WO2014162867A1 - Method for manufacturing wiring board - Google Patents

Method for manufacturing wiring board Download PDF

Info

Publication number
WO2014162867A1
WO2014162867A1 PCT/JP2014/057266 JP2014057266W WO2014162867A1 WO 2014162867 A1 WO2014162867 A1 WO 2014162867A1 JP 2014057266 W JP2014057266 W JP 2014057266W WO 2014162867 A1 WO2014162867 A1 WO 2014162867A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
wettability
water
energy
Prior art date
Application number
PCT/JP2014/057266
Other languages
French (fr)
Japanese (ja)
Inventor
加納 丈嘉
考浩 加藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014162867A1 publication Critical patent/WO2014162867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1173Differences in wettability, e.g. hydrophilic or hydrophobic areas

Definitions

  • the present invention relates to a method for manufacturing a wiring board, and more particularly to a method for manufacturing a wiring board using a wettability changing layer in which the wettability changes so that the contact angle with water increases when energy is applied.
  • the pattern forming portion of the substrate is hydrophobized using a hydrophobic processing agent that can be hydrophilized by exposure, and then the pattern forming portion is exposed in a pattern shape to make the exposed portion hydrophilic, A hydrophilic solution of a metal compound is applied to a pattern, and the metal compound is deposited to form a wiring layer (metal) in a pattern.
  • Patent Document 1 In the method of Patent Document 1, a hydrophobic surface is exposed to make it hydrophilic, and a wiring layer is formed on the hydrophilic region. Therefore, the hydrophilic region remains in the formed wiring board.
  • electronic devices have been improved in performance and size, and accordingly, further improvement in adhesion between a wiring board and an insulating layer provided on the wiring board is required.
  • the present inventor formed a wiring substrate using a wettability changing layer that changes from hydrophobicity to hydrophilicity described in Patent Document 1, and provided an insulating layer on the wiring substrate, and examined its adhesion. However, it has been found that the adhesiveness of the insulating layer decreases with time.
  • an object of the present invention is to provide a method of manufacturing a wiring board that is excellent in pattern formation of a wiring layer and excellent in temporal stability of the adhesion of laminated insulating layers.
  • the present inventors can solve the above-mentioned problems by using a wettability changing layer in which the wettability changes so that the contact angle with water is increased by applying energy. I found. That is, it has been found that the above object can be achieved by the following configuration.
  • the step (C1) of applying energy to the coating film to form a wiring layer and the step (C2) of applying energy to the hydrophilic region remaining in the wettability changing layer and converting it to a water repellent region, or simultaneously A method for manufacturing a wiring board, comprising the step (C) of performing separately.
  • the wettability changing layer is a layer in which the wettability is changed by decarboxylation by application of energy.
  • the wettability changing layer is selected from the group consisting of a nitrophenylacetic acid structure, a ⁇ -keto acid structure, and an acetic acid structure having an O element, an N element, or an S element at the ⁇ position with respect to the carboxyl group.
  • the present invention it is possible to provide a method of manufacturing a wiring board that is excellent in pattern formation of a wiring layer and excellent in the temporal stability of the adhesion of laminated insulating layers.
  • the feature of the present invention is that the wettability changing layer whose wettability changes so that the contact angle with water is increased by applying energy, and the hydrophilic region does not remain in the wettability changing layer.
  • the step of applying energy fixing step
  • the present inventor has found that the adhesiveness of the insulating layer in the prior art is lowered because the hydrophilic region remains, so that moisture adsorbs near the interface between the wiring board and the insulating layer over time. As a result, it was found that the adhesiveness between the two deteriorated.
  • the wiring layer is formed with high pattern accuracy using the wettability changing layer, and the entire region of the wettability changing layer is formed so that the hydrophilic region does not remain finally. It changes to water repellency, suppresses moisture adsorption, and ensures the adhesion of the insulating layer.
  • the production method of the present invention includes steps (A) to (C). Below, the material and member used for every process, and the procedure of a process are explained in full detail.
  • ⁇ Process (A) (Wettability pattern formation process)>
  • energy is imparted to a partial area of the wettability changing layer in the substrate to convert the hydrophilic area into the water repellent area, and the water repellent area and the hydrophilic area are formed on the wettability changing layer.
  • substrate has a support body and the wettability change layer which is arrange
  • the substrate 10 includes a support 12 and a wettability changing layer 14.
  • the wettability changing layer 14 is in a state before energy application and has a hydrophilic region 14a. Energy is applied to the wettability changing layer 14 in a pattern to form a water repellent region 14b, and the hydrophilic region 14a and the water repellent property are formed on the wettability changing layer 14 as shown in FIG. A wettability pattern including the region 14b is formed.
  • the water repellent region and the hydrophilic region are words indicating that there is a difference in wettability between the two, and do not indicate the size of the contact angle of each region.
  • a region of the wettability changing layer before energy application is referred to as a hydrophilic region, and a region where energy is applied and the contact angle with water is increased is referred to as a water repellent region.
  • substrate has a support body and the wettability change layer arrange
  • a support body is a board
  • the kind in particular of support body is not restrict
  • a resin substrate, a glass substrate, a metal substrate, a semiconductor substrate, etc. are mentioned. Among these, it is preferable to use a resin substrate (particularly an insulating resin substrate) from the viewpoint of excellent handleability.
  • the wettability changing layer is a layer that is disposed on a support and changes wettability so that the contact angle with water increases when energy such as heat, ultraviolet rays, electron beams, plasma, or the like is applied. That is, it is a layer whose wettability changes more hydrophobicly when energy is applied.
  • energy such as heat, ultraviolet rays, electron beams, plasma, or the like.
  • composition for forming a wiring layer which will be described later, selectively adheres to a water-repellent region or a hydrophilic region on the basis of its property (hydrophobicity) and solidifies this, thereby selectively on one region.
  • a wiring layer can be formed.
  • the contact angle with water is preferably 60 ° or less, more preferably 40 ° or less, and even more preferably 20 ° or less.
  • the contact angle with water is preferably more than 90 °, preferably 100 ° or more, and more preferably 110 ° or more.
  • the difference in contact angle between the hydrophilic region and the water-repellent region with water is not particularly limited, but 30 ° or more is preferable and 50 ° or more is preferable in that the pattern forming property of the wiring layer is better and jaggy bulge is less likely to occur. More preferred.
  • the upper limit is not particularly limited, but is usually 150 ° or less in many cases.
  • the thickness of the wettability changing layer is not particularly limited, but is preferably from 0.01 to 2 ⁇ m, more preferably from 0.01 to 1 ⁇ m, from the viewpoint of better pattern formation of the wiring layer.
  • the kind of material which comprises a wettability change layer is not restrict
  • the wettability changing layer is composed of two or more kinds of materials, it is preferable to mix an insulating material (for example, an insulating resin) and a material whose wettability changes.
  • an insulating material for example, an insulating resin
  • a material whose wettability changes As a material whose wettability changes by applying energy contained in the wettability changing layer (hereinafter also referred to as wettability changing material), the degree of change in wettability is large, and it is more excellent in pattern formation of the wiring layer.
  • the compound has at least one selected from the group consisting of a nitrophenylacetic acid structure, a ⁇ -keto acid structure, a quaternary ammonium salt structure, and an acetic acid structure having an O, N, or S element at the ⁇ -position with respect to the carboxyl group
  • the compound may be a low molecular compound (a compound having a molecular weight of 1000 or less) or a high molecular compound (a compound having a molecular weight of more than 1000).
  • the content of the wettability changing layer in the wettability changing layer is not particularly limited, but 80% by mass or more based on the total mass of the wettability changing layer in that the change in the contact angle of water in the wettability changing layer is larger. Is preferable, and 90 mass% or more is more preferable.
  • the upper limit is not particularly limited, but is preferably 100% by mass.
  • the nitrophenylacetic acid structure is preferably a structure represented by the following formula (1).
  • * 1 and * 2 indicate bonding positions, and it is sufficient that they are bonded to the compound at any one position.
  • M represents an ion having a positive charge. Specific examples include sodium ions, potassium ions, ammonium ions, lithium ions, and the like, including hydrogen ions.
  • the ⁇ -keto acid structure is preferably a structure represented by the following formula (2).
  • * 3 represents a bonding position.
  • M in the formula (2) has the same definition as above.
  • the quaternary ammonium salt structure is preferably a structure represented by the following formula (3).
  • * 4 represents a bonding position.
  • Z represents a halogen anion (for example, chlorine ion, bromine ion, etc.).
  • R represents an alkyl group.
  • An acetic acid structure having an O element (oxygen element), an N element (nitrogen element), or an S element (sulfur element) in the ⁇ position with respect to the carboxyl group (hereinafter also simply referred to as an acetic acid structure X) is more specifically described.
  • * 5 indicates a bonding position.
  • X represents —O—, —S—, —Se—, —NR 3 —, —CO—, —SO—, —SO 2 —, —PO—, —SiR 3 R 4 —, — CS- R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a substituent.
  • R 1 , R 2 , R 3 , R 4 include —F, —Cl, —Br, —I, —CN, —R 10 , —OR 10 , —OCOR 10 , —OCOOR 10 , —OCONR. 10 R 11 , —OSO 2 R 10 , —COR 10 , —COOR 10 , —CONR 10 R 14 , —NR 10 R 11 , —NR 10 —COR 11 , —NR 10 —COOR 11 , —NR 10 —CONR 11 R 12 , —SR 10 , —SOR 10 , —SO 2 R 10 , —SO 3 R 10 and the like can be mentioned.
  • R 10 , R 11 , and R 12 each represent a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, or an alkynyl group.
  • R 1 , R 2 , R 3 and R 4 are specifically a hydrogen atom, an alkyl group, an aryl group, an alkynyl group and an alkenyl group.
  • M is an ion having a positive charge, and the definition is as described above.
  • a polymer having a repeating unit including any one selected from the group consisting of the nitrophenylacetic acid structure, the ⁇ -ketoic acid structure, and the acetic acid structure X is used.
  • a polymer having a repeating unit represented by the following formula (5) is preferable.
  • R 20 represents a hydrogen atom or an alkyl group (preferably a methyl group or an ethyl group).
  • L represents a single bond or a divalent linking group.
  • the divalent linking group include a divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms), a divalent aromatic hydrocarbon group (preferably having 6 to 12 carbon atoms), —O—, —S.
  • divalent aliphatic hydrocarbon group for example, an alkylene group
  • divalent aromatic hydrocarbon group examples include a phenylene group and a naphthylene group.
  • Y represents any one selected from the group consisting of a nitrophenylacetic acid structure, a ⁇ -keto acid structure, and an acetic acid structure X.
  • the content of the repeating unit in the polymer is not particularly limited, but is preferably 60 mol% or more, more preferably 80 mol% or more with respect to all repeating units in the polymer in terms of a greater change in wettability. preferable.
  • the upper limit is not particularly limited, but is 100 mol%.
  • the weight average molecular weight of the polymer is not particularly limited, but is preferably 5000 to 100,000, more preferably 10,000 to 50,000 in terms of greater change in wettability and excellent handleability.
  • the wettability changing layer may contain a photothermal conversion substance. If the energy to be applied is light energy such as IR laser, it is preferable that a photothermal conversion substance for converting the light energy into heat energy is contained in the wettability changing layer. Further, a photothermal conversion substance-containing layer may be separately provided on the wettability changing layer and contained therein. As the photothermal conversion substance, any substance that absorbs light such as ultraviolet light, visible light, infrared light, white light and can be converted into heat can be used.
  • a layer in which the wettability is changed by decarboxylation by application of energy can be mentioned.
  • the reason why the above layer is suitable will be described with reference to FIG.
  • the volume of the region decreases with decarboxylation, resulting in a difference in height between adjacent regions (non-energy imparted regions). More specifically, as shown in FIG.
  • the water-repellent region 14b which is an energy application portion, decreases with decarboxylation and becomes lower than the adjacent hydrophilic region 14a.
  • a wiring layer forming composition 20 described later is applied on the water repellent region 14b, a step between the water repellent region 14b and the hydrophilic region 14a
  • the wiring layer forming composition 20 is likely to stay on the water-repellent region 14b, and the pattern forming property of the wiring layer is further improved.
  • the method in particular of forming a wettability change layer on a support body is not restrict
  • the wettability change layer forming composition containing the material which forms a wettability change layer is apply
  • the composition for wettability change layer formation may contain the solvent as needed.
  • the method for applying energy to a partial region of the wettability changing layer in the step (A) is not particularly limited, and an optimal method is appropriately selected according to the type of energy.
  • the energy applying means for example, heat treatment or light irradiation treatment such as exposure can be used.
  • heat treatment or light irradiation treatment such as exposure
  • the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • g-line, i-line, and Deep-UV light can be used.
  • the time required for energy application varies depending on the material used, but is preferably 1 second to 10 minutes from the viewpoint of productivity. The details of the heat treatment and the light irradiation treatment will be described in detail in the step (C) described later.
  • a composition for forming a wiring layer containing at least metal particles and / or metal oxide particles is applied to the wettability changing layer obtained in the step (A), and the water repellent region or This is a step of forming a coating film on the hydrophilic region.
  • the coating film which is a precursor layer of a wiring layer can be formed on one area
  • the material (composition for wiring layer formation) used by this process (B) is explained in full detail, and the procedure of this process (B) is explained in full detail after that.
  • composition for wiring layer formation contains metal particles and / or metal oxide particles.
  • the metal particles and / or metal oxide particles become a material for forming the wiring layer in the step (C) described later.
  • the type of metal atom contained in the metal particle and metal oxide particle is not particularly limited, but a copper atom, a silver atom, or a gold atom is preferable, and a copper atom or a silver atom is more preferable in that the conductivity of the wiring layer is more excellent.
  • metal copper particles, copper oxide particles, metal silver particles, and silver oxide particles are preferable.
  • the shape of the metal particles and the metal oxide particles is not particularly limited, and examples thereof include a spherical shape, an ellipsoid shape, a rod shape, a wire shape, a plate shape, and a tree shape.
  • the average particle diameter of the metal particles and metal oxide particles is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 500 nm or less. Although a minimum in particular is not restrict
  • an average particle diameter points out an average primary particle diameter.
  • the average particle diameter is determined by measuring the particle diameter (diameter) of at least 50 metal particles or metal oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM), and calculating the arithmetic average of them. And ask.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the composition for forming a wiring layer may contain components other than the metal particles and metal oxide particles.
  • the wiring layer forming composition may contain a resin binder.
  • the type of the resin binder is not particularly limited, and examples thereof include thermoplastic resins such as vinyl resins, acrylic resins, styrene resins, polyolefin resins, and polyamide resins; epoxy resins, urethane resins, polyimide resins, non-plastic resins, and the like.
  • curable resins such as saturated polyester resins. These resins may be used alone or in combination of two or more. More specifically, examples include polyvinyl pyrrolidone, polyvinyl alcohol, and polyalkylene glycol (for example, polyethylene glycol).
  • the composition for wiring layer formation may contain the solvent.
  • the solvent functions as a dispersion medium for metal particles and metal oxide particles.
  • the type of the solvent is not particularly limited. For example, water, alcohols (eg, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol), ethers (eg, diethyl ether, diisobutyl ether, dibutyl ether) , Methyl-t-butyl ether), esters (for example, methyl formate, ethyl formate, butyl formate, methyl acetate) and the like can be used.
  • alcohols eg, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol
  • ethers eg, diethyl ether, diisobutyl ether, dibutyl ether
  • Methyl-t-butyl ether Methyl-t-butyl ether
  • the wiring layer forming composition is disposed on the water-repellent region or the hydrophilic region depending on the type of the solvent. That is, when a solvent having a surface energy close to the surface energy of the water-repellent region (water-repellent solvent) is used, the wiring layer forming composition is disposed on the water-repellent region and has a surface close to the surface energy of the hydrophilic region. When the solvent (hydrophilic solvent) which has energy is used, the composition for wiring layer formation is arrange
  • the method for applying the wiring layer forming composition on the wettability changing layer is not particularly limited, and examples thereof include spin coating, dip coating, screen printing, offset printing, and ink jet method. In order to be easily affected by the surface energy of the property change layer, an ink jet method capable of supplying smaller droplets is preferable.
  • the coating film 16 can be formed by applying the wiring layer forming composition onto the wettability changing layer.
  • the coating film 16 is formed on the water-repellent region 14b.
  • the coating film is formed on any region. Can form or control. That is, in the case of a wiring layer forming composition containing a water-repellent solvent, the composition is easily disposed on the water-repellent region 14b, and as a result, the embodiment shown in FIG. 1C is formed.
  • the wiring layer forming composition containing a hydrophilic solvent is used, the composition is easily disposed on the hydrophilic region 14a, and as a result, the coating film 16 is disposed on the hydrophilic region 14a.
  • the wiring layer forming composition may be applied to the wettability changing layer and then dried to remove the solvent.
  • the solvent By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the step (C) described later, and to change the conductivity of the wiring layer and the wettability of the wiring layer.
  • adhesion It is preferable in terms of adhesion to the layer.
  • a hot air dryer or the like can be used, and an optimal temperature is appropriately selected as the temperature depending on the material to be used. It is more preferable to perform the treatment, and it is more preferable to perform the heat treatment at 70 ° C. or higher and lower than 100 ° C.
  • an inert gas atmosphere such as nitrogen or argon is more preferable
  • drying is preferably performed in a reducing gas atmosphere such as hydrogen.
  • step (C) Energy is applied to the coating produced in step (B) to form a wiring layer (C1), and energy is applied to the hydrophilic region remaining in the wettability changing layer.
  • step (C2) of converting to the water-repellent region is performed simultaneously or separately. More specifically, in the step (C), as shown in FIG. 1 (D), energy is applied to the coating film 16 in FIG. 1 (C) to form the wiring layer 18 and the wettability changing layer 14. In this step, energy is imparted to the hydrophilic region 14a remaining therein to convert it into the water repellent region 14b.
  • Step (C1) is a step of forming a wiring layer by applying energy to the coating film produced in step (B).
  • the energy application method include heat treatment and / or light irradiation treatment as described in the step (A).
  • metal particles are contained in the coating film, by performing heat treatment and / or light irradiation treatment, the metal particles are fused to each other to form grains, and the grains are further bonded and fused to each other.
  • a wiring layer containing a metal is formed.
  • the metal oxide particles are contained in the coating film, the metal oxide particles are reduced to metal particles by heat treatment and / or light irradiation treatment, and the generated metal particles are fused to each other. Then, the grains are formed, and the grains are bonded and fused together to form a wiring layer containing metal.
  • the heating temperature is preferably 100 to 300 ° C., more preferably 150 to 250 ° C.
  • the heating time is 5 to 120 minutes in that a wiring layer having better conductivity can be formed in a short time.
  • 10 to 60 minutes are more preferable.
  • the heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
  • the light irradiation treatment can be sintered by irradiating light on a portion to which a coating film has been applied at room temperature for a short time, and deterioration of the substrate due to prolonged heating occurs. Therefore, the adhesion between the wiring layer and the substrate becomes better.
  • the light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays.
  • g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
  • the light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can heat the surface of the portion provided with the coating film in a very short time, so that the influence of heat on the substrate can be made extremely small.
  • the irradiation energy of the pulse light is preferably 1 ⁇ 100J / cm 2, more preferably 1 ⁇ 30J / cm 2, preferably from 1 ⁇ sec ⁇ 100 m sec as a pulse width, and more preferably 10 ⁇ sec ⁇ 10 m sec.
  • the irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
  • the above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
  • the atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere.
  • the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen
  • the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
  • Step (C2) is a step of applying energy to the hydrophilic region to convert it into a water-repellent region.
  • the energy application method include the heat treatment and the light irradiation treatment described in the step (C1).
  • the hydrophilic region 14a can be converted to the water-repellent region 14b by performing light irradiation treatment.
  • the step (C1) and the step (C2) described above may be performed simultaneously or separately. Especially, it is preferable to implement simultaneously at the point which can shorten a manufacturing process more.
  • the entire surface of the wettability changing layer 14 is subjected to light irradiation treatment, thereby forming the wiring layer 18 from the coating film 16 and the hydrophilic region. Conversion from 14a to the water repellent region 14b can be performed simultaneously.
  • the laminate including the support 12, the wettability changing layer 14 and the coating film 16 in the embodiment of FIG. Step (C1) and step (C2) can also be performed simultaneously.
  • light irradiation may be performed from the coating film 16 side of FIG. 1C or from the support 12 side of FIG.
  • a process (C1) and a process (C2) can also be implemented separately.
  • the step (C1) can be performed, or after the step (C2) is performed, the step (C1) can be performed.
  • the hydrophilic region does not substantially remain.
  • moisture hardly enters the interface between the insulating layer disposed on the wiring board and the wiring board, and the temporal stability of the adhesiveness of the insulating layer is excellent.
  • the thickness of the wiring layer is not particularly limited, and the optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 ⁇ m is preferable and 0.1 to 100 ⁇ m is more preferable from the viewpoint of printed wiring board use.
  • the thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the wiring layer and arithmetically averaging the values.
  • the volume resistance value of the wiring layer is preferably less than 5 ⁇ 10 ⁇ 4 ⁇ cm, more preferably less than 1 ⁇ 10 ⁇ 4 ⁇ cm, from the viewpoint of conductive characteristics.
  • the volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the wiring layer by the four-probe method.
  • the pattern of the wiring layer is not particularly limited, and can take various pattern shapes (stripe shape, lattice shape, etc.).
  • An insulating layer (insulating resin layer, interlayer insulating film, solder resist) may be further laminated on the wiring layer of the wiring board. Further, a further wiring (metal pattern) may be formed on the surface.
  • the wiring board obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
  • composition 1 for forming a wettability changing layer having the following composition was applied on a polyimide support.
  • Composition 1 for forming a wettability changing layer ⁇ Polymer 1 1g ⁇ Methyl ethyl ketone 0.5g
  • the following composition for forming a photothermal conversion layer was further applied on the wettability changing layer.
  • the photothermal conversion layer was removed by washing with water to make the exposed portion water repellent.
  • Photothermal conversion layer forming composition Photothermal conversion agent A 1g ⁇ Water 0.7g ⁇ 0.3g of 1-methoxy-2-propanol
  • the wiring layer of the wiring board was observed from above with an optical microscope, the linearity of the edge part (end part) of the pattern of the wiring layer was confirmed, and evaluated according to the following criteria.
  • the deviation width W of the position of the etched portion below is a schematic diagram of the wiring board observed from the upper surface, as shown in FIG. 3, how much the etched portion of the wiring layer is displaced in the width direction. It is a measure to show. “A”: The deviation width of the etched portion of the wiring layer is within 3 ⁇ m
  • B The deviation width of the etched portion of the wiring layer is more than 3 ⁇ m and within 10 ⁇ m
  • C The deviation width of the etched portion of the wiring layer Is over 10 ⁇ m
  • Solder resist is placed and protected on the wiring layer side of the obtained wiring board, and after leaving for 7 days at 40 ° C. and 85 RH%, the peeling of the wiring layer and the solder resist is confirmed, and the following criteria are met. And evaluated. "A”: There was no peeling. “B”: The peeled portions were 2 or less. “C”: There were 3 or more peeled portions.
  • Example 2 A wiring board was manufactured according to the same procedure as in Example 1 except that copper nano ink (solvent: decane) manufactured by Tateyama Machine was used instead of silver nano ink, and various evaluations were performed. In Example 2, the coating film was formed on the water-repellent region in the step (B).
  • Example 3 A wiring board was produced according to the same procedure as in Example 1 except that polymer 2 was used instead of polymer 1, and various evaluations were performed.
  • Example 4 A wiring board was produced according to the same procedure as in Example 3 except that copper nano ink (solvent: decane) manufactured by Tateyama Machine was used instead of the silver nano ink, and various evaluations were performed. In Example 4, the coating film was formed on the water-repellent region in the step (B).
  • Example 5 A procedure similar to that of Example 2 was used except that Compound 3 was used instead of Polymer 1 and UV exposure (1 J / cm 2 ) was performed using a photomask instead of pattern exposure with an IR laser. A wiring board was manufactured and subjected to various evaluations.
  • Example 6> Instead of heat treatment at 250 ° C. for 15 minutes, flash lamp exposure (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5 J / m 2 , pulse width: 2 msec) is performed to form a wiring layer from the coating film, Example 5 except that the hydrophilic region remaining in the wettability changing layer was converted to a water-repellent region, the following composition A was used instead of the silver nanoink, and a dispenser was used instead of the ink jet device. According to the same procedure, a wiring board was manufactured and various evaluations were performed. In Example 6, the coating film was formed on the water-repellent region in the step (B). (Composition A) The following ingredients were mixed by bead mill dispersion to produce a composition. ⁇ Isopar C 18g ⁇ CuO 1g ⁇ Polyethylene oxide 1g
  • Example 7 A wiring board was produced according to the same procedure as in Example 6 except that polymer 4 was used instead of compound 3 and benzophenone (0.2 g) was further added to the wettability variable layer forming composition. Evaluation was performed.
  • the layer obtained by the composition 2 for forming a wettability changing layer is not a layer in which the wettability is changed by decarboxylation by applying energy.
  • Example 9 A wiring board was produced according to the same procedure as in Example 6 except that the following compound X was used instead of compound 3, and various evaluations were performed.
  • Example 1 A wiring board was manufactured according to the same procedure as in Example 2 except that the wettability changing layer was not used, and various evaluations were performed.
  • Comparative example 2 An attempt was made to produce a wiring board according to the same procedure as in Example 5 except that Comparative Polymer 1 was used instead of Compound 3. However, even when UV light was exposed to 1 J / cm 2 , the pattern of the hydrophilic region and the water repellent region was not formed.
  • the comparative polymer 1 is a wettability changing material whose wettability changes so that the contact angle with water decreases when energy is applied.
  • ⁇ Comparative example 4> Instead of subjecting the obtained coated substrate to heat treatment at 250 ° C. for 15 minutes, only the coating portion was exposed to flash lamp (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5 J / m 2 , pulse width : 2 msec), a wiring board was manufactured according to the same procedure as in Example 2 except that the wiring layer was formed, and various evaluations were performed. In Comparative Example 4, the step (C2) is not performed.
  • hydrophilic ink is intended for the silver nano ink (described in Example 1)
  • “hydrophobic ink 1” is intended for copper nano ink manufactured by Tateyama Machine
  • “hydrophobic ink 2” is Composition A above is contemplated.
  • heat in the “baking step” column and “fixing step” column means heat treatment
  • light means light irradiation treatment (flash lamp exposure).
  • the “time required for firing / fixing” intends the time until a wiring layer having a predetermined conductivity is obtained.
  • the obtained wiring board was excellent in the pattern formation property of the wiring layer and also in the temporal stability of the adhesiveness of the insulating layer.
  • the pattern formation was superior when the coating film was formed on the water-repellent region.
  • the comparison between Examples 5 and 6 it was confirmed that when the light irradiation treatment was performed in the firing step and the fixing step, the time until the wiring layer was obtained was further shortened.
  • Example 8 and Example 2 it was confirmed that Example 2 using a layer in which wettability was changed by decarboxylation by application of energy was superior in pattern formability. .
  • Comparative Polymer 1 which is a wettability changing material whose wettability changes so that the contact angle with water is lowered when energy is applied, the wettability is small in Comparative Example 2 with a small amount of energy irradiation. The change of the change layer did not proceed sufficiently and the pattern formation was poor.
  • Comparative Example 3 in which the amount of energy irradiation was increased, a pattern was formed, but the durability was inferior because a hydrophilic region remained.
  • Comparative Example 4 in which the fixing step (C2) was not performed, the pattern was formed, but the durability was inferior because the hydrophilic region remained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing a wiring board in which the wiring layer pattern-formability is excellent and the adhesion performance with respect to an insulation layer laminated thereon remains extremely stable over time. This method for manufacturing a wiring board has: a step (A) for imparting energy to a region representing a part of the wettability variation layer of the board and converting the region into a water-repellent region, and forming a wettability pattern comprising the water-repellent region and a hydrophilic region on the wettability variation layer; a step (B) for imparting a wiring-layer-forming composition containing at least metal particles and/or metal oxide particles on the wettability variation layer and forming a coating on the water-repellent region or the hydrophilic region; and a step (C) for simultaneously or separately performing a step (C1) for imparting energy to the coating and forming a wiring layer and a step (C2) for imparting energy to the hydrophilic region and converting the hydrophilic region into a water-repellent region.

Description

配線基板の製造方法Wiring board manufacturing method
 本発明は、配線基板の製造方法に係り、特に、エネルギーが付与された際に水との接触角が増加するように濡れ性が変化する濡れ性変化層を用いた配線基板の製造方法に関する。 The present invention relates to a method for manufacturing a wiring board, and more particularly to a method for manufacturing a wiring board using a wettability changing layer in which the wettability changes so that the contact angle with water increases when energy is applied.
 近年、配線基板を製造する方法として、パターン形成性向上のために、基板表面の濡れ性の違いを利用してパターンを形成する方法が提案されている。
 例えば、特許文献1においては、露光により親水化可能となる疎水性の処理剤を用いて基板のパターン形成部を疎水化し、その後、パターン形成部をパターン状に露光し、露光部を親水化し、金属化合物の親水性溶液をパターンに塗布し、金属化合物を析出させて、パターン状に配線層(金属)を形成するものである。
In recent years, as a method of manufacturing a wiring substrate, a method of forming a pattern using a difference in wettability of a substrate surface has been proposed for improving pattern formation.
For example, in Patent Document 1, the pattern forming portion of the substrate is hydrophobized using a hydrophobic processing agent that can be hydrophilized by exposure, and then the pattern forming portion is exposed in a pattern shape to make the exposed portion hydrophilic, A hydrophilic solution of a metal compound is applied to a pattern, and the metal compound is deposited to form a wiring layer (metal) in a pattern.
特許3430632号公報Japanese Patent No. 3430632
 特許文献1の方法では、疎水性の表面を露光して、親水性にして、親水性領域上に配線層を形成する方法である。そのため、形成された配線基板中には、親水性領域が残存してしまう。
 近年、電子機器の高性能化・小型化が進んでおり、それに伴い配線基板と配線基板上に設けられる絶縁層との密着性のより一層の向上が求められている。
 本発明者は、特許文献1に記載される疎水性から親水性に変化する濡れ性変化層を用いて配線基板を形成し、その上に絶縁層を設けて、その密着性について検討を行ったところ、時間が経つにつれて絶縁層の密着性が低下してくることが知見された。
In the method of Patent Document 1, a hydrophobic surface is exposed to make it hydrophilic, and a wiring layer is formed on the hydrophilic region. Therefore, the hydrophilic region remains in the formed wiring board.
In recent years, electronic devices have been improved in performance and size, and accordingly, further improvement in adhesion between a wiring board and an insulating layer provided on the wiring board is required.
The present inventor formed a wiring substrate using a wettability changing layer that changes from hydrophobicity to hydrophilicity described in Patent Document 1, and provided an insulating layer on the wiring substrate, and examined its adhesion. However, it has been found that the adhesiveness of the insulating layer decreases with time.
 本発明は、上記実情に鑑みて、配線層のパターン形成性に優れると共に、積層される絶縁層の密着性の経時安定性に優れる配線基板の製造方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a method of manufacturing a wiring board that is excellent in pattern formation of a wiring layer and excellent in temporal stability of the adhesion of laminated insulating layers.
 本発明者らは、従来技術の問題点について鋭意検討した結果、エネルギーの付与により水との接触角が増加するように濡れ性が変化する濡れ性変化層を用いることにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of earnestly examining the problems of the prior art, the present inventors can solve the above-mentioned problems by using a wettability changing layer in which the wettability changes so that the contact angle with water is increased by applying energy. I found.
That is, it has been found that the above object can be achieved by the following configuration.
(1) 支持体と、支持体上に配置され、エネルギーが付与された際に水との接触角が増加するように濡れ性が変化する濡れ性変化層とを有する基板の濡れ性変化層の一部の領域にエネルギーを付与して親水性領域から撥水性領域に変換し、濡れ性変化層上に撥水性領域と親水性領域とからなる濡れ性パターンを形成する工程(A)と、
 濡れ性変化層上に、金属粒子および/または金属酸化物粒子を少なくとも含有する配線層形成用組成物を付与して、撥水性領域上または親水性領域上に塗膜を形成する工程(B)と、
 塗膜にエネルギーを付与して配線層を形成する工程(C1)、および、濡れ性変化層に残存する親水性領域にエネルギーを付与して撥水性領域に変換する工程(C2)を同時に、または、別々に行う工程(C)とを備える、配線基板の製造方法。
(2) 撥水性領域上に塗膜を形成する、(1)に記載の配線基板の製造方法。
(3) エネルギーの付与が光照射処理である、(1)または(2)に記載の配線基板の製造方法。
(4) 濡れ性変化層が、エネルギーの付与により脱炭酸して濡れ性が変化する層である、(1)~(3)のいずれか1つに記載の配線基板の製造方法。
(5) 濡れ性変化層が、ニトロフェニル酢酸構造、β-ケト酸構造、および、カルボキシル基に対してβ位にO元素、N元素、またはS元素を有する酢酸構造からなる群から選択される少なくとも一つを有する化合物を含む、(1)~(4)のいずれか1つに記載の配線基板の製造方法。
(6) 工程(C1)および工程(C2)を同時に行う、(1)~(5)のいずれか1つに記載の配線基板の製造方法。
(1) A wettability changing layer of a substrate having a support and a wettability changing layer that is disposed on the support and changes wettability so that a contact angle with water increases when energy is applied. Applying energy to a partial region to convert the hydrophilic region to a water-repellent region, and forming a wettability pattern comprising the water-repellent region and the hydrophilic region on the wettability changing layer (A);
Step (B) of applying a composition for forming a wiring layer containing at least metal particles and / or metal oxide particles on the wettability changing layer to form a coating film on the water-repellent region or the hydrophilic region. When,
The step (C1) of applying energy to the coating film to form a wiring layer and the step (C2) of applying energy to the hydrophilic region remaining in the wettability changing layer and converting it to a water repellent region, or simultaneously A method for manufacturing a wiring board, comprising the step (C) of performing separately.
(2) The method for manufacturing a wiring board according to (1), wherein a coating film is formed on the water-repellent region.
(3) The method for manufacturing a wiring board according to (1) or (2), wherein the application of energy is a light irradiation treatment.
(4) The method for manufacturing a wiring board according to any one of (1) to (3), wherein the wettability changing layer is a layer in which the wettability is changed by decarboxylation by application of energy.
(5) The wettability changing layer is selected from the group consisting of a nitrophenylacetic acid structure, a β-keto acid structure, and an acetic acid structure having an O element, an N element, or an S element at the β position with respect to the carboxyl group. The method for manufacturing a wiring board according to any one of (1) to (4), comprising a compound having at least one.
(6) The method for manufacturing a wiring board according to any one of (1) to (5), wherein the step (C1) and the step (C2) are performed simultaneously.
 本発明によれば、配線層のパターン形成性に優れると共に、積層される絶縁層の密着性の経時安定性に優れる配線基板の製造方法を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing a wiring board that is excellent in pattern formation of a wiring layer and excellent in the temporal stability of the adhesion of laminated insulating layers.
本発明の製造方法の各工程を示す模式的断面図である。It is typical sectional drawing which shows each process of the manufacturing method of this invention. 濡れ性変化層の好適実施態様を示す模式的断面図である。It is typical sectional drawing which shows the suitable embodiment of a wettability change layer. 実施例欄におけるパターン形成性の評価方法を示す概略図である。It is the schematic which shows the evaluation method of the pattern formation property in the Example column.
 以下に、本発明の配線基板の製造方法の好適態様について詳述する。
 まず、本発明の従来技術と比較した特徴点について詳述する。
 上述したように、本発明の特徴点は、エネルギーの付与により水との接触角が増加するように濡れ性が変化する濡れ性変化層を用いると共に、濡れ性変化層に親水性領域が残存しないようにエネルギーを付与する工程(定着工程)を実施している点が挙げられる。本発明者は、従来技術において絶縁層の密着性が低下してくる原因として、親水性領域が残存しているために、時間の経過につれ、水分が配線基板と絶縁層との界面付近に吸着し、その結果両者の密着性が低下してくることを見出した。そこで、本発明では、接触角が増加するように濡れ性が変化する濡れ性変化層、つまり、親水性から撥水性(疎水性)に表面特性が変化する濡れ性変化層を用いることにより、上記課題が解決できることを見出した。より具体的には、本発明においては、上記濡れ性変化層を用いて、配線層をパターン精度よく形成すると共に、最終的に親水性領域が残存しないように、濡れ性変化層の全領域を撥水性に変化させ、水分の吸着を抑制して、絶縁層の密着力を担保している。
Below, the suitable aspect of the manufacturing method of the wiring board of this invention is explained in full detail.
First, the feature point compared with the prior art of this invention is explained in full detail.
As described above, the feature of the present invention is that the wettability changing layer whose wettability changes so that the contact angle with water is increased by applying energy, and the hydrophilic region does not remain in the wettability changing layer. In this way, the step of applying energy (fixing step) is performed. The present inventor has found that the adhesiveness of the insulating layer in the prior art is lowered because the hydrophilic region remains, so that moisture adsorbs near the interface between the wiring board and the insulating layer over time. As a result, it was found that the adhesiveness between the two deteriorated. Therefore, in the present invention, by using a wettability changing layer in which the wettability changes so as to increase the contact angle, that is, the wettability changing layer in which the surface characteristics change from hydrophilic to water repellent (hydrophobic), I found that the problem could be solved. More specifically, in the present invention, the wiring layer is formed with high pattern accuracy using the wettability changing layer, and the entire region of the wettability changing layer is formed so that the hydrophilic region does not remain finally. It changes to water repellency, suppresses moisture adsorption, and ensures the adhesion of the insulating layer.
 以下、図1を参照しながら、具体的に本発明の配線基板の製造方法について詳述する。
 本発明の製造方法は、工程(A)から工程(C)を備える。以下では工程毎に使用される材料・部材、および、工程の手順について詳述する。
Hereinafter, the method for manufacturing a wiring board according to the present invention will be described in detail with reference to FIG.
The production method of the present invention includes steps (A) to (C). Below, the material and member used for every process, and the procedure of a process are explained in full detail.
<工程(A)(濡れ性パターン形成工程)>
 工程(A)は、基板中の濡れ性変化層の一部の領域にエネルギーを付与して親水性領域を撥水性領域に変換し、濡れ性変化層上に撥水性領域と親水性領域とからなる濡れ性パターンを形成する工程である。なお、基板は、支持体と、支持体上に配置され、エネルギーが付与された際に水との接触角が増加するように濡れ性が変化する濡れ性変化層とを有する。
 より具体的には、図1(A)に示すように、まず、基板10を用意する。なお、基板10は、支持体12と、濡れ性変化層14とを備える。濡れ性変化層14は、エネルギー付与前の状態であり、親水性領域14aを有する。この濡れ性変化層14に対して、パターン状にエネルギー付与を行い、撥水性領域14bを形成させ、図1(B)に示すように、濡れ性変化層14上に親水性領域14aと撥水性領域14bとからなる濡れ性パターンを形成する。
 なお、本明細書において、撥水性領域および親水性領域とは、両者の間に濡れ性の違いあることを示す文言であり、それぞれの領域の接触角の大きさを示すものではない。また、本明細書において、エネルギー付与前の濡れ性変化層の領域を親水性領域、エネルギーが付与されて水に対する接触角が増加した領域を撥水性領域と称する。
 以下では、本工程Aで使用される材料・部材について詳述し、その後工程Aの手順について詳述する。
<Process (A) (Wettability pattern formation process)>
In the step (A), energy is imparted to a partial area of the wettability changing layer in the substrate to convert the hydrophilic area into the water repellent area, and the water repellent area and the hydrophilic area are formed on the wettability changing layer. Forming a wettability pattern. In addition, a board | substrate has a support body and the wettability change layer which is arrange | positioned on a support body and wettability changes so that a contact angle with water will increase when energy is provided.
More specifically, as shown in FIG. 1A, first, a substrate 10 is prepared. The substrate 10 includes a support 12 and a wettability changing layer 14. The wettability changing layer 14 is in a state before energy application and has a hydrophilic region 14a. Energy is applied to the wettability changing layer 14 in a pattern to form a water repellent region 14b, and the hydrophilic region 14a and the water repellent property are formed on the wettability changing layer 14 as shown in FIG. A wettability pattern including the region 14b is formed.
In the present specification, the water repellent region and the hydrophilic region are words indicating that there is a difference in wettability between the two, and do not indicate the size of the contact angle of each region. Further, in this specification, a region of the wettability changing layer before energy application is referred to as a hydrophilic region, and a region where energy is applied and the contact angle with water is increased is referred to as a water repellent region.
Below, the material and member used at this process A are explained in full detail, and the procedure of the process A is explained in full detail after that.
(基板)
 基板は、支持体と、支持体上に配置された濡れ性変化層とを有する。以下、それぞれについて詳述する。
(substrate)
A board | substrate has a support body and the wettability change layer arrange | positioned on a support body. Each will be described in detail below.
 支持体は、後述する濡れ性変化層を支持する基板である。
 支持体の種類は特に制限されず、公知の支持体が使用される。例えば、樹脂基板、ガラス基板、金属基板、半導体基板などが挙げられる。なかでも、取扱い性に優れる点で、樹脂基板(特に、絶縁樹脂基板)を使用することが好ましい。
A support body is a board | substrate which supports the wettability change layer mentioned later.
The kind in particular of support body is not restrict | limited, A well-known support body is used. For example, a resin substrate, a glass substrate, a metal substrate, a semiconductor substrate, etc. are mentioned. Among these, it is preferable to use a resin substrate (particularly an insulating resin substrate) from the viewpoint of excellent handleability.
 濡れ性変化層は、支持体上に配置され、熱、紫外線、電子線、プラズマ等のエネルギーが付与された際に水との接触角が増加するように濡れ性が変化する層である。つまり、エネルギー付与により、より疎水性に濡れ性が変化する層である。
 このような濡れ性変化層の一部の領域にエネルギーを付与することにより、撥水性領域(高表面エネルギー領域)と親水性領域(低表面エネルギー領域)からなる表面濡れ性の異なるパターンを形成することができる。言い換えれば、水に対する接触角が異なる領域を形成することができる。そのため、後述する配線層形成用組成物は、その性質(親疎水性)に基づいて、撥水性領域または親水性領域に選択的に付着し、これを固化することにより、選択的に一方の領域上に配線層を形成することができる。
The wettability changing layer is a layer that is disposed on a support and changes wettability so that the contact angle with water increases when energy such as heat, ultraviolet rays, electron beams, plasma, or the like is applied. That is, it is a layer whose wettability changes more hydrophobicly when energy is applied.
By applying energy to a part of the wettability changing layer, patterns having different surface wettability composed of a water-repellent region (high surface energy region) and a hydrophilic region (low surface energy region) are formed. be able to. In other words, regions having different contact angles with respect to water can be formed. Therefore, the composition for forming a wiring layer, which will be described later, selectively adheres to a water-repellent region or a hydrophilic region on the basis of its property (hydrophobicity) and solidifies this, thereby selectively on one region. A wiring layer can be formed.
 濡れ性変化層の親水性領域においては、水との接触角が60°以下が好ましく、40°以下がより好ましく、20°以下がさらに好ましい。
 また、濡れ性変化層の撥水性領域においては、水との接触角が90°超が好ましく、100°以上が好ましく、110°以上がさらに好ましい。
 親水性領域および撥水性領域の水との接触角の差は特に制限されないが、配線層のパターン形成性がより優れ、ジャギーバルジが発生しづらい点で、30°以上が好ましく、50°以上がより好ましい。上限は特に制限されないが、通常、150°以下の場合が多い。
 水との接触角の測定方法としては、滴下した水の頂点と濡れ性変化層との2点の接点を用いる接線法を用いる。
In the hydrophilic region of the wettability changing layer, the contact angle with water is preferably 60 ° or less, more preferably 40 ° or less, and even more preferably 20 ° or less.
In the water-repellent region of the wettability changing layer, the contact angle with water is preferably more than 90 °, preferably 100 ° or more, and more preferably 110 ° or more.
The difference in contact angle between the hydrophilic region and the water-repellent region with water is not particularly limited, but 30 ° or more is preferable and 50 ° or more is preferable in that the pattern forming property of the wiring layer is better and jaggy bulge is less likely to occur. More preferred. The upper limit is not particularly limited, but is usually 150 ° or less in many cases.
As a method for measuring the contact angle with water, a tangential method using two points of contact between the top of the dropped water and the wettability changing layer is used.
 濡れ性変化層の厚みは特に制限されないが、配線層のパターン形成性がより優れる点で、0.01~2μmが好ましく、0.01~1μmがより好ましい。 The thickness of the wettability changing layer is not particularly limited, but is preferably from 0.01 to 2 μm, more preferably from 0.01 to 1 μm, from the viewpoint of better pattern formation of the wiring layer.
 濡れ性変化層を構成する材料の種類は特に制限されず、単一の材料からなっていてもよいし、2種類以上の材料から構成されていてもよい。濡れ性変化層が2種類以上の材料から構成される場合には、絶縁材料(例えば、絶縁性樹脂)と濡れ性が変化する材料を混合することが好ましい。
 濡れ性変化層中に含まれるエネルギー付与により濡れ性が変化する材料(以後、濡れ性変化材料とも称する)としては、濡れ性の変化の程度が大きく、配線層のパターン形成性により優れる点で、ニトロフェニル酢酸構造、β-ケト酸構造、4級アンモニウム塩構造、および、カルボキシル基に対してβ位にO、N、またはS元素を有する酢酸構造からなる群から選択される少なくとも一つを有する化合物が好ましい。化合物としては、低分子化合物(分子量が1000以下の化合物)でも、高分子化合物(分子量が1000超の化合物)でもよい。
 濡れ性変化層中における濡れ性変化材料の含有量は特に制限されないが、濡れ性変化層の水の接触角の変化がより大きい点で、濡れ性変化層全質量に対して、80質量%以上が好ましく、90質量%以上がより好ましい。上限は特に制限されないが、100質量%が好ましい。
The kind of material which comprises a wettability change layer is not restrict | limited in particular, It may consist of a single material and may be comprised from 2 or more types of materials. When the wettability changing layer is composed of two or more kinds of materials, it is preferable to mix an insulating material (for example, an insulating resin) and a material whose wettability changes.
As a material whose wettability changes by applying energy contained in the wettability changing layer (hereinafter also referred to as wettability changing material), the degree of change in wettability is large, and it is more excellent in pattern formation of the wiring layer. It has at least one selected from the group consisting of a nitrophenylacetic acid structure, a β-keto acid structure, a quaternary ammonium salt structure, and an acetic acid structure having an O, N, or S element at the β-position with respect to the carboxyl group Compounds are preferred. The compound may be a low molecular compound (a compound having a molecular weight of 1000 or less) or a high molecular compound (a compound having a molecular weight of more than 1000).
The content of the wettability changing layer in the wettability changing layer is not particularly limited, but 80% by mass or more based on the total mass of the wettability changing layer in that the change in the contact angle of water in the wettability changing layer is larger. Is preferable, and 90 mass% or more is more preferable. The upper limit is not particularly limited, but is preferably 100% by mass.
 ニトロフェニル酢酸構造とは、より具体的には、以下の式(1)で表される構造が好ましく挙げられる。式(1)中、*1~*2は結合位置を示し、いずれか一つの位置で化合物と結合していればよい。なお、*1または*2に位置する炭素原子のうち、結合位置でない炭素原子には水素原子が結合する。 More specifically, the nitrophenylacetic acid structure is preferably a structure represented by the following formula (1). In the formula (1), * 1 and * 2 indicate bonding positions, and it is sufficient that they are bonded to the compound at any one position. In addition, a hydrogen atom couple | bonds with the carbon atom which is not a coupling | bonding position among the carbon atoms located in * 1 or * 2.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 このニトロフェニル酢酸構造にエネルギー(特に、光エネルギー)が付与されると、カルボキシル基部分が脱炭酸反応を起こして、分解・除去され、結果としてより撥水性(疎水性)を示すようになる。
 式(1)中、Mは陽電荷を有するイオンを表す。具体的には、ナトリウムイオン、カリウムイオン、アンモニウムイオン、リチウムイオン等が挙げられ、水素イオンも含まれる。
When energy (particularly light energy) is imparted to the nitrophenylacetic acid structure, the carboxyl group part undergoes a decarboxylation reaction and is decomposed and removed, resulting in more water repellency (hydrophobicity).
In formula (1), M represents an ion having a positive charge. Specific examples include sodium ions, potassium ions, ammonium ions, lithium ions, and the like, including hydrogen ions.
 β-ケト酸構造とは、より具体的には、以下の式(2)で表される構造が好ましく挙げられる。式(2)中、*3は結合位置を示す。式(2)中のMは、上記と同じ定義である。 More specifically, the β-keto acid structure is preferably a structure represented by the following formula (2). In the formula (2), * 3 represents a bonding position. M in the formula (2) has the same definition as above.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 このβ-ケト酸構造にエネルギー(特に、熱エネルギー)が付与されると、カルボキシル基部分が脱炭酸反応を起こして、分解・除去され、結果としてより撥水性(疎水性)を示すようになる。 When energy (particularly thermal energy) is applied to this β-keto acid structure, the carboxyl group part undergoes a decarboxylation reaction, which is decomposed and removed, resulting in more water repellency (hydrophobicity). .
 4級アンモニウム塩構造とは、より具体的には、以下の式(3)で表される構造が好ましく挙げられる。式(3)中、*4は結合位置を示す。 More specifically, the quaternary ammonium salt structure is preferably a structure represented by the following formula (3). In formula (3), * 4 represents a bonding position.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 この4級アンモニウム塩構造にエネルギーが付与されると、アンモニウム構造が分解・除去され、結果としてより撥水性(疎水性)を示すようになる。
 式(3)中、Zはハロゲンアニオン(例えば、塩素イオン、臭素イオンなど)を示す。Rは、アルキル基を示す。
When energy is imparted to the quaternary ammonium salt structure, the ammonium structure is decomposed and removed, resulting in more water repellency (hydrophobicity).
In formula (3), Z represents a halogen anion (for example, chlorine ion, bromine ion, etc.). R represents an alkyl group.
 カルボキシル基に対してβ位にO元素(酸素元素)、N元素(窒素元素)、またはS元素(硫黄元素)を有する酢酸構造(以後、単に酢酸構造Xとも称する)とは、より具体的には、以下の式(4)で表される構造が好ましく挙げられる。式(4)中、*5は結合位置を示す。 An acetic acid structure having an O element (oxygen element), an N element (nitrogen element), or an S element (sulfur element) in the β position with respect to the carboxyl group (hereinafter also simply referred to as an acetic acid structure X) is more specifically described. Is preferably a structure represented by the following formula (4). In the formula (4), * 5 indicates a bonding position.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 この酢酸構造Xにエネルギー(特に、熱エネルギー)が付与されると、カルボキシル基部分が脱炭酸反応を起こして、分解・除去され、結果としてより撥水性(疎水性)を示すようになる。
 式(4)中、Xは-O-、-S-、-Se-、-NR3-、-CO-、-SO-、-SO2-、-PO-、-SiR34-、-CS-を表す。
 R1、R2、R3、R4は、それぞれ独立して、水素原子または置換基を表す。
 R1、R2、R3、R4の具体例としては、-F、-Cl、-Br、-I、-CN、-R10、-OR10、-OCOR10、-OCOOR10、-OCONR1011、-OSO210、-COR10、-COOR10、-CONR1014、-NR1011、-NR10-COR11、-NR10-COOR11、-NR10-CONR1112、-SR10、-SOR10、-SO210、-SO310等が挙げられる。
 R10、R11、R12は、それぞれ水素原子、アルキル基、アリール基、アルケニル基、またはアルキニル基を表す。
 これらのうち、R1、R2、R3、R4として好ましいのは、具体的には、水素原子、アルキル基、アリール基、アルキニル基、アルケニル基である。
 Mは陽電荷を有するイオンであり、定義は上述の通りである。
When energy (particularly thermal energy) is imparted to the acetic acid structure X, the carboxyl group part undergoes a decarboxylation reaction and is decomposed and removed, resulting in more water repellency (hydrophobicity).
In the formula (4), X represents —O—, —S—, —Se—, —NR 3 —, —CO—, —SO—, —SO 2 —, —PO—, —SiR 3 R 4 —, — CS-
R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or a substituent.
Specific examples of R 1 , R 2 , R 3 , R 4 include —F, —Cl, —Br, —I, —CN, —R 10 , —OR 10 , —OCOR 10 , —OCOOR 10 , —OCONR. 10 R 11 , —OSO 2 R 10 , —COR 10 , —COOR 10 , —CONR 10 R 14 , —NR 10 R 11 , —NR 10 —COR 11 , —NR 10 —COOR 11 , —NR 10 —CONR 11 R 12 , —SR 10 , —SOR 10 , —SO 2 R 10 , —SO 3 R 10 and the like can be mentioned.
R 10 , R 11 , and R 12 each represent a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, or an alkynyl group.
Among these, preferred as R 1 , R 2 , R 3 and R 4 are specifically a hydrogen atom, an alkyl group, an aryl group, an alkynyl group and an alkenyl group.
M is an ion having a positive charge, and the definition is as described above.
 濡れ性が変化する材料の好適実施態様としては、上記ニトロフェニル酢酸構造、β-ケト酸構造、および、酢酸構造Xからなる群から選択されるいずれか1つを含む繰り返し単位を有する高分子が挙げられる。より具体的には、以下の式(5)で表される繰り返し単位を有する高分子が好ましい。 As a preferred embodiment of the material whose wettability changes, a polymer having a repeating unit including any one selected from the group consisting of the nitrophenylacetic acid structure, the β-ketoic acid structure, and the acetic acid structure X is used. Can be mentioned. More specifically, a polymer having a repeating unit represented by the following formula (5) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R20は、水素原子またはアルキル基(好ましくはメチル基、エチル基)を表す。
 Lは、単結合または2価の連結基を表す。2価の連結基としては、2価の脂肪族炭化水素基(好ましくは炭素数1~8)、2価の芳香族炭化水素基(好ましくは炭素数6~12)、-O-、-S-、-SO2-、-N(R)-(R:アルキル基)、-CO-、-NH-、-COO-、-CONH-、またはこれらを組み合わせた基(例えば、アルキレンオキシ基、アルキレンオキシカルボニル基、アルキレンカルボニルオキシ基など)などが挙げられる。
 2価の脂肪族炭化水素基(例えば、アルキレン基)としては、例えば、メチレン基、エチレン基、プロピレン基、またはブチレン基などが挙げられる。
 2価の芳香族炭化水素基としては、例えば、フェニレン基、ナフチレン基などが挙げられる。
In the formula (5), R 20 represents a hydrogen atom or an alkyl group (preferably a methyl group or an ethyl group).
L represents a single bond or a divalent linking group. Examples of the divalent linking group include a divalent aliphatic hydrocarbon group (preferably having 1 to 8 carbon atoms), a divalent aromatic hydrocarbon group (preferably having 6 to 12 carbon atoms), —O—, —S. —, —SO 2 —, —N (R) — (R: alkyl group), —CO—, —NH—, —COO—, —CONH—, or a combination thereof (eg, alkyleneoxy group, alkylene Oxycarbonyl group, alkylenecarbonyloxy group, etc.).
Examples of the divalent aliphatic hydrocarbon group (for example, an alkylene group) include a methylene group, an ethylene group, a propylene group, or a butylene group.
Examples of the divalent aromatic hydrocarbon group include a phenylene group and a naphthylene group.
 式(5)中、Yはニトロフェニル酢酸構造、β-ケト酸構造、および、酢酸構造Xからなる群から選択されるいずれか1つを表す。 In formula (5), Y represents any one selected from the group consisting of a nitrophenylacetic acid structure, a β-keto acid structure, and an acetic acid structure X.
 高分子中における上記繰り返し単位の含有量は特に制限されないが、濡れ性の変化がより大きな点で、高分子中の全繰り返し単位に対して、60モル%以上が好ましく、80モル%以上がより好ましい。上限は特に制限されないが、100モル%である。 The content of the repeating unit in the polymer is not particularly limited, but is preferably 60 mol% or more, more preferably 80 mol% or more with respect to all repeating units in the polymer in terms of a greater change in wettability. preferable. The upper limit is not particularly limited, but is 100 mol%.
 高分子の重量平均分子量は特に制限されないが、濡れ性の変化がより大きく、取扱い性が優れる点で、5000~100000が好ましく、10000~50000がより好ましい。 The weight average molecular weight of the polymer is not particularly limited, but is preferably 5000 to 100,000, more preferably 10,000 to 50,000 in terms of greater change in wettability and excellent handleability.
 濡れ性変化層には、光熱変換物質が含まれていてもよい。
 付与するエネルギーがIRレーザーなどの光エネルギーであれば、該光エネルギーを熱エネルギーに変換するための光熱変換物質を、濡れ性変化層に含有させておくことが好ましい。また、濡れ性変化層上に光熱変換物質含有層を別途設け、そこに含有させてもよい。
 光熱変換物質としては、紫外線、可視光線、赤外線、白色光線等の光を吸収して熱に変換し得る物質ならば全て使用でき、例えば、カーボンブラック、カーボングラファイト、顔料、フタロシアニン系顔料、鉄粉、黒鉛粉末、酸化鉄粉、酸化鉛、酸化銀、酸化クロム、硫化鉄、硫化クロム等が挙げられる。特に好ましいのは、エネルギー付与に使用する赤外線レーザーの露光波長である760nmから1200nmに極大吸収波長を有する染料、顔料または金属微粒子である。
The wettability changing layer may contain a photothermal conversion substance.
If the energy to be applied is light energy such as IR laser, it is preferable that a photothermal conversion substance for converting the light energy into heat energy is contained in the wettability changing layer. Further, a photothermal conversion substance-containing layer may be separately provided on the wettability changing layer and contained therein.
As the photothermal conversion substance, any substance that absorbs light such as ultraviolet light, visible light, infrared light, white light and can be converted into heat can be used. For example, carbon black, carbon graphite, pigment, phthalocyanine pigment, iron powder Graphite powder, iron oxide powder, lead oxide, silver oxide, chromium oxide, iron sulfide, chromium sulfide and the like. Particularly preferred are dyes, pigments or metal fine particles having a maximum absorption wavelength from 760 nm to 1200 nm, which is the exposure wavelength of an infrared laser used for energy application.
 濡れ性変化層の好適実施態様としては、エネルギーの付与により脱炭酸して濡れ性が変化する層が挙げられる。このような層としては、例えば、上述したニトロフェニル酢酸構造、β-ケト酸構造、および、酢酸構造Xからなる群から選択される少なくとも一つを有する化合物を含む層が挙げられる。
 上記層が好適な理由について、図2を用いて説明する。
 脱炭酸を伴いながら濡れ性が変化する場合、脱炭酸に伴い、その領域の体積が減少し、結果として隣接する領域(未エネルギー付与領域)との間で高さの差が生じる。より具体的には、図2に示すように、エネルギー付与部分である撥水性領域14bは脱炭酸に伴い、その領域の高さが減少し、隣接する親水性領域14aよりも低くなる。結果として、図2(B)に示すように、後述する配線層形成用組成物20を撥水性領域14b上に付与する際に、撥水性領域14bと親水性領域14aとの間の段差によって、配線層形成用組成物20が撥水性領域14b上に留まりやすくなり、配線層のパターン形成性がより優れる。
As a preferred embodiment of the wettability changing layer, a layer in which the wettability is changed by decarboxylation by application of energy can be mentioned. Examples of such a layer include a layer containing a compound having at least one selected from the group consisting of the above-described nitrophenylacetic acid structure, β-keto acid structure, and acetic acid structure X.
The reason why the above layer is suitable will be described with reference to FIG.
When wettability changes with decarboxylation, the volume of the region decreases with decarboxylation, resulting in a difference in height between adjacent regions (non-energy imparted regions). More specifically, as shown in FIG. 2, the water-repellent region 14b, which is an energy application portion, decreases with decarboxylation and becomes lower than the adjacent hydrophilic region 14a. As a result, as shown in FIG. 2B, when a wiring layer forming composition 20 described later is applied on the water repellent region 14b, a step between the water repellent region 14b and the hydrophilic region 14a The wiring layer forming composition 20 is likely to stay on the water-repellent region 14b, and the pattern forming property of the wiring layer is further improved.
 なお、支持体上に濡れ性変化層を形成する方法は特に制限されず、公知の方法が採用できる。例えば、濡れ性変化層を形成する材料を含む濡れ性変化層形成用組成物を支持体上に塗布して、必要に応じて、乾燥処理を施す方法が挙げられる。
 なお、濡れ性変化層形成用組成物には、必要に応じて、溶媒が含まれていてもよい。
In addition, the method in particular of forming a wettability change layer on a support body is not restrict | limited, A well-known method is employable. For example, the wettability change layer forming composition containing the material which forms a wettability change layer is apply | coated on a support body, and the method of giving a drying process as needed is mentioned.
In addition, the composition for wettability change layer formation may contain the solvent as needed.
(工程(A)の手順)
 工程(A)における濡れ性変化層の一部の領域にエネルギーを付与する方法は特に制限されず、エネルギーの種類に応じて適宜最適な方法が選択される。
 エネルギーの付与手段としては、例えば、加熱処理や、露光等の光照射処理を用いることができる。具体的には、例えば、UVランプ、可視光線などによる光照射、レーザーなどでの加熱等が可能である。
 光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。また、g線、i線、Deep-UV光も使用しうる。
 エネルギー付与に要する時間としては、使用される材料により異なるが、生産性の点から、1秒~10分が好ましい。
 なお、加熱処理および光照射処理の詳細について、後述する工程(C)にて詳述する。
(Procedure of step (A))
The method for applying energy to a partial region of the wettability changing layer in the step (A) is not particularly limited, and an optimal method is appropriately selected according to the type of energy.
As the energy applying means, for example, heat treatment or light irradiation treatment such as exposure can be used. Specifically, for example, light irradiation with a UV lamp, visible light, or the like, heating with a laser, or the like is possible.
Examples of the light source include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Also, g-line, i-line, and Deep-UV light can be used.
The time required for energy application varies depending on the material used, but is preferably 1 second to 10 minutes from the viewpoint of productivity.
The details of the heat treatment and the light irradiation treatment will be described in detail in the step (C) described later.
<工程(B):塗膜形成工程>
 工程(B)は、工程(A)で得られた濡れ性変化層上に、金属粒子および/または金属酸化物粒子を少なくとも含有する配線層形成用組成物を付与して、撥水性領域上または親水性領域上に塗膜を形成する工程である。本工程を実施することにより、撥水性領域上または親水性領域上の一方の領域上に、配線層の前駆体層である塗膜を形成することができる。
 以下では、本工程(B)で使用される材料(配線層形成用組成物)について詳述し、その後、本工程(B)の手順について詳述する。
<Process (B): Coating film forming process>
In the step (B), a composition for forming a wiring layer containing at least metal particles and / or metal oxide particles is applied to the wettability changing layer obtained in the step (A), and the water repellent region or This is a step of forming a coating film on the hydrophilic region. By implementing this process, the coating film which is a precursor layer of a wiring layer can be formed on one area | region on a water-repellent area | region or a hydrophilic area | region.
Below, the material (composition for wiring layer formation) used by this process (B) is explained in full detail, and the procedure of this process (B) is explained in full detail after that.
(配線層形成用組成物)
 配線層形成用組成物は、金属粒子および/または金属酸化物粒子を含有する。金属粒子および/または金属酸化物粒子は、後述する工程(C)において、配線層を形成する材料となる。
 金属粒子および金属酸化物粒子に含まれる金属原子の種類は特に制限されないが、配線層の導電性がより優れる点で、銅原子、銀原子、または金原子が好ましく、銅原子または銀原子がより好ましい。つまり、金属銅粒子、酸化銅粒子、金属銀粒子、酸化銀粒子が好ましい。
(Composition for wiring layer formation)
The composition for forming a wiring layer contains metal particles and / or metal oxide particles. The metal particles and / or metal oxide particles become a material for forming the wiring layer in the step (C) described later.
The type of metal atom contained in the metal particle and metal oxide particle is not particularly limited, but a copper atom, a silver atom, or a gold atom is preferable, and a copper atom or a silver atom is more preferable in that the conductivity of the wiring layer is more excellent. preferable. That is, metal copper particles, copper oxide particles, metal silver particles, and silver oxide particles are preferable.
 金属粒子および金属酸化物粒子の形状は特に制限されず、球状、楕円体状、ロッド状、ワイヤ状、板状、樹木状などが挙げられる。
 金属粒子および金属酸化物粒子の平均粒子径は特に制限されないが、10μm以下が好ましく、5μm以下がより好ましく、500nm以下がさらに好ましい。下限は特に制限されないが、1nm以上が好ましい。
 平均粒子径が1nm以上であれば、粒子表面の活性が高くなりすぎず、組成物中で溶解することがなく、取扱い性に優れるため好ましい。また、10μm以下であれば、配線層形成用組成物をインクジェット用インク組成物やスクリーン印刷用ペースト組成物として用い、各種印刷法により配線等のパターン形成を行うことが容易となり、組成物を導体化する際に、得られる配線層の導電性が良好であるため好ましい。
 なお、平均粒子径は、平均一次粒径のことを指す。平均粒子径は、透過型電子顕微鏡(TEM)観察または走査型電子顕微鏡(SEM)観察により、少なくとも50個以上の金属粒子または金属酸化物粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、金属銅粒子または酸化銅粒子の形状が真円状でない場合、長径を直径として測定する。
The shape of the metal particles and the metal oxide particles is not particularly limited, and examples thereof include a spherical shape, an ellipsoid shape, a rod shape, a wire shape, a plate shape, and a tree shape.
The average particle diameter of the metal particles and metal oxide particles is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 500 nm or less. Although a minimum in particular is not restrict | limited, 1 nm or more is preferable.
An average particle size of 1 nm or more is preferable because the activity on the particle surface does not become too high, does not dissolve in the composition, and is easy to handle. Moreover, if it is 10 micrometers or less, it will become easy to form patterns, such as wiring by various printing methods, using the composition for wiring layer formation as an inkjet ink composition or a paste composition for screen printing, and use a composition as a conductor. Is preferable because the resulting wiring layer has good conductivity.
In addition, an average particle diameter points out an average primary particle diameter. The average particle diameter is determined by measuring the particle diameter (diameter) of at least 50 metal particles or metal oxide particles by observation with a transmission electron microscope (TEM) or scanning electron microscope (SEM), and calculating the arithmetic average of them. And ask. In addition, when the shape of a metal copper particle or a copper oxide particle is not a perfect circle shape in an observation figure, a major axis is measured as a diameter.
 配線層形成用組成物には、上記金属粒子および金属酸化物粒子以外の成分が含まれていてもよい。
 例えば、配線層形成用組成物には、樹脂バインダーが含有されていてもよい。
 樹脂バインダーの種類は特に制限されず、例えば、ビニル系樹脂、アクリル系樹脂、スチレン系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂等の硬化性樹脂等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
 より具体的には、ポリビニルピロリドン、ポリビニルアルコール、ポリアルキレングリコール(例えば、ポリエチレングリコールなど)が挙げられる。
The composition for forming a wiring layer may contain components other than the metal particles and metal oxide particles.
For example, the wiring layer forming composition may contain a resin binder.
The type of the resin binder is not particularly limited, and examples thereof include thermoplastic resins such as vinyl resins, acrylic resins, styrene resins, polyolefin resins, and polyamide resins; epoxy resins, urethane resins, polyimide resins, non-plastic resins, and the like. Examples thereof include curable resins such as saturated polyester resins. These resins may be used alone or in combination of two or more.
More specifically, examples include polyvinyl pyrrolidone, polyvinyl alcohol, and polyalkylene glycol (for example, polyethylene glycol).
 また、配線層形成用組成物には、溶媒が含まれていてもよい。溶媒は、金属粒子および金属酸化物粒子の分散媒として機能する。
 溶媒の種類は特に制限されないが、例えば、水や、アルコール類(例えば、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノール)、エーテル類(例えば、ジエチルエーテル、ジイソブチルエーテル、ジブチルエーテル、メチル-t-ブチルエーテル)、エステル類(例えば、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル)などの有機溶媒などを使用することができる。
 なお、後述するように、溶媒の種類によって、配線層形成用組成物を撥水性領域および親水性領域のいずれの領域上に配置するかを制御できる。つまり、撥水性領域の表面エネルギーに近い表面エネルギーを有する溶媒(撥水性溶媒)を使用した場合は、配線層形成用組成物は撥水性領域上に配置され、親水性領域の表面エネルギーに近い表面エネルギーを有する溶媒(親水性溶媒)を使用した場合は、配線層形成用組成物は親水性領域上に配置される。
Moreover, the composition for wiring layer formation may contain the solvent. The solvent functions as a dispersion medium for metal particles and metal oxide particles.
The type of the solvent is not particularly limited. For example, water, alcohols (eg, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol), ethers (eg, diethyl ether, diisobutyl ether, dibutyl ether) , Methyl-t-butyl ether), esters (for example, methyl formate, ethyl formate, butyl formate, methyl acetate) and the like can be used.
As will be described later, it is possible to control whether the wiring layer forming composition is disposed on the water-repellent region or the hydrophilic region depending on the type of the solvent. That is, when a solvent having a surface energy close to the surface energy of the water-repellent region (water-repellent solvent) is used, the wiring layer forming composition is disposed on the water-repellent region and has a surface close to the surface energy of the hydrophilic region. When the solvent (hydrophilic solvent) which has energy is used, the composition for wiring layer formation is arrange | positioned on a hydrophilic region.
(工程(B)の手順)
 上記配線層形成用組成物を濡れ性変化層上に塗布する方法は特に制限されず、例えば、スピンコート法、ディップコート法、スクリーン印刷法、オフセット印刷法、インクジェット法等が挙げられるが、濡れ性変化層の表面エネルギーの影響を受けやすくするためには、より小さな液滴を供給できるインクジェット法が好ましい。
(Procedure of step (B))
The method for applying the wiring layer forming composition on the wettability changing layer is not particularly limited, and examples thereof include spin coating, dip coating, screen printing, offset printing, and ink jet method. In order to be easily affected by the surface energy of the property change layer, an ink jet method capable of supplying smaller droplets is preferable.
 図1(C)に示すように、上記配線層形成用組成物を濡れ性変化層上に塗布することにより、塗膜16を形成することができる。
 なお、図1(C)においては、撥水性領域14b上に塗膜16が形成されているが、配線層形成用組成物中の溶媒の種類を選択することにより、いずれの領域上に塗膜を形成するか制御できる。つまり、撥水性の溶媒を含む配線層形成用組成物の場合は、組成物が撥水性領域14b上に配置されやすくなり、結果として図1(C)に示す態様が形成される。
 一方、親水性の溶媒を含む配線層形成用組成物を使用した場合は、組成物が親水性領域14a上に配置されやすくなり、結果として、親水性領域14a上に塗膜16が配置される。
As shown in FIG. 1C, the coating film 16 can be formed by applying the wiring layer forming composition onto the wettability changing layer.
In FIG. 1C, the coating film 16 is formed on the water-repellent region 14b. By selecting the type of solvent in the wiring layer forming composition, the coating film is formed on any region. Can form or control. That is, in the case of a wiring layer forming composition containing a water-repellent solvent, the composition is easily disposed on the water-repellent region 14b, and as a result, the embodiment shown in FIG. 1C is formed.
On the other hand, when the wiring layer forming composition containing a hydrophilic solvent is used, the composition is easily disposed on the hydrophilic region 14a, and as a result, the coating film 16 is disposed on the hydrophilic region 14a. .
 本工程においては、必要に応じて、配線層形成用組成物を濡れ性変化層へ塗布した後に乾燥処理を行い、溶媒を除去してもよい。残存する溶媒を除去することにより、後述する工程(C)において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、配線層の導電性および配線層と濡れ性変化層との密着性の点で好ましい。
 乾燥処理の方法としては、例えば、温風乾燥機などを用いることができ、温度としては使用される材料に応じて適宜最適な温度が選択されるが、例えば、50℃以上100℃未満で加熱処理を行うことがより好ましく、70℃以上100℃未満で加熱処理を行うことがさらに好ましい。金属酸化物粒子を用いる場合は酸化を抑制するような条件が好ましく、例えば、窒素、アルゴンなどの不活性ガス雰囲気下がより好ましく、水素等の還元性ガス雰囲気下で乾燥することがさらに好ましい。
In this step, if necessary, the wiring layer forming composition may be applied to the wettability changing layer and then dried to remove the solvent. By removing the remaining solvent, it is possible to suppress the generation of minute cracks and voids due to the vaporization and expansion of the solvent in the step (C) described later, and to change the conductivity of the wiring layer and the wettability of the wiring layer. It is preferable in terms of adhesion to the layer.
As a method for the drying treatment, for example, a hot air dryer or the like can be used, and an optimal temperature is appropriately selected as the temperature depending on the material to be used. It is more preferable to perform the treatment, and it is more preferable to perform the heat treatment at 70 ° C. or higher and lower than 100 ° C. In the case of using metal oxide particles, conditions that suppress oxidation are preferable, and for example, an inert gas atmosphere such as nitrogen or argon is more preferable, and drying is preferably performed in a reducing gas atmosphere such as hydrogen.
<工程(C):配線層形成工程>
 工程(C)は、工程(B)で製造された塗膜にエネルギーを付与して配線層を形成する工程(C1)、および、濡れ性変化層に残存する親水性領域にエネルギーを付与して撥水性領域に変換する工程(C2)を同時に、または、別々に行う工程である。
 より具体的には、工程(C)は、図1(D)に示すように、図1(C)の塗膜16にエネルギーを付与して配線層18を形成すると共に、濡れ性変化層14中に残存する親水性領域14aにエネルギーを付与して撥水性領域14bに変換する工程である。
 まず、工程(C1)および工程(C2)のそれぞれの手順について詳述する。
<Process (C): Wiring layer forming process>
In step (C), energy is applied to the coating produced in step (B) to form a wiring layer (C1), and energy is applied to the hydrophilic region remaining in the wettability changing layer. In this step, the step (C2) of converting to the water-repellent region is performed simultaneously or separately.
More specifically, in the step (C), as shown in FIG. 1 (D), energy is applied to the coating film 16 in FIG. 1 (C) to form the wiring layer 18 and the wettability changing layer 14. In this step, energy is imparted to the hydrophilic region 14a remaining therein to convert it into the water repellent region 14b.
First, each procedure of a process (C1) and a process (C2) is explained in full detail.
(工程(C1):焼成工程)
 工程(C1)は、工程(B)で製造された塗膜にエネルギーを付与して配線層を形成する工程である。
 エネルギーの付与方法は、上記工程(A)で述べたように、加熱処理および/または光照射処理が挙げられる。
 塗膜中に金属粒子が含まれる場合は、加熱処理および/または光照射処理を行うことにより、金属粒子同士が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して、金属を含有する配線層が形成される。
 また、塗膜中に金属酸化物粒子が含まれる場合は、加熱処理および/または光照射処理を行うことにより、金属酸化物粒子が金属粒子に還元され、生成した金属粒子同士が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して、金属を含有する配線層が形成される。
(Process (C1): Firing process)
Step (C1) is a step of forming a wiring layer by applying energy to the coating film produced in step (B).
Examples of the energy application method include heat treatment and / or light irradiation treatment as described in the step (A).
When metal particles are contained in the coating film, by performing heat treatment and / or light irradiation treatment, the metal particles are fused to each other to form grains, and the grains are further bonded and fused to each other. A wiring layer containing a metal is formed.
When the metal oxide particles are contained in the coating film, the metal oxide particles are reduced to metal particles by heat treatment and / or light irradiation treatment, and the generated metal particles are fused to each other. Then, the grains are formed, and the grains are bonded and fused together to form a wiring layer containing metal.
 加熱処理の条件は、使用される金属粒子や金属酸化物の種類によって適宜最適な条件が選択される。なかでも、短時間で、導電性により優れる配線層を形成することができる点で、加熱温度は100~300℃が好ましく、150~250℃がより好ましく、また、加熱時間は5~120分が好ましく、10~60分がより好ましい。
 なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
As the conditions for the heat treatment, optimum conditions are appropriately selected depending on the types of metal particles and metal oxides used. Among them, the heating temperature is preferably 100 to 300 ° C., more preferably 150 to 250 ° C., and the heating time is 5 to 120 minutes in that a wiring layer having better conductivity can be formed in a short time. Preferably, 10 to 60 minutes are more preferable.
The heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
 光照射処理は、上述した加熱処理とは異なり、室温にて塗膜が付与された部分に対して光を短時間照射することで焼結が可能となり、長時間の加熱による基板の劣化が起こらず、配線層と基板との密着性がより良好となる。 Unlike the above-described heat treatment, the light irradiation treatment can be sintered by irradiating light on a portion to which a coating film has been applied at room temperature for a short time, and deterioration of the substrate due to prolonged heating occurs. Therefore, the adhesion between the wiring layer and the substrate becomes better.
 光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。
 具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
The light source used in the light irradiation treatment is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
Specific examples of preferred embodiments include scanning exposure with an infrared laser, high-illuminance flash exposure such as a xenon discharge lamp, and infrared lamp exposure.
 光照射は、フラッシュランプによる光照射が好ましく、フラッシュランプによるパルス光照射であることがより好ましい。高エネルギーのパルス光の照射は、塗膜を付与した部分の表面を、極めて短い時間で集中して加熱することができるため、基板への熱の影響を極めて小さくすることができる。
 パルス光の照射エネルギーとしては、1~100J/cm2が好ましく、1~30J/cm2がより好ましく、パルス幅としては1μ秒~100m秒が好ましく、10μ秒~10m秒がより好ましい。パルス光の照射時間は、1~100m秒が好ましく、1~50m秒がより好ましく、1~20m秒が更に好ましい。
The light irradiation is preferably light irradiation with a flash lamp, and more preferably pulsed light irradiation with a flash lamp. Irradiation with high-energy pulsed light can heat the surface of the portion provided with the coating film in a very short time, so that the influence of heat on the substrate can be made extremely small.
The irradiation energy of the pulse light is preferably 1 ~ 100J / cm 2, more preferably 1 ~ 30J / cm 2, preferably from 1μ sec ~ 100 m sec as a pulse width, and more preferably 10μ sec ~ 10 m sec. The irradiation time of the pulsed light is preferably 1 to 100 milliseconds, more preferably 1 to 50 milliseconds, and further preferably 1 to 20 milliseconds.
 上記加熱処理および光照射処理は、単独で実施してもよく、両者を同時に実施してもよい。また、一方の処理を施した後、さらに他方の処理を施してもよい。 The above heat treatment and light irradiation treatment may be performed alone or both may be performed simultaneously. Moreover, after performing one process, you may perform the other process further.
 上記加熱処理および光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。 The atmosphere in which the heat treatment and the light irradiation treatment are performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere. The inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen, and the reducing atmosphere is a reducing gas such as hydrogen or carbon monoxide. It refers to the atmosphere.
(工程(C2):定着工程)
 工程(C2)は、親水性領域にエネルギーを付与して撥水性領域に変換する工程である。
 エネルギーの付与方法は、上記工程(C1)で述べた加熱処理や光照射処理が挙げられる。例えば、図1(C)においては、親水性領域14aに光照射処理を実施することにより、撥水性領域14bへ変換することができる。
(Process (C2): Fixing process)
Step (C2) is a step of applying energy to the hydrophilic region to convert it into a water-repellent region.
Examples of the energy application method include the heat treatment and the light irradiation treatment described in the step (C1). For example, in FIG. 1C, the hydrophilic region 14a can be converted to the water-repellent region 14b by performing light irradiation treatment.
 上述した工程(C1)および工程(C2)は、同時に実施してもよいし、別々に実施してもよい。なかでも、製造プロセスをより短くすることができる点で、同時に実施することが好ましい。
 同時に実施する方法としては、例えば、図1(C)の態様においては、濡れ性変化層14の全面に光照射処理を実施することにより、塗膜16から配線層18の形成と、親水性領域14aから撥水性領域14bへの変換を同時に実施することができる。また、光照射処理の代わりに、図1(C)の態様の支持体12、濡れ性変化層14、および、塗膜16を含む積層体をオーブン中に入れ、加熱処理を実施することにより、工程(C1)と工程(C2)を同時に実施することもできる。
 なお、光照射は、図1(C)の塗膜16側から行ってもよいし、図1(C)の支持体12側から行ってもよい。特に、親水性領域上に塗膜を形成する場合に工程(C2)で光照射を行う場合は、支持体12側から行うことが好ましい。
The step (C1) and the step (C2) described above may be performed simultaneously or separately. Especially, it is preferable to implement simultaneously at the point which can shorten a manufacturing process more.
As a method of carrying out simultaneously, for example, in the embodiment of FIG. 1 (C), the entire surface of the wettability changing layer 14 is subjected to light irradiation treatment, thereby forming the wiring layer 18 from the coating film 16 and the hydrophilic region. Conversion from 14a to the water repellent region 14b can be performed simultaneously. Further, instead of the light irradiation treatment, the laminate including the support 12, the wettability changing layer 14 and the coating film 16 in the embodiment of FIG. Step (C1) and step (C2) can also be performed simultaneously.
Note that light irradiation may be performed from the coating film 16 side of FIG. 1C or from the support 12 side of FIG. In particular, when forming a coating film on the hydrophilic region and performing light irradiation in the step (C2), it is preferable to carry out from the support 12 side.
 また、工程(C1)および工程(C2)は、別々に実施することもできる。
 例えば、工程(C1)を実施した後、工程(C2)を実施することもでき、または、工程(C2)を実施したのち、工程(C1)を実施することもできる。
Moreover, a process (C1) and a process (C2) can also be implemented separately.
For example, after the step (C1) is performed, the step (C2) can be performed, or after the step (C2) is performed, the step (C1) can be performed.
 上記工程(A)~(C)を経て得られた配線基板中の濡れ性変化層には、親水性領域が実質的に残存していない。結果として、配線基板上に配置される絶縁層と、配線基板との間の界面に水分が入りにくくなり、絶縁層の密着性の経時安定性が優れる。 In the wettability changing layer in the wiring board obtained through the steps (A) to (C), the hydrophilic region does not substantially remain. As a result, moisture hardly enters the interface between the insulating layer disposed on the wiring board and the wiring board, and the temporal stability of the adhesiveness of the insulating layer is excellent.
 配線層の厚みは特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
 なお、厚みは、配線層の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
 配線層の体積抵抗値は、導電特性の点から、5×10-4Ωcm未満が好ましく、1×10-4Ωcm未満がより好ましい。
 体積抵抗値は、配線層の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。
The thickness of the wiring layer is not particularly limited, and the optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 μm is preferable and 0.1 to 100 μm is more preferable from the viewpoint of printed wiring board use.
The thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the wiring layer and arithmetically averaging the values.
The volume resistance value of the wiring layer is preferably less than 5 × 10 −4 Ωcm, more preferably less than 1 × 10 −4 Ωcm, from the viewpoint of conductive characteristics.
The volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the wiring layer by the four-probe method.
 配線層のパターンは特に制限されず、種々のパターン形状(ストライプ状、格子状など)をとりえる。
 配線基板の配線層上には、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層してもよい。また、その表面にさらなる配線(金属パターン)を形成してもよい。
 上記で得られた配線基板は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。
The pattern of the wiring layer is not particularly limited, and can take various pattern shapes (stripe shape, lattice shape, etc.).
An insulating layer (insulating resin layer, interlayer insulating film, solder resist) may be further laminated on the wiring layer of the wiring board. Further, a further wiring (metal pattern) may be formed on the surface.
The wiring board obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
 以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(合成例1:ポリマー1の合成)
 Jounal of the Chemical Society, 1945, p630-633に記載の方法で、以下の中間体1-1を合成した。中間体1-1(21.5g,100mmol)をジクロロメタン50mLに溶解させ、その中にトリエチルアミン(11.1g,110mmol)を添加し、アクリル酸クロライド(11.4g,110mmol)を5℃を保ちながら20分かけて滴下した。室温まで昇温を行い2時間反応させた。反応液に対して水100mL、酢酸エチル300mLを投入し、分液、水洗した後に、酢酸エチル層をエバポレーション後、カラムクロマトグラフィーを用いて精製を行い、中間体1-2を8g得た。
 3つ口フラスコにジメチルアセトアミド(22g)を投入し、80℃に加温した。その溶液の中に、中間体1-2(13g)とジメチルアセトアミド(22g)の溶液を2時間かけて滴下した。その後、更に2時間反応させて中間体1-2を重合した。次に、得られた反応液を再沈精製することで、以下のポリマー1(5g)を得た。
(Synthesis Example 1: Synthesis of Polymer 1)
The following intermediate 1-1 was synthesized by the method described in Journal of the Chemical Society, 1945, p630-633. Intermediate 1-1 (21.5 g, 100 mmol) was dissolved in 50 mL of dichloromethane, triethylamine (11.1 g, 110 mmol) was added thereto, and acrylic acid chloride (11.4 g, 110 mmol) was kept at 5 ° C. It was added dropwise over 20 minutes. The temperature was raised to room temperature and reacted for 2 hours. Water (100 mL) and ethyl acetate (300 mL) were added to the reaction solution, and the mixture was separated and washed with water. The ethyl acetate layer was evaporated and purified by column chromatography to obtain 8 g of Intermediate 1-2.
Dimethylacetamide (22 g) was charged into a three-necked flask and heated to 80 ° C. Into the solution, a solution of intermediate 1-2 (13 g) and dimethylacetamide (22 g) was added dropwise over 2 hours. Thereafter, the reaction was further continued for 2 hours to polymerize the intermediate 1-2. Next, the following polymer 1 (5 g) was obtained by reprecipitation purification of the obtained reaction solution.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(合成例2:ポリマー2の合成)
 4-アセト-スチレン(aldrich製)を用いて、Chemical Pharma ceutical Bulletin, 1982, p2590-2594に記載の方法に従って、中間体2-1を合成した。次に、中間体2-1をJournal of Chemical Society, Parkin transaction I, 1982 p2477-2486に記載の方法に従って、中間体2-2を合成した。
 次に、3つ口フラスコにジメチルアセトアミド(15g)を投入し、80℃に加温した。その溶液の中に、中間体2-2(9.5g)とジメチルアセトアミド(15g)の溶液を2時間かけて滴下した。その後、更に2時間反応させて中間体2-2を重合した。次に、得られた反応液を再沈精製することで、ポリマー2(8g)を得た。
(Synthesis Example 2: Synthesis of Polymer 2)
Intermediate 2-1 was synthesized according to the method described in Chemical Pharmaceutical Bulletin, 1982, p2590-2594, using 4-aceto-styrene (manufactured by aldrich). Next, intermediate 2-1 was synthesized according to the method described in Journal of Chemical Society, Parkin transaction I, 1982, p2477-2486.
Next, dimethylacetamide (15 g) was charged into a three-necked flask and heated to 80 ° C. A solution of intermediate 2-2 (9.5 g) and dimethylacetamide (15 g) was added dropwise to the solution over 2 hours. Thereafter, the reaction was further continued for 2 hours to polymerize the intermediate 2-2. Next, the obtained reaction solution was purified by reprecipitation to obtain polymer 2 (8 g).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(合成例3:化合物3の合成)
 TetrahedronLetters 1995 p2377-2378に記載の方法に従って、化合物3を合成した。
(Synthesis Example 3: Synthesis of Compound 3)
Compound 3 was synthesized according to the method described in Tetrahedron Letters 1995 p2377-2378.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(合成例4:ポリマー4の合成)
 US3962230に記載の方法に従って、中間体4-1を合成した。
 次に、3つ口フラスコにジメチルアセトアミド(20g)を投入し、80℃に加温した。その溶液の中に、中間体4-1(12.5g)とジメチルアセトアミド(20g)の溶液を2時間かけて滴下した。その後、更に2時間反応させて中間体4-1を重合した。次に、得られた反応液を再沈精製することで、ポリマー4(6g)得た。
(Synthesis Example 4: Synthesis of Polymer 4)
Intermediate 4-1 was synthesized according to the method described in US3962230.
Next, dimethylacetamide (20 g) was charged into a three-necked flask and heated to 80 ° C. A solution of intermediate 4-1 (12.5 g) and dimethylacetamide (20 g) was dropped into the solution over 2 hours. Thereafter, the reaction was further continued for 2 hours to polymerize the intermediate 4-1. Next, the obtained reaction solution was purified by reprecipitation to obtain polymer 4 (6 g).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(合成例5:ポリマー5の合成)
 3つ口フラスコにジメチルアセトアミド(17g)を投入し、80℃に加温した。その溶液の中に、4-(メチルトリメチルアンモニウムクロライド)-スチレン(10.6g)とジメチルアセトアミド(17g)の溶液を2時間かけて滴下した。その後、更に2時間反応させて重合した。次に、得られた反応液を再沈精製することで、ポリマー5(7g)を得た。
(Synthesis Example 5: Synthesis of Polymer 5)
Dimethylacetamide (17 g) was charged into a three-necked flask and heated to 80 ° C. A solution of 4- (methyltrimethylammonium chloride) -styrene (10.6 g) and dimethylacetamide (17 g) was dropped into the solution over 2 hours. Then, it was made to react for further 2 hours and superposed | polymerized. Next, polymer 5 (7 g) was obtained by reprecipitation purification of the obtained reaction solution.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(合成例6:比較ポリマー1の合成)
 特開2008-227294号公報の実施例欄の記載の方法に従って、以下の比較ポリマー1を合成した。
(Synthesis Example 6: Synthesis of Comparative Polymer 1)
The following comparative polymer 1 was synthesized according to the method described in the Example column of JP-A-2008-227294.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<実施例1>
 ポリイミド支持体上に以下の組成の濡れ性変化層形成用組成物1を塗布した。
(濡れ性変化層形成用組成物1)
・ポリマー1  1g
・メチルエチルケトン  0.5g
<Example 1>
A composition 1 for forming a wettability changing layer having the following composition was applied on a polyimide support.
(Composition 1 for forming a wettability changing layer)
・ Polymer 1 1g
・ Methyl ethyl ketone 0.5g
 以下の光熱変換層形成用組成物を、濡れ性変化層上に更に塗布した。得られた基板にIRレーザー(水冷式40W赤外線半導体レーザーを搭載したCreo社製Trendsetter 3244VFSにて露光)にてパターン状(L/S=30μm/30μm)に露光(1J/cm2)し、基板を水洗することで光熱変換層を除去して、露光部を撥水化した。
(光熱変換層形成用組成物)
・光熱変換剤A  1g
・水  0.7g
・1-メトキシ-2-プロパノール  0.3g
The following composition for forming a photothermal conversion layer was further applied on the wettability changing layer. The obtained substrate was exposed (1 J / cm 2 ) in a pattern (L / S = 30 μm / 30 μm) with an IR laser (exposed with a Trendsetter 3244VFS manufactured by Creo equipped with a water-cooled 40 W infrared semiconductor laser). The photothermal conversion layer was removed by washing with water to make the exposed portion water repellent.
(Photothermal conversion layer forming composition)
・ Photothermal conversion agent A 1g
・ Water 0.7g
・ 0.3g of 1-methoxy-2-propanol
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 その後、インクジェット装置(ダイマティックス製 DMP2831)を用いて、濡れ性変化層上に親水性の銀ナノインク(特開2010-265543号に記載の方法で作製)を塗布したところ、撥水性領域ではインクははじかれ、親水性領域上にインクが堆積され、塗膜が形成された。
 次に、得られた塗膜付き基板に対して、250℃で15分間加熱処理を行い、塗膜から配線層を形成すると共に、濡れ性変化層中に残存していた親水性領域を撥水性領域に変換し、配線基板を得た。
Then, when a hydrophilic silver nano ink (prepared by the method described in JP 2010-265543 A) was applied on the wettability changing layer using an inkjet apparatus (DMP2831 manufactured by Daimatics), the ink was used in the water repellent region. It was repelled and ink was deposited on the hydrophilic area to form a coating.
Next, the obtained substrate with a coating film is subjected to a heat treatment at 250 ° C. for 15 minutes to form a wiring layer from the coating film, and to remove the hydrophilic region remaining in the wettability changing layer. It converted into the area and the wiring board was obtained.
(パターン形成性評価)
 光学顕微鏡で配線基板の配線層を上から観察し、配線層のパターンのエッジ部(端部)の直線性を確認し、以下の基準に沿って評価した。なお、以下のエッチ部の位置のズレ幅Wとは、配線基板を上面から観察した模式図である図3に示すように、配線層のエッチ部の位置が幅方向にどれだけズレているかを示す尺度である。
「A」:配線層のエッチ部の位置のズレ幅が3μm以内
「B」:配線層のエッチ部の位置のズレ幅が3μm超10μm以内
「C」:配線層のエッチ部の位置のズレ幅が10μm超
(Pattern formability evaluation)
The wiring layer of the wiring board was observed from above with an optical microscope, the linearity of the edge part (end part) of the pattern of the wiring layer was confirmed, and evaluated according to the following criteria. In addition, the deviation width W of the position of the etched portion below is a schematic diagram of the wiring board observed from the upper surface, as shown in FIG. 3, how much the etched portion of the wiring layer is displaced in the width direction. It is a measure to show.
“A”: The deviation width of the etched portion of the wiring layer is within 3 μm “B”: The deviation width of the etched portion of the wiring layer is more than 3 μm and within 10 μm “C”: The deviation width of the etched portion of the wiring layer Is over 10μm
(耐久性評価)
 得られた配線基板の配線層側上にソルダーレジストを配置して保護し、40℃、85RH%で7日放置した後に、配線層、および、ソルダーレジストの剥がれを確認し、以下の基準に沿って評価した。
「A」:剥がれがなかった。
「B」:剥がれた部分が2箇所以下であった。
「C」:剥がれた部分が3箇所以上であった。
(Durability evaluation)
Solder resist is placed and protected on the wiring layer side of the obtained wiring board, and after leaving for 7 days at 40 ° C. and 85 RH%, the peeling of the wiring layer and the solder resist is confirmed, and the following criteria are met. And evaluated.
"A": There was no peeling.
“B”: The peeled portions were 2 or less.
“C”: There were 3 or more peeled portions.
<実施例2>
 銀ナノインクの代わりに、立山マシン製の銅ナノインク(溶媒:デカン)を使用した以外は、実施例1と同様の手順に従って、配線基板を製造し、各種評価を実施した。
 なお、実施例2においては、工程(B)にて、塗膜は撥水性領域上に形成された。
<Example 2>
A wiring board was manufactured according to the same procedure as in Example 1 except that copper nano ink (solvent: decane) manufactured by Tateyama Machine was used instead of silver nano ink, and various evaluations were performed.
In Example 2, the coating film was formed on the water-repellent region in the step (B).
<実施例3>
 ポリマー1の代わりに、ポリマー2を使用した以外は、実施例1と同様の手順に従って、配線基板を製造し、各種評価を実施した。
<Example 3>
A wiring board was produced according to the same procedure as in Example 1 except that polymer 2 was used instead of polymer 1, and various evaluations were performed.
<実施例4>
 銀ナノインクの代わりに、立山マシン製の銅ナノインク(溶媒:デカン)を使用した以外は、実施例3と同様の手順に従って、配線基板を製造し、各種評価を実施した。
 なお、実施例4においては、工程(B)にて、塗膜は撥水性領域上に形成された。
<Example 4>
A wiring board was produced according to the same procedure as in Example 3 except that copper nano ink (solvent: decane) manufactured by Tateyama Machine was used instead of the silver nano ink, and various evaluations were performed.
In Example 4, the coating film was formed on the water-repellent region in the step (B).
<実施例5>
 ポリマー1の代わりに、化合物3を使用して、IRレーザーにてパターン状に露光する代わりに、フォトマスクを用いてUV露光(1J/cm2)した以外は、実施例2と同様の手順に従って、配線基板を製造し、各種評価を実施した。
<Example 5>
A procedure similar to that of Example 2 was used except that Compound 3 was used instead of Polymer 1 and UV exposure (1 J / cm 2 ) was performed using a photomask instead of pattern exposure with an IR laser. A wiring board was manufactured and subjected to various evaluations.
<実施例6>
 250℃で15分間加熱処理の代わりに、フラッシュランプ露光(Xenon社製光焼結装置Sinteron2000、照射エネルギー:5J/m2、パルス幅:2m秒)を行い塗膜から配線層を形成すると共に、濡れ性変化層中に残存していた親水性領域を撥水性領域に変換し、銀ナノインクの代わりに以下の組成物Aを用い、インクジェット装置の代わりにディスペンサーを用いた以外は、実施例5と同様の手順に従って、配線基板を製造し、各種評価を実施した。
 なお、実施例6においては、工程(B)にて、塗膜は撥水性領域上に形成された。
(組成物A)
 以下の成分を、ビーズミル分散により混合して、組成物を製造した。
・アイソパーC        18g
・CuO            1g
・ポリエチレンオキシド     1g
<Example 6>
Instead of heat treatment at 250 ° C. for 15 minutes, flash lamp exposure (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5 J / m 2 , pulse width: 2 msec) is performed to form a wiring layer from the coating film, Example 5 except that the hydrophilic region remaining in the wettability changing layer was converted to a water-repellent region, the following composition A was used instead of the silver nanoink, and a dispenser was used instead of the ink jet device. According to the same procedure, a wiring board was manufactured and various evaluations were performed.
In Example 6, the coating film was formed on the water-repellent region in the step (B).
(Composition A)
The following ingredients were mixed by bead mill dispersion to produce a composition.
・ Isopar C 18g
・ CuO 1g
・ Polyethylene oxide 1g
<実施例7>
 化合物3の代わりに、ポリマー4を使用し、濡れ性変化層形成用組成物にさらにベンゾフェノン(0.2g)を添加した以外は、実施例6と同様の手順に従って、配線基板を製造し、各種評価を実施した。
<Example 7>
A wiring board was produced according to the same procedure as in Example 6 except that polymer 4 was used instead of compound 3 and benzophenone (0.2 g) was further added to the wettability variable layer forming composition. Evaluation was performed.
<実施例8>
 濡れ性変化層形成用組成物1の代わりに、濡れ性変化層形成用組成物2を使用した以外は、実施例2と同様の手順に従って、配線基板を製造し、各種評価を実施した。
 なお、濡れ性変化層形成用組成物2で得られる層は、エネルギーの付与により脱炭酸して濡れ性が変化する層ではない。
(濡れ性変化層形成用組成物2)
・ポリマー5          1g
・メタノール/水=3/1    9g
・光熱変換剤A       0.2g
<Example 8>
A wiring board was produced according to the same procedure as in Example 2 except that the wettability variable layer forming composition 2 was used instead of the wettability variable layer forming composition 1, and various evaluations were performed.
In addition, the layer obtained by the composition 2 for forming a wettability changing layer is not a layer in which the wettability is changed by decarboxylation by applying energy.
(Composition 2 for forming wettability changing layer)
・ Polymer 5 1g
・ Methanol / water = 3/1 9g
・ Photothermal conversion agent A 0.2g
<実施例9>
 化合物3の代わりに、以下の化合物Xを使用した以外は、実施例6と同様の手順に従って、配線基板を製造し、各種評価を実施した。
<Example 9>
A wiring board was produced according to the same procedure as in Example 6 except that the following compound X was used instead of compound 3, and various evaluations were performed.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<比較例1>
 濡れ性変化層を用いなかった以外は、実施例2と同様の手順に従って、配線基板を製造し、各種評価を実施した。
<Comparative Example 1>
A wiring board was manufactured according to the same procedure as in Example 2 except that the wettability changing layer was not used, and various evaluations were performed.
<比較例2>
 化合物3の代わりに、比較ポリマー1を用いた以外は、実施例5と同様の手順に従って、配線基板の製造を試みた。
 しかしながら、UV光を1J/cm2露光しても親水性領域および撥水性領域のパターンが形成されなかった。
 なお、比較ポリマー1は、エネルギーが付与された際に水との接触角が低下するように濡れ性が変化する濡れ性変化材料である。
<Comparative example 2>
An attempt was made to produce a wiring board according to the same procedure as in Example 5 except that Comparative Polymer 1 was used instead of Compound 3.
However, even when UV light was exposed to 1 J / cm 2 , the pattern of the hydrophilic region and the water repellent region was not formed.
The comparative polymer 1 is a wettability changing material whose wettability changes so that the contact angle with water decreases when energy is applied.
<比較例3>
 UV露光(1J/cm2)の代わりにUV露光(10J/cm2)を実施した以外は、比較例2と同様の手順に従って、配線基板を製造し、各種評価を実施した。
<Comparative Example 3>
Except that performed UV exposure (10J / cm 2) in place of the UV exposure (1 J / cm 2), in accordance with the same procedure as in Comparative Example 2, to produce a wiring board was carried out various evaluations.
<比較例4>
 得られた塗膜付き基板に対して250℃で15分間加熱処理を行う代わりに、塗膜部分にのみフラッシュランプ露光(Xenon社製光焼結装置Sinteron2000、照射エネルギー:5J/m2、パルス幅:2m秒)を行って配線層を形成した以外は、実施例2と同様の手順に従って、配線基板を製造し、各種評価を実施した。
 なお、比較例4では、工程(C2)が実施されていない。
<Comparative example 4>
Instead of subjecting the obtained coated substrate to heat treatment at 250 ° C. for 15 minutes, only the coating portion was exposed to flash lamp (Xenon's photosintering apparatus Sinteron 2000, irradiation energy: 5 J / m 2 , pulse width : 2 msec), a wiring board was manufactured according to the same procedure as in Example 2 except that the wiring layer was formed, and various evaluations were performed.
In Comparative Example 4, the step (C2) is not performed.
 以下の表1中、「親水性インク」は上記銀ナノインク(実施例1に記載)を意図し、「疎水性インク1」は立山マシン製の銅ナノインクを意図し、「疎水性インク2」は上記組成物Aを意図する。
 表1中、「焼成工程」欄および「定着工程」欄中の「熱」は加熱処理を、「光」は光照射処理(フラッシュランプ露光)を意図する。
 また、「焼成・定着に要した時間」とは、所定の導電度の配線層が得られるまでの時間を意図する。
In Table 1 below, “hydrophilic ink” is intended for the silver nano ink (described in Example 1), “hydrophobic ink 1” is intended for copper nano ink manufactured by Tateyama Machine, and “hydrophobic ink 2” is Composition A above is contemplated.
In Table 1, “heat” in the “baking step” column and “fixing step” column means heat treatment, and “light” means light irradiation treatment (flash lamp exposure).
In addition, the “time required for firing / fixing” intends the time until a wiring layer having a predetermined conductivity is obtained.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 本発明の製造方法によれば、得られた配線基板は配線層のパターン形成性に優れると共に、絶縁層の密着性の経時安定性にも優れていた。
 なかでも、実施例1と2との比較からわかるように、撥水性領域上に塗膜を形成したほうがパターン形成性に優れることが確認された。
 また、実施例5と6との比較からわかるように、焼成工程および定着工程で光照射処理を実施した場合、配線層を得るまでの時間がより短縮されることが確認された。
 また、実施例8と実施例2との比較からわかるように、エネルギーの付与により脱炭酸して濡れ性が変化する層を用いた実施例2のほうが、パターン形成性に優れることが確認された。
According to the manufacturing method of the present invention, the obtained wiring board was excellent in the pattern formation property of the wiring layer and also in the temporal stability of the adhesiveness of the insulating layer.
In particular, as can be seen from the comparison between Examples 1 and 2, it was confirmed that the pattern formation was superior when the coating film was formed on the water-repellent region.
Further, as can be seen from the comparison between Examples 5 and 6, it was confirmed that when the light irradiation treatment was performed in the firing step and the fixing step, the time until the wiring layer was obtained was further shortened.
Further, as can be seen from a comparison between Example 8 and Example 2, it was confirmed that Example 2 using a layer in which wettability was changed by decarboxylation by application of energy was superior in pattern formability. .
 一方、濡れ性変化層を用いなかった比較例1ではパターン形成性に劣っていた。
 また、エネルギーが付与された際に水との接触角が低下するように濡れ性が変化する濡れ性変化材料である比較ポリマー1を用いた場合、エネルギー照射量が少なく比較例2では、濡れ性変化層の変化が十分に進行せず、パターン形成性に劣っていた。また、エネルギー照射量を増やした比較例3では、パターンは形成されるものの、親水性領域が残存する為に耐久性に劣っていた。さらに、定着工程(C2)を実施しなかった比較例4では、パターンは形成されるものの、親水性領域が残存する為に耐久性に劣っていた。
On the other hand, in the comparative example 1 which did not use a wettability change layer, it was inferior to pattern formation.
Further, when Comparative Polymer 1 which is a wettability changing material whose wettability changes so that the contact angle with water is lowered when energy is applied, the wettability is small in Comparative Example 2 with a small amount of energy irradiation. The change of the change layer did not proceed sufficiently and the pattern formation was poor. In Comparative Example 3 in which the amount of energy irradiation was increased, a pattern was formed, but the durability was inferior because a hydrophilic region remained. Further, in Comparative Example 4 in which the fixing step (C2) was not performed, the pattern was formed, but the durability was inferior because the hydrophilic region remained.
 10  基板
 12  支持体
 14  濡れ性変化層
 14a 親水性領域
 14b 撥水性領域
 16  塗膜
 18  配線層
 20 配線層形成用組成物
DESCRIPTION OF SYMBOLS 10 Board | substrate 12 Support body 14 Wetting property change layer 14a Hydrophilic area | region 14b Water-repellent area | region 16 Coating film 18 Wiring layer 20 Composition for wiring layer formation

Claims (6)

  1.  支持体と、前記支持体上に配置され、エネルギーが付与された際に水との接触角が増加するように濡れ性が変化する濡れ性変化層とを有する基板の前記濡れ性変化層の一部の領域にエネルギーを付与して親水性領域から撥水性領域に変換し、前記濡れ性変化層上に撥水性領域と親水性領域とからなる濡れ性パターンを形成する工程(A)と、
     前記濡れ性変化層上に、金属粒子および/または金属酸化物粒子を少なくとも含有する配線層形成用組成物を付与して、前記撥水性領域上または前記親水性領域上に塗膜を形成する工程(B)と、
     前記塗膜にエネルギーを付与して配線層を形成する工程(C1)、および、前記濡れ性変化層に残存する前記親水性領域にエネルギーを付与して撥水性領域に変換する工程(C2)を同時に、または、別々に行う工程(C)とを備える、配線基板の製造方法。
    One of the wettability changing layers of the substrate having a support and a wettability changing layer which is disposed on the support and changes wettability so that a contact angle with water increases when energy is applied. Applying energy to the region of the part to convert from a hydrophilic region to a water-repellent region, and forming a wettability pattern comprising a water-repellent region and a hydrophilic region on the wettability changing layer (A);
    A step of applying a composition for forming a wiring layer containing at least metal particles and / or metal oxide particles on the wettability changing layer to form a coating film on the water-repellent region or the hydrophilic region. (B) and
    A step (C1) of applying energy to the coating film to form a wiring layer, and a step (C2) of applying energy to the hydrophilic region remaining in the wettability changing layer and converting it to a water-repellent region. The manufacturing method of a wiring board provided with the process (C) performed simultaneously or separately.
  2.  前記撥水性領域上に塗膜を形成する、請求項1に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 1, wherein a coating film is formed on the water-repellent region.
  3.  前記エネルギーの付与が光照射処理である、請求項1または2に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to claim 1 or 2, wherein the application of energy is a light irradiation treatment.
  4.  前記濡れ性変化層が、エネルギーの付与により脱炭酸して濡れ性が変化する層である、請求項1~3のいずれか1項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 3, wherein the wettability changing layer is a layer in which wettability is changed by decarboxylation by application of energy.
  5.  前記濡れ性変化層が、ニトロフェニル酢酸構造、β-ケト酸構造、および、カルボキシル基に対してβ位にO元素、N元素、またはS元素を有する酢酸構造からなる群から選択される少なくとも一つを有する化合物を含む、請求項1~4のいずれか1項に記載の配線基板の製造方法。 The wettability changing layer is at least one selected from the group consisting of a nitrophenylacetic acid structure, a β-keto acid structure, and an acetic acid structure having an O element, an N element, or an S element at the β position with respect to a carboxyl group. The method for manufacturing a wiring board according to any one of claims 1 to 4, comprising a compound having two.
  6.  前記工程(C1)および前記工程(C2)を同時に行う、請求項1~5のいずれか1項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 5, wherein the step (C1) and the step (C2) are performed simultaneously.
PCT/JP2014/057266 2013-04-01 2014-03-18 Method for manufacturing wiring board WO2014162867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076183 2013-04-01
JP2013076183A JP2014203848A (en) 2013-04-01 2013-04-01 Method of manufacturing wiring board

Publications (1)

Publication Number Publication Date
WO2014162867A1 true WO2014162867A1 (en) 2014-10-09

Family

ID=51658167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057266 WO2014162867A1 (en) 2013-04-01 2014-03-18 Method for manufacturing wiring board

Country Status (2)

Country Link
JP (1) JP2014203848A (en)
WO (1) WO2014162867A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006197A (en) * 2002-04-19 2004-01-08 Jsr Corp Conductive film forming composition, conductive film and its forming method
JP2004193327A (en) * 2002-12-11 2004-07-08 Ricoh Co Ltd Circuit board and its manufacturing method
JP2005032862A (en) * 2003-07-09 2005-02-03 Ricoh Co Ltd Patterning method
JP2005281350A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Pattern formation method, graft pattern material, conductive pattern formation method and conductive pattern material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006197A (en) * 2002-04-19 2004-01-08 Jsr Corp Conductive film forming composition, conductive film and its forming method
JP2004193327A (en) * 2002-12-11 2004-07-08 Ricoh Co Ltd Circuit board and its manufacturing method
JP2005032862A (en) * 2003-07-09 2005-02-03 Ricoh Co Ltd Patterning method
JP2005281350A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Pattern formation method, graft pattern material, conductive pattern formation method and conductive pattern material

Also Published As

Publication number Publication date
JP2014203848A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5408878B2 (en) Electrical, plating and catalytic use of nanomaterial compositions
JP5898097B2 (en) Method for preparing conductive adhesive between solar cells
US8540922B2 (en) Laser patterning of a carbon nanotube layer
EP2930722B1 (en) Process for manufacturing conductive film and printed wiring board
JP2006038999A (en) Method for forming conductive circuit by using laser irradiation, and conductive circuit
JP2010528428A (en) Metal ink
JP2013206721A (en) Liquid composition, metal film, conductor wiring, and method for manufacturing metal film
TWI588171B (en) Metal particle dispersion for electrically conductive substrate and method for producing the same, and method for producing electrically conductive substrate
Zhou et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid
JP2005235728A (en) Electrical component, electrical apparatus, and their manufacturing method
JP2015196841A (en) Method for manufacturing conductive film and composition for conductive film formation
WO2013145954A1 (en) Liquid composition, copper metal film, conductive wiring line, and method for producing copper metal film
JP2014192465A (en) Manufacturing method of electric circuit wiring board
WO2015033823A1 (en) Production method for conductive film
JP2011047003A (en) Method for producing copper film
JP4438456B2 (en) Radio wave absorber and manufacturing method thereof
WO2014162867A1 (en) Method for manufacturing wiring board
WO2016047306A1 (en) Process for producing film of metal oxide particles and process for producing metal film
JP5184488B2 (en) Method for forming conductive circuit
TWI597319B (en) Dispersant, metal particle dispersion for electroconductive substrate, and method for producing electroconductive substrate
JP4204357B2 (en) Processing method of photothermal conversion material
JP2014167872A (en) Method for producing conductive film, and wiring board
KR20160138451A (en) Method for forming wiring line
JP2015026681A (en) Method for manufacturing multilayer wiring board
WO2022050392A1 (en) Production method for metal wiring and kit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778914

Country of ref document: EP

Kind code of ref document: A1