WO2014166368A1 - 非浮充锂电型站用直流电源系统 - Google Patents

非浮充锂电型站用直流电源系统 Download PDF

Info

Publication number
WO2014166368A1
WO2014166368A1 PCT/CN2014/074837 CN2014074837W WO2014166368A1 WO 2014166368 A1 WO2014166368 A1 WO 2014166368A1 CN 2014074837 W CN2014074837 W CN 2014074837W WO 2014166368 A1 WO2014166368 A1 WO 2014166368A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium battery
iron
charging
power supply
bus
Prior art date
Application number
PCT/CN2014/074837
Other languages
English (en)
French (fr)
Inventor
李晶
Original Assignee
国家电网公司
四川电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 四川电力科学研究院 filed Critical 国家电网公司
Publication of WO2014166368A1 publication Critical patent/WO2014166368A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a station DC power supply system in a substation, a converter station, a power plant, and other power engineering, specifically, according to the performance characteristics of a lithium iron phosphate battery (iron lithium battery) that cannot be floated for a long period of time.
  • a lithium iron phosphate battery iron lithium battery
  • a new charging and discharging circuit and corresponding control protection device are designed, so that the iron-lithium battery pack is in a DC power supply system for a non-floating lithium battery type station that does not perform floating charging but is not offline.
  • the DC power supply system for stations is the working power supply for the protection and control and communication of power transmission and transformation equipment in substations, converter stations, power plants and other power projects.
  • the battery pack is used for the substation. Protection, control, accident lighting and other accidents.
  • the DC power supply system has always been used in the battery pack online floating operation mode.
  • the object of the present invention is to provide a non-floating lithium battery type station using a step-down silicon chain device according to the characteristics that the iron-lithium battery is not suitable for floating charging operation and the typical wiring structure of the current station DC power supply system.
  • the DC power supply system is designed to avoid the capacity decline and life reduction caused by long-term floating charging of the iron-lithium battery pack, and to meet the accident power consumption such as substation protection, control, and accident lighting.
  • a DC power supply system for a non-floating lithium battery type station comprising a rectifying device, a feeding circuit, and a lithium iron battery pack, wherein the feeding circuit includes a DC control bus KM, The DC output end of the rectifying device is connected to the DC control bus KM, and further includes a battery charging circuit, a DC power bus HM, a multi-stage step-down silicon chain device and a monitor; the battery charging circuit is replaced by an AC air switch Qo, charging and rectifying The module M Q and the DC air switch QF Q are configured; the AC air switch Qo- terminal is connected to the AC incoming line power supply, and the other end is connected to the input terminal of the charging rectifier module M Q ; The DC air switch QF Q- terminal is connected to the charging rectifier module M The output end of the Q is connected to the DC power bus HM; the control end of the charging rectifier module M0 is connected to the monitor; the multi-stage step-down silicon chain device is connected in
  • the iron-lithium battery pack is connected to the DC power bus HM through a fuse R1.
  • the above-mentioned DC power supply system for a non-floating lithium battery type station further includes an insulation detecting device.
  • the insulation detecting device has a plurality of detecting ends and an output end, and one detecting end is connected to the DC power bus bar.
  • the DC output branch is connected to the DC control bus KM through the DC air switch Q", and an insulation detecting sensor is arranged on each DC output branch.
  • CT each of the insulation detecting sensors CT” is connected to the detecting end of the insulation detecting means.
  • a shunt FL is disposed between the iron-lithium battery pack and the DC power bus HM for detecting the size and current direction of the lithium-iron battery pack, and the output of the shunt FL is connected to the monitor.
  • the monitor includes a battery management system, and the battery management system analyzes and manages the battery state in real time through the acquisition circuit and the equalization circuit, and dynamically maintains the battery through the monitor and the charge control and protection circuit.
  • the charging control is started or stopped by the battery management system according to the state of the iron-lithium battery pack, and the charging and rectifying module M Q performs equalization charging or supplementary charging on the battery pack. Charging rectifier module M.
  • the battery is in a normal resting state due to the action of the multi-stage step-down silicon chain device.
  • the multi-stage step-down silicon chain device of the present invention is a five-stage step-down silicon chain device, which is composed of five sets of step-down silicon chains connected in series, and a bypass DC contactor is connected in parallel at each end of each group of step-down silicon chains. Composition, each group of silicon chain voltage drop is 7V.
  • the voltage drop generated by the five-stage step-down silicon chain device is 35V, that is, when the charging voltage of the DC power bus HM reaches 265V, the DC control bus with the DC load is connected.
  • KM can also maintain the normal working voltage of 230V, which will not cause overvoltage of DC control bus KM.
  • the monitor When it is necessary to supply power from the iron lithium battery pack to the DC control bus KM, the monitor is controlled according to the actual terminal voltage of the iron-lithium battery pack.
  • the contacts of the five DC contactors are opened and closed to achieve step-by-step voltage regulation to ensure that the voltage of the DC control bus KM is within a reasonable range.
  • the actual operation of the present invention is as follows: when normal AC power, the rectifier module M k is a working current control on the DC bus regular KM load, the power supply voltage is 230V. At this time, the monitor turns on the contacts of the five DC contactors of the five-stage step-down silicon chain device through the control board, and the voltage difference between the five-stage step-down silicon chain must exceed 35V to be turned on, and at this time, the lithium-lithium If the battery pack is in a resting state, its terminal voltage will not exceed 265V. Even if the iron-lithium battery pack is in a state of charge, its voltage will not exceed 265V.
  • the five-stage step-down silicon chain is always in the off state when the AC power supply is working normally, thereby preventing the working rectifier module Mk from floating to the iron-lithium battery pack. After the AC power failure occurs in the grid, the working rectifier module M k has no DC output. At this time, the iron-lithium battery pack supplies power to the DC control bus KM and its DC load through the five-stage step-down silicon chain device.
  • the monitor controls the opening and closing of the contacts of the five DC contactors to realize the step-by-step voltage regulation to ensure that the voltage of the DC control busbar KM is within a reasonable range.
  • the monitor issues an instruction to start charging.
  • the electric rectifier module M Q charges the iron-lithium battery pack.
  • the equalization circuit of the battery management system balances the charging of each battery.
  • the biggest difference between the DC power supply system for non-floating lithium battery stations and the traditional DC power supply system for stations is the addition of a battery management system and a dedicated charging rectifier module.
  • the multi-stage step-down silicon chain is used to isolate the DC power bus and DC control.
  • the busbar prevents the iron-lithium battery pack from being in long-term online float charging operation.
  • Iron-lithium batteries are very unsuitable for long-term online floating charging operation.
  • Most iron-lithium battery manufacturers have clearly stated that their products cannot use long-term online floating charging.
  • the beneficial effects of the present invention are:
  • the DC power supply system for stations is widely used as an accident power supply for protection, control, communication, accident lighting, etc. of power transmission and transformation equipment in electric power engineering, as work in the fields of electric power, communication, or the like.
  • the importance of backup power is self-evident.
  • the power system has been using the wiring and operation mode of the online floating charge, but the floating charging method will cause Long-term overcharging or undercharging of individual batteries shortens battery life.
  • the iron-lithium battery As a new type of battery, the iron-lithium battery has very small self-discharge. Compared with lead-acid batteries, it has better environmental protection, high capacity density and high current charging and discharging. It has been widely used in the field of electric vehicles, so it is very necessary to It is introduced into the DC power supply system for substations, converter stations, power plants and other power engineering stations.
  • the application of iron-lithium batteries to power systems must improve the wiring and management methods of traditional battery packs according to the technical characteristics of small self-discharge. Change the operation and maintenance use method to maximize the technical advantages of iron-lithium batteries.
  • the DC power supply system for changing station uses long-term lead-acid battery and online floating charging operation mode, and the battery management system is added according to the characteristics of the iron-lithium battery, and the working rectifier module and the charging rectifier module are separately provided, and multi-stage step-down silicon is adopted.
  • Chain isolated DC control bus and DC power bus, making iron-lithium battery The group does not need long-term online floating charging operation, and has outstanding substantive features. Since the iron-lithium battery has many advantages such as wide operating temperature range, small self-discharge, long service life, high rate discharge, etc., the invention can satisfy the power demand of the power system accident to the greatest extent, and can reduce the use of the lead-acid battery. Environmental pollution problems.
  • the invention has the advantages of compact structure, easy operation, high safety performance, increased automation, one-third reduction of the number of batteries, high cost performance, large-scale application, high economic efficiency and large social benefits.
  • 1 is a block diagram of a system structure.
  • FIG. 2 is a circuit diagram of a system wiring.
  • FIG. 3 is a wiring diagram of a step-down silicon chain device.
  • the DC power supply system for the non-floating lithium battery type station is composed of the following parts, and the corresponding copper busbars, copper core cables, and measurement and communication lines are connected between the devices and the structural parts.
  • the rectifying device is composed of a high frequency switching rectifier module (M1 to MN), a 200A AC air switch (QF1, QF2), a 315A DC air switch (QF3), and corresponding circuit connections.
  • the air switch QF1 and QF2 are connected to the incoming line power supply of the AC power supply of different substations, and the output ends thereof are respectively connected to the AC input terminals of the plurality of parallel rectifier modules (M1 ⁇ MN) through the 25A AC air switch (1Q ⁇ NQ), and the rectifier module (
  • the DC positive and negative outputs of M1 ⁇ MN) are connected to the DC control bus positive (+KM) and negative (1) by DC air switch (QF3).
  • Feed circuit consists of DC control bus (KM) and each output branch, all regular DC loads pass through the 32A small or micro DC air switch (Q1 ⁇ QN) of their respective circuits Should be connected to achieve regular DC load power supply and branch circuit protection.
  • Q1 ⁇ QN are configured according to the capacity and quantity of the DC power supply load.
  • Iron lithium battery pack (B) is connected to the DC power bus HM through the fuse R1 by the iron lithium battery pack (B), and a shunt FL is arranged between the iron lithium battery pack and the DC power bus HM, and the shunt The output of the FL is connected to the monitor.
  • the fuse (R1) protects the iron-lithium battery pack (B), the DC air switch (QF0), and the charging rectifier module (M0) when externally short-circuited by a DC power bus (HM).
  • Multi-stage step-down silicon chain device A five-stage step-down silicon chain device is used, including a step-down silicon chain group (D) and a control terminal (J). As shown in Figure 3, five sets of silicon chains are connected in series, and each group of silicon chains is connected in parallel with a bypass DC contactor (K1 ⁇ K5). Each group of silicon chains is stepped down by 7V, and the five-stage step-down silicon chain device is shown. The maximum voltage is 35V.
  • monitor JKQ
  • BMS battery management system
  • JYJC insulation detector
  • the monitor (JKQ) is connected to the working rectifier module (Ml ⁇ MN), the charging rectifier module (M0), the multi-stage step-down silicon chain device, the battery management system (BMS), and the insulation detector (JYJC) through the communication bus.
  • the battery management system (BMS) consists of a battery acquisition circuit, a battery equalization circuit, protection and control circuits, and is connected to the iron-lithium battery pack (B).
  • the monitor (JKQ) and the battery management system (BMS) control the operation of the multi-stage step-down silicon chain device, so that the iron-lithium battery pack (B) does not perform long-term online float charging except for forced equalization charging and supplementary charging.
  • the single-conductivity and multi-level voltage regulation of the step-down silicon chain (D) ensures that the battery pack (B) can continuously supply a suitable voltage to the DC control bus when AC power is interrupted.
  • Insulation Tester (JYJC) separately collects DC power bus (HM) The positive and negative voltages are passed through the insulation detection sensors (CT1 to CTN) of each DC output branch to perform bus insulation monitoring and to determine the branch of the insulation reduction (selection line).
  • the components are grouped into cabinets, which are rectifier cabinets, feeder cabinets and battery cabinets.
  • the cabinets are connected by cables, copper bars, measuring and communication lines and used together.
  • the AC380V power supply is connected by the AC input terminal, and is connected to the high frequency switch rectifier module (M1 ⁇ MN) through the 200A AC air switch (QF1 or QF2), and the working rectifier module (M1 ⁇ MN)
  • the output DC is connected to the 315A DC air switch (QF3), and the DC air switch (QF3) output is connected to the positive (+KM) and negative (I) of the DC control bus through the cable for protection and control and communication (ie Each branch has a constant DC load) to provide a qualified DC operating power supply.
  • the normal operation monitor (JKQ) and battery management system (BMS) collect DC voltage, current and battery status, and perform daily measurement, monitoring and maintenance management of the working rectifier module (M1 ⁇ MN) and the iron-lithium battery pack (B). .
  • the Insulation Detector (JYJC) collects DC voltage and each branch (CT1 ⁇ CTN) data for system insulation monitoring and can send an alarm to the monitor (JKQ) when the insulation is reduced.
  • the five-stage step-down silicon chain device is in the normal state of the AC power supply, and the control board of the five-stage step-down silicon chain device opens all contacts of the DC contactor (K1 ⁇ K5), five stages.
  • the step-down silicon chain device is in the off state, and the iron-lithium battery pack ( ⁇ ) is in a non-floating hot standby state, and can supply power to the load at any time.
  • Main functions Provide a DC power supply system for non-floating lithium battery stations. It is designed to realize the off-line floating charging operation mode by using the step-down silicon chain device to avoid the capacity decline and life reduction caused by long-term floating charging of the iron-lithium battery pack.
  • the rectifier module of this system can be hot-swapped, with perfect AC and DC protection functions and intermittent charging mode. It can prolong the service life cycle and improve the equipment under the premise of meeting the needs of substation protection, control, accident lighting and other accidents. The cost of equipment.
  • Ferro lithium battery charging voltage 3.6V / monomer (20 ° C);
  • Iron lithium battery discharge termination voltage 2.55V / monomer
  • Iron lithium battery cycle life 1500 times.
  • Lithium iron phosphate battery Model FP3291152, Harbin Coslight Group; High frequency switch rectifier module: Model HD22020-3, Emerson Power Company; Monitor (BMS): Model BMJ-FPC, Harbin Coslight Power Company; Insulation monitoring device: Model JYM-2, Emerson Power Company;

Abstract

一种非浮充锂电型站用直流电源系统,改变传统站用直流电源系统长期采用铅酸蓄电池及在线浮充电运行方式,根据铁锂电池特点增加了电池管理系统,分设了工作整流模块和充电整流模块,采用多级降压硅链隔离直流控制母线和直流动力母线,使铁锂电池组不用长期在线浮充电运行,具有突出的实质性特点。本发明结构紧凑,易于操作,安全性能高,自动化程度增加,电池数量减少三分之一,系统性价比高,大规模应用能实现较高的经济效益和产生较大的社会效益。

Description

非浮充锂电型站用直流电源系统 技术领域
[0001]本发明涉及变电站、 换流站、 发电厂及其他电力工程中的站用直流电 源系统, 具体来说是根据磷酸亚铁锂离子电池 (铁锂电池) 不能长期浮充电 运行的性能特点, 利用降压硅链的特性, 设计全新的充、 放电回路及相应控 制保护装置, 使铁锂电池组处于不进行浮充电但不离线的工作状态的非浮充 锂电型站用直流电源系统。
背景技术
[0002] 站用直流电源系统是变电站、 换流站、 发电厂及其他电力工程中输 变电设备的保护和控制及通信的工作电源,在电网事故造成交流电源中断时, 其电池组供变电站保护、 控制、 事故照明等事故用电。 一直以来站用直流电 源系统采用的是电池组在线浮充运行方式, 其主要特点是: ①要补充电池组 自放电造成的容量损失; ②没有电池管理系统, 采用定期进行均衡充电方式 维护; ③电池组通过断路器 (或熔断器) 直接连接在直流动力母线, 然后通 过降压硅链装置将较高的动力母线电压调整为适合直流控制母线连接的负载 使用的电压, 以便交流中断后不间断地提供直流电源。 但长期浮充运行①会 使电池极板钝化, 造成电池容量衰退和寿命降低; ②没有电池管理系统, 电 池容量状况只能依靠 1〜2年一次的核容放电试验进行评估,期间的容量状况 不得而知; ③电池组直接连接在直流动力母线, 在进行核容放电试验时要脱 离母线,必须用临时电池组替代或其他措施,才能满足 DL/T724-2000电池组 不脱离母线的要求。 所以上述情况严重时, 会在电网发生事故时, 电池组无 法满足事故期间的用电, 耽误事故抢险, 甚至造成事故扩大。
[0003]国内目前使用铁锂电池的站用直流电源系统, 但是基于原阀控式铅酸 蓄电池的结构和运行方式, 只是简单的把铅酸电池换成铁锂电池, 既没有遵 守铁锂电池的充、放电特性,还会加速铁锂电池的容量衰退和减少运行寿命, 使其性价比大大降低, 故直接采用浮充电方式的铁锂电池组站用直流电源系 统在电力工程开展应用存在难度。
发明内容
[0004]本发明的目的是根据铁锂电池不适宜浮充电运行的特性, 以及现行站 用直流电源系统的典型接线结构, 提供一种利用降压硅链装置实现的非浮充 锂电型站用直流电源系统, 旨在避免铁锂电池组因长期浮充电造成的容量衰 退和寿命降低, 满足变电站保护、 控制、 事故照明等事故用电。
[0005]本发明的目的是这样实现的: 一种非浮充锂电型站用直流电源系统, 包括整流装置、馈电电路、铁锂电池组,其中馈电电路包括直流控制母线 KM, 所述整流装置的直流输出端连接到所述直流控制母线 KM, 还包括电池充电 电路、 直流动力母线 HM、 多级降压硅链装置和监控器; 所述电池充电电路 由交流空气开关 Qo、 充电整流模块 MQ和直流空气开关 QFQ构成; 交流空气 开关 Qo—端连接到交流进线电源,另一端连接到充电整流模块 MQ的输入端; 直流空气开关 QFQ—端连接到充电整流模块 MQ的输出端, 另一端连接到直 流动力母线 HM; 充电整流模块 M0的控制端连接到所述监控器; 所述多级 降压硅链装置由多组硅链串联且每一组硅链两端并联一个旁路直流接触器构 成; 多级降压硅链装置的输入端连接到直流动力母线 HM, 输出端连接到直 流控制母线 KM, 控制端连接到所述监控器;
所述铁锂电池组通过熔断器 R1连接到直流动力母线 HM。
[0006】上述非浮充锂电型站用直流电源系统, 还包括绝缘检测装置, 绝缘检 测装置有多个检测端和一个输出端, 其中一个检测端连接到直流动力母线
HM,输出端连接到所述监控器。馈电电路包括 J条直流输出支路, J=l、2、…… n; 直流输出支路通过直流空气开关 Q」连接到直流控制母线 KM, 每条直流 输出支路上设置有一个绝缘检测传感器 CT」, 每个绝缘检测传感器 CT」连接 到所述绝缘检测装置的检测端。
[0007]铁锂电池组和直流动力母线 HM之间还设置有一个分流器 FL,用于检 测铁锂电池组的大小和电流方向, 分流器 FL的输出端连接到所述监控器。
[0008]整流装置如下设置: 包括 k个交流空气开关 Qk、 k个工作整流模块 Mk, k=l、 2、 3…… n和直流空气开关 QF3 ; 交流空气开关 Qk的一端连接到 交流进线电源, 另一端连接到工作整流模块 Mk的输入端; 所有工作整流模 块 Mk的输出端并联连接到直流空气开关 QF3的一端, 直流空气开关 QF3的 另一端为所述整流装置的直流输出端。
[0009]监控器中包含电池管理系统, 电池管理系统通过采集电路和均衡电路 对电池状态进行实时分析和管理, 通过监控器和充电控制与保护电路对电池 进行动态维护。 充电控制由电池管理系统根据铁锂电池组状态, 起动或停止 充电整流模块 MQ对电池组进行的均衡充电或补充充电。充电整流模块 M。停 止工作时, 由于多级降压硅链装置的作用, 电池处于正常的静置状态。 [0010]本发明中的多级降压硅链装置是五级降压硅链装置, 是由五组降压硅 链串联且每一组降压硅链两端分别并联一个旁路直流接触器构成, 每组硅链 电压降为 7V。当五个旁路直流接触器的触点全部打开时,五级降压硅链装置 产生的电压降为 35V, 即当直流动力母线 HM的充电电压达 265V时, 连接 有直流负载的直流控制母线 KM也能保持 230V的正常工作电压, 不会造成 直流控制母线 KM的过压; 当需要由铁锂电池组向直流控制母线 KM进行供 电时,监控器根据铁锂电池组的实际端电压,控制五个直流接触器的触点开、 闭实现分级调压, 以保证直流控制母线 KM的电压处于合理的范围。
[0011】本发明的实际工作过程如下: 交流电源正常时, 工作整流模块 Mk为 直流控制母线 KM上的经常性直流负载供电,供电电压为 230V。 此时, 监控 器通过控制板使五级降压硅链装置的五个直流接触器的触点全部打开, 五级 降压硅链两端的电压差必须超过 35V才能导通,而此时铁锂电池组如处于静 置状态, 其端电压不会超过 265V。铁锂电池组即使处于充电状态, 其电压也 不会超过 265V (当电池数量增加而需要提高充电电压时,可选用七级降压硅 链, 其电压降可达 49V) 。 因此, 五级降压硅链在交流电源工作正常时, 始 终处于截至状态, 从而阻止了工作整流模块 Mk向铁锂电池组浮充电。 在电 网发生事故造成交流中断后, 工作整流模块 Mk无直流输出, 此时铁锂电池 组通过五级降压硅链装置不间断地向直流控制母线 KM及其直流负载供电。 监控器根据铁锂电池组的实际端电压, 控制 5个直流接触器的触点开、 闭实 现分级调压, 以保证直流控制母线 KM的电压处于合理的范围。 当电池管理 系统根据电池采集数据分析铁锂电池组需要充电时, 监控器发出指令启动充 电整流模块 MQ对铁锂电池组进行充电, 在充电过程中, 电池管理系统的均 衡电路对各电池充电进行均衡干预。
[0012]非浮充锂电型站用直流电源系统与传统的站用直流电源系统最大的区 别在于增加了电池管理系统和专用充电整流模块, 采用多级降压硅链隔离直 流动力母线和直流控制母线, 使铁锂电池组避免处于长期在线浮充电运行。 而铁锂电池非常不适合长期在线浮充电的运行方式, 多数铁锂电池制造厂都 明确表示其产品不能采用长期在线浮充电工作方式。
[0013]本发明的有益效果是: 站用直流电源系统被广泛地用作电力工程中输 变电设备的保护、 控制、 通讯、 事故照明等事故用电, 作为电力、 通讯等领 域的工作或后备电源, 其重要性不言而喻。 过去为了保证铅酸蓄电池保持满 容量和蓄电池组不脱离直流母线, 结合铅酸蓄电池的自放电较大及定期均衡 特点, 电力系统一直沿用在线浮充电的接线和运行方式, 但浮充电方式会造 成个别电池长期的过充或欠充, 使电池寿命缩短。 而铁锂电池作为新型蓄电 池其自放电非常小, 较铅酸蓄电池具有更好的环保性、 高容量密度和大电流 充放等优点, 现已大量应用于电动车领域, 所以非常有必要将其引入到变电 站、 换流站、 发电厂及其他电力工程的站用直流电源系统中, 但铁锂电池应 用于电力系统必须根据其自放电小等技术特点而改进传统的蓄电池组接线和 管理方式, 改变运行维护使用方法, 才能最大限度地发挥铁锂电池的技术优 势。
[0014]本发明改变站用直流电源系统长期采用铅酸蓄电池及在线浮充电运行 方式,根据铁锂电池特点增加了电池管理系统,分设了工作整流模块和充电整 流模块, 采用多级降压硅链隔离直流控制母线和直流动力母线, 使铁锂电池 组不用长期在线浮充电运行, 具有突出的实质性特点。 由于铁锂电池具备工 作温度范围宽、 自放电小、 使用寿命长、 高倍率放电等诸多优点, 结合本发 明能最大限度地满足了电力系统事故用电需求, 同时能减少使用铅酸蓄电池 带来的环境污染问题。
[0015】本发明结构紧凑, 易于操作, 安全性能高, 自动化程度增加, 电池数 量减少三分之一, 系统性价比高, 大规模应用能实现较高的经济效益和产生 较大的社会效益。
附图说明
[0016]图 1是系统结构框图。
[0017]图 2是系统接线电路图。
[0018]图 3是降压硅链装置接线电路图。
具体实施方式
[0019】如图 2, 非浮充锂电型站用直流电源系统由以下部分组成, 各装置和 结构部分之间采用相应的铜质母排线、 铜芯电缆及测量、 通讯线连接。
[0020]整流装置:高频开关整流模块(M1〜MN)、 200A交流空气开关(QF1、 QF2)、315A直流空气开关(QF3 )及相应的电路连接等组成。空气开关 QF1、 QF2连接来自不同变电站交流电源的进线电源,其输出端通过 25A交流空气 开关 (1Q〜NQ) 分别与多个并联的整流模块(M1〜MN) 交流输入端连接, 整流模块 (M1〜MN) 的直流正、 负输出端通过直流空气开关 (QF3 ) 分别 对应与直流控制母线正极 (+KM) 和负极 (一) 相连接。
[0021】馈电电路: 由直流控制母线 (KM) 和各输出支路组成, 所有经常性 直流负载通过各自回路的 32A小型或微型直流空气开关 (Q1〜QN) 与其对 应连接, 实现对经常性直流负载供电及支路保护。 Q1〜QN按照直流供电负 载的容量和数量配置。
[0022】铁锂电池组 (B) : 由铁锂电池组 (B) 通过熔断器 R1连接到直流动 力母线 HM, 铁锂电池组和直流动力母线 HM之间还设置有一个分流器 FL, 分流器 FL的输出端连接到监控器。其中熔断器(R1)在直流动力母线(HM) 等外部短路时保护铁锂电池组(B) 、 直流空气开关(QF0)和充电整流模块 (M0) 。
[0023]多级降压硅链装置: 使用五级降压硅链装置, 包括降压硅链组 (D) 和控制端(J) 。 如图 3所示, 由五组硅链串联且每一组硅链两端并联一个旁 路直流接触器 (K1〜K5) 构成, 每一组硅链降压 7V, 五级降压硅链装置最 大降压 35V。
[0024]基于 CAN总线监测系统:包括监控器(JKQ)、电池管理系统(BMS)、 绝缘检测仪(JYJC) 。 监控器(JKQ)通过通讯总线与工作整流模块(Ml〜 MN) 、 充电整流模块 (M0) 、 多级降压硅链装置、 电池管理系统 (BMS) 以及绝缘检测仪 (JYJC) 连接, 进行各模块的控制、 监测、 均衡等。 电池管 理系统 (BMS) 由电池采集电路、 电池均衡电路、 保护与控制电路等组成, 连接到铁锂电池组 (B) 。 监控器 (JKQ) 和电池管理系统 (BMS) 控制多 级降压硅链装置的工作状态, 使铁锂电池组 (B) 在强制均衡充电和补充充 电外, 不进行长期在线浮充充电, 同时降压硅链 (D) 的单向导通性和多级 电压调整, 保证电池组 (B) 能在交流电源中断时不间断的为直流控制母线 提供电压适合的电源。 绝缘检测仪 (JYJC) 分别采集直流动力母线 (HM) 正、负极电压并通过各直流输出支路的绝缘检测传感器 (CT1〜CTN)进行母线 绝缘监测和确定绝缘降低的支路 (选线) 。
[0025]非浮充锂电型站用直流电源系统的工作方式与使用方法, 按以下歩骤 进行:
a) 、 将各组成部分进行组柜, 分别为整流柜、 馈电柜和电池柜。 单元柜之间 通过电缆、 铜排、 测量和通讯线连接并组屏在一起使用。
[0026] b ) 、 使用时, 由交流输入端接 AC380V电源, 通过 200A交流空气开 关 (QF1或 QF2 ) 合闸送入高频开关整流模块 (M1〜MN) , 工作整流模块 (M1〜MN)输出直流到 315A直流空气开关(QF3 )进线端, 直流空气开关 (QF3 ) 输出端通过电缆接至直流控制母线的正极 (+KM) 和负极 (一) , 并为保护和控制及通信 (即各支路经常性直流负载) 提供合格的直流工作电 源。 正常工作时监控器 (JKQ) 及电池管理系统 (BMS ) 采集直流电压、 电 流和电池状况, 并对工作整流模块 (M1〜MN) 和铁锂电池组 (B ) 进行日 常测量、监控和维护管理。绝缘检测仪(JYJC)采集直流电压和各支路(CT1〜 CTN) 数据进行系统绝缘状况监测, 并可在绝缘降低时发出报警并送至监控 器(JKQ) 。 铁锂电池组(B )完成充电后, 五级降压硅链装置在交流电源正 常时, 五级降压硅链装置的控制板使直流接触器 (K1〜K5 ) 全部触点打开, 五级降压硅链装置处于截止状态, 铁锂电池组 (Β ) 处于非浮充的热备用状 态, 随时可以为负荷供电。
[0027] c)、 当达到下列条件之一时: ①铁锂电池组(Β )为直流负荷供电(可 由分流器 FL电流方向判断) 后或②电池管理系统 (BMS ) 监测到铁锂电池 组 (Β ) 达到补充充电条件时, 监控器 (JKQ) 向充电整流模块 (Μ0 ) 发出 充电工作命令, 充电整流模块(M0)按设定的充电参数及程序完成对铁锂电 池组 (B) 的充电。
[0028]本系统的主要功能与技术指标:
主要功能: 提供一种非浮充锂电型站用直流电源系统, 旨在利用降压硅链装 置实现非在线浮充电运行方式, 避免铁锂电池组长期浮充电造成的容量衰退 和寿命降低。 本系统整流模块可带电热插拔, 具备完善的交、 直流保护功能 和间歇式充电方式, 在满足变电站保护、 控制、 事故照明等事故用电需要的 前提下, 延长了设备使用寿命周期, 提高了设备性价比。
[0029]非浮充锂电型站用直流电源系统技术指标:
系统容量: 200 ;
交流输入电压: 380V;
交流输入电流: 200A;
直流输出电流: 250A;
充电电压: 242V-252V;
充电电流: 20A-50A(0.1 C1(r0.25C10)
电压稳定度: 0.5%;
纹波系数: 0.5%
电流稳定度: 1%;
模块均流不平衡度: 3%
电池电压巡检精度: 0.2%;
绝缘监测支路数: 32路〜 768路;
电池数量: 70只 /组; 监测管理: 基于 CAN总线的 BMS;
铁锂电池额定电压: 3.2V/单体;
铁锂电池充电电压: 3.6V/单体 (20°C ) ;
铁锂电池放电终止电压: 2.55V/单体;
铁锂电池自放电量: 静置 28天<3% (20°C ) ;
铁锂电池循环寿命: 1500次。
[0030]主要装置与设备的参数:
磷酸亚铁锂电池: 型号 FP3291152, 哈尔滨光宇集团; 高频开关整流模块: 型号 HD22020-3 , 艾默生电源公司; 监控器 (内置 BMS): 型号 BMJ-FPC, 哈尔滨光宇电源公司; 绝缘监测装置: 型号 JYM-2, 艾默生电源公司;
交流空开: 型号 GM100M, 北京人民电器厂;
直流空开: 型号 GM400或 GM100 , 北京人民电器厂; 降压硅链: 型号 DT-2B/300A/35V, 大连旅顺和力电源设备厂; 分流器 (FL) : 200A/75mV, 0.5级。

Claims

^ m ^
1. 一种非浮充锂电型站用直流电源系统, 包括整流装置、 馈电电路、 铁锂电 池组, 其中馈电电路包括直流控制母线 KM, 所述整流装置的直流输出端连接 到所述直流控制母线 KM, 其特征在于,
还包括电池充电电路、 直流动力母线 HM、 多级降压硅链装置和监控器; 所述电池充电电路由交流空气开关 (¾、 充电整流模块 MQ和直流空气开关 QFQ 构成; 交流空气开关 一端连接到交流进线电源, 另一端连接到充电整流模块 Mo的输入端; 直流空气开关 QFQ—端连接到充电整流模块 MQ的输出端, 另一 端连接到直流动力母线 HM; 充电整流模块 M0的控制端连接到所述监控器; 所述多级降压硅链装置由多组硅链串联且每一组硅链两端并联一个旁路直流接 触器构成; 多级降压硅链装置的输入端连接到直流动力母线 HM, 输出端连接 到直流控制母线 KM, 控制端连接到所述监控器;
所述铁锂电池组通过熔断器 R1连接到直流动力母线 HM。
2. 如权利要求 1所述的非浮充锂电型站用直流电源系统, 其特征在于, 还包括 绝缘检测装置, 所述绝缘检测装置有多个检测端和一个输出端, 其中一个检测 端连接到直流动力母线 HM, 输出端连接到所述监控器。
3. 如权利要求 2所述的非浮充锂电型站用直流电源系统, 其特征在于, 所述馈 电电路还包括 j条直流输出支路, j=l、 2、 …… n; 所述直流输出支路通过直流 空气开关 Q连接到直流控制母线 KM, 每条直流输出支路上设置有一个绝缘检 测传感器 CTj, 每个绝缘检测传感器 CTj连接到所述绝缘检测装置的检测端。
4. 如权利要求 1所述的非浮充锂电型站用直流电源系统, 其特征在于, 所述铁 锂电池组和直流动力母线 HM之间还设置有一个分流器 FL, 分流器 FL的输出 端连接到所述监控器。
5. 如权利要求 1或 2或 3或 4所述的非浮充锂电型站用直流电源系统, 其特征 在于,所述整流装置包括 k个交流空气开关 Qk、 k个工作整流模块 Mk, k=l、 2、
3…… n和直流空气开关 QF3 ; 交流空气开关 Qk的一端连接到交流进线电源, 另 一端连接到工作整流模块 Mk的输入端; 所有工作整流模块 Mk的输出端并联连 接到直流空气开关 QF3的一端, 直流空气开关 QF3的另一端为所述整流装置的 直流输出端。
6. 如权利要求 5所述的非浮充锂电型站用直流电源系统, 其特征在于, 所述铁锂电池组由铁锂电池串联构成, 所述铁锂电池为磷酸亚铁锂电池, 型号 FP3291152 ;
所述充电整流模块 MQ和工作整流模块 Mk的型号为 HD22020-3 ;
所述多级降压硅链装置为五级降压硅链装置, 由五组硅链串联且每一组硅链两 端并联一个旁路直流接触器构成, 每一组硅链降压 7伏特; 所述五级降压硅链 装置型号为 DT-2B/300A/35V;
所述分流器型号为 200A/75mV, 0.5级;
所述监控器为基于 CAN总线监测系统, 型号为 BMJ-FPC。
7.如权利要求 2或 3所述的非浮充锂电型站用直流电源系统, 其特征在于, 所 述绝缘检测装置为绝缘检测仪, 型号为 JYM-2。
PCT/CN2014/074837 2013-04-08 2014-04-04 非浮充锂电型站用直流电源系统 WO2014166368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310119657.5 2013-04-08
CN201310119657.5A CN103219766B (zh) 2013-04-08 2013-04-08 非浮充锂电型站用直流电源系统

Publications (1)

Publication Number Publication Date
WO2014166368A1 true WO2014166368A1 (zh) 2014-10-16

Family

ID=48817344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074837 WO2014166368A1 (zh) 2013-04-08 2014-04-04 非浮充锂电型站用直流电源系统

Country Status (2)

Country Link
CN (1) CN103219766B (zh)
WO (1) WO2014166368A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219766B (zh) * 2013-04-08 2016-02-10 国家电网公司 非浮充锂电型站用直流电源系统
CN106253392B (zh) * 2016-08-20 2018-11-16 山东金煜电子科技有限公司 一种基于智能自诊断开路保护的电源系统
CN110098608A (zh) * 2019-03-12 2019-08-06 国网山西省电力公司晋中供电公司 变电站分布式直流电源系统
CN110797964A (zh) * 2019-05-29 2020-02-14 湖北中科能能源技术有限公司 一种应用于光伏发电站的直流电源电路
CN113555936B (zh) * 2021-07-26 2024-01-19 成都时代星光科技有限公司 一种无人机锂电池单电池智能管理电路及mcu控制器
CN114884168B (zh) * 2022-05-13 2023-05-02 国网湖北省电力有限公司宜昌供电公司 基于磷酸铁锂蓄电池的变电站直流系统
CN114884167B (zh) * 2022-05-13 2023-06-02 国网湖北省电力有限公司宜昌供电公司 基于磷酸铁锂蓄电池的变电站直流控制系统
CN116759664B (zh) * 2023-06-06 2024-01-09 国网江苏省电力有限公司泰州供电分公司 一种蓄电池组在线核容装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145949A1 (en) * 2005-12-28 2007-06-28 Ntt Facilities, Inc. Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
CN201113799Y (zh) * 2007-09-25 2008-09-10 宝山钢铁股份有限公司 组合式直流电压调整装置
CN102664454A (zh) * 2012-05-10 2012-09-12 四川电力科学研究院 一种基于铁锂电池的非浮充式变电站直流电源系统
CN202759284U (zh) * 2012-08-29 2013-02-27 华自科技股份有限公司 一种站用交直流一体化电源系统
CN103219766A (zh) * 2013-04-08 2013-07-24 国家电网公司 非浮充锂电型站用直流电源系统
CN203326621U (zh) * 2013-04-08 2013-12-04 国家电网公司 非浮充锂电型站用直流电源系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201887528U (zh) * 2010-11-24 2011-06-29 四川电力试验研究院 基于铁锂电池的变电站直流电源应急系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145949A1 (en) * 2005-12-28 2007-06-28 Ntt Facilities, Inc. Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
CN201113799Y (zh) * 2007-09-25 2008-09-10 宝山钢铁股份有限公司 组合式直流电压调整装置
CN102664454A (zh) * 2012-05-10 2012-09-12 四川电力科学研究院 一种基于铁锂电池的非浮充式变电站直流电源系统
CN202759284U (zh) * 2012-08-29 2013-02-27 华自科技股份有限公司 一种站用交直流一体化电源系统
CN103219766A (zh) * 2013-04-08 2013-07-24 国家电网公司 非浮充锂电型站用直流电源系统
CN203326621U (zh) * 2013-04-08 2013-12-04 国家电网公司 非浮充锂电型站用直流电源系统

Also Published As

Publication number Publication date
CN103219766B (zh) 2016-02-10
CN103219766A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2014166368A1 (zh) 非浮充锂电型站用直流电源系统
CN102664454B (zh) 一种基于铁锂电池的非浮充式变电站直流电源系统
CN201985554U (zh) 锂离子动力电池主动式自管理充电装置
WO2012068774A1 (zh) 基于铁锂电池的变电站直流电源应急系统
CN111404186B (zh) 一种配变动态增容智能储能装置及控制方法
CN103606944A (zh) 智能供电系统
CN203780389U (zh) 一种移动应急电源车
CN108155657A (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
CN106849283B (zh) 一种电池模组柔性连接保护装置
CN103683341A (zh) 一种储能系统蓄电池模块在线自动双向均衡装置
CN203326621U (zh) 非浮充锂电型站用直流电源系统
CN111864889B (zh) 铅酸蓄电池组开路保护不间断应急供电系统及供电方法
CN103117595B (zh) 分布式直流独立供电系统
CN206807150U (zh) 一种可扩展的组串式大规模储能系统
CN104901326A (zh) 控制棒驱动机构静态电源系统及其储能系统及其供电方法
CN201956683U (zh) 使用超级电容器组作为储能装置的直流电源
CN109586361A (zh) 一种锂电池储能供电系统
CN107632269A (zh) 通信蓄电池在线充放电测试系统
CN206992694U (zh) 一种直流电源系统
CN202550664U (zh) 一种基于铁锂电池的非浮充式变电站直流电源系统
CN110441709A (zh) 一种监控蓄电池和充电模块的变电站直流电源系统和监控方法
CN211930271U (zh) 一种用于配变增容的智能储能装置
CN204992750U (zh) 一种变电站通信终端不间断交直流供电系统
CN202435071U (zh) 安全放电装置
CN202103477U (zh) 直流电源控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782771

Country of ref document: EP

Kind code of ref document: A1