WO2014166259A1 - 折返式同轴气体增压泵及气体造压方法 - Google Patents

折返式同轴气体增压泵及气体造压方法 Download PDF

Info

Publication number
WO2014166259A1
WO2014166259A1 PCT/CN2013/087512 CN2013087512W WO2014166259A1 WO 2014166259 A1 WO2014166259 A1 WO 2014166259A1 CN 2013087512 W CN2013087512 W CN 2013087512W WO 2014166259 A1 WO2014166259 A1 WO 2014166259A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
gas
check valve
ring
Prior art date
Application number
PCT/CN2013/087512
Other languages
English (en)
French (fr)
Inventor
姜维利
Original Assignee
北京康斯特仪表科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京康斯特仪表科技股份有限公司 filed Critical 北京康斯特仪表科技股份有限公司
Priority to EP13881536.0A priority Critical patent/EP2985462B1/en
Publication of WO2014166259A1 publication Critical patent/WO2014166259A1/zh
Priority to US14/700,799 priority patent/US10197053B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/12Valves; Arrangement of valves arranged in or on pistons
    • F04B53/121Valves; Arrangement of valves arranged in or on pistons the valve being an annular ring surrounding the piston, e.g. an O-ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/005Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B3/00Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
    • F04B3/003Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage with two or more pistons reciprocating one within another, e.g. one piston forning cylinder of the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/06Mobile combinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0016Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons with valve arranged in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1075Valves; Arrangement of valves the valve being a flexible annular ring

Definitions

  • the invention belongs to the pressure meter calibration industry, and relates to a gas pressure-making equipment used for a pressure calibration instrument, in particular to a gas pressure pump and a pressure-making method with high multi-stage pressure and high pressure-generating efficiency.
  • a gas pressure pump is generally used for the verification work of pressure measuring instruments.
  • Gas pressure equipment is a commonly used product in the pressure meter calibration industry.
  • the gas pump uses air compression to generate the required pressure, and does not cause liquid pressure to bring pollution to the environment and the instrument to be inspected.
  • the existing gas pump basically uses a single compression of the gas to generate pressure, and the compression ratio can only achieve a very low pressure.
  • the gas pressure-making efficiency is also very low, which directly affects the efficiency of the pressure meter calibration.
  • the pressure resistance of industrial pressure equipment is enhanced, and the pressure value of the pressure monitoring instrument is also continuously improved.
  • the original pressure pump (pressure value and efficiency) of the calibration pump is far from satisfying the industry.
  • the verification of field instruments requires portable pressure-making equipment, and there is an urgent need for a gas pressure-increasing equipment that is light in weight, convenient to carry, and high in pressure.
  • the object of the present invention is to provide a simple, reliable and efficient folding-back coaxial gas booster pump and to provide an efficient boosting method.
  • the foldback coaxial gas booster pump of the invention comprises: a first stage cylinder (01) and a first stage piston (02) disposed therein, a secondary cylinder (06) as a first stage piston connecting rod and fixed to the secondary cylinder
  • the pressure bar (35) and the air pump cover (09) which is closed at the open end of the first stage cylinder (01), and the secondary piston (08) and the piston connecting rod (14) are installed in the second stage cylinder (06), the first stage cylinder (01), the secondary cylinder (06) and the piston connecting rod (14) are coaxially mounted, and the rear end of the piston connecting rod (14) passes through the primary piston (02) and is fixed to the bottom wall of the closed end of the primary cylinder (01).
  • a first follower check valve (03) is installed between the piston connecting rod (14) and the first stage piston (02); a first stage compression chamber (31) at the front end of the first stage piston (02) of the first stage cylinder (01)
  • the air inlet and outlet check valve (16) is connected to the outside air, and the secondary compression chamber (33) at the front end of the secondary piston (08) in the secondary cylinder (06) passes through the exhaust check valve (12) and the output pressure tube.
  • the road is disconnected, and the primary compression chamber (31) passes through the first follower check valve (03) and the secondary piston (08) in the secondary cylinder (06) Transition chamber (32) off, transition chamber (32) with two-way control valve the compression chamber (33) through a second unidirectional off.
  • the foldback coaxial gas booster pump has a deep groove at the rear end of the first stage piston (02), and a first follower check valve (03) is assembled in the bottom slot (21) of the deep groove; the first follower
  • the one-way valve (03) includes a one-way valve base (23), an O-ring (24), a combined seal (26) and a threaded pressure ring (22) through which the piston rod (14) passes a one-way valve; wherein: the one-way valve base is in the form of a ring cap, and is divided into a base portion, an edge portion of the connecting base portion and a screwing portion, an outer tapered surface at the joint portion of the base portion and the edge portion, and a semicircular groove on the tapered surface;
  • the sealing member is composed of an elastic sealing ring and a wear-resistant outer sealing ring.
  • the outer sealing ring is divided into a thick bottom and a thin neck, and the elastic sealing ring is set on the thin neck; the combined sealing member is installed in the base and the edge of the one-way valve base body.
  • the threaded pressing ring is screwed into the base body from the screwing portion of the check valve base body, the threaded pressing ring is in contact with the elastic sealing ring, and the combined sealing member is screwed through the screw;
  • O-type sealing The collar is inserted into the groove provided at the front end of the check valve base.
  • the foldback coaxial gas booster pump has an inner groove at the rear end of the second piston (08), and the front end of the piston rod (14) is fitted in the inner groove; the body of the piston rod (14) (41)
  • the front section is a tapered section, the front end of which has an outer tapered structure, the tapered surface has an annular groove, and a one-way valve O-ring (13) is sleeved in the groove; correspondingly, the rear end of the secondary piston (08) is open
  • the taper ring surface (43) is matched with the edge of the rear end surface of the tapered portion of the piston rod (14), and a gap as a gas passage is left between the mating surfaces; the outer end of the body (41) is externally threaded, and the external thread is rotated
  • a piston presser (10) is connected; the diameter of the piston presser (10) is larger than the minimum diameter of the taper ring surface of the secondary piston (08), and is smaller than the diameter of the inner groove formed by the secondary piston (08), so
  • a gap is formed between the outer wall surface of (10) and the inner wall surface of the secondary piston (08) as a gas passage; the pressing end surface of the piston pressing nut (10) is opened through the gas groove (42); and the secondary piston (08)
  • the piston connecting rod (14) body (41), the check valve O-ring (13) and the piston pressing body (10) together form the second One-way control valve.
  • the folding-back coaxial gas booster pump has a piston connecting rod (14) forming an exhaust passage communicating with an output pressure line in a hollow form, and the front end of the piston connecting rod (14) is designed in the form of a column groove, and the column is arranged in the column groove.
  • the gas check valve (12), the exhaust check valve (12) communicates with the exhaust passage in the secondary compression chamber (33) and the piston rod (14).
  • the foldback coaxial gas booster pump has an annular notch formed at a contact between a front end surface of the first stage piston (02) and an inner wall surface of the first stage cylinder (01), and a first combined seal member (34) is disposed in the notch;
  • the second stage piston ( 08) an annular notch is formed at a contact between the front end surface and the inner wall surface of the secondary cylinder (06), and a second combined sealing member (36) is disposed in the notch;
  • the combined sealing is composed of an elastic sealing ring and a wear-resistant sealing ring, and the sealing ring has an inner ring a concave annular groove in which an elastic sealing ring is sleeved between the annular groove and the annular opening at the front end of the piston.
  • the fold-back coaxial gas booster pump has a ring groove on the outer wall surfaces of the first piston (02) and the second piston (08), and a guide ring is sleeved in the ring groove.
  • the foldback coaxial gas booster pump, the secondary cylinder (06) protrudes from the open end of the first stage cylinder (01) and passes through the air pump cover (09), and the air pump cover (09) cooperates with the secondary cylinder (06)
  • a press-fit guide ring (11) with a clearance fit is added in part.
  • the foldback coaxial gas booster pump, the intake check valve (16) is installed in a through slot opened in the bottom wall (19) of the first stage cylinder (01), and the outlet end and the first stage cylinder (01)
  • the primary compression chamber (31) is in communication, and the air inlet is in communication with the outside atmosphere.
  • the folded-back coaxial gas booster pump is characterized in that a sealing plug (18) and an intake check valve (16) are provided at the outermost end of the through groove of the first cylinder (01).
  • the inside of the groove formed at the front end of the sealing plug (18) is installed, and a plurality of sealing rings are arranged in the ring groove on the outer cylindrical surface of the sealing plug (18), and the sealing plug (18) and the bottom wall (19) of the cylinder are sealed.
  • the groove is screwed.
  • the present invention provides a gas pressurization method using the aforementioned coaxial reverse motion gas pressurization mechanism, comprising the following steps:
  • the control pressure bar (35) drives the secondary cylinder (06) and the primary piston (02) to move toward the suction direction of the primary cylinder (01), so that the first follow-up check valve 03 is closed, and the intake check valve (16) Opening the gas from the outside into the primary compression chamber (31) while the second one-way control valve opens to allow the gas in the transition chamber (32) to enter the secondary compression chamber (33);
  • the control pressure bar (35) drives the secondary cylinder (06) and the primary piston (02) to move toward the exhaust direction of the secondary cylinder (06), so that the intake check valve (08) is closed, and the first follow-up check valve (03) opening the pressurized gas from the first compression chamber (31) to the transition chamber (32), while the second one-way control valve is closed, the exhaust check valve (12) is opened, and the secondary compression chamber (33) is closed.
  • the compressed high pressure gas is discharged to the output pressure line.
  • the folding gas booster pump of the invention integrates the piston and the pneumatic control component on one axis, and the structure automatically controls the gas path according to the moving direction, and each part is controllable, so the whole coaxial moving component has High reliability is the originality of this air pump.
  • High gas pressure can be obtained by applying pressure in a small volume, which is also the first in the instrument calibration industry.
  • the invention comprises a two-stage compressed air pump, which can realize two-stage compression in one movement, thereby achieving gas compression to a higher pressure range, improving gas compression efficiency, reducing the power required for the compressed gas, and folding down the design to miniaturize the product. It is a light pressure, portable and high pressure gas pressure equipment suitable for field instrument calibration.
  • Figure 1 is a structural diagram of a folded-back coaxial gas booster pump (moving in the direction of suction)
  • Figure 2 is a structural diagram of a folded-back coaxial gas booster pump (moving toward the exhaust direction)
  • Figure 3 is a gas flow diagram of the intake end structure and the intake state.
  • Figure 4 shows the structure of the exhaust end and the flow pattern of the exhaust gas.
  • Figure 5 is a diagram of the structure and working environment of the first follower check valve
  • FIG. 6 The structure of the second one-way control valve and the working environment
  • the main components in the figure are labeled: 01. Primary cylinder; 02. Primary piston; 03. First follower check valve; 04. Primary piston guide ring; 06. Two-stage cylinder; 07. Two-stage piston guide ring; 08. Two-stage piston; 09. Air pump cover; 10. Piston presser; 11. Presser guide ring; 12. Exhaust check valve; Valve O-ring; 14. Piston connecting rod; 16. Inlet check valve; 18. Sealing plug; 19. Cylinder bottom wall; 21. Slot hole; 22. Threaded ring; 23. Check valve base; .O type sealing ring; 26. combination sealing member; 34. first combined sealing member; 36. second combined sealing member; 18. sealing plug; 31. primary compression chamber; 32. transition chamber; Compression chamber; 35. pressure bar; 41. body; 42. over-air groove; 43 cone torus.
  • the invention is based on the conventional first-stage pressure-generating air pump, and the first-stage piston compression rod is used to increase the first-stage gas compression mechanism and the first follow-up check valve and the like to form a two-stage compressed air pump, and the first-stage piston is used.
  • the rod acts as a secondary compressed cylinder, the secondary cylinder moves, and the secondary piston is relatively stationary.
  • the chamber is changed before and after the movement of the secondary cylinder to perform gas storage and exchange, and the pressurized gas is controlled to enter the secondary compression chamber for compression and discharge.
  • the compression is adjusted to two-stage compression, so that the gas is compressed to a higher pressure range, the gas compression efficiency is improved, the force required for the compressed gas is reduced, and the development concept of miniaturization and high efficiency of modern products is adapted.
  • the folded-back coaxial gas booster pump designed by the invention comprises a first-stage cylinder, a first-stage piston, a secondary cylinder as a first-stage piston connecting rod, a pressure rod, a gas pump cover, a secondary piston and a piston connecting rod, and a first-stage cylinder
  • the secondary cylinder and the piston rod are coaxially mounted, and the rear end of the piston rod passes through the first follower check valve installed in the first stage piston and is fixed on the bottom wall of the first stage cylinder, so that the two pistons are reversely pressurized. .
  • intake check valve 16 for specific structure, including: intake check valve 16, first stage cylinder 01, air pump cover 09, primary piston 02, secondary cylinder 06, secondary piston 08, piston connecting rod 14, row
  • the gas check valve 12 and the first follower check valve 03 and the second one-way control valve among them:
  • the first stage cylinder 01 is both a cylinder and a pump body of the whole air pump, and the components and air lines related to the air pump are integrated on the pump body:
  • One end of the cylinder bottom wall 19 is an intake end, and an intake check valve 16 is installed therein.
  • the arrow indicates the direction of the airflow
  • the intake check valve 16 is installed in the through slot opened by the bottom wall 19 of the first stage cylinder 01, and the inner end of the air outlet end and the first stage cylinder 01 (first stage compression)
  • the chamber 31) is in communication, and the air inlet is in communication with the outside atmosphere, and the one-way control inputs air from the outside into the first stage cylinder 01.
  • a sealing plug 18 is disposed at the outermost end of the through groove formed in the bottom wall 19 of the cylinder, and the intake check valve 16 is installed inside the front end groove of the sealing plug 18.
  • the sealing plug 18 is screwed into the through groove of the bottom wall 19 of the cylinder together with a plurality of sealing rings provided in the annular groove on the outer cylindrical surface to complete the air pump inlet air passage distribution and the check valve installation.
  • the first stage piston 02 is installed in the first stage cylinder 01, the side wall is matched with the inner wall of the first stage cylinder 01, the first combined seal member 34 is disposed at the front end thereof, and the first stage piston guide ring 04 is set as the guide part of the first stage piston 02.
  • the first piston 02 is formed into two toroidal positioning guides, so that the gap between the first-stage cylinder 01 and the first-stage piston 02 can be appropriately enlarged; the first combined seal 34 is composed of an elastic sealing ring and a wear-resistant sealing ring, and is sealed.
  • the ring has a concave ring groove, and an elastic sealing ring is sleeved between the ring groove and the annular opening at the front end of the first stage piston 02, and the seal between the first stage piston 02 and the first stage cylinder 01 is maintained by the first combined seal 34 .
  • the rear end of the first stage piston 02 is a piston connecting rod.
  • the connecting rod of the first stage piston 02 is a two-stage cylinder 06, and extends from the rear end of the first stage cylinder 01 into the first stage cylinder 01, and the second stage cylinder
  • the outer wall surface of 06 is screwed in the deep groove opened in the rear part of the first stage piston 02, and the sealing ring is added at the joint (see also Figure 5).
  • the front end of the primary piston 02 and the bottom wall and side wall of the primary cylinder 01 are combined to form a primary compression chamber 31 that communicates with the intake check valve 16.
  • the outer wall of the secondary cylinder 06 acts as a connecting rod of the first stage piston 02 of the first stage cylinder 01, and one end of the first stage cylinder 01 (defined as the front end of the secondary cylinder 06) is fixedly connected to a pressing rod 35 through which the pressing rod is passed. 35 drives the movement of the secondary cylinder 06.
  • the last end of the first stage cylinder 01 is fixedly connected to the air pump cover 09, and the portion of the air pump cover 09 and the secondary cylinder 06 is provided with a forced guiding part pressing rod guide ring 11 as a main guiding and wear-resistant part,
  • the clearance with the secondary cylinder 06 is to be precise, so that the secondary cylinder 06 moves smoothly.
  • the secondary cylinder 08 is provided with a secondary piston 08, the side wall of the secondary piston 08 is matched with the inner wall surface of the secondary cylinder 06, and the front end of the secondary piston 08 (the front end direction of the secondary cylinder 06) is provided with a second combined seal 36.
  • the second piston guiding ring 07 is set as the guiding part of the secondary piston 08, so that the secondary piston 08 forms two toroidal positioning guides, so that the gap between the secondary cylinder 06 and the secondary piston 08 can be appropriately enlarged;
  • the second combination seal 36 is also composed of an elastic sealing ring and a wear-resistant sealing ring.
  • the sealing ring has a concave ring groove, and an elastic sealing ring is sleeved between the ring groove and the annular opening at the front end of the secondary piston 06.
  • the second combination seal 36 maintains a seal between the secondary piston 08 and the secondary cylinder 06.
  • the rear end of the secondary piston 08 is a piston connecting rod 14.
  • the front end of the piston connecting rod 14 is set in a groove formed by the secondary piston 08, and the rear end protrudes from the rear end of the secondary cylinder 06 and continues to extend through the primary piston. 02 and extended into the inner groove provided in the bottom wall 19 of the first-stage cylinder 01, and fixed by screw connection (the piston rod 14 is fixed, the two-stage cylinder is relatively moved), the piston rod 14 and the bottom of the first-stage cylinder 01
  • a sealing ring is installed at the joint of the wall 19; the first stage cylinder 01, the second stage cylinder 06 and the piston rod 14 are coaxially mounted.
  • a check valve O-ring 13 is mounted at a rear end of the piston link 14 and the secondary piston 08; a rear end of the secondary piston 08, an outer wall surface of the piston connecting rod 14, and a rear end and a side wall of the secondary cylinder 06 are enclosed
  • the space is defined as a transition chamber 32, and the space surrounded by the front end of the secondary piston 08 and the front end and the side wall of the secondary cylinder 06 is defined as a secondary compression chamber 33.
  • FIG. 6 the front end of the piston rod 14 is fitted in the inner groove formed by the secondary piston 08.
  • the structure of the secondary piston 08 and its mating relationship with the secondary cylinder 06 are shown in Fig. 6, wherein the arrows indicate the direction of the air flow.
  • the front section of the body 41 of the piston connecting rod 14 is a tapered section, the front end of which has an outer tapered structure, the tapered surface has an annular groove, and the check valve O-ring 13 is nested in the groove; correspondingly, the secondary piston 08
  • the rear end opening is a tapered ring surface 43 and cooperates with the edge of the rear end surface of the tapered portion of the piston connecting rod 14 , and a gap is left between the mating surfaces (as a gas passage);
  • the front end of the body 41 is designed in the form of a column groove (the mounting row in the column groove)
  • the gas check valve 12) has an external thread on the column groove, and a piston presser 10 is screwed to the external thread, and a sealing ring is arranged at the bottom of the screwing thread of the piston presser 10.
  • the piston presser 10 and the body The inner and outer air passages are sealed and sealed; the diameter of the piston presser 10 is larger than the minimum diameter of the taper ring surface of the secondary piston 08, and is smaller than the diameter of the inner groove of the second piston 08, that is, the outer wall surface of the piston presser 10 and the second stage.
  • a gap is left between the inner wall surfaces of the piston 08 as a gas passage; the pressing end face of the piston presser 10 (shown as a lower end face in FIG.
  • the secondary cylinder 06 is moved forward and backward in the axial direction, and the secondary piston 08 assembled therein is moved forward and backward in the secondary cylinder 06.
  • the secondary cylinder 06 moves forward (in the direction of the arrow in FIG. 2), due to the friction between the secondary piston 08 and the secondary cylinder 06, the front end of the piston rod 14 body 41 and the secondary piston 08 The inner cone surface 43 is pressed and compressed, and the check valve O-ring 13 is compressed.
  • the axial pressure of the piston rod 14 is equal to the friction of the second piston 08 and the secondary cylinder 06.
  • the front end of the piston connecting rod 14 and the secondary piston 08 will form a sealed state, and the gas from the transition chamber 32 to the secondary compression chamber 33 is cut off; when the secondary cylinder 06 moves backward (such as the arrow in FIG. 1)
  • the direction of the second piston 08 is also moved backwards and moved a certain distance. Since the piston rod 14 and the piston presser 10 screwed to the piston rod 14 are fixed, the piston presser 10 is pressed against the end surface (lower end surface). The edge compresses the smallest end of the tapered ring surface 43 of the secondary piston 08 which moves backwards.
  • the front tapered surface of the piston rod 14 is disengaged from the mating inner tapered surface 43 of the secondary piston 08, and a slit is formed in the front tapered surface groove.
  • the check valve O-ring 13 also leaves the sealing cone, and the secondary piston 08 and the piston presser 1 A gap is formed between the 0s for the rigid contact, and the gas passes from the transition cavity 32 through the gap between the front end tapered surface of the piston connecting rod 14 and the secondary piston 08 to the inner tapered surface 43, and the radial groove 42 opened at the lower end of the piston presser 10 And entering the secondary compression chamber 33 in the gap between the piston presser 10 and the secondary piston 08.
  • the piston connecting rod 14 is designed as a hollow structure, and the hollow exhaust passage leads to the bottom wall 19 of the primary cylinder 01 and extends from the bottom wall 19 to the exhaust port to the output.
  • a pressure pipeline the other section of the exhaust passage communicates with the exhaust check valve 12 installed in the foremost column groove of the body 41; the exhaust check valve 12 communicates with the secondary compression chamber 33, and unidirectionally controls the secondary compression chamber 33 The gas enters the exhaust passage.
  • a first follower check valve 03 is mounted on a section between the end face of the piston rod 14 extending from the secondary cylinder 06 and the front end face of the primary piston 02, as shown in FIG. 5, the follower check valve 03
  • the check valve base 23, the O-ring 24, the combination seal 26 and the threaded pressure ring 22 are passed through the piston link 14 and fitted into the matching slots 21 formed in the front end of the primary piston 02.
  • the check valve base body 23 is in the form of a ring cap, and is divided into a base portion, an edge portion of the connecting base portion and a screwing portion, the front end of the base portion and the connecting portion is an outer tapered surface, and a semicircular groove is formed on the tapered surface;
  • the piece 26 is composed of an elastic sealing ring and a wear-resistant outer sealing ring, the outer sealing ring is divided into a thick bottom and a thin neck, and the elastic sealing ring is set on the thin neck to assemble the elastic sealing ring and the wear-resistant outer sealing ring into one body;
  • the piece 26 is mounted in the groove formed by the base portion and the edge portion of the check valve base body 23, and the assembly direction is that the wear-resistant outer seal ring abuts against the base portion and cannot be reversed;
  • the threaded pressure ring 22 is screwed from the check valve base body 23 Screwed into the base body 23, the threaded pressure ring 22 is in contact with the elastic sealing ring, and the combined sealing
  • the first follower check valve 03 is fitted to the piston link 14 and fits into the deep groove bottommost slot 21 of the first stage piston 02.
  • the central hole of the first follower check valve 03 is penetrated from one end (exhaust end) of the combined seal member 26; on the other hand, the shape and the first follower of the deep groove bottom slot 21 of the first stage piston 02
  • the one-way valve 03 has the same outer shape, the size is slightly larger than the outer dimension thereof, and the inner wall of the bottommost portion (intake end) of the deep groove is designed as a tapered mating surface matching the outer tapered surface of the front end of the check valve base 23, when the first When the check valve 03 moves axially with the first stage piston 02, it moves relative to the inner wall of the deep groove bottom hole 21 of the first stage piston 02 in the axial direction, and the outer tapered surface of the check valve base body 23 is opposite to the deep groove bottom groove.
  • the tapered mating face of the bore 21 is compressed to shut off the gas (as in Figure 1) or separated to allow gas to pass ( Figure 2).
  • the second cylinder 06 is screwed into the deep groove rear end of the first stage piston 02, which is equivalent to the connecting rod of the first stage piston, and the inner diameter of the second stage cylinder 06 is smaller than the outer diameter of the first follower check valve 03, the first follower check valve 03
  • the rear end is restricted by the front end surface of the secondary cylinder 06, and the front end is restricted by the tapered surface of the first stage piston 02, and the first follower check valve 03 is restricted to move in a certain position in the axial direction.
  • the friction of the outer seal ring of the combined seal 26 and the seal of the piston rod 14 drives the first follower check valve 03 within a limited range. mobile.
  • the O-ring 24 of the outer tapered surface of the first follower check valve 03 can be pressed or separated from the inner wall taper surface of the deep groove bottom hole 21 of the first stage piston 02, The seal ring and piston link 14 are energetically and motionally transmitted, while the action of the first follower check valve 03 is also completed. It can be seen that the function of the first follower check valve 03 is to make the gas in the primary compression chamber 31 unidirectionally enter the transition chamber 32.
  • the folded-back coaxial gas booster pump of the present invention is assembled by the above components.
  • the secondary cylinder 06 also the pressure connecting rod
  • the first stage piston 02 are sealed by a sealing ring to form a sealed gas transition chamber 32;
  • the follower check valve 03 cone surface and the first stage piston 02 cone surface Cooperating, controlling the gas on and off of the first-stage compression chamber 31; due to the two-stage piston folding back arrangement, the guiding performance is relatively poor, and the axial guiding needs to be increased.
  • the first-stage piston guiding ring 04 is used as the guiding part of the first-stage piston 02, and the second-stage piston
  • the sealing ring 07 serves as a guiding part of the secondary piston; in order to smoothly move the pressing lever 35 and the secondary cylinder 06, a portion of the cylinder head 09 and the secondary cylinder 06 is coupled with a forced guiding part pressing rod guide ring 11 as a main Guided and wear-resistant parts with precise clearance.
  • the one-way valve 03 forms a seal; the first-stage piston 02 continues to move (at this time, the check valve 03 moves together), the first-stage compression chamber 31 increases the gas storage chamber, and the gas pressure in the chamber decreases, when the pressure is lowered to The external atmospheric pressure is sufficient to overcome the spring compression force of the intake check valve 16, the intake check valve 16 is opened, and the outside air enters the primary compression chamber 31 from the intake port through the intake check valve 16; As the motion continues, the gas is correspondingly charged into the primary compression chamber 31 until the movement of the primary piston 02 stops, completing the inhalation process.
  • the secondary piston 08 has no relative motion at the beginning of the friction between the secondary piston 08 and the secondary cylinder 06, and the secondary piston 08 moves with the secondary cylinder 06; the secondary piston 08, the piston connecting rod 14, the piston The presser 10 and the sealing ring 13 cooperate to form a second one-way control valve, and control the gas flow of the transition chamber 32 and the secondary compression chamber 33.
  • the secondary piston 08 stops.
  • the above is the gas flow state of the air pump inhalation state. If the air pressure in the secondary compression chamber 33 of the air pump is greater than the air pressure of the external connection air passage during the suction movement, the check valve 12 is opened, and the gas passes through the hollow passage of the piston connecting rod 14 to The exhaust port is directly discharged into the output gas path; when the gas pressure in the secondary compression chamber 33 is less than the pressure of the externally connected gas path, while waiting for the piston exhaust movement, the gas compression pressure in the secondary compression chamber 33 is increased and then discharged. Connect the gas path.
  • the second one-way control valve formed to the valve O-ring 13 has a frictional force due to the relative movement of the secondary piston 08 and the secondary cylinder 06, and the tapered surface between the secondary piston 08 and the piston connecting rod 14 is pressed with the movement.
  • a cycle of the air pump is formed, and the movement of the two-stage piston and the control of the gas path are completed on the coaxial by using the fold-back type one-stage cylinder and the follow-up check valve, by changing the relative motion.
  • the direction realizes the primary suction, compression, transient gas storage, pressure (secondary) suction, secondary compression and exhaust process of the first and second gases to obtain the required high pressure compressed gas.
  • the two-stage piston is installed in the coaxial system, and the structure is folded back and arranged.
  • the pressing operation force is completed at one time, the system structure is simple, and the axial occupation volume is small.
  • the combined sealing structure of the piston improves the wear resistance of the pressure forming mechanism and the high pressure mechanism, and at the same time has self-compensation and prolongs the service life of the overall mechanism.
  • the compression ratio can be reasonably adjusted, and a small operating force can be used to manufacture high gas pressure or improve the efficiency of gas pressure generation.
  • the coaxial mounting piston integrates two follower check valves through the connecting rod, it takes up less space, the part volume can be made smaller, the processing complexity is also reduced, and the manufacturing cost is saved.
  • the first and second pistons increase the guiding parts, which can reduce the eccentric wear of the piston and the cylinder. Only one of the force applying rods adopts forced guiding, which enhances the overall stability and assembly of the air pump.
  • the folding-back gas booster pump of the invention can obtain high gas pressure by applying pressure in a small volume, and the folding-back design makes the product compact, and is a light-weight, portable and high-pressure gas gas suitable for field instrument calibration. Pressure equipment for industrial applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

一种折返式同轴气体增压泵及气体造压方法,属于气体造压领域。该折返式同轴气体增压泵包括一级气缸、一级活塞、作为一级活塞连杆的二级气缸、压杆、气泵盖、二级活塞及活塞连杆,一级气缸、二级气缸及活塞连杆同轴安装,活塞连杆后端穿过一级活塞中装设的第一随动单向阀并固定在一级气缸底壁,使两活塞反向运动增压。该折返式同轴气体增压泵组成两级压缩气泵,一次运动可实现两级压缩,从而使气体压缩达到更高的压力范围,提高了气体压缩效率,降低了压缩气体所需的动力,同时折返设计使产品小型化,是适于现场仪表校验的一种重量轻、携带方便、压力高的造压设备。

Description

折返式同轴气体增压泵及气体造压方法 技术领域
本发明属于压力仪表校验行业,涉及压力校验仪器配套使用的气体造压设备,特别涉及多级增压及造压效率较高的气体压力泵和造压方法。
背景技术
在压力仪表校验行业中,一般采用气体造压泵,用于压力计量器具的检定工作造压设备。气体造压设备是压力仪表校验行业常用产品,气体泵利用空气压缩产生所需要的压力,不会产生液体造压带来对环境和被检仪表的污染。现有的气体泵基本采用气体单次压缩来产生压力,受压缩比的影响只能达到很低的压力。另一方面,受操作力的限制,气体造压效率也很低,直接影响压力仪表校验的效率。随着科技的发展,工业压力设备的耐压能力增强,与其配套的压力监测仪表的压力值也在不断地提高,而原来校验用气泵造压能力(压力值和效率)远远不能满足行业发展的需要。还有,现场仪表的校验需要便携的造压设备,迫切需要一种重量轻、携带方便、压力高的气体造压设备。
技术问题
本发明目的在于提供一种简便、可靠、高效的折返式同轴气体增压泵,并提供一种高效增压方法。
技术解决方案
本发明折返式同轴气体增压泵,包括:一级气缸(01)及置于其中的一级活塞(02)、作为一级活塞连杆的二级气缸(06)及与二级气缸固定的压杆(35)、以及盖合在一级气缸(01)开口端的气泵盖(09),二级气缸(06)中安装二级活塞(08)及活塞连杆(14),一级气缸(01)、二级气缸(06)及活塞连杆(14)同轴安装,活塞连杆(14)后端穿过一级活塞(02)并固定在一级气缸(01)封闭端的底壁,活塞连杆(14)与一级活塞(02)之间安装第一随动单向阀(03);一级气缸(01)中一级活塞(02)前端的一级压缩腔(31)通过进气单向阀(16)与外界气体通断,二级气缸(06)中二级活塞(08)前端的二级压缩腔(33)通过排气单向阀(12)与输出压力管路通断,且一级压缩腔(31)通过第一随动单向阀(03)单向与二级气缸(06)中二级活塞(08)后端的过渡腔(32)通断,过渡腔(32)通过第二单向控制阀单向与二级压缩腔(33)通断。
所述折返式同轴气体增压泵,一级活塞(02)后端开设深槽,深槽最底部槽孔(21)中装配第一随动单向阀(03);该第一随动单向阀(03)包括单向阀基体(23)、O型密封圈(24)、组合密封件(26)和螺纹压环(22),活塞连杆(14)穿过该第一随动单向阀;其中:单向阀基体为环帽形式,分为基部、连接基部的沿部和螺接部,基部和沿部连接处呈外锥面,锥面上设半圆的凹槽;组合密封件由弹性密封圈和耐磨外密封环组成,外密封环分为厚底部和薄颈部,弹性密封圈套装在薄颈部;组合密封件装在单向阀基体内基部和沿部组成的槽内,且外密封环紧抵基部;螺纹压环从单向阀基体的螺接部旋入基体内,螺纹压环和弹性密封圈接触,通过螺接压紧组合密封件;O型密封圈套入单向阀基体前端所设的凹槽内。
所述折返式同轴气体增压泵,二级活塞(08)后端开设内凹槽,活塞连杆(14)前端套装在该内凹槽中;活塞连杆(14)的本体(41)前面一段为锥段,其前端呈外锥状结构,锥面上有环形凹槽,凹槽中套设一单向阀O型圈(13);对应的,二级活塞(08)后端开口为锥环面(43),且与活塞连杆(14)的锥段后端面边沿配合,配合面间留有作为气体通道的间隙;本体(41)最前端设外螺纹,与该外螺纹旋接有一活塞压母(10);活塞压母(10)直径大于二级活塞(08)锥环面的最小直径,且小于二级活塞(08)开设的内凹槽的直径,使活塞压母(10)的外壁面与二级活塞(08)内壁面之间留有作为气体通道的间隙;活塞压母(10)的压紧端面开过气槽(42);由二级活塞(08)、活塞连杆(14)本体(41)、单向阀O型圈(13)及活塞压母(10)共同形成所述第二单向控制阀。
所述折返式同轴气体增压泵,活塞连杆(14)为中空形式形成与输出压力管路连通的排气通道,活塞连杆(14)前端设计为柱槽形式,柱槽内安装排气单向阀(12),排气单向阀(12)连通二级压缩腔(33)和活塞连杆(14)中的排气通道。
所述折返式同轴气体增压泵,一级活塞(02)前端面与一级气缸(01)内壁面接触处开设环形缺口,缺口内设第一组合密封件(34);二级活塞(08)前端面与二级气缸(06)内壁面接触处开设环形缺口,缺口内设第二组合密封件(36);所述组合密封由弹性密封圈和耐磨密封环组成,密封环有内凹的环槽,在该环槽和活塞前端环形开口之间套接弹性密封圈。
所述折返式同轴气体增压泵,一级活塞(02)和二级活塞(08)外壁面分别设有环槽,环槽内套设导向环。
所述折返式同轴气体增压泵,二级气缸(06)从一级气缸(01)开口端伸出并穿过气泵盖(09),气泵盖(09)与二级气缸(06)配合部分加设间隙配合的压杆导向环(11)。
所述折返式同轴气体增压泵,进气单向阀(16)装设在一级气缸(01)缸底壁(19)开设的通槽内,其出气端与一级气缸(01)的一级压缩腔(31)连通,进气口与外界大气连通。
所述折返式同轴气体增压泵,其特征在于,一级气缸(01)缸底壁(19)开设的通槽最外端设密封堵头(18),进气单向阀(16)装设在该密封堵头(18)前端开设的凹槽内部,密封堵头(18)外柱面上环槽内设多个密封圈,密封堵头(18)与缸底壁(19)的通槽旋接。
本发明提供的一种气体增压方法,使用前述的同轴反向运动气体增压机构,包括以下步骤:
控制压杆(35)带动二级气缸(06)和一级活塞(02)向一级气缸(01)吸气方向运动,使第一随动单向阀03关闭,进气单向阀(16)打开从外界吸入气体进入一级压缩腔(31),同时第二单向控制阀打开使过渡腔(32)内气体进入二级压缩腔(33);
控制压杆(35)带动二级气缸(06)和一级活塞(02)向二级气缸(06)排气方向运动,使进气单向阀(08)关闭,第一随动单向阀(03)开启从一级压缩腔(31)向过渡腔(32)排增压气体,同时第二单向控制阀关闭,排气单向阀(12)开启,二级压缩腔(33)内被压缩的高压气体被排出至输出压力管路。
有益效果
采用以上方案,本发明折返式气体增压泵在一个轴线上集成了活塞和气路控制部件,结构根据运动方向,自动完成气路的控制,各部分零件可控,因此整个同轴运动的部件具有很高的可靠性,是本气泵的独创。采用小体积施加压力就可以得到高的气体压力,在仪表校验行业也是首创。本发明组成两级压缩气泵,一次运动可实现两级压缩,从而使气体压缩达到更高的压力范围,提高了气体压缩效率,降低了压缩气体所需的动力,同时折返设计使产品小型化,是适于现场仪表校验的一种重量轻、携带方便、压力高的气体造压设备。
附图说明
图1为折返式同轴气体增压泵(向吸气方向运动)结构图
图2为折返式同轴气体增压泵(向排气方向运动)结构图
图3为进气端结构及吸气状态气体流向图
图4为排气端结构及排气状态气体流向图
图5为第一随动单向阀结构及工作环境配合图
图6第二单向控制阀结构及工作环境配合图
图中主要部件标号为:01.一级气缸;02.一级活塞;03.第一随动单向阀;04.一级活塞导向环 ; 06.二级气缸;07.二级活塞导向环;08.二级活塞;09.气泵盖;10.活塞压母;11.压杆导向环;12.排气单向阀;13.单向阀O型圈;14.活塞连杆;16.进气单向阀;18.密封堵头;19.缸底壁;21.槽孔;22.螺纹压环;23.单向阀基体;24.O型密封圈;26.组合密封件;34.第一组合密封件;36.第二组合密封件;18.密封堵头;31.一级压缩腔;32.过渡腔;33.二级压缩腔;35.压杆;41.本体;42.过气槽;43锥环面。
本发明的实施方式
本发明在常规一级造压气泵的基础上,折返同轴方向利用一级活塞压杆增加一级气体压缩机构和第一随动单向阀等部件,组成两级压缩气泵,把一级活塞杆作为二级压缩的气缸,二级气缸运动,二级活塞相对静止,利用二级气缸运动前后腔体变化,进行气体储存、交换,控制带压气体进入二级压缩腔进行压缩、排出,一次压缩调整为两级压缩,从而使气体压缩达到更高的压力范围,提高了气体压缩效率,降低了压缩气体所需的力,适应现代产品小型化、高效率的发展理念。
本发明设计的折返式同轴气体增压泵,包括一级气缸、一级活塞、作为一级活塞连杆的二级气缸、压杆、气泵盖、二级活塞及活塞连杆,一级气缸、二级气缸及活塞连杆同轴安装,活塞连杆后端穿过一级活塞中装设的第一随动单向阀并固定在一级气缸底壁,使两活塞反向运动增压。具体结构参见图1和图2所示,包括:进气单向阀16、一级气缸01、气泵盖09、一级活塞02、二级气缸06、二级活塞08、活塞连杆14、排气单向阀12及第一随动单向阀03和第二单向控制阀。其中:
一级气缸01既为气缸也是整体气泵的泵体,与气泵有关的零部件和气路均在此泵体上集成:
其缸底壁19一端为进气端,其中装设进气单向阀16。参见图3所示,图中箭头表示气流方向,进气单向阀16装设在一级气缸01缸底壁19开设的通槽内,出气端与一级气缸01的内腔(一级压缩腔31)连通,进气口与外界大气连通,其单向控制从外界向一级气缸01内输入气体。为使气泵整体密封效果更好及便于气泵的维护,在缸底壁19开设的通槽最外端设密封堵头18,进气单向阀16装设在该密封堵头18前端凹槽内部,密封堵头18与其外柱面上环槽内设的多个密封圈一起旋入缸底壁19的通槽中,完成气泵进气气路分配和单向阀的安装。此结构简化了进气单向阀16的安装方式,便于气泵的维护和气路安排。
一级活塞02装在一级气缸01内,侧壁与一级气缸01内壁配合,其前端装设第一组合密封件34,并套装一级活塞导向环04作为一级活塞02的导向零件,使一级活塞02形成两个环面定位导向,如此一级缸体01和一级活塞02间的间隙可以适当的放大;第一组合密封件34由弹性密封圈和耐磨密封环组成,密封环有内凹的环槽,在该环槽和一级活塞02前端环形开口之间套接弹性密封圈,通过该第一组合密封件34保持一级活塞02与一级气缸01之间的密封。
一级活塞02后端为活塞连杆,在本发明中,该一级活塞02的连杆即为二级气缸06,从一级气缸01的后端伸入一级气缸01内,二级气缸06的外壁面螺纹紧固在一级活塞02后部开设的深槽内,结合处加密封圈(可同时参见图5)。
一级活塞02前端和一级气缸01的底壁和侧壁组合形成一级压缩腔31,该一级压缩腔31与进气单向阀16连通。
二级气缸06外壁充当了一级气缸01中一级活塞02的连杆,其伸出一级气缸01的一端(定义为二级气缸06的前端)固定连接一压杆35,通过该压杆35带动二级气缸06运动。
一级气缸01的最后端固定连接气泵盖09,气泵盖09与二级气缸06配合的部分加设了强制导向零件压杆导向环11,压杆导向环11作为主要导向和耐磨零件,其与二级气缸06的间隙配合要精确,使二级气缸06运动平稳。
以上为一级气缸01的基本部件和组配。下面再对二级气缸06的构成详细描述:
二级气缸06内套装二级活塞08,二级活塞08侧壁与二级气缸06内壁面配合,同样二级活塞08的前端(二级气缸06的前端方向)装设第二组合密封件36,并套装二级活塞导向环07作为二级活塞08的导向零件,使二级活塞08形成两个环面定位导向,如此二级缸体06和二级活塞08间的间隙可以适当的放大;第二组合密封件36同样由弹性密封圈和耐磨密封环组成,密封环有内凹的环槽,在该环槽和二级活塞06前端环形开口之间套接弹性密封圈,通过该第二组合密封件36保持二级活塞08与二级气缸06之间的密封。
二级活塞08后端为活塞连杆14,活塞连杆14的前端套装在二级活塞08开设的凹槽中,后端伸出二级气缸06的后端并继续延伸,穿过一级活塞02并伸入到一级气缸01的底壁19所设的内槽,以螺纹连接固定(活塞连杆14固定不动,二级气缸相对运动),活塞连杆14与一级气缸01的底壁19接合处安装密封圈;一级气缸01、二级气缸06及活塞连杆14同轴安装。活塞连杆14与二级活塞08的后端接合处安装单向阀O型圈13;二级活塞08后端、活塞连杆14外壁面与二级缸体06的后端和侧壁围成的空间定义为过渡腔32,二级活塞08前端与二级缸体06的前端和侧壁围成的空间定义为二级压缩腔33。
参见图6,活塞连杆14前端套装在二级活塞08开设的内凹槽中,二级活塞08的结构以及其与二级气缸06的配合关系参见图6,其中箭头表示了气流方向。活塞连杆14的本体41前面一段为锥段,其前端呈外锥状结构,锥面上有环形凹槽,单向阀O型圈13套入该凹槽内;对应的,二级活塞08后端开口为锥环面43,且与活塞连杆14的锥段后端面边沿配合,配合面间留有间隙(作为气体通道);本体41最前端设计为柱槽形式(柱槽内安装排气单向阀12),柱槽设外螺纹,与该外螺纹旋接有一活塞压母10,在活塞压母10旋接螺纹的底部有密封圈,螺纹旋紧后,活塞压母10和本体41内外气路被隔离密封;活塞压母10直径大于二级活塞08锥环面的最小直径,且小于二级活塞08开设的内凹槽的直径,即活塞压母10的外壁面与二级活塞08内壁面之间留有间隙作为气体通道;在活塞压母10的压紧端面(图6中显示为下端面)开过气槽42;二级活塞08、活塞压母10、活塞连杆14前端及其内装配的排气单向阀12整体紧密配合组装于二级气缸06内壁,且二级活塞08前端面与二级气缸06内壁面接触处开设环形缺口,缺口内设第二组合密封件36。
二级气缸06工作中,二级气缸06在轴向前后加力运动,装配于其中的二级活塞08在二级气缸06内做前后相对运动。具体为:当二级气缸06向前(如图2箭头方向)运动时,由于二级活塞08和二级气缸06间存在摩擦力,活塞连杆14本体41前端锥面与二级活塞08的内锥环面43配合压紧,同时压缩单向阀O型圈13,当二级压缩腔体气体无压力时活塞连杆14的轴向压力等于二级活塞08和二级气缸06的摩擦力,这样活塞连杆14前端配合锥面与二级活塞08间会形成密封状态,从过渡腔32到二级压缩腔33的气体被截断;当二级气缸06向后运动时(如图1箭头方向),带动二级活塞08也向后运动,运动一定距离,由于活塞连杆14及与活塞连杆14螺接的活塞压母10固定不动,活塞压母10压紧端面(下端面)边沿压迫向后运动的二级活塞08的锥环面43最小端,这时活塞连杆14前端锥面与二级活塞08的配合内锥面43脱开,产生缝隙,前端锥面凹槽里的单向阀O型圈13也脱离密封锥面,且二级活塞08与活塞压母10之间为刚性触碰产生缝隙,气体从过渡腔体32经活塞连杆14前端锥面与二级活塞08配合内锥面43间的缝隙、活塞压母10下端所开的径向槽42、和活塞压母10与二级活塞08之间的间隙中通过进入二级压缩腔33。在此工作过程中,在二级气缸往复运动,固定不动的活塞连杆14和活塞压母10控制随动的二级活塞08在一定的范围内移动,到达限制位(二级活塞08的锥环面43和活塞压母10下端两个压紧位置)时完成单向阀的作用,使气体从过渡腔体32进入二级压缩腔33。该气体单向运动过程参见图6箭头所示。
进一步,结合图1、图2及图4,活塞连杆14设计为中空结构,该中空的排气通道通向一级气缸01的底壁19,并从底壁19延伸至排气口至输出压力管路;该排气通道另一段连通本体41最前端柱槽内安装的排气单向阀12;排气单向阀12与二级压缩腔33连通,单向控制二级压缩腔33中气体进入排气通道中。
以上详细描述了二级气缸相关部件的组配。以下还进一步描述一级气缸01与二级气缸06之间的配合:
在活塞连杆14伸出二级气缸06后端面与一级活塞02前端面之间的一段上,装配有第一随动单向阀03,参见图5所示,该随动单向阀03包括单向阀基体23、O型密封圈24、组合密封件26和螺纹压环22,其穿过活塞连杆14,装配于一级活塞02的前端所开设的匹配的槽孔21中。其中:单向阀基体23结构为环帽形式,分为基部、连接基部的沿部和螺接部,基部和沿部连接的前端呈外锥面,锥面上设半圆的凹槽;组合密封件26由弹性密封圈和耐磨外密封环组成,外密封环分为厚底部和薄颈部,弹性密封圈套装在薄颈部使弹性密封圈和耐磨外密封环装配为一体;组合密封件26装在单向阀基体23内基部和沿部组成的槽内,其装配方向是耐磨外密封环紧抵基部,不能装反;螺纹压环22从单向阀基体23的螺接部旋入基体23内,螺纹压环22和弹性密封圈接触,通过螺接压紧组合密封件26;O型密封圈24套入单向阀基体23前端所设的凹槽内。通过以上各部件装配形成第一随动单向阀03结构。
使用中,第一随动单向阀03装配到活塞连杆14上,并配合装入一级活塞02所开设的深槽最底部槽孔21中。将第一随动单向阀03中心孔从带组合密封件26的一端(排气端)穿入;另一方面,一级活塞02所开设的深槽底部槽孔21形状与第一随动单向阀03的外型相同,尺寸略大于其外围尺寸,且该深槽最底部(进气端)的内壁设计成与单向阀基体23前端外锥面相配合的锥配合面,当第一随动单向阀03随一级活塞02轴向移动时,与一级活塞02深槽底部槽孔21内壁在轴向发生相对移动,单向阀基体23前端外锥面会相对于深槽底部槽孔21的锥配合面压紧以隔断气体(如图1),或分离以使气体通过(如图2)。二级气缸06旋入一级活塞02深槽后端相当于一级活塞的连杆,且二级气缸06内径小于第一随动单向阀03的外径,第一随动单向阀03后端受到二级气缸06前端面的限制,前端受一级活塞02锥面限制,把第一随动单向阀03限制在轴向的一定位置内移动。当第一随动单向阀03与一级活塞02轴向移动,由于组合密封件26的外密封环和活塞连杆14密封处摩擦力带动第一随动单向阀03在限制的范围内移动。一级活塞02轴向运动时,带动第一随动单向阀03外锥面上的O型密封圈24可以和一级活塞02深槽底部槽孔21内壁锥配合面压紧或分离,外密封环和活塞连杆14有力和运动传递,同时第一随动单向阀03的作用也完成了。可见,第一随动单向阀03的作用是使一级压缩腔31中的气体单向进入过渡腔32。
通过以上各部件装配得到本发明折返式同轴气体增压泵。
气泵结构中,二级气缸06(也是施压连杆)和一级活塞02间由密封圈密封,形成密封的气体过渡腔体32;随动单向阀03锥面和一级活塞02锥面配合,控制一级压缩腔31的气体通断;由于两级活塞折返排布,导向性能比较差,需要增加轴向导向,一级活塞导向环04作为一级活塞02的导向零件,二级活塞密封环07作为二级活塞的导向零件;为了施力压杆35及二级气缸06运动平稳,在汽缸盖09与二级气缸06配合的部分加了强制导向零件压杆导向环11,作为主要导向和耐磨零件,其间隙配合要精确。
该折返式同轴气体增压泵实施方式如图1和图2。
如图1所示,当压杆35带动与其固定连接的二级气缸06、一级活塞02一起向一级活塞吸气方向(如图1中压杆35上箭头所示方向)运动时,由于随动单向阀03与活塞连杆14间有摩擦力,随动单向阀03不动,与其配合的一级活塞02的槽孔21锥面压紧O型密封圈24使其变形,随动单向阀03形成密封;一级活塞02继续运动(此时随动单向阀03一起运动),一级压缩腔31储气腔体增大,腔内气体压力降低,当该压力降低至外部大气压力足以克服进气单向阀16的弹簧压缩力,进气单向阀16打开,外界空气从进气口通过进气单向阀16进入到一级压缩腔31内;随着吸气运动的持续,气体也相应的充进一级压缩腔31内,直到一级活塞02运动停止,完成吸气过程。
在吸气过程中,二级活塞08由于与二级气缸06之间存在摩擦力开始阶段没有相对运动,二级活塞08随二级气缸06一起运动;二级活塞08、活塞连杆14、活塞压母10以及密封圈13配合形成第二单向控制阀,控制过渡腔32和二级压缩腔33气体流动,当随动的二级活塞08碰到活塞压母10时,二级活塞08停止运动,二级活塞08与活塞连杆14锥面配合处的密封圈13的密封作用解除,过渡腔32中的气体从二级活塞08与活塞连杆14锥面配合间隙、活塞压母10下端面的径向槽42、活塞压母10外壁与二级活塞08内壁间隙进入到二级压缩腔33内,过渡腔32中的带压气体进入二级压缩腔33中完成带压气体的传输。由此,整个气泵的吸气过程完成,一级气缸01从外界经过进气单向阀16吸入气体,同时过渡腔体32气体进入二级压缩腔33内。
以上是气泵吸气状态气体流动情况,吸气运动时,如果气泵二级压缩腔33内的气压大于外连接气路的气压,单向阀12被打开,气体经由活塞连杆14的中空通道至排气口直接排入输出气路内;当二级压缩腔33内气体压力小于外连接气路气压时,等待活塞排气运动时,二级压缩腔内33内气体压缩压力升高后再排入外连接气路。
如图2,当一级活塞02和一级气缸01的运动系统向排气方向(如图2中压杆35上箭头所示方向)运动时,随压杆35和二级气缸06一同一级活塞02向前运动压缩一级压缩腔31内气体,在弹簧压缩力作用下进气单向阀16处于关闭状态;此时,随动单向阀03与一级活塞02分离,单向阀O型圈13打开,一级压缩腔31内压缩气体被输送到过渡腔32内;此时,二级气缸06也向压缩气体方向(图2中箭头所示,向下)运动,由于二级活塞08相对不动,这样二级压缩腔33容积减小,过渡腔32容积在增大,二级压缩腔33内气体压力升高,二级活塞08、活塞连杆14、活塞压母10以及单向阀O型圈13形成的第二单向控制阀,由于二级活塞08和二级气缸06相对运动存在摩擦力,二级活塞08与活塞连杆14之间的锥面配合随运动压紧,压紧该密封面上的单向阀O型圈13,引起该第二单向控制阀关闭,此时二级活塞08和活塞连杆14及活塞压母10一起不动,第二单向控制阀使过渡腔32与二级压缩腔33气路封闭;随二级气缸06运动的进行,二级压缩腔33容积缩小导致其内气体压力升高,二级压缩腔33内压力越高第二单向控制阀的密封性能越好;当二级压缩腔33里的气体压力大于连接管路内气体压力时,排气单向阀12打开,经过二级活塞连杆14内部的中空通道至排气口排入输出连接管路中,这样完成了一次完整的排气过程。此过程,一级压缩腔31气体升压后排到过渡腔32,二级压缩腔33气体升压后排到输出系统中。
通过以上一次吸气和一次排气过程组成了气泵的一次循环,利用折返式一二级气缸和随动单向阀把两级活塞的运动和气路的控制在同轴上完成,通过改变相对运动方向实现一二级气体的一级吸气、压缩、过渡储气、带压(二级)吸气、二级压缩和排气过程,得到所需要的高压压缩气体。
本发明的特点:
1. 同轴系统安装两级活塞,结构上折返排布,施压操作力一次完成,系统结构简单,轴向占用体积小。
2. 利用二级气缸作为一级活塞的连杆,充分利用了零部件,一种零件多种作用。简化了结构。
3. 利用随动单向阀,内部的气路控制可靠,随着零件间的磨合,零件间的摩擦力也会逐渐减小;
4. 活塞的组合密封结构,提高了造压机构和高压机构的耐磨性,同时有自补偿性,延长整体机构的使用寿命。
5. 利用不同直径的活塞,可合理调配其压缩比,施加小的操作力即能制造高的气体压力或提高气体造压的效率。
6. 因为同轴安装活塞通过连杆集成两个随动单向阀,占用较少的空间,零件体积可以做的较小,加工的复杂性也降低,节省了制作成本。
7. 同轴零件安装,一、二级活塞增加导向部件,可以减少活塞和缸体的偏磨情况,只有一处施力压杆采用强制导向,增强了气泵整体的稳定性和组装简单化。
工业实用性
本发明折返式气体增压泵采用小体积施加压力就可以得到高的气体压力,折返式设计使产品小型化,是适于现场仪表校验的一种重量轻、携带方便、压力高的气体造压设备,适于工业应用。

Claims (10)

  1. 折返式同轴气体增压泵,其特征在于,包括:一级气缸(01)及置于其中的一级活塞(02)、作为一级活塞连杆的二级气缸(06)及与二级气缸固定的压杆(35)、以及盖合在一级气缸(01)开口端的气泵盖(09),二级气缸(06)中安装二级活塞(08)及活塞连杆(14),一级气缸(01)、二级气缸(06)及活塞连杆(14)同轴安装,活塞连杆(14)后端穿过一级活塞(02)并固定在一级气缸(01)封闭端的底壁,活塞连杆(14)与一级活塞(02)之间安装第一随动单向阀(03);一级气缸(01)中一级活塞(02)前端的一级压缩腔(31)通过进气单向阀(16)与外界气体通断,二级气缸(06)中二级活塞(08)前端的二级压缩腔(33)通过排气单向阀(12)与输出压力管路通断,且一级压缩腔(31)通过第一随动单向阀(03)单向与二级气缸(06)中二级活塞(08)后端的过渡腔(32)通断,过渡腔(32)通过第二单向控制阀单向与二级压缩腔(33)通断。
  2. 根据权利要求1所述折返式同轴气体增压泵,其特征在于,一级活塞(02)后端开设深槽,深槽最底部槽孔(21)中装配第一随动单向阀(03);该第一随动单向阀(03)包括单向阀基体(23)、O型密封圈(24)、组合密封件(26)和螺纹压环(22),活塞连杆(14)穿过该第一随动单向阀;其中: 单向阀基体为环帽形式,分为基部、连接基部的沿部和螺接部,基部和沿部连接处呈外锥面,锥面上设半圆的凹槽; 组合密封件由弹性密封圈和耐磨外密封环组成,外密封环分为厚底部和薄颈部,弹性密封圈套装在薄颈部;组合密封件装在单向阀基体内基部和沿部组成的槽内,且外密封环紧抵基部; 螺纹压环从单向阀基体的螺接部旋入基体内,螺纹压环和弹性密封圈接触,通过螺接压紧组合密封件; O型密封圈套入单向阀基体前端所设的凹槽内。
  3. 根据权利要求1或2所述折返式同轴气体增压泵,其特征在于,二级活塞(08)后端开设内凹槽,活塞连杆(14)前端套装在该内凹槽中;活塞连杆(14)的本体(41)前面一段为锥段,其前端呈外锥状结构,锥面上有环形凹槽,凹槽中套设一单向阀O型圈(13);对应的,二级活塞(08)后端开口为锥环面(43),且与活塞连杆(14)的锥段后端面边沿配合,配合面间留有作为气体通道的间隙;本体(41)最前端设外螺纹,与该外螺纹旋接有一活塞压母(10);活塞压母(10)直径大于二级活塞(08)锥环面的最小直径,且小于二级活塞(08)开设的内凹槽的直径,使活塞压母(10)的外壁面与二级活塞(08)内壁面之间留有作为气体通道的间隙;活塞压母(10)的压紧端面开过气槽(42);由二级活塞(08)、活塞连杆(14)本体(41)、单向阀O型圈(13)及活塞压母(10)共同形成所述第二单向控制阀。
  4. 根据权利要求3所述折返式同轴气体增压泵,其特征在于,活塞连杆(14)为中空形式形成与输出压力管路连通的排气通道,活塞连杆(14)前端设计为柱槽形式,柱槽内安装排气单向阀(12),排气单向阀(12)连通二级压缩腔(33)和活塞连杆(14)中的排气通道。
  5. 根据权利要求1或2或3或4所述折返式同轴气体增压泵,其特征在于,一级活塞(02)前端面与一级气缸(01)内壁面接触处开设环形缺口,缺口内设第一组合密封件(34);二级活塞(08)前端面与二级气缸(06)内壁面接触处开设环形缺口,缺口内设第二组合密封件(36);所述组合密封由弹性密封圈和耐磨密封环组成,密封环有内凹的环槽,在该环槽和活塞前端环形开口之间套接弹性密封圈。
  6. 根据权利要求1或2或3或4所述折返式同轴气体增压泵,其特征在于,一级活塞(02)和二级活塞(08)外壁面分别设有环槽,环槽内套设导向环。
  7. 根据权利要求1或2或3或4所述折返式同轴气体增压泵,其特征在于,二级气缸(06)从一级气缸(01)开口端伸出并穿过气泵盖(09),气泵盖(09)与二级气缸(06)配合部分加设间隙配合的压杆导向环(11)。
  8. 根据权利要求1或2或3或4所述折返式同轴气体增压泵,其特征在于,进气单向阀(16)装设在一级气缸(01)缸底壁(19)开设的通槽内,其出气端与一级气缸(01)的一级压缩腔(31)连通,进气口与外界大气连通。
  9. 根据权利要求8所述折返式同轴气体增压泵,其特征在于,一级气缸(01)缸底壁(19)开设的通槽最外端设密封堵头(18),进气单向阀(16)装设在该密封堵头(18)前端开设的凹槽内部,密封堵头(18)外柱面上环槽内设多个密封圈,密封堵头(18)与缸底壁(19)的通槽旋接。
  10. 一种气体增压方法,其特征在于,使用权利要求1至9任一所述的折返式同轴气体增压泵,包括以下步骤:
    控制压杆(35)带动二级气缸(06)和一级活塞(02)向一级气缸(01)吸气方向运动,使第一随动单向阀03关闭,进气单向阀(16)打开从外界吸入气体进入一级压缩腔(31),同时第二单向控制阀打开使过渡腔(32)内气体进入二级压缩腔(33);
    控制压杆(35)带动二级气缸(06)和一级活塞(02)向二级气缸(06)排气方向运动,使进气单向阀(08)关闭,第一随动单向阀(03)开启从一级压缩腔(31)向过渡腔(32)排增压气体,同时第二单向控制阀关闭,排气单向阀(12)开启,二级压缩腔(33)内被压缩的高压气体被排出至输出压力管路。
PCT/CN2013/087512 2013-04-09 2013-11-20 折返式同轴气体增压泵及气体造压方法 WO2014166259A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13881536.0A EP2985462B1 (en) 2013-04-09 2013-11-20 Fold-back coaxial gas booster pump and gas pressure creating method
US14/700,799 US10197053B2 (en) 2013-04-09 2015-04-30 Turn-back coaxial gas pressurizing pump and gas pressurizing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310120300.9A CN103233876B (zh) 2013-04-09 2013-04-09 折返式同轴气体增压泵及气体造压方法
CN201310120300.9 2013-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/700,799 Continuation US10197053B2 (en) 2013-04-09 2015-04-30 Turn-back coaxial gas pressurizing pump and gas pressurizing method

Publications (1)

Publication Number Publication Date
WO2014166259A1 true WO2014166259A1 (zh) 2014-10-16

Family

ID=48881935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087512 WO2014166259A1 (zh) 2013-04-09 2013-11-20 折返式同轴气体增压泵及气体造压方法

Country Status (4)

Country Link
US (1) US10197053B2 (zh)
EP (1) EP2985462B1 (zh)
CN (1) CN103233876B (zh)
WO (1) WO2014166259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778476A (zh) * 2019-12-05 2020-02-11 梁荷 一种液体逐级加压装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233876B (zh) 2013-04-09 2015-11-18 北京康斯特仪表科技股份有限公司 折返式同轴气体增压泵及气体造压方法
CN104728051B (zh) * 2014-12-05 2018-04-10 贡茅 风车高能压缩物理储能发电系统
CN105443457B (zh) * 2015-07-15 2017-04-26 北京康斯特仪表科技股份有限公司 液体连续加压增压机构和使用它的液体造压方法
CN106089630B (zh) * 2016-06-14 2018-07-20 浙江瑞翔机电科技股份有限公司 一种双阶增压空压机
CN108799247A (zh) * 2018-08-15 2018-11-13 安徽士必达液压器材有限公司 一种高压气缸装置
CN109404273B (zh) * 2018-10-19 2024-02-09 湖州三井低温设备有限公司 一种高压低温往复泵冷端
CN109268226B (zh) * 2018-10-27 2024-04-26 上海国一液压气动有限公司 一种冷气一级增压泵
CN109469627B (zh) * 2019-01-07 2024-04-26 苏州经贸职业技术学院 一种离心泵便携式抽气装置及离心泵设备
FR3107573B1 (fr) * 2020-02-21 2022-02-25 Air Liquide Appareil de compression et station de remplissage comprenant un tel appareil
CN114669412B (zh) * 2022-04-01 2024-03-22 福州盛领科智能科技有限公司 涂料罐精密抽取装置
CN117287385A (zh) * 2023-01-05 2023-12-26 山东泰展机电科技股份有限公司 一种空气泵增压装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2170397Y (zh) * 1993-05-20 1994-06-29 西安交通大学 一种氮氢气压缩机
JP2009097495A (ja) * 2007-10-15 2009-05-07 Kota Noda 多連対峙シンメトリー型カム駆動プランジャーポンプ
CN101737294A (zh) * 2010-01-16 2010-06-16 胡校风 赛车打气筒
CN202517436U (zh) * 2012-03-19 2012-11-07 济南液压泵有限责任公司 一种齿轮泵用轴承拆卸装置
CN103233876A (zh) * 2013-04-09 2013-08-07 北京康斯特仪表科技股份有限公司 折返式同轴气体增压泵及气体造压方法
CN203201743U (zh) * 2013-04-09 2013-09-18 北京康斯特仪表科技股份有限公司 折返式同轴气体增压泵

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US817538A (en) * 1904-07-01 1906-04-10 Howard Wixon Compound air-pump.
US885485A (en) * 1906-11-01 1908-04-21 Wray Pump & Register Company Air-pump.
US1166098A (en) * 1914-11-07 1915-12-28 William U Watson Pump.
US1187835A (en) * 1914-12-15 1916-06-20 Ernest Henry Hill Portable air-compressor.
CH615982A5 (zh) * 1977-10-19 1980-02-29 Socsil Sa
US4149831A (en) * 1977-12-12 1979-04-17 Stanadyne, Inc. Double-acting differential piston supply pump
US5676529A (en) * 1996-07-15 1997-10-14 Hermansen; Frank Compact manual air pump having selectable high volume and high pressure modes
US6027316A (en) * 1997-09-30 2000-02-22 Wang; Lopin Air pump capable of inflating an inflatable object regardless of air pressure level in the inflatable object
US6193482B1 (en) * 1999-10-22 2001-02-27 Chih-Ming Chen Structure of a piston of an air-filing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2170397Y (zh) * 1993-05-20 1994-06-29 西安交通大学 一种氮氢气压缩机
JP2009097495A (ja) * 2007-10-15 2009-05-07 Kota Noda 多連対峙シンメトリー型カム駆動プランジャーポンプ
CN101737294A (zh) * 2010-01-16 2010-06-16 胡校风 赛车打气筒
CN202517436U (zh) * 2012-03-19 2012-11-07 济南液压泵有限责任公司 一种齿轮泵用轴承拆卸装置
CN103233876A (zh) * 2013-04-09 2013-08-07 北京康斯特仪表科技股份有限公司 折返式同轴气体增压泵及气体造压方法
CN203201743U (zh) * 2013-04-09 2013-09-18 北京康斯特仪表科技股份有限公司 折返式同轴气体增压泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985462A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778476A (zh) * 2019-12-05 2020-02-11 梁荷 一种液体逐级加压装置
CN110778476B (zh) * 2019-12-05 2024-05-24 梁荷 一种液体逐级加压装置

Also Published As

Publication number Publication date
EP2985462A1 (en) 2016-02-17
EP2985462B1 (en) 2020-03-11
CN103233876B (zh) 2015-11-18
CN103233876A (zh) 2013-08-07
US20150233362A1 (en) 2015-08-20
EP2985462A4 (en) 2016-11-30
US10197053B2 (en) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2014166259A1 (zh) 折返式同轴气体增压泵及气体造压方法
CN103256201B (zh) 同轴同向运动气体增压机构及气体增压方法
CN207999339U (zh) 多级同轴往复式气体造压装置
CN203201743U (zh) 折返式同轴气体增压泵
CN103362882B (zh) 一种气液增压缸
CN115750834A (zh) 一种气动高压阀门
CN110397533A (zh) 一种柴油机高压燃油电控增压泵
CN105650330A (zh) 一种发动机及其进气电磁阀
CN206190993U (zh) 卸荷式减压器
WO2024001519A1 (zh) 一体式节流泄压阀及包括其的压缩机
CN217866940U (zh) 浓相助推器
CN203248326U (zh) 同轴同向运动气体增压机构
WO2023240906A1 (zh) 一种微型高压空气压缩结构
CN111059332A (zh) 用于单作用气动执行器的呼吸阀结构
CN211039038U (zh) 压缩机及空调系统
CN219826933U (zh) 一种涡轮增压器密封装置
CN218816808U (zh) 气动油脂润滑泵
CN219865668U (zh) 一种缸内增压型气动支撑缸
CN218953526U (zh) 一种撞针式阀门及设有该撞针式阀门的气体增压泵
CN203248786U (zh) 随动单向阀及一种气体通断控制机构
CN205445962U (zh) 一种压缩机卸荷阀
CN220081816U (zh) 一种气缸运动变化调节器
CN211820162U (zh) 一种双向活塞式气动执行器
CN2466479Y (zh) 一种燃气安全快速连接器
CN110410328A (zh) 具有自动调节滑阀位置的压缩机及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013881536

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE