WO2014166293A1 - 采用纳米摩擦发电机的发电系统 - Google Patents

采用纳米摩擦发电机的发电系统 Download PDF

Info

Publication number
WO2014166293A1
WO2014166293A1 PCT/CN2013/091035 CN2013091035W WO2014166293A1 WO 2014166293 A1 WO2014166293 A1 WO 2014166293A1 CN 2013091035 W CN2013091035 W CN 2013091035W WO 2014166293 A1 WO2014166293 A1 WO 2014166293A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
insulating layer
friction generator
polymer insulating
circuit
Prior art date
Application number
PCT/CN2013/091035
Other languages
English (en)
French (fr)
Inventor
徐传毅
张勇平
赵豪
吴宝荣
郝立星
刘军锋
王卓
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310127234.8A external-priority patent/CN104104261B/zh
Priority claimed from CN201310127170.1A external-priority patent/CN104104260B/zh
Priority claimed from CN 201320212780 external-priority patent/CN203219206U/zh
Priority claimed from CN201310143712.4A external-priority patent/CN104113268B/zh
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2014166293A1 publication Critical patent/WO2014166293A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/32Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from a charging set comprising a non-electric prime mover rotating at constant speed

Definitions

  • the present invention relates to the field of nanotechnology, and more particularly to a power generation system employing a nano-friction generator.
  • Ocean power generation mainly refers to the use of energy contained in the ocean to generate electricity.
  • the energy of the ocean includes ocean currents, ocean heat, tidal energy and wave energy. Among them, tidal energy and wave energy are used.
  • Tidal refers to the phenomenon of periodic sea level rise and fall caused by changes in lunar gravity.
  • Tidal energy refers to the energy generated by seawater fluctuations and tidal currents. Waves are undulating motions caused by the gravity of wind and water. Can refer to the kinetic energy and potential energy of waves.
  • the object of the present invention is to solve the defects of the prior art, and to provide a power generation system using a nano-friction generator, which is used to solve the problem of large size, complicated structure and high production cost of the marine energy generator in the prior art, which is inconvenient. A problem that is widely promoted in daily life.
  • a marine energy power generation and solar power generation combined system using a nano friction generator comprising: a marine energy generator and an energy storage device; the marine energy generator includes at least one nano friction generator for converting mechanical energy into electrical energy; The device is coupled to the output of the nano-friction generator for storing electrical energy output by the nano-friction generator.
  • the power generation system using the nano friction generator provided by the invention realizes the collection and utilization of ocean energy such as wave energy and tidal energy, and the size of the power generation system can be flexibly customized, and the structure is simple, low in cost, and convenient in daily life. Promotion.
  • the power generation system using the nano friction generator provided by the invention not only saves energy, but also cleans and protects the environment. BRIEF abstract
  • Figures la and lb respectively show an internal cross-sectional view and a perspective view of an example 1 of a marine energy generator in a power generation system using a nano-friction generator provided by the present invention
  • Figure lc is a schematic view showing the structure in which a plurality of impact members are disposed inside the marine energy generator in the first example;
  • Figure Id shows a schematic structural view of a marine energy generator having a plurality of housings in the first example
  • Fig. 2 shows an interior of an example 2 of a marine energy generator in a power generation system using a nano-friction generator provided by the present invention. Cutaway view
  • 3a to 3d are structural views showing an example 3 of a marine energy generator in a power generation system using a nano-friction generator provided by the present invention
  • FIGS. 4a to 4d are structural views showing an example 4 of a marine energy generator in a power generation system using a nano-friction generator provided by the present invention
  • FIG. 5 is a schematic diagram of a circuit principle of an embodiment of a power generation system using a nano-friction generator according to the present invention.
  • FIG. 6 is a schematic diagram of a circuit principle of still another embodiment of a power generation system using a nano-friction generator according to the present invention.
  • FIG. 7a and 7b respectively show a schematic perspective view and a cross-sectional structural view of a first structure of a nano-friction generator
  • 8a to 8b are respectively a perspective structural view and a cross-sectional structural view of a second structure of a nano-friction generator
  • Figure 8c is a schematic perspective view showing the second structure of the nano friction generator having an elastic member as a support arm; 9a and 9b are respectively a perspective structural view and a cross-sectional structural view of a third structure of a nano-friction generator;
  • Fig. 10a and Fig. 10b respectively show a schematic perspective view and a cross-sectional structural view of a fourth structure of the nano friction generator.
  • the present invention provides a power generation system using a nano-friction generator as a core component.
  • the power generation system specifically includes a marine energy generator and an energy storage device.
  • the marine energy generator comprises at least one nano-friction motor for converting mechanical energy into electrical energy; the energy storage device is connected to the output of the nano-friction generator for storing electrical energy output by the nano-friction generator.
  • the working principle of the power generation system is: When the waves fluctuate, the nano-friction generator will generate mechanical deformation, thereby generating an AC pulse electric signal, and the energy storage device appropriately converts the AC pulse electric signal and stores it for external use. Use of equipment.
  • the invention also provides a power generation system formed by combining a marine power generation system and a solar power generation system.
  • the power generation system specifically includes a marine energy generator, a solar component, and an energy storage device.
  • the marine energy generator includes at least one nano-friction generator for converting mechanical energy contained in marine energy generated by the moving seawater into electrical energy when the seawater moves.
  • the ocean energy generated by the moving sea water mainly includes sea flowing energy, wave energy, tidal energy, sea water temperature difference energy and sea salt salt difference energy, among which, sea current energy, wave energy and tidal energy are mechanical energy (the sea water temperature difference energy can be Thermal energy, the difference in seawater salt can be chemical energy.
  • marine energy generators mainly use mechanical energy including sea flow energy, wave energy and/or tidal energy to cause mechanical deformation of the nano-friction generator to generate electricity.
  • the solar module is composed of a plurality of solar cells connected in series or in parallel to form at least two outputs of the solar module, each solar cell being a photoelectric conversion unit of a PN junction structure formed of a semiconductor material.
  • the energy storage device is coupled to the output of the nano-friction generator and at least two outputs of the solar module for storing electrical energy output by the nano-friction generator and electrical energy output by the solar module.
  • the working principle of the power generation system is: When there is tide or wave on the sea surface, the movement of the sea water will cause mechanical deformation of the nano-friction generator inside the ocean energy generator, thereby generating an alternating pulse electric signal, and the energy storage device will electrically pulse the alternating current.
  • the signal is properly converted and stored; and, under suitable conditions, the solar module can convert the light energy into electrical energy and store it in an energy storage device for use by an external electrical device.
  • the solar module is a device that uses solar energy to generate electricity.
  • the solar module consists of a plurality of solar cells connected in series or in parallel and forming at least two outputs of the solar module.
  • the solar cell is an optoelectronic semiconductor chip, which can output voltage and current in an instant as long as it is illuminated.
  • the solar cell is a photoelectric conversion unit of a PN junction structure formed of a semiconductor material, and when the sun shines on the semiconductor PN junction, a new hole-electron pair is formed, and under the action of the electric field of the PN junction, the photo-air is empty.
  • the hole flows to the P zone, and the photogenerated electrons flow to the N zone, and a current is formed after the circuit is turned on. Since the output current of a single solar cell is 4 ⁇ small, such a plurality of solar cells can output currents satisfying the storage requirements to the external circuit after being connected in series or in parallel.
  • the PN junction is a structure formed by doping a semiconductor material, or the PN junction is a structure of a semiconductor film or other thin film material.
  • the solar cell may be a crystalline silicon solar cell or a thin film solar cell.
  • the production cost of crystalline silicon solar cells is relatively low, but the equipment energy consumption and battery cost are high, the photoelectric conversion efficiency is high, and it is suitable for outdoor solar power generation; the production cost of thin film solar cells is high, but the equipment energy consumption and The cost of the battery is very low, the photoelectric conversion efficiency is lower than that of the crystalline silicon solar cell, but the weak light effect is very good, and it can also generate electricity under ordinary lighting.
  • the solar module may further include a protective body.
  • the protective body may be a protective plate, and for a thin film solar cell, the protective body may be a protective film.
  • the protective sheet as tempered glass as an example, the binder solar cell is bonded and fixed on the tempered glass, and the binder can be selected as EVA (ethylene-vinyl acetate copolymer), and the back sheet and the solar energy are passed through the binder.
  • the batteries are packaged together to form a solar module, wherein the backing plate functions as a seal, insulation and waterproof.
  • the marine energy generator is a device that generates power using wave energy and/or tidal energy.
  • the marine energy generator comprises: at least one nano-friction generator for converting mechanical energy into electrical energy and a casing accommodating at least one nano-friction generator, the casing having a cavity inside, the at least one nano-friction A generator is disposed within the cavity.
  • the above solar module can be fixed on the outer wall of the casing of the marine energy generator, thereby forming a power generation system combining ocean power generation and solar power generation.
  • Figures la and lb show an internal cross-sectional view and a perspective view, respectively, of an example 1 of a marine energy generator in a power generation system using a nano-friction generator provided by the present invention.
  • the marine energy generator includes a housing 111 shaped as a rectangular parallelepiped having a cavity 115 therein.
  • the housing 111 may also have other shapes, such as a cylindrical body (including a cylindrical body, a prismatic body, etc.), a polygonal body, and the like.
  • the interior of the cavity 115 has a first side wall and a second side wall which are parallel and opposite to each other.
  • a nano friction generator 112 is fixed on the first side wall by the fixing member 110, and the fixing member 110 is passed on the second side wall.
  • Another nano-friction generator 112 is fixed.
  • the fixing component 110 may be replaced by any component capable of fixing, for example, the fixing component 110 may be a fixing gasket, and one side of the fixing gasket is fixed on the first sidewall or the second sidewall.
  • a nano friction generator 112 is fixed to the other side of the fixed gasket.
  • the fixing gasket is usually made of an insulating material, and in order to further improve the power generation effect, the fixing gasket can also be made of a flexible material.
  • the inside of the housing 111 is also provided with an impact member 113.
  • the impact member 113 further includes: a guide rail 1132 disposed between the nano friction generator of the first side wall and the nano friction generator of the second side wall, and an impact capable of moving along the guide rail 1132 to collide with the nano friction generator Ball 1131.
  • the guide rail 1132 can be realized by a hollow conduit, and has a passage inside the hollow conduit, so that the impact ball 1131 can roll back and forth in the passage.
  • the rail 1132 can be fabricated in other forms. For example, a section of rail can be provided to enable the impact ball 1131 to move along the track without disengaging the track.
  • the guide rail 1132 is opposite to the first side wall or the second side wall.
  • the guide rail 1132 is opposite and perpendicular to the first side wall or the second side wall, so as to facilitate The impact ball 1131 can smoothly strike the nano friction generator.
  • the above-mentioned guide rail 1132 can be fixed inside the cavity by means similar to the fixing bracket, and in order to prevent the rail 1132 itself from unnecessarily squeezing the nano-friction generator, the nano-friction power generation on the guide rail 1132 and the first side wall can be
  • a predetermined guard interval is respectively set between the machine and the nano friction generator on the second side wall, that is, a certain distance between the two ends of the guide rail 1132 and the nano friction generators on the two side walls to prevent Contact with each other. This distance is such as to prevent contact between the rail 1132 and the nano-friction generator, and to ensure that the impact ball 1131 does not disengage from the rail when rolling to the edge of the rail.
  • the protective spacer 114 may be further disposed on the surface of the nano-friction generator that is struck by the impact member.
  • a plurality of nano friction generators may be respectively disposed on the first sidewall and the second sidewall of the housing 111, and correspondingly, perpendicular to the first sidewall and the second sidewall
  • the corresponding nano-friction generator is provided with a plurality of impact members 113, and each of the impact members 113 further includes a guide rail 1132 and an impact ball 1131.
  • the number of the impact members 113 may be the same as the number of the nano friction generators on the first sidewall or the second sidewall, that is, each of the two nano-triboelectric power generations on the first sidewall and the second sidewall
  • There is an impact component between the machines as shown in Figure lc.
  • the number of impact members 113 may be more than the number of nano-friction generators on the first side wall or the second side wall, ie: two opposite nano-frictions on the first side wall and the second side wall A plurality of impact members are arranged between the generators to achieve a more intense impact effect.
  • the number of the housings 111 in the present example may also be plural. As shown in FIG. 1D, the plurality of housings may be arranged in a certain order, and the plurality of housings 111 are connected in series or in parallel by wires 116. To further improve the power generation effect.
  • the nano-friction generators inside the plurality of housings are connected by a cable 117.
  • the nano friction generator is disposed only on the first side wall and the second side wall of the cavity, and only on the first side wall and a guide rail is disposed in a vertical direction of the second side wall, and therefore, the moving direction of the impact ball is limited to the first side wall and the The vertical direction of the two side walls. In this way, when the sloshing direction of the marine energy generator is in a fixed direction, the power generation effect is more prominent.
  • the two other sidewalls of the cavity may be further a nano friction generator is disposed on each of the side walls, and correspondingly, one or more guide rails and impact balls are disposed along a direction parallel to the first side wall and the second side wall, wherein, parallel to the first side wall and The rails of the second side wall are located on different planes from the rails perpendicular to the first side wall and the second side wall and are perpendicular to each other, that is, in a perpendicular relationship. In this way, electrical energy can be generated when the ocean energy generator is swaying in different directions.
  • a solar module may be disposed on the outer wall of the casing of the marine energy generator, or a solar module may be separately provided to form a power generation system combining ocean power generation and solar power generation.
  • Fig. 2 is an internal cross-sectional view showing an example 2 of a marine energy generator in a power generating system using a nano friction generator provided by the present invention.
  • the marine energy generator includes a casing 211 having a rectangular parallelepiped shape, and the casing 211 has a cavity inside.
  • the housing 211 may also have other shapes, such as a cylindrical body (including a cylindrical body, a prismatic body, etc.), a polygonal body, and the like.
  • the interior of the cavity has a first side wall and a second side wall that are parallel and opposite to each other.
  • a nano-friction generator 212 is fixed by a fixing member 210, and fixed on the second side wall by a fixing member 210.
  • the fixing component 210 can be implemented by any component capable of fixing.
  • the fixing component 210 can be a fixing pad, and one side of the fixing pad is fixed on the first sidewall or the second sidewall.
  • a nano friction generator 212 is fixed to the other side of the fixed gasket.
  • the fixing gasket is usually made of an insulating material, and in order to further improve the power generation effect, the fixing gasket can also be made of a flexible material.
  • the inside of the housing 211 is also provided with an impact member.
  • the impact member further includes a traction member 2231 and an impact ball 2232.
  • the first end of the traction member 2231 is a fixed end fixed on the top wall of the cavity, and the second end of the traction member 2231 is a free end to which the impact ball 2232 is connected.
  • the traction member 2231 can be realized by a traction wire, or can be realized by other components capable of pulling.
  • the impact ball 2232 When the marine energy generator is stationary, the impact ball 2232 is vertically suspended at the bottom of the traction member 2231. When the marine energy generator moves with waves or tides, the impact ball 2232 will randomly oscillate inside the cavity, thereby impinging on the nano-friction generators located on the first side wall and the second side wall.
  • the impact of the impact component on the nano-friction generator can be achieved when the ocean energy generator sways with waves and tides, thereby causing the nano-friction generator to convert mechanical energy into electrical energy.
  • a protective spacer 224 may be further disposed on the surface of the nano-friction generator that is struck by the impact member.
  • the length of the traction member 2231 is greater than the distance between the top end of the nano friction generator and the first end of the traction member 2231, which is smaller than that of the nano friction generator. The distance between the bottom end and the first end of the traction member 2231.
  • the first end of the traction member can be fixed at the center of the top wall of the cavity to ensure an effective impact on each of the nano-friction generators.
  • nano-friction generator only on the first side wall of the cavity or only on the second side wall, or also on the remaining two side walls of the cavity (ie A nano-friction generator is disposed on two side walls perpendicular to the first side wall and the second side wall.
  • the nano-friction generator may be disposed on any one or more of the four side walls of the cavity The invention is not limited thereto.
  • a nano friction generator can be disposed on each side wall of the cavity.
  • a plurality of nano-friction generators may be further disposed on each side wall of the cavity.
  • a plurality of impact members may be disposed inside the cavity.
  • the first end of the traction member in each of the impact members may be fixed on the top wall of the cavity according to a certain rule, for example.
  • the impact members are three, an orthogonal triangle may be formed between the first ends of the traction members in the respective impact members, and by adjusting between each vertex of the equilateral triangle and the nano friction generator on the side wall The distance to achieve the best impact.
  • the moving direction of the striking member is random, the ocean can generate electricity.
  • the machine is especially suitable for situations where the direction of the sway is in a non-fixed direction.
  • a solar module may be disposed on the outer wall of the casing of the marine energy generator, or a solar module may be separately provided to form a power generation system combining ocean power generation and solar power generation.
  • 3a to 3d are structural diagrams showing an example 3 of a marine energy generator in a power generation system using a nano-friction generator provided by the present invention.
  • 3a shows a perspective structural view of the marine energy generator in the present example at one viewing angle
  • FIG. 3b shows a three-dimensional structural view of the marine energy generator in the present example from another viewing angle
  • a structural view of a section of the marine energy generator in the present example is shown
  • Fig. 3d shows a structural view of another section of the marine energy generator in the present example.
  • the marine energy generator comprises a housing 31 1 in the shape of a rectangular parallelepiped, the housing 31 1 having a cavity inside.
  • the housing 31 1 may also have other shapes, such as a cylindrical body (including a cylindrical body, a prismatic body, etc.), a polygonal body, and the like.
  • the interior of the cavity has six inner walls.
  • the six inner walls of the interior of the cavity are divided into four side walls on the side, a top wall on the top surface, and a bottom on the bottom surface according to the direction in which the housing is placed. wall.
  • the elastic member may include the first elastic member 3151 and the second elastic member 3152, wherein the first elastic member 3151 and the second elastic member 3152 may both adopt a spring.
  • Other forms of elastic members such as rubber bands, can also be used.
  • the first end of the first elastic member 3151 is fixed on an inner wall of the cavity, and the first end of the second elastic member 3152 is fixed on the other inner wall of the cavity, the second end of the first elastic member 3151 and the second elastic
  • a nano-friction generator 312 is fixedly coupled between the second ends of the pieces 3152.
  • the nano-friction generator 312 is fixed between the two inner walls of the cavity, which are usually side walls (which may actually include a top wall or a bottom wall), and the two inner walls The two are usually parallel to each other. As shown in Figures 3a to 3d, each nano-friction generator is fixed to two mutually parallel side walls of the cavity by two elastic members. In FIGS.
  • the four side walls of the cavity are sequentially referred to as a first side wall, a second side wall, a third side wall, and a fourth side wall, wherein the first side wall and the third side wall are respectively Parallel to each other, the second side wall and the fourth side wall are parallel to each other, and the first side wall and the third side wall are perpendicular to the second side wall and the fourth side wall.
  • first side wall and the third side wall are respectively Parallel to each other
  • the second side wall and the fourth side wall are parallel to each other
  • the first side wall and the third side wall are perpendicular to the second side wall and the fourth side wall.
  • the elastic member is provided with four nano-friction generators, and two nano-friction generators (one of which is not shown) are disposed between the second side wall and the fourth side wall by two mutually parallel elastic members, wherein
  • the four mutually parallel elastic members may also be referred to as a first group of elastic members, and the two mutually parallel elastic members may also be referred to as a second group of elastic members, between the first group of elastic members and the second group of elastic members.
  • Vertical and staggered In this way, a nano-friction generator is placed between the respective side walls of the cavity.
  • the respective nano-friction generators may be arranged in other manners.
  • one or more of the nano-friction generators may be respectively disposed through two elastic members. On any two adjacent and mutually perpendicular side walls (eg, the first side wall and the second side wall).
  • the present invention does not limit the number of nano-friction generators in the housing and the arrangement of the nano-friction generators in the cavities.
  • An impact member 313 is also disposed inside the housing. Specifically, the impact member 313 is a movable member placed inside the cavity and is free to move within the cavity. As shown in Figures 3a to 3d, the impact member 313 has an elliptical bottom portion 3131 and a spherical top portion 3132, wherein the bottom portion 3131 and the top portion 3132 are movable free ends, in other words, the impact member 313 is directly The bottom 3131 is placed on the bottom wall of the cavity so that the bottom 3131 of the impact member is not fixed to the bottom wall of the cavity.
  • the impact member when the marine power generator is shaken, the impact member will swing back and forth inside the cavity to impinge on the nano-friction generator 312 due to inertia.
  • the impact member can be set to the shape of a tumbler, and therefore, the volume of the bottom of the impact member is larger than the volume of the top portion, and the density of the bottom portion is greater than the density of the top portion.
  • the impact of the impact component on the nano-friction generator can be achieved when the ocean energy generator sways with waves and tides, thereby causing the nano-friction generator to convert mechanical energy into electrical energy. Since the nano-friction generator is fixed by the elastic member in the invention, when the impact member hits the nano-friction generator, the elastic member will be deformed and oscillated back and forth, thereby driving the nano-friction generator to continuously oscillate, thereby continuously striking and nano-friction. The adjacent inner wall of the generator achieves the effect of continuous power generation.
  • a protective spacer may be further disposed on the surface of the nano-friction generator that is struck by the impact member.
  • a protective gasket is further disposed on the surface of the rice friction generator opposite to the inner wall of the casing.
  • the nano-friction generator can also be plastically sealed.
  • the size of the impact member can be flexibly set as needed. Excessive size of the impact member will result in inflexibility of the impact member when moving inside the cavity; too small an impact member will cause the impact member to fail to hit all of the nano-friction generators.
  • the bottom dimension of the striking member may be set to be slightly smaller than the length of one inner wall of the cavity, and the overall height of the striking member is set to be slightly smaller than the height of one inner wall of the cavity. Accordingly, when the nano-friction generator is provided, the nano-friction generator can be disposed at a portion where the impact member is easily collided, for example, at a position closer to the top of the striking member.
  • the impact member can also be implemented in other forms.
  • it can also be realized by a collision ball placed inside the cavity and freely rolling.
  • the nano friction generator can be disposed on the four side walls to be The position where the impact ball hits, and the set height of the nano friction generator can be adjusted according to the diameter of the impact ball to optimize the impact effect.
  • the shape of the striking member is not limited to the above-described several modes, and those skilled in the art can also variously deform the shape of the striking member as needed, as long as the impact effect can be achieved.
  • the impact member may also be square, diamond or triangular.
  • the number of impact members may be plural, in order to make the impact portion more comprehensive.
  • the marine energy generator is particularly suitable for the case where the swaying direction is a non-fixed direction.
  • a solar module may be disposed on the outer wall of the casing of the marine energy generator, or a solar module may be separately provided to form a power generation system combining ocean power generation and solar power generation.
  • the marine energy generator comprises a housing 411 having at least one cavity, the longitudinal section of the housing being wavy, and each cavity of the housing accommodating at least A nano-friction generator 412.
  • the housing having a longitudinally wavy shape can be realized by an integral part, for example, directly processing a housing having a wavy shape in a longitudinal section, for example, the housing shown in Figures 4a and 4b is composed of a four-section sheet.
  • the integral part of the material (which can be flexibly selected) is realized, and each adjacent two sections of the sheet are integrated by a certain process, and the inner angle between each adjacent two sections of sheets is at a first preset angle, the first pre-predetermined The angle can be set as needed, for example, it can be set to 45 degrees or 60 degrees.
  • the longitudinal section of the integral part of the four-section sheet material is wave-shaped.
  • Each segment of the panel has one or more cavities inside, and each cavity interior contains one or more nano-friction generators.
  • the housing having a wavy longitudinal section may also be realized by a combination of a plurality of discrete members, for example, a plurality of sub-housings having a rectangular shape, for example, four sub-casings are included in Figs. 4a and 4b. Then, each adjacent two sub-housings are fixedly connected by a fixing component, and an inner angle between each adjacent two sub-housings is at a first preset angle, and the first preset angle can be set as needed For example, it can be set to 45 degrees or 60 degrees. Thereby, the overall longitudinal section of the four sub-housings fixed by the fixing members is wavy.
  • Each of the sub-shells has one or more cavities inside, and each cavity interior contains one or more nano-friction generators.
  • the fixing member of the stator housing may be, for example, a hinge, a bolt, and/or a hinge, as long as it can function as a fixing.
  • the following describes the placement of the nano-friction generator inside the cavity of the housing.
  • the nano-friction generator inside the cavity can be placed directly inside the cavity and is not fixed to any inner wall of the cavity, and the size of the nano-friction generator can be made slightly smaller than the size of the interior of the cavity, thus, in the ocean
  • the nano-friction generator inside the cavity will also sway in the cavity and form an impact on the inner wall of the cavity, resulting in a nano-friction generator. Mechanical deformation occurs to generate electrical energy.
  • the nano-friction generator inside the cavity may be fixed inside the cavity, for example, the nano-friction generator is fixed to at least one inner wall of the cavity, such that when the casing of the marine energy generator is subjected to vibration of seawater, it is empty
  • the nano-friction generator inside the cavity will vibrate with the vibration of the casing, causing the nano-friction generator to mechanically deform, thereby generating electrical energy.
  • the size of the nano-friction generator can be matched with the size of the interior of the cavity, and at the same time, the six surfaces of the nano-friction generator can be further fixed on the six inner walls of the interior of the cavity, respectively.
  • the body is subject to vibration or When tapping, the nano-friction generator inside the cavity is squeezed, causing the nano-friction generator to mechanically deform, thereby generating electrical energy.
  • the housing can be made of a flexible material such as rubber.
  • the casing is soft and easily deformed, so that when subjected to tapping or impact, the internal nano-friction generator can be squeezed better, causing the nano-friction generator to be deformed, thereby improving power generation efficiency.
  • the housing 411 has a second predetermined angle with the horizontal plane, and the second preset angle can be flexibly set as needed, for example, 30 degrees or 45 degrees, etc. That is, the casing is inclined, and as shown in Fig. 4d, the casing in the inclined state constitutes a sloped stepped shape.
  • the above-mentioned slope can be formed by placing one end of the casing on the coast and placing the other end of the casing on the rock on the shore, or by a certain fixing device such as a rope or a support frame. And so on to achieve the above slope.
  • Marine energy generators with slopes are especially suitable for power generation on beaches or beaches. When used on beaches or on the sea, you can use tidal energy to generate electricity. For example, when the sea tide rises, the sea water will rise along the slope-like ocean energy generator, causing strong oscillations and slaps on the slope-like ocean energy generator; when the seawater ebbs, the sea water will follow the slope-like ocean. The generator can be retracted, which will also cause strong shocks and slaps on the sloped ocean energy generator. In short, the shell of the marine energy generator has a slope, so that it can better conform to the direction of movement of the seawater, maximize the impact force of the seawater, and thus optimize the power generation efficiency of the nano-friction generator.
  • a solar module may be disposed on the outer wall of the casing of the marine energy generator, or a solar module may be separately provided to form a power generation system combining ocean power generation and solar power generation.
  • the number of the housings may be plural, and when there are a plurality of nano friction generators, the plurality of nano friction generators may be connected in series or in parallel, wherein, when the nano friction power generation When the machines are connected in parallel, the output intensity of the current can be increased, and the nano friction generator can be increased in series.
  • the output size of the voltage can solve the problem that the current or voltage output of a single nano-friction generator cannot meet the demand.
  • the above four examples are merely exemplary structures of the marine power generator provided by the present invention, and those skilled in the art can also make various modifications to the above four examples.
  • the elastic members in the third example are replaced with the fixing members in the first and second examples, or the fixed members in the first and second examples are replaced with the elastic members in the third embodiment.
  • Fig. 5 is a schematic view showing the circuit principle of an embodiment of a power generating system using a nano-friction generator according to the present invention.
  • the energy storage device includes: a rectifier circuit 30, a first switch control circuit 31, a first DC/DC control circuit 32, a tank circuit 33 and a second switch control circuit 41, and a second DC/DC control. Circuit 42.
  • the rectifier circuit 30 is connected to the output end of the nano-friction generator 10, and the rectifier circuit 30 receives the AC pulse electrical signal output by the nano-friction generator 10, and rectifies the AC pulse electrical signal to obtain a DC voltage U1;
  • the circuit 31 is connected to the rectifier circuit 30, the first DC/DC control circuit 32 and the tank circuit 33.
  • the first switch control circuit 31 receives the DC voltage U1 output by the rectifier circuit 30 and the instantaneous charging voltage U2 fed back by the tank circuit 33.
  • the first switch control circuit 31 is connected to the storage circuit 33.
  • the first DC/DC control circuit 32 converts the DC voltage U1 outputted by the rectifier circuit 30 according to the first control signal S1 outputted by the first switch control circuit 31.
  • the tank circuit 33 is charged to obtain the instantaneous charging voltage U2.
  • the second switch control circuit 41 is connected to the output end of the solar module 40, the second DC/DC control circuit 42 and the tank circuit 33, and the second switch control circuit 41 receives the DC voltage U3 output from the solar module 40 and the feedback from the tank circuit 33.
  • the instantaneous charging voltage U2 obtains the second control signal S2 according to the DC voltage U3 and the instantaneous charging voltage U2, and outputs the second control signal S2 to the second DC/DC control circuit 42.
  • the second DC/DC control circuit 42 is connected to the output of the solar module 40, the second switch control circuit 41 and the tank circuit 33, and the second DC/DC control circuit 42 is The second control signal S2 outputted by the second switch control circuit 41 converts the DC voltage U3 outputted by the solar module 40 to the storage circuit 33 for charging, and obtains the instantaneous charging voltage U2.
  • the operation of the circuit shown in Fig. 5 is: When the ocean can act on the nano-friction generator 10, the nano-friction generator 10 is mechanically deformed to generate an alternating-pulse electrical signal. After receiving the AC pulse electrical signal, the rectifier circuit 30 rectifies the AC pulse to obtain a unidirectional pulsating DC voltage U1.
  • the first switch control circuit 31 receives the DC voltage U1 outputted by the rectifier circuit 30 and the instantaneous charging voltage U2 fed back from the tank circuit 33, and compares the DC voltage U1 and the instantaneous charging voltage U2 with the full-charge voltage U0 of the tank circuit 33, respectively.
  • the first switch control circuit 31 If the DC voltage U1 is higher than the full voltage U0 and the instantaneous charging voltage U2 is lower than the full voltage U0, the first switch control circuit 31 outputs the first control signal S1, and controls the first DC/DC control circuit 32 to output the rectifier circuit 30. The DC voltage U1 is stepped down, and the output is charged to the energy storage circuit 33 to obtain the instantaneous charging voltage U2.
  • the first switch The control circuit 31 outputs a first control signal S1, and controls the first DC/DC control circuit 32 to perform a step-up process on the DC voltage U1 output from the rectifier circuit 30, and outputs it to the tank circuit 33 for charging to obtain an instantaneous charging voltage U2; If the instantaneous charging voltage U2 is equal to or shorter than the full voltage U0, regardless of the DC voltage U1 being higher or lower than the full voltage U0, the first switching control circuit 3 1 outputting the first control signal S1, controlling the first DC/DC control circuit 32 to stop charging the tank circuit 33.
  • the solar module 40 converts the light energy into DC power and outputs a DC voltage U3.
  • the second switch control circuit 41 receives the DC voltage U3 outputted by the solar module 40 and the instantaneous charging voltage U2 fed back from the tank circuit 33, and compares the DC voltage U3 and the instantaneous charging voltage U2 with the full voltage U0 of the tank circuit 33, respectively. If the DC voltage U3 is higher than the full voltage U0 and the instantaneous charging voltage U2 is lower than the full voltage U0, the second switch control circuit 41 outputs the second control signal S2, and controls the second DC/DC control circuit 42 to output the solar module 40.
  • the DC voltage U3 is stepped down, and the output is charged to the energy storage circuit 33 to obtain the instantaneous charging voltage U2. If the DC voltage U3 is lower than or equal to the full voltage U0 and the instantaneous charging voltage U2 is lower than the full voltage U0, the second switch is controlled.
  • the circuit 41 outputs a second control signal S2, and controls the second DC/DC control circuit 42 to perform a step-up process on the DC voltage U3 outputted by the solar module 40, and outputs it to the tank circuit 33 for charging to obtain an instantaneous charging voltage U2;
  • the charging voltage U2 is equal to or shorter than the full voltage U0, regardless of whether the DC voltage U3 is higher or lower than the full voltage U0, and the second switch is controlled at this time.
  • Circuit 41 output The second control signal S2 controls the second DC/DC control circuit 42 to stop charging the tank circuit 33.
  • the above control method is only a specific example, and the present invention does not limit this, and other control methods can also be used to charge the energy storage
  • the energy storage circuit 33 may be an energy storage component such as a lithium ion battery, a nickel hydrogen battery, a lead acid battery, or a super capacitor.
  • the power generation system shown in Figure 5 is characterized by the use of solar modules and nano-friction generators to simultaneously charge the energy storage circuit, wherein the nano-friction generator collects wave energy and/or tidal energy, and the solar modules collect solar energy, these two high efficiency
  • the systems are stacked together to increase the efficiency of the entire system.
  • nano-friction generators can convert wave energy and/or tidal energy into electrical energy. Because of the high power generation efficiency of nano-friction generators, the entire ocean energy generator has high power generation efficiency. Together with an efficient design structure, an optimal power generation efficiency is achieved.
  • the core components of the power generation system are easy to produce, and the shape and size can be processed to miniaturization, miniaturization of the power generation system, and processing to a larger size for high-power generation.
  • the weight of the entire power generation system is reduced, and the cost is greatly reduced.
  • Fig. 6 is a schematic view showing the circuit principle of still another embodiment of a power generating system using a nano-friction generator according to the present invention.
  • the energy storage device includes: a first switch control circuit 51, a rectification circuit 52, a switch circuit 53, a second switch control circuit 54, a DC/DC control circuit 55, and an energy storage circuit 56.
  • the first switch control circuit 51 receives the DC voltage U4 output from the solar module 50, and outputs a control signal S3 for controlling whether the nano-friction generator operates or not to the nano-friction generator 10 according to the DC voltage U4.
  • the rectifier circuit 52 is connected to the output end of the nano-friction generator 10, and the rectifier circuit 52 receives the AC pulse electrical signal output from the nano-friction generator 10, and rectifies the AC pulse electrical signal to obtain a DC voltage U5.
  • the control terminal of the switching circuit 53 is connected to the output of the solar module 50, and the input/output terminal of the switching circuit 53 is controlled to communicate with the output terminal of the solar module 50 or the rectifier circuit 52 in accordance with the DC voltage U4 output from the solar module 50.
  • the DC voltage U6 outputted from the input/output terminal of the switching circuit 53 is equal to U4; if the input/output terminal of the switching circuit 53 and the rectifier circuit 52 is connected, then the DC voltage U6 outputted from the input/output terminal of the switching circuit 53 is equal to U5.
  • the second switch control circuit 54 is connected to the input/output terminal of the switch circuit 53, the DC/DC control circuit 55 and the tank circuit 56, and the second switch control circuit 54 receives the DC voltage U6 output from the input/output terminal of the switch circuit 53 and The instantaneous charging voltage U7 fed back from the tank circuit 56 obtains the control signal S4 based on the DC voltage U6 and the instantaneous charging voltage U7, and outputs the control signal S4 to the DC/DC control circuit 55.
  • the DC/DC control circuit 55 is connected to the input/output terminal of the switch circuit 53, the second switch control circuit 54, and the tank circuit 56, and the input/output terminal of the switch circuit 53 is controlled according to the control signal S4 output from the second switch control circuit 54.
  • the output DC voltage U6 is converted and processed and output to the tank circuit 56 for charging, and the instantaneous charging voltage U7 is obtained.
  • the circuit of Figure 6 operates on the principle that when solar light impinges on the solar module 50, the solar module 50 converts the light energy into DC power and outputs a DC voltage U4.
  • the control terminal of the switch circuit 53 and the first switch control circuit 51 receive the DC voltage U4 at the same time, and compare the DC voltage U4 with the operating voltage U pre-configured in the switch circuit 53 and the first switch control circuit 51, if U4 is greater than or equal to U, and the switching circuit 53 controls its input/output terminal to communicate with the output terminal of the solar module 50, while the first switch control circuit 51 outputs to the nano-friction generator 10 for controlling the stop of the nano-friction generator 10.
  • the operational control signal S3 if U4 is smaller than U, the first switch control circuit 51 outputs a control signal S3 for controlling the operation of the nano-friction generator 10 to the nano-friction generator 10, while the switch circuit 53 controls its input/ The output is in communication with the rectifier circuit 52.
  • the second switch control circuit 54 receives the DC voltage U6 outputted from the input/output terminal of the switch circuit 53 and the instantaneous charging voltage U7 fed back from the tank circuit 56, and respectively fills the DC voltage U6 and the instantaneous charging voltage U7 with the tank circuit 56.
  • the voltage U0 is compared.
  • the second switch control circuit 54 If the DC voltage U6 is higher than the full voltage U0 and the instantaneous charging voltage U7 is lower than the full voltage U0, the second switch control circuit 54 outputs a control signal S4 to control the DC/DC control circuit 55 to switch the circuit 53.
  • the DC voltage U6 outputted from the input/output terminal is stepped down, and outputted to the energy storage circuit 56 for charging to obtain the instantaneous charging voltage U7.
  • the second switch control circuit 54 outputs a control signal S4, and controls the DC/DC control circuit 55 to perform a step-up process on the DC voltage U6, and outputs it to the tank circuit 56 for charging to obtain an instantaneous charging voltage U7; and if the instantaneous charging voltage U7 Equal to or shortly higher than the full voltage U0, regardless of the DC voltage U6 is higher or lower than the full voltage U0, at this time, the second switch control circuit 54 outputs control Signal S4, the control DC / DC control circuit 55 to stop power storage for the Road 56 is charged.
  • the above control method is only a specific example, and the present invention does not limit this, and other control methods can also be used to charge the energy storage circuit.
  • the energy storage circuit 56 may be an energy storage component such as a lithium ion battery, a nickel hydrogen battery, a lead acid battery, or a super capacitor.
  • the power generation system shown in Figure 6 is characterized by alternating solar modules and nano-friction generators for charging circuits, where the nano-friction generator collects wave energy and/or tidal energy, and the solar modules collect solar energy.
  • This kind of circuit design is flexible and can be automatically switched according to the actual situation.
  • the solar module is used to charge the energy storage circuit, and the nano friction generator is stopped, which extends the use of the nano friction generator and the rectifier circuit. Lifetime; In the case of insufficient solar energy, the nano-friction generator is used to charge the energy storage circuit, which greatly improves the power generation efficiency of the whole system.
  • the first structure of a nano-friction generator is shown in Figures 7a and 7b.
  • 7a and 7b are respectively a perspective structural view and a cross-sectional structural view of a first structure of a nano-friction generator.
  • the nano-friction generator includes: a first electrode 61, a first polymer insulating layer 62, and a second electrode 63 which are sequentially stacked.
  • the first electrode 61 is disposed on the first side surface of the first polymer insulating layer 62; and the second side surface of the first polymer insulating layer 62 is in contact with the surface of the second electrode 63 and Charge is induced at the second electrode 63 and the first electrode 61. Therefore, the first electrode 61 and the second electrode 63 described above constitute two output ends of the nano friction generator.
  • a nanostructure 64 is further provided on the second side surface of the first polymer insulating layer 62 (i.e., the surface opposite to the second electrode 63). Therefore, when the nano-friction generator is pressed, the opposing surfaces of the first polymer-polymer insulating layer 62 and the second electrode 63 can better contact the friction and are induced at the first electrode 61 and the second electrode 63. More charge. Since the second electrode 63 is mainly used for rubbing with the first polymer insulating layer 62, the second electrode 63 may also be referred to as a friction electrode.
  • the micro-nano structure 64 can adopt the following two possible implementations.
  • the first way is that the micro-nano structure is a very small concave-convex structure of micrometer or nanometer.
  • the uneven structure can increase frictional resistance and improve power generation efficiency.
  • the relief structure can be formed directly during film preparation. It is also possible to form an irregular concavo-convex structure on the surface of the first polymer insulating layer by a grinding method.
  • the uneven structure may be a concave-convex structure of a semicircular shape, a striped shape, a cubic shape, a quadrangular pyramid shape, or a cylindrical shape.
  • the micro/nano structure is a nano-scale pore structure
  • the material used for the first polymer insulating layer is preferably polyvinylidene fluoride (PVDF), and the thickness thereof is 0.5-1.2 mm (preferably 1.0 mm).
  • a plurality of nanopores are disposed on a surface of the second electrode.
  • the size of each nanopore that is, the width and depth, can be selected according to the needs of the application.
  • the preferred size of the nanopore is: a width of 10-100 nm and a depth of 4-50 ⁇ m.
  • the number of nanopores can be adjusted according to the required output current value and voltage value.
  • the nanopores are uniformly distributed with a pore spacing of 2-30 ⁇ m, and more preferably a uniform distribution of average pore spacing of 9 ⁇ m.
  • the energy storage device constitutes an external circuit of the nano friction generator, and the two output ends of the nano friction generator are equivalent to being The external circuit is connected.
  • the metal rubs against the polymer, and the metal is more likely to lose electrons. Therefore, the friction between the metal electrode and the polymer can improve the energy output. Therefore, correspondingly, in the nano-friction generator shown in FIGS.
  • the second electrode is required to be rubbed as a friction electrode (ie, metal) with the first high-molecular polymer, so that the material thereof may be selected from metal or Alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy may be an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum alloy , copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • the metal may be gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium
  • the first electrode may be selected from a metal or an alloy.
  • the metal can be gold, Silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys may be aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese Alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy, may also be selected from indium tin oxide, graphene, silver Non-metallic materials such as nanowire films.
  • the first polymer insulating layer and the second electrode are directly opposed to each other and pasted together by a tape on the outer side, but the present invention is not limited thereto.
  • a plurality of elastic members such as springs, may be disposed between the first polymer insulating layer and the second electrode, and the springs are distributed on the outer edges of the first polymer insulating layer and the second electrode for forming the first An elastic support arm between the polymer polymer insulating layer and the second electrode.
  • the nano-friction generator When an external force acts on the nano-friction generator, the nano-friction generator is squeezed, and the spring is compressed, so that the first polymer-polymer insulation layer contacts the second electrode to form a friction interface; when the external force disappears, the spring bounces, so that The first polymer insulating layer is separated from the second electrode, and the nano-friction generator is restored to its original state.
  • the second structure of the nano-friction generator is shown in Figures 8a and 8b.
  • 8a and 8b are respectively a perspective structural view and a cross-sectional structural view showing a second structure of the nano friction generator.
  • the nano-friction generator includes: a first electrode 71, a first polymer insulating layer 72, a second polymer insulating layer 74, and a second electrode 73 which are sequentially stacked.
  • the first electrode 71 is disposed on the first side surface of the first polymer insulating layer 72; the second electrode 73 is disposed on the first side surface of the second polymer insulating layer 74; The second side surface of the high molecular polymer insulating layer 72 is in contact with the second side surface of the second polymer insulating layer 74 and induces electric charges at the first electrode 71 and the second electrode 73.
  • the first electrode 71 and the second electrode 73 constitute two output ends of the nano friction generator.
  • At least one of the two faces disposed opposite to each other of the first polymer-polymer insulating layer 72 and the second polymer-polymer insulating layer 74 is provided with a micro-nano structure.
  • a micro-nano structure 75 is provided on the surface of the first polymer insulating layer 72. Therefore, when the nano-friction generator is squeezed, the opposing surfaces of the first polymer insulating layer 72 and the second polymer insulating layer 74 can better contact the friction, and at the first electrode 71 and the second More charge is induced at the electrode 73.
  • nano-friction generator shown in Figures 8a and 8b is similar to that of the nano-friction generator shown in Figures 7a and 7b. The only difference is that when the layers of the nano-friction generator shown in Figs. 8a and 8b are pressed, the surfaces of the first polymer insulating layer 72 and the second polymer insulating layer 74 rub against each other. To generate static charge. Therefore, the working principle of the nano-friction generator shown in FIG. 8a and FIG. 8b will not be repeated here.
  • the nano-friction generator shown in Figs. 8a and 8b mainly generates an electric signal by friction between a polymer (first polymer polymer insulating layer) and a polymer (second polymer insulating layer).
  • the material used for the first electrode and the second electrode may be indium tin oxide, graphene, silver nanowire film, metal or alloy, wherein the metal may be gold, silver, platinum, palladium, aluminum, nickel, Copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys may be aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys , cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the first polymer insulating layer and the second polymer insulating layer are respectively selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, and poly Amide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(diphenylene terephthalate film) , cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyfluorene film, methacrylate film, polyvinyl alcohol film , polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane flexible sponge film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol film, neoprene film, D
  • polyimide film ani
  • the materials of the first polymer insulating layer and the second polymer insulating layer may be the same or different. However, if the two layers of polymer insulation are made of the same material, the amount of charge that causes triboelectric charging is small. Therefore, it is preferable that the material of the first polymer insulating layer and the second polymer polymer insulating layer are different.
  • the first polymer insulating layer 72 and the second polymer insulating layer 74 are directly facing each other and bonded together by a tape on the outer edge, but the present invention is not limited thereto.
  • a plurality of elastic members may be disposed between the first polymer insulating layer 72 and the second polymer insulating layer 74, and FIG. 8c illustrates a second structure of the nano friction generator.
  • the elastic member may be a spring 70, and the springs 70 are distributed on the first polymer insulating layer 72 and the second polymer insulating layer 74.
  • the outer edge is used to form an elastic support arm between the first polymer insulating layer 72 and the second polymer insulating layer 74.
  • the nano-friction generator When an external force acts on the nano-friction generator, the nano-friction generator is squeezed, and the spring 70 is compressed, so that the first polymer-polymer insulating layer 72 is in contact with the second polymer-polymer insulating layer 74 to form a friction interface; When it disappears, the spring 70 bounces, so that the first polymer insulating layer 72 is separated from the second polymer insulating layer 74, and the nano friction generator returns to the original state.
  • the nano-friction generator can also be implemented with a third structure, as shown in Figures 9a and 9b.
  • Figures 9a and 9b respectively show a perspective structural view and a cross-sectional structural view of a third structure of a nano-friction generator.
  • the third structure adds an intervening film layer to the second structure, that is: the third structure of the nano-friction generator includes the first electrode 81, which is sequentially stacked, and the first high The molecular polymer insulating layer 82, the intermediate film layer 80, the second polymer insulating layer 84, and the second electrode 83.
  • the first electrode 81 is disposed on the first side surface of the first polymer insulating layer 82; the second electrode 83 is disposed on the first side surface of the second polymer insulating layer 84, and the intermediate film The layer 80 is disposed between the second side surface of the first polymer insulating layer 82 and the second side surface of the second polymer insulating layer 84.
  • at least one of the two faces opposite to each other of the intermediate film layer 80 and the first polymer insulating layer 82 is provided with a micro/nano structure 85, and/or the intermediate film layer 80 and the second high
  • the micro-nano structure 85 is disposed on at least one of the two faces of the molecular polymer insulating layer 84.
  • the material of the nano-friction generator shown in FIG. 9a and FIG. 9b can be selected by referring to the material of the nano-friction generator of the second structure described above.
  • the intermediate film is selected from the group consisting of polyimide film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film , cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film , styrene butadiene copolymer film, rayon film, polyfluorene film, methacrylate film, polyvinyl alcohol film, polyvinyl alcohol film, polyester film, polyisobutylene film, polyurethane flexible sponge film, poly pair Ethylene phthalate film, polyvinyl buty
  • the intermediate film layer may also be selected from the group consisting of transparent high polymer polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), polystyrene (PS), polymethyl methacrylate (PMMA). ), any of polycarbonate (PC) and liquid crystal polymer (LCP).
  • PET transparent high polymer polyethylene terephthalate
  • PDMS polydimethylsiloxane
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • LCP liquid crystal polymer
  • the material of the first polymer polymer insulating layer and the second polymer polymer insulating layer is preferably transparent high polymer polyethylene terephthalate (PET); wherein the material of the intermediate film layer Polydimethylsiloxane (PDMS) is preferred.
  • PET transparent high polymer polyethylene terephthalate
  • PDMS polydimethylsiloxane
  • the materials of the first polymer insulating layer and the intermediate film layer are the same or the materials of the second polymer insulating layer and the intermediate film layer are the same, the amount of charge that causes triboelectric charging is small, and therefore, The friction effect, the material of the intermediate film layer is different from the first polymer polymer insulating layer and the second polymer polymer insulating layer, and the materials of the first polymer polymer insulating layer and the second polymer polymer insulating layer are preferred In the same manner, the material type can be reduced, and the production of the present invention can be made more convenient.
  • the intervening film layer 80 is a layer of polymeric film, and thus substantially similar to the implementation shown in Figures 8a and 8b, still through the polymer (intermediate film layer) And the friction between the polymer (the second polymer insulation layer) to generate electricity.
  • the intervening film layer is easy to prepare and has stable performance.
  • the first polymer insulating layer and The intermediate film layers are directly facing each other and pasted together by a tape on the outer side, but the present invention is not limited thereto.
  • a plurality of elastic members such as springs, may be disposed between the first polymer insulating layer and the intermediate film layer, and the springs are distributed on the outer edges of the first polymer insulating layer and the intermediate film layer for forming the first An elastic support arm between the polymer polymer insulating layer and the intermediate film layer.
  • the nano-friction generator When an external force acts on the nano-friction generator, the nano-friction generator is squeezed, and the spring is compressed, so that the first polymer insulating layer contacts the intervening film layer to form a friction interface; when the external force disappears, the spring bounces, so that The first polymer insulating layer is separated from the intervening film layer, and the nano-friction generator is restored to its original state.
  • the second polymer is absolutely The edge layer and the intermediate film layer are directly facing each other and pasted together by a tape of the outer edge, but the present invention is not limited thereto.
  • a plurality of elastic members such as springs, may be disposed between the second polymer insulating layer and the intermediate film layer, and the springs are distributed on the outer edges of the second polymer insulating layer and the intermediate film layer for forming the second An elastic support arm between the polymer polymer insulating layer and the intermediate film layer.
  • the nano-friction generator When an external force acts on the nano-friction generator, the nano-friction generator is squeezed, and the spring is compressed, so that the second polymer insulating layer contacts the intervening film layer to form a friction interface; when the external force disappears, the spring bounces, so that The second polymer insulating layer is separated from the intervening film layer, and the nano-friction generator is restored to its original state.
  • the elastic member may be disposed between the intermediate film layer and the first polymer insulating layer, the intermediate film layer and the second polymer insulating layer.
  • the nano-friction generator can also be implemented by using a fourth structure, as shown in FIG. 10a and FIG. 10b, including: a first electrode 91, a first polymer insulating layer 92, and an intervening electrode layer 90, which are sequentially stacked. a second polymer insulating layer 94 and a second electrode 93; wherein the first electrode 91 is disposed on the first side surface of the first polymer insulating layer 92; and the second electrode 93 is disposed on the second polymer On the first side surface of the polymer insulating layer 94, the intermediate electrode layer 90 is disposed between the second side surface of the first polymer insulating layer 92 and the second side surface of the second polymer insulating layer 94.
  • the first polymer polymer insulating layer 92 is provided with a micro-nano structure on at least one of the surface of the inter-electrode layer 90 and the surface of the inter-electrode layer 90 opposite to the first polymer insulating layer 92 (not shown)
  • the second polymer insulating layer 94 is provided with a micro/nano structure on at least one of a face of the intermediate electrode layer 90 and a face of the intermediate electrode layer 90 with respect to the second polymer insulating layer 94. (not shown).
  • electrostatic charges are generated by friction between the inter-electrode electrode layer 90 and the first polymer-polymer insulating layer 92 and the second polymer-polymer insulating layer 94, thereby placing the intervening electrode layer 90 and the first electrode.
  • a potential difference is generated between the 91 and the second electrode 93.
  • the first electrode 91 and the second electrode 93 are connected in series as one output end of the nano-friction generator; the intermediate electrode layer 90 is the other output end of the nano-friction generator.
  • the materials of the first polymer polymer insulating layer, the second polymer polymer insulating layer, the first electrode and the second electrode may refer to the nano friction of the second structure described above.
  • the material of the generator is selected.
  • the intervening electrode layer may be selected from a conductive film, a conductive polymer, a metal material, a metal material including a metal and an alloy, and the metal is selected from the group consisting of gold, silver, platinum, palladium, aluminum, Nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten, vanadium, etc.
  • the alloy may be selected from light alloys (aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, etc.), heavy non-ferrous alloy (copper alloy, rhetoric Alloys, manganese alloys, nickel alloys, etc., low melting point alloys (lead, tin, cadmium, antimony, indium, gallium and alloys thereof), refractory alloys (tungsten alloys, molybdenum alloys, niobium alloys, niobium alloys, etc.).
  • the thickness of the intervening electrode layer is preferably 100 ⁇ m to 500 ⁇ m, more
  • the first polymer insulating layer is provided with a micro/nano structure on at least one of a face of the intermediate electrode layer and a face of the intermediate electrode layer with respect to the first polymer insulating layer, in the structure shown in FIG. 10a
  • the first polymer insulating layer and the intervening electrode layer are directly facing each other and bonded together by a tape of the outer edge, but the present invention is not limited thereto.
  • a plurality of elastic members, such as springs may be disposed between the first polymer insulating layer and the intervening electrode layer, and the springs are distributed on the outer edges of the first polymer insulating layer and the intervening electrode layer for forming the first An elastic support arm between the polymer polymer insulating layer and the intervening electrode layer.
  • the nano-friction generator When an external force acts on the nano-friction generator, the nano-friction generator is squeezed, and the spring is compressed, so that the first polymer insulating layer contacts the intervening electrode layer to form a friction interface; when the external force disappears, the spring bounces, so that The first polymer insulating layer is separated from the intervening electrode layer, and the nano friction generator is restored to its original state.
  • the second polymer insulating layer is provided with a micro/nano structure on at least one of the face of the intermediate electrode layer and the face of the intermediate electrode layer and the second polymer insulating layer, in the structure shown in FIG. 10a
  • the second polymer insulating layer and the intervening electrode layer are directly facing each other and bonded together by a tape on the outer edge, but the present invention is not limited thereto.
  • a plurality of elastic members, such as springs may be disposed between the second polymer insulating layer and the intervening electrode layer, and the springs are distributed on the outer edges of the second polymer insulating layer and the intervening electrode layer for forming the second An elastic support arm between the polymer polymer insulating layer and the intervening electrode layer.
  • the nano-friction generator When an external force acts on the nano-friction generator, the nano-friction generator is squeezed, and the spring is compressed, so that the second polymer insulating layer contacts the intervening electrode layer to form a friction interface; when the external force disappears, the spring bounces, so that The second polymer insulating layer is separated from the intervening electrode layer, and the nano-friction generator is restored to its original state.
  • the elastic member may be disposed between the intermediate electrode layer and the first polymer insulating layer, the intermediate electrode layer and the second polymer insulating layer.
  • the power generation system combining the marine power generation and the solar power generation using the nano friction generator provided by the invention realizes multiple collection and utilization of wave energy, tidal energy and solar energy, which not only saves energy
  • the source is clean and environmentally friendly, protecting the environment.
  • the nano-friction generator itself has high power generation efficiency, which makes the whole wave energy and tidal power generation system have high power generation efficiency, coupled with efficient design.
  • the structure achieves an optimal power generation efficiency.
  • the structure of the power generation system combining the marine power generation and the solar power generation of the present invention can be designed in various forms, and different structural designs can be selected according to different application places, and the application range of the wave energy and tidal power generation system is expanded.
  • the power generation system provided by the invention realizes the combination of the wave energy generation, the tidal power generation and the solar power generation by the nano friction generator, and the superposition of a plurality of high-efficiency subsystems, so that the efficiency of the whole system is greatly improved.
  • an energy storage device is provided, which is flexible in design and can automatically switch, not only can store the nano-friction generator to collect the wave energy, the electricity generated by the tidal energy and the electricity generated by the solar energy, and can also be stored alternately.
  • the nano-friction generator collects the wave energy, the electricity generated by the tidal energy, and the electricity generated by the solar energy.
  • the nano-friction generator is disposed in the casing, and the casing is a closed structure, which can prevent seawater from corroding internal components such as the nano-friction generator and the circuit, so that the power generation system realizes long-life power generation.

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种采用纳米摩擦发电机(10)的发电系统,包括海洋能发电机和储能装置(33)。海洋能发电机包括用于将机械能转化为电能的至少一个纳米摩擦发电机;储能装置与纳米摩擦发电机的输出端相连,用于对纳米摩擦发电机输出的电能和太阳能组件(40)输出的电能进行存储。该发电系统解决了海洋能发电机体积庞大、结构复杂和成本高的问题。

Description

采用纳米摩擦发电机的发电系统
技术领域
本发明涉及纳米技术领域, 更具体地说, 涉及一种采用纳米摩擦发电机 的发电系统。
背景技术
随着科学技术的发展和现代化进程的加快, 人类对能源的需求与曰倶 增, 而传统的能源通常为一次性能源, 如果过度开采就会面临能源用尽的危 机。 因此, 迫切地需要开发新能源。 其中, 海洋能属于一种常见形式的新能 源。
海洋能发电主要是指利用海洋所蕴藏的能量发电。 海洋的能量包括海流 动能、 海洋热能、 潮汐能和波浪能等。 其中应用较多的为潮汐能和波浪能。 潮汐是指因月球引力的变化引起的海平面周期性升降的现象, 潮汐能是指因 海水涨落及潮水流动所产生的能量; 波浪是指由于风和水的重力作用形成的 起伏运动, 波浪能是指波浪所具有的动能和势能。
虽然海洋中蕴藏着大量的能量, 但是目前利用海洋能发电的技术尚不够 成熟, 且使用海洋能发电机发电时, 海洋能发电机的体积庞大、 结构复杂且 制作成本高昂, 不便于在日常生活中广泛推广。 发明内容
本发明的发明目的是针对现有技术的缺陷, 提出一种采用纳米摩擦发电 机的发电系统, 用以解决现有技术中的海洋能发电机的体积庞大、 结构复杂 且制作成本高昂, 不便于在日常生活中广泛推广的问题。
一种采用纳米摩擦发电机的海洋能发电和太阳能发电组合系统, 包括: 海洋能发电机和储能装置; 海洋能发电机包括用于将机械能转化为电能的至 少一个纳米摩擦发电机; 储能装置与纳米摩擦发电机的输出端相连, 用于对 纳米摩擦发电机输出的电能进行存储。 本发明提供的采用纳米摩擦发电机的发电系统实现了对波浪能和潮汐 能等海洋能的收集利用, 该发电系统体积大小可灵活定制, 且结构筒单、 成 本低廉, 便于在日常生活中广泛推广。 另外, 使用本发明提供的采用纳米摩 擦发电机的发电系统, 不仅节约了能源, 而且清洁环保, 保护了环境。 附图概述
图 la和图 lb分别示出了本发明提供的采用纳米摩擦发电机的发电系统 中的海洋能发电机的示例一的内部剖视图和立体图;
图 lc 示出了示例一中的海洋能发电机的内部设置有多个撞击部件的结 构示意图;
图 Id示出了示例一中的海洋能发电机具有多个壳体的结构示意图; 图 2示出了本发明提供的采用纳米摩擦发电机的发电系统中的海洋能发 电机的示例二的内部剖视图;
图 3a至图 3d示出了本发明提供的采用纳米摩擦发电机的发电系统中的 海洋能发电机的示例三的结构图;
图 4a至图 4d示出了本发明提供的采用纳米摩擦发电机的发电系统中的 海洋能发电机的示例四的结构图;
图 5为本发明提供的采用纳米摩擦发电机的发电系统的一实施例的电路 原理示意图;
图 6为本发明提供的采用纳米摩擦发电机的发电系统的又一实施例的电 路原理示意图;
图 7a和图 7b分别示出了纳米摩擦发电机的第一种结构的立体结构示意 图和剖面结构示意图;
图 8a至图 8b分别示出了纳米摩擦发电机的第二种结构的立体结构示意 图和剖面结构示意图;
图 8c 示出了纳米摩擦发电机的第二种结构的具有弹性部件作为支撑臂 的立体结构示意图; 图 9a和图 9b分别示出了纳米摩擦发电机的第三种结构的立体结构示意 图和剖面结构示意图;
图 10a和图 10b分别示出了纳米摩擦发电机的第四种结构的立体结构示 意图和剖面结构示意图。
本发明的较佳实施方式
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明, 但本发明并不仅仅限于此。
针对现有技术中海洋能发电机的体积庞大、 结构复杂且制作成本高昂, 不便于在日常生活中广泛推广的问题, 本发明提供了一种采用纳米摩擦发电 机作为核心部件的发电系统。 该发电系统具体包括海洋能发电机和储能装 置。 其中海洋能发电机包括用于将机械能转化为电能的至少一个纳米摩擦发 电机; 储能装置与纳米摩擦发电机的输出端相连, 用于对所述纳米摩擦发电 机输出的电能进行存储。 该发电系统的工作原理是: 当海浪波动时, 纳米摩 擦发电机会产生机械形变, 从而产生交流脉沖电信号, 储能装置将此交流脉 沖电信号进行适当的变换后进行存储, 以备外部用电设备的使用。
本发明还提供了一种海洋能发电与太阳能发电系统组合形成的发电系 统。 该发电系统具体包括海洋能发电机、 太阳能组件和储能装置。 其中, 海 洋能发电机包括用于在海水运动时, 将运动的海水所产生的海洋能中包含的 机械能转化为电能的至少一个纳米摩擦发电机。 其中, 运动的海水所产生的 海洋能主要包括海流动能、 波浪能、潮汐能、 海水温差能以及海水盐差能等, 其中, 海流动能、 波浪能以及潮汐能为机械能(海水温差能为热能, 海水盐 差能为化学能) , 因此, 海洋能发电机主要利用包括海流动能、 波浪能和 / 或潮汐能在内的机械能导致其中的纳米摩擦发电机发生机械形变而发电。 太 阳能组件由多个太阳能电池组成, 这些太阳能电池以串联或并联的方式连接 形成太阳能组件的至少两个输出端, 每个太阳能电池为由半导体材料所形成 的 PN结式结构的光电转换单元。 储能装置与纳米摩擦发电机的输出端和太 阳能组件的至少两个输出端相连, 用于对纳米摩擦发电机输出的电能和太阳 能组件输出的电能进行存储。 该发电系统的工作原理是: 当海面出现潮汐或波浪时, 海水的运动将导 致海洋能发电机内部的纳米摩擦发电机产生机械形变, 从而产生交流脉沖电 信号, 储能装置将此交流脉沖电信号进行适当的变换后进行存储; 并且, 在 适合的条件下, 太阳能组件能够将光能转换为电能, 存储在储能装置中, 以 备外部用电设备的使用。
在本发明提供的海洋能发电和太阳能发电组合系统中, 太阳能组件是利 用太阳能来发电的装置。 具体地, 太阳能组件由多个太阳能电池组成, 这些 太阳能电池以串联或并联的方式连接, 并且形成太阳能组件的至少两个输出 端。 其中, 太阳能电池是一种光电半导体薄片, 它只要被光照到, 瞬间即可 输出电压及电流。 具体地, 太阳能电池为由半导体材料所形成的 PN结式结 构的光电转换单元,当太阳光照到半导体 PN结上时,形成新的空穴-电子对, 在 PN结电场的作用下, 光生空穴流向 P区, 光生电子流向 N区, 接通电路 后就形成电流。 由于单个太阳能电池的输出的电流 4艮小, 这样的多个太阳能 电池经过串联或并联后即可向外电路输出满足蓄电要求的电流。 可选地, 上 述 PN结是由掺杂半导体材料所形成的结构, 或者,上述 PN结是半导体薄膜 或其它薄膜材料的结构。 本发明中, 太阳能电池可为晶体硅太阳能电池或薄 膜太阳能电池。 晶体硅太阳能电池的生产设备成本相对较低, 但设备能耗及 电池成本较高, 光电转换效率艮高, 适于室外阳光下发电; 薄膜太阳能电池 的生产设备成本较高, 但设备能耗和电池成本很低, 光电转化效率低于晶体 硅太阳能电池, 但弱光效应非常好, 在普通灯光下也可发电。
上述多个太阳能电池串联或并联在一起所形成的是太阳能电池板, 为了 保护太阳能电池板不受外界环境的影响, 太阳能组件还可以包括保护体。 对 于一般的太阳能电池, 保护体可为保护板, 对于薄膜太阳能电池, 保护体可 为保护膜。 以保护板为钢化玻璃为例, 通过粘结剂太阳能电池被粘结固定在 钢化玻璃上, 粘结剂可选为 EVA (乙烯 -醋酸乙烯共聚物) , 再通过粘结剂 将背板与太阳能电池封装在一起构成太阳能组件, 其中背板的作用是密封、 绝缘和防水。
上述太阳能组件的输出端与储能装置连接, 太阳能组件能够将光能转换 为电能, 存储在储能装置中, 以备外部用电设备的使用。 在本发明提供的海洋能发电和太阳能发电组合系统中, 海洋能发电机是 利用波浪能和 /或潮汐能发电的装置。 具体地, 海洋能发电机包括: 用于将机 械能转化为电能的至少一个纳米摩擦发电机及容纳至少一个纳米摩擦发电 机的壳体, 所述壳体内部具有空腔, 所述至少一个纳米摩擦发电机设置在所 述空腔内。 上述太阳能组件可固设在海洋能发电机的壳体的外壁上, 由此组 成一个海洋能发电和太阳能发电组合的发电系统。
下面通过几个具体的示例对海洋能发电机的结构和工作原理进行详细 介绍。
示例一、
图 la和图 lb分别示出了本发明提供的采用纳米摩擦发电机的发电系统 中的海洋能发电机的示例一的内部剖视图和立体图。 从图 la和图 lb中可以 看到, 该海洋能发电机包括形状为长方体的壳体 111 , 壳体 111 内部具有空 腔 115。 其中, 壳体 111也可以是其他形状, 例如柱形体(包括圓柱形体、 棱柱形体等)以及多边形体等。 空腔 115的内部具有相互平行且相对的第一 侧壁和第二侧壁, 在第一侧壁上通过固定部件 110固定有一个纳米摩擦发电 机 112 , 在第二侧壁上通过固定部件 110固定有另一个纳米摩擦发电机 112。 具体地, 固定部件 110可以通过任何能够起到固定作用的部件来替代,例如, 固定部件 110可以是固定垫片, 该固定垫片的一侧固定在第一侧壁或第二侧 壁上, 该固定垫片的另一侧上固定有纳米摩擦发电机 112。 该固定垫片通常 为绝缘材质, 而且, 为了进一步提高发电效果, 该固定垫片还可以选用柔性 材质。
壳体 111的内部还设置有撞击部件 113。 该撞击部件 113进一步包括: 设置在第一侧壁的纳米摩擦发电机和第二侧壁的纳米摩擦发电机之间的导 轨 1132, 以及能够沿导轨 1132移动进而与纳米摩擦发电机发生碰撞的撞击 球 1131。 其中, 导轨 1132可以通过空心导管来实现, 并且, 在空心导管的 内部具有通道, 使撞击球 1131 能够在通道内来回滚动。 除了采用空心导管 之外, 还可以通过其他形式来制作导轨 1132, 例如, 可以设置一段轨道, 使 撞击球 1131能够沿轨道移动且不会脱离轨道。 导轨 1132与第一侧壁或第二 侧壁相对, 优选地, 导轨 1132 与第一侧壁或第二侧壁相对且垂直, 以便于 撞击球 1131能够顺利撞击纳米摩擦发电机。 上述的导轨 1132可以通过类似 固定支架的装置固定在空腔内部, 并且, 为了防止导轨 1132本身对纳米摩 擦发电机造成不必要的挤压, 可以在导轨 1132 与第一侧壁上的纳米摩擦发 电机以及与第二侧壁上的纳米摩擦发电机之间分别设置预设的保护间隔, 即: 导轨 1132的两端与两个侧壁上的纳米摩擦发电机之间具有一定的距离, 以防止相互之间的接触。 该距离的大小既要能够防止导轨 1132 与纳米摩擦 发电机之间的接触, 又要保证撞击球 1131 在滚动到导轨边缘时不会脱离导 轨。
通过上面的方式,就可以在海洋能发电机的壳体随着波浪、潮汐晃动时, 在壳体内部实现撞击部件对纳米摩擦发电机的撞击, 进而促使纳米摩擦发电 机发生形变并将该形变所产生的机^ i¾转化为电能。 可选地, 为了防止纳米 摩擦发电机因过度摩擦而损坏, 还可以在纳米摩擦发电机被撞击部件撞击的 表面上进一步设置防护垫片 114。
另外, 为了进一步提高发电效果, 还可以在壳体 111内部的第一侧壁和 第二侧壁上分别设置多个纳米摩擦发电机, 相应地, 沿与第一侧壁和第二侧 壁垂直的方向, 对应纳米摩擦发电机设置有多个撞击部件 113 , 每个撞击部 件 113内进一步包括导轨 1132和撞击球 1131。 其中, 撞击部件 113的个数 可以与第一侧壁或第二侧壁上的纳米摩擦发电机的个数相同, 即: 第一侧壁 和第二侧壁上每相对的两个纳米摩擦发电机之间设置有一个撞击部件, 如图 lc所示。 或者, 撞击部件 113的个数也可多于第一侧壁或第二侧壁上的纳米 摩擦发电机的个数, 即: 第一侧壁和第二侧壁上每相对的两个纳米摩擦发电 机之间设置有多个撞击部件, 以实现更为强烈的撞击效果。
进一步地, 本示例中的壳体 111 的数量也可以为多个, 如图 Id所示, 可以将多个壳体按照一定的顺序进行排列, 多个壳体 111之间通过导线 116 串联或并联, 以进一步提高发电效果。 多个壳体内部的纳米摩擦发电机通过 线缆 117连接。
通过上面的描述可以看出, 在图 la至图 Id所示的结构中, 只在空腔的 第一侧壁和第二侧壁上设置有纳米摩擦发电机, 并且仅在第一侧壁和第二侧 壁的垂直方向上设置有导轨, 因此, 撞击球的运动方向仅限于第一侧壁和第 二侧壁的垂直方向。 这种方式对于海洋能发电机的晃动方向为固定方向的情 况时, 发电效果较为突出。
当本示例中的海洋能发电机的晃动方向为非固定方向时, 为了提高发电 效率, 可以进一步地在空腔的其余两个侧壁(即垂直于第一侧壁和第二侧壁 的两个侧壁)上分别设置纳米摩擦发电机, 相应地, 沿平行于第一侧壁和第 二侧壁上的方向再设置一个或多个导轨和撞击球, 其中, 平行于第一侧壁和 第二侧壁的导轨与垂直于第一侧壁和第二侧壁的导轨位于不同的平面且相 互垂直, 即为异面垂直的关系。 这样, 就可以在海洋能发电机沿不同方向晃 动时都能产生电能。
可选地, 在上述海洋能发电机的壳体的外壁上还可以设置太阳能组件, 或者也可以单独设置太阳能组件, 组成一个海洋能发电和太阳能发电组合的 发电系统。
示例二、
图 2示出了本发明提供的采用纳米摩擦发电机的发电系统中的海洋能发 电机的示例二的内部剖视图。 从图 2中可以看到, 该海洋能发电机包括形状 为长方体的壳体 211 , 壳体 211 内部具有空腔。 其中, 壳体 211也可以是其 他形状, 例如柱形体(包括圓柱形体、 棱柱形体等) 以及多边形体等。 空腔 的内部具有相互平行且相对的第一侧壁和第二侧壁, 在第一侧壁上通过固定 部件 210固定有一个纳米摩擦发电机 212, 在第二侧壁上通过固定部件 210 固定有另一个纳米摩擦发电机 212。 具体地, 固定部件 210可以通过任何能 够起到固定作用的部件来实现, 例如, 固定部件 210可以是固定垫片, 该固 定垫片的一侧固定在第一侧壁或第二侧壁上, 该固定垫片的另一侧上固定有 纳米摩擦发电机 212。 该固定垫片通常为绝缘材质, 而且, 为了进一步提高 发电效果, 该固定垫片还可以选用柔性材质。
壳体 211的内部还设置有撞击部件。该撞击部件进一步包括牵引件 2231 和撞击球 2232。 其中, 牵引件 2231的第一端为固定在空腔的顶壁上的固定 端,牵引件 2231的第二端为连接有撞击球 2232的自由端。其中,牵引件 2231 可以通过牵引线来实现, 也可以通过其他能够起到牵引作用的部件实现。 当 海洋能发电机静止不动时, 撞击球 2232垂直悬挂在牵引件 2231的底部, 当 海洋能发电机随着波浪或潮汐而发生运动时, 撞击球 2232将在空腔内部随 机摆动, 进而撞击到位于第一侧壁和第二侧壁上的纳米摩擦发电机。
通过上面的方式, 就可以在海洋能发电机随着波浪、 潮汐晃动时实现撞 击部件对纳米摩擦发电机的撞击, 进而促使纳米摩擦发电机将机械能转化为 电能。 可选地, 为了防止纳米摩擦发电机因过度摩擦而损坏, 还可以在纳米 摩擦发电机被撞击部件撞击的表面上进一步设置防护垫片 224。
优选地, 为了确保撞击球能够顺利地撞到纳米摩擦发电机, 上述的牵引 件 2231的长度大于纳米摩擦发电机的顶端与牵引件 2231的第一端之间的距 离, 小于纳米摩擦发电机的底端与牵引件 2231的第一端之间的距离。 在图 2 所示的情况中, 由于空腔内部设有两个纳米摩擦发电机, 且撞击部件只有一 个, 为了使得撞击部件中的撞击球能够顺利地撞到每个纳米摩擦发电机, 上 述的牵引件的长度大于纳米摩擦发电机的顶端与牵引件的第一端之间的距 离, 小于纳米摩擦发电机的底端与牵引件的第一端之间的距离。 因此, 可以 将牵引件的第一端固定在空腔顶壁的中心部位, 以确保对每个纳米摩擦发电 机的有效撞击。
除了图 2所示的情况之外, 也可以只在空腔的第一侧壁上或者只在第二 侧壁上设置纳米摩擦发电机, 或者也可以在空腔的其余两个侧壁(即与第一 侧壁和第二侧壁垂直的两个侧壁)上设置纳米摩擦发电机, 总之, 纳米摩擦 发电机可以设置在空腔的四个侧壁中的任意一个或多个侧壁上, 本发明对此 不作限定。
优选地, 由于撞击球可以沿各个方向运动, 因此为了提高发电效率, 可 以在空腔的每一个侧壁上都设置纳米摩擦发电机。 另外, 还可以进一步地在 空腔的每个侧壁上设置多个纳米摩擦发电机。 而且, 也可以在空腔内部设置 多个撞击部件, 当撞击部件为多个时, 可以将每个撞击部件中的牵引件的第 一端按照一定的规律固定在空腔的顶壁上, 例如, 当撞击部件为三个时, 可 以使各个撞击部件中的牵引件的第一端之间构成一个正三角形, 并通过调整 该正三角形的每个顶点与侧壁上的纳米摩擦发电机之间的距离来实现最佳 的撞击效果。
在本示例中, 由于撞击部件的运动方向是随机的, 因此, 该海洋能发电 机尤其适用于晃动方向为非固定方向的情况。
可选地, 在上述海洋能发电机的壳体的外壁上还可以设置太阳能组件, 或者也可以单独设置太阳能组件, 组成一个海洋能发电和太阳能发电组合的 发电系统。
示例三、
图 3a至图 3d示出了本发明提供的采用纳米摩擦发电机的发电系统中的 海洋能发电机的示例三的结构示意图。 其中, 图 3a示出了本示例中的海洋 能发电机在一个视角下的立体结构图; 图 3b示出了本示例中的海洋能发电 机在另一个视角下的立体结构图; 图 3c 示出了本示例中的海洋能发电机的 一个剖面的结构图; 图 3d示出了本示例中的海洋能发电机的另一个剖面的 结构图。
从图 3a至图 3d中可以看到, 该海洋能发电机包括形状为长方体的壳体 31 1 , 壳体 31 1 内部具有空腔。 其中, 壳体 31 1也可以是其他形状, 例如柱 形体(包括圓柱形体、 棱柱形体等) 以及多边形体等。 空腔的内部有六个内 壁, 为了方便描述, 根据壳体的放置方向将空腔内部的六个内壁划分为四个 位于侧面的侧壁、 一个位于顶面的顶壁以及一个位于底面的底壁。 将纳米摩 擦发电机 312通过弹性部件固定在空腔内部时, 该弹性部件可以包括第一弹 性件 3151和第二弹性件 3152 , 其中, 第一弹性件 3151和第二弹性件 3152 可以都采用弹簧实现, 也可以采用其它形式的弹性件, 例如橡皮筋等。 第一 弹性件 3151的第一端固定在空腔的一个内壁上, 第二弹性件 3152的第一端 固定在空腔的另一个内壁上, 第一弹性件 3151的第二端和第二弹性件 3152 的第二端之间固定连接有纳米摩擦发电机 312。 通过上述方式, 就将纳米摩 擦发电机 312固定在了空腔的两个内壁之间, 这两个内壁通常为侧壁(实际 上也可以包括顶壁或底壁) , 并且这两个内壁之间通常是相互平行的, 如图 3a至图 3d所示, 每个纳米摩擦发电机都通过两个弹性件固定在空腔的两个 相互平行的侧壁上。 在图 3a至图 3d中, 将空腔的四个侧壁依次称作第一侧 壁、 第二侧壁、 第三侧壁和第四侧壁, 其中, 第一侧壁和第三侧壁相互平行, 第二侧壁和第四侧壁相互平行, 且第一侧壁和第三侧壁垂直于第二侧壁和第 四侧壁。 从图中可以看到, 在第一侧壁和第三侧壁之间通过四个相互平行的 弹性部件设置了四个纳米摩擦发电机, 在第二侧壁和第四侧壁之间通过两个 相互平行的弹性部件设置了两个纳米摩擦发电机(其中一个未示出), 其中, 上述的四个相互平行的弹性部件也可以称作第一组弹性部件, 上述的两个相 互平行的弹性部件也可以称作第二组弹性部件, 第一组弹性部件和第二组弹 性部件之间相互垂直且交错排列。 通过这样的方式, 就在空腔的各个侧壁之 间都设置了纳米摩擦发电机。 除了图 3a至图 3d描述的方式之外, 各个纳米 摩擦发电机之间还可以通过其他的方式排布, 例如, 还可以将其中的一个或 多个纳米摩擦发电机分别通过两个弹性件设置在任意两个相邻且相互垂直 的侧壁(例如第一侧壁和第二侧壁)上。 总之, 本发明对壳体内的纳米摩擦 发电机的数量以及纳米摩擦发电机在空腔内的排布方式不作限定。
壳体的内部还设置有撞击部件 313。 具体地, 撞击部件 313为放置在空 腔内部的一个活动部件, 能够在空腔内自由运动。 如图 3a至图 3d所示, 该 撞击部件 313具有橢圓形的底部 3131以及球形的顶部 3132 ,其中,底部 3131 和顶部 3132均为能够活动的自由端, 换句话说, 撞击部件 313是通过直接 将底部 3131放置在空腔的底壁上来实现的, 因此, 撞击部件的底部 3131与 空腔的底壁并不固定。 这样一来, 当海洋能发电机受到晃动时, 撞击部件由 于惯性作用将会在空腔内部来回摆动从而撞击纳米摩擦发电机 312。 为了使 撞击部件在摆动时更加灵活, 可以将撞击部件设置为不倒翁的形状, 因此, 撞击部件的底部的体积大于顶部的体积, 且底部的密度大于顶部的密度。 这 样, 当海洋能发电机晃动时, 撞击部件的底部位移较小, 顶部位移较大, 且 顶部以底部为中心随机晃动并撞击纳米摩擦发电机。
通过上面的方式, 就可以在海洋能发电机随着波浪、 潮汐晃动时实现撞 击部件对纳米摩擦发电机的撞击, 进而促使纳米摩擦发电机将机械能转化为 电能。 由于本发明中通过弹性部件来固定纳米摩擦发电机, 因此, 当撞击部 件撞击纳米摩擦发电机时, 弹性部件将发生形变并来回震荡, 从而带动纳米 摩擦发电机持续震荡, 进而持续撞击与纳米摩擦发电机相邻的内壁, 实现持 续发电的效果。
可选地, 为了防止纳米摩擦发电机因过度摩擦而损坏, 还可以在纳米摩 擦发电机被撞击部件撞击的表面上进一步设置防护垫片。 而且, 也可以在纳 米摩擦发电机与壳体内壁相对的表面上进一步设置防护垫片。 另外, 为了防 止纳米摩擦发电机被海水腐蚀, 还可以对纳米摩擦发电机进行塑封处理。
具体设置时, 可以根据需要灵活设置撞击部件的尺寸。 撞击部件的尺寸 过大, 将导致撞击部件在空腔内部活动时不够灵活; 撞击部件的尺寸过小, 将导致撞击部件无法撞击到全部的纳米摩擦发电机。 优选地, 可以将撞击部 件的底部尺寸设置为略小于空腔的一个内壁的长度, 将撞击部件的整体高度 设置为略小于空腔的一个内壁的高度。 相应地, 在设置纳米摩擦发电机时, 可以将纳米摩擦发电机设置在方便撞击部件撞击的部位上, 例如, 设置在较 靠近撞击部件的顶部的位置。
另外, 撞击部件也可以采用其他的形式实现, 例如, 也可以通过一个放 置在空腔内部, 可以自由滚动的撞击球实现, 这时, 可以将纳米摩擦发电机 设置在四个侧壁上能够被撞击球撞击的位置上, 并且可以根据撞击球的直径 来调整纳米摩擦发电机的设置高度, 以使撞击效果最佳。
撞击部件的形状并不限于上面描述的几种方式, 本领域技术人员还可以 根据需要对撞击部件的形状做各种变形,只要能够实现撞击效果即可。例如, 撞击部件还可以是方形、 菱形或三角形等。 而且, 撞击部件的个数也可以为 多个, 以便于使撞击部位更加全面。
在本示例中, 由于撞击部件的运动方向是随机的, 因此, 该海洋能发电 机尤其适用于晃动方向为非固定方向的情况。
可选地, 在上述海洋能发电机的壳体的外壁上还可以设置太阳能组件, 或者也可以单独设置太阳能组件, 组成一个海洋能发电和太阳能发电组合的 发电系统。
示例四、
图 4a和图 4b分别示出了本发明提供的采用纳米摩擦发电机的发电系统 中的海洋能发电机的示例四提供的海洋能发电机的整体立体图和纵面的剖 面图。 从图 4a和图 4b中可以看到, 该海洋能发电机包括具有至少一个空腔 的壳体 411 , 所述壳体的纵剖面为波浪形状, 且所述壳体的每个空腔容纳至 少一个纳米摩擦发电机 412。 其中, 纵剖面为波浪形状的壳体可以通过一个整体部件来实现, 例如, 直接加工制作一个纵剖面为波浪形状的壳体, 例如图 4a和图 4b所示的壳体 由一个包含四段板材(其材质可灵活选择) 的整体部件实现, 每相邻的两段 板材通过一定的工艺合为一体, 且每相邻的两段板材之间的内角呈第一预设 角度, 该第一预设角度可根据需要设置, 例如, 可设置为 45度或 60度等。 由此使四段板材构成的整体部件的纵剖面呈现波浪形。 每段板材内部都具有 一个或多个空腔, 每个空腔的内部又容纳有一个或多个纳米摩擦发电机。
另外, 纵剖面为波浪形状的壳体还可以通过多个离散部件的组合来实 现, 例如, 分别加工制作多个形状类似矩形的子壳体, 例如图 4a和图 4b中 包含四个子壳体。然后,将每相邻的两个子壳体之间通过固定部件固定连接, 并且, 每相邻的两个子壳体之间的内角呈第一预设角度, 该第一预设角度可 根据需要设置, 例如, 可设置为 45度或 60度等。 由此使四个子壳体通过固 定部件固定而成的整体的纵剖面呈现波浪形。 每个子壳体内部都具有一个或 多个空腔, 每个空腔的内部又容纳有一个或多个纳米摩擦发电机。 其中, 固 定子壳体的固定部件例如可以是铰链、 螺栓和 /或合页等, 只要能够起到固定 作用即可。
介绍完壳体的两种可能的结构之后, 接下来介绍一下壳体的空腔内部的 纳米摩擦发电机的放置形式。
空腔内部的纳米摩擦发电机可以直接放置在空腔内部, 且与空腔的任一 内壁都不固定,而且,可以使纳米摩擦发电机的尺寸略小于空腔内部的尺寸, 这样, 在海洋能发电机的壳体受到波浪和 /或潮汐所导致的海水振动时, 其空 腔内部的纳米摩擦发电机也将在空腔内晃动, 并对空腔的内壁形成撞击, 导 致纳米摩擦发电机发生机械形变, 从而产生电能。
或者, 空腔内部的纳米摩擦发电机可以固定在空腔内部, 例如, 纳米摩 擦发电机与空腔的至少一个内壁固定, 这样, 在海洋能发电机的壳体受到海 水的振动时, 其空腔内部的纳米摩擦发电机将随着壳体的振动而振动, 导致 纳米摩擦发电机发生机械形变, 从而产生电能。 具体地, 可以使纳米摩擦发 电机的尺寸与空腔内部的尺寸相吻合, 同时还可以进一步地将纳米摩擦发电 机的六个表面分别固定在空腔内部的六个内壁上, 这样, 当壳体受到振动或 拍打时, 将对其空腔内部的纳米摩擦发电机进行挤压, 导致纳米摩擦发电机 发生机械形变, 从而产生电能。
通过上面的方式, 在海洋能发电机随着波浪、 潮汐晃动或受到海浪拍打 时, 就可以导致纳米摩擦发电机发生机械形变, 进而促使纳米摩擦发电机将 机械能转化为电能。 其中, 壳体可以选用柔性材质(例如橡胶等)制作。 这 样, 壳体是柔软的、 且容易发生形变的, 从而在受到拍打或撞击时, 能够更 好地挤压内部的纳米摩擦发电机, 促使纳米摩擦发电机发生形变, 从而提高 发电效率。
图 4c和图 4d分别示出了示例四中的海洋能发电机的一种改进结构的整 体立体图和纵面的剖面图。 从图 4c和图 4d中可以看到, 该改进结构的主要 改进之处在于, 壳体 411与水平面之间呈第二预设角度, 该第二预设角度可 根据需要灵活设置, 例如, 为 30度或 45度等。 也就是说, 壳体呈倾斜状态, 如图 4d所示, 该倾斜状态的壳体构成斜坡式的阶梯形状。 在实际使用时, 可以通过将壳体的一端放置在海岸上, 将壳体的另一端放置在岸边的岩石上 来构成上述的斜坡, 或者, 也可以通过一定的固定装置, 例如绳索、 支撑架 等实现上述的斜坡。
具有斜坡的海洋能发电机尤其适用于沙滩或海边发电。 当用于沙滩或海 边时, 可以利用潮汐能进行发电。 例如, 当海水涨潮时, 海水将沿着斜坡状 的海洋能发电机涌起, 从而对斜坡状的海洋能发电机造成强烈的震荡和拍 打; 当海水退潮时, 海水将顺着斜坡状的海洋能发电机退下, 从而也会对斜 坡状的海洋能发电机造成强烈的震荡和拍打。 总之, 海洋能发电机的壳体具 有斜坡, 从而可以更好地顺应海水的运动方向, 使海水的撞击力达到最大, 进而使纳米摩擦发电机的发电效率也达到最佳。
可选地, 在上述海洋能发电机的壳体的外壁上还可以设置太阳能组件, 或者也可以单独设置太阳能组件, 组成一个海洋能发电和太阳能发电组合的 发电系统。
在上述的四个示例中, 壳体的数量都可以为多个, 且当纳米摩擦发电机 为多个时, 多个纳米摩擦发电机之间可以串联, 也可以并联, 其中, 当纳米 摩擦发电机并联时可提高电流的输出强度, 而纳米摩擦发电机串联时可提高 电压的输出大小, 从而能够解决单个纳米摩擦发电机输出的电流或电压大小 不能满足需求的问题。 为了同时获得上述优势, 也可以考虑将一部分纳米摩 擦发电机并联, 将另一部分纳米摩擦发电机串联。
上述的四个示例仅为本发明提供的海洋能发电机的示例性结构, 本领域 技术人员还可对上述的四个示例做出各种变形。 例如, 将示例三中的弹性部 件替换为示例一、 二中的固定部件, 或将示例一、 二中的固定部件替换为示 例三中的弹性部件等。
基于上述采用纳米摩擦发电机的发电系统的任意一种示例结构, 下面将 进一步介绍整个发电系统的结构和工作原理。
图 5为本发明提供的采用纳米摩擦发电机的发电系统的一实施例的电路 原理示意图。 如图 5所示, 储能装置包括: 整流电路 30、 第一开关控制电路 31、 第一直流 /直流控制电路 32、 储能电路 33以及第二开关控制电路 41和 第二直流 /直流控制电路 42。
其中, 整流电路 30与纳米摩擦发电机 10的输出端相连, 整流电路 30 接收纳米摩擦发电机 10输出的交流脉沖电信号, 对该交流脉沖电信号进行 整流处理得到直流电压 U1 ; 第一开关控制电路 31与整流电路 30、 第一直流 /直流控制电路 32和储能电路 33相连, 第一开关控制电路 31接收整流电路 30输出的直流电压 U1和储能电路 33反馈的瞬时充电电压 U2 , 根据该直流 电压 U1和瞬时充电电压 U2得到第一控制信号 S1 ,将第一控制信号 S 1输出 给第一直流 /直流控制电路 32; 第一直流 /直流控制电路 32与整流电路 30、 第一开关控制电路 31和储能电路 33相连, 第一直流 /直流控制电路 32根据 第一开关控制电路 31输出的第一控制信号 S1对整流电路 30输出的直流电 压 U1进行转换处理输出给储能电路 33充电, 得到瞬时充电电压 U2。
第二开关控制电路 41与太阳能组件 40的输出端、第二直流 /直流控制电 路 42和储能电路 33相连, 第二开关控制电路 41接收太阳能组件 40输出的 直流电压 U3和储能电路 33反馈的瞬时充电电压 U2 ,根据直流电压 U3和瞬 时充电电压 U2得到第二控制信号 S2 , 将第二控制信号 S2输出给第二直流 / 直流控制电路 42。 第二直流 /直流控制电路 42与太阳能组件 40的输出端、 第二开关控制电路 41和储能电路 33相连, 第二直流 /直流控制电路 42根据 第二开关控制电路 41输出的第二控制信号 S2对太阳能组件 40输出的直流 电压 U3进行转换处理输出给储能电路 33充电, 得到瞬时充电电压 U2。
图 5所示的电路的工作原理是: 当海洋能作用于纳米摩擦发电机 10时, 会使纳米摩擦发电机 10发生机械形变, 从而产生交流脉沖电信号。 整流电 路 30接收到该交流脉沖电信号后, 对其进行整流处理, 得到单向脉动的直 流电压 Ul。第一开关控制电路 31接收整流电路 30输出的直流电压 U1和储 能电路 33反馈的瞬时充电电压 U2后, 将直流电压 U1和瞬时充电电压 U2 分别与储能电路 33的充满电压 U0进行比较, 如果直流电压 U1高于充满电 压 U0且瞬时充电电压 U2低于充满电压 U0,此时第一开关控制电路 31输出 第一控制信号 S1 , 控制第一直流 /直流控制电路 32将整流电路 30输出的直 流电压 U1进行降压处理, 输出给储能电路 33进行充电, 得到瞬时充电电压 U2;如果直流电压 U1低于等于充满电压 U0且瞬时充电电压 U2低于充满电 压 U0, 此时第一开关控制电路 31输出第一控制信号 S1 , 控制第一直流 /直 流控制电路 32将整流电路 30输出的直流电压 U1进行升压处理, 输出给储 能电路 33进行充电, 得到瞬时充电电压 U2; 又如果瞬时充电电压 U2等于 或短时高于充满电压 U0, 不管直流电压 U1 高于或低于充满电压 U0, 此时 第一开关控制电路 31输出第一控制信号 S1 ,控制第一直流 /直流控制电路 32 使其停止为储能电路 33充电。 当太阳光照射到太阳能组件 40上时, 太阳能 组件 40会将光能转换为直流电能, 输出直流电压 U3。 第二开关控制电路 41 接收太阳能组件 40输出的直流电压 U3和储能电路 33反馈的瞬时充电电压 U2后, 将直流电压 U3和瞬时充电电压 U2分别与储能电路 33的充满电压 U0进行比较, 如果直流电压 U3高于充满电压 U0且瞬时充电电压 U2低于 充满电压 U0, 此时第二开关控制电路 41输出第二控制信号 S2,控制第二直 流 /直流控制电路 42将太阳能组件 40输出的直流电压 U3进行降压处理, 输 出给储能电路 33进行充电, 得到瞬时充电电压 U2; 如果直流电压 U3低于 等于充满电压 U0且瞬时充电电压 U2低于充满电压 U0, 此时第二开关控制 电路 41输出第二控制信号 S2, 控制第二直流 /直流控制电路 42将太阳能组 件 40输出的直流电压 U3进行升压处理, 输出给储能电路 33进行充电, 得 到瞬时充电电压 U2; 又如果瞬时充电电压 U2等于或短时高于充满电压 U0, 不管直流电压 U3高于或低于充满电压 U0, 此时第二开关控制电路 41输出 第二控制信号 S2 , 控制第二直流 /直流控制电路 42使其停止为储能电路 33 充电。 上述控制方式仅为一个具体的例子, 本发明对此不做限制, 也可采用 其他的控制方式为储能电路充电。
可选地, 储能电路 33 可以为锂离子电池、 镍氢电池、 铅酸电池或超级 电容器等储能元件。
图 5所示的发电系统的特点是采用太阳能组件和纳米摩擦发电机同时为 储能电路进行充电, 其中纳米摩擦发电机收集波浪能和 /或潮汐能, 太阳能组 件收集太阳能, 这两个高效率的系统叠加在一起, 使整个系统的效率得以大 幅度的提升。 纳米摩擦发电机作为海洋能发电机的核心部件能够将波浪能和 /或潮汐能转化为电能, 由于纳米摩擦发电机本身的发电效率很高,使整个海 洋能发电机有很高的发电效率, 再加上高效的设计结构, 实现了一个最佳的 发电效率。 同时, 该发电系统的核心部件生产便捷, 而且形状、 尺寸不仅可 以加工至微小化, 实现发电系统的微型化; 也可以加工至较大尺寸, 实现高 功率发电。 另外, 由于纳米摩擦发电机微型化、 薄膜化, 进而使得整个发电 系统重量减小, 同时成本得到了极大的降低。
图 6为本发明提供的采用纳米摩擦发电机的发电系统的又一实施例的电 路原理示意图。 如图 6所示, 储能装置包括: 第一开关控制电路 51、 整流电 路 52、 开关电路 53、 第二开关控制电路 54、 直流 /直流控制电路 55和储能 电路 56。
其中第一开关控制电路 51与太阳能组件 50的输出端、 纳米摩擦发电机
10相连, 第一开关控制电路 51接收太阳能组件 50输出的直流电压 U4, 根 据直流电压 U4向纳米摩擦发电机 10输出用于控制纳米摩擦发电机是否工作 的控制信号 S3。整流电路 52与纳米摩擦发电机 10的输出端相连, 整流电路 52接收纳米摩擦发电机 10输出的交流脉沖电信号, 对该交流脉沖电信号进 行整流处理得到直流电压 U5。 开关电路 53的控制端与太阳能组件 50的输 出端相连, 根据太阳能组件 50输出的直流电压 U4控制开关电路 53的输入 / 输出端与太阳能组件 50的输出端或整流电路 52连通。 如果开关电路 53的 输入 /输出端与太阳能组件 50的输出端连通, 那么开关电路 53的输入 /输出 端输出的直流电压 U6等于 U4; 如果开关电路 53的输入 /输出端与整流电路 52连通, 那么开关电路 53的输入 /输出端输出的直流电压 U6等于 U5。 第二 开关控制电路 54与开关电路 53的输入 /输出端、 直流 /直流控制电路 55和储 能电路 56相连, 第二开关控制电路 54接收开关电路 53的输入 /输出端输出 的直流电压 U6和储能电路 56反馈的瞬时充电电压 U7, 根据直流电压 U6 和瞬时充电电压 U7得到控制信号 S4, 将控制信号 S4输出给直流 /直流控制 电路 55。 直流 /直流控制电路 55与开关电路 53的输入 /输出端、 第二开关控 制电路 54和储能电路 56相连, 根据第二开关控制电路 54输出的控制信号 S4对开关电路 53的输入 /输出端输出的直流电压 U6进行转换处理输出给储 能电路 56充电, 得到瞬时充电电压 U7。
图 6所示的电路的工作原理是: 当太阳光照射到太阳能组件 50上时, 太阳能组件 50会将光能转换为直流电能, 输出直流电压 U4。 开关电路 53 的控制端和第一开关控制电路 51会同时接收到该直流电压 U4, 将直流电压 U4与预先配置在开关电路 53和第一开关控制电路 51中的工作电压 U,进行 比较, 如果 U4大于或等于 U,, 开关电路 53控制其输入 /输出端与太阳能组 件 50的输出端连通, 与此同时第一开关控制电路 51 向纳米摩擦发电机 10 输出用于控制纳米摩擦发电机 10停止工作的控制信号 S3 ;如果 U4小于 U,, 第一开关控制电路 51向纳米摩擦发电机 10输出用于控制纳米摩擦发电机 10 继续工作的控制信号 S3 , 与此同时开关电路 53控制其输入 /输出端与整流电 路 52连通。 第二开关控制电路 54接收开关电路 53的输入 /输出端输出的直 流电压 U6和储能电路 56反馈的瞬时充电电压 U7后, 将直流电压 U6和瞬 时充电电压 U7分别与储能电路 56的充满电压 U0进行比较, 如果直流电压 U6高于充满电压 U0且瞬时充电电压 U7低于充满电压 U0,此时第二开关控 制电路 54输出控制信号 S4, 控制直流 /直流控制电路 55将开关电路 53的输 入 /输出端输出的直流电压 U6进行降压处理, 输出给储能电路 56进行充电, 得到瞬时充电电压 U7; 如果直流电压 U6低于等于充满电压 U0且瞬时充电 电压 U7低于充满电压 U0, 此时第二开关控制电路 54输出控制信号 S4, 控 制直流 /直流控制电路 55将直流电压 U6进行升压处理, 输出给储能电路 56 进行充电, 得到瞬时充电电压 U7; 又如果瞬时充电电压 U7等于或短时高于 充满电压 U0, 不管直流电压 U6高于或低于充满电压 U0, 此时第二开关控 制电路 54输出控制信号 S4, 控制直流 /直流控制电路 55使其停止为储能电 路 56充电。 上述控制方式仅为一个具体的例子, 本发明对此不做限制, 也 可采用其他的控制方式为储能电路充电。
可选地, 储能电路 56可以为锂离子电池、 镍氢电池、 铅酸电池或超级 电容器等储能元件。
图 6所示的发电系统的特点是采用太阳能组件和纳米摩擦发电机交替为 储能电路进行充电, 其中纳米摩擦发电机收集波浪能和 /或潮汐能, 太阳能组 件收集太阳能。 这种电路设计灵活, 能够根据实际情况自动切换, 在太阳能 充足的情况下, 采用太阳能组件为储能电路进行充电, 并且使纳米摩擦发电 机停止工作, 延长了纳米摩擦发电机及整流电路的使用寿命; 在太阳能不足 的情况下, 采用纳米摩擦发电机为储能电路进行充电, 大大提高了整个系统 的发电效率。
下面将详细介绍采用纳米摩擦发电机的发电系统中的纳米摩擦发电机 的结构和工作原理。
纳米摩擦发电机的第一种结构如图 7a和图 7b所示。 图 7a和图 7b分别 示出了纳米摩擦发电机的第一种结构的立体结构示意图和剖面结构示意图。 该纳米摩擦发电机包括: 依次层叠设置的第一电极 61 , 第一高分子聚合物绝 缘层 62 , 以及第二电极 63。 具体地, 第一电极 61设置在第一高分子聚合物 绝缘层 62的第一侧表面上; 且第一高分子聚合物绝缘层 62的第二侧表面与 第二电极 63的表面接触摩擦并在第二电极 63和第一电极 61处感应出电荷。 因此,上述的第一电极 61和第二电极 63构成纳米摩擦发电机的两个输出端。
为了提高纳米摩擦发电机的发电能力, 在第一高分子聚合物绝缘层 62 的第二侧表面(即相对第二电极 63的面上)进一步设有 纳结构 64。 因此, 当纳米摩擦发电机受到挤压时, 第一高分子聚合物绝缘层 62与第二电极 63 的相对表面能够更好地接触摩擦, 并在第一电极 61和第二电极 63处感应出 较多的电荷。 由于上述的第二电极 63 主要用于与第一高分子聚合物绝缘层 62摩擦, 因此, 第二电极 63也可以称之为摩擦电极。
上述的微纳结构 64具体可以采取如下两种可能的实现方式: 第一种方 式为, 该微纳结构是微米级或纳米级的非常小的凹凸结构。 该凹凸结构能够 增加摩擦阻力, 提高发电效率。 所述凹凸结构能够在薄膜制备时直接形成, 也能够用打磨的方法使第一高分子聚合物绝缘层的表面形成不规则的凹凸 结构。 具体地, 该凹凸结构可以是半圓形、 条纹状、 立方体型、 四棱锥型、 或圓柱形等形状的凹凸结构。第二种方式为,该微纳结构是纳米级孔状结构, 此时第一高分子聚合物绝缘层所用材料优选为聚偏氟乙烯(PVDF ) , 其厚 度为 0.5-1.2mm (优选 1.0mm ) , 且其相对第二电极的面上设有多个纳米孔。 其中, 每个纳米孔的尺寸, 即宽度和深度, 可以根据应用的需要进行选择, 优选的纳米孔的尺寸为: 宽度为 10-100nm以及深度为 4-50μηι。 纳米孔的数 量可以根据需要的输出电流值和电压值进行调整, 优选的这些纳米孔是孔间 距为 2-30μηι的均匀分布, 更优选的平均孔间距为 9μηι的均匀分布。
下面具体介绍一下图 7a和图 7b所示的纳米摩擦发电机的工作原理。 当 该纳米摩擦发电机的各层受到挤压时, 纳米摩擦发电机中的第二电极 63 与 第一高分子聚合物绝缘层 62表面相互摩擦产生静电荷, 静电荷的产生会使 第一电极 61和第二电极 63之间的电容发生改变, 从而导致第一电极 61和 第二电极 63之间出现电势差。 由于第一电极 61和第二电极 63作为纳米摩 擦发电机的输出端与储能装置连接, 储能装置构成纳米摩擦发电机的外电 路, 纳米摩擦发电机的两个输出端之间相当于被外电路连通。 当该纳米摩擦 发电机的各层恢复到原来状态时, 这时形成在第一电极和第二电极之间的内 电势消失, 此时已平衡的第一电极和第二电极之间将再次产生反向的电势 差。通过反复摩擦和恢复,就可以在外电路中形成周期性的交流脉沖电信号。
根据发明人的研究发现,金属与高分子聚合物摩擦,金属更易失去电子, 因此采用金属电极与高分子聚合物摩擦能够提高能量输出。 因此, 相应地, 在图 7a和图 7b所示的纳米摩擦发电机中, 第二电极由于需要作为摩擦电极 (即金属)与第一高分子聚合物进行摩擦, 因此其材料可以选自金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨 合金、 钼合金、 铌合金或钽合金。 第一电极由于不需要进行摩擦, 因此, 除 了可以选用上述罗列的第二电极的材料之外, 其他能够制作电极的材料也可 以应用,也就是说, 第一电极除了可以选自金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是 铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅 合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合 金或钽合金之外, 还可以选自铟锡氧化物、 石墨烯、 银纳米线膜等非金属材 料。
在图 7a所示的结构中, 第一高分子聚合物绝缘层与第二电极是正对贴 合, 并通过外侧边缘的胶布粘贴在一起的, 但本发明不仅限于此。 第一高分 子聚合物绝缘层与第二电极之间可以设置有多个弹性部件, 例如弹簧, 这些 弹簧分布在第一高分子聚合物绝缘层与第二电极的外侧边缘, 用于形成第一 高分子聚合物绝缘层与第二电极之间的弹性支撑臂。 当外力作用于纳米摩擦 发电机时, 纳米摩擦发电机受到挤压, 弹簧被压缩, 使得第一高分子聚合物 绝缘层与第二电极接触形成摩擦界面; 当外力消失时, 弹簧弹起, 使得第一 高分子聚合物绝缘层与第二电极分离, 纳米摩擦发电机恢复到原来的状态。
纳米摩擦发电机的第二种结构如图 8a和图 8b所示。 图 8a和图 8b分别 示出了纳米摩擦发电机的第二种结构的立体结构示意图和剖面结构示意图。 该纳米摩擦发电机包括: 依次层叠设置的第一电极 71 , 第一高分子聚合物绝 缘层 72, 第二高分子聚合物绝缘层 74以及第二电极 73。 具体地, 第一电极 71设置在第一高分子聚合物绝缘层 72的第一侧表面上;第二电极 73设置在 第二高分子聚合物绝缘层 74 的第一侧表面上; 其中, 第一高分子聚合物绝 缘层 72的第二侧表面与第二高分子聚合物绝缘层 74的第二侧表面接触摩擦 并在第一电极 71和第二电极 73处感应出电荷。 其中, 第一电极 71和第二 电极 73构成纳米摩擦发电机的两个输出端。
为了提高纳米摩擦发电机的发电能力, 第一高分子聚合物绝缘层 72和 第二高分子聚合物绝缘层 74相对设置的两个面中的至少一个面上设有微纳 结构。 在图 8b中, 第一高分子聚合物绝缘层 72的面上设有微纳结构 75。 因 此, 当纳米摩擦发电机受到挤压时, 第一高分子聚合物绝缘层 72 与第二高 分子聚合物绝缘层 74的相对表面能够更好地接触摩擦, 并在第一电极 71和 第二电极 73 处感应出较多的电荷。 上述的微纳结构可参照上文的描述, 此 处不再赘述。 图 8a和图 8b所示的纳米摩擦发电机的工作原理与图 7a和图 7b所示的 纳米摩擦发电机的工作原理类似。 区别仅在于, 当图 8a和图 8b所示的纳米 摩擦发电机的各层受到挤压时, 是由第一高分子聚合物绝缘层 72 与第二高 分子聚合物绝缘层 74的表面相互摩擦来产生静电荷的。 因此, 关于图 8a和 图 8b所示的纳米摩擦发电机的工作原理此处不再赘述。
图 8a和图 8b所示的纳米摩擦发电机主要通过聚合物(第一高分子聚合 物绝缘层)与聚合物(第二高分子聚合物绝缘层)之间的摩擦来产生电信号。
在这种结构中, 第一电极和第二电极所用材料可以是铟锡氧化物、 石墨 烯、 银纳米线膜、 金属或合金, 其中金属可以是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金可以是铝合金、 钛合金、 镁合 金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。 上述两种结 构中, 第一高分子聚合物绝缘层和第二高分子聚合物绝缘层分别选自聚酰亚 胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄 膜、聚己二酸乙二醇酯薄膜、聚邻苯二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯 共聚物薄膜、 人造纤维薄膜、 聚曱基薄膜, 曱基丙烯酸酯薄膜、 聚乙烯醇薄 膜、 聚乙烯醇薄膜、 聚酯薄膜、 聚异丁烯薄膜、 聚氨酯柔性海绵薄膜、 聚对 苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚薄膜、 氯丁橡胶薄 膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯 薄膜和聚乙烯丙二酚碳酸盐薄膜中的一种。 其中, 在第二种结构中, 原则上 第一高分子聚合物绝缘层和第二高分子聚合物绝缘层的材质可以相同, 也可 以不同。 但是, 如果两层高分子聚合物绝缘层的材质都相同, 会导致摩擦起 电的电荷量很小。 因此优选地, 第一高分子聚合物绝缘层与第二高分子聚合 物绝缘层的材质不同。
在图 8a所示的结构中, 第一高分子聚合物绝缘层 72与第二高分子聚合 物绝缘层 74是正对贴合, 并通过外侧边缘的胶布粘贴在一起的, 但本发明 不仅限于此。 第一高分子聚合物绝缘层 72与第二高分子聚合物绝缘层 74之 间可以设置有多个弹性部件, 图 8c 示出了纳米摩擦发电机的第二种结构的 具有弹性部件作为支撑臂的立体结构示意图, 如图 8c所示, 弹性部件可选 为弹簧 70 ,这些弹簧 70分布在第一高分子聚合物绝缘层 72与第二高分子聚 合物绝缘层 74的外侧边缘, 用于形成第一高分子聚合物绝缘层 72与第二高 分子聚合物绝缘层 74之间的弹性支撑臂。 当外力作用于纳米摩擦发电机时, 纳米摩擦发电机受到挤压, 弹簧 70被压缩, 使得第一高分子聚合物绝缘层 72与第二高分子聚合物绝缘层 74接触形成摩擦界面; 当外力消失时, 弹簧 70弹起,使得第一高分子聚合物绝缘层 72与第二高分子聚合物绝缘层 74分 离, 纳米摩擦发电机恢复到原来的状态。
除了上述两种结构外, 纳米摩擦发电机还可以采用第三种结构实现, 如 图 9a和图 9b所示。 图 9a和图 9b分别示出了纳米摩擦发电机的第三种结构 的立体结构示意图和剖面结构示意图。 从图中可以看出, 第三种结构在第二 种结构的基础上增加了一个居间薄膜层, 即: 第三种结构的纳米摩擦发电机 包括依次层叠设置的第一电极 81、 第一高分子聚合物绝缘层 82、 居间薄膜 层 80、 第二高分子聚合物绝缘层 84以及第二电极 83。 具体地, 第一电极 81 设置在第一高分子聚合物绝缘层 82的第一侧表面上; 第二电极 83设置在第 二高分子聚合物绝缘层 84的第一侧表面上, 且居间薄膜层 80设置在第一高 分子聚合物绝缘层 82的第二侧表面和第二高分子聚合物绝缘层 84的第二侧 表面之间。 其中, 所述居间薄膜层 80和第一高分子聚合物绝缘层 82相对设 置的两个面中的至少一个面上设有微纳结构 85 , 和 /或所述居间薄膜层 80和 第二高分子聚合物绝缘层 84相对设置的两个面中的至少一个面上设有微纳 结构 85 , 关于微纳结构 85的具体设置方式可参照上文描述, 此处不再赘述。
图 9a和图 9b所示的纳米摩擦发电机的材质可以参照前述的第二种结构 的纳米摩擦发电机的材质进行选择。 其中, 居间薄膜选自聚酰亚胺薄膜、 苯 胺曱 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱 醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二 酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵 薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄 膜、 人造纤维薄膜、 聚曱基薄膜, 曱基丙烯酸酯薄膜、 聚乙烯醇薄膜、 聚乙 烯醇薄膜、 聚酯薄膜、 聚异丁烯薄膜、 聚氨酯柔性海绵薄膜、 聚对苯二曱酸 乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚薄膜、 氯丁橡胶薄膜、 丁二 烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯薄膜和聚 乙烯丙二酚碳酸盐薄膜中的一种。 居间薄膜层也可以选自透明高聚物聚对苯 二甲酸乙二醇酯(PET ) 、 聚二甲基硅氧烷(PDMS ) 、 聚苯乙烯 (PS)、 聚甲 基丙烯酸甲酯 (PMMA)、 聚碳酸酯 (PC)和液晶高分子聚合物 (LCP ) 中的任 意一种。 其中, 所述第一高分子聚合物绝缘层与第二高分子聚合物绝缘层的 材料优选透明高聚物聚对苯二甲酸乙二醇酯 (PET ) ; 其中, 所述居间薄膜 层的材料优选聚二甲基硅氧烷(PDMS ) 。 上述的第一高分子聚合物绝缘层 和居间薄膜层的材质以及第二高分子聚合物绝缘层和居间薄膜层的材质可 以相同, 也可以不同。 但是, 如果第一高分子聚合物绝缘层和居间薄膜层的 材质相同或第二高分子聚合物绝缘层和居间薄膜层的材质相同, 会导致摩擦 起电的电荷量很小, 因此, 为了提高摩擦效果, 居间薄膜层的材质不同于第 一高分子聚合物绝缘层和第二高分子聚合物绝缘层, 而第一高分子聚合物绝 缘层与第二高分子聚合物绝缘层的材质则优选相同,这样,能减少材料种类, 使本发明的制作更加方便。
在图 9a和图 9b所示的实现方式中, 居间薄膜层 80是一层聚合物膜, 因此实质上与图 8a和图 8b所示的实现方式类似, 仍然是通过聚合物 (居间 薄膜层)和聚合物(第二高分子聚合物绝缘层)之间的摩擦来发电的。 其中, 居间薄膜层容易制备且性能稳定。
如果在居间薄膜层和第一高分子聚合物绝缘层相对设置的两个面中的 至少一个面上设有微纳结构, 在图 9a所示的结构中, 第一高分子聚合物绝 缘层与居间薄膜层是正对贴合, 并通过外侧边缘的胶布粘贴在一起的, 但本 发明不仅限于此。 第一高分子聚合物绝缘层与居间薄膜层之间可以设置有多 个弹性部件, 例如弹簧, 这些弹簧分布在第一高分子聚合物绝缘层与居间薄 膜层的外侧边缘, 用于形成第一高分子聚合物绝缘层与居间薄膜层之间的弹 性支撑臂。 当外力作用于纳米摩擦发电机时, 纳米摩擦发电机受到挤压, 弹 簧被压缩, 使得第一高分子聚合物绝缘层与居间薄膜层接触形成摩擦界面; 当外力消失时,弹簧弹起,使得第一高分子聚合物绝缘层与居间薄膜层分离, 纳米摩擦发电机恢复到原来的状态。
如果在居间薄膜层和第二高分子聚合物绝缘层相对设置的两个面中的 至少一个面上设有微纳结构, 在图 9a所示的结构中, 第二高分子聚合物绝 缘层与居间薄膜层是正对贴合, 并通过外侧边缘的胶布粘贴在一起的, 但本 发明不仅限于此。 第二高分子聚合物绝缘层与居间薄膜层之间可以设置有多 个弹性部件, 例如弹簧, 这些弹簧分布在第二高分子聚合物绝缘层与居间薄 膜层的外侧边缘, 用于形成第二高分子聚合物绝缘层与居间薄膜层之间的弹 性支撑臂。 当外力作用于纳米摩擦发电机时, 纳米摩擦发电机受到挤压, 弹 簧被压缩, 使得第二高分子聚合物绝缘层与居间薄膜层接触形成摩擦界面; 当外力消失时,弹簧弹起,使得第二高分子聚合物绝缘层与居间薄膜层分离, 纳米摩擦发电机恢复到原来的状态。
可选地, 弹性部件可以同时设置在居间薄膜层与第一高分子聚合物绝缘 层、 居间薄膜层与第二高分子聚合物绝缘层之间。
另外,纳米摩擦发电机还可以采用第四种结构来实现,如图 10a和图 10b 所示, 包括:依次层叠设置的第一电极 91 , 第一高分子聚合物绝缘层 92 , 居 间电极层 90, 第二高分子聚合物绝缘层 94和第二电极 93 ; 其中, 第一电极 91设置在第一高分子聚合物绝缘层 92的第一侧表面上;第二电极 93设置在 第二高分子聚合物绝缘层 94的第一侧表面上, 居间电极层 90设置在第一高 分子聚合物绝缘层 92的第二侧表面与第二高分子聚合物绝缘层 94的第二侧 表面之间。 其中, 第一高分子聚合物绝缘层 92相对居间电极层 90的面和居 间电极层 90相对第一高分子聚合物绝缘层 92的面中的至少一个面上设置有 微纳结构 (图未示) ; 和 /或, 第二高分子聚合物绝缘层 94相对居间电极层 90的面和居间电极层 90相对第二高分子聚合物绝缘层 94的面中的至少一个 面上设置有微纳结构 (图未示) 。 在这种方式中, 通过居间电极层 90与第 一高分子聚合物绝缘层 92和第二高分子聚合物绝缘层 94之间摩擦产生静电 荷, 由此将在居间电极层 90与第一电极 91和第二电极 93之间产生电势差, 此时, 第一电极 91和第二电极 93串联为纳米摩擦发电机的一个输出端; 居 间电极层 90为纳米摩擦发电机的另一个输出端。
在图 10a和图 10b所示的结构中, 第一高分子聚合物绝缘层、 第二高分 子聚合物绝缘层、 第一电极和第二电极的材质可以参照前述的第二种结构的 纳米摩擦发电机的材质进行选择。 居间电极层可以选择导电薄膜、 导电高分 子、 金属材料, 金属材料包括金属和合金, 金属选自金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨、 钒等, 合金可以选自轻合金(铝合 金、 钛合金、 镁合金、 铍合金等)、 重有色合金(铜合金、 辞合金、 锰合金、 镍合金等) 、 低熔点合金(铅、 锡、 镉、 铋、 铟、 镓及其合金) 、 难熔合金 (钨合金、 钼合金、 铌合金、 钽合金等) 。 居间电极层的厚度优选 100μηι-500μηι, 更优选 200 μηι。
如果第一高分子聚合物绝缘层相对居间电极层的面和居间电极层相对 第一高分子聚合物绝缘层的面中的至少一个面上设置有微纳结构, 在图 10a 所示的结构中, 第一高分子聚合物绝缘层与居间电极层是正对贴合, 并通过 外侧边缘的胶布粘贴在一起的, 但本发明不仅限于此。 第一高分子聚合物绝 缘层与居间电极层之间可以设置有多个弹性部件, 例如弹簧, 这些弹簧分布 在第一高分子聚合物绝缘层与居间电极层的外侧边缘, 用于形成第一高分子 聚合物绝缘层与居间电极层之间的弹性支撑臂。 当外力作用于纳米摩擦发电 机时, 纳米摩擦发电机受到挤压, 弹簧被压缩, 使得第一高分子聚合物绝缘 层与居间电极层接触形成摩擦界面; 当外力消失时, 弹簧弹起, 使得第一高 分子聚合物绝缘层与居间电极层分离, 纳米摩擦发电机恢复到原来的状态。
如果第二高分子聚合物绝缘层相对居间电极层的面和居间电极层相对 第二高分子聚合物绝缘层的面中的至少一个面上设置有微纳结构, 在图 10a 所示的结构中, 第二高分子聚合物绝缘层与居间电极层是正对贴合, 并通过 外侧边缘的胶布粘贴在一起的, 但本发明不仅限于此。 第二高分子聚合物绝 缘层与居间电极层之间可以设置有多个弹性部件, 例如弹簧, 这些弹簧分布 在第二高分子聚合物绝缘层与居间电极层的外侧边缘, 用于形成第二高分子 聚合物绝缘层与居间电极层之间的弹性支撑臂。 当外力作用于纳米摩擦发电 机时, 纳米摩擦发电机受到挤压, 弹簧被压缩, 使得第二高分子聚合物绝缘 层与居间电极层接触形成摩擦界面; 当外力消失时, 弹簧弹起, 使得第二高 分子聚合物绝缘层与居间电极层分离, 纳米摩擦发电机恢复到原来的状态。
可选地, 弹性部件可以同时设置在居间电极层与第一高分子聚合物绝缘 层、 居间电极层与第二高分子聚合物绝缘层之间。
本发明提供的采用纳米摩擦发电机的海洋能发电与太阳能发电组合的 发电系统实现了波浪能、 潮汐能和太阳能的多重收集利用, 这不仅节约了能 源, 而且清洁环保, 保护了环境。 对于采用纳米摩擦发电机的波浪能、 潮汐 能发电系统, 由于纳米摩擦发电机本身的发电效率很高, 而使整个波浪能、 潮汐能发电系统有很高的发电效率, 再加上高效的设计结构, 实现了一个最 佳的发电效率。
本发明的海洋能发电与太阳能发电组合的发电系统的结构可以设计成 多种形式, 可以根据应用场所的不同选择不同的结构设计, 扩大了波浪能、 潮汐能发电系统的应用范围。
本发明提供的发电系统实现了纳米摩擦发电机收集波浪能发电、 潮汐能 发电与太阳能发电的结合, 多个高效率的子系统的叠加, 使整个系统的效率 得到大幅度的提高。 另外还提供了一种储能装置, 该储能装置设计灵活, 能 自动进行切换, 不仅可以同时储存纳米摩擦发电机收集波浪能、 潮汐能所发 的电与太阳能发的电, 还可以交替储存纳米摩擦发电机收集波浪能、 潮汐能 所发的电与太阳能发的电, 操作筒单。
本发明提供的发电系统中将纳米摩擦发电机设置于壳体中, 壳体是一个 封闭的结构, 可以防止海水腐蚀纳米摩擦发电机和电路等内部部件, 使得发 电系统实现长寿命发电。
最后, 需要注意的是: 以上列举的仅是本发明的具体实施例子, 当然本 领域的技术人员可以对本发明进行改动和变型, 倘若这些修改和变型属于本 发明权利要求及其等同技术的范围之内, 均应认为是本发明的保护范围。

Claims

权 利 要 求 书
1、 一种采用纳米摩擦发电机的发电系统, 其特征在于, 包括: 海洋能 发电机和储能装置;
所述海洋能发电机包括用于将机械能转化为电能的至少一个纳米摩擦 发电机;
所述储能装置与所述纳米摩擦发电机的输出端相连, 用于对所述纳米摩 擦发电机输出的电能进行存储。
2、 根据权利要求 1所述的系统, 其特征在于, 还包括: 太阳能组件; 所述太阳能组件由多个太阳能电池组成, 所述多个太阳能电池以串联或 并联方式连接形成太阳能组件的至少两个输出端, 其中每个太阳能电池为由 半导体材料所形成的 PN结式结构的光电转换单元; 所述储能装置还与所述太阳能组件的至少两个输出端相连, 用于对所述 太阳能组件输出的电能进行存储。
3、 根据权利要求 2所述的系统, 其特征在于, 所述 PN结是由掺杂半导 体材料所形成的结构; 或者, 所述 PN结是半导体薄膜的结构。
4、 根据权利要求 2所述的系统, 其特征在于, 所述太阳能组件还包括 保护体。
5、 根据权利要求 4所述的系统, 其特征在于, 所述保护体为保护板或 保护膜。
6、 根据权利要求 1或 2所述的系统, 其特征在于, 所述海洋能发电机 还包括: 容纳所述至少一个纳米摩擦发电机的壳体, 其中, 所述壳体内部具 有空腔, 所述至少一个纳米摩擦发电机设置在所述空腔内。
7、 根据权利要求 6所述的系统, 其特征在于, 所述海洋能发电机还包 括: 设置于所述空腔内的至少一个撞击部件, 其中, 所述撞击部件包括能够 与所述纳米摩擦发电机发生碰撞的撞击球。
8、 如权利要求 7所述的系统, 其特征在于, 所述至少一个纳米摩擦发 电机通过固定部件固定在所述空腔的第一侧壁和 /或第二侧壁上,所述第一侧 壁和第二侧壁相对; 且所述撞击部件进一步包括: 设置在所述第一侧壁和第二侧壁之间的导 轨, 所述撞击球能够沿所述导轨移动。
9、 如权利要求 8所述的系统, 其特征在于, 所述导轨为空心导管, 所 述撞击球设置于所述空心导管内部的通道内。
10、 如权利要求 9所述的系统, 其特征在于, 所述导轨与所述第一侧壁 和所述第二侧壁之间分别具有预设的保护间隔。
11、 如权利要求 7所述的系统, 其特征在于, 每个纳米摩擦发电机通过 固定部件固定在所述空腔的任一侧壁上, 且所述撞击部件进一步包括牵引 件, 所述牵引件的第一端为固定在所述空腔的顶壁上的固定端, 所述牵引件 的第二端为连接有所述撞击球的自由端。
12、 如权利要求 11 所述的系统, 其特征在于, 所述牵引件的长度大于 纳米摩擦发电机的顶端与牵引件的第一端之间的距离, 小于纳米摩擦发电机 的底端与牵引件的第一端之间的距离。
13、 如权利要求 6所述的系统, 其特征在于, 每个纳米摩擦发电机通过 弹性部件设置在所述空腔内部, 且所述海洋能发电机还包括: 设置于所述空 腔内的至少一个撞击部件,其中,所述撞击部件能够在所述空腔内自由运动。
14、 如权利要求 13 所述的系统, 其特征在于, 所述弹性部件包括第一 弹性件和第二弹性件, 所述第一弹性件的第一端和所述第二弹性件的第一端 分别固定在所述空腔的两个内壁上, 所述第一弹性件的第二端和所述第二弹 性件的第二端之间固定连接一个纳米摩擦发电机, 其中, 所述两个内壁之间 相对平行或垂直。
15、 如权利要求 14所述的系统, 其特征在于, 所述弹性部件为两组, 其中, 第一组弹性部件中的各个弹性部件之间相互平行, 第二组弹性部件中 的各个弹性部件与所述第一组弹性部件中的各个弹性部件之间相对垂直。
16、 如权利要求 13 所述的系统, 其特征在于, 所述撞击部件具有橢圓 形的底部以及球形的顶部, 其中, 所述底部和顶部均为自由端。
17、 如权利要求 16所述的系统, 其特征在于, 所述底部的体积大于所 述顶部的体积, 且所述底部的密度大于所述顶部的密度。
18、 如权利要求 6所述的系统, 其特征在于, 所述壳体的纵剖面为波浪 形状。
19、 如权利要求 18 所述的系统, 其特征在于, 所述壳体进一步包括: 多个子壳体, 每相邻的两个子壳体之间通过固定部件固定连接且呈第一预设 角度, 其中, 每个子壳体内部具有至少一个空腔。
20、 如权利要求 19 所述的系统, 其特征在于, 每个空腔内的纳米摩擦 发电机与所述空腔的至少一个内壁固定。
21、 如权利要求 20所述的系统, 其特征在于, 所述壳体与水平面之间 呈第二预设角度。
22、 如权利要求 6所述的系统, 其特征在于, 所述纳米摩擦发电机的表 面设置有防护垫片, 或者, 所述纳米摩擦发电机的表面为塑封表面。
23、根据权利要求 1或 2所述的系统, 其特征在于, 所述储能装置包括: 整流电路、第一开关控制电路、第一直流 /直流控制电路、第二开关控制电路、 第二直流 /直流控制电路以及储能电路;
所述整流电路与所述至少一个纳米摩擦发电机的输出端相连, 接收所述 至少一个纳米摩擦发电机输出的交流脉沖电信号并对所述交流脉沖电信号 进行整流处理得到直流电压;
所述第一开关控制电路与所述整流电路、所述第一直流 /直流控制电路和 所述储能电路相连, 接收所述整流电路输出的直流电压和所述储能电路反馈 的瞬时充电电压, 根据所述整流电路输出的直流电压和所述储能电路反馈的 瞬时充电电压得到第一控制信号, 将所述第一控制信号输出给所述第一直流 /直流控制电路;
所述第一直流 /直流控制电路与所述整流电路、所述第一开关控制电路和 所述储能电路相连, 根据所述第一开关控制电路输出的第一控制信号对所述 整流电路输出的直流电压进行转换处理输出给所述储能电路充电, 得到瞬时 充电电压;
所述第二开关控制电路与所述太阳能组件的至少两个输出端、 所述第二 直流 /直流控制电路和所述储能电路相连,接收所述太阳能组件输出的直流电 压和所述储能电路反馈的瞬时充电电压, 根据所述太阳能组件输出的直流电 压和所述储能电路反馈的瞬时充电电压得到第二控制信号, 将所述第二控制 信号输出给所述第二直流 /直流控制电路;
所述第二直流 /直流控制电路与所述太阳能组件的至少两个输出端、所述 第二开关控制电路和所述储能电路相连, 根据所述第二开关控制电路输出的 第二控制信号对所述太阳能组件输出的直流电压进行转换处理输出给所述 储能电路充电, 得到瞬时充电电压。
24、根据权利要求 1或 2所述的系统, 其特征在于, 所述储能装置包括: 第一开关控制电路、 整流电路、 开关电路、 第二开关控制电路、 直流 /直流控 制电路和储能电路;
所述第一开关控制电路与所述太阳能组件的至少两个输出端和所述至 少一个纳米摩擦发电机相连, 接收所述太阳能组件输出的直流电压, 根据所 述太阳能组件输出的直流电压向所述至少一个纳米摩擦发电机输出用于控 制纳米摩擦发电机是否工作的控制信号;
所述整流电路与所述至少一个纳米摩擦发电机的输出端相连, 接收所述 至少一个纳米摩擦发电机输出的交流脉沖电信号并对所述交流脉沖信号进 行整流处理得到直流电压;
所述开关电路的控制端与所述太阳能组件的输出端相连, 根据所述太阳 能组件输出的直流电压控制所述开关电路的输入 /输出端与所述太阳能组件 的至少两个输出端或所述整流电路连通;
所述第二开关控制电路与所述开关电路的输入 /输出端、 所述直流 /直流 控制电路和所述储能电路相连,接收所述开关电路的输入 /输出端输出的直流 电压和所述储能电路反馈的瞬时充电电压,根据所述开关电路的输入 /输出端 输出的直流电压和所述储能电路反馈的瞬时充电电压得到控制信号, 将所述 控制信号输出给所述直流 /直流控制电路;
所述直流 /直流控制电路与所述开关电路的输入 /输出端、 所述第二开关 控制电路和所述储能电路相连, 根据所述第二开关控制电路输出的控制信号 对所述开关电路的输入 /输出端输出的直流电压进行转换处理输出给所述储 能电路充电, 得到瞬时充电电压。
25、 根据权利要求 23或 24所述的系统, 其特征在于, 所述储能电路为 锂离子电池、 镍氢电池、 铅酸电池或超级电容器。
26、 根据权利要求 1或 2所述的系统, 其特征在于, 所述纳米摩擦发电 机包括: 依次层叠设置的第一电极, 第一高分子聚合物绝缘层, 以及第二电 极; 其中, 所述第一电极设置在所述第一高分子聚合物绝缘层的第一侧表面 上; 且所述第一高分子聚合物绝缘层的第二侧表面朝向所述第二电极设置, 所述第一电极和第二电极构成所述纳米摩擦发电机的输出端。
27、 根据权利要求 26所述的系统, 其特征在于, 所述第一高分子聚合 物绝缘层的第二侧表面上设有微纳结构。
28、 根据权利要求 27所述的系统, 其特征在于, 所述第一高分子聚合 物绝缘层与所述第二电极之间设置有多个弹性部件, 所述弹性部件用于在外 力的作用下控制所述第一高分子聚合物绝缘层与所述第二电极接触和分离。
29、 根据权利要求 28所述的系统, 其特征在于, 所述纳米摩擦发电机 进一步包括: 设置在所述第二电极和所述第一高分子聚合物绝缘层之间的第 二高分子聚合物绝缘层, 所述第二电极设置在所述第二高分子聚合物绝缘层 的第一侧表面上; 且所述第二高分子聚合物绝缘层的第二侧表面与所述第一 高分子聚合物绝缘层的第二侧表面相对设置。
30、 根据权利要求 27所述的系统, 其特征在于, 所述第一高分子聚合 物绝缘层和第二高分子聚合物绝缘层相对设置的两个面中的至少一个面上 设有微纳结构。
31、 根据权利要求 30所述的系统, 其特征在于, 所述第一高分子聚合 物绝缘层与所述第二高分子聚合物绝缘层之间设置有多个弹性部件, 所述弹 性部件用于在外力的作用下控制所述第一高分子聚合物绝缘层与所述第二 高分子聚合物绝缘层接触和分离。
32、 根据权利要求 29所述的系统, 其特征在于, 所述纳米摩擦发电机 进一步包括: 设置在所述第一高分子聚合物绝缘层和所述第二高分子聚合物 绝缘层之间的居间薄膜层, 其中, 所述居间薄膜层为聚合物薄膜层, 且所述 第一高分子聚合物绝缘层相对所述居间薄膜层的面和居间薄膜层相对于第 一高分子聚合物绝缘层的面中的至少一个面上和 /或所述第二高分子聚合物 绝缘层相对所述居间薄膜层的面和居间薄膜层相对第二高分子聚合物绝缘 层的面中的至少一个面上设有微纳结构。
33、 根据权利要求 32所述的系统, 其特征在于, 所述第一高分子聚合 物绝缘层和所述居间薄膜层之间设置有多个弹性部件, 该弹性部件用于在外 力的作用下控制所述第一高分子聚合物绝缘层和所述居间薄膜层接触和分 离;
和 /或,所述第二高分子聚合物绝缘层和所述居间薄膜层之间设置有多个 弹性部件, 该弹性部件用于在外力的作用下控制所述第二高分子聚合物绝缘 层和所述居间薄膜层接触和分离。
34、 根据权利要求 1或 2所述的系统, 其特征在于, 所述纳米摩擦发电 机包括: 依次层叠设置的第一电极, 第一高分子聚合物绝缘层,居间电极层, 第二高分子聚合物绝缘层以及第二电极; 其中, 所述第一电极设置在所述第 一高分子聚合物绝缘层的第一侧表面上; 所述第二电极设置在所述第二高分 子聚合物绝缘层的第一侧表面上, 所述居间电极层设置在所述第一高分子聚 合物绝缘层的第二侧表面与所述第二高分子聚合物绝缘层的第二侧表面之 间, 且所述第一高分子聚合物绝缘层相对所述居间电极层的面和居间电极层 相对于第一高分子聚合物绝缘层的面中的至少一个面上和 /或所述第二高分 子聚合物绝缘层相对所述居间电极层的面和居间电极层相对第二高分子聚 合物绝缘层的面中的至少一个面上设有微纳结构, 所述第一电极和第二电极 相连后与所述居间电极层构成所述纳米摩擦发电机的输出端。
35、 根据权利要求 34所述的系统, 其特征在于, 所述第一高分子聚合 物绝缘层和所述居间电极层之间设置有多个弹性部件, 该弹性部件用于在外 力的作用下控制所述第一高分子聚合物绝缘层和所述居间电极层接触和分 离;
和 /或,所述第二高分子聚合物绝缘层和所述居间电极层之间设置有多个 弹性部件, 该弹性部件用于在外力的作用下控制所述第二高分子聚合物绝缘 层和所述居间电极层接触和分离。
PCT/CN2013/091035 2013-04-12 2013-12-31 采用纳米摩擦发电机的发电系统 WO2014166293A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201310127234.8 2013-04-12
CN201310127234.8A CN104104261B (zh) 2013-04-12 2013-04-12 发电系统
CN201310127170.1A CN104104260B (zh) 2013-04-12 2013-04-12 发电系统
CN 201320212780 CN203219206U (zh) 2013-04-12 2013-04-12 发电系统
CN201320212780.7 2013-04-12
CN201310127170.1 2013-04-12
CN201310143712.4 2013-04-22
CN201310143712.4A CN104113268B (zh) 2013-04-22 2013-04-22 采用纳米摩擦发电机的海洋能发电和太阳能发电组合系统

Publications (1)

Publication Number Publication Date
WO2014166293A1 true WO2014166293A1 (zh) 2014-10-16

Family

ID=51688925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091035 WO2014166293A1 (zh) 2013-04-12 2013-12-31 采用纳米摩擦发电机的发电系统

Country Status (1)

Country Link
WO (1) WO2014166293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873905A (zh) * 2019-12-11 2020-03-10 大连海事大学 一种基于太阳能温差发电和拍打式摩擦纳米发电的多能互补的自供能监测节点

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696499A (zh) * 2004-11-05 2005-11-16 谭晛 波动、波浪发电机
CN101938230A (zh) * 2010-09-06 2011-01-05 扬州大学 波浪振动压电发电与太阳能组合发电方法及其发电系统
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN203219206U (zh) * 2013-04-12 2013-09-25 纳米新能源(唐山)有限责任公司 发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696499A (zh) * 2004-11-05 2005-11-16 谭晛 波动、波浪发电机
CN101938230A (zh) * 2010-09-06 2011-01-05 扬州大学 波浪振动压电发电与太阳能组合发电方法及其发电系统
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN202818150U (zh) * 2012-09-20 2013-03-20 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN203219206U (zh) * 2013-04-12 2013-09-25 纳米新能源(唐山)有限责任公司 发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873905A (zh) * 2019-12-11 2020-03-10 大连海事大学 一种基于太阳能温差发电和拍打式摩擦纳米发电的多能互补的自供能监测节点

Similar Documents

Publication Publication Date Title
CN104113268B (zh) 采用纳米摩擦发电机的海洋能发电和太阳能发电组合系统
CN203377808U (zh) 采用纳米摩擦发电机的海洋能发电和太阳能发电组合系统
CN203219206U (zh) 发电系统
CN104124887B (zh) 风力发电机
CN203532171U (zh) 风力发电装置及风力发电系统
WO2014166286A1 (zh) 采用纳米摩擦发电机的发电系统
CN104113270B (zh) 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN107612150B (zh) 水面能量集能系统
CN203219203U (zh) 发电系统
CN114151263B (zh) 一种波浪能-光能混合发电装置
CN104104122B (zh) 发电系统
CN104104260B (zh) 发电系统
CN203219205U (zh) 发电系统
CN104104262B (zh) 发电系统
CN104104261B (zh) 发电系统
US20230344309A1 (en) Power generation unit and power generation device
CN203219204U (zh) 发电系统
CN109546883A (zh) 一种摩擦纳米发电机
CN107171595B (zh) 一种利用海洋能发电的柔性压电装置
CN104343637A (zh) 风力发电装置
CN203377814U (zh) 采用纳米摩擦发电机的风力发电和太阳能发电组合系统
CN203218932U (zh) 发电系统
CN104124888B (zh) 发电系统
CN203218931U (zh) 发电系统
CN201781430U (zh) 船上压电发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881628

Country of ref document: EP

Kind code of ref document: A1