WO2014166264A1 - Correlator for mobile terminal and implementation method - Google Patents

Correlator for mobile terminal and implementation method Download PDF

Info

Publication number
WO2014166264A1
WO2014166264A1 PCT/CN2013/087839 CN2013087839W WO2014166264A1 WO 2014166264 A1 WO2014166264 A1 WO 2014166264A1 CN 2013087839 W CN2013087839 W CN 2013087839W WO 2014166264 A1 WO2014166264 A1 WO 2014166264A1
Authority
WO
WIPO (PCT)
Prior art keywords
correlation
frequency offset
mobile terminal
values
value
Prior art date
Application number
PCT/CN2013/087839
Other languages
French (fr)
Chinese (zh)
Inventor
程健
徐鑫昌
倪海峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014166264A1 publication Critical patent/WO2014166264A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects

Abstract

A correlator for a mobile terminal and an implementation method. The method comprises: a mobile terminal performing segmentation correlation processing on received downlink pilot signals and pre-stored training signals, so as to obtain various local correlation values; according to a plurality of preset attempt frequency offset values, performing frequency attempt correlation and segment weighting processing on the various local correlation values, so as to obtain a plurality of global correlation values corresponding to the plurality of attempt frequency offset values; and by comparing the plurality of global correlation values, determining the maximum global correlation value used as an actual correlation value of the mobile terminal and a corresponding attempt frequency offset value used as an actual frequency offset value of the mobile terminal. The correlator in the embodiments of the present invention can have good working performance under large frequency offset, and does not increase the operational complexity basically.

Description

一种移动终端的相关器及实现方法  Correlator and implementation method of mobile terminal
技术领域 Technical field
本发明涉及移动终端, 特别涉及一种移动终端中存在大频偏下的相关器 及其相关的实现方法。  The present invention relates to a mobile terminal, and in particular, to a correlator having a large frequency offset in a mobile terminal and related implementation methods.
背景技术 Background technique
移动终端中,需要经常执行相关运算,比如 3G通信系统中, TD-SCDMA 需要执行下行导频时隙 DwPTS时隙上的 DwPCH信道相关, 以及 WCDMA 中需要对主同步信道 P-SCH进行相关运算,来获取下行接收的初始时间同步。  In a mobile terminal, correlation operations need to be performed frequently. For example, in a 3G communication system, TD-SCDMA needs to perform DwPCH channel correlation on a downlink pilot time slot DwPTS time slot, and WCDMA needs to perform correlation operation on a primary synchronization channel P-SCH. To get the initial time synchronization of the downlink reception.
移动终端开始接收线性信号时, 接收机中可能存在频偏, 尤其随着低成 本需求, 棵晶体取代带温度补偿的 TC-VCXO振荡器后, 接收机初始接收时 必将存在较大的频偏, 比如初始接收中存在 20k ~ 30kHz的频率偏移, 这样 在初始接收时用来执行初始相关运算时, 由于可能存在的频偏过大, 会导致 相关失败, 或者相关性能降低。  When the mobile terminal starts to receive the linear signal, there may be a frequency offset in the receiver. Especially with the low cost requirement, after the crystal replaces the temperature compensated TC-VCXO oscillator, the receiver will have a large frequency offset when initially receiving. For example, there is a frequency offset of 20k ~ 30kHz in the initial reception, so that when the initial correlation operation is performed at the initial reception, the possible frequency offset may be too large, or the related performance may be degraded.
发明内容 Summary of the invention
本发明的目的在于提供一种移动终端的相关器及实现方法, 能更好地解 决移动终端在较大频偏下先关失败或相关性能降低的问题。  It is an object of the present invention to provide a correlator and implementation method for a mobile terminal, which can better solve the problem that the mobile terminal fails to close first or the related performance decreases under a large frequency offset.
才艮据本发明的一个方面, 提供了一种移动终端的相关器的实现方法, 包 括:  According to an aspect of the present invention, a method for implementing a correlator of a mobile terminal is provided, including:
移动终端将收到的下行导频信号与预存的训练信号进行分段相关处理, 得到各个局部相关值;  The mobile terminal performs segmentation correlation processing on the received downlink pilot signal and the pre-stored training signal to obtain respective local correlation values;
按照预设的多个尝试频偏值, 对所述各个局部相关值进行频率尝试相关 和分段加权处理, 得到对应于所述多个尝试频偏值的多个全局相关值;  Performing a frequency attempt correlation and a segmentation weighting process on the respective local correlation values according to a preset plurality of trial frequency offset values, to obtain a plurality of global correlation values corresponding to the plurality of trial frequency offset values;
通过比较所述多个全局相关值, 确定用作移动终端实际相关值的最大全 优选地, 在进行所述分段相关处理前, 还包括: 根据移动终端的最大频偏, 得到移动终端的相位旋转最大值; 利用所述相位旋转最大值和预设的相位旋转门限值, 确定所述下行导频 信号和所述训练信号的分段数量 M。 优选地, 所述分段相关处理的步骤包括: And determining, by comparing the plurality of global correlation values, a maximum total preference for the actual correlation value of the mobile terminal, before performing the segmentation correlation processing, the method further includes: Obtaining a phase rotation maximum value of the mobile terminal according to a maximum frequency offset of the mobile terminal; determining, by using the phase rotation maximum value and a preset phase rotation threshold value, the number of segments of the downlink pilot signal and the training signal M. Preferably, the step of the segment correlation processing comprises:
按照所述分段数量 M, 将所述下行导频信号和所述训练信号分别分割成 等长的 M个部分;  And dividing the downlink pilot signal and the training signal into M parts of equal length according to the number of segments M;
将所述下行导频信号的 M个部分分别与对应的所述训练信号的 M个部 分进行局部相关处理, 得到 M个局部相关值。  The M parts of the downlink pilot signal are locally correlated with the M parts of the corresponding training signal to obtain M local correlation values.
优选地, 在进行所述频率尝试相关和分段加权处理步骤前, 还包括: 4艮据移动终端的最大频偏, 确定移动终端的频偏范围;  Preferably, before performing the frequency attempt correlation and segment weighting processing steps, the method further includes: determining a frequency offset range of the mobile terminal according to a maximum frequency offset of the mobile terminal;
在所述频偏范围内, 选取多个尝试频偏值, 以便用来确定移动终端的实 际相关值和实际频偏值。  Within the frequency offset range, a plurality of trial frequency offset values are selected for use in determining the actual correlation value and the actual frequency offset value of the mobile terminal.
优选地, 所述频率尝试相关和分段加权处理的步骤包括:  Preferably, the steps of the frequency attempt correlation and the segmentation weighting process comprise:
利用所选取的某个尝试频偏值, 对所述各个局部相关值进行相位旋转处 理, 得到各个局部相位旋转相关值;  Performing phase rotation processing on each of the local correlation values by using the selected one of the trial frequency offset values to obtain respective local phase rotation correlation values;
将所述各个局部相位旋转相关值进行加权处理, 得到所述尝试频偏值对 应的一个全局相关值。  And weighting each of the partial phase rotation correlation values to obtain a global correlation value corresponding to the trial frequency offset value.
根据本发明的另一方面, 提供了一种移动终端的相关器, 包括: 分段相关模块, 设置为: 将收到的下行导频信号与预存的训练信号进行 分段相关处理, 得到各个局部相关值;  According to another aspect of the present invention, a correlator for a mobile terminal is provided, including: a segmentation correlation module, configured to: perform segmentation correlation processing on a received downlink pilot signal and a pre-stored training signal to obtain each part Related value
频率尝试模块, 设置为: 按照预设的多个尝试频偏值, 对所述各个局部 相关值进行频率尝试相关和分段加权处理, 得到对应于所述多个尝试频偏值 的多个全局相关值;  The frequency attempting module is configured to: perform frequency trial correlation and segment weighting processing on each of the local correlation values according to a preset plurality of trial frequency offset values, to obtain multiple global responses corresponding to the plurality of trial frequency offset values Related value
峰值搜索模块, 设置为: 通过比较所述多个全局相关值, 确定用作移动 频偏值。  The peak search module is configured to: determine to use as a mobile frequency offset value by comparing the plurality of global correlation values.
优选地, 还包括: 分段数量确定模块, 设置为: 根据移动终端的最大频偏, 得到移动终端 的相位旋转最大值, 并利用所述相位旋转最大值和预设的相位旋转门限值, 确定所述下行导频信号和所述训练信号的分段数量 M。 Preferably, the method further comprises: a segment number determining module, configured to: obtain a phase rotation maximum value of the mobile terminal according to a maximum frequency offset of the mobile terminal, and determine the downlink pilot by using the phase rotation maximum value and a preset phase rotation threshold value The number of segments of the signal and the training signal M.
优选地, 所述分段相关模块包括:  Preferably, the segment correlation module comprises:
分段子模块, 设置为: 按照所述分段数量 M, 将所述下行导频信号和所 述训练信号分别分割成等长的 M个部分;  The segmentation sub-module is configured to: divide the downlink pilot signal and the training signal into M parts of equal length according to the number of segments M;
相关子模块,设置为: 将所述下行导频信号的 M个部分分别与对应的所 述训练信号的 M个部分进行局部相关处理, 得到 M个局部相关值。  The correlation submodule is configured to: perform partial correlation processing on the M parts of the downlink pilot signal and the M parts of the corresponding training signal to obtain M local correlation values.
优选地, 还包括:  Preferably, the method further comprises:
尝试频偏值确定模块, 设置为: 根据移动终端的最大频偏, 确定移动终 端的频偏范围, 并在所述频偏范围内, 选取多个尝试频偏值, 以便用来确定 移动终端的实际相关值和实际频偏值。  The frequency offset value determining module is configured to: determine a frequency offset range of the mobile terminal according to a maximum frequency offset of the mobile terminal, and select a plurality of trial frequency offset values in the frequency offset range, so as to determine the mobile terminal Actual correlation value and actual frequency offset value.
优选地, 所述频率尝试模块包括:  Preferably, the frequency attempting module comprises:
相位旋转子模块, 设置为: 利用所选取的某个尝试频偏值, 对所述各个 局部相关值进行相位旋转处理, 得到各个局部相位旋转相关值;  The phase rotation sub-module is configured to: perform phase rotation processing on each of the local correlation values by using the selected one of the trial frequency offset values to obtain respective local phase rotation correlation values;
加权处理子模块, 设置为: 将所述各个局部相位旋转相关值进行加权处 理, 得到所述尝试频偏值对应的一个全局相关值。  The weighting processing sub-module is configured to: perform weighting processing on each of the local phase rotation correlation values to obtain a global correlation value corresponding to the trial frequency offset value.
与现有技术相比较, 本发明实施例的有益效果在于: Compared with the prior art, the beneficial effects of the embodiments of the present invention are:
1、 通过改造相关器结构, 使之在较大频偏下具有良好的工作性能; 1. By transforming the structure of the correlator, it has good working performance under a large frequency offset;
2、 在保证相关性能的基础上, 可以大幅度降低尝试相关的复杂度。 附图概述 2. On the basis of ensuring relevant performance, the complexity associated with the attempt can be greatly reduced. BRIEF abstract
图 1是本发明实施例提供的移动终端的相关器的实现方法原理框图; 图 2是本发明实施例提供的移动通信系统中下行导频信号示意图; 图 3是本发明实施例提供的移动终端的相关器的实现方法流程图; 图 4是本发明实施例提供的相位旋转与信噪比的关系图表; 图 5是本发明实施例提供的分段相关示意图; 1 is a schematic block diagram of a method for implementing a correlator of a mobile terminal according to an embodiment of the present invention; FIG. 2 is a schematic diagram of a downlink pilot signal in a mobile communication system according to an embodiment of the present invention; FIG. 3 is a mobile terminal according to an embodiment of the present invention; FIG. 4 is a relationship diagram of phase rotation and signal to noise ratio according to an embodiment of the present invention; FIG. FIG. 5 is a schematic diagram of segmentation related according to an embodiment of the present invention; FIG.
图; ; " 、 、 、 、 Figure; ; " , , , , ,
图 7是本发明实施例提供的本发明与传统相关的复杂度对比示意图; 图 8是本发明实施例提供的移动终端的相关器框图。  FIG. 7 is a schematic diagram of a complexity comparison of the present invention according to an embodiment of the present invention; FIG. 8 is a block diagram of a correlator of a mobile terminal according to an embodiment of the present invention.
本发明的较佳实施方式 Preferred embodiment of the invention
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下所 说明的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。  The preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.
图 1是本发明实施例提供的移动终端的相关器的实现方法原理框图, 如 图 1所示, 步骤包括: 步骤 101、 移动终端将收到的下行导频信号与预存的训练信号进行分段 相关处理, 得到各个局部相关值。  1 is a schematic block diagram of a method for implementing a correlator of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 1, the method includes: Step 101: A mobile terminal segments a received downlink pilot signal and a pre-stored training signal. Correlation processing yields individual local correlation values.
在进行所述分段相关处理前, 要预先确定分段数量, 也就是说, 根据移 动终端的最大频偏, 得到移动终端的相位旋转最大值, 利用所述相位旋转最 大值和预设的相位旋转门限值, 确定所述下行导频信号和所述训练信号的分 段数量 M。 然后, 移动终端按照所述分段数量 M, 将所述下行导频信号和所 述训练信号分别分割成等长的 M个部分; 再将所述下行导频信号的 M个部 分分别与对应的所述训练信号的 M个部分进行局部相关处理, 得到 M个局 部相关值。 其中, 所述移动终端的最大频偏通过移动终端的器件类型确定, 例如, 当移动终端使用棵晶体时, 最大频偏为 20k ~ 30kHz。  Before performing the segmentation correlation process, the number of segments is determined in advance, that is, the phase rotation maximum value of the mobile terminal is obtained according to the maximum frequency offset of the mobile terminal, and the phase rotation maximum value and the preset phase are utilized. a rotation threshold value, the number of segments M of the downlink pilot signal and the training signal is determined. Then, the mobile terminal divides the downlink pilot signal and the training signal into M parts of equal length according to the number of segments M, respectively, and separately respectively respectively M parts of the downlink pilot signal The M parts of the training signal are subjected to local correlation processing to obtain M local correlation values. The maximum frequency offset of the mobile terminal is determined by the device type of the mobile terminal. For example, when the mobile terminal uses a crystal, the maximum frequency offset is 20k ~ 30kHz.
步骤 102、 按照预设的多个尝试频偏值, 对所述各个局部相关值进行频 率尝试相关和分段加权处理, 得到对应于所述多个尝试频偏值的多个全局相 关值。  Step 102: Perform frequency trial correlation and segment weighting processing on each of the local correlation values according to a preset plurality of trial frequency offset values, to obtain a plurality of global correlation values corresponding to the plurality of trial frequency offset values.
在进行所述频率尝试相关和分段加权处理步骤前, 要预先设置多个尝试 频偏值, 也就是说, 根据移动终端的最大频偏, 确定移动终端的频偏范围; 在所述频偏范围内, 选取多个尝试频偏值, 以便用来确定移动终端的实际相 关值和实际频偏值。 然后, 利用所选取的某个尝试频偏值, 对所述各个局部 相关值进行相位旋转处理, 得到各个局部相位旋转相关值; 将所述各个局部 相位旋转相关值进行加权处理,得到所述尝试频偏值对应的一个全局相关值。 Before performing the frequency attempt correlation and segment weighting processing steps, a plurality of trial frequency offset values are preset, that is, determining a frequency offset range of the mobile terminal according to a maximum frequency offset of the mobile terminal; Within the frequency offset range, a plurality of trial frequency offset values are selected for use in determining the actual correlation value and the actual frequency offset value of the mobile terminal. Then, using the selected one of the trial frequency offset values, performing phase rotation processing on the respective local correlation values to obtain respective local phase rotation correlation values; and weighting the respective local phase rotation correlation values to obtain the attempt A global correlation value corresponding to the frequency offset value.
步骤 103、 通过比较所述多个全局相关值, 确定用作移动终端实际相关 值的最大全局相关值及对应的用作移动终端实际频偏值的尝试频偏值。  Step 103: Determine, by comparing the plurality of global correlation values, a maximum global correlation value used as an actual correlation value of the mobile terminal and a corresponding trial frequency offset value used as a real frequency offset value of the mobile terminal.
以下结合附图 2至附图 7进行深入说明。  The intensive description will be made below with reference to Figs. 2 to 7.
一般移动通信系统中, 下行导频信号以广播形式在整个小区中下发, 并 且周期性重复, 以图 2为例, r(n)为接收的导频信号, s(n)为本地已知的训练 信号, n为釆样点序号, N为导频信号 /训练信号的长度。 一般相关运算按照 下面公式来执行:  In a general mobile communication system, downlink pilot signals are transmitted in the entire cell in a broadcast form and periodically repeated. Taking FIG. 2 as an example, r(n) is a received pilot signal, and s(n) is locally known. The training signal, n is the sample point number, and N is the length of the pilot signal/training signal. The general correlation operation is performed according to the following formula:
R = ∑r(n) *s*(n) ( 1 ) 上述公式在无频偏或频偏较小的场景下, 计算结果准确, 但当系统存在 在存在未知的较大频偏的场景下, 常规做法是尝试频偏补偿法, 比如假 设未知频偏在士 20kHz以内, 那么按照系统频偏比如为 0、 ±5kHz、 ±10kHz、 ±15kHz、 ±20kHz这几个频偏来进行尝试相关, 共需要尝试 9次相关, 设尝 试的频偏为 f,符号速率为 fs,符号周期为 Ts=l/fs,导频持续 N个符号周期, 那么常规的尝试相关按照下式来执行:
Figure imgf000007_0001
R = ∑r(n) *s*(n) ( 1 ) The above formula is accurate in the scene without frequency offset or small frequency offset, but when the system exists in the scene with unknown unknown frequency offset The conventional approach is to try the frequency offset compensation method. For example, if the unknown frequency offset is within 20 kHz, then try to correlate the frequency offsets such as 0, ±5 kHz, ±10 kHz, ±15 kHz, and ±20 kHz. It is necessary to try 9 correlations. Let the frequency offset of the attempt be f, the symbol rate be fs, the symbol period be Ts=l/fs, and the pilot last for N symbol periods. Then the conventional attempt correlation is performed according to the following formula:
Figure imgf000007_0001
从上式中, j 表示虚数因子, 即 j = , s*(n)表示对 s(n)求共轭运算。 这 里可以看出, 在进行不同频率的多次相关尝试时, 复杂度会大幅提高:  From the above formula, j denotes an imaginary factor, ie j = , s*(n) denotes a conjugate operation on s(n). It can be seen here that the complexity is greatly improved when multiple correlation attempts at different frequencies are performed:
a、 首先, 需要在最大频偏范围内, 按照一定的补偿进行多次尝试相关运 算; b、 其次,在接收的导频信号中,每个符号都需要乘上相位旋转 ej f*(n-1)Ts。 本发明可以大幅度降低尝试相关的复杂度, 并且基本达到尝试相关相同 性能。 本发明流程如图 3所示, 步骤包括: a. First, it is necessary to perform multiple correlation operations in accordance with a certain compensation within the maximum frequency offset range; b. Second, in the received pilot signal, each symbol needs to be multiplied by a phase rotation e j f *( n - 1)Ts . The present invention can greatly reduce the complexity associated with the attempt and substantially achieve the same performance associated with the attempt. The process of the present invention is shown in FIG. 3, and the steps include:
步骤一、 数据分段。  Step one, data segmentation.
数据分段存在两个环节: 对接收的导频信号进行分段, 设导频信号长度 为 N, 划分为等长的 M份, 每份长度为 L=N/M。 同样地, 对本地预存的训 练信号进行分段。  There are two links in the data segmentation: segment the received pilot signal, set the pilot signal length to N, and divide it into M parts of equal length, each length being L=N/M. Similarly, the locally pre-stored training signals are segmented.
分段的准则, 首先分析大频偏可能的范围, 比如在棵晶体方案下, 最大 频偏大约在 ±30kHz, 其次需要考虑训练信号的长度及符号率, 最后折算到分 段后的前后相位旋转多少等条件综合来考虑。 分段后的首尾数据在频偏下相 位旋转过大, 会影响相关性能, 相位旋转过小就意味着整个训练信号长度上 分段过细过多, 会导致复杂度上升较多, 比如要求一个分段内首尾数据的最 大相位旋转不超过 π/4。 下面给出一个实例:  The criterion of segmentation first analyzes the possible range of large frequency offset. For example, under the crystal scheme, the maximum frequency offset is about ±30 kHz. Secondly, the length and symbol rate of the training signal need to be considered. Finally, the phase rotation before and after segmentation is converted. How many other conditions are considered together. After the segmentation, the phase-to-tail data rotates too much under the frequency offset, which will affect the related performance. If the phase rotation is too small, it means that the length of the whole training signal is too thin, which will lead to more complexity, such as requiring a minute. The maximum phase rotation of the first and last data in the segment does not exceed π/4. An example is given below:
在 WCDMA的 P-SCH导频信道,长 256码片,棵晶体最大频偏为 ±30kHz , 假设为 +30kHz, 那么如果不分段, 训练码首尾符号上由于频偏引起的相位旋 转为:  In the P-SCH pilot channel of WCDMA, the length of the crystal is 256 chips, and the maximum frequency deviation of the crystal is ±30 kHz. If it is +30 kHz, if it is not segmented, the phase rotation caused by the frequency offset on the first and last symbols of the training code is:
2nx30kx256x ~ - ~ = 4π ( 3 )  2nx30kx256x ~ - ~ = 4π ( 3 )
3.84Μ  3.84Μ
也就是说, 由于可能存在的大频偏,会导致 P-SCH导频信道在 256个码 片时间内相位旋转就达到了 4π , 如果直接进行相关, 会导致无法得出相关峰 值, 导致检测失败。  That is to say, due to the possible large frequency offset, the phase rotation of the P-SCH pilot channel in the 256 chip time will reach 4π. If the correlation is directly performed, the correlation peak will not be obtained, resulting in detection failure. .
按照相位旋转门限值为 π/4 , 需要分段的段数为 4π÷ π/4 = 16 , 每段长度为 According to the phase rotation threshold value is π/4, the number of segments to be segmented is 4π÷ π/4 = 16 , and the length of each segment is
256/16=16个码片。 256/16=16 chips.
下面我们来推导相位旋转与信道比的恶化关系。  Let us derive the relationship between phase rotation and channel ratio.
假设分段后段内接收的导频信号长度为 2χΑ, 第一个和最后一个符号的 相位旋转为 Θ和 -Θ ,再 4叚设训练码为全 1 ,那么信号强度 S和噪声强度 Ν分别 ^ , 2i + 1„、 Assume that the length of the pilot signal received in the post-segment segment is 2χΑ, the phase rotation of the first and last symbols is Θ and -Θ, and then the training code is all 1, then the signal strength S and the noise intensity Ν are respectively ^ , 2i + 1„,
s=∑|exP(^e) 2*cos( Θ) (4) s=∑|ex P (^e) 2*cos( Θ) (4)
2A-1 2A-1
Figure imgf000009_0001
2A-1 2A-1
Figure imgf000009_0001
SNR = S/N (6) 当 A很大时,信噪比 SNR与 A无关, Θ取不同值的信噪比数值计算如图 SNR = S/N (6) When A is large, the signal-to-noise ratio SNR is independent of A, and the signal-to-noise ratio values of different values are calculated as shown in Fig.
4所示。 4 is shown.
相关峰计算时, 一般只需找出相关峰值即可, 结合仿真, 一般相位旋转 在 π/4至 π/2之间, 相关性能影响不大。  When calculating the correlation peak, it is generally only necessary to find the relevant peak. In combination with the simulation, the general phase rotation is between π/4 and π/2, and the correlation performance has little effect.
那么分段后, 段内首尾符号的相位旋转不超过上述 π/4至 π/2之间的范围 即可。  Then, after segmentation, the phase rotation of the first and last symbols in the segment does not exceed the range between π/4 and π/2.
步骤二、 分段相关, 即局部相关。  Step 2, segmentation related, that is, local correlation.
局部相关示意图如图 5所示, 图 5中, 将接收的下行导频信号进行分段 相关, 获得 Μ个局部相关值 R(l)、 R(2) R(M), 局部相关按照下述公 式来执行:  The local correlation diagram is shown in Figure 5. In Figure 5, the received downlink pilot signals are segmentally correlated to obtain a local correlation value R(l), R(2) R(M), and the local correlation is as follows: Formula to execute:
L  L
R(m) = ^r(l + (m-l)*L) *s*(l + (m-l)*L),m = l,2,..., M (7)R( m ) = ^r(l + (ml)*L) *s*(l + (ml)*L),m = l,2,..., M (7)
1=1 1=1
其中, R(m)为复数形式, 是第 m个部分的局部相关值, L为分段长度, r(l + (m-l)*L)为第 m个部分的第 l + (m-l)*L位的导频符号或导频码, s*(l+(m-l)*L) 为第 m个部分的第 l + (m-l)*L位的训练符号或训练码的共轭。  Where R(m) is a complex form, which is the local correlation value of the mth part, L is the segment length, and r(l + (ml)*L) is the l + (ml)*L of the mth part The pilot symbol or pilot code of the bit, s*(l+(ml)*L) is the conjugate of the training symbol or training code of the l + (ml) * L bits of the mth part.
步骤三、 频率尝试相关和分段加权  Step 3. Frequency trial correlation and segmentation weighting
这一步骤中, 将需要尝试的频偏值在局部相关值基础上进行相位旋转的 全局相关, 如下式所示:  In this step, the global correlation of the phase rotation of the frequency offset value to be tried based on the local correlation value is shown as follows:
j*27i:*f*(m-i;)*L*Ts  J*27i: *f*(m-i;)*L*Ts
∑R(m)* (7) 其中, |x|表示对复数 X进行求模运算, f为尝试频偏值, Ts为符号周期 或码片周期。 ∑R(m)* (7) where |x| denotes the modulo operation on the complex number X, f is the trial frequency offset value, and Ts is the symbol period Or chip period.
经过上述步骤, 实现了相关运算, 并获得了全局相关值 R。 对不同的尝 试频偏值 f, 就可以获得多个全局相关值 R。  After the above steps, the correlation operation is realized, and the global correlation value R is obtained. For different trial frequency offset values f, multiple global correlation values R can be obtained.
步骤四、 峰值搜索。  Step four, peak search.
对上述步骤三中, 才艮据不同的尝试频偏值, 获得多个全局相关值 R, 比 较这些全局相关值, 选择最大值作为实际相关值, 同时输出系统存在的实际 频偏值。  For the above step 3, according to different trial frequency offset values, multiple global correlation values R are obtained, and the global correlation values are compared, the maximum value is selected as the actual correlation value, and the actual frequency offset value existing in the system is output.
接下来我们来分析一下传统相关及我们这里提出先局部相关、 再全局相 关实现相关运算的复杂度比较:  Next, let's analyze the complexity comparison between traditional correlation and our proposed local correlation and global correlation to achieve correlation operations:
传统相关, 假设需要进行 F次频率尝试相关, 那么需要按照公式 (2)执行 Traditionally related, assuming that F frequency attempts are required, then it needs to be performed according to equation (2).
F次全相关, 并且每次相关运算时, 如果尝试的频率 f不为 0时, 都需要进 行逐符号的相位旋转运算; F times full correlation, and each time the correlation operation, if the frequency f of the attempt is not 0, a phase-by-symbol phase rotation operation is required;
而这里我们提出的相关法, 需要按照公式 (3)执行 M次长度 L的局部相 关, 这一步总体复杂度与一次全相关运算(公式 (1) )的复杂度一样; 然后频 率尝试上按照公式 (8), 执行 F次长度为 M的相关累加, 由于 M=N/L<N, 复 杂度上比传统频率尝试法要小得多。  The correlation method we propose here needs to perform the local correlation of M times L according to formula (3). The overall complexity of this step is the same as the complexity of a full correlation operation (formula (1)); then the frequency is tried according to the formula. (8), perform the correlation accumulation of length F of length M, because M=N/L<N, the complexity is much smaller than the traditional frequency trial method.
下面以 WCDMA系统中的 P-SCH相关为例来说明本发明。 P-SCH长度 为 N=256个码片, M取 16段, 每份长度L=N/M=16个码片, 假设系统初始 频偏为 18kHz ,按照每 5kHz进行尝试相关,尝试 0、 ±5kHz、 ±10kHz、 ±15kHz、 士 20kHz 、 士 25kHz、 ±30kHz共 13个点, 按照上述传统相关法以及本发明提 出的局部相关法, 相关值如图 6所示。 从表中可以看出, 两种算法都能够找 到相关峰值, 在 0.96附近, 并且对应的频偏在 20kHz点上。  The present invention will be described below by taking the P-SCH correlation in the WCDMA system as an example. P-SCH length is N=256 chips, M is 16 segments, each length L=N/M=16 chips, assuming the initial frequency offset of the system is 18kHz, try to correlate every 5kHz, try 0, ± There are 13 points of 5 kHz, ±10 kHz, ±15 kHz, ±20 kHz, ±25 kHz, and ±30 kHz. According to the above conventional correlation method and the local correlation method proposed by the present invention, the correlation values are as shown in FIG. 6. As can be seen from the table, both algorithms can find the correlation peak, around 0.96, and the corresponding frequency offset is at 20 kHz.
按照上述例子所述,按照 13次频偏尝试来计算,传统相关及本发明的分 段相关法, 复杂度分析对比如图 7所示。  According to the above example, according to the 13-time frequency offset attempt, the traditional correlation and the segment correlation method of the present invention are compared as shown in Fig. 7.
图 8是本发明实施例提供的移动终端的相关器框图,如图 8所示,包括: 分段数量确定模块用于才艮据移动终端的最大频偏, 得到移动终端的相位 旋转最大值, 并利用所述相位旋转最大值和预设的相位旋转门限值, 确定所 述下行导频信号和所述训练信号的分段数量 M。 FIG. 8 is a block diagram of a correlator of a mobile terminal according to an embodiment of the present invention. As shown in FIG. 8, the method includes: The segment number determining module is configured to obtain a maximum phase offset of the mobile terminal according to the maximum frequency offset of the mobile terminal, and determine the downlink pilot by using the phase rotation maximum value and a preset phase rotation threshold value. The number of segments of the signal and the training signal M.
分段相关模块用于将收到的下行导频信号与预存的训练信号进行分段相 关处理, 得到各个局部相关值。 进一步地, 所述分段相关模块包括分段子模 块和相关子模块, 所述分段子模块用于按照所述分段数量 M, 将所述下行导 频信号和所述训练信号分别分割成等长的 M个部分;所述相关子模块用于将 所述下行导频信号的 M个部分分别与对应的所述训练信号的 M个部分进行 局部相关处理, 得到 M个局部相关值。  The segmentation correlation module is configured to perform segmentation-related processing on the received downlink pilot signal and the pre-stored training signal to obtain respective local correlation values. Further, the segmentation correlation module includes a segmentation submodule and a related submodule, and the segmentation submodule is configured to divide the downlink pilot signal and the training signal into equal lengths according to the number of segments M, respectively. The M sub-sections are configured to perform partial correlation processing on the M parts of the downlink pilot signal and the M parts of the corresponding training signal to obtain M local correlation values.
尝试频偏值确定模块用于 4艮据移动终端的最大频偏, 确定移动终端的频 偏范围, 并在所述频偏范围内, 选取多个尝试频偏值, 以便用来确定移动终 端的实际相关值和实际频偏值。  The trial frequency offset value determining module is configured to determine a frequency offset range of the mobile terminal according to a maximum frequency offset of the mobile terminal, and select a plurality of trial frequency offset values in the frequency offset range, so as to be used to determine the mobile terminal. Actual correlation value and actual frequency offset value.
所述频率尝试模块用于按照预设的多个尝试频偏值, 对所述各个局部相 关值进行频率尝试相关和分段加权处理, 得到对应于所述多个尝试频偏值的 多个全局相关值。 进一步地, 所述频率尝试模块包括相位旋转子模块和加权 处理子模块, 所述相位旋转子模块用于利用所选取的某个尝试频偏值, 对所 述各个局部相关值进行相位旋转处理, 得到各个局部相位旋转相关值; 所述 加权处理子模块, 用于将所述各个局部相位旋转相关值进行加权处理, 得到 所述尝试频偏值对应的一个全局相关值。  The frequency attempting module is configured to perform frequency trial correlation and segment weighting processing on the respective local correlation values according to a preset plurality of trial frequency offset values, to obtain multiple global corresponding to the multiple trial frequency offset values. Relevant value. Further, the frequency attempting module includes a phase rotation sub-module and a weighting processing sub-module, and the phase rotation sub-module is configured to perform phase rotation processing on each of the local correlation values by using the selected one of the trial frequency offset values. Obtaining respective local phase rotation correlation values; the weighting processing sub-module is configured to perform weighting processing on each of the local phase rotation correlation values to obtain a global correlation value corresponding to the trial frequency offset value.
峰值搜索模块, 用于通过比较所述多个全局相关值, 确定用作移动终端 值。  A peak search module is configured to determine to be used as a mobile terminal value by comparing the plurality of global correlation values.
本发明实施例所述移动终端的相关器在较大的随机频偏场景下具有良好 的工作性能和较低的复杂度, 分段后, 首尾相位旋转不超过一定的门限, 比 如 pi/4到 pi/2之间。 尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领域 技术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原理所 作的修改, 都应当理解为落入本发明的保护范围。 The correlator of the mobile terminal in the embodiment of the present invention has good working performance and low complexity in a large random frequency offset scenario. After segmentation, the first and last phase rotation does not exceed a certain threshold, such as pi/4 to Between pi/2. Although the invention has been described in detail above, the invention is not limited thereto, and various modifications may be made by those skilled in the art in accordance with the principles of the invention. Therefore, modifications made in accordance with the principles of the invention should be construed as falling within the scope of the invention.
工业实用性 Industrial applicability
本发明实施例的有益效果在于:  The beneficial effects of the embodiments of the present invention are as follows:
1、 通过改造相关器结构, 使之在较大频偏下具有良好的工作性能; 1. By transforming the structure of the correlator, it has good working performance under a large frequency offset;
2、 在保证相关性能的基础上, 可以大幅度降低尝试相关的复杂度。 2. On the basis of ensuring relevant performance, the complexity associated with the attempt can be greatly reduced.

Claims

权 利 要 求 书 Claim
1、 一种移动终端的相关器的实现方法, 包括:  A method for implementing a correlator of a mobile terminal, comprising:
移动终端将收到的下行导频信号与预存的训练信号进行分段相关处理, 得到各个局部相关值;  The mobile terminal performs segmentation correlation processing on the received downlink pilot signal and the pre-stored training signal to obtain respective local correlation values;
按照预设的多个尝试频偏值, 对所述各个局部相关值进行频率尝试相关 和分段加权处理, 得到对应于所述多个尝试频偏值的多个全局相关值;  Performing a frequency attempt correlation and a segmentation weighting process on the respective local correlation values according to a preset plurality of trial frequency offset values, to obtain a plurality of global correlation values corresponding to the plurality of trial frequency offset values;
通过比较所述多个全局相关值, 确定用作移动终端实际相关值的最大全  Determining the maximum value of the actual correlation value used as the mobile terminal by comparing the plurality of global correlation values
2、 根据权利要求 1所述的方法, 其中, 在进行所述分段相关处理前, 还 包括: 2. The method according to claim 1, wherein before performing the segmentation related processing, the method further includes:
根据移动终端的最大频偏, 得到移动终端的相位旋转最大值;  Obtaining a maximum phase rotation of the mobile terminal according to a maximum frequency offset of the mobile terminal;
利用所述相位旋转最大值和预设的相位旋转门限值, 确定所述下行导频 信号和所述训练信号的分段数量 M。  The downlink pilot signal and the number of segments M of the training signal are determined using the phase rotation maximum value and a preset phase rotation threshold value.
3、 根据权利要求 2所述的方法, 其中, 所述分段相关处理的步骤包括: 按照所述分段数量 M, 将所述下行导频信号和所述训练信号分别分割成 等长的 M个部分;  The method according to claim 2, wherein the step of segmentation correlation processing comprises: dividing the downlink pilot signal and the training signal into equal length M according to the number of segments M, respectively Part
将所述下行导频信号的 M个部分分别与对应的所述训练信号的 M个部 分进行局部相关处理, 得到 M个局部相关值。  The M parts of the downlink pilot signal are locally correlated with the M parts of the corresponding training signal to obtain M local correlation values.
4、根据权利要求 3所述的方法, 其中, 在进行所述频率尝试相关和分段 加权处理步骤前, 还包括:  The method according to claim 3, wherein before the performing the frequency attempt correlation and the segmentation weighting processing step, the method further includes:
才艮据移动终端的最大频偏, 确定移动终端的频偏范围;  Determining the frequency offset range of the mobile terminal according to the maximum frequency offset of the mobile terminal;
在所述频偏范围内, 选取多个尝试频偏值, 以便用来确定移动终端的实 际相关值和实际频偏值。  Within the frequency offset range, a plurality of trial frequency offset values are selected for use in determining the actual correlation value and the actual frequency offset value of the mobile terminal.
5、根据权利要求 4所述的方法, 其中, 所述频率尝试相关和分段加权处 理的步骤包括: 利用所选取的某个尝试频偏值, 对所述各个局部相关值进行相位旋转处 理, 得到各个局部相位旋转相关值; 5. The method according to claim 4, wherein the steps of the frequency attempt correlation and the segmentation weighting process comprise: Performing phase rotation processing on each of the local correlation values by using the selected one of the trial frequency offset values to obtain respective local phase rotation correlation values;
将所述各个局部相位旋转相关值进行加权处理, 得到所述尝试频偏值对 应的一个全局相关值。  And weighting each of the partial phase rotation correlation values to obtain a global correlation value corresponding to the trial frequency offset value.
6、 一种移动终端的相关器, 包括:  6. A correlator for a mobile terminal, comprising:
分段相关模块, 设置为: 将收到的下行导频信号与预存的训练信号进行 分段相关处理, 得到各个局部相关值;  The segmentation correlation module is configured to: perform segmentation correlation processing on the received downlink pilot signal and the pre-stored training signal to obtain respective local correlation values;
频率尝试模块, 设置为: 按照预设的多个尝试频偏值, 对所述各个局部 相关值进行频率尝试相关和分段加权处理, 得到对应于所述多个尝试频偏值 的多个全局相关值;  The frequency attempting module is configured to: perform frequency trial correlation and segment weighting processing on each of the local correlation values according to a preset plurality of trial frequency offset values, to obtain multiple global responses corresponding to the plurality of trial frequency offset values Related value
峰值搜索模块, 设置为: 通过比较所述多个全局相关值, 确定用作移动 频偏值。  The peak search module is configured to: determine to use as a mobile frequency offset value by comparing the plurality of global correlation values.
7、 根据权利要求 6所述的相关器, 其中, 还包括:  7. The correlator according to claim 6, further comprising:
分段数量确定模块, 设置为: 根据移动终端的最大频偏, 得到移动终端 的相位旋转最大值, 并利用所述相位旋转最大值和预设的相位旋转门限值, 确定所述下行导频信号和所述训练信号的分段数量 M。  a segment number determining module, configured to: obtain a phase rotation maximum value of the mobile terminal according to a maximum frequency offset of the mobile terminal, and determine the downlink pilot by using the phase rotation maximum value and a preset phase rotation threshold value The number of segments of the signal and the training signal M.
8、 根据权利要求 7所述的相关器, 其中, 所述分段相关模块包括: 分段子模块, 设置为: 按照所述分段数量 M, 将所述下行导频信号和所 述训练信号分别分割成等长的 M个部分;  The correlator according to claim 7, wherein the segmentation correlation module comprises: a segmentation submodule, configured to: respectively, according to the number of segments M, respectively, the downlink pilot signal and the training signal Divided into M parts of equal length;
相关子模块,设置为: 将所述下行导频信号的 M个部分分别与对应的所 述训练信号的 M个部分进行局部相关处理, 得到 M个局部相关值。  The correlation submodule is configured to: perform partial correlation processing on the M parts of the downlink pilot signal and the M parts of the corresponding training signal to obtain M local correlation values.
9、 根据权利要求 8所述的相关器, 其中, 还包括:  9. The correlator according to claim 8, further comprising:
尝试频偏值确定模块, 设置为: 根据移动终端的最大频偏, 确定移动终 端的频偏范围, 并在所述频偏范围内, 选取多个尝试频偏值, 以便用来确定 移动终端的实际相关值和实际频偏值。 The frequency offset value determining module is configured to: determine a frequency offset range of the mobile terminal according to a maximum frequency offset of the mobile terminal, and select a plurality of trial frequency offset values in the frequency offset range to be used for determining The actual correlation value and the actual frequency offset value of the mobile terminal.
10、 根据权利要求 9所述的相关器, 其中, 所述频率尝试模块包括: 相位旋转子模块, 设置为: 利用所选取的某个尝试频偏值, 对所述各个 局部相关值进行相位旋转处理, 得到各个局部相位旋转相关值;  The correlator according to claim 9, wherein the frequency attempting module comprises: a phase rotation sub-module, configured to: perform phase rotation on each of the local correlation values by using the selected one of the trial frequency offset values Processing, obtaining respective local phase rotation correlation values;
加权处理子模块, 设置为: 将所述各个局部相位旋转相关值进行加权处 理, 得到所述尝试频偏值对应的一个全局相关值。  The weighting processing sub-module is configured to: perform weighting processing on each of the local phase rotation correlation values to obtain a global correlation value corresponding to the trial frequency offset value.
PCT/CN2013/087839 2013-04-09 2013-11-26 Correlator for mobile terminal and implementation method WO2014166264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310121773.0A CN104104408B (en) 2013-04-09 2013-04-09 A kind of correlator and implementation method of mobile terminal
CN201310121773.0 2013-04-09

Publications (1)

Publication Number Publication Date
WO2014166264A1 true WO2014166264A1 (en) 2014-10-16

Family

ID=51672252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087839 WO2014166264A1 (en) 2013-04-09 2013-11-26 Correlator for mobile terminal and implementation method

Country Status (2)

Country Link
CN (1) CN104104408B (en)
WO (1) WO2014166264A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187692B (en) * 2020-09-15 2022-04-01 上海微波技术研究所(中国电子科技集团公司第五十研究所) Method and system for detecting coarse frequency offset in 5G system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129576B2 (en) * 1993-06-11 2001-01-31 三菱電機株式会社 Diversity communication equipment
CN101325450A (en) * 2008-07-28 2008-12-17 北京天碁科技有限公司 Synchronizing process, frequency deviation estimation method, synchronizing apparatus, frequency deviation estimation apparatus
CN101958727A (en) * 2008-07-21 2011-01-26 俊茂微电子(上海)有限公司 Relative method and device for downlink pilot time slot search

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983197B2 (en) * 2009-03-06 2011-07-19 Telefonaktiebolaget Lm Ericsson (Publ) System and method for robust cell detection
CN102457870B (en) * 2010-10-21 2015-04-15 电信科学技术研究院 Method and device for detecting primary synchronization signal and method and system for searching neighborhoods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129576B2 (en) * 1993-06-11 2001-01-31 三菱電機株式会社 Diversity communication equipment
CN101958727A (en) * 2008-07-21 2011-01-26 俊茂微电子(上海)有限公司 Relative method and device for downlink pilot time slot search
CN101325450A (en) * 2008-07-28 2008-12-17 北京天碁科技有限公司 Synchronizing process, frequency deviation estimation method, synchronizing apparatus, frequency deviation estimation apparatus

Also Published As

Publication number Publication date
CN104104408B (en) 2019-01-04
CN104104408A (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US7991084B2 (en) Apparatus, method and computer program product for detecting non-synchronized random access channel preamble
US9337994B2 (en) Method, receiver and system for signal synchronization
US7961709B2 (en) Secondary synchronization sequences for cell group detection in a cellular communications system
US7672221B2 (en) Radio receiver and radio signal receiving method
JP5373790B2 (en) Communication unit and method for interference mitigation
CN104717174B (en) A kind of OFDM anti-interference synchronous methods under complexity multipath channel
US20080101511A1 (en) Cell ID Detection in Cellular Communication Systems
CN110011779B (en) Port timing deviation compensation method, system and terminal
JP2008271539A (en) Apparatus and method of frame synchronization in broadband wireless communication system
US9094146B2 (en) Secondary synchronization sequences for cell group detection in a cellular communications system
US10652068B2 (en) Synchronization signal detection
CN106788958B (en) Signal synchronization method and system
CN101047422B (en) Method for implementing synchronous under code stage of time-division-synchronous CDMA system
WO2012171407A1 (en) Method and device for determining time synchronization location
CN104980184B (en) Small region search method and equipment for TD-SCDMA system
WO2014166264A1 (en) Correlator for mobile terminal and implementation method
CN108965189A (en) It is a kind of applied to the symbol timing synchronization method for resisting big frequency deviation in NB-IOT system
JP2008167304A (en) Receiver, mobile station and base station
KR20150025972A (en) Method for self timing detection of frame synchronization
JP4900201B2 (en) Wireless transmission device
KR20090110333A (en) Apparatus, method and computer program product for detecting non-synchronized random access channel preamble
JP2004312318A (en) Communication equipment
JP2003060630A (en) Unique word detection method and receiver thereof
AU2011265518A1 (en) Secondary synchronization sequences for cell group detection in a cellular communications system
JP2005150821A (en) Signal receiving method and signal receiving apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881554

Country of ref document: EP

Kind code of ref document: A1