intermediate position of the expansion stroke, and the compression TDC (Top Dead), which is the top dead center after the compression stroke, is performed. At the crank angle where the piston stops near the Center (top dead center), it was impossible to start ignition. Therefore, it is necessary to adjust the crank angle so that the piston of any cylinder is always in the middle of the expansion stroke. For example, when the piston of any cylinder stops near the compression TDC, It was necessary to rotate the crankshaft so as to advance to an intermediate position in the expansion stroke.
 これに対し、本発明者等の実験や研究によれば、何れかの気筒のピストンが圧縮TDC付近で停止した場合でも、一定の条件下で着火始動が可能であることを見い出した。本発明はかかる知見に基づいて為されたもので、その目的とするところは、着火始動の適用範囲を拡げて制御の自由度を向上させることにある。 On the other hand, according to experiments and research conducted by the present inventors, it has been found that even when the piston of any cylinder stops near the compression TDC, ignition can be started under certain conditions. The present invention has been made on the basis of such knowledge, and its object is to expand the application range of ignition start and improve the degree of freedom of control.
 かかる目的を達成するために、第1発明は、(a) 複数の気筒を有するとともに、その気筒内に燃料を直接噴射する4サイクルの直噴エンジンと、(b) その直噴エンジンを動力伝達経路に対して断接する断接装置と、(c) 少なくとも電動モータとして機能する回転機と、を有し、(d) 前記直噴エンジンおよび前記回転機を走行用の駆動力源として用いることができるハイブリッド車両において、(e) 走行中に前記断接装置を遮断して前記直噴エンジンを停止させる際に、一旦遮断された断接装置を一時的に接続してその直噴エンジンのクランク軸を回転させ、予め定められたクランク角度で停止させる一方、(f) そのクランク軸を停止させるクランク角度は、何れかの気筒のピストンが圧縮行程後の上死点である圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態であるか否かによって異なる角度に定められることを特徴とする。 In order to achieve this object, the first invention has (a) a four-cycle direct injection engine having a plurality of cylinders and directly injecting fuel into the cylinders, and (b) a power transmission to the direct injection engine. A connection / disconnection device that connects / disconnects to / from the path, and (c) a rotating machine that functions as at least an electric motor, and (d) uses the direct injection engine and the rotating machine as a driving force source for traveling. In a hybrid vehicle that can be used, (e) when stopping the direct-injection engine by stopping the connection / disconnection device during traveling, the connection / disconnection device once disconnected is temporarily connected to the crankshaft of the direct-injection engine. (F) The crank angle at which the crankshaft is stopped is that the piston of any cylinder has stopped at the compression TDC, which is the top dead center after the compression stroke. Assumed And exhaust valves of any other cylinder in the expansion stroke, characterized in that the determined at different angles depending on whether a closed state.
 第2発明は、第1発明のハイブリッド車両のエンジン停止制御装置において、前記直噴エンジンは6気筒以上の気筒数で、何れかの気筒のピストンが前記圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態の場合には、何れかの気筒のピストンがその圧縮TDC付近となるクランク角度で前記クランク軸を停止させることを特徴とする。 According to a second aspect of the present invention, in the engine stop control device for a hybrid vehicle according to the first aspect, the direct injection engine has six or more cylinders and the piston of any cylinder is assumed to have stopped at the compression TDC. When any cylinder is in the expansion stroke and the exhaust valve is closed, the crankshaft is stopped at a crank angle at which the piston of any cylinder is in the vicinity of its compression TDC.
 第3発明は、第1発明のハイブリッド車両のエンジン停止制御装置において、前記直噴エンジンは6気筒以下の気筒数で、何れかの気筒のピストンが前記圧縮TDCで停止したと仮定した時に他の何れの気筒も膨張行程で且つ排気弁が閉状態である着火始動条件を満たさない場合には、何れかの気筒のピストンが前記圧縮TDCを通過して膨張行程の中間位置となるクランク角度で前記クランク軸を停止させることを特徴とする。 According to a third aspect of the present invention, in the engine stop control device for a hybrid vehicle according to the first aspect, the direct injection engine has a number of cylinders of six cylinders or less, and when the piston of any cylinder is stopped at the compression TDC, When none of the cylinders is in the expansion stroke and does not satisfy the ignition start condition in which the exhaust valve is closed, the piston of any cylinder passes through the compression TDC and has a crank angle at which the intermediate position of the expansion stroke is reached. The crankshaft is stopped.
 すなわち、何れかの気筒のピストンが圧縮TDCで停止した場合でも、他の何れかの気筒が膨張行程で且つ排気弁が閉状態であれば、その気筒内に燃料を噴射して点火すれば、爆発膨張でピストンを押し動かしてエンジンを始動(着火始動)することが可能である。したがって、走行中に断接装置を遮断して直噴エンジンを停止させる際に、一旦遮断された断接装置を一時的に接続してクランク軸を回転させ、所定のクランク角度で停止させる場合に、何れかの気筒のピストンが圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態であるか否かによって、そのクランク軸を停止させるクランク角度を異なる角度に定めることで、何れの場合も適切に着火始動を行うことができる。これにより、着火始動の適用範囲が拡大され、制御の自由度が高くなる。 That is, even if the piston of any cylinder stops at the compression TDC, if any other cylinder is in the expansion stroke and the exhaust valve is closed, if fuel is injected into the cylinder and ignited, The engine can be started (ignition start) by pushing and moving the piston by explosion expansion. Therefore, when stopping the direct injection engine by shutting off the connecting / disconnecting device during traveling, temporarily connecting the disconnected / connecting device to rotate the crankshaft and stopping at a predetermined crank angle The crank angle at which the crankshaft is stopped is different depending on whether any other cylinder is in the expansion stroke and the exhaust valve is closed when it is assumed that the piston of any cylinder is stopped at the compression TDC. By setting the angle, it is possible to start ignition properly in any case. Thereby, the application range of ignition start is expanded and the degree of freedom of control is increased.
 第2発明は6気筒以上の直噴エンジンを備えている場合で、何れかの気筒のピストンが圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態の時には、何れかの気筒のピストンがその圧縮TDC付近となるクランク角度でクランク軸を停止させるため、膨張工程で且つ排気弁が閉状態の気筒内に燃料を噴射することにより適切に着火始動を行うことができる。その場合に、排気弁開きタイミング等の条件や気筒数によっては、第3発明のように圧縮TDCを通過した膨張行程の中間位置で停止させる場合に比較して、気筒内の空気量が多くなり、初爆で大きな回転エネルギーが得られる場合があり、始動の際の回転機によるアシストトルクを一層低減できる。 The second aspect of the invention is a case where a direct injection engine having 6 cylinders or more is provided. When it is assumed that the piston of any cylinder stops at the compression TDC, any other cylinder is in the expansion stroke and the exhaust valve is closed. In this case, since the crankshaft is stopped at a crank angle at which the piston of any cylinder is in the vicinity of its compression TDC, proper ignition start is performed by injecting fuel into the cylinder with the exhaust valve closed in the expansion process. It can be carried out. In that case, depending on conditions such as the timing of opening the exhaust valve and the number of cylinders, the amount of air in the cylinder increases compared to when stopping at an intermediate position of the expansion stroke that has passed through the compression TDC as in the third aspect of the invention. In some cases, a large rotational energy can be obtained at the first explosion, and the assist torque by the rotating machine at the time of starting can be further reduced.
 第3発明は6気筒以下の直噴エンジンを備えている場合で、何れかの気筒のピストンが圧縮TDCで停止したと仮定した時に他の何れの気筒も着火始動条件を満たさない場合には、その圧縮TDCでクランク軸が停止した場合に着火始動を行うことはできないため、何れかの気筒のピストンが圧縮TDCを通過して膨張行程の中間位置となるクランク角度でクランク軸を停止させる。これにより、従来と同様に着火始動を行うことができる。 The third invention is a case where a direct injection engine of 6 cylinders or less is provided, and when any of the other cylinders does not satisfy the ignition start condition when it is assumed that the piston of any cylinder stops at the compression TDC, Since the ignition start cannot be performed when the crankshaft is stopped at the compression TDC, the crankshaft is stopped at a crank angle at which the piston of any cylinder passes through the compression TDC and becomes an intermediate position in the expansion stroke. Thereby, ignition start can be performed similarly to the past.
 なお、上記第2発明、第3発明で共に6気筒を含んでいるのは、6気筒の場合に例えば均一のクランク角度間隔で順次爆発させられるとすると、各気筒のクランク角度のずれは720°÷6=120°で、何れかの気筒のピストンが圧縮TDCで停止したと仮定した時に先行する直前の気筒のクランク角度は圧縮TDC+120°程度になるのに対し、排気弁の開きタイミングは圧縮TDCから110°~160°程度の範囲内で定められることが多いため、その排気弁の開きタイミング角度によって第2発明、第3発明の何れも適用できるためである。 It should be noted that both the second and third inventions include 6 cylinders. For example, in the case of 6 cylinders, if the cylinders are sequentially exploded at a uniform crank angle interval, the deviation of the crank angle of each cylinder is 720 °. ÷ 6 = 120 °, and assuming that the piston of any cylinder stops at compression TDC, the crank angle of the preceding cylinder is about compression TDC + 120 °, whereas the opening timing of the exhaust valve is compression TDC This is because both the second and third inventions can be applied depending on the opening timing angle of the exhaust valve.
本発明が好適に適用されるハイブリッド車両の骨子図に、制御系統の要部を併せて示した概略構成図である。It is the schematic block diagram which showed the principal part of the control system | strain in addition to the main point figure of the hybrid vehicle to which this invention is applied suitably. 図1のハイブリッド車両の直噴エンジンを説明する断面図である。It is sectional drawing explaining the direct-injection engine of the hybrid vehicle of FIG. 図1の電子制御装置が機能的に備えているエンジン停止制御手段の作動を具体的に説明するフローチャートである。2 is a flowchart for specifically explaining the operation of an engine stop control means functionally included in the electronic control device of FIG. 1. 図3のフローチャートに従ってエンジン停止制御が行われた場合の各部の作動状態の変化を示すタイムチャートの一例である。It is an example of the time chart which shows the change of the operation state of each part when engine stop control is performed according to the flowchart of FIG. V型8気筒エンジンの作動を説明する図で、(a) は8つの気筒の作動状態を示す行程図、(b) は(a) におけるTDC停止時の付近の気筒の作動状態を説明する図、(c) は(a) における45ATDC停止時の付近の気筒の作動状態を説明する図である。FIG. 6 is a diagram for explaining the operation of a V-type 8-cylinder engine, in which (a) 程 is a stroke diagram showing the operating state of eight cylinders, and (b) is a diagram explaining the operating state of a cylinder in the vicinity of (a) 時 when TDC is stopped. (C) is a diagram for explaining the operating state of the cylinder in the vicinity of the 45 ATDC stop in a (a). 図5のTDC停止時からの着火始動を説明する図で、(a) は圧縮TDC付近の気筒の状態変化を説明する図、(b) は各部の作動状態の変化を(a) と対応して示すタイムチャートの一例である。5 is a diagram for explaining ignition start from the time of TDC stop in FIG. 5, (a) is a diagram for explaining the state change of the cylinder near the compression TDC, (b) corresponds to the change in the operating state of each part with (a). It is an example of the time chart shown. 図5の45ATDC停止時からの着火始動を説明する図で、(a) は圧縮TDC付近の気筒の状態変化を説明する図、(b) は各部の作動状態の変化を(a) と対応して示すタイムチャートの一例である。FIG. 5 is a diagram for explaining ignition start from 45ATDC stop in FIG. 5, (a) is a diagram for explaining a change in the state of a cylinder in the vicinity of the compression TDC, (b) を is a diagram corresponding to (a) It is an example of the time chart shown. 種々の気筒数の直噴エンジンの何れかの気筒のピストンが圧縮TDC(0°)で停止したと仮定した時に先行する直前の気筒のピストン位置を説明する図である。It is a figure explaining the piston position of the cylinder immediately before when it assumes that the piston of any cylinder of the direct-injection engine of various cylinder numbers stopped by compression TDC (0 degree). 種々の気筒数の直噴エンジンにおいて膨張行程におけるクランク角度(0°=圧縮TDC)と、ポンピングによる位置エネルギー(ポンピングエネルギー)との関係を計算により求めた結果を示す図である。It is a figure which shows the result of having calculated | required the relationship between the crank angle (0 degree = compression TDC) in an expansion stroke, and the positional energy (pumping energy) by pumping in the direct-injection engine of various cylinder numbers. 直列型4気筒エンジンの作動を説明する図で、(a) は4つの気筒の作動状態を示す行程図、(b) は(a) におけるTDC停止時の付近の気筒の作動状態を説明する図、(c) は(a) における90ATDC停止時の付近の気筒の作動状態を説明する図である。FIG. 5 is a diagram illustrating the operation of an in-line four-cylinder engine, where (a) is a stroke diagram illustrating the operating state of four cylinders, and (b) is a diagram illustrating the operating state of a cylinder in the vicinity of (a) when TDC stops. (C) is a diagram for explaining the operating state of the cylinder in the vicinity of the 90 ATDC stop in (a). 本発明が図10の4気筒エンジンを有するハイブリッド車両に適用された場合のエンジン停止制御を説明する図で、図3の代わりに用いられるフローチャートである。It is a figure explaining the engine stop control at the time of applying this invention to the hybrid vehicle which has a 4-cylinder engine of FIG. 10, and is a flowchart used instead of FIG. 図11のフローチャートに従ってエンジン停止制御が行われた場合の各部の作動状態の変化を示すタイムチャートの一例である。It is an example of the time chart which shows the change of the operation state of each part when engine stop control is performed according to the flowchart of FIG.
 本発明は、直噴エンジンが断接装置により動力伝達経路に対して断接されるパラレル型、シリーズ型、スプリット型、或いは1モータ型、2モータ型等の種々の型式のハイブリッド車両に適用され、回転機のみを駆動力源として走行するモータ走行モード時や車両減速時等に直噴エンジンを停止させる際のエンジン停止制御に適用される。断接装置としては、単板式、多板式等の摩擦係合クラッチが好適に用いられるが、直噴エンジンを動力伝達経路に接続して回転させたり、その動力伝達を遮断したりすることができる種々の手段を採用できる。 The present invention is applied to various types of hybrid vehicles such as a parallel type, a series type, a split type, a one-motor type, and a two-motor type in which a direct injection engine is connected to a power transmission path by a connecting / disconnecting device. The present invention is applied to engine stop control when stopping a direct injection engine in a motor travel mode in which only a rotating machine is used as a driving force source or during vehicle deceleration. As the connecting / disconnecting device, a single-plate type or multi-plate type friction engagement clutch is preferably used, but the direct injection engine can be connected to a power transmission path to rotate or the power transmission can be cut off. Various means can be employed.
 本発明のハイブリッド車両は、直噴エンジンおよび回転機を走行用の駆動力源として用いることが可能で、回転機としては、電動モータおよび発電機の両方の機能を択一的に用いることができるモータジェネレータが好適に用いられる。直噴エンジンとしては、2気筒や3気筒、4気筒、5気筒、6気筒、7気筒、8気筒、12気筒などの種々の気筒数のエンジンを用いることができる。 The hybrid vehicle of the present invention can use a direct-injection engine and a rotating machine as a driving power source for traveling, and the rotating machine can alternatively use the functions of both an electric motor and a generator. A motor generator is preferably used. As the direct injection engine, engines having various numbers of cylinders such as 2 cylinders, 3 cylinders, 4 cylinders, 5 cylinders, 6 cylinders, 7 cylinders, 8 cylinders, and 12 cylinders can be used.
 直噴エンジンを停止させる際に、断接装置を一時的に接続してクランク軸を回転させるが、エンジン停止直後は一般にポンピング作用(気筒内の空気の圧縮によるばねのような作用)が得られ、図9に示すようにクランク角度によってポンピングエネルギー(位置エネルギー)が変化し、停止し易い位置と停止し難い位置が存在する。すなわち、ポンピングエネルギーが変化している部分では停止し難く、低くて平らな極小領域では停止し易いため、そのポンピングエネルギーを考慮してクランク軸を所定の角度で停止させるように断接装置の接続タイミングや接続トルク、接続時間を定めることが望ましい。断接装置の接続タイミングは、クランク軸が完全に停止する前であっても良いし、完全に停止した後でも良い。断接装置の接続によるクランク軸の回転は、ポンピング作用が得られる時間内に行うことが望ましいが、ポンピング作用が得られなくなった後に行うこともできるし、シール性能等によって十分なポンピング作用が得られない場合にも本発明は適用され得る。 When stopping the direct injection engine, a connecting / disconnecting device is temporarily connected to rotate the crankshaft, but immediately after the engine stops, a pumping action (a spring-like action due to compression of air in the cylinder) is generally obtained. As shown in FIG. 9, the pumping energy (positional energy) varies depending on the crank angle, and there are positions where it is easy to stop and positions where it is difficult to stop. That is, it is difficult to stop at the part where the pumping energy is changing, and it is easy to stop at the low and flat minimum region, so the connection of the connecting / disconnecting device to stop the crankshaft at a predetermined angle in consideration of the pumping energy It is desirable to determine timing, connection torque, and connection time. The connection timing of the connecting / disconnecting device may be before the crankshaft is completely stopped or after it is completely stopped. Although it is desirable to rotate the crankshaft by connecting the connecting / disconnecting device within the time when the pumping action can be obtained, it can be done after the pumping action is no longer obtained. The present invention can be applied even when it is not possible.
 クランク軸を停止させるクランク角度は、何れかの気筒のピストンが圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態である着火始動条件を満たすか否かによって異なる角度に定められ、具体的には第2発明のように他の何れかの気筒が着火始動条件を満たす場合は、何れかの気筒のピストンがその圧縮TDC付近となるクランク角度でクランク軸を停止させる一方、第3発明のように他の何れの気筒も着火始動条件を満たさない場合は、何れかの気筒のピストンが圧縮TDCを通過して膨張行程の中間位置となるクランク角度でクランク軸を停止させる。排気弁の閉じタイミングを変更する可変バルブタイミング装置を有し、その排気弁の閉じタイミングによって上記判定が異なる場合は、例えば最も早い閉じタイミングに基づいて着火始動条件を満たすか否かを判断してクランク軸の停止位置を定めても良いが、実際の排気弁の閉じタイミングに応じてクランク軸を停止させるクランク角度を切り換える切換手段を設けるようにしても良い。 The crank angle at which the crankshaft is stopped satisfies the ignition start condition in which any of the cylinders is in the expansion stroke and the exhaust valve is closed when it is assumed that the piston of any of the cylinders stops at the compression TDC. Specifically, when any other cylinder satisfies the ignition start condition as in the second invention, the crank angle at which the piston of any cylinder is near its compression TDC is determined. When the shaft is stopped while none of the other cylinders satisfies the ignition start condition as in the third invention, the piston of any cylinder passes through the compression TDC at a crank angle at which the intermediate position of the expansion stroke is reached. Stop the crankshaft. If there is a variable valve timing device that changes the closing timing of the exhaust valve, and the above determination differs depending on the closing timing of the exhaust valve, for example, it is determined whether or not the ignition start condition is satisfied based on the earliest closing timing Although the stop position of the crankshaft may be determined, switching means for switching the crank angle for stopping the crankshaft according to the actual closing timing of the exhaust valve may be provided.
 第2発明のように他の何れかの気筒が膨張行程で且つ排気弁が閉状態の場合、すなわち着火始動条件を満たす場合は、常に何れかの気筒のピストンが圧縮TDC付近となるクランク角度でクランク軸を停止させるようにしても良いが、第3発明のように何れかの気筒のピストンが圧縮TDCを通過して膨張行程の中間位置となるクランク角度でクランク軸を停止させても着火始動を行うことが可能であり、条件によって両者を使い分けることもできる。第2発明のように圧縮TDC付近でクランク軸を停止させる場合、前記ポンピング作用によって圧縮TDC(図9におけるクランク角度=0°)付近にポンピングエネルギーの山が存在するが、例えば圧縮TDCの±10°程度の範囲内であれば、回転方向の釣り合いおよびエンジンのフリクションによってクランク軸を停止させることができる。また、圧縮TDCの手前ではポンピング作用によってクランク軸が逆回転するため、逆回転し始める前に断接装置を接続してクランク軸を圧縮TDC付近まで回転させることが望ましい。圧縮TDC付近とは、このようにポンピングエネルギーの山に乗り上げた状態でクランク軸が停止することを意味し、通常は圧縮TDC±10°程度の範囲内である。 When any one of the other cylinders is in the expansion stroke and the exhaust valve is closed, that is, when the ignition start condition is satisfied as in the second aspect of the invention, the crank angle at which the piston of any cylinder is always near the compression TDC Although the crankshaft may be stopped, as in the case of the third invention, the ignition is started even when the piston of any cylinder passes through the compression TDC and stops at the crank angle at the intermediate position of the expansion stroke. It is possible to perform both of them depending on conditions. When the crankshaft is stopped in the vicinity of the compression TDC as in the second invention, there is a peak of pumping energy near the compression TDC (crank angle = 0 ° in FIG. 9) due to the pumping action, but for example ± 10 of the compression TDC. If it is within a range of about 0 °, the crankshaft can be stopped by the balance in the rotational direction and the friction of the engine. Further, since the crankshaft rotates reversely by the pumping action before the compression TDC, it is desirable to connect the connecting / disconnecting device and rotate the crankshaft to the vicinity of the compression TDC before starting the reverse rotation. The vicinity of the compression TDC means that the crankshaft stops in such a state that it rides on the peak of the pumping energy, and is usually within a range of about compression TDC ± 10 °.
 第3発明では、何れかの気筒のピストンが圧縮TDCを通過して膨張行程の中間位置となるクランク角度でクランク軸を停止させるが、この停止位置についても、図9に示すポンピングエネルギーを考慮して、そのポンピングエネルギーが低くて平らな極小領域内で設定することが望ましい。また、着火始動には膨張行程で且つ吸気弁が閉状態であることが必要で、爆発により大きな回転エネルギーを得るためには圧縮TDCから所定角度回転し且つ吸気弁の開きタイミング角度(EVO)より数十°手前までの範囲が望ましい。すなわち、2気筒エンジン~4気筒エンジンの場合は例えば圧縮TDC(図9のクランク角度Φ=0°)から50°~120°(或いはEVO-20°)程度の範囲内が適当で、70°~110°程度の範囲内が望ましい。また、6気筒エンジンの場合は例えば圧縮TDCから40°~80°程度の範囲内が適当で、60°~80°程度の範囲内が望ましい。4気筒エンジンおよび6気筒エンジンの場合、図9から明らかなようにポンピングエネルギーが低い谷の部分で自動的に停止するため、圧縮TDC付近で停止した場合に、断接装置の接続でその圧縮TDC付近から離脱させ、任意の中間位置で停止させるだけでも良い。 In the third aspect of the invention, the crankshaft is stopped at a crank angle at which the piston of any cylinder passes through the compression TDC and becomes an intermediate position in the expansion stroke. The pumping energy shown in FIG. Therefore, it is desirable that the pumping energy is set within a flat and minimal region. Further, in order to start ignition, it is necessary that the intake valve is in the expansion stroke and the intake valve is closed. In order to obtain a large rotational energy by explosion, the intake valve is rotated by a predetermined angle from the compression TDC and from the opening timing angle (EVO) of the intake valve. The range up to several tens of degrees is desirable. That is, in the case of a two-cylinder engine to a four-cylinder engine, for example, a range of about 50 ° to 120 ° (or EVO-20 °) from the compression TDC (crank angle Φ = 0 ° in FIG. 9) is appropriate. A range of about 110 ° is desirable. In the case of a 6-cylinder engine, for example, a range of about 40 ° to 80 ° from the compression TDC is appropriate, and a range of about 60 ° to 80 ° is desirable. In the case of the 4-cylinder engine and the 6-cylinder engine, as apparent from FIG. 9, the pumping energy is automatically stopped at the valley portion where the pumping energy is low. It is also possible to simply disengage from the vicinity and stop at any intermediate position.
 何れかの気筒のピストンが圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態である着火始動条件を満たすか否かの判断は、必ずしも総ての気筒について着火始動条件を満たすか否かの判断を行う必要はない。すなわち、通常は圧縮TDCで停止した気筒に対して先行する直前の気筒が膨張行程で、その気筒が膨張行程を越えている場合は何れの気筒も着火始動条件を満たさないため、基本的には先行する直前の気筒が着火始動条件を満たすか否かを判断すれば良いし、エンジン再始動時に燃料噴射して点火する気筒も、その直前の気筒が選択される。但し、12気筒以上の多気筒エンジンの場合、複数の気筒が膨張行程に位置して着火始動条件を満たす場合があり、その場合は着火始動時により大きな回転エネルギーが得られる気筒を選択したり、着火始動条件を満たす総ての気筒に着火したりすれば良い。 When it is assumed that the piston of any cylinder has stopped at the compression TDC, it is not always necessary to determine whether any other cylinder is in the expansion stroke and the ignition start condition is satisfied with the exhaust valve closed. It is not necessary to determine whether or not the ignition start condition is satisfied for the cylinder. That is, when the cylinder immediately preceding the cylinder stopped at the compression TDC is normally in the expansion stroke and the cylinder exceeds the expansion stroke, none of the cylinders satisfy the ignition start condition. It is only necessary to determine whether or not the immediately preceding cylinder satisfies the ignition start condition, and the immediately preceding cylinder is selected as the cylinder that is ignited by fuel injection when the engine is restarted. However, in the case of a multi-cylinder engine of 12 cylinders or more, there are cases where a plurality of cylinders are positioned in the expansion stroke and satisfy the ignition start condition, in which case, a cylinder that can obtain larger rotational energy at the start of ignition is selected, All cylinders that satisfy the ignition start condition may be ignited.
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は、本発明が好適に適用されるハイブリッド車両10の駆動系統の骨子図を含む概略構成図である。このハイブリッド車両10は、気筒内に燃料を直接噴射する直噴エンジン12と、電動モータおよび発電機として機能するモータジェネレータMGとを走行用の駆動力源として備えている。そして、それ等の直噴エンジン12およびモータジェネレータMGの出力は、流体式伝動装置であるトルクコンバータ14からタービン軸16、C1クラッチ18を経て自動変速機20に伝達され、更に出力軸22、差動歯車装置24を介して左右の駆動輪26に伝達される。トルクコンバータ14は、ポンプ翼車とタービン翼車とを直結するロックアップクラッチ(L/Uクラッチ)30を備えているとともに、ポンプ翼車にはオイルポンプ32が一体的に接続されており、直噴エンジン12やモータジェネレータMGによって機械的に回転駆動されるようになっている。モータジェネレータMGは回転機に相当する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram including a skeleton diagram of a drive system of a hybrid vehicle 10 to which the present invention is preferably applied. The hybrid vehicle 10 includes a direct injection engine 12 that directly injects fuel into a cylinder and a motor generator MG that functions as an electric motor and a generator as driving power sources for traveling. The outputs of the direct injection engine 12 and the motor generator MG are transmitted from the torque converter 14 which is a fluid transmission device to the automatic transmission 20 via the turbine shaft 16 and the C1 clutch 18, and further to the output shaft 22, the difference It is transmitted to the left and right drive wheels 26 via the dynamic gear device 24. The torque converter 14 includes a lockup clutch (L / U clutch) 30 that directly connects the pump impeller and the turbine impeller, and an oil pump 32 is integrally connected to the pump impeller. It is rotationally driven mechanically by the jet engine 12 and the motor generator MG. Motor generator MG corresponds to a rotating machine.
 上記直噴エンジン12とモータジェネレータMGとの間には、ダンパ38を介してそれ等を直結するK0クラッチ34が設けられている。このK0クラッチ34は、油圧シリンダによって摩擦係合させられる単板式或いは多板式の摩擦クラッチで、油圧制御装置28によって係合解放制御されるとともに、本実施例ではトルクコンバータ14の油室40内に油浴状態で配設されている。K0クラッチ34は油圧式摩擦係合装置で、直噴エンジン12を動力伝達経路に対して接続したり遮断したりする断接装置として機能する。モータジェネレータMGは、インバータ42を介してバッテリー44に接続されている。また、前記自動変速機20は、複数の油圧式摩擦係合装置(クラッチやブレーキ)の係合解放状態によって変速比が異なる複数のギヤ段が成立させられる遊星歯車式等の有段の自動変速機で、油圧制御装置28に設けられた電磁式の油圧制御弁や切換弁等によって変速制御が行われる。C1クラッチ18は自動変速機20の入力クラッチとして機能するもので、同じく油圧制御装置28によって係合解放制御される。 A K0 clutch 34 is provided between the direct injection engine 12 and the motor generator MG via a damper 38 to directly connect them. The K0 clutch 34 is a single-plate or multi-plate friction clutch that is frictionally engaged by a hydraulic cylinder, and is engaged and released by the hydraulic control device 28. In the present embodiment, the K0 clutch 34 is disposed in the oil chamber 40 of the torque converter 14. It is arranged in an oil bath state. The K0 clutch 34 is a hydraulic friction engagement device, and functions as a connection / disconnection device that connects or disconnects the direct injection engine 12 with respect to the power transmission path. Motor generator MG is connected to battery 44 via inverter 42. Further, the automatic transmission 20 is a stepped automatic transmission such as a planetary gear type in which a plurality of gear stages having different gear ratios are established depending on the disengagement state of a plurality of hydraulic friction engagement devices (clutch and brake). The shift control is performed by an electromagnetic hydraulic control valve, a switching valve or the like provided in the hydraulic control device 28. The C1 clutch 18 functions as an input clutch of the automatic transmission 20 and is similarly subjected to engagement / release control by the hydraulic control device 28.
 ここで、直噴エンジン12は、均一のクランク角度間隔で順次爆発させられる複数の気筒を有するもので、本実施例ではV型8気筒の4サイクルのガソリンエンジンが用いられており、図2に具体的に示すように、燃料噴射装置46により気筒(シリンダ)100内にガソリン(高圧微粒子)が直接噴射されるようになっている。この直噴エンジン12は、吸気通路102から吸気弁104を介して気筒100内に空気が流入するとともに、排気弁108を介して排気通路106から排気ガスが排出されるようになっており、所定のタイミングで点火装置47によって点火されることにより気筒100内の混合気が爆発燃焼してピストン110が下方へ押し下げられる。吸気通路102は、サージタンク103を介して吸入空気量調整弁である電子スロットル弁45に接続されており、その電子スロットル弁45の開度(スロットル弁開度)に応じて吸気通路102から気筒100内に流入する吸入空気量、すなわちエンジン出力が制御される。上記ピストン110は、気筒100内に軸方向の摺動可能に嵌合されているとともに、コネクチングロッド112を介してクランク軸114のクランクピン116に相対回転可能に連結されており、ピストン110の直線往復移動に伴ってクランク軸114が矢印Rで示すように回転駆動される。クランク軸114は、ジャーナル部118において軸受により回転可能に支持されるようになっており、ジャーナル部118とクランクピン116とを接続するクランクアーム120を一体に備えている。 Here, the direct injection engine 12 has a plurality of cylinders that are sequentially exploded at a uniform crank angle interval. In this embodiment, a V-type 8-cylinder four-cycle gasoline engine is used. As specifically shown, gasoline (high-pressure fine particles) is directly injected into the cylinder (cylinder) 100 by the fuel injection device 46. In the direct injection engine 12, air flows into the cylinder 100 from the intake passage 102 via the intake valve 104, and exhaust gas is discharged from the exhaust passage 106 via the exhaust valve 108. When the ignition device 47 is ignited at this timing, the air-fuel mixture in the cylinder 100 explodes and burns, and the piston 110 is pushed downward. The intake passage 102 is connected to an electronic throttle valve 45, which is an intake air amount adjustment valve, via a surge tank 103. From the intake passage 102 to the cylinder according to the opening of the electronic throttle valve 45 (throttle valve opening). The amount of intake air flowing into 100, that is, the engine output is controlled. The piston 110 is fitted in the cylinder 100 so as to be slidable in the axial direction, and is connected to a crankpin 116 of the crankshaft 114 via a connecting rod 112 so as to be relatively rotatable. Along with the reciprocation, the crankshaft 114 is rotationally driven as indicated by an arrow R. The crankshaft 114 is rotatably supported by a bearing in the journal portion 118, and integrally includes a crank arm 120 that connects the journal portion 118 and the crankpin 116.
 そして、このような直噴エンジン12は、クランク軸114の2回転(720°)で、吸入行程、圧縮行程、膨張(爆発)行程、排気行程の4行程が行われ、これが繰り返されることでクランク軸114が連続回転させられる。8つの気筒100のピストン110は、それぞれクランク角度が90°ずつずれるように構成されており、クランク軸114が90°回転する毎に8つの気筒100が順番に爆発燃焼させられて連続的に回転トルクが発生させられる。また、何れかの気筒100のピストン110が圧縮行程の後のTDC(上死点)に達する圧縮TDCからクランク軸114が所定角度回転し、吸気弁104および排気弁108が共に閉じている膨張行程の所定の角度範囲内で停止している時に、燃料噴射装置46によって気筒100内にガソリンを噴射するとともに点火装置47によって点火することにより、気筒100内の混合気を爆発燃焼させて始動する着火始動が可能である。直噴エンジン12の各部のフリクション(摩擦)が小さい場合には、着火始動のみで直噴エンジン12を始動できるが、フリクションが大きい場合でも、クランク軸114をクランキングして始動する際の始動アシストトルクを低減できるため、そのアシストトルクを発生する前記モータジェネレータMGの最大トルクが低減されて小型化や低燃費化を図ることができる。 In such a direct injection engine 12, the crankshaft 114 is rotated twice (720 °), and the intake stroke, the compression stroke, the expansion (explosion) stroke, and the exhaust stroke are performed. The shaft 114 is continuously rotated. The pistons 110 of the eight cylinders 100 are configured such that the crank angles are shifted by 90 °, and the eight cylinders 100 are sequentially exploded and rotated each time the crankshaft 114 rotates 90 °. Torque is generated. Further, the expansion stroke in which the crankshaft 114 rotates by a predetermined angle from the compression TDC in which the piston 110 of any cylinder 100 reaches the TDC (top dead center) after the compression stroke, and both the intake valve 104 and the exhaust valve 108 are closed. When the fuel is stopped within the predetermined angle range, gasoline is injected into the cylinder 100 by the fuel injection device 46 and ignited by the ignition device 47, whereby the mixture in the cylinder 100 is ignited to start combustion. Start is possible. When the friction (friction) of each part of the direct injection engine 12 is small, the direct injection engine 12 can be started only by ignition start. However, even when the friction is large, the start assist when cranking and starting the crankshaft 114 is started. Since the torque can be reduced, the maximum torque of the motor generator MG that generates the assist torque is reduced, and the size and fuel consumption can be reduced.
 図5は、このような直噴エンジン12の作動を更に具体的に説明する図で、(a) は8つの気筒100の作動状態をクランク角度Φとの関係で示す行程図であり、図の下方に位置する気筒100程先行して作動させられる。すなわち、気筒No2→No4→No5→No6→No3→No7→No8→No1の順番で、クランク角度Φが90°回転する毎に爆発燃焼させられ、クランク軸114が連続回転させられる。(b) は(a) におけるTDC停止時、すなわち何れかの気筒100が圧縮TDC付近で停止させられた時の、その圧縮TDC付近の気筒100の作動状態を圧縮TDC=0°を基準にして示した図で、この図ではNo5の気筒100が圧縮TDCで、先行する直前のNo4の気筒100のクランク角度Φは約90°、直後のNo6の気筒100のクランク角度Φは約-90°である。この場合、No4の気筒100は膨張行程で、且つ排気弁108の開きタイミング角度EVO(例えば110°~160°)よりも手前で排気弁108は閉じているため、図6に示すようにそのNo4の気筒100内に燃料を噴射するとともに点火して始動(着火始動)を行うことができる。なお、「IVC」は圧縮工程における吸気弁104の閉じタイミング角度で、膨張行程では吸気弁104は閉じられている。 FIG. 5 is a diagram for explaining the operation of the direct injection engine 12 in more detail. FIG. 5A is a stroke diagram showing the operation state of the eight cylinders 100 in relation to the crank angle Φ. The lower cylinder 100 is operated in advance. That is, in the order of cylinder No 2 → No 4 → No 5 → No 6 → No 3 → No 7 → No 8 → No 1, every time the crank angle Φ rotates 90 °, the crankshaft 114 is continuously rotated. (b) indicates the operating state of the cylinder 100 near the compression TDC when the TDC is stopped in (a) 何 れ, that is, when any cylinder 100 is stopped near the compression TDC, with compression TDC = 0 ° as a reference. In this figure, the No. 5 cylinder 100 is compression TDC, the crank angle Φ of the preceding No. 4 cylinder 100 is about 90 °, and the crank angle Φ of the No. 6 cylinder 100 immediately after is about −90 °. is there. In this case, the No. 4 cylinder 100 is in the expansion stroke, and the exhaust valve 108 is closed before the opening timing angle EVO (for example, 110 ° to 160 °) of the exhaust valve 108. Therefore, as shown in FIG. The fuel can be injected into the cylinder 100 and ignited to start (ignition start). “IVC” is a closing timing angle of the intake valve 104 in the compression process, and the intake valve 104 is closed in the expansion stroke.
 図9は、種々の気筒数の直噴エンジン12において膨張行程におけるクランク角度(0°=圧縮TDC)Φと、ポンピングによる位置エネルギー(ポンピングエネルギー)との関係を計算により近似的に求めた結果を示す図である。ポンピングエネルギーは、気筒100内に吸入された空気が圧縮行程で圧縮されることによって生じる空気ばねの作用による位置エネルギーで、何れの場合も圧縮TDC付近に山があり、何もしなければ山と山との間の低い平らな極小領域でクランク軸114が停止する可能性が高いが(図5の(c) 参照)、10%程度の確率でその圧縮TDC付近で停止する。すなわち、ポンピングエネルギーの山の頂上付近では回転方向が変化するため、その回転方向の釣り合いおよび直噴エンジン12のフリクションにより、クランク軸114がポンピングエネルギーの山に乗り上げた状態で停止するのである。言い換えれば、図5の(c) に示す中間位置でクランク軸114が停止した場合でも、クランク軸114に回転トルクを付与することにより、図5の(b) に示すように何れかの気筒100が圧縮TDC付近で停止するように、クランク軸114の停止位置を積極的に調整することができる。なお、図9のグラフは近似的に求めたもので必ずしも正確でないし、直噴エンジン12の各部の諸元や、吸気弁104、排気弁108の開閉タイミング等によって変化するが、概略の傾向は図9のようになるものと考えられる。 FIG. 9 shows a result obtained by calculating approximately the relationship between the crank angle (0 ° = compression TDC) Φ in the expansion stroke and the positional energy (pumping energy) by pumping in the direct injection engine 12 having various numbers of cylinders. FIG. The pumping energy is potential energy generated by the action of an air spring generated when the air sucked into the cylinder 100 is compressed in the compression stroke. In any case, there is a mountain near the compression TDC. There is a high possibility that the crankshaft 114 stops in a low flat minimum region between them (see (c) in FIG. 5), but it stops in the vicinity of the compression TDC with a probability of about 10%. That is, since the rotational direction changes near the top of the pumping energy peak, the crankshaft 114 stops in a state where it rides on the pumping energy peak due to the balance of the rotational direction and the friction of the direct injection engine 12. In other words, even when the crankshaft 114 stops at the intermediate position shown in FIG. 5 (c), by applying rotational torque to the crankshaft 114, as shown in FIG. Therefore, the stop position of the crankshaft 114 can be positively adjusted so that it stops near the compression TDC. The graph of FIG. 9 is obtained approximately and is not necessarily accurate, and varies depending on the specifications of each part of the direct injection engine 12 and the opening / closing timing of the intake valve 104 and the exhaust valve 108. It can be considered as shown in FIG.
 図6は、前記図5の(b) に示すようにNo4の気筒100のピストン110が約90°(正確には圧縮TDC+90°)のクランク角度Φで停止している状態で着火始動する場合で、(a) はNo4の近傍の気筒100の状態変化を説明する図、(b) は各部の作動状態の変化を示すタイムチャートの一例であり、両者の括弧付き符号は互いに対応している。すなわち、(i) の状態で停止させられた直噴エンジン12を、エンジン走行モードへの移行時やアクセル操作時、発進時等に再び始動する際には、(ii)のように膨張行程のNo4の気筒100内に燃料を噴射するとともに点火して始動(着火始動)する。そして、そのNo4の気筒100内のガスの爆発膨張でピストン110が下方へ押し下げられると、(iii) のようにクランク軸114が回転し始め、後続のNo5の気筒100は膨張で負圧化する一方、その後のNo6の気筒100は圧縮により高圧化する。No4の気筒100の着火始動当初のクランク角度Φは約90°で、気筒100内に比較的多くの空気が存在するため、比較的大きな爆発エネルギーが得られ、No5およびNo6の気筒100の負圧化や高圧化に拘らず、当初はこの爆発エネルギーだけでクランク軸114を回転させることができる。なお、再始動の開始当初は、何れの気筒100内も略大気圧になっている。 FIG. 6 shows a case where the ignition is started in a state where the piston 110 of the No. 4 cylinder 100 is stopped at a crank angle Φ of about 90 ° (more precisely, compression TDC + 90 °) as shown in FIG. (A) is a diagram for explaining the state change of the cylinder 100 in the vicinity of No4, (b) の 一 is an example of a time chart showing the change in the operating state of each part, both parenthesized symbols correspond to each other. That is, when the direct injection engine 12 stopped in the state of (i) is started again at the time of transition to the engine running mode, at the time of accelerator operation, at the time of starting, etc., as shown in (ii) The fuel is injected into the No. 4 cylinder 100 and ignited to start (ignition start). When the piston 110 is pushed down by the explosion and expansion of the gas in the No. 4 cylinder 100, the crankshaft 114 starts to rotate as shown in (iii), and the subsequent No. 5 cylinder 100 becomes negative pressure by the expansion. On the other hand, the subsequent No. 6 cylinder 100 is pressurized by compression. The crank angle Φ at the beginning of ignition of the No. 4 cylinder 100 is about 90 °, and a relatively large amount of air is present in the cylinder 100. Therefore, a relatively large explosion energy is obtained, and the negative pressures of the No. 5 and No. 6 cylinders 100 are obtained. Regardless of the increase in pressure or the increase in pressure, the crankshaft 114 can be initially rotated only by this explosion energy. It should be noted that at the beginning of restart, all cylinders 100 are at substantially atmospheric pressure.
 (iv)は、クランク軸114が更に回転して排気弁108が開くEVOに達した状態で、No4の気筒100内の圧力が低下する一方、No5およびNo6の気筒100は更に負圧化、高圧化するため、直噴エンジン12の回転抵抗(負荷)が大きくなる。このため、その排気弁開きタイミング角度EVOよりも少し手前から、前記モータジェネレータMGによってクランク軸114の回転(クランキング)をアシストする。車両走行中の場合、車両の運動エネルギーでクランク軸114をアシストできるが、駆動力変動を抑制するため必要に応じてモータジェネレータMGのトルクを増大制御する。車両が停止状態の時には、モータジェネレータMGによってアシストする。なお、直噴エンジン12とモータジェネレータMGとの間にはK0クラッチ34が配設されており、このK0クラッチ34が遮断されることにより直噴エンジン12は動力伝達経路から遮断されて停止させられる。また、K0クラッチ34が接続されることにより、モータジェネレータMGや車両の運動エネルギーによるアシストが可能となる。 (iv) shows that the pressure in the No. 4 cylinder 100 decreases while the crankshaft 114 further rotates and reaches the EVO where the exhaust valve 108 opens, while the No. 5 and No. 6 cylinders 100 are further reduced in pressure and pressure. Therefore, the rotational resistance (load) of the direct injection engine 12 increases. Therefore, the rotation (cranking) of the crankshaft 114 is assisted by the motor generator MG slightly before the exhaust valve opening timing angle EVO. While the vehicle is running, the crankshaft 114 can be assisted by the kinetic energy of the vehicle, but the torque of the motor generator MG is increased and controlled as necessary to suppress fluctuations in the driving force. When the vehicle is stopped, the motor generator MG assists. A K0 clutch 34 is disposed between the direct injection engine 12 and the motor generator MG. When the K0 clutch 34 is disconnected, the direct injection engine 12 is disconnected from the power transmission path and stopped. . Further, by connecting the K0 clutch 34, it is possible to assist the motor generator MG and the kinetic energy of the vehicle.
 その後、(v) に示すようにNo6の気筒100が圧縮TDCを越えると、そのNo6の気筒100に点火して爆発させることにより、そのNo6の気筒100の爆発エネルギーにより大きな回転トルクでクランク軸114が回転させられるようになる。これにより、(vi)に示すように前後に位置するNo5やNo3の気筒100の負圧化、高圧化に拘らず、No6の気筒100の爆発エネルギーでクランク軸114が適切に回転させられ、以後、90°回転する毎に後続の気筒100が爆発させられることにより、クランク軸114が安定して回転させられる。すなわち、(v) に示すようにNo6の気筒100が圧縮TDCを越えるまでクランク軸114が回転すれば、以後は自力回転できるようになるのであり、No6の気筒100が圧縮TDCを越えるまでの約50°~60°程度の角度範囲に亘ってモータジェネレータMGによるクランキングのアシストを行うだけで、直噴エンジン12を適切に着火始動することができる。 After that, as shown in (v) IV, when the No. 6 cylinder 100 exceeds the compression TDC, the No. 6 cylinder 100 is ignited to explode, and the crankshaft 114 is driven with a large rotational torque by the explosion energy of the No. 6 cylinder 100. Can be rotated. As a result, as shown in (vi), the crankshaft 114 is appropriately rotated by the explosion energy of the No. 6 cylinder 100 regardless of whether the No. 5 or No. 3 cylinders 100 located at the front and rear are made negative or high in pressure. , The cylinder 100 is stably rotated by causing the subsequent cylinder 100 to explode every 90 °. That is, as shown in (v), if the crankshaft 114 rotates until the No. 6 cylinder 100 exceeds the compression TDC, then the crankshaft 114 can be rotated by itself, and the No. 6 cylinder 100 until the No. 6 cylinder 100 exceeds the compression TDC. The direct injection engine 12 can be appropriately started to start ignition simply by assisting cranking by the motor generator MG over an angle range of about 50 ° to 60 °.
 図5に戻って、(c) は(a) における45ATDC停止時、すなわち何れかの気筒100が圧縮TDCから約45°の中間位置で停止させられた時の、その前後の気筒100の作動状態を圧縮TDC=0°を基準にして示した図で、この図ではNo7の気筒100が約45°で停止している。また、先行する直前のNo3の気筒100のクランク角度Φは約135°で、直後のNo8の気筒100のクランク角度Φは約-45°である。この場合、No7の気筒100は膨張行程で、且つ排気弁108の開きタイミング角度EVO(例えば110°~160°)よりも手前で排気弁108は閉じているため、図7に示すようにそのNo7の気筒100内に燃料を噴射するとともに点火して始動(着火始動)を行うことができる。直前のNo3の気筒100も、排気弁108が閉じていて着火始動が可能であるが、僅かな回転で排気弁108が開くため、十分な回転エネルギーが得られない。図9のポンピングエネルギーの特性から明らかなように、何もしなければ90%程度の確率で図5の(c) に示すように何れかの気筒100が45°付近の中間位置となるクランク角度Φでクランク軸114は停止させられるが、図5の(b) に示すように圧縮TDC付近で停止した場合に、クランク軸114に回転トルクを付与することにより、図5の(c) に示すように何れかの気筒100が中間位置で停止するように、クランク軸114の停止位置を積極的に調整することができる。 Referring back to FIG. 5, (c) 作 動 is the operating state of the cylinders 100 before and after 45ATDC in (a) 停止, that is, when any cylinder 100 is stopped at an intermediate position of about 45 ° from the compression TDC. Is shown on the basis of compression TDC = 0 °, in which the No. 7 cylinder 100 stops at about 45 °. Further, the crank angle Φ of the immediately preceding No. 3 cylinder 100 is about 135 °, and the crank angle Φ of the immediately following No. 8 cylinder 100 is about −45 °. In this case, the No. 7 cylinder 100 is in the expansion stroke, and the exhaust valve 108 is closed before the opening timing angle EVO (for example, 110 ° to 160 °) of the exhaust valve 108. Therefore, as shown in FIG. The fuel can be injected into the cylinder 100 and ignited to start (ignition start). In the immediately preceding No. 3 cylinder 100, the exhaust valve 108 is closed and ignition can be started. However, since the exhaust valve 108 opens with a slight rotation, sufficient rotational energy cannot be obtained. As is apparent from the characteristics of the pumping energy shown in FIG. 9, if nothing is done, the crank angle Φ at which any one of the cylinders 100 becomes an intermediate position in the vicinity of 45 ° as shown in FIG. As shown in FIG. 5B, when the crankshaft 114 is stopped in the vicinity of the compression TDC as shown in FIG. 5B, a rotational torque is applied to the crankshaft 114, as shown in FIG. The stop position of the crankshaft 114 can be positively adjusted so that any one of the cylinders 100 stops at the intermediate position.
 図7は、上記のようにNo7の気筒100のピストン110が約45°(正確には圧縮TDC+45°)のクランク角度Φに位置している状態で着火始動する場合で、(a) は付近の気筒100の状態変化を説明する図、(b) は各部の作動状態の変化を示すタイムチャートの一例であり、両者の括弧付き符号は互いに対応している。すなわち、(i) の状態で停止させられた直噴エンジン12を、エンジン走行モードへの移行時やアクセル操作時、発進時等に再び始動する際には、(ii)のように膨張行程のNo7の気筒100内に燃料を噴射するとともに点火して始動(着火始動)する。そして、そのNo7の気筒100内のガスの爆発膨張でピストン110が押し下げられ、(iii) のようにクランク軸114が回転し始めると、後続のNo8の気筒100は圧縮により高圧化する。着火始動当初のNo7の気筒100のクランク角度Φは約45°で、そのNo7の気筒100内の空気量は前記図6の着火気筒No4に比較して少なく、爆発膨張による回転エネルギーも小さいため、着火始動の当初からK0クラッチ34を接続してモータジェネレータMGによるクランキングのアシストを行う。 FIG. 7 shows a case where ignition is started in a state where the piston 110 of the No. 7 cylinder 100 is positioned at a crank angle Φ of about 45 ° (more precisely, compression TDC + 45 °) as described above. The figure explaining the state change of the cylinder 100, (b) is an example of a time chart showing the change in the operating state of each part, and the reference numerals in parentheses correspond to each other. That is, when the direct injection engine 12 stopped in the state of (i) is started again at the time of transition to the engine running mode, at the time of accelerator operation, at the time of starting, etc., as shown in (ii) The fuel is injected into the No. 7 cylinder 100 and ignited to start (ignition start). Then, when the piston 110 is pushed down by the explosive expansion of the gas in the No. 7 cylinder 100 and the crankshaft 114 starts to rotate as shown in (iii), the subsequent No. 8 cylinder 100 is pressurized by compression. The crank angle Φ of the No. 7 cylinder 100 at the start of ignition is about 45 °, and the amount of air in the No. 7 cylinder 100 is smaller than that of the ignition cylinder No. 4 in FIG. From the beginning of the ignition start, the K0 clutch 34 is connected to assist the cranking by the motor generator MG.
 (iv)は、後続のNo8の気筒100が圧縮TDCに達して点火された状態であるが、このNo8の気筒100内の空気はエンジン停止中に略大気圧とされるため、その空気量は比較的少なく、完全な爆発エネルギーは得られない。このため、(v) に示すように爆発回転しても、依然としてモータジェネレータMGによるアシストが必要である。その後、No7から数えて3番目のNo1の気筒100が(vi)に示すように圧縮TDCに達して点火されると、始めて完全な爆発エネルギーが得られるようになり、モータジェネレータMGによるクランキングのアシストが不要となる。以後は、90°回転する毎に後続の気筒100が爆発させられることにより、クランク軸114が安定して回転させられる。すなわち、(vi)に示すようにNo1の気筒100が圧縮TDCを越えるまでクランク軸114が回転すれば、以後は自力回転できるようになるのであり、No1の気筒100が圧縮TDCを越えるまでの約120°~130°程度の角度範囲に亘ってモータジェネレータMGによるクランキングのアシストを行うことにより、直噴エンジン12を適切に着火始動することができる。この場合は、No7の気筒100の初爆に続いて、直後のNo8の気筒100についても点火、爆発させることができるため、モータジェネレータMGによるアシストと相まってエンジン回転速度NEがスムーズに上昇し、図6に比較して始動時間が短くなる。 (iv) is a state in which the subsequent No. 8 cylinder 100 reaches the compression TDC and is ignited. Since the air in the No. 8 cylinder 100 is set to substantially atmospheric pressure while the engine is stopped, the amount of air is It is relatively small and complete explosion energy cannot be obtained. For this reason, as shown in (v) IV, the motor generator MG still needs assistance even after an explosion and rotation. After that, when the third No. 1 cylinder 100 counting from No. 7 reaches the compression TDC as shown in (vi) and is ignited, complete explosion energy can be obtained for the first time. No assistance is required. Thereafter, the cylinder 100 is stably rotated by causing the subsequent cylinder 100 to explode every 90 ° rotation. That is, as shown in (vi), if the crankshaft 114 rotates until the No. 1 cylinder 100 exceeds the compression TDC, then the crankshaft 114 can be rotated by itself. By assisting cranking by the motor generator MG over an angle range of about 120 ° to 130 °, the direct injection engine 12 can be appropriately started to ignite. In this case, following the initial explosion of the No. 7 cylinder 100, the immediately following No. 8 cylinder 100 can also be ignited and exploded, so that the engine speed NE increases smoothly in combination with the assist by the motor generator MG. Compared to 6, the starting time is shortened.
 このように、8気筒の直噴エンジン12においては、図5の(b) に示すように何れかの気筒100のピストン110が圧縮TDC付近で停止した場合でも、図5の(c) に示すように圧縮TDCを約45°越えた中間位置で停止した場合でも、モータジェネレータMGによるアシストで適切に着火始動を行うことができる。その場合に、図5の(b) に示すように圧縮TDC付近で停止した場合には、図5の(c) に示すように圧縮TDCを約45°越えた中間位置で停止した場合に比較して、モータジェネレータMGによるアシストトルクが小さくて済む。すなわち、図5の(b) に示すように何れかの気筒100のピストン110が圧縮TDC付近で停止した状態で着火始動を行うようにすれば、着火始動のためのアシストトルクが低減されるため、モータジェネレータMGの最大トルクを更に低減でき、一層の小型化や低燃費化を図ることができる。 In this way, in the 8-cylinder direct injection engine 12, even when the piston 110 of any cylinder 100 stops near the compression TDC as shown in FIG. 5B, it is shown in FIG. 5C. Thus, even when the compression TDC is stopped at an intermediate position exceeding about 45 °, the ignition can be appropriately started with the assistance of the motor generator MG. In that case, when stopped near the compression TDC as shown in FIG. 5 (b) 比較, compared to when stopping at an intermediate position that exceeds the compression TDC by about 45 ° as shown in FIG. 5 (c). Thus, the assist torque by the motor generator MG can be small. In other words, as shown in FIG. 5B, if the ignition start is performed with the piston 110 of any cylinder 100 stopped near the compression TDC, the assist torque for the ignition start is reduced. Further, the maximum torque of the motor generator MG can be further reduced, and further downsizing and fuel consumption can be achieved.
 その場合に、上記図5の(b) に示すように何れかの気筒100のピストン110が圧縮TDCで停止した時に着火始動を行うことができる条件は、先行する直前の気筒100が膨張行程で且つ排気弁108が閉状態である必要がある。図8は種々の気筒数の直噴エンジン12の何れかの気筒100のピストン110が圧縮TDCで停止した場合に、先行する直前の気筒100のピストン位置(クランク角度Φa)を示す図で、0°は圧縮TDCであり、クランク角度Φは右回転に進行する。8気筒の場合は、上述のように720°÷8=90°であるため、先行する直前の気筒100のクランク角度Φa=90°であり、12気筒の場合のクランク角度Φa=60°、7気筒の場合のクランク角度Φa=103°、6気筒の場合のクランク角度Φa=120°であり、何れも膨張行程である。また、排気弁開きタイミング角度EVOが約140°とすると、排気弁108は閉状態であり、何れも着火始動が可能である。なお、12気筒エンジンの場合、2つ前の気筒100についてもクランク角度Φa=120°で着火始動が可能である。 In that case, as shown in FIG. 5 (b), the condition that the ignition start can be performed when the piston 110 of any cylinder 100 stops at the compression TDC is that the preceding cylinder 100 is in the expansion stroke. In addition, the exhaust valve 108 needs to be closed. FIG. 8 is a diagram showing the piston position (crank angle Φa) of the immediately preceding cylinder 100 when the piston 110 of any cylinder 100 of the direct-injection engine 12 having various cylinder numbers stops at the compression TDC. ° is the compression TDC, and the crank angle Φ advances clockwise. In the case of 8 cylinders, since 720 ° ÷ 8 = 90 ° as described above, the crank angle Φa of the immediately preceding cylinder 100 is 90 °, and the crank angle Φa = 60 ° in the case of 12 cylinders, 7 Crank angle Φa = 103 ° in the case of cylinders and crank angle Φa = 120 ° in the case of 6 cylinders, both of which are expansion strokes. Further, when the exhaust valve opening timing angle EVO is about 140 °, the exhaust valve 108 is closed, and any of them can start ignition. In the case of a 12-cylinder engine, ignition can be started at the crank angle Φa = 120 ° for the two cylinders 100 before.
 これに対し、5気筒の場合は、先行する直前の気筒100のクランク角度Φa=144°で、膨張行程であるものの排気弁108が開いているため、着火始動は不可である。また、4気筒の場合のクランク角度Φa=180°で、3気筒の場合のクランク角度Φa=240°であり、何れも膨張行程を越えているとともに、排気弁108も開いているため、着火始動は不可である。排気弁開きタイミング角度EVOは、例えば110°~160°程度の範囲で適宜定められ、或いは可変とされるため、その排気弁開きタイミング角度EVOが120°以下で設定されると、6気筒の場合も着火始動が不可になる。そして、このように何れかの気筒100のピストン110が圧縮TDCで停止した場合に着火始動が不可の場合は、図5の(c) に示すように何れかの気筒100のピストン110が圧縮TDCを通過して膨張行程の中間位置で停止した場合にのみ着火始動を行うことができる。 On the other hand, in the case of five cylinders, ignition start is impossible because the exhaust valve 108 is open although the crank angle Φa of the preceding cylinder 100 is 144 ° and the expansion stroke is in progress. Further, the crank angle Φa = 180 ° in the case of four cylinders and the crank angle Φa = 240 ° in the case of three cylinders, both of which exceed the expansion stroke, and the exhaust valve 108 is also open, so that ignition starts. Is not possible. The exhaust valve opening timing angle EVO is appropriately determined or made variable within a range of, for example, about 110 ° to 160 °. Therefore, if the exhaust valve opening timing angle EVO is set to 120 ° or less, the case of 6 cylinders Will not be able to start ignition. If the ignition start is impossible when the piston 110 of any cylinder 100 stops at the compression TDC in this way, the piston 110 of any cylinder 100 is compressed TDC as shown in FIG. It is possible to start ignition only when the engine passes through the valve and stops at an intermediate position in the expansion stroke.
 図1に戻って、このようなハイブリッド車両10は電子制御装置70によって制御される。電子制御装置70は、CPU、ROM、RAM、及び入出力インターフェースなどを有する所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行う。電子制御装置70には、アクセル操作量センサ48からアクセルペダルの操作量(アクセル操作量)Accを表す信号が供給される。また、エンジン回転速度センサ50、MG回転速度センサ52、タービン回転速度センサ54、車速センサ56、クランク角度センサ58から、それぞれ直噴エンジン12の回転速度(エンジン回転速度)NE、モータジェネレータMGの回転速度(MG回転速度)NMG、タービン軸16の回転速度(タービン回転速度)NT、出力軸22の回転速度(出力軸回転速度で車速Vに対応)NOUT、8つの気筒100毎のTDC(上死点)からの回転角度(クランク角度)Φ、に関する信号が供給される。この他、各種の制御に必要な種々の情報が供給されるようになっている。上記アクセル操作量Accは出力要求量に相当する。 Returning to FIG. 1, such a hybrid vehicle 10 is controlled by the electronic control unit 70. The electronic control unit 70 includes a so-called microcomputer having a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in advance in the ROM while using a temporary storage function of the RAM. Do. A signal representing the accelerator pedal operation amount (accelerator operation amount) Acc is supplied from the accelerator operation amount sensor 48 to the electronic control unit 70. Further, from the engine rotation speed sensor 50, the MG rotation speed sensor 52, the turbine rotation speed sensor 54, the vehicle speed sensor 56, and the crank angle sensor 58, the rotation speed (engine rotation speed) NE of the direct injection engine 12 and the rotation of the motor generator MG, respectively. Speed (MG rotational speed) NMG, rotational speed of turbine shaft 16 (turbine rotational speed) NT, rotational speed of output shaft 22 (corresponding to vehicle speed V by output shaft rotational speed) NOUT, TDC for each of eight cylinders 100 (top dead) A signal relating to the rotation angle (crank angle) Φ from the point) is supplied. In addition, various types of information necessary for various types of control are supplied. The accelerator operation amount Acc corresponds to the output request amount.
 上記電子制御装置70は、機能的にハイブリッド制御手段72、変速制御手段74、およびエンジン停止制御手段80を備えている。ハイブリッド制御手段72は、直噴エンジン12およびモータジェネレータMGの作動を制御することにより、例えば直噴エンジン12のみを駆動力源として走行するエンジン走行モードや、モータジェネレータMGのみを駆動力源として走行するモータ走行モード、それ等の両方を用いて走行するエンジン+モータ走行モード等の予め定められた複数の走行モードを、アクセル操作量Accや車速V等の運転状態に応じて切り換えて走行する。変速制御手段74は、油圧制御装置28に設けられた電磁式の油圧制御弁や切換弁等を制御して複数の油圧式摩擦係合装置の係合解放状態を切り換えることにより、自動変速機20の複数のギヤ段を、アクセル操作量Accや車速V等の運転状態をパラメータとして予め定められた変速マップに従って切り換える。 The electronic control unit 70 is functionally provided with hybrid control means 72, shift control means 74, and engine stop control means 80. The hybrid control means 72 controls the operation of the direct injection engine 12 and the motor generator MG, for example, an engine travel mode in which only the direct injection engine 12 travels as a driving power source, or travels using only the motor generator MG as a driving power source. A plurality of predetermined driving modes such as an engine driving mode using both the motor driving mode and the motor driving mode are switched in accordance with the driving state such as the accelerator operation amount Acc and the vehicle speed V. The shift control means 74 controls an electromagnetic hydraulic control valve, a switching valve and the like provided in the hydraulic control device 28 to switch the engagement / disengagement state of the plurality of hydraulic friction engagement devices. These gear stages are switched in accordance with a predetermined shift map with the operating state such as the accelerator operation amount Acc and the vehicle speed V as parameters.
 エンジン停止制御手段80は、エンジン+モータ走行モードからモータ走行モードへの切換時や、エンジン+モータ走行モード或いはエンジン走行モード中の惰性走行時、減速時、停車時等に直噴エンジン12を停止させる際の制御を行うもので、本実施例では前記図5の(b) のように何れかの気筒100のピストン110が圧縮TDC付近となるクランク角度Φでクランク軸114を停止させる。このエンジン停止制御手段80は、更にエンジン停止手段82、クランク角度判定手段84、およびクラッチ係合手段86を機能的に備えており、図3のフローチャートに従って信号処理を実行する。図3のステップS2およびS3はエンジン停止手段82に相当し、ステップS4およびS5はクランク角度判定手段84に相当し、ステップS6およびS7はクラッチ係合手段86に相当する。上記クラッチ係合手段86は、K0クラッチ34を一時的に接続する接続制御手段として機能する。 The engine stop control means 80 stops the direct injection engine 12 at the time of switching from the engine + motor running mode to the motor running mode, at the time of inertia running during the engine + motor running mode or the engine running mode, at the time of deceleration, at the time of stopping, etc. In this embodiment, as shown in FIG. 5B, the crankshaft 114 is stopped at a crank angle Φ at which the piston 110 of any one of the cylinders 100 is near the compression TDC. The engine stop control means 80 further includes an engine stop means 82, a crank angle determination means 84, and a clutch engagement means 86, and performs signal processing according to the flowchart of FIG. Steps S2 and S3 in FIG. 3 correspond to the engine stop means 82, steps S4 and S5 correspond to the crank angle determination means 84, and steps S6 and S7 correspond to the clutch engagement means 86. The clutch engaging means 86 functions as a connection control means for temporarily connecting the K0 clutch 34.
 図3のステップS1では、エンジン停止条件が成立するか否かを判断する。エンジン停止条件は、エンジン+モータ走行モードからモータ走行モードへの切換時や、エンジン走行モード中の減速時などで、エンジン停止条件を満足する場合はステップS2以下のエンジン停止制御を実行する。このエンジン停止の前提として、直噴エンジン12をON(運転)、OFF(停止)する間欠運転の実行条件や、エンジン冷却水温が所定温度以上であることなどの、停止制御基本条件を満足している必要がある。図4のタイムチャートの時間t1は、ステップS1の判断がYES(肯定)になってエンジン停止制御が開始された時間である。図4は、エンジン+モータ走行モードでの走行中にアクセルOFFの惰性走行になってエンジン停止制御が行われた場合の各部の作動状態の変化を示す図で、クランク角度Φは、圧縮TDCを0°として、その圧縮TDCよりも90°前の圧縮行程の中間位置から圧縮TDCまでのクランク角度Φの変化を示す図で、90°間隔で圧縮TDCに到達する8つの気筒100のクランク角度Φの変化を連続的に繋いで示した図である。K0クラッチ圧はK0クラッチ34の係合油圧で、エンジン+モータ走行モードでの走行中である時間t1では最大圧(ライン圧)とされ、K0クラッチ34は完全係合させられている。このK0クラッチ圧は、K0クラッチ34の係合トルク、すなわち直噴エンジン12を動力伝達経路に接続する接続トルクに対応する。 In step S1 of FIG. 3, it is determined whether or not an engine stop condition is satisfied. When the engine stop condition is satisfied when the engine stop condition is satisfied, such as when switching from the engine + motor drive mode to the motor drive mode or during deceleration in the engine drive mode, engine stop control in step S2 and subsequent steps is executed. As a precondition for the engine stop, the basic conditions for stop control such as intermittent operation conditions for turning on (running) and turning off (stopping) the direct injection engine 12 and the engine cooling water temperature being equal to or higher than a predetermined temperature are satisfied. Need to be. The time t1 in the time chart of FIG. 4 is the time when the determination in step S1 is YES (positive) and the engine stop control is started. FIG. 4 is a diagram showing changes in the operating state of each part when the engine stop control is performed due to inertial traveling with the accelerator off during traveling in the engine + motor traveling mode. The crank angle Φ is the compression TDC. FIG. 9 is a graph showing changes in the crank angle Φ from the intermediate position of the compression stroke 90 ° before the compression TDC to the compression TDC as 0 °, and the crank angles Φ of the eight cylinders 100 that reach the compression TDC at 90 ° intervals It is the figure which showed the change of and connected continuously. The K0 clutch pressure is the engagement hydraulic pressure of the K0 clutch 34, and is the maximum pressure (line pressure) at time t1 during running in the engine + motor running mode, and the K0 clutch 34 is fully engaged. The K0 clutch pressure corresponds to the engagement torque of the K0 clutch 34, that is, the connection torque that connects the direct injection engine 12 to the power transmission path.
 ステップS2では、K0クラッチ34の遮断処理を実行して直噴エンジン12を動力伝達経路から切り離す。K0クラッチ34の遮断処理は、例えばK0クラッチ圧を徐々に低下させて0にする。ステップS3では、直噴エンジン12の停止処理を実行する。この停止処理では、燃料噴射装置46からの燃料噴射を停止(フューエルカット)するとともに、点火装置47の点火制御を停止する。これにより、ステップS2で直噴エンジン12が動力伝達経路から切り離されることと相まって、エンジン回転速度NEが徐々に低下する。ステップS2によるK0クラッチ34の遮断処理およびステップS3によるフューエルカット等は、フューエルカットが後でも良いが、略同時に並行して行うこともできるし、フューエルカットが先であっても良い。アクセルOFF等により既にフューエルカットされている場合は、そのフューエルカットを継続すれば良い。 In step S2, the K0 clutch 34 is disconnected to disconnect the direct injection engine 12 from the power transmission path. In the disconnection process of the K0 clutch 34, for example, the K0 clutch pressure is gradually reduced to zero. In step S3, stop processing of the direct injection engine 12 is executed. In this stop process, the fuel injection from the fuel injection device 46 is stopped (fuel cut), and the ignition control of the ignition device 47 is stopped. Thereby, coupled with the fact that the direct injection engine 12 is disconnected from the power transmission path in step S2, the engine rotational speed NE gradually decreases. The disconnection process of the K0 clutch 34 in step S2 and the fuel cut in step S3 may be performed after the fuel cut, but may be performed in parallel at the same time, or the fuel cut may be performed first. If the fuel has already been cut due to accelerator OFF or the like, the fuel cut may be continued.
 次のステップS4では、直噴エンジン12の回転が略停止したか否か、具体的にはエンジン回転速度NEが例えば100rpm程度の所定値NE1以下になったか否かを判断し、直噴エンジン12の回転が略停止したらステップS5を実行し、クランク角度Φに基づいて圧縮行程後半の気筒100が存在するか否かを判断する。圧縮行程後半とは、例えば圧縮TDCを基準としてそれよりも90°前から圧縮TDCまでの範囲で、8気筒の直噴エンジン12を有する本実施例では常に何れかの気筒100が圧縮行程後半に有り、続いてステップS6を実行する。ステップS6では、エンジン回転速度NE=0になったか否かを判断し、NE=0になったらステップS7のクラッチ係合制御を実行する。NE=0になったか否かは、例えばエンジン回転速度センサ50からのパルス信号の入力が一定時間(例えば数十m秒)以上変化無しか否かによって判断できる。 In the next step S4, it is determined whether or not the rotation of the direct injection engine 12 has stopped substantially, specifically, whether or not the engine speed NE has become equal to or less than a predetermined value NE1 of about 100 rpm, for example. When the rotation of the cylinder is substantially stopped, step S5 is executed to determine whether or not the cylinder 100 in the latter half of the compression stroke exists based on the crank angle Φ. The latter half of the compression stroke is, for example, in the range from 90 ° before it to the compression TDC with reference to the compression TDC. In this embodiment having the eight-cylinder direct injection engine 12, any cylinder 100 is always in the latter half of the compression stroke. Yes, then step S6 is executed. In step S6, it is determined whether or not the engine rotational speed NE = 0. When NE = 0, the clutch engagement control in step S7 is executed. Whether or not NE = 0 can be determined, for example, based on whether or not the input of the pulse signal from the engine speed sensor 50 has not changed for a certain time (for example, several tens of milliseconds).
 ステップS7のクラッチ係合制御では、K0クラッチ34を予め定められた係合トルクで予め定められた係合時間だけ係合させることにより、圧縮TDCの手前にピストン110が位置する気筒100のクランク角度Φが圧縮TDC付近(例えば圧縮TDC±10°程度以下)となるようにクランク軸114を回転させて停止させる。すなわち、図9に示すポンピングエネルギーの山に乗り上げた状態でクランク軸114が停止するように、K0クラッチ34を係合させるのである。このK0クラッチ34の係合トルクおよび係合時間は、例えばNE=0と判定された時のクランク角度Φstopに基づいて、予め定められたマップや演算式等に従って定められる。係合トルクおよび係合時間の何れか一方、例えば係合トルクについては予め一定値が定められ、他方のみクランク角度Φstopに基づいて定められるようにしても良い。この係合トルクや係合時間は、実験や計算などで求められる図9に示すようなポンピングエネルギー等に基づいて定められ、例えばNE=0と判定された時のクランク角度Φstopから圧縮TDCまでの角度が大きい程係合時間が長くされるが、圧縮TDC付近で停止するように学習補正することが望ましい。また、NE=0の時に何れかの気筒100が圧縮TDC付近の場合は、それ以上クランク軸114を回転させる必要はなく、係合時間が0とされて実質的にステップS7のクラッチ係合制御が省略される。なお、K0クラッチ34の係合によるクランク軸114の回転に伴う回転抵抗で駆動トルクが変動することを防止するため、モータジェネレータMGのトルク(MGトルク)TMGを、K0クラッチ34の係合トルクに対応して増大させる補償制御を必要に応じて実施しても良い。 In the clutch engagement control in step S7, the crank angle of the cylinder 100 in which the piston 110 is positioned before the compression TDC is obtained by engaging the K0 clutch 34 with a predetermined engagement torque for a predetermined engagement time. The crankshaft 114 is rotated and stopped so that Φ is in the vicinity of the compression TDC (for example, compression TDC ± 10 ° or less). That is, the K0 clutch 34 is engaged so that the crankshaft 114 stops in a state where it rides on the peak of pumping energy shown in FIG. The engagement torque and engagement time of the K0 clutch 34 are determined according to a predetermined map, an arithmetic expression, or the like based on, for example, the crank angle Φstop when NE = 0 is determined. One of the engagement torque and the engagement time, for example, the engagement torque may be determined in advance, and only the other may be determined based on the crank angle Φstop. The engagement torque and the engagement time are determined based on pumping energy and the like as shown in FIG. 9 obtained by experiments and calculations, for example, from the crank angle Φstop when NE = 0 is determined to the compression TDC. The larger the angle, the longer the engagement time, but it is desirable to correct the learning so that it stops near the compression TDC. If one of the cylinders 100 is close to the compression TDC when NE = 0, it is not necessary to rotate the crankshaft 114 any further, and the engagement time is set to 0 and the clutch engagement control in step S7 is substantially performed. Is omitted. Note that the torque (MG torque) TMG of the motor generator MG is changed to the engagement torque of the K0 clutch 34 in order to prevent the drive torque from fluctuating due to the rotational resistance accompanying the rotation of the crankshaft 114 due to the engagement of the K0 clutch 34. Compensation control that increases correspondingly may be performed as necessary.
 ステップS8では、何れかの気筒100のピストン110が圧縮TDC付近となるクランク角度Φでクランク軸114が停止したか否かを判断し、圧縮TDC付近で停止した場合にはそのまま終了する。これにより、直噴エンジン12の再始動時には、前記図6に示すようにして着火始動を行うことができる。図4の時間t2は、ステップS6の判断がYES(肯定)になってステップS7のクラッチ係合制御が開始された時間であり、そのクラッチ係合制御によりクランク軸114が回転させられ、圧縮TDC付近で停止させられた場合である。 In step S8, it is determined whether or not the crankshaft 114 has stopped at a crank angle Φ at which the piston 110 of any one of the cylinders 100 is near the compression TDC. As a result, when the direct injection engine 12 is restarted, ignition can be started as shown in FIG. The time t2 in FIG. 4 is the time when the determination of step S6 is YES (affirmed) and the clutch engagement control of step S7 is started. The crankshaft 114 is rotated by the clutch engagement control, and the compression TDC It is a case where it is stopped in the vicinity.
 ステップS8の判断がNO(否定)の場合はステップS9を実行し、圧縮TDCを越えたか否かを判断する。すなわち、ステップS7のクラッチ係合制御に拘らずクランク軸114が圧縮TDCに乗り上げることができずに逆戻りしたか、クラッチ係合制御でクランク軸114が圧縮TDCを乗り越えて通過してしまったかを判断し、圧縮TDCに乗り上げることができずに逆戻りした場合はステップS7以下を再度実行する。また、圧縮TDCを乗り越えて通過してしまった場合は、ステップS4以下を実行し、圧縮TDCに達する前の次の気筒100について、圧縮TDC付近で停止するようにK0クラッチ34の係合制御でクランク軸114を回転させる。この2回目以後のK0クラッチ34の係合制御では、前回の係合制御の結果に基づいて係合トルクや係合時間を微調整するようにしても良い。 If the determination in step S8 is NO (No), step S9 is executed to determine whether or not the compression TDC has been exceeded. That is, it is determined whether the crankshaft 114 has returned without being able to ride on the compression TDC regardless of the clutch engagement control in step S7 or whether the crankshaft 114 has passed over the compression TDC by the clutch engagement control. However, when it cannot return to the compression TDC and returns, the process from step S7 is executed again. In addition, when the vehicle has passed over the compression TDC, step S4 and the subsequent steps are executed, and the engagement control of the K0 clutch 34 is performed so that the next cylinder 100 before reaching the compression TDC stops near the compression TDC. The crankshaft 114 is rotated. In the second and subsequent engagement control of the K0 clutch 34, the engagement torque and the engagement time may be finely adjusted based on the result of the previous engagement control.
 このように、本実施例のハイブリッド車両10のエンジン停止制御装置においては、何れかの気筒100のピストン110が圧縮TDCで停止したと仮定した時に先行する直前の気筒100が膨張行程で且つ排気弁108が閉状態となる8気筒の直噴エンジン12を備えている。そして、車両走行中にK0クラッチ34を遮断して直噴エンジン12を停止させる際に、一旦遮断されたK0クラッチ34を一時的に接続してクランク軸114を回転させることにより、何れかの気筒100のピストン110がその圧縮TDC付近となるクランク角度Φで停止させるようにした。これにより、その圧縮TDC付近で停止した気筒100に対して先行する直前の気筒100のクランク角度Φは圧縮TDC+90°程度となり、その気筒100に対して燃料噴射および点火を行うことにより、図6に示すように適切に着火始動を行うことができる。 As described above, in the engine stop control device for the hybrid vehicle 10 of this embodiment, when it is assumed that the piston 110 of any cylinder 100 stops at the compression TDC, the preceding cylinder 100 is in the expansion stroke and the exhaust valve. An eight-cylinder direct injection engine 12 is provided in which 108 is closed. When the direct-injection engine 12 is stopped by disengaging the K0 clutch 34 while the vehicle is traveling, any cylinder can be obtained by temporarily connecting the once disengaged K0 clutch 34 and rotating the crankshaft 114. 100 pistons 110 are stopped at a crank angle Φ that is in the vicinity of the compression TDC. As a result, the crank angle Φ of the cylinder 100 immediately before the cylinder 100 stopped in the vicinity of the compression TDC becomes about compression TDC + 90 °, and fuel injection and ignition are performed on the cylinder 100. As shown, the ignition start can be performed appropriately.
 すなわち、この8気筒の直噴エンジン12の場合、何れかの気筒100のピストン110が膨張行程の中間位置(例えば圧縮TDC+45°程度)で停止している場合でも、図7に示すように着火始動を行うことができるが、何れかの気筒100のピストン110が圧縮TDC付近となるクランク角度Φでクランク軸114を停止させても、先行する直前の気筒100に対して燃料噴射および点火することにより適切に着火始動できるのであり、着火始動の適用範囲が拡大されて制御の自由度が高くなる。 That is, in the case of this 8-cylinder direct injection engine 12, even when the piston 110 of any one of the cylinders 100 is stopped at an intermediate position of the expansion stroke (for example, compression TDC + 45 °), ignition start is performed as shown in FIG. However, even if the crankshaft 114 is stopped at a crank angle Φ at which the piston 110 of any cylinder 100 is in the vicinity of the compression TDC, fuel injection and ignition are performed on the preceding cylinder 100. The ignition start can be performed appropriately, and the application range of the ignition start is expanded to increase the degree of freedom of control.
 また、先行する直前の気筒100は圧縮TDC+90°程度付近で停止しているため、図7に示すようにポンピングエネルギーが低い中間位置(圧縮TDC+45°程度)で停止している場合の着火始動に比較して、初爆時の気筒100内の空気量が多く、初爆で大きな回転エネルギーが得られる。このため、始動の際のモータジェネレータMGによるアシストトルクを一層低減でき、モータジェネレータMGの最大トルクを更に低減して一層の小型化や低燃費化を図ることができる。 Further, since the immediately preceding cylinder 100 is stopped at around compression TDC + 90 °, as shown in FIG. 7, it is compared with an ignition start when stopping at an intermediate position (compression TDC + 45 °) where the pumping energy is low. Thus, the amount of air in the cylinder 100 at the time of the first explosion is large, and a large rotational energy can be obtained at the first explosion. For this reason, the assist torque by the motor generator MG at the time of starting can be further reduced, and the maximum torque of the motor generator MG can be further reduced to further reduce the size and fuel consumption.
 次に、本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。 Next, another embodiment of the present invention will be described. In the following embodiments, parts that are substantially the same as those in the above embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10~図12は、前記直噴エンジン12として直列4気筒の4サイクルのガソリンエンジンが用いられている場合の実施例で、図10は前記図5に相当する図であり、(a) は4つの気筒100の作動状態をクランク角度Φとの関係で示す行程図で、図の上方に位置する気筒100程先行して作動させられる。すなわち、気筒No1→No3→No4→No2の順番で、クランク角度Φが180°回転する毎に爆発燃焼させられ、クランク軸114が連続回転させられる。(b) は(a) におけるTDC停止時、すなわち何れかの気筒100が圧縮TDCで停止させられた時の、その圧縮TDC付近の気筒100の作動状態を圧縮TDC=0°を基準にして示した図で、この図ではNo3の気筒100が圧縮TDCであり、先行する直前のNo1の気筒100のクランク角度Φは約180°(正確には圧縮TDC+180°)である。このNo1の気筒100は膨張行程を過ぎているとともに、排気弁108は開いているため、このままの状態で着火始動を行うことはできない。すなわち、この4気筒の直噴エンジン12の場合には、何れかの気筒100が圧縮TDCで停止させられた時に、他の何れの気筒100も膨張行程で且つ排気弁108が閉状態である着火始動条件を満たさないのである。 FIGS. 10 to 12 show an embodiment in which an in-line four-cylinder four-cycle gasoline engine is used as the direct injection engine 12, and FIG. 10 is a view corresponding to FIG. In the stroke diagram showing the operating states of the four cylinders 100 in relation to the crank angle Φ, the cylinders 100 positioned in the upper part of the drawing are operated in advance. That is, in the order of cylinder No1 → No3 → No4 → No2, every time the crank angle Φ rotates 180 °, the combustion is caused by explosion, and the crankshaft 114 is continuously rotated. (b) shows the operating state of the cylinder 100 in the vicinity of the compression TDC when the TDC is stopped in (a) す な わ ち, that is, when any cylinder 100 is stopped at the compression TDC, based on the compression TDC = 0 °. In this figure, the No. 3 cylinder 100 is a compression TDC in this figure, and the crank angle Φ of the No. 1 cylinder 100 immediately before the preceding is about 180 ° (more precisely, the compression TDC + 180 °). Since the No. 1 cylinder 100 has passed the expansion stroke and the exhaust valve 108 is open, it is not possible to start ignition in this state. That is, in the case of the four-cylinder direct injection engine 12, when any one of the cylinders 100 is stopped at the compression TDC, any other cylinder 100 is in the expansion stroke and the exhaust valve 108 is closed. The starting condition is not satisfied.
 上記4気筒の直噴エンジン12においても、図9の(c) に示すポンピングエネルギーのグラフから明らかなように、圧縮TDC付近に山があり、何もしなければ山と山との間の低い平らな極小領域(50°~120°程度の範囲)でクランク軸114が停止する可能性が高いが、10%程度の確率でその圧縮TDC付近で停止する。そして、このように何れかの気筒100が圧縮TDC付近となるクランク角度Φでクランク軸114が停止した場合には、再始動時の着火始動は不可である。 Also in the above-described four-cylinder direct injection engine 12, as is apparent from the pumping energy graph shown in FIG. 9 (c) IV, there is a mountain near the compression TDC. The crankshaft 114 is likely to stop in a very small region (a range of about 50 ° to 120 °), but it stops in the vicinity of the compression TDC with a probability of about 10%. When the crankshaft 114 is stopped at a crank angle Φ at which any one of the cylinders 100 is in the vicinity of the compression TDC in this way, ignition start at the time of restart is impossible.
 一方、図10の(c) は、(a) における90ATDC停止時、すなわち何れかの気筒100が圧縮TDCから約90°回転した中間位置で停止させられた時の、その付近の気筒100の作動状態を圧縮TDC=0°を基準にして示した図で、この図ではNo4の気筒100が90°付近で停止している。このNo4の気筒100は膨張行程で、且つ排気弁108の開きタイミング角度EVOよりも手前で排気弁108は閉じているため、そのNo4の気筒100内に燃料を噴射するとともに点火して始動(着火始動)を行うことができる。図9の(c) のポンピングエネルギーの特性から明らかなように、何もしなければ90%程度の確率で図10の(c) に示すように何れかの気筒100が50°~120°程度の中間位置となるクランク角度Φでクランク軸114は停止させられるが、図10の(b) に示すように圧縮TDC付近で停止した場合でも、クランク軸114に回転トルクを付与することにより、図10の(c) に示すように何れかの気筒100が中間位置で停止するように、クランク軸114の停止位置を調整することができる。 On the other hand, (c) in FIG. 10 shows the operation of the cylinder 100 in the vicinity thereof when 90ATDC is stopped in a, that is, when any cylinder 100 is stopped at an intermediate position rotated about 90 ° from the compression TDC. The state is shown with the compression TDC = 0 ° as a reference. In this drawing, the No. 4 cylinder 100 is stopped at around 90 °. The No. 4 cylinder 100 is in the expansion stroke, and the exhaust valve 108 is closed before the opening timing angle EVO of the exhaust valve 108. Therefore, fuel is injected into the No. 4 cylinder 100, and ignition is started (ignition). Start). As is clear from the pumping energy characteristics of FIG. 9 (c) 図, if nothing is done, there is a probability of about 90%, and as shown in FIG. 10 (c), any cylinder 100 is about 50 ° to 120 °. Although the crankshaft 114 is stopped at the crank angle Φ which is an intermediate position, even when the crankshaft 114 is stopped near the compression TDC as shown in FIG. (C) The stop position of the crankshaft 114 can be adjusted so that one of the cylinders 100 stops at the intermediate position, as shown in (c) IV.
 このように、4気筒の直噴エンジン12においては、図10の(b) に示すように何れかの気筒100のピストン110が圧縮TDCで停止した場合、先行する直前の気筒100のクランク角度Φは約180°で膨張行程を過ぎているとともに、排気弁108は開いているため、何れの気筒100も着火始動条件を満たさず、着火始動が不可である。これに対し、図10の(c) に示すように、圧縮TDCを90°程度越えた中間位置で停止した場合には、着火始動を行うことができる。すなわち、図10の(b) に示すように何れかの気筒100のピストン110が圧縮TDC付近で停止した場合には、クランク軸114に回転トルクを付与して図10の(c) に示すように中間位置まで回転させることにより、着火始動を行うことができるようになる。 Thus, in the four-cylinder direct injection engine 12, when the piston 110 of any cylinder 100 stops at the compression TDC as shown in FIG. 10B, the crank angle Φ of the cylinder 100 immediately before the preceding cylinder 100 Since the expansion stroke is over at about 180 ° and the exhaust valve 108 is open, none of the cylinders 100 satisfy the ignition start condition, and the ignition start is impossible. On the other hand, as shown in FIG. 10 (c) IV, when the compression TDC is stopped at an intermediate position exceeding about 90 °, ignition start can be performed. That is, as shown in FIG. 10B, when the piston 110 of any cylinder 100 stops near the compression TDC, rotational torque is applied to the crankshaft 114, as shown in FIG. 10C. The ignition start can be performed by rotating to the intermediate position.
 図11は、このように4気筒の直噴エンジン12を有する場合のエンジン停止制御に関するフローチャートで、前記エンジン停止制御手段80により前記図3のフローチャートの代わりに実行されるものである。本実施例では、図11のステップR2およびR3がエンジン停止手段82に相当し、ステップR4およびR5がクランク角度判定手段84に相当し、ステップR6がクラッチ係合手段86に相当する。 FIG. 11 is a flowchart relating to engine stop control in the case of having the four-cylinder direct injection engine 12 as described above, and is executed by the engine stop control means 80 instead of the flowchart of FIG. In this embodiment, steps R2 and R3 in FIG. 11 correspond to the engine stop means 82, steps R4 and R5 correspond to the crank angle determination means 84, and step R6 corresponds to the clutch engagement means 86.
 図11のステップR1~R3は前記図3のステップS1~S3と同じで、ステップR4では、前記ステップS6と同様にしてエンジン回転速度NE=0になったか否かを判断する。そして、NE=0になったらステップR5を実行し、何れかの気筒100のピストン110が圧縮TDCを通過して膨張行程の中間位置となるクランク角度Φでクランク軸114が停止しているか否かを判断する。中間位置は、例えば圧縮TDCから50°~120°程度の範囲で、70°~110°程度の範囲が望ましい。そして、何れかの気筒100が中間位置となるクランク角度Φでクランク軸114が停止している場合には、その気筒100に対する燃料噴射および点火によって着火始動を行うことが可能であるため、そのまま終了する。 Steps R1 to R3 in FIG. 11 are the same as steps S1 to S3 in FIG. 3. In step R4, it is determined whether or not the engine speed NE = 0 has been reached in the same manner as in step S6. Then, when NE = 0, step R5 is executed, and whether or not the crankshaft 114 is stopped at the crank angle Φ at which the piston 110 of any cylinder 100 passes through the compression TDC and becomes the intermediate position of the expansion stroke. Judging. The intermediate position is, for example, in the range of about 50 ° to 120 ° from the compression TDC, and preferably in the range of about 70 ° to 110 °. Then, when the crankshaft 114 is stopped at a crank angle Φ at which any one of the cylinders 100 is at the intermediate position, the ignition start can be performed by fuel injection and ignition to the cylinder 100, and thus the process ends. To do.
 一方、上記ステップR5の判断がNOの場合、すなわち何れかの気筒100のピストン110が圧縮TDC付近となるクランク角度Φでクランク軸114が停止した場合には、ステップR6のクラッチ係合制御を実行する。このクラッチ係合制御では、K0クラッチ34を予め定められた係合トルクで予め定められた係合時間だけ係合させることにより、圧縮TDC付近で停止したピストン110が圧縮TDCから離脱して前記中間位置となるようにクランク軸114を回転させて停止させる。すなわち、図9に示すポンピングエネルギーの山に乗り上げた状態で停止しているクランク軸114が、そのポンピングエネルギーの山から離脱し、山と山との間の低い平らな極小領域で停止するように、K0クラッチ34を係合させるのである。本実施例では、ポンピングエネルギーの山から離脱させれば、クランク軸114は50°~120°程度の中間位置で自動的に停止するため、K0クラッチ34の係合トルクおよび係合時間として予め一定値が定められても良いが、例えばNE=0と判定された時のクランク角度Φstopに基づいて、予め定められたマップや演算式等に従って定められても良い。係合トルクおよび係合時間の何れか一方、例えば係合トルクについては予め一定値が定められ、他方のみクランク角度Φstopに基づいて定められるようにしても良い。また、それ等の設定値を、上記中間位置で停止するように学習補正することも可能である。また、50°~120°の極小領域の中でも、着火始動時に比較的大きな回転エネルギーが期待できる70°~110°程度の角度範囲で停止するように係合トルクや係合時間を設定しても良い。なお、K0クラッチ34の係合によるクランク軸114の回転に伴う回転抵抗で駆動トルクが変動することを防止するため、モータジェネレータMGのトルク(MGトルク)TMGを、K0クラッチ34の係合トルクに対応して増大させる補償制御を必要に応じて実施しても良い。 On the other hand, if the determination in step R5 is NO, that is, if the crankshaft 114 is stopped at a crank angle Φ at which the piston 110 of any cylinder 100 is near the compression TDC, the clutch engagement control in step R6 is executed. To do. In this clutch engagement control, by engaging the K0 clutch 34 with a predetermined engagement torque for a predetermined engagement time, the piston 110 stopped in the vicinity of the compression TDC is released from the compression TDC, and the intermediate The crankshaft 114 is rotated and stopped so as to reach the position. That is, the crankshaft 114 stopped in a state where it rides on the pumping energy peak shown in FIG. 9 is detached from the pumping energy peak and stops in a low flat minimum region between the peaks. The K0 clutch 34 is engaged. In this embodiment, the crankshaft 114 automatically stops at an intermediate position of about 50 ° to 120 ° when separated from the peak of the pumping energy, so the engagement torque and engagement time of the K0 clutch 34 are constant in advance. The value may be determined, but may be determined according to a predetermined map, an arithmetic expression, or the like based on, for example, the crank angle Φstop when NE = 0 is determined. One of the engagement torque and the engagement time, for example, the engagement torque may be determined in advance, and only the other may be determined based on the crank angle Φstop. It is also possible to perform learning correction on these set values so as to stop at the intermediate position. In addition, even in the minimum region of 50 ° to 120 °, the engagement torque and the engagement time may be set so that the rotation is stopped in an angle range of about 70 ° to 110 ° where a relatively large rotational energy can be expected at the start of ignition. good. Note that the torque (MG torque) TMG of the motor generator MG is changed to the engagement torque of the K0 clutch 34 in order to prevent the drive torque from fluctuating due to the rotational resistance accompanying the rotation of the crankshaft 114 due to the engagement of the K0 clutch 34. Compensation control that increases correspondingly may be performed as necessary.
 その後、前記ステップR4以下を実行し、何れかの気筒100のピストン110が膨張行程の中間位置となるクランク角度Φでクランク軸114が停止させられ、ステップR5の判断がYESになったら、一連のエンジン停止制御を終了する。図12は、前記図4と同様にエンジン+モータ走行モードでの走行中にアクセルOFFの惰性走行になってエンジン停止制御が行われた場合の各部の作動状態の変化を示す図で、ステップR6のクラッチ係合制御が1回行われることによって何れかの気筒100のピストン110が膨張行程の中間位置となるクランク角度Φでクランク軸114が停止させられた場合のタイムチャートである。時間t1は、ステップR1の判断がYESになってエンジン停止制御が開始された時間であり、時間t2は、ステップR5の判断がNOでK0クラッチ34の係合制御が開始された時間である。なお、クランク角度Φは、圧縮TDCを0°として、その圧縮TDCから180°回転した角度位置までのクランク角度Φの変化を示す図で、180°間隔で圧縮TDCに到達する4つの気筒100のクランク角度Φの変化を連続的に繋いで示した図である。 Thereafter, the steps after R4 are executed, and the crankshaft 114 is stopped at the crank angle Φ at which the piston 110 of any cylinder 100 is at the intermediate position of the expansion stroke. End engine stop control. FIG. 12 is a diagram showing changes in the operating states of the respective parts when the engine stop control is performed with the accelerator OFF coasting during the engine + motor running mode as in FIG. 6 is a time chart when the crankshaft 114 is stopped at a crank angle Φ at which the piston 110 of any cylinder 100 is at an intermediate position in the expansion stroke by performing the clutch engagement control once. The time t1 is the time when the determination of step R1 is YES and the engine stop control is started, and the time t2 is the time when the determination of step R5 is NO and the engagement control of the K0 clutch 34 is started. The crank angle Φ is a diagram showing a change in the crank angle Φ from the compression TDC to an angular position rotated by 180 ° with the compression TDC being 0 °. The crank angle Φ of the four cylinders 100 that reach the compression TDC at intervals of 180 ° is shown in FIG. It is the figure which showed the change of crank angle (PHI) continuously connected.
 本実施例は、何れかの気筒100のピストン110が圧縮TDCで停止したと仮定した時に他の何れの気筒100も膨張行程で且つ排気弁108が閉状態である着火始動条件を満たさない4気筒の直噴エンジン12を備えている場合で、車両走行中にK0クラッチ34を遮断して直噴エンジン12を停止させる際に、一旦遮断されたK0クラッチ34を一時的に接続してクランク軸114を回転させることにより、何れかの気筒100のピストン110がその圧縮TDCを通過して膨張行程の中間位置となるクランク角度Φでクランク軸114を停止させるようにした。これにより、その膨張行程の中間位置で停止した気筒100に対して燃料噴射および点火を行うことにより適切に着火始動することができる。 In this embodiment, when it is assumed that the piston 110 of any one of the cylinders 100 is stopped at the compression TDC, any of the other cylinders 100 is in the expansion stroke and does not satisfy the ignition start condition in which the exhaust valve 108 is closed. When the direct-injection engine 12 is provided and the direct-injection engine 12 is stopped by disengaging the direct-injection engine 12 while the vehicle is running, the once-disconnected K0 clutch 34 is temporarily connected to the crankshaft 114. , The piston 110 of any cylinder 100 passes through the compression TDC, and the crankshaft 114 is stopped at a crank angle Φ that is an intermediate position in the expansion stroke. Accordingly, it is possible to appropriately start ignition by performing fuel injection and ignition on the cylinder 100 stopped at an intermediate position in the expansion stroke.
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。 As mentioned above, although the Example of this invention was described in detail based on drawing, these are one Embodiment to the last, This invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.
 10:ハイブリッド車両  12:直噴エンジン  34:K0クラッチ(断接装置)  58:クランク角度センサ  70:電子制御装置  80:エンジン停止制御手段  82:エンジン停止手段  84:クランク角度判定手段  86:クラッチ係合手段  100:気筒  114:クランク軸  MG:モータジェネレータ(回転機)  Φ、Φa:クランク角度 10: Hybrid vehicle 12: Direct injection engine 34: K0 clutch (connection / disconnection device) 58: Crank angle sensor 70: Electronic control device 80: Engine stop control means 82: Engine stop means 84: Crank angle determination means 86: Clutch engagement Means 100: Cylinder 114: Crankshaft MG: Motor generator (rotary machine) Φ, Φa: Crank angle

Claims (3)

  1.  複数の気筒を有するとともに、該気筒内に燃料を直接噴射する4サイクルの直噴エンジンと、
     該直噴エンジンを動力伝達経路に対して断接する断接装置と、
     少なくとも電動モータとして機能する回転機と、
     を有し、前記直噴エンジンおよび前記回転機を走行用の駆動力源として用いることができるハイブリッド車両において、
     走行中に前記断接装置を遮断して前記直噴エンジンを停止させる際に、一旦遮断された該断接装置を一時的に接続して該直噴エンジンのクランク軸を回転させ、予め定められたクランク角度で停止させる一方、
     該クランク軸を停止させるクランク角度は、何れかの気筒のピストンが圧縮行程後の上死点である圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態であるか否かによって異なる角度に定められる
     ことを特徴とするハイブリッド車両のエンジン停止制御装置。
    A four-cycle direct injection engine having a plurality of cylinders and directly injecting fuel into the cylinders;
    A connection / disconnection device for connecting / disconnecting the direct injection engine to a power transmission path;
    A rotating machine that functions as at least an electric motor;
    In a hybrid vehicle that can use the direct injection engine and the rotating machine as a driving power source for traveling,
    When the direct-injection engine is stopped by shutting off the connection / disconnection device during traveling, the connection / disconnection device once disconnected is temporarily connected to rotate the crankshaft of the direct-injection engine. While stopping at the crank angle
    The crank angle at which the crankshaft is stopped is that the piston of any cylinder is stopped at the compression TDC, which is the top dead center after the compression stroke, and any other cylinder is in the expansion stroke and the exhaust valve is closed. An engine stop control device for a hybrid vehicle, characterized in that the angle is determined depending on whether or not the vehicle is in a state.
  2.  前記直噴エンジンは6気筒以上の気筒数で、何れかの気筒のピストンが前記圧縮TDCで停止したと仮定した時に他の何れかの気筒が膨張行程で且つ排気弁が閉状態の場合には、何れかの気筒のピストンが該圧縮TDC付近となるクランク角度で前記クランク軸を停止させる
     ことを特徴とする請求項1に記載のハイブリッド車両のエンジン停止制御装置。
    The direct injection engine has 6 or more cylinders, and when any one of the cylinders is in the expansion stroke and the exhaust valve is closed when it is assumed that the piston of any cylinder stops at the compression TDC. 2. The engine stop control device for a hybrid vehicle according to claim 1, wherein the crankshaft is stopped at a crank angle at which a piston of any one of the cylinders is in the vicinity of the compression TDC.
  3.  前記直噴エンジンは6気筒以下の気筒数で、何れかの気筒のピストンが前記圧縮TDCで停止したと仮定した時に他の何れの気筒も膨張行程で且つ排気弁が閉状態である着火始動条件を満たさない場合には、何れかの気筒のピストンが前記圧縮TDCを通過して膨張行程の中間位置となるクランク角度で前記クランク軸を停止させる
     ことを特徴とする請求項1に記載のハイブリッド車両のエンジン停止制御装置。
    The direct-injection engine has six or fewer cylinders, and when it is assumed that the piston of any cylinder has stopped at the compression TDC, any other cylinder is in an expansion stroke and the exhaust valve is closed. 2. The hybrid vehicle according to claim 1, wherein the piston of any one of the cylinders passes through the compression TDC and stops the crankshaft at a crank angle that is an intermediate position of an expansion stroke when the condition is not satisfied. Engine stop control device.
PCT/JP2011/069794 2011-08-31 2011-08-31 Engine stop control device for hybrid vehicle WO2013030986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069794 WO2013030986A1 (en) 2011-08-31 2011-08-31 Engine stop control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069794 WO2013030986A1 (en) 2011-08-31 2011-08-31 Engine stop control device for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2013030986A1 true WO2013030986A1 (en) 2013-03-07

Family

ID=47755535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069794 WO2013030986A1 (en) 2011-08-31 2011-08-31 Engine stop control device for hybrid vehicle

Country Status (1)

Country Link
WO (1) WO2013030986A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004514A1 (en) * 2013-07-10 2015-01-15 Toyota Jidosha Kabushiki Kaisha Control device and control method for vehicle
US9303551B2 (en) 2011-08-31 2016-04-05 Toyota Jidosha Kabushiki Kaisha Engine start control apparatus for hybrid vehicle
JP6036994B2 (en) * 2013-04-16 2016-11-30 トヨタ自動車株式会社 Vehicle control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527411A (en) * 2006-02-24 2009-07-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Hybrid drive unit with separation clutch that supports direct start

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527411A (en) * 2006-02-24 2009-07-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Hybrid drive unit with separation clutch that supports direct start

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303551B2 (en) 2011-08-31 2016-04-05 Toyota Jidosha Kabushiki Kaisha Engine start control apparatus for hybrid vehicle
JP6036994B2 (en) * 2013-04-16 2016-11-30 トヨタ自動車株式会社 Vehicle control device
WO2015004514A1 (en) * 2013-07-10 2015-01-15 Toyota Jidosha Kabushiki Kaisha Control device and control method for vehicle

Similar Documents

Publication Publication Date Title
JP5884824B2 (en) Engine stop control device for hybrid vehicle
JP5804068B2 (en) Engine start control device for hybrid vehicle
JP5761365B2 (en) Control device for hybrid vehicle
JP5724975B2 (en) Control device for vehicle
JP5839006B2 (en) Automatic stop control device for internal combustion engine
US9409569B2 (en) Control device for vehicle drive device
WO2014170962A1 (en) Vehicle control device
JP2014054886A (en) Vehicle control device
JP6191552B2 (en) Automatic stop control device for internal combustion engine
WO2014068746A1 (en) Controller for starting vehicular direct-injection engine
JP5742665B2 (en) Control device for hybrid vehicle
WO2013030986A1 (en) Engine stop control device for hybrid vehicle
WO2013030987A1 (en) Engine startup control device for hybrid vehicle
WO2014167725A1 (en) Control device of vehicle
JP2013087710A (en) Start control device of internal combustion engine for vehicle
JP5846298B2 (en) Engine start control device for vehicle
JP2013096232A (en) Vehicle control device
JP2015017543A (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP