WO2014166507A1 - Вихревой охладитель-генератор термосифонного типа - Google Patents

Вихревой охладитель-генератор термосифонного типа Download PDF

Info

Publication number
WO2014166507A1
WO2014166507A1 PCT/EA2013/000003 EA2013000003W WO2014166507A1 WO 2014166507 A1 WO2014166507 A1 WO 2014166507A1 EA 2013000003 W EA2013000003 W EA 2013000003W WO 2014166507 A1 WO2014166507 A1 WO 2014166507A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
nozzles
heat
working substance
condensate
Prior art date
Application number
PCT/EA2013/000003
Other languages
English (en)
French (fr)
Inventor
Сергей Евгеньевич УГЛОВСКИЙ
Рафинат Саматович ЯРУЛЛИН
Денис Дмитриевич ШАТАЛОВ
Татьяна Петровна БЕЛОБОЖНАЯ
Original Assignee
Uglovsky Sergey Evgenievich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uglovsky Sergey Evgenievich filed Critical Uglovsky Sergey Evgenievich
Priority to PCT/EA2013/000003 priority Critical patent/WO2014166507A1/ru
Publication of WO2014166507A1 publication Critical patent/WO2014166507A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/02Steam engine plants not otherwise provided for with steam-generation in engine-cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/16Instantaneous or flash steam boilers involving spray nozzles for sprinkling or injecting water particles on to or into hot heat-exchange elements, e.g. into tubes

Definitions

  • the invention relates to the field of power engineering, and can be used for cooling circulating water or other technological and natural flows. Also, the invention can be used to produce electrical energy by utilizing low-grade heat.
  • a device is known - an ejection cooling tower (see US patent N ° 3767176 10.23.1973 John Engalitcheff et al.), In which water, falling into the nozzles, is sprayed in the form of torches directed along the longitudinal axis of the slit, acting as the flow part of the jet apparatus (chamber mixing and diffuser), which ensures the ejection of the air flow necessary for cooling the water.
  • a) air temperature and b) partial pressure of water vapor in the air In the process of contact of finely dispersed droplets in nozzle flares with an air stream ejected from the atmosphere, intense heat and mass transfer occurs, accompanied by partial evaporation of water and its cooling to a temperature determined by: a) air temperature and b) partial pressure of water vapor in the air.
  • the disadvantages of this device are: a fairly high energy consumption for cooling; sensitivity to clogging, the risk of glaciation in winter.
  • a device is known - a closed two-phase thermosiphon (see US patent N23217791 11/16/1965 ELLong), consisting of a sealed enclosure, inside which a low-boiling liquid is placed, the lower part of the housing brought into contact with a heat source, and the upper part brought into contact with a heat receiver .
  • a closed two-phase thermosiphon see US patent N23217791 11/16/1965 ELLong
  • the liquid passes into steam
  • the vapor saturation pressure in this zone rises sharply
  • steam moves up into the zone with lower pressure, condenses and flows down the walls, and the necessary condition for operation is heat removal from the condensation zone.
  • Overheating in the evaporation zone is also unacceptable, since a boiling crisis may occur.
  • this device is subject to a phenomenon called boiling crisis, which consists in a sharp drop in the heat transfer coefficient due to a change in the boiling mechanism (during the transition from bubble to film boiling mode, or from film to bubble mode); the device is position sensitive space (thermosiphon can only work when the evaporation zone is below the condensation zone).
  • boiling crisis consists in a sharp drop in the heat transfer coefficient due to a change in the boiling mechanism (during the transition from bubble to film boiling mode, or from film to bubble mode)
  • the device is position sensitive space (thermosiphon can only work when the evaporation zone is below the condensation zone).
  • This device is closest to the claimed, and therefore taken as a prototype.
  • the authors set the task of creating an inexpensive and reliable cooling device, devoid of the above disadvantages, capable of functioning independently, which could provide efficient heat transfer with reduced material consumption of the evaporator, and provide the ability to convert part of the thermal energy supplied to the evaporator for vaporization into useful work, and further into electrical energy.
  • a device design is applied in which the working substance, circulating in a closed circuit, takes heat from the heat source and transfers it to the heat receiver, alternately evaporating and condensing, while the working substance can perform work on the shaft, exerting a reactive effect on it, exiting through nozzles located on the shaft with nozzles, as well as spinning a steam turbine located on the shaft. Part of this work can be spent on ensuring circulation and preloading of the working substance in the circuit, while the other part can be converted into electrical energy.
  • a distinctive feature of the proposed device is that the working substance circulates inside a hermetically closed circuit.
  • Spray devices nozzles are thus free from the risk of freezing or clogging.
  • a distinctive feature of the proposed device is the method of supplying the working substance to the evaporation zone by spraying, with a dense coating of the cooled heat-exchange surface by a stream of fine particles of the working substance.
  • a distinctive feature is that the supply of condensate of the working substance to the evaporation zone, as well as the compression of the working substance, is carried out under the action of centrifugal forces.
  • a distinctive feature is that the shaft surface with nozzles with nozzles located on it is used as a heat exchange surface.
  • Another distinctive feature of the proposed device is that the boiling and condensation zones can be removed from each other at a considerable distance, limited only by water losses along the length of the pipeline. Also, capacitor and the evaporator can be located at different heights relative to each other, which allows for a more free and convenient layout of the device.
  • the proposed device is not prone to boiling crisis.
  • Figure 1 shows a diagram of a vortex cooler-generator thermosiphon type with the possibility of obtaining work in the form of mechanical and electrical energy.
  • Figure 1 shows a schematic diagram of an example implementation of a cooler-generator, consisting of a steam line (1); vertical shaft (2); turbines (3); enclosures (4); generator (5); nozzles with nozzles (6); heat exchanger (7); nozzles for supplying and discharging a cooled medium (8); bearings (9); condensate supply pipes (10); condensate line (11); capacitor (12); valves (3); check valve (16); bypass steam line (17); starting nozzle (18); receiver (14).
  • FIG. 2 shows a schematic diagram of an example implementation of a cooler-generator, consisting of a steam line (1); vertical shaft (2); turbines (3); enclosures (4); generator (5); nozzles with nozzles (6); heat exchanger (7); nozzles for supplying and discharging a cooling medium (8); bearings (9); condensate supply pipes (10); condensate line (11); capacitor (12); valves (13); check valve (16); bypass steam line (17); starting nozzle (18); pump (15).
  • Figure 3 shows the location options for the free exits of the nozzles with nozzles on the shaft: radial, tangential, or at some angle to the radius of rotation.
  • the device operates on the principle of thermosiphon and contains a working substance in a hermetically closed circuit under a certain pressure, selected depending on the value of the temperatures of heat reception and transmission.
  • the circuit is divided into four zones: evaporation, steam transport; condensation, condensate transport.
  • evaporation zone in a hermetically enclosed space inside the housing (4) there is a heat exchanger (7) with a cooled medium; the cooled medium, being inside the heat exchanger, is supplied to the evaporation zone using the inlet and outlet pipes of the cooled medium (8).
  • the heat exchanger can have various designs, including single-tube, in the form of a coiled pipe, or smooth-tube, in the form of the surface of the vessel.
  • the working substance is sprayed onto the heat exchange surface, the working substance boils and the heat is intensively removed from the cooled medium; working steam substances, rising, spins the turbine (3) located on the vertical shaft (2), which is fixed in the bearings and is able to rotate around its axis.
  • Steam passes through the turbine to the steam line (1), and then to the condenser (12), where the condensation of the working substance occurs.
  • Part of the steam from the turbine can be sent to the bypass steam line (17).
  • the condensed (liquid) working substance through the condensate line (11) through the condensate supply pipe (10) is supplied to a closed space with a heat exchanger, steam from the bypass steam pipe is partially mixed with it.
  • the vertical shaft has a blind hole through which condensate is pumped upward from below due to rotation of the shaft and sent to nozzles with nozzles (6) radially located on the shaft, where the condensate is compressed by centrifugal forces and is heated by heat exchange through the nozzle walls with steam of the working substance.
  • the surface of the shaft and nozzles with nozzles serves as a heat exchange surface through which heat is supplied to the liquid working substance inside the nozzles from the steam located outside. Inside the nozzle nozzles, the working substance is compressed and heated, so that the working substance is in a state of superheated liquid.
  • a vapor-liquid torch of the working substance is formed .. Leaving the nozzles with nozzles in the vapor-liquid state, the working substance does work, having a reactive effect on the shaft and spinning it. Coming out of the nozzles, the working substance is sprayed, tightly covering the cooled heat-exchange surface with a stream of fine particles of the working substance. Intensive heat removal and boiling of the working substance occurs.
  • the free ends of the nozzle nozzles can be located radially, tangentially, or at some angle to the longitudinal axes of the nozzles.
  • the tangential arrangement creates the greatest torque, contributing to the unwinding of the shaft, however, at the same time, the greatest hydraulic resistance to flow.
  • the radial arrangement does not create torque, but has less flow resistance.
  • the steam of the working substance can perform work on the blades of the turbine.
  • the turbine can have a radial, radial-axial, axial version, or a version in the form of a Segner wheel.
  • the turbine can also be coupled with a generator (5), and can be made in the form of a turbogenerator, with a generator that converts the rotational movement of the shaft into electricity, and its removal outside the housing.
  • the system starts up due to the rotation of the turbine with steam supplied to the starting nozzle (18), which alone remains open at the time the system is started and turned off.
  • a check valve (16) is provided that prevents condensate from flowing out after the system is turned off, as well as a receiver (14) that performs the function of collecting condensate and providing the necessary pressure for supplying condensate through the shaft at the time of system start-up.
  • the necessary pressure can be created hydrostatically — by exceeding the liquid level in the receiver above the level of nozzles with nozzles.
  • the receiver is filled when the system is turned off, and emptied at the time of start-up, for which shut-off valves (13) are provided. It is also possible to implement a system with a pump (15), included in the bypass circuit, and supplying condensate through the shaft at the time of starting the system.
  • the capacitor can be located at any height relative to the level of nozzles with nozzles.
  • the function of the collector of the liquid working substance can be performed by a capacitor.
  • the condenser and evaporator can be spaced at any distance. The limiting value of this distance is determined by water losses along the length of the steam pipe and the condenser pipe.
  • the device described above allows to transfer significant amounts of heat from cooled objects at a small temperature difference between the receiver and the heat source, with reduced material consumption of the evaporator, with evaporation and condensation zones spaced apart from each other at a considerable distance, and also allows you to convert part of the energy supplied to the evaporator for vaporization, into useful work, and further into electrical energy.

Abstract

Изобретение относится к области теплоэнергетики и может быть использовано для охлаждения оборотной воды и получения электрической энергии путем утилизации низкопотенциальной теплоты. В устройстве рабочее вещество, циркулирует внутри герме тично замкнутого контура между источником и приемником тепла, попеременно испаряясь и конденсируясь. Для испарения рабочее вещество распыляется на теплообменную поверхность из сопел, образуя парожидкостной факел, приводящий в действие вал. Рабочее вещество совершает работу на валу, оказывая на него реактивное воздействие, выходя через расположенные на валу патрубки с соплами, а также раскручивая расположенную на валу паровую турбину. Часть этой работы может расходоваться на обеспечение циркуляции и поджатия рабочего вещества в контуре, а другая часть может быть преобразована в электрическую энергию. Изобретение позволяет передавать от охлаждаемых объектов значительное количество теплоты при малой разности температур приемника и источника тепла, со сниженной металлоёмкостью испарителя, с зонами испарения и конденсации, разнесенными друг от друга на значительное расстояние.

Description

ВИХРЕВОЙ ОХЛАДИТЕЛЬ-ГЕНЕРАТОР ТЕРМОСИФОННОГО ТИПА
ОПИСАНИЕ
Изобретение относится к области теплоэнергетики, и может быть использовано для охлаждения оборотной воды либо других технологических и природных потоков. Также, изобретение может быть использовано для получения электрической энергии путем утилизации низкопотенциальной теплоты.
Известно устройство— эжекционная градирня (см. патент US N°3767176 23.10.1973 John Engalitcheff et al.), в которой вода, попадая в форсунки, распыляется в виде факелов, направленных вдоль продольной оси щели, выполняющей роль проточной части струйного аппарата (камеры смешения и диффузора), что обеспечивает эжекцию необходимого для охлаждения воды расхода воздуха. В процессе контакта мелкодисперсных капель в факелах форсунок с потоком воздуха, эжектируемым из атмосферы, происходит процесс интенсивного тепломассообмена, сопровождающийся частичным испарением воды и ее охлаждения до температуры, определяемой: а) температурой воздуха и б) парциальным давлением паров воды в воздухе.
Недостатками данного устройства являются: довольно высокий расход электроэнергии на охлаждение; чувствительность к засорению, опасность оледенения в зимний период.
Известно устройство— замкнутый двухфазный термосифон (см. патент US N23217791 16.11.1965 E.L.Long), состоящий из герметичного корпуса, внутри которого помещена легкокипящая жидкость, причем нижняя часть корпуса приведена в контакт с источником теплоты, а верхняя часть приведена в контакт с приемником теплоты. При подводе тепла жидкость переходит в пар, давление насыщения паров в этой зоне резко повышается, пар движется вверх в зону с меньшим давлением, конденсируется и стекает по стенкам вниз, причем необходимым условием работы является отвод тепла от зоны конденсации. Недопустим также перегрев в зоне испарения, поскольку может наступить кризис кипения.
Недостатки: данное устройство подвержено явлению, называемому кризисом кипения, заключающемуся в резком падении коэффициента теплоотдачи вследствие изменения механизма кипения (при переходе от пузырькового к пленочному режиму кипения, либо от пленочного режима к пузырьковому); устройство чувствительно к положению в пространстве (термосифон может работать только тогда, когда зона испарения находится ниже зоны конденсации).
Данное устройство наиболее близко подходит к заявляемому, и потому принято за прототип.
Авторами поставлена задача создать недорогое и надежное устройство охлаждения, лишенное вышеперечисленных недостатков, способное функционировать самостоятельно, которое при этом могло бы обеспечить эффективную теплопередачу при сниженной материалоемкости испарителя, и обеспечить возможность преобразовывать часть тепловой энергии, подводимой в испарителе для парообразования, в полезную работу, и далее— в электрическую энергию.
Для достижения поставленной задачи применена конструкция устройства, в которой рабочее вещество, циркулируя по замкнутому контуру, отбирает тепло от источника тепла и передает его приемнику тепла, попеременно испаряясь и конденсируясь, при этом рабочее вещество может совершать работу на валу, оказывая на него реактивное воздействие, выходя через расположенные на валу патрубки с соплами, а также раскручивая расположенную на валу паровую турбину. Часть этой работы может расходоваться на обеспечение циркуляции и поджатия рабочего вещества в контуре, другая же часть может быть преобразована в электрическую энергию.
Отличительной особенностью предлагаемого устройства является то, что рабочее вещество циркулирует внутри герметично замкнутого контура. Распылительные устройства (сопла), таким образом, избавлены от опасности оледенения или засорения.
Также, отличительной особенностью предлагаемого устройства является способ подачи рабочего вещества в зону испарения разбрызгиванием, с плотным покрытием охлаждаемой теплообменной поверхности потоком мелкодисперсных частиц рабочего вещества.
Отличительной особенностью является то, что подача конденсата рабочего вещества в зону испарения, а также поджатие рабочего вещества, осуществляется под действием центробежных сил.
Отличительной особенностью является то, что поверхность вала с расположенными на нем патрубками с соплами используется в качестве теплообменной поверхности.
Другой отличительной особенностью предлагаемого устройства является то, что зоны кипения и конденсации могут быть удалены друг от друга на значительное расстояние, ограниченное лишь гидропотерями по длине трубопровода. Также, конденсатор и испаритель могут быть расположены на различной друг относительно друга высоте, что позволяет осуществлять более свободную и удобную компоновку устройства.
Кроме того, предлагаемое устройство не подвержено кризису кипения.
Сущность изобретения поясняется чертежом (Фиг.1), где показана схема вихревого охладителя-генератора термосифонного типа с возможностью получения работы в виде механической и электрической энергии.
Краткое описание фигур чертежей:
На Фиг.1 показана принципиальная схема примера реализации охладителя-генератора, состоящего из паропровода (1); вертикального вала (2); турбины (3); корпуса (4); генератора (5); патрубков с соплами (6); теплообменника (7); патрубков подвода и отвода охлаждаемой среды (8); подшипников (9); патрубков подачи конденсата (10); конденсатопровода (11); конденсатора (12); вентилей ( 3); обратного клапана (16); обводного паропровода (17); пускового сопла (18); ресивера (14).
На Фиг.2 показана принципиальная схема примера реализации охладителя-генератора, состоящего из паропровода (1); вертикального вала (2); турбины (3); корпуса (4); генератора (5); патрубков с соплами (6); теплообменника (7); патрубков подвода и отвода охлаждающей среды (8); подшипников (9); патрубков подачи конденсата (10); конденсатопровода (11); конденсатора (12); вентилей (13); обратного клапана (16); обводного паропровода (17); пускового сопла (18); насоса (15).
На Фиг.З показаны варианты расположения свободных выходов патрубков с соплами на валу: радиальное, тангенциальное, либо под некоторым углом к радиусу вращения.
Раскрытие и осуществление изобретения:
Устройство работает по принципу термосифона и содержит в герметично замкнутом контуре рабочее вещество под определенным давлением, выбираемое в зависимости от значения температур приема и передачи тепла. Контур разделен на четыре зоны: испарения, транспорта пара; конденсации, транспорта конденсата. В зоне испарения в герметично замкнутом пространстве внутри корпуса (4) расположен теплообменник (7) с охлаждаемой средой; охлаждаемая среда, находясь внутри теплообменника, с помощью патрубков подвода и отвода охлаждаемой среды (8) подается в зону испарения. Теплообменник может иметь различное исполнение, включая однотрубное, в виде свернутой спиралью трубы, либо гладкотрубное, в виде поверхности сосуда. Снаружи на теплообменную поверхность распыляется рабочее вещество, происходит кипение рабочего вещества и интенсивный отбор теплоты от охлаждаемой среды; пар рабочего вещества, поднимаясь, раскручивает турбину (3), расположенную на вертикальном валу (2), который закреплен в подшипниках и способен вращаться вокруг своей оси. Пар через турбину уходит в паропровод (1), и далее в конденсатор (12), где происходит конденсация рабочего вещества. Часть пара из турбины может направляться в обводной паропровод (17). Сконденсированное (жидкое) рабочее вещество по конденсатопроводу (11) через патрубок подачи конденсата (10) подается к замкнутому пространству с теплообменником, частично к нему подмешивается пар из обводного паропровода. Таким образом, избегается подача недогретой жидкости рабочего вещества в зону испарения. Вертикальный вал имеет глухое отверстие, через которое конденсат снизу за счет вращения вала подкачивается вверх и направляется в радиально расположенные на валу патрубки с соплами (6), где конденсат сжимается за счет центробежных сил и подогревается за счет теплообмена через стенки патрубков с паром рабочего вещества. Поверхность вала и патрубков с соплами служит теплообменной поверхностью, через которую теплота к жидкому рабочему веществу внутри патрубков подводится от пара, находящегося снаружи. Внутри патрубков с соплами происходит поджатие и подогрев рабочего вещества, так что рабочее вещество оказывается в состоянии перегретой жидкости. На выходе из специальным образом спрофилированных сопел образуется парожидкостный факел рабочего вещества.. Выходя из патрубков с соплами в парожидкостном состоянии, рабочее вещество совершает работу, оказывая реактивное воздействие на вал и раскручивая его. Выйдя из сопел, рабочее вещество распыляется, плотно покрывая охлаждаемую теплообменную поверхность потоком мелкодисперсных частиц рабочего вещества. Происходит интенсивный отбор теплоты и кипение рабочего вещества.
Свободные концы патрубков с соплами могут располагаться радиально, тангенциально, либо под некоторым углом к продольным осям патрубков. Тангенциальное расположение создает наибольший крутящий момент, способствующий раскручиванию вала, однако, вместе с тем, и наибольшее гидросопротивление потоку. Радиальное расположение не создает крутящего момента, но имеет меньшее гидросопротивление потоку. Пар рабочего вещества может совершать работу на лопатках турбины. Турбина может иметь радиальное, радиально-осевое, осевое исполнение, либо исполнение в виде Сегнерова колеса. Турбина может быть также сопряжена с генератором (5), и быть выполнена в виде турбогенератора, с генератором, преобразующим вращательное движение вала в электроэнергию, и отводом её за пределы корпуса.
Запуск системы происходит за счет вращения турбины паром, подаваемым на пусковое сопло (18), которое единственное остается открытым в момент запуска и выключения системы. Для запуска системы необходимо наличие конденсата в замкнутом пространстве внутри корпуса, для чего предусмотрен обратный клапан (16), препятствующий вытеканию конденсата после выключения системы, а также ресивер (14), выполняющий функцию сбора конденсата и обеспечения необходимого напора для подачи конденсата через вал в момент пуска системы. Необходимый напор может создаваться гидростатически— превышением уровня жидкости в ресивере над уровнем патрубков с соплами. Ресивер заполняется при выключении системы, и опорожняется в момент пуска, для чего предусмотрены запорные вентили (13). Возможно также исполнение системы с насосом (15), включенным в контур байпасом, и подающим конденсат через вал в момент пуска системы. В этом случае конденсатор может располагаться на любой высоте относительно уровня патрубков с соплами. Также, в этом случае функцию сборника жидкого рабочего вещества может выполнять конденсатор. Конденсатор и испаритель могут быть разнесены на любое расстояние. Предельная величина этого расстояния определяется гидропотерями по длине паропровода и конденсаторопровода.
Описанное выше устройство позволяет передавать от охлаждаемых объектов значительные количества теплоты при малой разности температур приемника и источника тепла, со сниженной материалоемкостью испарителя, с зонами испарения и конденсации, разнесенными друг относительно друга на значительное расстояние, а также позволяет преобразовывать часть энергии, подводимой в испарителе для парообразования, в полезную работу, и далее— в электрическую энергию.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Вихревой охладитель-генератор термосифонного типа с возможностью получения работы в виде механической и электрической энергии, содержащий герметично замкнутый корпус, паропровод, обводной паропровод, конденсатор, конденсатопровод, рабочее вещество, циркулирующее внутри герметично замкнутого контура, которое, попеременно испаряясь и конденсируясь, отбирает тепло от источника тепла и передает его приемнику тепла, вертикальный вал, закрепленный в подшипниках и способный вращаться вокруг своей оси, генератор, преобразующий вращательное движение вала в электроэнергию, турбину, расположенную на валу, которая может быть также сопряжена с генератором, и быть выполнена в виде турбогенератора, пусковое сопло, через которое пар рабочего вещества направляется на турбину в момент пуска, теплообменник, расположенный внутри корпуса, и содержащий охлаждаемую среду, патрубки подвода и отвода охлаждающей среды, вентили, обратный клапан, патрубок подачи конденсата, ресивер, расположенный между конденсатором и патрубком подачи конденсата, и выполняющий функцию сбора конденсата, отличающийся тем, что ресивер обеспечивает необходимый напор для подачи конденсата через вал в момент пуска системы, причем вал имеет на нижнем конце глухое отверстие, а также сообщающиеся с этим отверстием радиально расположенные на валу патрубки со специальным образом спрофилированными соплами, причем поверхность вала и патрубков с соплами служит теплообменной поверхностью, через которую теплота к жидкому рабочему веществу внутри патрубков подводится от пара, находящегося снаружи, причем рабочее вещество подается через вал в патрубки, распыляется на теплообменную поверхность, выходя из патрубков с соплами в парожидкостном состоянии, и совершает работу, оказывая реактивное воздействие на вал, а пар рабочего вещества совершает работу на лопатках турбины, причем часть работы, совершаемой рабочим веществом, может расходоваться на обеспечение циркуляции и поджатия рабочего вещества посредством действия центробежных сил, другая же часть может быть преобразована в электрическую энергию и быть выведена за пределы корпуса.
2. Охладитель-генератор по п.1 , отличающийся тем, что турбина имеет радиальное, либо радиально-осевое, либо осевое исполнение, либо исполнение в виде Сегнерова колеса.
3. Охладитель-генератор по п.1 , отличающийся тем, что патрубки с соплами имеют свободные концы, расположенные тангенциально, либо радиально, либо под некоторым углом к продольным осям патрубков.
4. Охладитель-генератор по п.1 , отличающийся тем, что функцию ресивера по обеспечению необходимого напора для подачи конденсата через вал в момент пуска системы выполняет насос, включенный в контур байпасом.
PCT/EA2013/000003 2013-04-08 2013-04-08 Вихревой охладитель-генератор термосифонного типа WO2014166507A1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EA2013/000003 WO2014166507A1 (ru) 2013-04-08 2013-04-08 Вихревой охладитель-генератор термосифонного типа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EA2013/000003 WO2014166507A1 (ru) 2013-04-08 2013-04-08 Вихревой охладитель-генератор термосифонного типа

Publications (1)

Publication Number Publication Date
WO2014166507A1 true WO2014166507A1 (ru) 2014-10-16

Family

ID=51688971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EA2013/000003 WO2014166507A1 (ru) 2013-04-08 2013-04-08 Вихревой охладитель-генератор термосифонного типа

Country Status (1)

Country Link
WO (1) WO2014166507A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927289A (zh) * 2016-05-25 2016-09-07 中国科学院工程热物理研究所 一种自冷却燃气涡轮静叶栅装置及其制造方法
CN113411940A (zh) * 2021-05-20 2021-09-17 江苏大学 一种基于离子风强化及能源转化利用的静电雾化冷却系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003922C1 (ru) * 1991-08-05 1993-11-30 Борис Григорьевич Тригер Парогенератор
RU2330219C1 (ru) * 2006-12-27 2008-07-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Геотермальная установка энергоснабжения потребителей
RU2336423C2 (ru) * 2003-08-25 2008-10-20 Фишер Контролз Интернэшнл Ллс Устройство и способ аэродинамического шумопоглощения в системах конденсации с воздушным охлаждением
RU2435052C2 (ru) * 2008-12-10 2011-11-27 Ман Нутцфарцойге Эстеррайх Аг Двигательная установка с контуром охлаждения и отдельным контуром рекуперации тепла

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2003922C1 (ru) * 1991-08-05 1993-11-30 Борис Григорьевич Тригер Парогенератор
RU2336423C2 (ru) * 2003-08-25 2008-10-20 Фишер Контролз Интернэшнл Ллс Устройство и способ аэродинамического шумопоглощения в системах конденсации с воздушным охлаждением
RU2330219C1 (ru) * 2006-12-27 2008-07-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ(ТУ)") Геотермальная установка энергоснабжения потребителей
RU2435052C2 (ru) * 2008-12-10 2011-11-27 Ман Нутцфарцойге Эстеррайх Аг Двигательная установка с контуром охлаждения и отдельным контуром рекуперации тепла

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927289A (zh) * 2016-05-25 2016-09-07 中国科学院工程热物理研究所 一种自冷却燃气涡轮静叶栅装置及其制造方法
CN113411940A (zh) * 2021-05-20 2021-09-17 江苏大学 一种基于离子风强化及能源转化利用的静电雾化冷却系统
CN113411940B (zh) * 2021-05-20 2024-03-19 江苏大学 一种基于离子风强化及能源转化利用的静电雾化冷却系统

Similar Documents

Publication Publication Date Title
US8739540B2 (en) Vapor vortex heat sink
US8474264B2 (en) Radial counterflow steam stripper
CN103993921B (zh) 动力产生装置及其运转方法
KR20110013491A (ko) 저온도차 로터리 엔진
JPS5818562B2 (ja) 塩水から蒸気を生成する方法および装置
JP2650395B2 (ja) 吸収サイクルヒートポンプ
JP2015525841A (ja) オーガニックランキンサイクルの循環流れを用いて電気エネルギーを生成する装置
WO2014179576A2 (en) Falling film evaporator for mixed refrigerants
WO2014166507A1 (ru) Вихревой охладитель-генератор термосифонного типа
Date et al. Experimental performance of a rotating two-phase reaction turbine
JP2015202445A (ja) 発電機能付き減圧沸騰形海水淡水化装置
AU2005288660A1 (en) Cooling tower
US10752821B2 (en) Dry cooling systems using thermally induced polymerization
JP6049565B2 (ja) 地熱タービン
CN115210512A (zh) 空气制水机
CN103097662A (zh) 液环式旋转壳体汽轮机及其使用方法
JP3147352B2 (ja) 放熱システムおよびそれを用いた熱機関
CN208398245U (zh) 一种移动空调
RU2366821C1 (ru) Теплотрубный осевой двигатель
JPH06147098A (ja) 対流温度差原動機
RU2738748C1 (ru) Теплотрубная паротурбинная установка с конической топкой
JPS622128B2 (ru)
JP2006329038A (ja) 噴流式蒸気エンジン
WO2015016693A1 (ru) Тепловая гидроэлектростанция
Nemade et al. Efficiency improvement in thermal power plants using waste heat recovery of flue gas–simulation study.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881866

Country of ref document: EP

Kind code of ref document: A1