WO2014162671A1 - Acousto-optical element and acousto-optical imaging apparatus - Google Patents

Acousto-optical element and acousto-optical imaging apparatus Download PDF

Info

Publication number
WO2014162671A1
WO2014162671A1 PCT/JP2014/001511 JP2014001511W WO2014162671A1 WO 2014162671 A1 WO2014162671 A1 WO 2014162671A1 JP 2014001511 W JP2014001511 W JP 2014001511W WO 2014162671 A1 WO2014162671 A1 WO 2014162671A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustooptic
light
liquid
acoustooptic device
acousto
Prior art date
Application number
PCT/JP2014/001511
Other languages
French (fr)
Japanese (ja)
Inventor
金子 由利子
卓也 岩本
寒川 潮
橋本 雅彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014162671A1 publication Critical patent/WO2014162671A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves

Definitions

  • the present application relates to an acoustooptic device and an acoustooptic imaging device, and more particularly to an acoustooptic imaging device that acquires an ultrasonic echo obtained from a subject as an optical image and an acoustooptic device used therefor.
  • an ultrasonic diagnostic apparatus is often used because of the simplicity of the diagnostic method and the low burden on the subject.
  • an ultrasonic diagnostic apparatus irradiates an ultrasonic wave from outside the body toward an organ, and uses a scattered ultrasonic wave to generate a two-dimensional or three-dimensional image of the organ or tissue. get.
  • Such an ultrasonic diagnostic apparatus generally performs transmission / reception of ultrasonic waves using a transducer array probe as a piezoelectric element, and uses information on a reflected wave from the living body converted into an electric signal to perform beam forming, etc.
  • the internal structure of the living body is displayed as an image by this signal processing.
  • the information in the body is obtained by scanning an ultrasonic beam under the control of an electronic circuit, it is called an electronic scanning ultrasonic diagnostic apparatus, but a high-speed processing circuit is required to ensure real-time performance.
  • a non-limiting exemplary acousto-optic imaging device includes an acousto-optic device used in an acousto-optic imaging device capable of widely imaging the inside of a living body without using a signal processing circuit with high calculation processing capability, and An acousto-optic imaging device is provided.
  • An acoustooptic device is an acoustooptic device for detecting a change in the refractive index of a liquid generated by propagation of a dense wave using light, and includes a support having an inner space, A liquid filled in an internal space, and a structure disposed in the internal space and in contact with the liquid, the structure having a plurality of three-dimensionally divided microcavities, The plurality of microcavities communicate with each other, and the liquid is disposed in the plurality of microcavities.
  • the acoustooptic device even if the acoustooptic device is subjected to vibration or temperature change from the outside, the acoustooptic medium is less likely to flow or fluctuate. Therefore, it is possible to realize an acousto-optic imaging device that is less likely to cause image disturbance due to vibration or temperature change.
  • FIG. 1 is a schematic diagram illustrating an embodiment of an acousto-optic imaging device of the present invention. It is a schematic diagram which shows embodiment of the acousto-optic device of this invention. It is a schematic diagram which expands and shows the acoustooptic medium of an acoustooptic device. It is a figure which shows the relationship between the frequency
  • the inventor of the present application examined a method of acquiring an image in a two-dimensional or three-dimensional manner, instead of obtaining an image by scanning an ultrasonic wave through a tissue inside a subject like a conventional ultrasonic diagnostic apparatus. .
  • the inventors have conceived that an image of a tissue inside a subject is acquired using an acoustooptic effect that is an interaction between ultrasonic waves and light.
  • FIG. 8 shows the configuration disclosed in Non-Patent Document 1.
  • the monochromatic light beam emitted from the laser light source 1101 is converted into a thick plane wave light beam by the beam expander 1102 and the aperture 1103.
  • the plane wave light flux passes through the acoustic cell 1108 and the cylindrical lenses 1104 (a), 1104 (b), and 1104 (c), and is projected onto the screen 1105.
  • the optical system composed of the cylindrical lenses 1104 (a), 1104 (b), and 1104 (c) has an asymmetric structure in which the convergence state differs between a direction horizontal to the paper surface and a direction perpendicular to the paper surface. For this reason, this optical system has astigmatism.
  • the focal length of the cylindrical lens 1104 (a) is such that the plane wave light beam emitted from the beam expander 1102 is focused at the position of the focal plane 1106 on a plane parallel to the paper surface of FIG. Is set.
  • the light beam that has passed through the focal plane 1106 diverges after passing through the focal plane 1106.
  • the divergent light beam is converged by the cylindrical lens 1104 (b) and refocused on the screen 1105.
  • the plane wave light beam that has passed through the beam expander 1102 enters the cylindrical lens 1104 (c) as a parallel light beam. Thereafter, the light is focused on the screen 1105 by the condensing action of the cylindrical lens 1104 (c).
  • the positions and lens surfaces of the cylindrical lenses 1104 (a), 1104 (b), and 1104 (c) are enlarged images in the direction parallel to and perpendicular to the paper surface of FIG. 8 of the optical system constituted by these lenses.
  • the ratio (magnification rate size of the object 1109 to be photographed / size of the image on the screen 1105) is set to be equal.
  • the object 1109 to be photographed is immersed in an acoustic cell 1108 filled with water 1107.
  • a to-be-photographed object 1109 is irradiated with monochromatic ultrasonic plane waves generated from an ultrasonic transducer 1111 driven by a signal source 1110 via water 1107.
  • an ultrasonic scattered wave is generated in the object to be imaged 1109, and the scattered wave propagates through a passing region in the water 1107 of monochromatic light from the laser light source 1101. Since the main guided mode of ultrasonic waves propagating in water is a dense wave (longitudinal wave), a sound pressure distribution in water 1107, that is, a refractive index distribution that matches the ultrasonic wave front is generated in water.
  • the refractive index distribution generated in the water 1107 becomes a sinusoidal one-dimensional grating repeated at the ultrasonic wavelength. . Therefore, diffracted light (only the ⁇ first-order diffracted light beam is expressed in the figure) is generated by the one-dimensional grating.
  • the diffracted light appears as a light spot on the screen 1105.
  • the brightness of the light spot is proportional to the amount of change in the refractive index of the one-dimensional grating, that is, the ultrasonic sound pressure.
  • FIG. 9 schematically shows the acoustooptic effect by Bragg diffraction.
  • a point O 1 is a point sound source (Huigens sound source) and radiates a spherical wave.
  • the light converges to the point O 2 with the line segment S 1 O 2 and the line segment S 3 O 2 in FIG.
  • the density of the acoustic medium caused by ultrasonic, -1-order Bragg diffraction light is generated in a direction that satisfies the Bragg angle theta B at each point on the arc S 1 S 3, it converges to a point O 3.
  • the points O 1 , O 2 and O 3 are located on the same circumference C.
  • the triangle O 1 O 2 O 3 is an isosceles triangle, and the angle O 2 O 1 O 3 is 2 ⁇ B.
  • is the wavelength of the sound wave, and ⁇ is the wavelength of the light.
  • image formation based on such a principle is performed by an optical image forming action of a condensing optical system, as in the case of a normal optical camera.
  • a receiver group required for a conventional electronic scanning ultrasonic diagnostic apparatus, a probe including a large number of ultrasonic transducers with uniform transmission / reception characteristics, and a reception signal group output from the receiver group The tissue in the subject can be imaged without using a high-speed and large-scale arithmetic circuit for performing signal processing such as beam forming for the.
  • Non-Patent Document 1 only discloses the acoustooptic effect by Bragg diffraction, and there is no suggestion how to realize imaging of a tissue in a living body by the acoustooptic effect.
  • Non-Patent Document 1 When the inventor of the present application has examined the technology disclosed in Non-Patent Document 1 in detail, according to the configuration disclosed in Non-Patent Document 1, the aqueous medium of the acousto-optic cell flows due to temperature change, external vibration, or the like. It is considered that the image is disturbed.
  • the frequency of ultrasonic waves used is as high as 15 MHz or more. This is because the acousto-optic cell is composed of an aqueous medium, and the conditions under which Bragg diffraction occurs are limited by the relationship between the acoustic velocity of water (about 1500 m / s) and the wavelength of ultrasonic waves. . In a living body, absorption attenuation increases substantially in proportion to the frequency. Therefore, it is preferable to use an ultrasonic wave having a frequency of 10 MHz or less in order to image a deep interior of a subject. Therefore, even if the configuration disclosed in Non-Patent Document 1 is used as it is, it is difficult to obtain an image of the tissue in the body of the subject.
  • the inventor of the present application has studied such a problem in detail and has come up with a novel acoustooptic imaging device and acoustooptic element.
  • An outline of one aspect of the acoustooptic imaging device and acoustooptic element of the present invention is as follows.
  • An acoustooptic device is an acoustooptic device for detecting a change in the refractive index of a liquid generated by propagation of a dense wave using light, and includes a support having an inner space, A liquid filled in an internal space, and a structure disposed in the internal space and in contact with the liquid, the structure having a plurality of three-dimensionally divided microcavities, The plurality of microcavities communicate with each other, and the liquid is disposed in the plurality of microcavities.
  • the plurality of microcavities may have a size of 1 mm or less.
  • the structure includes a plurality of unit structures smaller than the wavelength of light for detecting a change in the refractive index of the liquid, and the plurality of unit structures are connected to form the plurality of microcavities. May be.
  • the plurality of unit structures may be connected by partial chemical bonds of molecules, and may form a three-dimensional network structure.
  • the structure may be transparent to the light.
  • the structure may be a wet gel having a skeleton formed of siloxane.
  • the structure may be a silica gel wet gel.
  • the liquid may contain a fluorine material.
  • An acoustooptic imaging device includes an ultrasonic source that transmits an ultrasonic wave into a subject, and any one of the acoustooptic devices described above, wherein the ultrasonic wave reflected from the subject is reflected by the ultrasonic wave.
  • Acousto-optic elements arranged so that sound waves propagate through the liquid, and convergent light that irradiates the reflected ultrasonic waves propagating through the liquid of the acousto-optic elements in a direction non-parallel to the traveling direction of the reflected ultrasound waves
  • a light source that emits light
  • an imaging optical system that forms an image of the Bragg diffracted light of the convergent light generated by the acoustooptic device in a plane perpendicular to the propagation direction of the convergent light, and detects the image
  • an image receiving unit for converting into a signal.
  • FIG. 1 is a schematic configuration diagram of an acoustooptic imaging device 100 of the present embodiment.
  • the acoustooptic imaging device 100 includes a light source 1, an acoustooptic element 2, an imaging optical system 3, an image receiving unit 4, and an ultrasonic source 5.
  • the propagation direction (optical axis) of the focused light 8 emitted from the light source 1 is the z-axis
  • the direction perpendicular to the acoustic aperture 203 that is the surface where the subject 6 and the acoustooptic device 2 are in contact is the y-axis.
  • the x-axis is a direction perpendicular to the paper surface, which is a direction perpendicular to the y-axis and the z-axis.
  • the ultrasonic source 5 is disposed so as to be in contact with the subject 6 at the time of imaging, and transmits the ultrasonic wave 7 to the inside of the subject 6.
  • the ultrasonic wave 7 propagates through the subject 6, and when an object 6a having different acoustic impedance such as an organ or body tissue exists in the subject 6, a reflected ultrasonic wave 7a is generated at the object 6a.
  • the reflected ultrasonic wave 7a is a scattered wave.
  • the acoustooptic device 2 has an acoustic aperture 202 c and is arranged so that the acoustic aperture 203 is in contact with the subject 6.
  • the reflected ultrasonic wave 7a generated in the subject 6 is taken into the acoustooptic device 2 from the acoustic aperture 202c.
  • the acoustooptic device 2 holds an acoustooptic medium 201, and an ultrasonic wave 7 b having information on the subject 6 in intensity and phase distribution propagates through the acoustooptic medium 201, and the refractive index changes due to the density of the acoustooptic medium 201.
  • the light source 1 irradiates the focused light 8 toward the acoustooptic device 2.
  • the focused light 8 converges in the y direction in FIG. 1 to have a focal point, and propagates in parallel without converging in the x direction.
  • the propagation direction of the focused light 8 is not parallel to the propagation direction of the ultrasonic wave 7b.
  • the focal point of the focused light 8 is located on the opposite side of the light source 1 with the acousto-optic element 2 interposed therebetween.
  • the focused light 8 and the ultrasonic wave 7 b having information on the subject 6 in the intensity and phase distribution are in contact with each other to act, as described with reference to FIG.
  • Bragg diffraction occurs due to the change in the refractive index due to the density of the light, and a ⁇ 1st order diffracted light beam 8a, a 0th order diffracted light beam 8b and a + 1st order diffracted light beam 8c are generated.
  • the focal plane 9 means a plane (xy plane) that passes through the focal point of the focused light 8 and is perpendicular to the propagation direction of the focused light 8.
  • the image formed on the focal plane 9 is incomplete and forms an image in the direction in which the focused light 8 is focused (y direction), but is not formed in the direction in which the focused light 8 propagates in parallel (x direction). I don't have a statue.
  • the imaging optical system 3 is disposed at a position facing the light source 1 with the acoustooptic element 2 interposed therebetween, and the ⁇ 1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam transmitted through the acoustooptic element 2. 8 c enters the imaging optical system 3.
  • the incomplete image of the subject 6 imaged by the ⁇ 1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c is also focused in the y direction by the image forming optical system 3, and the y direction and x Projected as a complete image imaged in the direction.
  • the image receiving unit 4 is arranged further downstream of the imaging optical system 3, detects the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c formed by the image forming optical system 3, and converts it into an electrical signal.
  • each component will be described in detail.
  • the light source 1 emits focused light 8 of monochromatic light. As described above, the focal point 9 is focused in the y direction, and the focal point is not propagated in parallel in the x direction.
  • the light source 1 for example, a gas laser represented by a He—Ne laser, a solid-state laser, a semiconductor laser narrowed by an external resonator, or the like can be used.
  • the light source 1 further includes, for example, a beam expander and a cylindrical lens.
  • the aperture of the light emitted from the laser is widened by the beam expander and focused only in the y direction by the cylindrical lens.
  • the light beam emitted from the light source 1 may be continuous, or may be a pulsed light beam whose emission time can be controlled.
  • the ultrasonic source 5 is disposed in contact with the subject 6 during imaging.
  • the ultrasonic source 5 receives a signal from the ultrasonic signal source 10 and makes a continuous wave or a pulsed ultrasonic wave 7 having a plurality of identical sine waveforms incident on the subject 6.
  • the ultrasonic wave 7 composed of a plurality of waves having the same sine waveform means an ultrasonic wave having a time waveform in which a sine waveform having a constant amplitude and frequency is continuously or continuously for a predetermined time.
  • the ultrasonic wave 7 irradiates a region to be imaged of the subject 6 with a substantially uniform illuminance.
  • the ultrasonic waves 7 that are incident on the subject 6 by the ultrasonic source 5 may not be plane waves.
  • the duration of the time waveform is set to be equal to or greater than the reciprocal (cycle) of the carrier frequency.
  • the ultrasonic wave 7 is not limited to an acoustic signal having a sine wave as a carrier wave but may be an ultrasonic signal including a repetitive signal having a waveform that is not a sine wave such as a square wave or a sawtooth wave.
  • the adhesion between the ultrasonic source 5 and the subject 6 may be improved by using a matching material such as an ultrasonic gel so that the ultrasonic source 5 can efficiently enter the ultrasonic wave 7 on the subject 6.
  • the subject 6 is made of a material whose ultrasonic wave propagation attenuation is not extremely large.
  • An example of the subject 6 is a living body.
  • the ultrasonic wave 7 incident on the subject 6 propagates through the subject 6.
  • the reflected ultrasonic wave 7a enters the acoustooptic device 2 through the acoustic aperture 202c.
  • the ultrasonic wave 7b incident inside the acoustooptic device 2 has information on the subject 6 in intensity and phase distribution.
  • FIG. 1B is a schematic perspective view of the acoustooptic device 2.
  • the acoustooptic device 2 includes a cell 202 as a support and an acoustooptic medium 201 held in the inner space of the cell 202.
  • the cell 202 has an incident surface 202a on which the focused light 8 is incident, an output surface 202b, and an acoustic aperture 202c.
  • the cell 202 and the acousto-optic medium 201 are made of a material that is transparent to the focused light 8.
  • a cell such as quartz or glass can be used as the cell 202.
  • FIG. 2 shows a schematic diagram of the acousto-optic medium 201 held in the cell 202.
  • the acousto-optic medium 201 includes a liquid 201a and a structure 201b in contact with the liquid 201a.
  • the structure 201b has a higher rigidity than the liquid 201a and includes a plurality of microcavities 201c that are three-dimensionally partitioned (partitioned).
  • the plurality of microcavities 201c communicate with each other and form a continuous space. That is, the structure 201b is porous.
  • the liquid 201a is disposed in a space formed by the continuous plurality of microcavities 201c. Since the liquid 201a is arranged in the plurality of minute cavities 201c partitioned, the liquid 201a is less likely to flow or fluctuate even when subjected to vibration or temperature change from the outside of the acoustooptic device 2. For this reason, disturbance of the density of the acoustooptic medium 201 due to the ultrasonic wave 7b propagating through the acoustooptic medium 201 is suppressed, and the occurrence of disturbance in the detected image can be suppressed. Further, since the plurality of minute cavities 201 c communicate with each other, the propagation of the ultrasonic waves 7 b in the acousto-optic medium 201 is not hindered.
  • the size of the microcavity 201c can be determined according to vibrations and temperature changes that the acoustooptic device 2 receives. For example, when considering a sphere inscribed in each microcavity 201c (a sphere that can be inserted into each microcavity 201c), the diameter of the sphere is about 300 nm or less.
  • silica wet gel can be used as the structure 201b having such a microcavity 201c.
  • the silica wet gel is a polymer having a skeleton formed of siloxane, and as shown in FIG. 2, the silica particles 201d are connected to the adjacent silica particles 201d by chemical bonds.
  • Silica particles 201d have a unit structure and form a three-dimensional network structure, thereby forming a plurality of microcavities 201c.
  • the silica particles 201d are transparent to light having a wavelength of about 380 nm or more, the light source 1 that emits the focused light 8 having a wavelength of 600 nm or more is preferably used.
  • the diameter of the silica particles 201d is preferably smaller than the wavelength of the focused light 8, and is preferably 300 nm or less.
  • the diameter of the silica particle 201d is about 20 nm.
  • a porous structure used for a biomaterial such as an artificial bone can be used.
  • a biomaterial such as an artificial bone
  • Such an artificial bone can be formed, for example, by partially sintering and laminating thin ceramic green sheets of about 1 mm or less with laser light.
  • a resin porous structure may be used.
  • the resin powder can be formed by a powder sintering additive manufacturing method.
  • the liquid 201a Various liquids such as water can be used for the liquid 201a.
  • the sound speed of the liquid 201a is small, a high-resolution image can be acquired.
  • the liquid 201a preferably contains a fluorine-based material.
  • the sound speed of water is about 1500 m / sec, but the sound speed of fluorine-based materials is generally smaller than this.
  • the speed of sound of NovecTM 7200 (hydrofluoroether) manufactured by Sumitomo 3M Limited is 630 m / sec
  • the speed of sound of fluorine-based liquid materials such as NovecTM 7000, Novec TM 7100, Novec TM 7200, Novec TM 7300, Fluorinert TMFC-72 and FC-3283 is also slow. Material.
  • the focused light 8 from the light source 1 enters the acoustooptic device 2.
  • the ultrasonic wave 7 b having the information of the subject 6 taken into the acoustooptic device 2 propagates through the acoustooptic medium 201 and comes into contact with the focused light 8. Since the ultrasonic wave 7b propagating through the acoustooptic medium 201 is a dense wave (longitudinal wave), a sound pressure distribution of the acoustooptic medium 201, that is, a refractive index distribution that matches the wavefront of the ultrasonic wave 7b is generated in the medium. .
  • the refractive index distribution generated in the acousto-optic medium 201 becomes a sinusoidal diffraction grating repeated at the ultrasonic wavelength. Therefore, when the focused light 8 is incident, a diffracted light beam is generated by the diffraction grating.
  • FIG. 1 shows only the ⁇ 1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c.
  • the diffracted light is composed of Bragg diffracted light and Raman-Nath diffracted light.
  • the device according to the invention is applied under conditions where the described Bragg diffracted light becomes the main diffracted light.
  • the diffracted light generated is only the ⁇ 1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c.
  • the brightness of the diffracted light is proportional to the amount of change in the refractive index of the diffraction grating, that is, the sound pressure of the ultrasonic waves.
  • the ultrasonic wave 7b continues to propagate after contact with the focused light 8. However, if the ultrasonic wave 7b is reflected at the end of the acoustooptic device 2 and contacts the focused light 8 again, acquisition of an image may be hindered. Therefore, reflection of ultrasonic waves may be prevented by providing the acoustic optical element 2 with the sound wave absorption end 204. In this case, the sound wave absorption end 204 is disposed at a position farther from the acoustic aperture 202 c than the propagation region of the focused light 8 in the acoustooptic device 2.
  • a matching material such as an ultrasonic gel is provided between the acoustic aperture 203 of the acoustooptic device 2 and the subject 6 so that the reflected ultrasound 7a from the subject 6 is efficiently incident on the acoustooptic device 2. Adhesion may be enhanced by application.
  • the ⁇ 1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c generated by the action of the ultrasonic wave 7b having the information of the subject 6 and the focused light 8 in the acousto-optic medium 201 pass through the focal point of the focused light 8 and converge.
  • the focal plane 9, which is a plane perpendicular to the propagation direction of the light 8, is focused in the y direction, and an optical image of the subject 6 is formed on the focal plane 9.
  • the optical image of the subject 6 generated at this time is an incomplete optical image that is not formed in the x direction.
  • Imaging optical system 3 The ⁇ 1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c transmitted through the acoustooptic device 2 are incident on the imaging optical system 3. As the ⁇ 1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c propagate through the imaging optical system 3, an incomplete optical image is focused even in the z direction, and the x and y directions are focused on the imaging surface 91. It is projected as a complete image formed in either direction.
  • the imaging optical system 3 includes, for example, a cylindrical lens 3a and a cylindrical lens 3b as shown in FIG.
  • the cylindrical lens 3a is arranged so as to have a refractive power in the y direction and no refractive power in the x direction.
  • the cylindrical lens 3b is arranged so as to have a refractive power in the x direction and no refractive power in the y direction.
  • the 0th-order diffracted light beam 8b that has passed through the focal plane 9 is converged in the y direction by the cylindrical lens 3a in the imaging optical system 3, and is focused again on the imaging plane 91.
  • the 0th-order diffracted light beam 8b is incident on the cylindrical lens 3b as a parallel light beam.
  • the third cylindrical lens 3b is focused on the image plane 91 by the light condensing action.
  • the image receiving unit 4 detects the ⁇ 1st order diffracted light beam 8 a or the + 1st order diffracted light beam 8 c on the imaging surface 91. As described above, since an image is projected onto the imaging surface 91 as a complete image formed in both the x and y directions, an optical image of the subject 6 is obtained via the ultrasonic wave 7.
  • the 0th-order diffracted light beam 8b or the other diffracted light beam that does not receive the image may be blocked by the light-shielding unit 15 so that only the ⁇ 1st-order diffracted light beam 8a or the + 1st-order diffracted light beam 8c is received by the image receiving unit 4.
  • the image receiving unit 4 is typically a solid-state imaging device such as a CCD or a CMOS, and captures the light intensity distribution of the diffracted image by the ⁇ 1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c as an optical image to obtain an electric signal. Convert to
  • ultrasonic waves are transmitted toward the inside of the subject, and reflected ultrasonic waves obtained from the inside are propagated to the acoustooptic element.
  • reflected ultrasonic waves obtained from the inside are propagated to the acoustooptic element.
  • the wavelength of the ultrasonic wave propagating through the acousto-optic medium is shorter than the ultrasonic wave propagating through the subject, thereby transmitting from the ultrasonic transmitter. Therefore, it is possible to reduce the frequency of the ultrasonic wave to be used, and it is possible to use the low-frequency ultrasonic wave that is not easily attenuated inside the subject.
  • the liquid of the acousto-optic medium is disposed in a space formed by a series of partitioned or partitioned microcavities, it receives vibrations from the outside of the acousto-optic element, temperature changes, and the like. However, the liquid is less likely to flow or fluctuate. For this reason, the coarse / fine disturbance of the acoustooptic medium due to the ultrasonic wave propagating through the acoustooptic medium is suppressed, and the occurrence of the disturbance in the detected image can be suppressed. Therefore, according to the acoustooptic device of the present embodiment, the inside of the subject can be imaged with high resolution.
  • the cell 202 of the acoustooptic device 2 a cell produced by bonding five surfaces of synthetic quartz glass (product name: Tempax glass) was used.
  • the cell 202 has a cup shape, and the inner space is filled with the acousto-optic medium 201.
  • Silica wet gel was used for the structure 201b of the acousto-optic medium 201, and NovecTM 7200 manufactured by Sumitomo 3M Limited was used for the liquid.
  • the silica wet gel was prepared by the following method. Tetramethoxysilane (hereinafter referred to as TMOS: manufactured by Kanto Chemical Co., Inc.), ethanol (manufactured by Wako Pure Chemical Industries), and aqueous ammonia (0.05 N: manufactured by Wako Pure Chemical Industries, Ltd.) in a weight ratio of 1: 1.62: 0.47 Weighed with.
  • TMOS Tetramethoxysilane
  • ethanol manufactured by Wako Pure Chemical Industries
  • aqueous ammonia 0.05 N: manufactured by Wako Pure Chemical Industries, Ltd.
  • TMOS and ethanol were weighed and mixed, and stirred for about 1 minute. Then, while continuing stirring, ammonia water was added dropwise, and stirring was further performed for about 1 minute. Thus, TMOS was dehydrated and condensed to obtain a sol solution.
  • a sol solution was placed in the cell 202.
  • the cell 202 for preventing the sol solution from drying was placed in an airtight container and allowed to stand for 10 hours or more at a temperature of 40 degrees. During this time, the sol solution gelled, and a structure 201 b made of silica wet gel was synthesized in the cell 202.
  • FIG. 3 is a diagram showing that the speed of sound of the acousto-optic medium 201 changes as replacement is performed.
  • the sound speed of ethanol is about 1500 m / s
  • the sound speed of NovecTM 7200 is 632 m / s.
  • the speed of sound decreases as the number of substitutions increases because the liquid is replaced with NovecTM 7200 from a liquid such as ethanol.
  • the replacement was completed when the drop in sound speed converged. In the case where it is necessary to proceed with replacement in order to lower the sound speed further, a method of discarding the old immersion liquid while dropping new NovecTM 7200 into the immersion liquid is effective.
  • the acoustooptic imaging apparatus 100 including the acoustooptic medium 201 including the structure 201b made of silica wet gel and the liquid 201a made of NovecTM 7200 filled in the microcavity 201c of the structure 201b was completed.
  • FIG. 4 shows the light transmittance of the acousto-optic imaging device 100.
  • the transmittance was measured using a Hitachi U-4000 spectrophotometer.
  • the measuring device received the transmitted light with an integrating sphere.
  • the transmittance was 70% or more between wavelengths of 360 nm and 1158 nm. This is presumably because the silica particles forming the silica wet gel are sufficiently smaller than the wavelength of light used for the measurement, and NovecTM 7200 has a high transmittance in the above-mentioned wavelength range.
  • the transmittance varies depending on the material used for the acoustooptic medium 201. Since the higher the transmittance, the higher the resolution of the image that can be obtained, the wavelength selection of the light to be used can be performed according to the required resolution.
  • FIG. 5 schematically shows a measurement system for evaluating the fluctuation of the diffracted light.
  • the acoustooptic device 2 was placed on a SUS case 51 to which a vibrator 50 (manufactured by Fuji Ceramics Co., Ltd., ultrasonic wave (A) 5Z10D-SYX (C-6)) was bonded.
  • A ultrasonic wave
  • C-6 ultrasonic wave
  • the vibrator 50 was connected to the power source 53 via the function generator 52 and oscillated a 2.6 MHz burst wave.
  • the voltage was 1 V and the current was 19 mA.
  • the 2.6 MHz ultrasonic wave oscillated from the vibrator propagates to the acoustooptic device 2. Since the main waveguide mode of the ultrasonic wave propagating to the acoustooptic medium 201 is a sparse / dense wave (longitudinal wave), a refractive index distribution that matches the ultrasonic wavefront is generated in the acoustooptic medium 201. At a certain moment, the refractive index distribution generated in the acousto-optic medium 201 becomes a sinusoidal one-dimensional grating repeated at the ultrasonic wavelength.
  • the 0th-order light 56 and the first-order diffracted light 57 appear as light spots. Since the 0th-order light 56 is not an observation target, it was cut with a 0th-order light cut mask and only the 1st-order diffracted light 57 was observed with the CCD 59. The state of the observed spot is shown in FIG. The spot light was traced for 25 seconds to evaluate the fluctuation. The result is shown in FIG.
  • the structure 201b is not arranged in the cell 202, but only the NovecTM 7200 that is the liquid 201a is arranged, and the state of the observed spot is shown in FIG. 6B. Moreover, the evaluation result of fluctuation is shown in FIG.
  • the spot of the light spot is smaller in FIG. 6A, and the fluctuation of the diffracted light is suppressed by the structure 201b.
  • the fluctuation is suppressed to 1 nm or less, but when there is no structure 201b (comparative example), the fluctuation is 3 nm or more. I understand. From these results, it was found that the structure 201b is effective in suppressing the fluctuation of the acoustooptic medium in the acoustooptic element.
  • the acoustooptic device and acoustooptic device disclosed in the present application can be used for various ultrasonic diagnoses.

Abstract

An acousto-optical element disclosed in the present application for detecting, using light, refractive-index variation of a fluid generated by propagation of compressional waves, the acousto-optical element being provided with a support body having an interior space, a fluid (201a) filling the interior space, and a structure body (201b) disposed in the interior space and arranged in contact with the fluid, the structure body (201b) having a plurality of microcavities (201c) divided three-dimensionally, the plurality of microcavities communicating with each other, and the fluid being disposed inside the plurality of microcavities.

Description

音響光学素子および音響光学撮像装置Acoustooptic device and acoustooptic imaging apparatus
 本願は、音響光学素子および音響光学撮像装置に関し、特に、被写体から得られる超音波エコーを光学画像として取得する音響光学撮像装置およびそれに用いる音響光学素子に関する。 The present application relates to an acoustooptic device and an acoustooptic imaging device, and more particularly to an acoustooptic imaging device that acquires an ultrasonic echo obtained from a subject as an optical image and an acoustooptic device used therefor.
 高齢化社会の到来や食文化の欧米化にともなって、心筋梗塞や脳梗塞など循環器系疾病の罹患者数の増加が予測されている。そして、同疾病に関する医療診断技術の向上に対し、最近その社会的要求が特に高まってきている。このような背景の下、循環器系の医療現場において、病状を把握する上で有用な診断情報の中に、臓器の高速な動的振る舞いを通して観測される組織や臓器の弾性体としての特性がある。例えば、体内において、心拍よりも早い振動数領域における心臓壁や動脈壁上の変位分布を調べることにより病変部位の弾性体としての特性を調べ、動脈硬化の進行の程度や病変部位の大きさを判断する取り組みがなされている。 With the arrival of an aging society and the westernization of food culture, the number of people with cardiovascular diseases such as myocardial infarction and cerebral infarction is expected to increase. In recent years, social demands for the improvement of medical diagnosis technology related to the disease have increased. Under such circumstances, in the medical field of circulatory system, the characteristics as an elastic body of tissues and organs observed through high-speed dynamic behavior of organs are among the diagnostic information useful for grasping the pathology. is there. For example, in the body, by examining the displacement distribution on the heart wall or arterial wall in the frequency region faster than the heartbeat, the characteristics of the affected area as an elastic body can be investigated, and the degree of progression of arteriosclerosis and the size of the affected area can be determined. Efforts to judge are being made.
 このような医療診断においては、診断方法の簡便さや被験者に対する負担の少なさから、超音波診断装置が用いられることが多い。例えば、特許文献1に開示されるように、超音波診断装置は、体外から臓器に向かって超音波を照射し、散乱されてきた超音波を用いて臓器や組織の2次元ないしは3次元画像を取得する。このような超音波診断装置は、一般的に圧電素子にトランスデューサーアレイプローブを用いて超音波の送受信を行い、電気信号に変換された生体内からの反射波の情報を用いて、ビームフォーミングなどの信号処理により生体内部の構造を画像表示する。 In such medical diagnosis, an ultrasonic diagnostic apparatus is often used because of the simplicity of the diagnostic method and the low burden on the subject. For example, as disclosed in Patent Document 1, an ultrasonic diagnostic apparatus irradiates an ultrasonic wave from outside the body toward an organ, and uses a scattered ultrasonic wave to generate a two-dimensional or three-dimensional image of the organ or tissue. get. Such an ultrasonic diagnostic apparatus generally performs transmission / reception of ultrasonic waves using a transducer array probe as a piezoelectric element, and uses information on a reflected wave from the living body converted into an electric signal to perform beam forming, etc. The internal structure of the living body is displayed as an image by this signal processing.
 電子回路による制御により超音波ビームを走査して体内の情報を得ることから、電子走査型超音波診断装置と呼ばれるが、リアルタイム性を確保するためには、高速の処理回路が必要である。 Since the information in the body is obtained by scanning an ultrasonic beam under the control of an electronic circuit, it is called an electronic scanning ultrasonic diagnostic apparatus, but a high-speed processing circuit is required to ensure real-time performance.
特許昭58-34580号公報Japanese Patent No. 58-34580
 本発明による限定的ではない例示的な音響光学撮像装置は、演算処理の能力の高い信号処理回路を用いることなく、生体内部を広く撮影することのできる音響光学撮像装置に用いられる音響光学素子および音響光学撮像装置を提供する。 A non-limiting exemplary acousto-optic imaging device according to the present invention includes an acousto-optic device used in an acousto-optic imaging device capable of widely imaging the inside of a living body without using a signal processing circuit with high calculation processing capability, and An acousto-optic imaging device is provided.
 本発明の一態様に係る音響光学素子は、粗密波の伝播により発生する液体の屈折率変化を、光を用いて検出するための音響光学素子であって、内空間を有する支持体と、前記内空間に充填された液体と、前記内空間に配置され、前記液体と接触している構造体とを備え、前記構造体は、3次元的に区画された複数の微小空洞部を有し、前記複数の微小空洞部は互いに連通しており、前記複数の微小空洞部内に前記液体が配置している。 An acoustooptic device according to an aspect of the present invention is an acoustooptic device for detecting a change in the refractive index of a liquid generated by propagation of a dense wave using light, and includes a support having an inner space, A liquid filled in an internal space, and a structure disposed in the internal space and in contact with the liquid, the structure having a plurality of three-dimensionally divided microcavities, The plurality of microcavities communicate with each other, and the liquid is disposed in the plurality of microcavities.
 本発明の一態様に係る音響光学素子によれば、音響光学素子の外部からの振動や温度変化等を受けても、音響光学媒体に流れや揺らぎが生じにくい。このため、振動や温度変化による画像の乱れが生じにくい音響光学撮像装置を実現し得る。 According to the acoustooptic device according to one aspect of the present invention, even if the acoustooptic device is subjected to vibration or temperature change from the outside, the acoustooptic medium is less likely to flow or fluctuate. Therefore, it is possible to realize an acousto-optic imaging device that is less likely to cause image disturbance due to vibration or temperature change.
本発明の音響光学撮像装置の実施形態を示す模式図である。1 is a schematic diagram illustrating an embodiment of an acousto-optic imaging device of the present invention. 本発明の音響光学素子の実施形態を示す模式図である。It is a schematic diagram which shows embodiment of the acousto-optic device of this invention. 音響光学素子の音響光学媒体を拡大して示す模式図である。It is a schematic diagram which expands and shows the acoustooptic medium of an acoustooptic device. 実施例の音響光学素子を作製す途中におけるフッ素系材料への置換回数と音速との関係を示す図である。It is a figure which shows the relationship between the frequency | count of substitution to the fluorine-type material in the middle of producing the acousto-optic element of an Example, and a sound speed. 実施例の音響光学素子の透過率を示す図である。It is a figure which shows the transmittance | permeability of the acousto-optic element of an Example. 実施例および比較例の音響光学素子における回折光の揺らぎを評価する測定系を示す図である。It is a figure which shows the measurement system which evaluates the fluctuation | variation of the diffracted light in the acousto-optic element of an Example and a comparative example. (a)および(b)は、それぞれ実施例および比較例の音響光学素子における1次回折光の様子を示す図である。(A) And (b) is a figure which shows the mode of the 1st-order diffracted light in the acousto-optic element of an Example and a comparative example, respectively. 実施例および比較例の音響光学素子における回折光の光点の揺らぎを評価した結果を示す図である。It is a figure which shows the result of having evaluated the fluctuation of the light spot of the diffracted light in the acousto-optic element of an Example and a comparative example. 従来の音響光学撮像装置を示す図である。It is a figure which shows the conventional acousto-optic imaging device. ブラッグ回折による音響光学効果を模式的に示す図である。It is a figure which shows typically the acoustooptic effect by Bragg diffraction.
 本願発明者は、被検体内部の組織を従来の超音波診断装置のように超音波を走査することによって画像を得るのではなく、2元的あるいは3次元的に画像を取得する方法を検討した。その結果、超音波と光の相互作用である音響光学効果を利用し、被検体内部の組織の画像を取得することを想到した。 The inventor of the present application examined a method of acquiring an image in a two-dimensional or three-dimensional manner, instead of obtaining an image by scanning an ultrasonic wave through a tissue inside a subject like a conventional ultrasonic diagnostic apparatus. . As a result, the inventors have conceived that an image of a tissue inside a subject is acquired using an acoustooptic effect that is an interaction between ultrasonic waves and light.
 具体的には、非特許文献1に開示されるように、超音波によって伝搬媒質部に生じた粗密によるブラッグ回折を利用すれば、被検体内部の組織を画像化できることが分かった。図8は、非特許文献1に開示された構成を示している。図8に示すように、レーザー光源1101から出射した単色光束は、ビームエクスパンダー1102、ならびに、アパーチャ1103により、太い平面波光束に変換される。平面波光束は、音響セル1108中および、円筒レンズ1104(a)、1104(b)、1104(c)を透過し、スクリーン1105に投影される。円筒レンズ1104(a)、1104(b)、1104(c)により構成される光学系は、紙面に水平な方向と垂直な方向とで収束状態が異なる非対称な構造を持っている。このため、この光学系は非点収差を持つ。 Specifically, as disclosed in Non-Patent Document 1, it has been found that the tissue inside the subject can be imaged by using the Bragg diffraction due to the density produced in the propagation medium by ultrasonic waves. FIG. 8 shows the configuration disclosed in Non-Patent Document 1. As shown in FIG. 8, the monochromatic light beam emitted from the laser light source 1101 is converted into a thick plane wave light beam by the beam expander 1102 and the aperture 1103. The plane wave light flux passes through the acoustic cell 1108 and the cylindrical lenses 1104 (a), 1104 (b), and 1104 (c), and is projected onto the screen 1105. The optical system composed of the cylindrical lenses 1104 (a), 1104 (b), and 1104 (c) has an asymmetric structure in which the convergence state differs between a direction horizontal to the paper surface and a direction perpendicular to the paper surface. For this reason, this optical system has astigmatism.
 図8において実線で示すように、ビームエクスパンダー1102を出射した平面波光束が、図8の紙面と平行な面において、焦点面1106の位置で焦点を結ぶよう、円筒レンズ1104(a)の焦点距離が設定されている。焦点面1106を通過した光束は焦点面1106を通過後、発散する。発散光束は円筒レンズ1104(b)で収束されスクリーン1105上で再度焦点を結ぶ。 As indicated by the solid line in FIG. 8, the focal length of the cylindrical lens 1104 (a) is such that the plane wave light beam emitted from the beam expander 1102 is focused at the position of the focal plane 1106 on a plane parallel to the paper surface of FIG. Is set. The light beam that has passed through the focal plane 1106 diverges after passing through the focal plane 1106. The divergent light beam is converged by the cylindrical lens 1104 (b) and refocused on the screen 1105.
 一方、ビームエクスパンダー1102の光軸を含み図8の紙面に垂直な面内にでは、ビームエクスパンダー1102を通過した平面波光束は平行光束のまま円筒レンズ1104(c)に入射する。その後、円筒レンズ1104(c)の集光作用でスクリーン1105上に焦点を結ぶ。円筒レンズ1104(a)、1104(b)、1104(c)の位置やレンズ面は、これらのレンズにより構成される光学系の、図8の紙面と平行な方向および垂直な方向における画像の拡大率(拡大率=被撮影物体1109の大きさ/スクリーン1105上での像の大きさ)が等しくなるよう設定される。 On the other hand, in the plane perpendicular to the paper surface of FIG. 8 including the optical axis of the beam expander 1102, the plane wave light beam that has passed through the beam expander 1102 enters the cylindrical lens 1104 (c) as a parallel light beam. Thereafter, the light is focused on the screen 1105 by the condensing action of the cylindrical lens 1104 (c). The positions and lens surfaces of the cylindrical lenses 1104 (a), 1104 (b), and 1104 (c) are enlarged images in the direction parallel to and perpendicular to the paper surface of FIG. 8 of the optical system constituted by these lenses. The ratio (magnification rate = size of the object 1109 to be photographed / size of the image on the screen 1105) is set to be equal.
 被撮影物体1109は、水1107で満たされた音響セル1108中に浸漬されている。被撮影物体1109には、水1107を介して、信号源1110で駆動される超音波振動子1111から発生する単色超音波平面波が照射される。その際、被撮影物体1109において超音波散乱波が生成され、散乱波は、レーザー光源1101からの単色光の水1107中での通過領域を伝搬する。水中を伝搬する超音波の主な導波モードは粗密波(縦波)であるので、水1107中の音圧分布、すなわち、超音波波面に一致した屈折率分布が水中に生成される。 The object 1109 to be photographed is immersed in an acoustic cell 1108 filled with water 1107. A to-be-photographed object 1109 is irradiated with monochromatic ultrasonic plane waves generated from an ultrasonic transducer 1111 driven by a signal source 1110 via water 1107. At that time, an ultrasonic scattered wave is generated in the object to be imaged 1109, and the scattered wave propagates through a passing region in the water 1107 of monochromatic light from the laser light source 1101. Since the main guided mode of ultrasonic waves propagating in water is a dense wave (longitudinal wave), a sound pressure distribution in water 1107, that is, a refractive index distribution that matches the ultrasonic wave front is generated in water.
 超音波散乱波は単色(=単一周波数を有する超音波)であるから、ある瞬間においては、水1107中に生成される屈折率分布は超音波波長で繰り返される正弦波状の1次元格子となる。したがって、その1次元格子により回折光(図中では±1次回折光束のみ表現)が生成する。回折光はスクリーン1105上で光点として現れる。光点の輝度は、1次元格子の屈折率変化量、すなわち、超音波音圧に比例する。 Since the ultrasonic scattered wave is monochromatic (= ultrasonic wave having a single frequency), at a certain moment, the refractive index distribution generated in the water 1107 becomes a sinusoidal one-dimensional grating repeated at the ultrasonic wavelength. . Therefore, diffracted light (only the ± first-order diffracted light beam is expressed in the figure) is generated by the one-dimensional grating. The diffracted light appears as a light spot on the screen 1105. The brightness of the light spot is proportional to the amount of change in the refractive index of the one-dimensional grating, that is, the ultrasonic sound pressure.
 図9は、ブラッグ回折による音響光学効果を模式的に示している。図9において、点O1は点音源(ホイヘンス音源)であり、球面波を放射する。 FIG. 9 schematically shows the acoustooptic effect by Bragg diffraction. In FIG. 9, a point O 1 is a point sound source (Huigens sound source) and radiates a spherical wave.
 光は図9中の線分S12および線分S32を光束の端として点O2に収束する。超音波によって生じる音響媒質の粗密によって、円弧S13上の各点でブラック角θBを満たす方向に-1次のブラッグ回折光が生成し、点O3に収束する。幾何光学的解析から、点O1、O2、O3は同一円周C上に位置することが導かれる。また、三角形O123は二等辺三角形となり、角O213は2θBとなる。 The light converges to the point O 2 with the line segment S 1 O 2 and the line segment S 3 O 2 in FIG. The density of the acoustic medium caused by ultrasonic, -1-order Bragg diffraction light is generated in a direction that satisfies the Bragg angle theta B at each point on the arc S 1 S 3, it converges to a point O 3. From the geometric optical analysis, it is derived that the points O 1 , O 2 and O 3 are located on the same circumference C. The triangle O 1 O 2 O 3 is an isosceles triangle, and the angle O 2 O 1 O 3 is 2θ B.
 このように、球面波である音響波によって作られる回折格子に収束光を作用させ、ブラッグ回折の角度依存性を利用することによって、仮想的に球面光源(円弧S13)を発生させ、点O3において、点音源O1を光学像として生成することができる。また、三角形O123における辺O12と辺O23との比は、ブラッグ回折光による画像における縮小率を示し、縮小率はO23/O12=λ/Λとなる。ここで、Λは音波の波長、λは光の波長である。これらの原理は+1次回折像についても同様に成立し、図9において点O3’に点音源O1の光学像が生成する。 In this way, a converging light acts on a diffraction grating formed by an acoustic wave that is a spherical wave, and by utilizing the angular dependence of Bragg diffraction, a spherical light source (arc S 1 S 3 ) is virtually generated, At the point O 3 , the point sound source O 1 can be generated as an optical image. Further, the ratio of the side O 1 O 2 to the side O 2 O 3 in the triangle O 1 O 2 O 3 indicates the reduction rate in the image by Bragg diffraction light, and the reduction rate is O 2 O 3 / O 1 O 2 = λ / Λ. Here, Λ is the wavelength of the sound wave, and λ is the wavelength of the light. These principles are similarly applied to the + 1st order diffraction image, and an optical image of the point sound source O 1 is generated at the point O 3 ′ in FIG.
 このような原理に基づく画像形成は、図9を参照した上述の説明から分かるように、通常の光学式カメラと同様、集光光学系の光学像形成作用により行われる。つまり、従来の電子走査型超音波診断装置に必要であった受信機群、送波・受波特性のそろった多数の超音波振動子を含むプローブ、受信機群から出力される受信信号群に対するビームフォーミングなどの信号処理を行うための高速かつ大規模な演算回路を用いなくても、被検体内の組織を画像化することができる。 As can be understood from the above description with reference to FIG. 9, image formation based on such a principle is performed by an optical image forming action of a condensing optical system, as in the case of a normal optical camera. In other words, a receiver group required for a conventional electronic scanning ultrasonic diagnostic apparatus, a probe including a large number of ultrasonic transducers with uniform transmission / reception characteristics, and a reception signal group output from the receiver group The tissue in the subject can be imaged without using a high-speed and large-scale arithmetic circuit for performing signal processing such as beam forming for the.
 ただし、非特許文献1は、ブラッグ回折による音響光学効果を開示するのみであり、生体内の組織の画像化を音響光学効果によりどのように実現するかについて何ら示唆がない。 However, Non-Patent Document 1 only discloses the acoustooptic effect by Bragg diffraction, and there is no suggestion how to realize imaging of a tissue in a living body by the acoustooptic effect.
 本願発明者が非特許文献1に開示された技術を詳細に検討したところ、非特許文献1に開示された構成によれば、音響光学セルの水媒体は、温度変化や外的振動などにより流れが発生し、画像に乱れが生じると考えられる。 When the inventor of the present application has examined the technology disclosed in Non-Patent Document 1 in detail, according to the configuration disclosed in Non-Patent Document 1, the aqueous medium of the acousto-optic cell flows due to temperature change, external vibration, or the like. It is considered that the image is disturbed.
 また非特許文献1の技術では、使用する超音波の周波数が15MHz以上と高い。これは音響光学セルを水媒体で構成していることが原因であり、水の音速(約1500m/s)と超音波の波長の関係から、ブラッグ回折が発生する条件が制限されるためである。生体中では、周波数にほぼ比例して吸収減衰が増大するため、被検体の深い内部を画像化するためには10MHz以下の周波数の超音波を用いることが好ましい。したがって、非特許文献1に開示された構成をそのまま用いても、被検体の体内の組織の画像を得ることは困難である。 In the technique of Non-Patent Document 1, the frequency of ultrasonic waves used is as high as 15 MHz or more. This is because the acousto-optic cell is composed of an aqueous medium, and the conditions under which Bragg diffraction occurs are limited by the relationship between the acoustic velocity of water (about 1500 m / s) and the wavelength of ultrasonic waves. . In a living body, absorption attenuation increases substantially in proportion to the frequency. Therefore, it is preferable to use an ultrasonic wave having a frequency of 10 MHz or less in order to image a deep interior of a subject. Therefore, even if the configuration disclosed in Non-Patent Document 1 is used as it is, it is difficult to obtain an image of the tissue in the body of the subject.
 本願発明者はこのような課題を詳細に検討し、新規な音響光学撮像装置および音響光学素子を想到した。本発明の音響光学撮像装置および音響光学素子の一態様の概要は以下の通りである。 The inventor of the present application has studied such a problem in detail and has come up with a novel acoustooptic imaging device and acoustooptic element. An outline of one aspect of the acoustooptic imaging device and acoustooptic element of the present invention is as follows.
 本発明の一態様に係る音響光学素子は、粗密波の伝播により発生する液体の屈折率変化を、光を用いて検出するための音響光学素子であって、内空間を有する支持体と、前記内空間に充填された液体と、前記内空間に配置され、前記液体と接触している構造体とを備え、前記構造体は、3次元的に区画された複数の微小空洞部を有し、前記複数の微小空洞部は互いに連通しており、前記複数の微小空洞部内に前記液体が配置している。 An acoustooptic device according to an aspect of the present invention is an acoustooptic device for detecting a change in the refractive index of a liquid generated by propagation of a dense wave using light, and includes a support having an inner space, A liquid filled in an internal space, and a structure disposed in the internal space and in contact with the liquid, the structure having a plurality of three-dimensionally divided microcavities, The plurality of microcavities communicate with each other, and the liquid is disposed in the plurality of microcavities.
 前記複数の微小空洞部は1mm以下の大きさを有していてもよい。 The plurality of microcavities may have a size of 1 mm or less.
 前記構造体は、前記液体の屈折率変化を検出するための光の波長よりも小さい単位構造体を複数含み、前記複数の単位構造体が連なることによって、前記複数の微小空洞部を形成していてもよい。 The structure includes a plurality of unit structures smaller than the wavelength of light for detecting a change in the refractive index of the liquid, and the plurality of unit structures are connected to form the plurality of microcavities. May be.
 前記構造体において、前記複数の単位構造体は、分子の部分的な化学結合によって連なっており、3次元網目構造を形成していてもよい。 In the structure, the plurality of unit structures may be connected by partial chemical bonds of molecules, and may form a three-dimensional network structure.
 前記構造体は、前記光に対して透明であってもよい。 The structure may be transparent to the light.
 前記構造体は、シロキサンで骨格が形成された湿潤ゲルであってもよい。 The structure may be a wet gel having a skeleton formed of siloxane.
 前記構造体はシリカ多孔体の湿潤ゲルであってもよい。 The structure may be a silica gel wet gel.
 前記液体は、フッ素系材料を含んでいてもよい。 The liquid may contain a fluorine material.
 本発明の一態様に係る音響光学撮像装置は、被検体内に超音波を送波する超音波源と、上記いずれかの音響光学素子であって、前記被検体からの前記超音波による反射超音波が前記液体を伝搬するように配置された音響光学素子と、前記音響光学素子の前記液体を伝搬する前記反射超音波を、前記反射超音波の進行方向と非平行な方向に照射する収束光を出射する光源と、前記音響光学素子で生成する前記収束光のブラッグ回折光を、前記収束光の伝搬方向に垂直な平面において像を形成させる結像光学系と、前記像を検出し、電気信号に変換する受像部とを備える。 An acoustooptic imaging device according to an aspect of the present invention includes an ultrasonic source that transmits an ultrasonic wave into a subject, and any one of the acoustooptic devices described above, wherein the ultrasonic wave reflected from the subject is reflected by the ultrasonic wave. Acousto-optic elements arranged so that sound waves propagate through the liquid, and convergent light that irradiates the reflected ultrasonic waves propagating through the liquid of the acousto-optic elements in a direction non-parallel to the traveling direction of the reflected ultrasound waves A light source that emits light, an imaging optical system that forms an image of the Bragg diffracted light of the convergent light generated by the acoustooptic device in a plane perpendicular to the propagation direction of the convergent light, and detects the image, And an image receiving unit for converting into a signal.
 以下、本発明による音響光学撮像装置および音響光学素子の実施形態を説明する。図1は、本実施形態の音響光学撮像装置100の概略構成図である。 Hereinafter, embodiments of an acoustooptic imaging device and an acoustooptic device according to the present invention will be described. FIG. 1 is a schematic configuration diagram of an acoustooptic imaging device 100 of the present embodiment.
 (音響光学撮像装置100の構成)
 音響光学撮像装置100は、光源1と、音響光学素子2と、結像光学系3と、受像部4と、超音波源5とを備える。図1に示すように、光源1から出射する集束光8の伝搬方向(光軸)をz軸とし、被検体6と音響光学素子2の接する面である音響開口203に垂直な方向をy軸とし、y軸とz軸に垂直な方向である紙面に垂直な方向をx軸として説明する。
(Configuration of acousto-optic imaging device 100)
The acoustooptic imaging device 100 includes a light source 1, an acoustooptic element 2, an imaging optical system 3, an image receiving unit 4, and an ultrasonic source 5. As shown in FIG. 1, the propagation direction (optical axis) of the focused light 8 emitted from the light source 1 is the z-axis, and the direction perpendicular to the acoustic aperture 203 that is the surface where the subject 6 and the acoustooptic device 2 are in contact is the y-axis. In the following description, the x-axis is a direction perpendicular to the paper surface, which is a direction perpendicular to the y-axis and the z-axis.
 超音波源5は、撮像時において被検体6に対して接するように配置され、被検体6の内部に超音波7を送信する。超音波7は被検体6を伝搬し、被検体6中に臓器や体組織など音響インピーダンスの異なる物体6aが存在すると、物体6aにおいて反射超音波7aが生じる。反射超音波7aは散乱波である。音響光学素子2は音響開口202c有し、音響開口203が被検体6に対して接するように配置される。被検体6中で生じた反射超音波7aは、音響開口202cから音響光学素子2の内部に取り込まれる。音響光学素子2は音響光学媒体201を保持しており、被検体6の情報を強度や位相分布に持つ超音波7bが音響光学媒体201中を伝搬し、音響光学媒体201の粗密による屈折率変化が生成する。 The ultrasonic source 5 is disposed so as to be in contact with the subject 6 at the time of imaging, and transmits the ultrasonic wave 7 to the inside of the subject 6. The ultrasonic wave 7 propagates through the subject 6, and when an object 6a having different acoustic impedance such as an organ or body tissue exists in the subject 6, a reflected ultrasonic wave 7a is generated at the object 6a. The reflected ultrasonic wave 7a is a scattered wave. The acoustooptic device 2 has an acoustic aperture 202 c and is arranged so that the acoustic aperture 203 is in contact with the subject 6. The reflected ultrasonic wave 7a generated in the subject 6 is taken into the acoustooptic device 2 from the acoustic aperture 202c. The acoustooptic device 2 holds an acoustooptic medium 201, and an ultrasonic wave 7 b having information on the subject 6 in intensity and phase distribution propagates through the acoustooptic medium 201, and the refractive index changes due to the density of the acoustooptic medium 201. Produces.
 光源1は、音響光学素子2に向けて集束光8を照射する。集束光8は、図1のy方向に収束して焦点を持ち、かつ、x方向には収束せずに平行伝搬する。集束光8の伝搬方向は超音波7bの伝搬方向に対して非平行である。集束光8の焦点は、音響光学素子2を挟んで光源1の反対側に位置する。 The light source 1 irradiates the focused light 8 toward the acoustooptic device 2. The focused light 8 converges in the y direction in FIG. 1 to have a focal point, and propagates in parallel without converging in the x direction. The propagation direction of the focused light 8 is not parallel to the propagation direction of the ultrasonic wave 7b. The focal point of the focused light 8 is located on the opposite side of the light source 1 with the acousto-optic element 2 interposed therebetween.
 音響光学素子2において、集束光8と、被検体6の情報を強度や位相分布に持つ超音波7bが接触して作用することにより、図9を参照して説明したように、音響光学媒体201の粗密による屈折率変化によってブラッグ回折が起こり、-1次回折光束8a、0次回折光束8bおよび+1次回折光束8cが生じる。-1次回折光束8aと+1次回折光束8cとでは、焦点面9において被検体6の像が結像される。ここで、焦点面9とは、集束光8の焦点を通り、集束光8の伝搬方向に対して垂直な面(xy平面)のことをいう。 In the acoustooptic device 2, the focused light 8 and the ultrasonic wave 7 b having information on the subject 6 in the intensity and phase distribution are in contact with each other to act, as described with reference to FIG. Bragg diffraction occurs due to the change in the refractive index due to the density of the light, and a −1st order diffracted light beam 8a, a 0th order diffracted light beam 8b and a + 1st order diffracted light beam 8c are generated. With the −1st order diffracted light beam 8 a and the + 1st order diffracted light beam 8 c, an image of the subject 6 is formed on the focal plane 9. Here, the focal plane 9 means a plane (xy plane) that passes through the focal point of the focused light 8 and is perpendicular to the propagation direction of the focused light 8.
 焦点面9で結像される像は不完全であり、集束光8が集束する方向(y方向)においては結像しているが、集束光8が平行伝搬する方向(x方向)においては結像していない。結像光学系3は、音響光学素子2を挟んで光源1と対向する位置に配置されており、音響光学素子2を透過した-1次回折光束8a、0次回折光束8bおよび+1次回折光束8cが結像光学系3に入射する。-1次回折光束8aおよび+1次回折光束8cで結像される被検体6の不完全な像は、結像光学系3によりy方向にも集束され、結像面91において、y方向およびx方向に結像した完全な像として投影される。受像部4は、結像光学系3のさらに後段に配置され、結像光学系3により形成した-1次回折光束8aあるいは+1次回折光束8cを検出し、電気信号に変換する。以下、各構成要素を詳細に説明する。 The image formed on the focal plane 9 is incomplete and forms an image in the direction in which the focused light 8 is focused (y direction), but is not formed in the direction in which the focused light 8 propagates in parallel (x direction). I don't have a statue. The imaging optical system 3 is disposed at a position facing the light source 1 with the acoustooptic element 2 interposed therebetween, and the −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam transmitted through the acoustooptic element 2. 8 c enters the imaging optical system 3. The incomplete image of the subject 6 imaged by the −1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c is also focused in the y direction by the image forming optical system 3, and the y direction and x Projected as a complete image imaged in the direction. The image receiving unit 4 is arranged further downstream of the imaging optical system 3, detects the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c formed by the image forming optical system 3, and converts it into an electrical signal. Hereinafter, each component will be described in detail.
(光源1)
 光源1は、単色光による集束光8を出射する。上述したように、y方向においては焦点面9で焦点を結び、x方向においては平行伝搬して焦点を結ばない。光源1は、例えば、He-Neレーザーに代表されるガスレーザーや固体レーザー、外部共振器で狭帯域化された半導体レーザーなどを用いることができる。光源1は、さらに例えば、ビームエクスパンダーと、シリンドリカルレンズとを有し、レーザーから出射した光の口径をビームエクスパンダーで広げ、シリンドリカルレンズでy方向にのみ集束させる。光源1が出射する光束は連続的であってもよいし、出射時刻が制御可能なパルス光束であってもよい。生成される集束光8の波長を、音響光学媒体201中における伝搬損失の少ない波長帯に設定することにより、高輝度の画像を得ることができる。
(Light source 1)
The light source 1 emits focused light 8 of monochromatic light. As described above, the focal point 9 is focused in the y direction, and the focal point is not propagated in parallel in the x direction. As the light source 1, for example, a gas laser represented by a He—Ne laser, a solid-state laser, a semiconductor laser narrowed by an external resonator, or the like can be used. The light source 1 further includes, for example, a beam expander and a cylindrical lens. The aperture of the light emitted from the laser is widened by the beam expander and focused only in the y direction by the cylindrical lens. The light beam emitted from the light source 1 may be continuous, or may be a pulsed light beam whose emission time can be controlled. By setting the wavelength of the generated focused light 8 to a wavelength band with less propagation loss in the acousto-optic medium 201, a high-luminance image can be obtained.
(超音波源5)
 超音波源5は、撮像時には被検体6に接して配置される。超音波源5は、超音波信号源10からの信号を受けて、被検体6に対して複数波の同一正弦波形からなる連続波あるいはパルス状の超音波7を被検体6に入射する。複数波の同一正弦波形からなる超音波7とは、振幅および周波数が一定の正弦波形が常時あるいは一定時間連続する時間波形を持つ超音波を意味する。また、超音波7は、被検体6の撮像したい領域を、概ね均一な照度で照射する。超音波源5が被検体6に入射する超音波7は平面波でなくてもよい。パルス状の超音波7を用いる場合においては、時間波形の継続時間は、搬送周波数の逆数(周期)以上に設定されることが好ましい。
(Ultrasonic source 5)
The ultrasonic source 5 is disposed in contact with the subject 6 during imaging. The ultrasonic source 5 receives a signal from the ultrasonic signal source 10 and makes a continuous wave or a pulsed ultrasonic wave 7 having a plurality of identical sine waveforms incident on the subject 6. The ultrasonic wave 7 composed of a plurality of waves having the same sine waveform means an ultrasonic wave having a time waveform in which a sine waveform having a constant amplitude and frequency is continuously or continuously for a predetermined time. In addition, the ultrasonic wave 7 irradiates a region to be imaged of the subject 6 with a substantially uniform illuminance. The ultrasonic waves 7 that are incident on the subject 6 by the ultrasonic source 5 may not be plane waves. In the case of using pulsed ultrasonic waves 7, it is preferable that the duration of the time waveform is set to be equal to or greater than the reciprocal (cycle) of the carrier frequency.
 超音波7は、正弦波を搬送波とする音響信号に限らず、方形波やノコギリ波などの正弦波ではない波形の繰り返し信号からなる超音波信号であっても良い。超音波源5が被検体6に効率よく超音波7を入射できるように、超音波ゲルなどの整合材を用いて超音波源5と被検体6の密着性を高めても良い。 The ultrasonic wave 7 is not limited to an acoustic signal having a sine wave as a carrier wave but may be an ultrasonic signal including a repetitive signal having a waveform that is not a sine wave such as a square wave or a sawtooth wave. The adhesion between the ultrasonic source 5 and the subject 6 may be improved by using a matching material such as an ultrasonic gel so that the ultrasonic source 5 can efficiently enter the ultrasonic wave 7 on the subject 6.
(被検体6)
 被検体6は、超音波の伝搬減衰が極端に大きくない材料で構成される。被検体6の一例は生体である。
(Subject 6)
The subject 6 is made of a material whose ultrasonic wave propagation attenuation is not extremely large. An example of the subject 6 is a living body.
(超音波7)
被検体6に入射した超音波7は、被検体6中を伝搬する。被検体6内に被検体6を構成する物質との音響特性が異なる物体6aが存在する場合、物体6aに超音波7が照射されると、超音波7と同一周波数を持つ反射超音波7aが生成される。反射超音波7aは、音響開口202cを介して音響光学素子2の内部に入射する。音響光学素子2の内部に入射された超音波7bは、強度や位相分布に被検体6の情報を持つ。
(Ultrasonic 7)
The ultrasonic wave 7 incident on the subject 6 propagates through the subject 6. When an object 6 a having different acoustic characteristics from the substance constituting the subject 6 exists in the subject 6, when the object 6 a is irradiated with the ultrasound 7, the reflected ultrasound 7 a having the same frequency as the ultrasound 7 is generated. Generated. The reflected ultrasonic wave 7a enters the acoustooptic device 2 through the acoustic aperture 202c. The ultrasonic wave 7b incident inside the acoustooptic device 2 has information on the subject 6 in intensity and phase distribution.
 (音響光学素子2)
 図1Bは音響光学素子2の模式的な斜視図である。音響光学素子2は、支持体であるセル202と、セル202の内空間に保持される音響光学媒体201とを備える。
(Acousto-optic element 2)
FIG. 1B is a schematic perspective view of the acoustooptic device 2. The acoustooptic device 2 includes a cell 202 as a support and an acoustooptic medium 201 held in the inner space of the cell 202.
 セル202は、集束光8が入射する入射面202a、出射面202bおよび音響開口202cを有する。セル202および音響光学媒体201は、集束光8に対して透明な材料で構成されている。例えば、セル202としては、石英やガラスなどのセルを用いることが可能である。 The cell 202 has an incident surface 202a on which the focused light 8 is incident, an output surface 202b, and an acoustic aperture 202c. The cell 202 and the acousto-optic medium 201 are made of a material that is transparent to the focused light 8. For example, as the cell 202, a cell such as quartz or glass can be used.
 図2は、セル202に保持された音響光学媒体201の模式図を示している。音響光学媒体201は、液体201aと、液体201aに接触している構造体201bとを含む。図2に示すように、構造体201bは、液体201aよりも高い剛性を有し、3次元的に区画された(仕切られた)複数の微小空洞部201cを含む。複数の微小空洞部201cは互いに連通しており、連続した空間を形成している。つまり、構造体201bは多孔質である。 FIG. 2 shows a schematic diagram of the acousto-optic medium 201 held in the cell 202. The acousto-optic medium 201 includes a liquid 201a and a structure 201b in contact with the liquid 201a. As shown in FIG. 2, the structure 201b has a higher rigidity than the liquid 201a and includes a plurality of microcavities 201c that are three-dimensionally partitioned (partitioned). The plurality of microcavities 201c communicate with each other and form a continuous space. That is, the structure 201b is porous.
 液体201aは、この複数の微小空洞部201cが連続することによって形成される空間内に配置されている。液体201aが区画された複数の微小空洞部201cに配置されているため、音響光学素子2の外部からの振動や温度変化等を受けても、液体201aに流れや揺らぎが生じにくい。このため、音響光学媒体201を伝搬する超音波7bによる音響光学媒体201の粗密の乱れが抑制され、検出される画像に乱れが生じるのを抑制することができる。また、複数の微小空洞部201cは互いに連通しているため、音響光学媒体201における超音波7bの伝搬を妨げない。 The liquid 201a is disposed in a space formed by the continuous plurality of microcavities 201c. Since the liquid 201a is arranged in the plurality of minute cavities 201c partitioned, the liquid 201a is less likely to flow or fluctuate even when subjected to vibration or temperature change from the outside of the acoustooptic device 2. For this reason, disturbance of the density of the acoustooptic medium 201 due to the ultrasonic wave 7b propagating through the acoustooptic medium 201 is suppressed, and the occurrence of disturbance in the detected image can be suppressed. Further, since the plurality of minute cavities 201 c communicate with each other, the propagation of the ultrasonic waves 7 b in the acousto-optic medium 201 is not hindered.
 微小空洞部201cの大きさは、音響光学素子2が受ける振動や温度変化に応じて決定し得る。例えば、各微小空洞部201cに内接する球(各微小空洞部201cに挿入可能な球)を考える場合、球の直径は300nm程度以下である。 The size of the microcavity 201c can be determined according to vibrations and temperature changes that the acoustooptic device 2 receives. For example, when considering a sphere inscribed in each microcavity 201c (a sphere that can be inserted into each microcavity 201c), the diameter of the sphere is about 300 nm or less.
 このような微小空洞部201cを有する構造体201bとしては、例えば、シリカ湿潤ゲルを用いることができる。シリカ湿潤ゲルは、シロキサンで骨格が形成された重合体であり、図2に示すように、シリカ粒子201dが隣接するシリカ粒子201dと化学結合によって連なっている。シリカ粒子201dが単位構造となり、3次元網目構造を形成することによって、複数の微小空洞部201cを構成している。この場合、シリカ粒子201dは、波長380nm程度以上の光に対して透明であるため、600nm以上の波長を有する集束光8を出射する光源1が好適に用いられる。また、シリカ粒子201dによる集束光8の散乱、特に、ミー散乱を抑制するため、シリカ粒子201dの直径は、集束光8の波長よりも小さいことが好ましく、300nm以下であることが好ましい。例えばシリカ粒子201dの直径は20nm程度である。 As the structure 201b having such a microcavity 201c, for example, silica wet gel can be used. The silica wet gel is a polymer having a skeleton formed of siloxane, and as shown in FIG. 2, the silica particles 201d are connected to the adjacent silica particles 201d by chemical bonds. Silica particles 201d have a unit structure and form a three-dimensional network structure, thereby forming a plurality of microcavities 201c. In this case, since the silica particles 201d are transparent to light having a wavelength of about 380 nm or more, the light source 1 that emits the focused light 8 having a wavelength of 600 nm or more is preferably used. In order to suppress scattering of the focused light 8 by the silica particles 201d, particularly Mie scattering, the diameter of the silica particles 201d is preferably smaller than the wavelength of the focused light 8, and is preferably 300 nm or less. For example, the diameter of the silica particle 201d is about 20 nm.
 構造体201bの他の例としては、例えば、人工骨などの生体材料に用いられる多孔質構造体を用いることができる。このような、人工骨は、例えば、1mm程度以下の薄いセラミックスグリーンシートをレーザー光によって、部分的に焼結し、積層させることによって形成できる。また、樹脂製の多孔質構造体を用いてもよい。この場合、例えば、粉末焼結積層造形法によって樹脂粉末を成形することができる。 As another example of the structure 201b, for example, a porous structure used for a biomaterial such as an artificial bone can be used. Such an artificial bone can be formed, for example, by partially sintering and laminating thin ceramic green sheets of about 1 mm or less with laser light. Also, a resin porous structure may be used. In this case, for example, the resin powder can be formed by a powder sintering additive manufacturing method.
 液体201aには、水等の種々の液体を用いることができる。液体201aの音速は小さい方が高解像度の画像を取得することができる。このため、液体201aは、フッ素系材料を含むことが好ましい。上述したように、水の音速は1500m/sec程度であるが、フッ素系材料の音速は一般的にこれよりも小さい。例えば、住友スリーエム株式会社製NovecTM7200(ハイドロフルオロエーテル)の音速は630m/secであり、NovecTM7000、NovecTM7100、NovecTM7200、NovecTM7300、フロリナートTMFC-72およびFC-3283などのフッ素系液体材料も同様に音速が遅い材料である。 Various liquids such as water can be used for the liquid 201a. When the sound speed of the liquid 201a is small, a high-resolution image can be acquired. For this reason, the liquid 201a preferably contains a fluorine-based material. As described above, the sound speed of water is about 1500 m / sec, but the sound speed of fluorine-based materials is generally smaller than this. For example, the speed of sound of NovecTM 7200 (hydrofluoroether) manufactured by Sumitomo 3M Limited is 630 m / sec, and the speed of sound of fluorine-based liquid materials such as NovecTM 7000, Novec TM 7100, Novec TM 7200, Novec TM 7300, Fluorinert TMFC-72 and FC-3283 is also slow. Material.
 音響光学素子2には、光源1からの集束光8が入射する。音響光学素子2の内部に取り込まれた被検体6の情報を持つ超音波7bは、音響光学媒体201中を伝搬し、集束光8と接触する。音響光学媒体201を伝搬する超音波7bは粗密波(縦波)であるので、音響光学媒体201の音圧分布、すなわち、超音波7bの波面に一致した屈折率分布が媒質中に生成される。ある瞬間においては、音響光学媒体201中に生成される屈折率分布は超音波波長で繰り返される正弦波状の回折格子となる。したがって、集束光8が入射されると、その回折格子により回折光束が生成される。なお、図1では簡単のため、-1次回折光束8a、0次回折光束8b、+1次回折光束8cのみを図示している。一般に、回折光はBragg回折光とRaman-Nath回折光よりなる。本発明による装置は、叙述したBragg回折光が主要な回折光となる条件下で適用される。その場合、生成される回折光は-1次回折光束8a、0次回折光束8b、および+1次回折光束8cのみとなる。回折光の輝度は、回折格子の屈折率の変化量、すなわち、超音波の音圧に比例する。 The focused light 8 from the light source 1 enters the acoustooptic device 2. The ultrasonic wave 7 b having the information of the subject 6 taken into the acoustooptic device 2 propagates through the acoustooptic medium 201 and comes into contact with the focused light 8. Since the ultrasonic wave 7b propagating through the acoustooptic medium 201 is a dense wave (longitudinal wave), a sound pressure distribution of the acoustooptic medium 201, that is, a refractive index distribution that matches the wavefront of the ultrasonic wave 7b is generated in the medium. . At a certain moment, the refractive index distribution generated in the acousto-optic medium 201 becomes a sinusoidal diffraction grating repeated at the ultrasonic wavelength. Therefore, when the focused light 8 is incident, a diffracted light beam is generated by the diffraction grating. For simplicity, FIG. 1 shows only the −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c. In general, the diffracted light is composed of Bragg diffracted light and Raman-Nath diffracted light. The device according to the invention is applied under conditions where the described Bragg diffracted light becomes the main diffracted light. In this case, the diffracted light generated is only the −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c. The brightness of the diffracted light is proportional to the amount of change in the refractive index of the diffraction grating, that is, the sound pressure of the ultrasonic waves.
 なお、超音波7bは、集束光8と接触した後も伝搬し続けるが、音響光学素子2の端で反射して再度集束光8に接触すると、像の取得を妨げる可能性がある。そのため、音響光学素子2に音波吸収端204を設けることにより、超音波の反射を防いでも良い。この場合、音波吸収端204は、音響光学素子2における集束光8の伝搬領域よりも音響開口202cからの距離が遠い位置に配置する。 Note that the ultrasonic wave 7b continues to propagate after contact with the focused light 8. However, if the ultrasonic wave 7b is reflected at the end of the acoustooptic device 2 and contacts the focused light 8 again, acquisition of an image may be hindered. Therefore, reflection of ultrasonic waves may be prevented by providing the acoustic optical element 2 with the sound wave absorption end 204. In this case, the sound wave absorption end 204 is disposed at a position farther from the acoustic aperture 202 c than the propagation region of the focused light 8 in the acoustooptic device 2.
 なお、音響光学素子2に対して被検体6からの反射超音波7aが効率よく入射されるように、音響光学素子2の音響開口203と被検体6の間に超音波ゲルなどの整合材を塗布することで密着性を高めても良い。 Note that a matching material such as an ultrasonic gel is provided between the acoustic aperture 203 of the acoustooptic device 2 and the subject 6 so that the reflected ultrasound 7a from the subject 6 is efficiently incident on the acoustooptic device 2. Adhesion may be enhanced by application.
(-1次回折光束8aおよび+1次回折光束8c)
 被検体6の情報を持つ超音波7bと集束光8が音響光学媒体201中で作用することにより生じた-1次回折光束8aおよび+1次回折光束8cは、集束光8の焦点を通り、集束光8の伝搬方向に対して垂直な面である焦点面9においてy方向において、集束し、焦点面9において被検体6の光学像が形成する。ただし、この際生じる被検体6の光学像はx方向においては結像されていない不完全な光学像である。
(-1st order diffracted light beam 8a and + 1st order diffracted light beam 8c)
The −1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c generated by the action of the ultrasonic wave 7b having the information of the subject 6 and the focused light 8 in the acousto-optic medium 201 pass through the focal point of the focused light 8 and converge. The focal plane 9, which is a plane perpendicular to the propagation direction of the light 8, is focused in the y direction, and an optical image of the subject 6 is formed on the focal plane 9. However, the optical image of the subject 6 generated at this time is an incomplete optical image that is not formed in the x direction.
 (結像光学系3)
 音響光学素子2を透過した-1次回折光束8a、0次回折光束8b、および+1次回折光束8cは結像光学系3に入射する。結像光学系3を-1次回折光束8aおよび+1次回折光束8cが伝搬することにより、不完全な光学像がz方向においても集束し、結像面91上に、x方向およびy方向のいずれの方向にも結像された完全な像として投影される。
(Imaging optical system 3)
The −1st order diffracted light beam 8a, the 0th order diffracted light beam 8b, and the + 1st order diffracted light beam 8c transmitted through the acoustooptic device 2 are incident on the imaging optical system 3. As the −1st order diffracted light beam 8a and the + 1st order diffracted light beam 8c propagate through the imaging optical system 3, an incomplete optical image is focused even in the z direction, and the x and y directions are focused on the imaging surface 91. It is projected as a complete image formed in either direction.
 結像光学系3は、例えば図1のようにシリンドリカルレンズ3aおよびシリンドリカルレンズ3bを含む。シリンドリカルレンズ3aは、y方向に屈折力を持ちx方向に屈折力を持たないように配置される。シリンドリカルレンズ3bは、x方向に屈折力を持ち、y方向に屈折力を持たないように配置される。 The imaging optical system 3 includes, for example, a cylindrical lens 3a and a cylindrical lens 3b as shown in FIG. The cylindrical lens 3a is arranged so as to have a refractive power in the y direction and no refractive power in the x direction. The cylindrical lens 3b is arranged so as to have a refractive power in the x direction and no refractive power in the y direction.
 焦点面9を通過した0次回折光束8bも同様に、結像光学系3において、シリンドリカルレンズ3aによってy方向に収束し、結像面91上で再度焦点を結ぶ。x方向においては、0次回折光束8bは平行光束のままシリンドリカルレンズ3bに入射する。そして、第3のシリンドリカルレンズ3bの集光作用で結像面91上に焦点を結ぶ。 Similarly, the 0th-order diffracted light beam 8b that has passed through the focal plane 9 is converged in the y direction by the cylindrical lens 3a in the imaging optical system 3, and is focused again on the imaging plane 91. In the x direction, the 0th-order diffracted light beam 8b is incident on the cylindrical lens 3b as a parallel light beam. Then, the third cylindrical lens 3b is focused on the image plane 91 by the light condensing action.
(受像部4)
 受像部4は、結像面91において-1次回折光束8aあるいは+1次回折光束8cを検出する。上述したように、結像面91上にx方向およびy方向のいずれの方向にも結像された完全な像として投影するため、超音波7を介して被検体6の光学像が得られる。
(Image receiving unit 4)
The image receiving unit 4 detects the −1st order diffracted light beam 8 a or the + 1st order diffracted light beam 8 c on the imaging surface 91. As described above, since an image is projected onto the imaging surface 91 as a complete image formed in both the x and y directions, an optical image of the subject 6 is obtained via the ultrasonic wave 7.
 受像部4に-1次回折光束8aまたは+1次回折光束8cのいずれかだけが受像されるように、0次回折光束8bや受像しないもう一方の回折光束を遮光部15でさえぎっても良い。 The 0th-order diffracted light beam 8b or the other diffracted light beam that does not receive the image may be blocked by the light-shielding unit 15 so that only the −1st-order diffracted light beam 8a or the + 1st-order diffracted light beam 8c is received by the image receiving unit 4.
 受像部4は、典型的にはCCDやCMOS等の固体撮像素子であり、-1次回折光束8aあるいは+1次回折光束8cによる回折像の光強度分布を、光学的画像として撮像し、電気信号に変換する。 The image receiving unit 4 is typically a solid-state imaging device such as a CCD or a CMOS, and captures the light intensity distribution of the diffracted image by the −1st order diffracted light beam 8a or the + 1st order diffracted light beam 8c as an optical image to obtain an electric signal. Convert to
 このように、本実施形態の音響光学撮像装置によれば、被検体の内部に向けて超音波を送信し、内部から得られる反射超音波を音響光学素子に伝搬させる。収束光によって、音響光学素子の音響光学媒体を伝搬する反射超音波を照射することにより、主としてブラッグ回折による回折光を得ることができる。したがって、複雑な超音波の信号処理を行うことなく、高速で、光学的に被検体内部の画像を取得することができる。 As described above, according to the acoustooptic imaging device of the present embodiment, ultrasonic waves are transmitted toward the inside of the subject, and reflected ultrasonic waves obtained from the inside are propagated to the acoustooptic element. By irradiating the reflected ultrasonic wave propagating through the acoustooptic medium of the acoustooptic element with the convergent light, diffracted light mainly due to Bragg diffraction can be obtained. Therefore, an image inside the subject can be optically acquired at high speed without performing complicated ultrasonic signal processing.
 また、音響光学媒体の音速は被検体の音速よりも小さいため、音響光学媒体を伝搬する超音波の波長が被検体内を伝搬する超音波よりも短くなる、これにより、超音波送信器から送信する超音波の周波数を低くすることができ、被検体内部で減衰しにくい、低周波数の超音波を用いることができる。 In addition, since the sound velocity of the acousto-optic medium is smaller than the sound velocity of the subject, the wavelength of the ultrasonic wave propagating through the acousto-optic medium is shorter than the ultrasonic wave propagating through the subject, thereby transmitting from the ultrasonic transmitter. Therefore, it is possible to reduce the frequency of the ultrasonic wave to be used, and it is possible to use the low-frequency ultrasonic wave that is not easily attenuated inside the subject.
 また、音響光学媒体の液体は、区画あるいは仕切られた複数の微小空洞部が連続することによって形成される空間内に配置されているため、音響光学素子の外部からの振動や温度変化等を受けても、液体に流れや揺らぎが生じにくい。このため、音響光学媒体を伝搬する超音波による音響光学媒体の粗密の乱れが抑制され、検出される画像に乱れが生じるのを抑制することができる。よって、本実施形態の音響光学装置によれば、被検体内部を高解像で画像化することが可能となる。 In addition, since the liquid of the acousto-optic medium is disposed in a space formed by a series of partitioned or partitioned microcavities, it receives vibrations from the outside of the acousto-optic element, temperature changes, and the like. However, the liquid is less likely to flow or fluctuate. For this reason, the coarse / fine disturbance of the acoustooptic medium due to the ultrasonic wave propagating through the acoustooptic medium is suppressed, and the occurrence of the disturbance in the detected image can be suppressed. Therefore, according to the acoustooptic device of the present embodiment, the inside of the subject can be imaged with high resolution.
(音響光学素子の実施例)
 以下、本実施形態の音響光学素子を作製し、特性評価した結果を説明する。
(Example of acoustooptic device)
Hereinafter, the acoustooptic device of this embodiment will be described and the results of the characteristic evaluation will be described.
 音響光学素子2のセル202として合成石英ガラス(製品名:テンパックスガラス)を5面貼り合わせて作製したものを用いた。セル202はコップ形状を有し、内空間に音響光学媒体201を満たした。音響光学媒体201の構造体201bにはシリカ湿潤ゲルを用い、液体には、住友スリーエム株式会社製NovecTM7200を用いた。 As the cell 202 of the acoustooptic device 2, a cell produced by bonding five surfaces of synthetic quartz glass (product name: Tempax glass) was used. The cell 202 has a cup shape, and the inner space is filled with the acousto-optic medium 201. Silica wet gel was used for the structure 201b of the acousto-optic medium 201, and NovecTM 7200 manufactured by Sumitomo 3M Limited was used for the liquid.
 シリカ湿潤ゲルは以下の方法によって作製した。
 テトラメトキシシラン(以後、TMOSと称す:関東化学製)、エタノール(和光純薬製)、およびアンモニア水(0.05N:和光純薬製)を、1:1.62:0.47の重量比で秤量した。
The silica wet gel was prepared by the following method.
Tetramethoxysilane (hereinafter referred to as TMOS: manufactured by Kanto Chemical Co., Inc.), ethanol (manufactured by Wako Pure Chemical Industries), and aqueous ammonia (0.05 N: manufactured by Wako Pure Chemical Industries, Ltd.) in a weight ratio of 1: 1.62: 0.47 Weighed with.
 まず、TMOSとエタノールを秤量後混合し、1分間程攪拌した後、攪拌を続けながら、アンモニア水を滴下し、さらに1分間程、攪拌を行った。これより、TMOSが脱水縮合しゾル液を得た。セル202に、ゾル液を入れた。ゾル液の乾燥を防ぐためのセル202を気密容器に入れ、40度の温度で10時間以上静置した。この間にゾル液がゲル化し、セル202内でシリカ湿潤ゲルからなる構造体201bが合成された。 First, TMOS and ethanol were weighed and mixed, and stirred for about 1 minute. Then, while continuing stirring, ammonia water was added dropwise, and stirring was further performed for about 1 minute. Thus, TMOS was dehydrated and condensed to obtain a sol solution. A sol solution was placed in the cell 202. The cell 202 for preventing the sol solution from drying was placed in an airtight container and allowed to stand for 10 hours or more at a temperature of 40 degrees. During this time, the sol solution gelled, and a structure 201 b made of silica wet gel was synthesized in the cell 202.
 完成したシリカ湿潤ゲルは、エタノール、メタノール、アンモニア水などを内包した状態であるため、これらの液体とNovecTM7200とを置換する。具体的には、これらの液体を内包したシリカ湿潤ゲルをNovecTM7200に浸漬した。NovecTM7200は、エーテル構造を持つので、アルコールなどに対し溶解である。このため、シリカ湿潤ゲルに内包された液体とNovecTM7200が相溶した後、液を捨て、再度新しいNovecTM7200に浸漬した。これを繰り返すことで置換を行った。シリカ湿潤ゲルに内包された液体とNovecTM7200とを相溶させるために一晩程度浸漬させ、その後、液を捨て、NovecTM7200に浸漬するという工程を4回繰り返し、置換をほぼ完全に行った。 Since the completed silica wet gel is in a state of containing ethanol, methanol, aqueous ammonia, etc., these liquids are replaced with Novec ™ 7200. Specifically, a silica wet gel containing these liquids was immersed in Novec ™ 7200. Since NovecTM 7200 has an ether structure, it is soluble in alcohol and the like. For this reason, after the liquid encapsulated in the silica wet gel and the NovecTM 7200 were compatible, the liquid was discarded and again immersed in a new NovecTM 7200. Replacement was performed by repeating this. The liquid encapsulated in the silica wet gel and the NovecTM 7200 were immersed for about one night, and then the liquid was discarded and immersed in the NovecTM 7200 four times to perform the replacement almost completely.
 置換の完了は、音響光学媒体201の音速を測定することによって確認した。図3は、置換を行うにつれ音響光学媒体201の音速が変化していることを示す図である。エタノールの音速は、およそ1500m/s程度、NovecTM7200の音速は、632m/sである。図3に示すように、置換回数が増えるにしたがって、音速が低下するのは、エタノールなどの液体からNovecTM7200に置換されているためである。上述の置換方法では、NovecTM7200に100%置換する難しいため、置換後の音速は650m/s程度で収束した。音速低下が収束した時点で、置換を完了とした。さらに音速を下げるために置換を進める必要がある場合は、浸漬液に新しいNovecTM7200を滴下しつつ、古い浸漬液を廃棄する方法などが有効である。 The completion of the replacement was confirmed by measuring the speed of sound of the acousto-optic medium 201. FIG. 3 is a diagram showing that the speed of sound of the acousto-optic medium 201 changes as replacement is performed. The sound speed of ethanol is about 1500 m / s, and the sound speed of NovecTM 7200 is 632 m / s. As shown in FIG. 3, the speed of sound decreases as the number of substitutions increases because the liquid is replaced with NovecTM 7200 from a liquid such as ethanol. In the above-described replacement method, it is difficult to replace 100% with NovecTM 7200, so the sound speed after replacement converged at about 650 m / s. The replacement was completed when the drop in sound speed converged. In the case where it is necessary to proceed with replacement in order to lower the sound speed further, a method of discarding the old immersion liquid while dropping new NovecTM 7200 into the immersion liquid is effective.
 これにより、シリカ湿潤ゲルからなる構造体201bと構造体201bの微小空洞部201cに充填されたNovecTM7200からなる液体201aとを含む音響光学媒体201を備えた音響光学撮像装置100を完成させた。 Thus, the acoustooptic imaging apparatus 100 including the acoustooptic medium 201 including the structure 201b made of silica wet gel and the liquid 201a made of NovecTM 7200 filled in the microcavity 201c of the structure 201b was completed.
 図4は、音響光学撮像装置100の光透過率を示している。透過率の測定は、日立製U-4000形分光光度計を用いた。測定装置は、透過光を積分球で受光した。測定の結果、波長360nmから1158nmの間で、透過率70%以上であった。これは、シリカ湿潤ゲルを形成するシリカ粒子が測定に用いた光の波長に比べ充分小さいことと、NovecTM7200が上述の波長域で高い透過率を有するためと考えられる。音響光学媒体201に用いる材料によって、透過率は変化する。透過率が高いほど、高解像度の画像取得が可能であるので、必要な解像度により用いる光の波長選択を行うことができる。 FIG. 4 shows the light transmittance of the acousto-optic imaging device 100. The transmittance was measured using a Hitachi U-4000 spectrophotometer. The measuring device received the transmitted light with an integrating sphere. As a result of the measurement, the transmittance was 70% or more between wavelengths of 360 nm and 1158 nm. This is presumably because the silica particles forming the silica wet gel are sufficiently smaller than the wavelength of light used for the measurement, and NovecTM 7200 has a high transmittance in the above-mentioned wavelength range. The transmittance varies depending on the material used for the acoustooptic medium 201. Since the higher the transmittance, the higher the resolution of the image that can be obtained, the wavelength selection of the light to be used can be performed according to the required resolution.
 図5は、回折光の揺らぎを評価するための測定系を模式的に示している。振動子50(富士セラミックス(株)製・超音波(A)5Z10D-SYX(C-6))を張り合わせたSUS製ケース51の上に、音響光学素子2を配置した。超音波の伝播をスムーズに行うために、ケース51上に水を1滴、滴下してから、音響光学素子2を配置した。振動子50は、ファンクションジェネレータ52を介して電源53へ接続し、2.6MHzのバースト波を発振させた。振動子の電気特性は、電圧が1V、電流が19mAであった。 FIG. 5 schematically shows a measurement system for evaluating the fluctuation of the diffracted light. The acoustooptic device 2 was placed on a SUS case 51 to which a vibrator 50 (manufactured by Fuji Ceramics Co., Ltd., ultrasonic wave (A) 5Z10D-SYX (C-6)) was bonded. In order to smoothly propagate ultrasonic waves, one drop of water was dropped on the case 51, and then the acoustooptic device 2 was arranged. The vibrator 50 was connected to the power source 53 via the function generator 52 and oscillated a 2.6 MHz burst wave. Regarding the electrical characteristics of the vibrator, the voltage was 1 V and the current was 19 mA.
 振動子から発振された2.6MHzの超音波は、音響光学素子2へ伝播する。音響光学媒体201へ伝播する超音波の主な導波モードは疎密波(縦波)であるので、超音波波面に一致した屈折率分布が音響光学媒体201中に生成される。ある瞬間においては、音響光学媒体201中に生成される屈折率分布は超音波波長で繰り返される正弦波状の1次元格子となる。 The 2.6 MHz ultrasonic wave oscillated from the vibrator propagates to the acoustooptic device 2. Since the main waveguide mode of the ultrasonic wave propagating to the acoustooptic medium 201 is a sparse / dense wave (longitudinal wave), a refractive index distribution that matches the ultrasonic wavefront is generated in the acoustooptic medium 201. At a certain moment, the refractive index distribution generated in the acousto-optic medium 201 becomes a sinusoidal one-dimensional grating repeated at the ultrasonic wavelength.
 1次元格子がある音響光学媒体201中をレーザー光55(He-Neレーザー光源54:波長632nm)で透過すると、0次光56と1次回折光57が光点として現れた。0次光56は、観察対象ではないため、0次光カット用マスクでカットし、1次回折光57のみをCCD59で観察した。観察したスポットの様子を図6(a)に示す。スポットの光を25秒間トレースし、揺らぎの評価を行った。その結果を図7に示す。 When the laser beam 55 (He—Ne laser light source 54: wavelength 632 nm) is transmitted through the acoustooptic medium 201 having a one-dimensional grating, the 0th-order light 56 and the first-order diffracted light 57 appear as light spots. Since the 0th-order light 56 is not an observation target, it was cut with a 0th-order light cut mask and only the 1st-order diffracted light 57 was observed with the CCD 59. The state of the observed spot is shown in FIG. The spot light was traced for 25 seconds to evaluate the fluctuation. The result is shown in FIG.
 比較のためセル202に構造体201bを配置せず、液体201aであるNovecTM7200のみを配置し、同様の測定を行った、観察したスポットの様子を図6(b)に示す。また揺らぎの評価結果を図7に示す。 For comparison, the structure 201b is not arranged in the cell 202, but only the NovecTM 7200 that is the liquid 201a is arranged, and the state of the observed spot is shown in FIG. 6B. Moreover, the evaluation result of fluctuation is shown in FIG.
 図6(a)および(b)を比較すると、光点のスポットは図6(a)の方が小さく、回折光の揺らぎが構造体201bによって抑制されているのが分かる。また図7に示すように、構造体201bがある場合(実施例)、揺らぎは1nm以下に抑制されているが、構造体201bがない場合(比較例)、揺らぎが、3nm以上であることが分かる。これらの結果から、構造体201bが音響光学素子における音響光学媒体の揺らぎの抑制に効果的であることが分かった。 6A and 6B, it can be seen that the spot of the light spot is smaller in FIG. 6A, and the fluctuation of the diffracted light is suppressed by the structure 201b. Further, as shown in FIG. 7, when the structure 201b is present (example), the fluctuation is suppressed to 1 nm or less, but when there is no structure 201b (comparative example), the fluctuation is 3 nm or more. I understand. From these results, it was found that the structure 201b is effective in suppressing the fluctuation of the acoustooptic medium in the acoustooptic element.
 本願に開示された音響光学素子および音響光学装置は、種々の超音波診断に用いることが可能である。 The acoustooptic device and acoustooptic device disclosed in the present application can be used for various ultrasonic diagnoses.
 1 光源
 2 音響光学素子
 3 結合レンズ系
 4 受像部
 5 超音波源
 6 被写体
 7 超音波
 8 収束光
 9 焦点面
 3a、3b シリンドリカルレンズ
 51 超音波信号源
 6a 物体
 7 超音波
 7a 反射超音波
 8a -1次回折光束
 8b 0次回折光束
 8c +1次回折光束
 201 音響光学媒体
 201a 液体
 201b 構造体
 202 セル
DESCRIPTION OF SYMBOLS 1 Light source 2 Acoustooptic device 3 Coupling lens system 4 Image receiving part 5 Ultrasonic source 6 Subject 7 Ultrasonic wave 8 Focusing light 9 Focal plane 3a, 3b Cylindrical lens 51 Ultrasonic signal source 6a Object 7 Ultrasonic wave 7a Reflected ultrasonic wave 8a -1 Next order diffracted light beam 8b 0th order diffracted light beam 8c + 1st order diffracted light beam 201 Acoustooptic medium 201a Liquid 201b Structure 202 Cell

Claims (9)

  1.  粗密波の伝播により発生する液体の屈折率変化を、光を用いて検出するための音響光学素子であって、
     内空間を有する支持体と、
     前記内空間に充填された液体と、
     前記内空間に配置され、前記液体と接触している構造体と
    を備え、
     前記構造体は、3次元的に区画された複数の微小空洞部を有し、前記複数の微小空洞部は互いに連通しており、
     前記複数の微小空洞部内に前記液体が配置している、音響光学素子。
    An acoustooptic device for detecting, using light, a change in the refractive index of a liquid generated by propagation of dense waves,
    A support having an internal space;
    A liquid filled in the inner space;
    A structure disposed in the inner space and in contact with the liquid;
    The structure includes a plurality of three-dimensionally divided microcavities, and the plurality of microcavities communicate with each other.
    An acoustooptic device in which the liquid is disposed in the plurality of microcavities.
  2.  前記複数の微小空洞部は1mm以下の大きさを有する請求項1に記載の音響光学素子。 The acoustooptic device according to claim 1, wherein the plurality of microcavities have a size of 1 mm or less.
  3.  前記構造体は、前記液体の屈折率変化を検出するための光の波長よりも小さい単位構造体を複数含み、前記複数の単位構造体が連なることによって、前記複数の微小空洞部を形成している請求項2に記載の音響光学素子。 The structure includes a plurality of unit structures smaller than the wavelength of light for detecting a change in the refractive index of the liquid, and the plurality of unit structures are connected to form the plurality of microcavities. The acoustooptic device according to claim 2.
  4.  前記構造体において、前記複数の単位構造体は、分子の部分的な化学結合によって連なっており、3次元網目構造を形成している請求項3に記載の音響光学素子。 The acoustooptic device according to claim 3, wherein in the structure, the plurality of unit structures are connected by partial chemical bonds of molecules to form a three-dimensional network structure.
  5.  前記構造体は、前記光に対して透明である請求項3に記載の音響光学素子。 The acoustooptic device according to claim 3, wherein the structure is transparent to the light.
  6.  前記構造体は、シロキサンで骨格が形成された湿潤ゲルである請求項3から5のいずれかに記載の音響光学素子。 6. The acoustooptic device according to claim 3, wherein the structure is a wet gel having a skeleton formed of siloxane.
  7.  前記構造体はシリカ多孔体の湿潤ゲルである請求項3から5のいずれかに記載の音響光学素子。 The acoustooptic device according to any one of claims 3 to 5, wherein the structure is a wet silica gel.
  8.  前記液体は、フッ素系材料を含む請求項1から7のいずれかに記載の音響光学素子。 The acoustooptic device according to any one of claims 1 to 7, wherein the liquid includes a fluorine-based material.
  9.  被検体内に超音波を送波する超音波源と、
     請求項1から8のいずれかに記載の音響光学素子であって、前記被検体からの前記超音波による反射超音波が前記液体を伝搬するように配置された音響光学素子と、
     前記音響光学素子の前記液体を伝搬する前記反射超音波を、前記反射超音波の進行方向と非平行な方向に照射する収束光を出射する光源と、
     前記音響光学素子で生成する前記収束光のブラッグ回折光を、前記収束光の伝搬方向に垂直な平面において像を形成させる結像光学系と、
     前記像を検出し、電気信号に変換する受像部と
    を備えた音響光学撮像装置。
    An ultrasonic source for transmitting ultrasonic waves into the subject;
    The acoustooptic device according to any one of claims 1 to 8, wherein the acoustooptic device is arranged such that reflected ultrasound from the ultrasound from the subject propagates through the liquid;
    A light source that emits convergent light that irradiates the reflected ultrasonic wave propagating through the liquid of the acousto-optic element in a direction non-parallel to the traveling direction of the reflected ultrasonic wave;
    An imaging optical system that forms an image of the Bragg diffracted light of the convergent light generated by the acoustooptic element on a plane perpendicular to the propagation direction of the convergent light;
    An acoustooptic imaging device comprising: an image receiving unit that detects the image and converts the image into an electric signal.
PCT/JP2014/001511 2013-04-01 2014-03-17 Acousto-optical element and acousto-optical imaging apparatus WO2014162671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076184 2013-04-01
JP2013076184 2013-04-01

Publications (1)

Publication Number Publication Date
WO2014162671A1 true WO2014162671A1 (en) 2014-10-09

Family

ID=51657986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001511 WO2014162671A1 (en) 2013-04-01 2014-03-17 Acousto-optical element and acousto-optical imaging apparatus

Country Status (1)

Country Link
WO (1) WO2014162671A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103244A (en) * 1989-09-18 1991-04-30 Terumo Corp Ultrasonic wave transmitting medium
WO2012060102A1 (en) * 2010-11-05 2012-05-10 パナソニック株式会社 Porous silica body, and optical microphone using same
WO2012172764A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Optoacoustic image pick-up system and optoacoustic image pick-up device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103244A (en) * 1989-09-18 1991-04-30 Terumo Corp Ultrasonic wave transmitting medium
WO2012060102A1 (en) * 2010-11-05 2012-05-10 パナソニック株式会社 Porous silica body, and optical microphone using same
WO2012172764A1 (en) * 2011-06-17 2012-12-20 パナソニック株式会社 Optoacoustic image pick-up system and optoacoustic image pick-up device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L. FOREST ET AL.: "Biot's theory of acoustic propagation in porous media applied to aerogels and alcogels", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 225, April 1998 (1998-04-01), pages 287 - 292 *
T. IINO ET AL.: "Density dependence of acoustic characteristics of silica nanofoam", ACOUSTICAL SCIENCE AND TECHNOLOGY, vol. 32, no. 4, pages 132 - 136 *

Similar Documents

Publication Publication Date Title
Shriki Ultrasound physics
Chen et al. All-optical photoacoustic microscopy
JP5855994B2 (en) Probe for acoustic wave detection and photoacoustic measurement apparatus having the probe
JP5144842B1 (en) Photoacoustic imaging system and photoacoustic imaging apparatus
JP2009066110A (en) Measurement apparatus
WO2013183302A1 (en) Acoustooptic imaging device
JP5308597B1 (en) Photoacoustic imaging device
JPH05228154A (en) Optically measuring device of tissue to inspect objective
WO2015129293A1 (en) Photoacoustic microscope device
Zhao et al. Optical ultrasound generation and detection for intravascular imaging: a review
JP2017131657A (en) Photoacoustic ultrasonic imaging device
JP2016195641A (en) phantom
Paltauf et al. Progress in biomedical photoacoustic imaging instrumentation toward clinical application
JP2014066701A (en) Specimen information acquisition apparatus
WO2013157228A1 (en) Photoacoustic imaging apparatus
WO2013183247A1 (en) Acoustooptic imaging device
Bao Prospects on ultrasound measurement techniques with optical fibers
JP5179836B2 (en) Ultrasonic probe
WO2014162671A1 (en) Acousto-optical element and acousto-optical imaging apparatus
JP2013101079A (en) Photoacoustic vibrometer
JP2017207531A (en) Microscope system
Thompson et al. Laser-induced synthetic aperture ultrasound imaging
WO2021149127A1 (en) Device for monitoring erythroid differentiation and method for monitoring erythroid differentiation
JP2015027445A (en) Subject information acquisition device, signal processing method, and program
WO2014196150A1 (en) Acousto-optic image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP