WO2014165686A3 - Purification of carbon nanotubes via selective heating - Google Patents

Purification of carbon nanotubes via selective heating Download PDF

Info

Publication number
WO2014165686A3
WO2014165686A3 PCT/US2014/032848 US2014032848W WO2014165686A3 WO 2014165686 A3 WO2014165686 A3 WO 2014165686A3 US 2014032848 W US2014032848 W US 2014032848W WO 2014165686 A3 WO2014165686 A3 WO 2014165686A3
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
purification
layer
selective heating
via selective
Prior art date
Application number
PCT/US2014/032848
Other languages
French (fr)
Other versions
WO2014165686A2 (en
Inventor
John A. Rogers
William L. Wilson
Sung Hun Jin
Simon N. DUNHAM
Xu Xie
Ahmed ISLAM
Frank Du
Yonggang Huang
Jizhou Song
Original Assignee
The Board Of Trustees Of The University Of Illinois
Northwestern University
University Of Miami
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Board Of Trustees Of The University Of Illinois, Northwestern University, University Of Miami filed Critical The Board Of Trustees Of The University Of Illinois
Priority to US14/772,312 priority Critical patent/US9825229B2/en
Publication of WO2014165686A2 publication Critical patent/WO2014165686A2/en
Publication of WO2014165686A3 publication Critical patent/WO2014165686A3/en
Priority to US15/354,951 priority patent/US10333069B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/17Purification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02606Nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Methods for purifying a layer of carbon nanotubes comprise providing a precursor layer of substantially aligned carbon nanotubes supported by a substrate, wherein the precursor layer comprises a mixture of first carbon nanotubes and second carbon nanotubes; selectively heating the first carbon nanotubes; and separating the first carbon nanotubes from the second carbon nanotubes, thereby generating a purified layer of carbon nanotubes. Devices benefiting from enhanced electrical properties enabled by the purified layer of carbon nanotubes are also described.
PCT/US2014/032848 2013-04-04 2014-04-03 Purification of carbon nanotubes via selective heating WO2014165686A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/772,312 US9825229B2 (en) 2013-04-04 2014-04-03 Purification of carbon nanotubes via selective heating
US15/354,951 US10333069B2 (en) 2013-04-04 2016-11-17 Purification of carbon nanotubes via selective heating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361808572P 2013-04-04 2013-04-04
US61/808,572 2013-04-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/772,312 A-371-Of-International US9825229B2 (en) 2013-04-04 2014-04-03 Purification of carbon nanotubes via selective heating
US15/354,951 Continuation US10333069B2 (en) 2013-04-04 2016-11-17 Purification of carbon nanotubes via selective heating

Publications (2)

Publication Number Publication Date
WO2014165686A2 WO2014165686A2 (en) 2014-10-09
WO2014165686A3 true WO2014165686A3 (en) 2015-11-05

Family

ID=51659351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/032848 WO2014165686A2 (en) 2013-04-04 2014-04-03 Purification of carbon nanotubes via selective heating

Country Status (2)

Country Link
US (2) US9825229B2 (en)
WO (1) WO2014165686A2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
EP2650906A3 (en) 2004-06-04 2015-02-18 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
KR101519038B1 (en) 2007-01-17 2015-05-11 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
EP2786644B1 (en) 2011-12-01 2019-04-10 The Board of Trustees of the University of Illionis Transient devices designed to undergo programmable transformations
US9613911B2 (en) 2013-02-06 2017-04-04 The Board Of Trustees Of The University Of Illinois Self-similar and fractal design for stretchable electronics
US10840536B2 (en) 2013-02-06 2020-11-17 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with containment chambers
US10497633B2 (en) 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
US9825229B2 (en) 2013-04-04 2017-11-21 The Board Of Trustees Of The University Of Illinois Purification of carbon nanotubes via selective heating
EP2984910B1 (en) 2013-04-12 2020-01-01 The Board of Trustees of the University of Illionis Inorganic and organic transient electronic devices
JP6598763B2 (en) * 2014-03-01 2019-10-30 国立大学法人 東京大学 Carbon nanotube array manufacturing method and field effect transistor manufacturing method
CN106999060A (en) 2014-08-11 2017-08-01 伊利诺伊大学评议会 For analysis temperature characteristic and the epidermis device of hot transmission characteristic
US11064946B2 (en) 2014-08-11 2021-07-20 The Board Of Trustees Of The University Of Illinois Devices and related methods for epidermal characterization of biofluids
US10736551B2 (en) 2014-08-11 2020-08-11 The Board Of Trustees Of The University Of Illinois Epidermal photonic systems and methods
US9740804B2 (en) * 2014-11-03 2017-08-22 Mentor Graphics Corporation Chip-scale electrothermal analysis
CN107851208B (en) 2015-06-01 2021-09-10 伊利诺伊大学评议会 Miniaturized electronic system with wireless power supply and near field communication capability
US11029198B2 (en) 2015-06-01 2021-06-08 The Board Of Trustees Of The University Of Illinois Alternative approach for UV sensing
WO2017004576A1 (en) 2015-07-02 2017-01-05 The Board Of Trustees Of The University Of Illinois Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics
US20170083063A1 (en) * 2015-09-21 2017-03-23 Qualcomm Incorporated Circuits and methods providing temperature mitigation for computing devices using in-package sensor
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
US10340459B2 (en) * 2016-03-22 2019-07-02 International Business Machines Corporation Terahertz detection and spectroscopy with films of homogeneous carbon nanotubes
WO2017173339A1 (en) 2016-04-01 2017-10-05 The Board Of Trustees Of The University Of Illinois Implantable medical devices for optogenetics
WO2017218878A1 (en) 2016-06-17 2017-12-21 The Board Of Trustees Of The University Of Illinois Soft, wearable microfluidic systems capable of capture, storage, and sensing of biofluids
US10014390B1 (en) 2017-10-10 2018-07-03 Globalfoundries Inc. Inner spacer formation for nanosheet field-effect transistors with tall suspensions
DE112019000577T5 (en) 2018-01-29 2020-11-12 Massachusetts Institute Of Technology BACK-GATE FIELD EFFECT TRANSISTORS AND METHOD FOR MANUFACTURING THEREOF
WO2019236974A1 (en) 2018-06-08 2019-12-12 Massachusetts Institute Of Technology Systems, devices, and methods for gas sensing
CN113544688B (en) 2018-09-10 2022-08-26 麻省理工学院 System and method for designing integrated circuits
WO2020068812A1 (en) 2018-09-24 2020-04-02 Massachusetts Institute Of Technology Tunable doping of carbon nanotubes through engineered atomic layer deposition
CN109592669B (en) * 2018-10-18 2021-12-14 中国科学院福建物质结构研究所 Method for separating and enriching semiconductor type single-walled carbon nanotubes
US10633253B1 (en) 2018-11-14 2020-04-28 Aligned Carbon, Inc. Method for carbon nanotube purification
WO2020113205A1 (en) 2018-11-30 2020-06-04 Massachusetts Institute Of Technology Rinse - removal of incubated nanotubes through selective exfoliation
CN109830754A (en) * 2018-12-24 2019-05-31 北京旭江科技有限公司 A kind of self-heating battery and preparation method thereof based on carbon nano-tube film
US11654635B2 (en) 2019-04-18 2023-05-23 The Research Foundation For Suny Enhanced non-destructive testing in directed energy material processing
CN113486587B (en) * 2021-07-06 2022-08-05 太原科技大学 Seamless steel pipe perforation process model parameter prediction system based on Matlab
US20230404101A1 (en) 2022-06-16 2023-12-21 Savor Foods Limited Fat formulations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085968A1 (en) * 1997-03-07 2002-07-04 William Marsh Rice University Method for producing self-assembled objects comprising single-wall carbon nanotubes and compositions thereof
US20040043219A1 (en) * 2000-11-29 2004-03-04 Fuminori Ito Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
US20070273264A1 (en) * 2006-05-26 2007-11-29 Samsung Electronics Co., Ltd., Method of preparing patterned carbon nanotube array and patterned carbon nanotube array prepared thereby
US20110290648A1 (en) * 2010-05-28 2011-12-01 Integenx Inc. Capillary Electrophoresis Device
US20120321785A1 (en) * 2006-03-03 2012-12-20 The Board Of Trustees Of The University Of Illinois Methods of Making Spatially Aligned Nanotubes and Nanotube Arrays

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704684B2 (en) 2003-12-01 2010-04-27 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating three-dimensional nanoscale structures
US20080055581A1 (en) 2004-04-27 2008-03-06 Rogers John A Devices and methods for pattern generation by ink lithography
EP1742893B1 (en) 2004-04-27 2012-10-10 The Board Of Trustees Of The University Of Illinois Composite patterning devices for soft lithography
EP2650906A3 (en) 2004-06-04 2015-02-18 The Board of Trustees of the University of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US8217381B2 (en) 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
US7943418B2 (en) * 2004-09-16 2011-05-17 Etamota Corporation Removing undesirable nanotubes during nanotube device fabrication
WO2008030666A2 (en) 2006-07-25 2008-03-13 The Board Of Trustees Of The University Of Illinois Multispectral plasmonic crystal sensors
CN103956336B (en) 2006-09-20 2019-08-16 伊利诺伊大学评议会 For manufacturing transferable semiconductor structures, device and the release strategies of device components
KR100823554B1 (en) * 2006-10-31 2008-04-22 (주) 파루 Single walled carbon nanotubes coated with dielectric substance and tft using thereof
KR101519038B1 (en) 2007-01-17 2015-05-11 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
US9061494B2 (en) 2007-07-19 2015-06-23 The Board Of Trustees Of The University Of Illinois High resolution electrohydrodynamic jet printing for manufacturing systems
CN102113089B (en) 2008-03-05 2014-04-23 伊利诺伊大学评议会 Stretchable and foldable electronic devices
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US8946683B2 (en) * 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
WO2010014107A1 (en) * 2008-07-31 2010-02-04 William Marsh Rice University Method for producing aligned carbon nanotube sheets, ribbons and films from aligned arrays of carbon nanotube carpets/forests and direct transfer to host surfaces
US8679888B2 (en) 2008-09-24 2014-03-25 The Board Of Trustees Of The University Of Illinois Arrays of ultrathin silicon solar microcells
TWI671811B (en) 2009-05-12 2019-09-11 美國伊利諾大學理事會 Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
US20110136304A1 (en) * 2009-06-11 2011-06-09 Etamota Corporation Techniques to Enhance Selectivity of Electrical Breakdown of Carbon Nanotubes
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
WO2011084450A1 (en) 2009-12-16 2011-07-14 The Board Of Trustees Of The University Of Illinois Electrophysiology in-vivo using conformal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US9057994B2 (en) 2010-01-08 2015-06-16 The Board Of Trustees Of The University Of Illinois High resolution printing of charge
US9362390B2 (en) * 2010-02-22 2016-06-07 Nantero, Inc. Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same
CN102892356B (en) 2010-03-17 2016-01-13 伊利诺伊大学评议会 Based on the implantable bio-medical instrument of biological absorbable substrate
US8562095B2 (en) 2010-11-01 2013-10-22 The Board Of Trustees Of The University Of Illinois High resolution sensing and control of electrohydrodynamic jet printing
WO2012097163A1 (en) 2011-01-14 2012-07-19 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
WO2013010113A1 (en) 2011-07-14 2013-01-17 The Board Of Trustees Of The University Of Illinois Non-contact transfer printing
EP2786644B1 (en) 2011-12-01 2019-04-10 The Board of Trustees of the University of Illionis Transient devices designed to undergo programmable transformations
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US10840536B2 (en) 2013-02-06 2020-11-17 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with containment chambers
US9613911B2 (en) 2013-02-06 2017-04-04 The Board Of Trustees Of The University Of Illinois Self-similar and fractal design for stretchable electronics
US10497633B2 (en) 2013-02-06 2019-12-03 The Board Of Trustees Of The University Of Illinois Stretchable electronic systems with fluid containment
US10617300B2 (en) 2013-02-13 2020-04-14 The Board Of Trustees Of The University Of Illinois Injectable and implantable cellular-scale electronic devices
US9875974B2 (en) 2013-03-08 2018-01-23 The Board Of Trustees Of The University Of Illinois Processing techniques for silicon-based transient devices
US9825229B2 (en) 2013-04-04 2017-11-21 The Board Of Trustees Of The University Of Illinois Purification of carbon nanotubes via selective heating
EP2984910B1 (en) 2013-04-12 2020-01-01 The Board of Trustees of the University of Illionis Inorganic and organic transient electronic devices
KR20160067152A (en) 2013-10-02 2016-06-13 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 Organ mounted electronics
WO2015109242A1 (en) 2014-01-16 2015-07-23 The Board Of Trustees Of The University Of Illinois Printing-based multi-junction, multi-terminal photovoltaic devices
US10538028B2 (en) 2014-11-17 2020-01-21 The Board Of Trustees Of The University Of Illinois Deterministic assembly of complex, three-dimensional architectures by compressive buckling
US20170020402A1 (en) 2015-05-04 2017-01-26 The Board Of Trustees Of The University Of Illinois Implantable and bioresorbable sensors
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085968A1 (en) * 1997-03-07 2002-07-04 William Marsh Rice University Method for producing self-assembled objects comprising single-wall carbon nanotubes and compositions thereof
US20040043219A1 (en) * 2000-11-29 2004-03-04 Fuminori Ito Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode
US20120321785A1 (en) * 2006-03-03 2012-12-20 The Board Of Trustees Of The University Of Illinois Methods of Making Spatially Aligned Nanotubes and Nanotube Arrays
US20070273264A1 (en) * 2006-05-26 2007-11-29 Samsung Electronics Co., Ltd., Method of preparing patterned carbon nanotube array and patterned carbon nanotube array prepared thereby
US20110290648A1 (en) * 2010-05-28 2011-12-01 Integenx Inc. Capillary Electrophoresis Device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN ET AL.: "Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes.", NATURE NANOTECHNOLOGY, vol. 8, 28 April 2013 (2013-04-28), pages 347 - 355, XP055235127, Retrieved from the Internet <URL:DOI:10.1038/nnano.2013.56> [retrieved on 20140725] *

Also Published As

Publication number Publication date
US9825229B2 (en) 2017-11-21
US20160133843A1 (en) 2016-05-12
US10333069B2 (en) 2019-06-25
WO2014165686A2 (en) 2014-10-09
US20170291817A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
WO2014165686A3 (en) Purification of carbon nanotubes via selective heating
IL248763A0 (en) Graphite-based carbon material useful as graphene precursor, as well as method of producing the same
MY171613A (en) Highly-selective polyimide membranes with increased permeance, said membranes consisting of block copolyimides
WO2012087612A3 (en) High purity heavy normal paraffins utilizing integrated systems
TW201129543A (en) Membrane separation of a mixture of close boiling hydrocarbon components
IN2015DN02842A (en)
EP2635524A4 (en) Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method
EA201390039A1 (en) METHOD FOR SEPARATION OF GASES
EP3652797A4 (en) Simple route to highly conductive porous graphene from carbon nanodots for supercapacitor applications
FR2973936B1 (en) METHOD OF SELECTIVE GROWTH ON SEMICONDUCTOR STRUCTURE
EP3046872A4 (en) Process for forming graphene layers on silicon carbide
WO2016109830A3 (en) Quinolines, polyquinolines, molecular segments of fullerenes and graphene nanoribbons, and graphene nanoribbons and methods of their synthesis
WO2015112293A8 (en) Synthesis of molecular sieves having mww framework structure
EP3032574A4 (en) Silicon carbide semiconductor substrate, method for producing same, and method for producing silicon carbide semiconductor device
JP2015002208A5 (en)
MX359599B (en) Use of a pvdf membrane to purify cell-binding agent cytotoxic agent conjugates.
MY178015A (en) Purification method for off-gas and apparatus for purification of off-gas
CL2016000574A1 (en) Multi-wall carbon nanotubes (mwcnt) for hydrogen adsorption. method of obtaining the nanotubes by chemical vapor deposition technique assisted by aerosol (aacvd), and purification method.
JP2013505863A5 (en)
TR201907669T4 (en) Process for the production of high purity paraxylene from a xylene cut where the process uses a simulated mobile bed separation unit and two isomerization units, one in gas phase and the other in liquid phase.
WO2012066132A3 (en) Multilayer ceramic structures
TW201612103A (en) Sorting of carbon nanotubes
EP3007215A4 (en) Group 13 nitride composite substrate, semiconductor element, and production method for group 13 nitride composite substrate
MY182513A (en) Process for purification of an organic composition
WO2015051079A3 (en) Phosphohistidine mimetics and antibodies to same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778709

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14772312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778709

Country of ref document: EP

Kind code of ref document: A2