WO2014167429A1 - Générateur thermique rotatif - Google Patents
Générateur thermique rotatif Download PDFInfo
- Publication number
- WO2014167429A1 WO2014167429A1 PCT/IB2014/059493 IB2014059493W WO2014167429A1 WO 2014167429 A1 WO2014167429 A1 WO 2014167429A1 IB 2014059493 W IB2014059493 W IB 2014059493W WO 2014167429 A1 WO2014167429 A1 WO 2014167429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- heat
- currents
- magnetic field
- induced
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/109—Induction heating apparatus, other than furnaces, for specific applications using a susceptor using magnets rotating with respect to a susceptor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
Definitions
- the invention is related to electrical machinery and generators.
- Rotational thermal generator of the proposed design converts mechanical rotational motion into thermal energy.
- the installation operates on the basis of induced currents generated by changing magnetic field. Electric currents induced by changing magnetic field are also referred to as 'Foucault currents'.
- Magnets are fixed to a moving unit - a rotor that rotates by virtue of an axis with bearings. Magnetic field generated by permanent magnets is closed by a ferromagnetic stator. The motion induces currents in the ferromagnetic stator. The induced currents heat the stator. Thus, the energy of mechanical rotation motion is converted into thermal energy.
- Stator can be homogeneous or constructed using several metals, such as copper and steel, aluminium and steel, or other structural compound of low resistance metals with ferromagnetic materials. As the stator is heated, it transfers the heat to a heat exchanger made of fins and attached to the stator. Heated stator and heat exchanger emit heat into the surrounding medium, thus transferring it into air or other gas.
- FIG. 4 The version of rotational thermal generator for heating fluids is depicted in Fig. 5 and Fig. 6.
- FIG. 1 Axial section of the rotor is depicted in Fig. 1.
- FIG. 2 Cross-section of the installation is depicted in Fig. 2.
- FIG. 3 Cross-section of the installation, where the stator is constructed of several metals, is depicted in Fig. 3.
- FIG. 4 Cross-section of the installation for heating air or other gas is depicted in Fig. 4.
- FIG. 1 Cross-section of the installation for heating fluids is depicted in Fig 5.
- FIG. 6 Axial section of complete installation is depicted in Fig. 6.
- Thermal generator comprises the following: axis 1, rotor 2, magnets 3 fixed to the rotor, steel stator 4, non-ferrous metal bushings 5, fins 6, fluid filled cavities 7, casing 8, bearings 9 and vents 10 to support circulation.
- the advantage of the proposed design is simple production not requiring any special materials or special manufacturing equipment.
- Thickness of the outer steel element of the rotor shall ensure that magnetic field is closed by magnets without forming additional magnetic resistance.
- the rotor can rotate.
- stator As the rotor rotates during operation, currents are induced in the stator. Given that each material has its specific electrical resistance, the material becomes heated by the running current. The running induced currents heat the stator. The stator transfers the heat to the surrounding medium.
- Operating conditions of the generator are determined by efficiency of the coolant and circulation.
- Output of the generator is determined by permissible operating temperature of the magnets, strength of the magnets, number of the magnets, rotational speed of the rotor, and coercive magnetic field formed by the running induced currents.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Motor Or Generator Cooling System (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
La présente invention concerne un générateur thermique rotatif qui convertit un mouvement rotatif mécanique en énergie thermique. L'installation fonctionne sur la base de courants induits générés par le changement de champ magnétique. Les courants électriques induits par le changement de champ magnétique sont également appelés « courants de Foucault ». Des aimants sont fixés sur une unité de déplacement - un rotor qui tourne grâce à un axe doté de paliers. Le champ magnétique généré par les aimants permanents est fermé par un stator ferromagnétique. Le mouvement induit des courants dans le stator ferromagnétique. Les courants induits chauffent le stator. Ainsi, l'énergie du mouvement de rotation mécanique est converti en énergie thermique. Le stator peut être homogène ou construit au moyen de plusieurs métaux, tels que le cuivre et l'acier, l'aluminium et l'acier, ou un autre composé structural de métaux de faible résistance présentant des matières ferromagnétiques. Lorsque le stator est chauffé, il transfère la chaleur à un échangeur thermique composé d'ailettes et fixé au stator. Le stator chauffé et l'échangeur thermique émettent de la chaleur dans le milieu environnant, la transférant ainsi dans l'air ou dans un autre gaz.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LT2013030 | 2013-04-08 | ||
LT2013030A LT6124B (lt) | 2013-04-08 | 2013-04-08 | Sukamojo judesio šilumos generatorius |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014167429A1 true WO2014167429A1 (fr) | 2014-10-16 |
Family
ID=50473712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2014/059493 WO2014167429A1 (fr) | 2013-04-08 | 2014-03-06 | Générateur thermique rotatif |
Country Status (2)
Country | Link |
---|---|
LT (1) | LT6124B (fr) |
WO (1) | WO2014167429A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017137776A1 (fr) * | 2016-02-10 | 2017-08-17 | Rotaheat Limited | Générateur de chaleur |
EP3217762A4 (fr) * | 2014-11-06 | 2018-07-04 | Nippon Steel & Sumitomo Metal Corporation | Dispositif de chauffage à courant de foucault |
DE102017006316A1 (de) | 2017-07-05 | 2019-01-10 | Daimler Ag | Thermischer Generator, Verfahren zu dessen Betrieb und Heizanordnung |
US10425998B2 (en) | 2013-08-22 | 2019-09-24 | Rotaheat Limited | Heat generator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2328931A1 (fr) * | 1975-10-23 | 1977-05-20 | Inco Europ Ltd | Chauffage de fluides |
EP0077702A2 (fr) * | 1981-10-16 | 1983-04-27 | Le Materiel Magnetique | Convertisseur d'énergie cinétique de rotation en chaleur par génération de courants de Foucault |
US4511777A (en) * | 1984-07-19 | 1985-04-16 | Frank Gerard | Permanent magnet thermal energy system |
JP2005174801A (ja) * | 2003-12-12 | 2005-06-30 | Tok Engineering Kk | 永久磁石式渦電流加熱装置 |
WO2011140320A2 (fr) | 2010-05-07 | 2011-11-10 | E Berdut-Teruel | Système de chauffage par induction à aimants permanents |
-
2013
- 2013-04-08 LT LT2013030A patent/LT6124B/lt not_active IP Right Cessation
-
2014
- 2014-03-06 WO PCT/IB2014/059493 patent/WO2014167429A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2328931A1 (fr) * | 1975-10-23 | 1977-05-20 | Inco Europ Ltd | Chauffage de fluides |
EP0077702A2 (fr) * | 1981-10-16 | 1983-04-27 | Le Materiel Magnetique | Convertisseur d'énergie cinétique de rotation en chaleur par génération de courants de Foucault |
US4511777A (en) * | 1984-07-19 | 1985-04-16 | Frank Gerard | Permanent magnet thermal energy system |
JP2005174801A (ja) * | 2003-12-12 | 2005-06-30 | Tok Engineering Kk | 永久磁石式渦電流加熱装置 |
WO2011140320A2 (fr) | 2010-05-07 | 2011-11-10 | E Berdut-Teruel | Système de chauffage par induction à aimants permanents |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10425998B2 (en) | 2013-08-22 | 2019-09-24 | Rotaheat Limited | Heat generator |
EP3217762A4 (fr) * | 2014-11-06 | 2018-07-04 | Nippon Steel & Sumitomo Metal Corporation | Dispositif de chauffage à courant de foucault |
US10701768B2 (en) | 2014-11-06 | 2020-06-30 | Nippon Steel Corporation | Eddy current heat generating apparatus |
WO2017137776A1 (fr) * | 2016-02-10 | 2017-08-17 | Rotaheat Limited | Générateur de chaleur |
CN108702815A (zh) * | 2016-02-10 | 2018-10-23 | 罗塔希特公司 | 热产生器 |
CN108702815B (zh) * | 2016-02-10 | 2020-12-18 | 罗塔希特公司 | 热产生器 |
US10912157B2 (en) | 2016-02-10 | 2021-02-02 | Rotaheat Limited | Heat generator |
DE102017006316A1 (de) | 2017-07-05 | 2019-01-10 | Daimler Ag | Thermischer Generator, Verfahren zu dessen Betrieb und Heizanordnung |
DE102017006316B4 (de) | 2017-07-05 | 2019-04-18 | Daimler Ag | Thermischer Generator mit Bypassregeleinrichtung, Verfahren zu dessen Betrieb und Heizanordnung |
Also Published As
Publication number | Publication date |
---|---|
LT2013030A (lt) | 2014-10-27 |
LT6124B (lt) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Popescu et al. | Modern heat extraction systems for power traction machines—A review | |
CN107391884B (zh) | 基于等效热网络模型的双余度永磁同步电机温升计算方法 | |
EP2806537B1 (fr) | Stator de générateur électrique rotatif, générateur électrique rotatif comprenant ledit stator et éolienne comprenant un générateur électrique rotatif | |
WO2014167429A1 (fr) | Générateur thermique rotatif | |
JP6868690B2 (ja) | 回転アクチュエータ | |
US9525324B2 (en) | Axial flux electrical machines | |
WO2016136702A1 (fr) | Élément chauffant à courant de foucault | |
EP3217521B1 (fr) | Dispositif de chauffage de type à courant de foucault | |
US10701768B2 (en) | Eddy current heat generating apparatus | |
Lovatt et al. | Design of an in-wheel motor for a solar-powered electric vehicle | |
CN103200719B (zh) | 双转子电磁热机 | |
CN107134870A (zh) | 一种筒式单气隙外转子无铁芯电机 | |
CN207098804U (zh) | 一种筒式单气隙外转子无铁芯电机 | |
CN103580422A (zh) | 永磁同步电机定子的风冷散热结构 | |
CN206432849U (zh) | 具有双散热系统的隔爆异步电动机 | |
CN112886774A (zh) | 一种辅助机壳式外转子永磁同步电机冷却装置 | |
RU2570834C1 (ru) | Магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением (варианты) и способ его изготовления | |
RU2436220C1 (ru) | Ротор асинхронной электрической машины | |
CN116995880A (zh) | 一种双定子单转子轴向磁通异步电机结构 | |
CN109818475A (zh) | 多层小绕组三维永磁电机 | |
CN202663264U (zh) | 永磁同步电机定子的风冷散热结构 | |
CN103580421A (zh) | 具有风冷散热结构的永磁同步电机 | |
RU2644577C1 (ru) | Гибридный магнитопровод статора электромеханических преобразователей энергии | |
RU2685420C1 (ru) | Магнитопровод статора электромеханических преобразователей энергии | |
EP2442060A1 (fr) | Générateur, en particulier pour éolienne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14716410 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14716410 Country of ref document: EP Kind code of ref document: A1 |