WO2014161418A1 - 下行传输功率控制方法、装置及系统 - Google Patents

下行传输功率控制方法、装置及系统 Download PDF

Info

Publication number
WO2014161418A1
WO2014161418A1 PCT/CN2014/072945 CN2014072945W WO2014161418A1 WO 2014161418 A1 WO2014161418 A1 WO 2014161418A1 CN 2014072945 W CN2014072945 W CN 2014072945W WO 2014161418 A1 WO2014161418 A1 WO 2014161418A1
Authority
WO
WIPO (PCT)
Prior art keywords
power node
signal quality
command
downlink
low
Prior art date
Application number
PCT/CN2014/072945
Other languages
English (en)
French (fr)
Inventor
焦淑蓉
孙小钧
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014161418A1 publication Critical patent/WO2014161418A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a downlink transmission power control method, apparatus, and system (
  • BACKGROUND OF THE INVENTION Power control is a universal mobile telecommunications system (UMTS) against the fading of wireless channel transmission and means for improving system capacity.
  • Hetnet Heterogeneous Network
  • UE user equipment
  • SIR signal-to-interference ratio
  • LPN low power node
  • TPC Transmission Power Control
  • the downlink signal of the macro base station received by the UE is The quality of the downlink signal is better than that of the LPN.
  • the TPC command generated by the UE mainly depends on the downlink signal of the macro base station, and the TPC command cannot correctly control the transmission power of the LPN, thereby affecting the transmission performance of the LPN downlink channel.
  • a method for controlling a downlink transmission power includes: a user equipment UE acquires a corresponding first signal quality according to a transmission power control TPC bit on a downlink channel of a low power node, where the UE is in the a low power node and a high power node soft handoff region; the UE compares the first signal quality with a first signal quality target value, and obtains a first transmission power control TPC1 command according to the comparison result; the first signal quality The target value is obtained according to the TPC command error rate of the TPC bit; the UE sends the TPC1 command to the low power node, so that the low power node adjusts the downlink transmission power of the TPC bit.
  • the method further includes: acquiring, by the UE, a second signal quality, where the second signal quality is that the UE is configured according to the low power node and the high power
  • the pilot bits on the downlink channel of the node obtain the corresponding signal quality; the UE compares the second signal quality with the second signal quality target value, and obtains downlink transmission power for controlling the pilot bits according to the comparison result.
  • the second transmission power control TPC2 command; the second signal quality target value is based on a total error rate of pilot bits corresponding to the low power node and the high power node downlink channel or a total error rate of downlink data
  • the UE sends the TPC2 command to the low power node, where the low power node adjusts downlink transmission power of the pilot bit.
  • the UE sends the TPC1 command to the low power node
  • the UE Sending the TPC2 command to the low-power node includes: sending, by the UE, the TPC1 command to the low-power node by adding an uplink channel, where the UE is configured by using an uplink channel different from the newly added uplink channel.
  • the transmit time slot transmits the TPC1 command and the TPC2 command, respectively.
  • the method further includes: the UE receiving, by the network side, the high-level signaling, The parameter information used by the UE, where the parameter information includes a channelization code of the newly added uplink channel, or a data format of the uplink channel, or a transmission slot of the TPC1 command and a transmission slot of the TPC2 command.
  • the user equipment UE controls the TPC bit acquisition according to the transmission power on the downlink channel of the low power node.
  • the corresponding first signal quality further includes: the network side to the low power node Adding to the active set; or the UE's high-speed uplink packet access HSPA cell is switched by the cell corresponding to the low-power node to the cell corresponding to the high-power node; or the UE receives the start-up signaling sent by the network side.
  • another downlink transmission power control method includes: receiving, by a low power node, a first transmission power control TPC1 command sent by a user equipment UE, where
  • the TPC1 command is obtained by comparing the first signal quality and the first signal quality target value corresponding to the downlink channel of the low power node by the UE; the first signal quality is controlled according to a transmission power on a downlink channel of the low power node. Obtained by the TPC bit, the first signal quality target value is obtained according to the TPC command error rate of the TPC bit, and the UE is in the low power node and the high power node soft handover area; the low power node Adjusting downlink transmission power of the TPC bit according to the TPC1 command.
  • the method further includes: receiving, by the low power node, a second transmission power control TPC2 command sent by the UE, where the TPC2 command is that the UE compares Obtained by the two signal quality and the second signal quality target value; the second signal quality is obtained by the UE acquiring the corresponding signal quality according to the pilot bits on the low power node and the high power node downlink channel And the second signal quality target value is obtained according to the total error rate of the pilot bits corresponding to the low power node and the downlink channel of the high power node or the total error block rate of the downlink data; The power node adjusts the downlink transmission power of the downlink channel pilot bits according to the TPC2 command.
  • the TPC2 command is that the UE compares Obtained by the two signal quality and the second signal quality target value
  • the second signal quality is obtained by the UE acquiring the corresponding signal quality according to the pilot bits on the low power node and the high power node downlink channel
  • the second signal quality target value is obtained according to the total error rate
  • the method further includes: the low power node is based on a downlink transmission power of the pilot bit Adjust the transmission power of the downlink channel used to transmit downlink data.
  • the method further includes: if the downlink transmission power of the TPC bit and the guide If the difference in downlink transmission power of the frequency bits is higher than a preset threshold, the low power node stops transmitting downlink data to the UE.
  • the method further includes: the low power node with the TPC bit
  • the downlink transmission power is used as a reference
  • the shared control channel HS-SCCH, the enhanced dedicated channel absolute grant channel E-AGCH, and the enhanced dedicated channel hybrid automatic repeat request indication signal are adjusted for the high speed downlink shared channel.
  • the downlink E-HICH and the enhanced dedicated channel are relative to the downlink transmission power of the grant channel E-RGCH.
  • the method further includes: the high power node does not process the received TPC1 command.
  • a data transmission method provided by an embodiment of the present invention includes:
  • the first base station determines that the transmission quality of the downlink channel connected to the user equipment UE does not reach a preset criterion; the first base station stops transmitting downlink data to the UE, and the UE is in the soft handover area of the first base station and the second base station. in.
  • the determining, by the first base station, that a transmission quality of a downlink channel that is connected to the UE does not reach a preset criterion The difference between the transmission quality of the channel and the transmission quality of the downlink channel of the second base station connected to the UE is higher than a preset threshold.
  • the first base station is a low power node
  • the second base station is a high power node
  • Determining, by the first base station, that a difference between a transmission quality of the downlink channel connecting the UE and a transmission quality of the downlink channel of the second base station connected to the UE is higher than a preset threshold, the method includes: the low power node receiving the
  • the first transmission power sent by the UE controls a TPC1 command, where the TPC1 command is obtained by comparing the first signal quality and the first signal quality target value corresponding to the downlink channel of the low power node;
  • the quality is obtained according to the transmission power control TPC bit on the downlink channel of the low power node, where the first signal quality target value is obtained according to the TPC command error rate of the TPC bit;
  • the low power node according to the TPC1 command Adjusting a downlink transmission power of the TPC bit;
  • the low power node receives a second transmission power control TPC2 command sent by the UE, where the TPC2 command is that the UE compares the second signal quality with the second signal quality target
  • the second signal quality is obtained by the UE according to the pilot signal on the downlink channel of the low power node and the high power node, and the second signal quality target value is obtained.
  • the determining, by the first base station, that the transmission quality of the downlink channel connected to the UE does not reach a preset criterion The transmitted channel quality indicator CQI is lower than the preset CQI threshold.
  • a user equipment provided by the embodiment of the present invention includes:
  • the processor obtains a corresponding first signal quality according to the transmission power control TPC bit on the downlink channel of the low power node, where the UE is in the low power node and the high power node soft handover region;
  • the first signal quality target value is compared, and the first transmission power control TPC1 command is obtained according to the comparison result;
  • the first signal quality target value is obtained according to the TPC command error rate of the TPC bit; and the transmitter, the TPC1 The command is sent to the low power node for the low power node to adjust the downlink transmission power of the TPC bit.
  • the processor is further configured to: acquire a second signal quality, where the second signal quality is that the UE is configured according to the low power node and the high power node Obtaining, by the pilot bit on the downlink channel, the corresponding signal quality; comparing the second signal quality with the second signal quality target value, and acquiring, according to the comparison result, the second transmission for controlling the downlink transmission power of the pilot bit a power control TPC2 command; the second signal quality target value is obtained according to a total error rate of the pilot bits corresponding to the low power node and the high power node downlink channel or a total error block rate of the downlink data;
  • the transmitter is further configured to: send the TPC2 command to the low power node, where the low power node adjusts downlink transmission power of the pilot bit.
  • the transmitter is specifically configured to: send the TPC1 command to the low by adding an uplink channel
  • the power node sends the TPC2 command to the low power node by using an uplink channel different from the newly added uplink channel; or sends the TPC1 command and the time division in the same time slot by modifying the format of the uplink channel.
  • the TPC2 command is sent; or the TPC1 command and the TPC2 command are respectively sent in different transmission slots through the uplink channel.
  • the method further includes: a receiver, configured to receive, by the network side, the higher layer signaling, and notify the UE Parameter information used, the parameter information includes a channelization code of the newly added uplink channel, or a data format of the uplink channel, or a transmission slot of the TPC 1 command and a transmission slot of the TPC2 command.
  • the processor is further configured to: access the HSPA serving cell by the low power node The corresponding cell is switched to the cell corresponding to the high power node; or the receiver is further configured to: receive the network Start signaling sent by the network side.
  • a base station where the base station is a low-power node, includes: a receiver, configured to receive a first transmission power control TPC1 command sent by a user equipment UE, where the TPC1 command is The UE obtains by comparing the first signal quality corresponding to the downlink channel of the low power node with the first signal quality target value; the first signal quality is obtained according to the transmission power control TPC bit on the downlink channel of the low power node, The first signal quality target value is obtained according to the TPC command error rate of the TPC bit, the UE is in the low power node and the high power node soft handover area, and the processor is configured to use the TPC1 command according to the TPC1 command. And adjusting a downlink transmission power of the TPC bit.
  • the receiver is further configured to: receive the
  • the second transmission power sent by the UE controls a TPC2 command, where the TPC2 command is obtained by comparing the second signal quality and the second signal quality target value by the UE; the second signal quality is that the UE is according to the low Obtaining a corresponding signal quality by a pilot bit on a downlink channel of the power node and the high power node, where the second signal quality target value is based on a pilot corresponding to the low power node and the downlink channel of the high power node Obtaining a total error rate of the bit or a total error rate of the downlink data; the processor is further configured to: adjust a downlink transmission power of the downlink channel pilot bit according to the TPC2 command.
  • the processor is further configured to: adjust, according to a downlink transmission power of the pilot bit, The transmission power of the downlink channel for transmitting downlink data.
  • the processor is further configured to: determine to obtain a downlink transmission power of the TPC bit The difference between the downlink transmission power of the pilot bits is higher than a preset threshold.
  • the base station further includes: a transmitter, configured to stop sending downlink data to the UE.
  • the processor is further configured to: use the downlink transmission power of the TPC bit For the reference, the shared control channel HS-SCCH, the enhanced dedicated channel absolute grant channel E-AGCH, the enhanced dedicated channel hybrid automatic repeat request indication channel E-HICH, and the enhanced dedicated channel relative grant channel E- for the high speed downlink shared channel are adjusted. Downlink transmission power of RGCH.
  • the downlink transmission power control system includes: the user equipment according to any possible implementation manner of the third aspect, and the fourth aspect, In any of the possible implementation manners, the user equipment is in communication connection with the base station.
  • another base station where the base station is a first base station, includes: a processor, configured to determine that a transmission quality of a downlink channel connected to the user equipment UE does not reach a preset standard; And the method is configured to stop sending downlink data to the UE, where the UE is in the soft handover area of the first base station and the second base station.
  • the processor is specifically configured to: determine a transmission quality of a downlink channel that connects the UE, and a transmission quality of a downlink channel that is connected to the UE by the second base station The gap is above the preset threshold.
  • the first base station is a low power node, and the second base station is a high power node
  • the base station further includes: a receiver, configured to receive a first transmission power control TPC1 command sent by the UE, where the TPC1 command is that the UE compares the first signal quality and the first signal corresponding to the downlink channel of the low-power node Obtained by the quality target value; the first signal quality is obtained according to a transmission power control TPC bit on a downlink channel of the low power node, where the first signal quality target value is obtained according to a TPC command error rate of the TPC bit
  • the processor is further configured to: adjust a downlink transmission power of the TPC bit according to the TPC1 command; the receiver is further configured to: receive a second transmission power control TPC2 command sent by the UE, where The TPC2 command is obtained by comparing the second signal quality and the second signal quality target value by the UE; the second signal quality
  • the processor is specifically configured to: determine the
  • the channel quality indicator CQI sent by the UE is lower than the preset CQI threshold.
  • the downlink transmission power control method, apparatus, and system provided by the embodiments of the present invention obtain a TPC1 command by comparing a first signal quality and a first signal quality target value corresponding to a low power node, where the first signal quality target value is based on a low power node
  • the TPC command error rate of the TPC bit of the downlink channel is obtained. Take it.
  • the TPC1 command can be used to correctly control the TPC bit transmit power of the low power node, thereby improving the transmission performance of the low power node downlink channel.
  • FIG. 1 is a flowchart of Embodiment 1 of a downlink transmission power control method according to the present invention
  • FIG. 2 is a flowchart of Embodiment 2 of a downlink transmission power control method provided by the present invention
  • FIG. 4 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • FIG. 5 is a flowchart of an embodiment of a data transmission method provided by the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of a base station according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a downlink transmission power control method according to the present invention. As shown in FIG. 1 , this embodiment uses a user equipment as an execution subject to describe a downlink transmission power control method according to an embodiment of the present invention. Examples can include:
  • the user equipment UE controls the TPC bit according to the transmission power of the low power node downlink channel to obtain a corresponding first signal quality, and the UE is in the low power node and the high power node soft handover area.
  • the high-power node is used as the macro base station, and when the UE is in the soft handover area of the LPN and the high-power node, for example, when the UE is in the soft handover area close to the side of the macro base station, the UE receives the The downlink signal of the macro base station is better than the downlink signal of the LPN.
  • the upper TPC bit acquires the first signal quality
  • the first signal quality may be a signal to interference ratio corresponding to the TPC bit on the LPN downlink channel, or may be a power spectral density (Ec/NO) corresponding to the TPC bit on the LPN downlink channel
  • the power spectral density is the ratio of the received energy per chip corresponding to the TPC bit on the LPN downlink channel to the total received signal of the TPC bit on the LPN downlink channel.
  • the downlink channel of the LPN may be a Downlink Dedicated Physical Control Channel (DL DPCCH) or a Partial Dedicated Physical Control Channel (F-DPCH).
  • DL DPCCH Downlink Dedicated Physical Control Channel
  • F-DPCH Partial Dedicated Physical Control Channel
  • the UE compares the first signal quality with the first signal quality target value, and obtains a first transmission power control TPC1 command according to the comparison result.
  • the first signal quality target value is obtained according to a TPC command error rate of the TPC bit.
  • the UE may set the first signal quality target value according to the TPC command error rate of the TPC bit on the DL DPCCH of the LPN, where the TPC command error rate is, for example, a TPC bit error. Bit Error Rate (hereinafter referred to as BER);
  • the UE may set the first signal quality target value according to the TPC command error rate of the TPC bit on the F-DPCH of the LPN.
  • the UE compares the first signal quality with the first signal quality target value. If the first signal quality is less than the first signal quality target value, the TPC1 command is a power up command; if the first signal quality is greater than the first signal quality target value, the TPC1 command is a power down command.
  • the UE sends a TPC1 command to the low power node, so that the low power node adjusts the downlink transmission power of the TPC bit.
  • the UE After obtaining the TPC1 command, the UE sends the TPC1 command to the LPN, and the LPN commands the specific power or the power reduction according to the TPC1 command.
  • the user equipment acquires a TPC1 command by comparing the first signal quality and the first signal quality target value corresponding to the LPN downlink channel, where the first signal quality target value is based on the TPC bit of the LPN downlink channel.
  • the TPC command error rate is obtained.
  • the TPC1 command can be used to correctly control the TPC bit transmit power of the LPN, thereby improving the transmission performance of the LPN downlink channel.
  • the method further includes: acquiring, by the UE, a second signal quality, where the second signal quality is that the UE acquires a corresponding signal according to the TPC bit on the downlink channel of the serving cell base station.
  • the second signal quality may be the signal to interference ratio corresponding to the TPC bit on the downlink channel of the serving cell base station, or may be the power spectral density (EC/N) corresponding to the TPC bit on the downlink channel of the serving cell base station, the power The spectral density is the ratio of the received energy per chip (chip) corresponding to the TPC bit on the downlink channel of the serving cell base station to the total received signal of the TPC bit on the downlink channel of the serving cell base station.
  • the UE compares the second signal quality with the second signal quality target value, and obtains a second transmission power control TPC2 command for controlling downlink transmission power of the pilot bit according to the comparison result; the second signal quality target value is according to the serving cell base station
  • the TPC command error rate of the TPC bit corresponding to the downlink channel is obtained; the serving cell base station is a base station serving the UE in the LPN or the high power node; the UE sends the TPC2 command to the LPN.
  • the UE may obtain a second signal quality according to the signal quality of the TPC bit on the F-DPCH of the serving cell, or the UE may use the LPN and the high power node.
  • the UE is currently accessing the cell, and the serving cell base station may be a base station currently serving the UE in the LPN or the high power node; the UE compares the second signal quality with the second signal quality target value, if the second signal quality is less than the second The two signal quality target values, the acquired TPC2 command is a power up command; if the second signal quality is greater than the second signal quality target value, the acquired TPC2 command is a power down command.
  • the UE sends the obtained TPC2 command to the LPN, and the UE may also send the obtained TPC2 command to the high power node.
  • the method may further include: acquiring, by the UE, a second signal quality, where the second signal quality is obtained by the UE according to the pilot signal on the downlink channel of the LPN and the high power node to obtain a corresponding signal quality;
  • the UE compares the second signal quality with the second signal quality target value, and obtains a second transmission power control TPC2 command for controlling the downlink transmission power of the pilot bit according to the comparison result;
  • the second signal quality target value is according to the LPN and the high Obtaining the total error rate of the pilot bits corresponding to the downlink channel of the power node or the total error rate of the downlink data; the UE sends the TPC2 command to the LPN for the LPN to adjust the downlink transmission power of the pilot bits.
  • the UE may also obtain a corresponding signal quality according to pilot bits on the DL DPCCH of the LPN and the high power node, and obtain signal quality for the signal quality. And obtaining the second signal quality; at the same time, the UE may obtain the second signal quality target value according to the total error rate of the pilot bits corresponding to the DL DPCCH of the LPN and the high power node, The UE may also acquire the second signal quality target value according to the total block error rate of the downlink data corresponding to the DL DPCCH of the LPN and the high power node. The UE compares the second signal quality with the second signal quality target value.
  • the acquired TPC2 command is a boost power command; if the second signal quality is greater than the second signal quality target value , the obtained TPC2 command is a power reduction command.
  • the UE sends the obtained TPC2 command to the LPN, and the UE may also send the obtained TPC2 command to the high-power node.
  • the UE sends the TPC1 command to the LPN, and the UE sends the TPC2 command to the LPN, where the UE sends the TPC1 command to the low-power node by using the first new uplink channel.
  • the UE sends the TPC2 command to the low power node by using a second newly added uplink channel; or the UE sends the TPC1 command and the TPC2 command in the same time slot by modifying the format of the uplink channel; or the UE passes the uplink.
  • the channel transmits the TPC1 command and the TPC2 command in different transmission slots.
  • the UE can send the TPC1 command and the TPC2 command to the low power node in the following ways:
  • Manner 1 The UE can separately send TPC1 commands to the low power nodes through different uplink channels.
  • the UE may send a TPC2 command through an existing Uplink Dedicated Physical Control Channel (ULDPCCH), and send a TPC1 command by adding a new uplink channel;
  • ULDPCCH Uplink Dedicated Physical Control Channel
  • the UE may separately send the TPC1 command and the TPC2 command at different times in the same time slot of the UL DPCCH by modifying the existing UL DPCCH.
  • Manner 3 The UE can send the TPC 1 command and the TPC2 command in different time slots of the UL DPCCH through the existing UL DPCCH.
  • the manner in which the UE sends the TPC1 command and the TPC2 command to the low-power node is not limited thereto.
  • the method may further include: receiving, by the UE, parameter information that is sent by the network side by using the high-layer signaling, and notifying the UE, where the parameter information includes a channelization code of the newly added uplink channel, or an uplink channel.
  • the type of parameter information is not limited to this.
  • the high layer signaling may be a radio resource control protocol (Radio Resource Control, Hereinafter referred to as RRC signaling)
  • RRC signaling the UE can accept the parameter information delivered by the network to which the UE accesses, and the parameter information.
  • the user equipment UE controls the TPC bit according to the transmission power on the downlink channel of the low power node.
  • the method further includes: adding, by the network side, the low-power node to the active set; or the high-speed uplink packet accessing of the UE, the HSPA serving cell is switched by the cell corresponding to the low-power node to the cell corresponding to the high-power node Or the UE receives the startup signaling sent by the network side.
  • the network accessed by the UE learns that the UE is in the soft handover area of the low power node and the high power node
  • the network may instruct the UE to start acquiring the first signal quality, and then obtain the TPC1 command, and send the TPC1 command to the low power node.
  • the low power node sends the TPC bit to control the downlink transmission power.
  • the radio network controller Radio Network Controller, hereinafter referred to as RNC
  • RNC Radio Network Controller
  • the network may instruct the UE to start acquiring the first signal quality, and then acquire The TPC1 command sends the TPC1 command to the low power node for the low power node to send the TPC bit for downlink transmission power control.
  • the UE may also receive the start signaling sent by the network to start acquiring the first signal quality, and the startup signaling includes high layer signaling or physical layer signaling.
  • the downlink transmission power control method obtains a TPC1 command by comparing a first signal quality and a first signal quality target value corresponding to a downlink channel of a low power node, where the first signal quality target value is according to a downlink channel of the low power node.
  • TPC bit TPC command error rate obtained.
  • obtaining the TPC2 command by comparing the second signal quality and the second signal quality target value corresponding to the downlink channel of the low power node and the high power node, and respectively controlling the TPC bit and the pilot of the downlink channel of the low power node by using the TPC1 command and the TPC2 command respectively The transmit power of the bit, thereby improving the transmission performance of the downlink channel of the low power node.
  • FIG. 2 is a flowchart of Embodiment 2 of a downlink transmission power control method according to the present invention.
  • a downlink power transmission control method according to an embodiment of the present invention is described by using a low power node as an execution subject.
  • This embodiment may include:
  • the low power node receives the first transmission power control TPC1 command sent by the user equipment UE, where the TPC1 command is that the UE compares the first signal quality and the first signal corresponding to the downlink channel of the low power node. Obtained by the quality target value; the first signal quality is obtained according to the transmission power control TPC bit on the downlink channel of the low power node, the first signal quality target value is obtained according to the TPC command error rate of the TPC bit, and the UE is at a low The power node and the high power node are in the soft handoff area.
  • the low power node may be an LPN and the high power node may be a macro base station.
  • the UE is in the soft handover area of the low power node and the high power node, for example, when the UE is in the soft handover area close to the side of the macro base station, the downlink signal of the macro base station received by the UE is better than the downlink signal of the LPN.
  • the UE may obtain the first signal quality according to the TPC bit on the downlink channel of the low power node, where the first signal quality may be the signal to interference ratio corresponding to the TPC bit on the downlink channel of the low power node, or may be the downlink channel of the low power node.
  • the power spectral density (Ec/N0) corresponding to the TPC bit that is, the received energy per chip (chip) corresponding to the TPC bit on the downlink channel of the low power node and the total reception of the TPC bit on the downlink channel of the low power node
  • the downlink channel of the low power node may be a DL DPCCH or an F-DPCH. If the downlink channel of the low power node is the DL DPCCH, the UE may set the first signal quality target value according to the TPC command error rate of the TPC bit on the DL DPCCH of the low power node, where the TPC command error rate is, for example, the error of the TPC bit.
  • the UE may set the first signal quality target value according to the TPC command error rate of the TPC bit on the F-DPCH of the low power node. After acquiring the first signal quality and the first signal quality target value, the UE compares the first signal quality with the first signal quality target value. If the first signal quality is less than the first signal quality target value, the TPC1 command is a power up command; if the first signal quality is greater than the first signal quality target value, the TPC1 command is a power down command.
  • the low power node adjusts downlink transmission power of the TPC bit according to the TPC1 command.
  • the low power node After the low power node receives the TPC1 command sent by the UE, if the TPC1 command is a power up command and the command is a power down command, the low power node performs power reduction processing on the downlink transmission power used to transmit the TPC bit.
  • the user equipment obtains the TPC1 command by comparing the first signal quality and the first signal quality target value corresponding to the downlink channel of the low power node, where the first signal quality target value is downlink according to the low power node.
  • the TPC command error rate of the TPC bit of the channel is obtained.
  • the low power node can correctly control the TPC bit transmit power of the low power node by using the TPC1 command sent by the user equipment, thereby improving the transmission performance of the downlink channel of the low power node. Further, based on the embodiment of FIG.
  • the method further includes: receiving, by the low-power node, a second transmission power control TPC2 command sent by the UE, where the TPC2 command is obtained by comparing the second signal quality with the second signal quality target value by the UE.
  • the second signal quality is obtained by the UE acquiring the corresponding signal quality according to the pilot bits on the downlink channel of the low power node and the high power node, and the second signal quality target value is corresponding to the downlink channel of the low power node and the high power node.
  • the total error rate of the pilot bits or the total error rate of the downlink data is obtained; the low power node adjusts the downlink transmission power of the downlink channel pilot bits according to the TPC2 command.
  • the UE may also obtain a corresponding signal quality according to pilot bits on the DL DPCCH of the low power node and the high power node, and obtain signal quality. And obtaining the second signal quality; at the same time, the UE may obtain the second signal quality target value according to the total error rate of the pilot bits corresponding to the DL DPCCH of the low power node and the high power node, and the UE may also be based on the low power node and the high power.
  • the total block error rate of the downlink data corresponding to the DL DPCCH of the node acquires the second signal quality target value.
  • the UE compares the second signal quality with the second signal quality target value. If the second signal quality is less than the second signal quality target value, the acquired TPC2 command is a rising power command; if the second signal quality is greater than the second signal quality target value , the obtained TPC2 command is a power reduction command.
  • the low power node receives the TPC2 command sent by the UE, and adjusts the downlink transmission power of the downlink channel pilot bits according to the TPC2 command.
  • the high power node may also receive the TPC2 command sent by the UE, and control the downlink transmission power according to the TPC2 command.
  • the UE may obtain the second signal quality by summing the signal quality of the TPC bits on the F-DPCH of the serving cell, or the UE may use the low-power node and the high-power node.
  • the signal quality of the TPC bits on the F-DPCH is summed to obtain the second signal quality; at the same time, the UE may set the second signal quality target value according to the TPC command error rate of the TPC bit on the F-DPCH of the serving cell, where the serving cell Is the cell currently accessed by the UE; the UE compares the second signal quality with the second signal quality target value, and if the second signal quality is less than the second signal quality target value, the acquired TPC2 command is a boost power command; if the second signal If the quality is greater than the second signal quality target value, the acquired TPC2 command is a power reduction command.
  • the low power node After receiving the TPC2 command sent by the UE, the low power node ignores the TPC2 command, or the low power node does not receive the TPC2 command. At the same time, the high power node receives the TPC2 command sent by the UE, and controls the downlink transmission power.
  • the low power node can receive the TPC1 command and the TPC2 command sent by the UE in the following manners: Manner 1: The low power node can receive the TPC 1 command and the TPC2 command sent by the UE through different uplink channels. For example, the low-power node can receive the TPC2 command sent by the UE through the existing UL DPCCH, and receive the TPC1 command sent by the UE through the newly added uplink channel.
  • the low power node can receive the TPC1 command and the TPC2 command sent by the UE at different times in the same time slot of the UL DPCCH.
  • the low power node can receive the TPC1 command and the TPC2 command sent by the UE in different time slots of the UL DPCCH.
  • the manner in which the low power node receives the TPC1 command and the TPC2 command sent by the UE is not limited thereto.
  • the transmission power of the downlink channel for transmitting downlink data is not limited thereto.
  • the low power node stops transmitting downlink data to the UE.
  • the downlink data may specifically be data transmitted on a downlink dedicated physical data channel (DPDCH).
  • DPDCH downlink dedicated physical data channel
  • the low power node adjusts the shared control channel for the high speed downlink shared channel (HS-based) based on the downlink transmission power of the TPC bit.
  • Enhanced Dedicated Channel Absolute Grant Channel E-AGCH
  • E-HICH Enhanced Dedicated Channel Hybrid ARQ Indicator Channel
  • E-HCH Enhanced Dedicated Channel Absolute Grant Channel
  • E-RGCH The downlink transmission power of the Enhanced Dedicated Channel Relative Grant Channel
  • the high power node uses the received TPC2 command to adjust the downlink transmission power.
  • the downlink transmission power control method obtains a TPC1 command by comparing a first signal quality and a first signal quality target value corresponding to a downlink channel of the low power node, where the first signal quality The target value is obtained based on the TPC command error rate of the TPC bit of the downlink channel of the low power node.
  • obtaining the TPC2 command by comparing the second signal quality and the second signal quality target value corresponding to the downlink channel of the low power node and the high power node, and respectively controlling the TPC bit and the pilot of the downlink channel of the low power node by using the TPC1 command and the TPC2 command respectively The transmit power of the bit, thereby improving the transmission performance of the downlink channel of the low power node.
  • FIG. 3 is a schematic structural diagram of an embodiment of a user equipment provided by the present invention.
  • the user equipment 300 provided in this embodiment may include: a processor 310, a transmitter 320, and a receiver 330, specifically:
  • the processor 310 is configured to obtain a corresponding first signal quality according to the transmission power control TPC bit on the downlink channel of the low power node, where the UE is in the low power node and the high power node soft handover region; and the first signal quality and the first signal are The quality target value is compared, and the first transmission power control TPC1 command is obtained according to the comparison result; the first signal quality target value is obtained according to the TPC command error rate of the TPC bit;
  • the transmitter 320 is configured to send a TPC1 command to the low power node, so that the low power node adjusts the downlink transmission power of the TPC bit.
  • the processor 310 is further configured to: acquire a second signal quality, where the second signal quality is obtained by the UE acquiring the corresponding signal quality according to the pilot bits on the downlink channel of the low power node and the high power node; Comparing with the second signal quality target value, acquiring a second transmission power control TPC2 command for controlling downlink transmission power of the pilot bit according to the comparison result; the second signal quality target value is according to the low power node and the high power node downlink channel Obtaining the total error rate of the corresponding pilot bit or the total error rate of the downlink data; the transmitter 320 is further configured to: send the TPC2 command to the low power node, where the low power node adjusts the downlink transmission power of the pilot bit. .
  • the transmitter 320 is specifically configured to: send the TPC1 command to the low power node by adding an uplink channel, and send the TPC2 command to the low channel by using an uplink channel different from the newly added uplink channel.
  • the power node or by modifying the format of the uplink channel, transmitting the TPC1 command and the TPC2 command in the same time slot; or transmitting the TPC1 command and the TPC2 command in different transmission slots through the uplink channel.
  • the receiver 330 receives the parameter information that is sent by the network side and is used by the UE to notify the UE, and the parameter information includes the channelization code of the newly added uplink channel, or the data format of the uplink channel, or the transmission of the TPC1 command.
  • the processor 310 is further configured to: the accessing the HSPA cell is switched by the cell corresponding to the low power node to the cell corresponding to the high power node; or the receiver 330 is further configured to: receive the startup signaling sent by the network side.
  • the user equipment 300 provided in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the base station 400 provided in this embodiment may be a low-power node, and the base station 400 may include: a receiver 410, a processor 420, and a transmitter. 430, specifically:
  • the receiver 410 is configured to receive a first transmission power control TPC1 command sent by the user equipment UE, where the TPC1 command is obtained by comparing the first signal quality and the first signal quality target value corresponding to the downlink channel of the low power node;
  • the signal quality is obtained according to the transmission power control TPC bit on the downlink channel of the low power node.
  • the first signal quality target value is obtained according to the TPC command error rate of the TPC bit, and the UE is in the low power node and the high power node soft handover area. ;
  • the processor 420 is configured to adjust a downlink transmission power of the TPC bit according to the TPC1 command.
  • the receiver 410 is further configured to: receive a second transmission power control TPC2 command sent by the UE, where the TPC2 command is obtained by comparing the second signal quality with the second signal quality target value; the second signal quality is determined by the UE according to the UE The pilot bits on the downlink channel of the low power node and the high power node obtain the corresponding signal quality, and the second signal quality target value is based on the total error rate of the pilot bits corresponding to the downlink channel of the low power node and the high power node or The total error block rate of the downlink data is obtained; the processor 420 is further configured to: adjust the downlink transmission power of the downlink channel pilot bits according to the TPC2 command.
  • the processor 420 is further configured to: adjust, according to a downlink transmission power of the pilot bits, a transmission power of a downlink channel used for transmitting downlink data.
  • the processor 420 is further configured to: determine that the difference between the downlink transmission power of the TPC bit and the downlink transmission power of the pilot bit is higher than a preset threshold; and correspondingly, the transmitter 430 is configured to stop sending downlink data to the UE.
  • the processor 420 is further configured to: adjust, according to a downlink transmission power of the TPC bit, a shared control channel HS-SCCH for the high speed downlink shared channel, an enhanced dedicated channel absolute grant channel E-AGCH, and an enhanced dedicated channel hybrid automatic
  • the retransmission request indicates the downlink transmission power of the channel E-HICH and the enhanced dedicated channel relative to the grant channel E-RGCH.
  • the base station 400 provided in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 2, The implementation principle and technical effects are similar, and will not be described here.
  • the embodiment of the present invention further provides a downlink transmission power control system, which may include: any user equipment in the embodiment shown in FIG. 3, and any base station in the embodiment shown in FIG. Communication connection between base stations.
  • a downlink transmission power control system which may include: any user equipment in the embodiment shown in FIG. 3, and any base station in the embodiment shown in FIG. Communication connection between base stations.
  • the downlink transmission power control method, apparatus, and system obtain a TPC1 command by comparing a first signal quality corresponding to a downlink channel of a low power node with a first signal quality target value, where the first signal quality target The value is obtained based on the TPC command error rate of the TPC bit of the downlink channel of the low power node.
  • obtaining the TPC2 command by comparing the second signal quality and the second signal quality target value corresponding to the downlink channel of the low power node and the high power node, and respectively controlling the TPC bit and the pilot of the downlink channel of the low power node by using the TPC1 command and the TPC2 command respectively.
  • the transmit power of the bit thereby improving the transmission performance of the downlink channel of the low power node.
  • FIG. 5 is a flowchart of an embodiment of a data transmission method according to the present invention. As shown in FIG. 5, the data transmission method provided by this embodiment may include:
  • the first base station determines that the transmission quality of the downlink channel connected to the user equipment UE does not reach a preset standard.
  • the first base station stops transmitting downlink data to the UE, where the UE is in the first base station and the second base station soft handover area.
  • the data transmission method provided in this embodiment determines that the transmission quality of the downlink channel of the UE in the soft handover area does not reach the preset standard, and determines to stop sending downlink data to the UE, thereby saving network resources and ensuring transmission quality.
  • the first base station determines that the transmission quality of the downlink channel connected to the UE does not reach the preset standard, and the method includes: the first base station determines that the transmission quality of the downlink channel connected to the UE is different from the transmission quality of the downlink channel of the second base station to the UE.
  • the preset threshold For example, the error rate of the downlink channel in which the first base station sends the downlink data to the UE is smaller than the error rate of the downlink channel in which the second base station sends the downlink data to the UE is higher than the preset threshold, and then the first base station stops sending to the UE. Downstream data.
  • the first base station is a low power node
  • the second base station is a high power node
  • the first base station determines a difference between a transmission quality of a downlink channel connected to the UE and a transmission quality of a downlink channel of the second base station connected to the UE.
  • the preset threshold including:
  • the low power node receives the first transmission power control TPC1 command sent by the UE, and the TPC1 command is that the UE compares the first signal quality and the first signal quality target value corresponding to the downlink channel of the low power node. Acquired; the first signal quality is obtained according to the transmission power control TPC bit on the downlink channel of the low power node, and the first signal quality target value is obtained according to the TPC command error rate of the TPC bit;
  • the low power node adjusts the downlink transmission power of the TPC bit according to the TPC1 command
  • the low power node receives the second transmission power control TPC2 command sent by the UE, where the TPC2 command is obtained by comparing the second signal quality with the second signal quality target value; the second signal quality is the UE according to the low power node and the high power node.
  • the pilot bit on the downlink channel obtains the corresponding signal quality, and the second signal quality target value is based on the total error rate of the pilot bits corresponding to the downlink channel of the low power node and the high power node or the total block error rate of the downlink data. Obtained
  • the low power node adjusts the downlink transmission power of the downlink channel pilot bits according to the TPC2 command; the difference is higher than the preset threshold.
  • the first signal quality may be a signal to interference ratio corresponding to a TPC bit on a downlink channel of the low power node, or may be a power spectral density (Ec/N0) corresponding to a TPC bit on a downlink channel of the low power node, the power spectral density. That is, the ratio of the received energy per chip (chip) corresponding to the TPC bit on the downlink channel of the low power node to the total received signal of the TPC bit on the downlink channel of the low power node.
  • Ec/N0 power spectral density
  • the TPC command error rate is, for example, the bit error rate of the TPC bit.
  • the first base station determines that the transmission quality of the downlink channel of the connected UE does not reach the preset criterion, and the method includes: determining, by the first base station, that the channel quality indicator CQI sent by the UE is lower than a preset CQI threshold.
  • the data transmission method provided in this embodiment can determine that the transmission quality of the downlink channel of the UE in the soft handover area does not reach the preset standard, and determines to stop sending downlink data to the UE, thereby saving network resources and ensuring transmission. quality.
  • FIG. 6 is a schematic structural diagram of another embodiment of a base station according to the present invention.
  • the base station 600 provided in this embodiment may be a first base station, where the base station 600 may include: a processor 610, a transmitter 620, and a receiving 630, specifically:
  • the processor 610 is configured to determine that the transmission quality of the downlink channel connected to the user equipment UE does not reach a preset standard
  • the transmitter 620 is configured to stop sending downlink data to the UE, where the UE is in the first base station and the second base station soft handover area.
  • the processor 610 is specifically configured to: determine that a difference between a transmission quality of the downlink channel connecting the UE and a transmission quality of the downlink channel of the second base station connected to the UE is higher than a preset threshold.
  • the first base station is a low power node
  • the second base station is a high power node
  • the receiver 630 is configured to receive a first transmission power control TPC1 command sent by the UE, where the TPC1 command is that the UE compares the low power.
  • the TPC command of the bit is obtained by the error rate.
  • the processor 610 is configured to adjust the downlink transmission power of the TPC bit according to the TPC1 command.
  • the receiver 630 is further configured to: receive the second transmission power control TPC2 command sent by the UE, where the TPC2 command is the UE.
  • the second signal quality is obtained by the UE acquiring the corresponding signal quality according to the pilot bits on the low power node and the high power node downlink channel, and the second signal quality is obtained.
  • the target value is based on the total error rate or downlink data of the pilot bits corresponding to the downlink channel of the low power node and the high power node.
  • the processor 610 is further configured to: adjust a downlink transmission power of the downlink channel pilot bit according to the TPC2 command; the processor 610 is further configured to: determine the TPC bit further, the processor 610 is specifically configured to: It is determined that the channel quality indicator CQI sent by the UE is lower than a preset CQI threshold.
  • the base station 600 provided in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the data transmission method and the base station provided by the embodiment of the present invention can determine that the transmission quality of the downlink channel of the UE in the soft handover area does not reach the preset standard, and determines to stop sending downlink data to the UE, thereby saving network resources. Guaranteed transmission quality.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some or all of them according to actual needs.
  • the unit is to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Abstract

一种下行传输功率控制方法、装置及系统。方法包括:UE根据低功率节点下行信道上的TPC比特获取对应的第一信号质量,UE处于低功率节点和高功率节点软切换区中;UE将第一信号质量与第一信号质量目标值进行比较,根据比较结果获取第一传输功率控制TPC1命令;第一信号质量目标值是根据TPC比特的TPC命令错误率获取的;UE将TPC1命令发送给低功率节点,以供低功率节点调整TPC比特的下行传输功率。本发明实施例通过比较低功率节点对应的第一信号质量和第一信号质量目标值获取TPC1命令,使用TPC1命令可以正确控制低功率节点的TPC比特发射功率,从而提高低功率节点下行信道的传输性能。

Description

下行传输功率控制方法、 装置及系统
本申请要求于 2013 年 4 月 3 日提交中国专利局、 申请号为 201310115660.X, 发明名称为"下行传输功率控制方法、 装置及系统"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术, 尤其涉及一种下行传输功率控制方法、装置 及系统 (
背景技术 功率控制是通用移动通信系统 (Universal Mobile Telecommunications System,以下简称 UMTS)对抗无线信道传输的衰落以及提高系统容量的手段之 在异构网( Heterogeneous Network, 以下简称 Hetnet )中, 用户设备(User Equipment, 以下简称 UE )根据接收到的宏基站和低功率节点 ( Low Power Node, 以下简称 LPN )的下行信号, 获取宏基站和 LPN的下行信道的信号干扰 比( Signal to interference ratio, 以下简称 SIR ) , 通过比较 SIR与信号干扰比目 标值的大小, 生成传输功率控制(Transmission Power Control, 以下简称 TPC ) 命令对宏基站和 LPN的发射功率统一进行调整。
但在 Hetnet中存在上下行不平衡的区域,当 UE处于上下行不平衡区域内, 且处于宏基站和 LPN的软切换区靠近宏基站的一侧时, UE接收到的宏基站的 下行信号的质量要好于 LPN的下行信号的质量, UE生成的 TPC命令主要取 决于宏基站的下行信号, 导致该 TPC命令不能正确控制 LPN的发射功率, 从 而影响 LPN下行信道的传输性能。
发明内容 本发明实施例提供一种下行传输功率控制方法、 装置及系统。 第一方面, 本发明实施例提供的一种下行传输功率控制方法, 包括: 用户设备 UE根据低功率节点下行信道上的传输功率控制 TPC比特获取对 应的第一信号质量, 所述 UE处于所述低功率节点和高功率节点软切换区中; 所述 UE将所述第一信号质量与第一信号质量目标值进行比较, 根据比较结果 获取第一传输功率控制 TPC1命令; 所述第一信号质量目标值是根据所述 TPC 比特的 TPC命令错误率获取的; 所述 UE将所述 TPC1命令发送给所述低功率节 点, 以供所述低功率节点调整所述 TPC比特的下行传输功率。
在第一方面的第一种可能的实现方式中, 所述方法还包括: 所述 UE获取 第二信号质量, 所述第二信号质量是所述 UE根据所述低功率节点和所述高功 率节点下行信道上的导频比特获取对应的信号质量获得的; 所述 UE将所述第 二信号质量与第二信号质量目标值进行比较,根据比较结果获取用于控制导频 比特的下行传输功率的第二传输功率控制 TPC2命令; 所述第二信号质量目标 值是根据所述低功率节点和所述高功率节点下行信道对应的导频比特的总误 码率或者下行数据的总误块率获取的; 所述 UE将所述 TPC2命令发送给所述低 功率节点, 以供所述低功率节点调整所述导频比特的下行传输功率。
根据第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现 方式中, 所述 UE将所述 TPC1命令发送给所述低功率节点, 以及所述 UE将所述 TPC2命令发送给所述低功率节点包括:所述 UE通过新增上行信道将所述 TPC1 命令发送给所述低功率节点, 所述 UE通过不同于所述新增上行信道的上行信 道将所述 TPC2命令发送给所述低功率节点; 或所述 UE通过修改上行信道的格 式,在同一时隙内分时发送所述 TPC1命令和所述 TPC2命令; 或所述 UE通过上 行信道, 在不同的发送时隙分别发送所述 TPC1命令和所述 TPC2命令。
根据第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现 方式中, 所述方法还包括: 所述 UE接收网络侧通过高层信令下发的、 通知所 述 UE使用的参数信息, 所述参数信息包括所述新增上行信道的信道化码, 或 所述上行信道的数据格式, 或所述 TPC1命令的发送时隙和所述 TPC2命令的发 送时隙。
根据第一方面或第一方面的前三种可能的实现方式之一,在第一方面的第 四种可能的实现方式中, 用户设备 UE根据低功率节点下行信道上的传输功率 控制 TPC比特获取对应的第一信号质量之前还包括: 网络侧将所述低功率节点 加入到激活集中;或者 UE的高速上行链路分组接入 HSPA^务小区由低功率节 点对应的小区切换到高功率节点对应的小区; 或者 UE接收到所述网络侧下发 的启动信令。
第二方面, 本发明实施例提供的另一种下行传输功率控制方法, 包括: 低功率节点接收用户设备 UE发送的第一传输功率控制 TPC1命令, 所述
TPC1命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质量 与第一信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行信 道上的传输功率控制 TPC比特获取的, 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的,所述 UE处于所述低功率节点和高功率节点 软切换区中; 所述低功率节点根据所述 TPC1命令, 调整所述 TPC比特的下行 传输功率。
在第二方面的第一种可能的实现方式中, 所述方法还包括: 所述低功率节 点接收所述 UE发送的第二传输功率控制 TPC2命令, 所述 TPC2命令是所述 UE 通过比较第二信号质量与第二信号质量目标值而获取的;所述第二信号质量是 所述 UE根据所述低功率节点和所述高功率节点下行信道上的导频比特获取对 应的信号质量获得的,所述第二信号质量目标值是才艮据所述低功率节点和所述 高功率节点下行信道对应的导频比特的总误码率或者下行数据的总误块率获 取的; 所述低功率节点根据所述 TPC2命令, 调整下行信道导频比特的下行传 输功率。
根据第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现 方式中, 所述方法还包括: 所述低功率节点以所述导频比特的下行传输功率为 基准, 调整用于传输下行数据的下行信道的传输功率。
根据第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可 能的实现方式中, 所述方法还包括: 若所述 TPC比特的下行传输功率与所述导 频比特的下行传输功率的差距高于预设门限, 则所述低功率节点停止向所述 UE发送下行数据。
根据第二方面或第二方面的前三种可能的实现方式之一,在第二方面的第 四种可能的实现方式中, 所述方法还包括: 所述低功率节点以所述 TPC比特的 下行传输功率为基准, 调整用于高速下行共享信道的共享控制信道 HS-SCCH、 增强专用信道绝对授权信道 E-AGCH、增强专用信道混合自动重传请求指示信 道 E-HICH和增强专用信道相对授权信道 E-RGCH的下行传输功率。 在第二方面的第五种可能的实现方式中, 所述方法还包括: 所述高功率节 点对所接收到的所述 TPC1命令不作处理。
第三方面, 本发明实施例提供的一种数据传输方法, 包括:
第一基站判断连接用户设备 UE的下行信道的传输质量未达到预设标准; 所述第一基站停止向所述 UE发送下行数据, 所述 UE处于所述第一基站和第二 基站软切换区中。
在第三方面的第一种可能的实现方式中, 所述第一基站判断连接所述 UE 的下行信道的传输质量未达到预设标准, 包括: 所述第一基站判断连接所述 UE的下行信道的传输质量与所述第二基站连接所述 UE的下行信道的传输质 量的差距高于预设门限。
根据第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现 方式中, 所述第一基站为低功率节点, 所述第二基站为高功率节点, 则所述第 一基站判断连接所述 UE的下行信道的传输质量与所述第二基站连接所述 UE 的下行信道的传输质量的差距高于预设门限, 包括: 所述低功率节点接收所述
UE发送的第一传输功率控制 TPC1命令, 所述 TPC1命令是所述 UE通过比较所 述低功率节点下行信道对应的第一信号质量与第一信号质量目标值而获取的; 所述第一信号质量是根据低功率节点下行信道上的传输功率控制 TPC比特获 取的, 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取 的; 所述低功率节点根据所述 TPC1命令, 调整所述 TPC比特的下行传输功率; 所述低功率节点接收所述 UE发送的第二传输功率控制 TPC2命令, 所述 TPC2 命令是所述 UE通过比较第二信号质量与第二信号质量目标值而获取的; 所述 第二信号质量是所述 UE根据所述低功率节点和所述高功率节点下行信道上的 导频比特获取对应的信号质量获得的,所述第二信号质量目标值是根据所述低 功率节点和所述高功率节点下行信道对应的导频比特的总误码率或者下行数 据的总误块率获取的; 所述低功率节点根据所述 TPC2命令, 调整下行信道导 频比特的下行传输功率; 所述低功率节点判断所述 TPC比特的下行传输功率与 所述导频比特的下行传输功率的差距高于预设门限。
在第三方面的第三种可能的实现方式中, 所述第一基站判断连接所述 UE 的下行信道的传输质量未达到预设标准, 包括: 所述第一基站判断所述 UE发 送的信道质量指示符 CQI低于预设 CQI门限。
第四方面, 本发明实施例提供的一种用户设备, 包括:
处理器,根据低功率节点下行信道上的传输功率控制 TPC比特获取对应的 第一信号质量, 所述 UE处于所述低功率节点和高功率节点软切换区中; 将所 述第一信号质量与第一信号质量目标值进行比较,根据比较结果获取第一传输 功率控制 TPC1命令;所述第一信号质量目标值是根据所述 TPC比特的 TPC命令 错误率获取的; 发送器, 将所述 TPC1命令发送给所述低功率节点, 以供所述 低功率节点调整所述 TPC比特的下行传输功率。
在第四方面的第一种可能的实现方式中, 所述处理器还用于: 获取第二信 号质量, 所述第二信号质量是所述 UE根据所述低功率节点和所述高功率节点 下行信道上的导频比特获取对应的信号质量获得的;将所述第二信号质量与第 二信号质量目标值进行比较,根据比较结果获取用于控制导频比特的下行传输 功率的第二传输功率控制 TPC2命令; 所述第二信号质量目标值是根据所述低 功率节点和所述高功率节点下行信道对应的导频比特的总误码率或者下行数 据的总误块率获取的; 所述发送器还用于: 将所述 TPC2命令发送给所述低功 率节点, 以供所述低功率节点调整所述导频比特的下行传输功率。
根据第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现 方式中, 所述发送器具体用于: 通过新增上行信道将所述 TPC1命令发送给所 述低功率节点, 通过不同于所述新增上行信道的上行信道将所述 TPC2命令发 送给所述低功率节点; 或通过修改上行信道的格式,在同一时隙内分时发送所 述 TPC1命令和所述 TPC2命令; 或通过上行信道, 在不同的发送时隙分别发送 所述 TPC1命令和所述 TPC2命令。
根据第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现 方式中, 还包括: 接收器, 用于接收网络侧通过高层信令下发的、 通知所述 UE使用的参数信息, 所述参数信息包括新增上行信道的信道化码, 或所述上 行信道的数据格式, 或所述 TPC 1命令的发送时隙和所述 TPC2命令的发送时 隙。
根据第四方面或第二方面的前三种可能的实现方式之一,在第四方面的第 四种可能的实现方式中, 所述处理器还用于: 接入 HSPA服务小区由低功率节 点对应的小区切换到高功率节点对应的小区; 或者所述接收器还用于: 接收网 络侧下发的启动信令。
第五方面,本发明实施例提供的一种基站,所述基站为低功率节点, 包括: 接收器, 用于接收用户设备 UE发送的第一传输功率控制 TPC1命令, 所述 TPC1命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质量 与第一信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行信 道上的传输功率控制 TPC比特获取的, 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的,所述 UE处于所述低功率节点和高功率节点 软切换区中; 处理器, 用于根据所述 TPC1命令, 调整所述 TPC比特的下行传 输功率。
在第五方面的第一种可能的实现方式中, 所述接收器还用于: 接收所述
UE发送的第二传输功率控制 TPC2命令, 所述 TPC2命令是所述 UE通过比较第 二信号质量与第二信号质量目标值而获取的; 所述第二信号质量是所述 UE根 据所述低功率节点和所述高功率节点下行信道上的导频比特获取对应的信号 质量获得的,所述第二信号质量目标值是根据所述低功率节点和所述高功率节 点下行信道对应的导频比特的总误码率或者下行数据的总误块率获取的;所述 处理器还用于: 根据所述 TPC2命令, 调整下行信道导频比特的下行传输功率。
根据第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现 方式中, 所述处理器还用于: 以所述导频比特的下行传输功率为基准, 调整用 于传输下行数据的下行信道的传输功率。
根据第五方面的第一种或第二种可能的实现方式,在第五方面的第三种可 能的实现方式中, 所述处理器还用于: 判断获知所述 TPC比特的下行传输功率 与所述导频比特的下行传输功率的差距高于预设门限; 对应地, 所述基站还包 括: 发送器, 用于停止向所述 UE发送下行数据。
根据第五方面或第五方面的前三种可能的实现方式之一,在第五方面的第 四种可能的实现方式中, 所述处理器还用于: 以所述 TPC比特的下行传输功率 为基准, 调整用于高速下行共享信道的共享控制信道 HS-SCCH、 增强专用信 道绝对授权信道 E-AGCH、 增强专用信道混合自动重传请求指示信道 E-HICH 和增强专用信道相对授权信道 E-RGCH的下行传输功率。
第六方面, 本发明实施例提供的一种下行传输功率控制系统, 包括: 如第三方面中任一可能的实现方式所述的用户设备,以及如第四方面中中 任一可能的实现方式所述的基站, 所述用户设备与所述基站之间通信连接。 第七方面,本发明实施例提供的另一种基站,所述基站为第一基站, 包括: 处理器, 用于判断连接用户设备 UE的下行信道的传输质量未达到预设标 准; 发送器, 用于停止向所述 UE发送下行数据, 所述 UE处于所述第一基站和 第二基站软切换区中。
在第七方面的第一种可能的实现方式中, 所述处理器具体用于: 判断连接 所述 UE的下行信道的传输质量与所述第二基站连接所述 UE的下行信道的传 输质量的差距高于预设门限。
根据第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现 方式中, 所述第一基站为低功率节点, 所述第二基站为高功率节点, 则所述基 站还包括: 接收器, 用于接收所述 UE发送的第一传输功率控制 TPC1命令, 所 述 TPC1命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质 量与第一信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行 信道上的传输功率控制 TPC比特获取的,所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的; 所述处理器还用于: 根据所述 TPC1命令, 调整所述 TPC比特的下行传输功率; 所述接收器还用于: 接收所述 UE发送的 第二传输功率控制 TPC2命令,所述 TPC2命令是所述 UE通过比较第二信号质量 与第二信号质量目标值而获取的; 所述第二信号质量是所述 UE根据所述低功 率节点和所述高功率节点下行信道上的导频比特获取对应的信号质量获得的, 所述第二信号质量目标值是根据所述低功率节点和所述高功率节点下行信道 对应的导频比特的总误码率或者下行数据的总误块率获取的;所述处理器还用 于: 根据所述 TPC2命令, 调整下行信道导频比特的下行传输功率; 所述处理 的差距高于预设门限。
在第七方面的第三种可能的实现方式中, 所述处理器具体用于: 判断所述
UE发送的信道质量指示符 CQI低于预设 CQI门限。
本发明实施例提供的下行传输功率控制方法、装置及系统, 通过比较低功 率节点对应的第一信号质量和第一信号质量目标值获取 TPC1命令,其中第一 信号质量目标值是根据低功率节点下行信道的 TPC比特的 TPC命令错误率获 取的。 使用 TPC1命令可以正确控制低功率节点的 TPC 比特发射功率, 从而 提高低功率节点下行信道的传输性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的下行传输功率控制方法的实施例一的流程图; 图 2为本发明提供的下行传输功率控制方法的实施例二的流程图; 图 3为本发明提供的用户设备的一实施例的结构示意图;
图 4为本发明提供的基站的一实施例的结构示意图
图 5为本发明提供的数据传输方法的一实施例的流程图;
图 6为本发明提供的基站的另一实施例的结构示意图。 具体实施方式 为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1为本发明提供的下行传输功率控制方法的实施例一的流程图, 如图 1 所示,本实施例以用户设备为执行主体对本发明实施例的下行传输功率控制方 法进行说明, 本实施例可以包括:
S110、 用户设备 UE根据低功率节点下行信道上的传输功率控制 TPC比特 获取对应的第一信号质量, UE处于低功率节点和高功率节点软切换区中。
详细而言, 以高功率节点为宏基站为例, 在 UE处于 LPN和高功率节点的 软切换区中的情况下, 比如 UE处于软切换区中靠近宏基站的一侧时, UE接收 到的宏基站的下行信号要好于 LPN的下行信号。那么 UE可以根据 LPN下行信道 上的 TPC比特获取第一信号质量, 第一信号质量可以是 LPN下行信道上的 TPC 比特对应的信号干扰比, 也可以是 LPN下行信道上的 TPC比特对应的功率谱密 度( Ec/NO ),该功率频谱密度即 LPN下行信道上的 TPC比特对应的每码片( chip ) 接收能量与 LPN下行信道上的 TPC比特的总接收信号的比值。 具体地, LPN的 下行信道可以是下行专用物理控制信道 ( Downlink Dedicated Physical Control Channel, 以下简称 DL DPCCH ) , 也可以是部分专用物理控制信道( Fraction DPCH,以下简称 F-DPCH ) 。
S120、 UE将第一信号质量与第一信号质量目标值进行比较, 根据比较结 果获取第一传输功率控制 TPC1命令; 第一信号质量目标值是根据 TPC比特的 TPC命令错误率获取的。
具体地, 如果 LPN的下行信道是 DL DPCCH, 那么 UE可以根据 LPN的 DL DPCCH上的 TPC比特的 TPC命令错误率, 来设置第一信号质量目标值, 其中 TPC命令错误率例如是 TPC比特的误码率(Bit Error Rate, 以下简称 BER ) ; 如果 LPN的下行信道是 F-DPCH,那么 UE可以根据 LPN的 F-DPCH上的 TPC比特 的 TPC命令错误率设置第一信号质量目标值。 UE获取第一信号质量和第一信 号质量目标值后, 将第一信号质量和第一信号质量目标值进行比较。如果第一 信号质量小于第一信号质量目标值, TPC1命令为升功率命令; 如果第一信号 质量大于第一信号质量目标值, 则 TPC1命令为降功率命令。
S130、 UE将 TPC1命令发送给低功率节点, 以供低功率节点调整 TPC比特 的下行传输功率。
UE获取 TPC1命令后,将该 TPC1命令发送给 LPN, LPN根据 TPC1命令具体 功率或者降功率的处理。
本实施例提供的下行传输功率控制方法,用户设备通过比较 LPN下行信道 对应的第一信号质量和第一信号质量目标值获取 TPC1命令, 其中第一信号质 量目标值是根据 LPN下行信道的 TPC比特的 TPC命令错误率获取的。 使用该 TPC1命令可以正确控制 LPN的 TPC比特发射功率,从而提高 LPN下行信道的传 输性能。
进一步地, 在图 1实施例的基础上, 还可以包括: UE获取第二信号质量, 第二信号质量是 UE根据服务小区基站下行信道上的 TPC比特获取对应的信号 质量获得的; 第二信号质量可以是服务小区基站下行信道上的 TPC比特对应的 信号干扰比,也可以是服务小区基站下行信道上的 TPC比特对应的功率谱密度 ( Ec/NO ) , 该功率频谱密度即服务小区基站下行信道上的 TPC比特对应的每 码片 (chip )接收能量与服务小区基站下行信道上的 TPC比特的总接收信号的 比值。 UE将第二信号质量与第二信号质量目标值进行比较, 根据比较结果获 取用于控制导频比特的下行传输功率的第二传输功率控制 TPC2命令; 第二信 号质量目标值是根据服务小区基站的下行信道对应的 TPC比特的 TPC命令错 误率获取的; 服务小区基站为 LPN或高功率节点中为 UE提供服务的基站; UE 将 TPC2命令发送给 LPN。
具体而言, 例如在 LPN的下行信道为 F-DPCH的场景下, UE可以根据服务 小区的 F-DPCH上 TPC比特的信号质量得到的第二信号质量, 或者 UE可以将 LPN和高功率节点的 F-DPCH上 TPC比特的信号质量求和得到的第二信号质 量; 同时, UE可以根据服务小区的 F-DPCH上 TPC比特的 TPC命令错误率来设 置第二信号质量目标值, 其中, 服务小区是 UE当前接入的小区, 服务小区基 站可以是 LPN或高功率节点中当前为 UE提供服务的基站; UE将第二信号质量 与第二信号质量目标值进行比较, 如果第二信号质量小于第二信号质量目标 值, 获取的 TPC2命令为升功率命令; 如果第二信号质量大于第二信号质量目 标值, 则获取的 TPC2命令为降功率命令。 UE将获取的 TPC2命令发送给 LPN, 同时 UE也可以将获取的 TPC2命令发送给高功率节点。
进一步地, 在图 1实施例的基础上, 还可以包括: UE获取第二信号质量, 第二信号质量是 UE根据 LPN和高功率节点下行信道上的导频比特获取对应的 信号质量获得的; UE将第二信号质量与第二信号质量目标值进行比较, 根据 比较结果获取用于控制导频比特的下行传输功率的第二传输功率控制 TPC2命 令;第二信号质量目标值是根据 LPN和高功率节点下行信道对应的导频比特的 总误码率或者下行数据的总误块率获取的; UE将 TPC2命令发送给 LPN, 以供 LPN调整导频比特的下行传输功率。
具体而言, 例如在 LPN的下行信道为 DL DPCCH的场景下, 那么 UE还可 以根据 LPN和高功率节点的 DL DPCCH上的导频比特(pilot bit )获取对应的信 号质量, 并对信号质量求和获得第二信号质量; 同时, UE可以根据 LPN和高 功率节点的 DL DPCCH对应的导频比特的总误码率获取第二信号质量目标值, UE也可以根据 LPN和高功率节点的 DL DPCCH对应的下行数据的总误块率获 取第二信号质量目标值。 UE将第二信号质量与第二信号质量目标值进行比较, 如果第二信号质量小于第二信号质量目标值,获取的 TPC2命令为升功率命令; 如果第二信号质量大于第二信号质量目标值, 则获取的 TPC2命令为降功率命 令。 UE将获取的 TPC2命令发送给 LPN, 同时 UE也可以将获取的 TPC2命令发 送给高功率节点。
进一步地, 在上述实施例的基础上, UE将 TPC1命令发送给 LPN, 以及 UE 将 TPC2命令发送给 LPN包括: UE通过第一新增上行信道将所述 TPC1命令发送 给所述低功率节点 , 所述 UE通过第二新增上行信道将所述 TPC2命令发送给所 述低功率节点; 或 UE通过修改上行信道的格式, 在同一时隙内分时发送 TPC1 命令和 TPC2命令; 或 UE通过上行信道, 在不同的发送时隙分别发送 TPC1命令 和 TPC2命令。
换言之, UE可以通过下面几种方式向低功率节点发送 TPC1命令和 TPC2 命令:
方式一: UE可以通过不同的上行信道向低功率节点分别发送 TPC1命令和
TPC2命令。 例如 UE可以通过现有的上行专用物理控制信道( Uplink Dedicated Physical Control Channel, 以下简称 UL DPCCH )发送 TPC2命令, 通过新增上 行信道发送 TPC1命令;
方式二: UE可以通过修改现有的 UL DPCCH, 在 UL DPCCH的同一时隙 中的不同时刻分别发送 TPC1命令和 TPC2命令;
方式三: UE可以通过现有的 UL DPCCH, 在 UL DPCCH的不同时隙分别 发送 TPC 1命令和 TPC2命令。
本发明实施例中, UE向低功率节点发送 TPC1命令和 TPC2命令的方式并不 以此为限。
进一步地, 在上述实施例的基础上, 还可以包括: UE接收网络侧通过高 层信令下发的、 通知 UE使用的参数信息, 参数信息包括新增上行信道的信道 化码, 或上行信道的数据格式, 或 TPC1命令的发送时隙和 TPC2命令的发送时 的预设门限。 参数信息的种类不以此为限。
具体而言, 高层信令可以是无线资源控制协议(Radio Resource Control, 以下简称 RRC )信令, UE可以接受其接入的网络下发的参数信息, 参数信息 进一步地, 在上述实施例的基础上, 用户设备 UE根据低功率节点下行信 道上的传输功率控制 TPC比特获取对应的第一信号质量之前还包括: 网络侧将 低功率节点加入到激活集中;或者 UE的高速上行链路分组接入 HSPA服务小区 由低功率节点对应的小区切换到高功率节点对应的小区; 或者 UE接收到网络 侧下发的启动信令。 换言之, 当 UE接入的网络获知 UE处于低功率节点与高功 率节点的软切换区中, 网络可以指示 UE开始获取第一信号质量, 进而获取 TPC1命令, 并将 TPC1命令发送给低功率节点, 以供低功率节点发送 TPC比特 进行下行传输功率的控制。 而在存在 F-DPCH的情况下, 当 UE接入的网络获知 网络侧, 可以是网络侧中的无线网络控制器( Radio Network Controller, 以下 简称 RNC ) 将低功率节点加入到激活集中或者 UE的高速上行链路分组接入 ( High Speed Uplink Packet Access, 以下简称 HSPA )服务小区由低功率节点 对应的小区切换到高功率节点对应的小区时, 网络可以指示 UE开始获取第一 信号质量, 进而获取 TPC1命令, 并将 TPC1命令发送给低功率节点, 以供低功 率节点发送 TPC比特进行下行传输功率的控制。 也可以是 UE接收到网络侧下 发的启动信令从而开始获取第一信号质量,启动信令包括高层信令或物理层信 令。
本实施例提供的下行传输功率控制方法,通过比较低功率节点下行信道对 应的第一信号质量和第一信号质量目标值获取 TPC1命令, 其中第一信号质量 目标值是根据低功率节点下行信道的 TPC比特的 TPC命令错误率获取的。 并且 通过比较低功率节点和高功率节点的下行信道对应的第二信号质量和第二信 号质量目标值获取 TPC2命令,使用 TPC1命令和 TPC2命令分别控制低功率节点 的下行信道的 TPC比特和导频比特的发射功率,从而提高低功率节点下行信道 的传输性能。
图 2为本发明提供的下行传输功率控制方法的实施例二的流程图, 如图 2 所示, 本实施例以低功率节点为执行主体,对本发明实施例的下行传输功率控 制方法进行说明, 本实施例可以包括:
S210、 低功率节点接收用户设备 UE发送的第一传输功率控制 TPC1命令, TPC1命令是 UE通过比较低功率节点下行信道对应的第一信号质量与第一信 号质量目标值而获取的;第一信号质量是根据低功率节点下行信道上的传输功 率控制 TPC比特获取的, 第一信号质量目标值是根据 TPC比特的 TPC命令错误 率获取的, UE处于低功率节点和高功率节点软切换区中。
详细而言, 低功率节点可以是 LPN, 高功率节点可以是宏基站。 在 UE处 于低功率节点和高功率节点的软切换区中的情况下, 比如 UE处于软切换区中 靠近宏基站的一侧时, UE接收到的宏基站的下行信号要好于 LPN的下行信号。 那么 UE可以根据低功率节点下行信道上的 TPC比特获取第一信号质量, 第一 信号质量可以是低功率节点下行信道上的 TPC比特对应的信号干扰比,也可以 是低功率节点下行信道上的 TPC比特对应的功率谱密度(Ec/N0 ) , 该功率频 谱密度即低功率节点下行信道上的 TPC比特对应的每码片 (chip )接收能量与 低功率节点下行信道上的 TPC比特的总接收信号的比值。 具体地, 低功率节点 的下行信道可以是 DL DPCCH, 也可以是 F-DPCH。 如果低功率节点的下行信 道是 DL DPCCH, 那么 UE可以根据低功率节点的 DL DPCCH上的 TPC比特的 TPC命令错误率设置第一信号质量目标值, 其中 TPC命令错误率例如是 TPC比 特的误码率; 如果低功率节点的下行信道是 F-DPCH, 那么 UE可以根据低功率 节点的 F-DPCH上的 TPC比特的 TPC命令错误率设置第一信号质量目标值。 UE 获取第一信号质量和第一信号质量目标值后,将第一信号质量和第一信号质量 目标值进行比较。 如果第一信号质量小于第一信号质量目标值, TPC1命令为 升功率命令; 如果第一信号质量大于第一信号质量目标值, 则 TPC1命令为降 功率命令。
S220、 低功率节点根据 TPC1命令, 调整 TPC比特的下行传输功率。
低功率节点接收到 UE发送的 TPC1命令后, 如果 TPC1命令为升功率命令, 命令为降功率命令,则低功率节点对用于发送 TPC比特的下行传输功率进行降 功率处理。
本实施例提供的下行传输功率控制方法,通过用户设备比较低功率节点下 行信道对应的第一信号质量和第一信号质量目标值获取 TPC1命令, 其中第一 信号质量目标值是根据低功率节点下行信道的 TPC比特的 TPC命令错误率获 取的。 低功率节点使用用户设备发送的 TPC1命令可以正确控制低功率节点的 TPC比特发射功率, 从而提高低功率节点下行信道的传输性能。 进一步地, 在图 2实施例的基础上, 还可以包括: 低功率节点接收 UE发送 的第二传输功率控制 TPC2命令, TPC2命令是 UE通过比较第二信号质量与第二 信号质量目标值而获取的; 第二信号质量是 UE根据低功率节点和高功率节点 下行信道上的导频比特获取对应的信号质量获得的,第二信号质量目标值是根 据低功率节点和高功率节点下行信道对应的导频比特的总误码率或者下行数 据的总误块率获取的; 低功率节点根据 TPC2命令, 调整下行信道导频比特的 下行传输功率。
具体而言, 例如在低功率节点的下行信道为 DL DPCCH的场景下, 那么 UE还可以根据低功率节点和高功率节点的 DL DPCCH上的导频比特获取对应 的信号质量, 并对信号质量求和获得第二信号质量; 同时, UE可以根据低功 率节点和高功率节点的 DL DPCCH对应的导频比特的总误码率获取第二信号 质量目标值, UE也可以根据低功率节点和高功率节点的 DL DPCCH对应的下 行数据的总误块率获取第二信号质量目标值。 UE将第二信号质量与第二信号 质量目标值进行比较, 如果第二信号质量小于第二信号质量目标值, 获取的 TPC2命令为升功率命令; 如果第二信号质量大于第二信号质量目标值, 则获 取的 TPC2命令为降功率命令。 低功率节点接收 UE发送的 TPC2命令, 并根据 TPC2命令, 调整下行信道导频比特的下行传输功率。 同时, 高功率节点也可 以接收 UE发送的该 TPC2命令, 并根据该 TPC2命令控制下行传输功率。
而在低功率节点的下行信道为 F-DPCH的场景下, UE可以将服务小区的 F-DPCH上 TPC比特的信号质量求和得到第二信号质量, 或者 UE可以将低功率 节点和高功率节点的 F-DPCH上 TPC比特的信号质量求和得到第二信号质量; 同时, UE可以根据服务小区的 F-DPCH上 TPC比特的 TPC命令错误率来设置第 二信号质量目标值, 其中, 服务小区是 UE当前接入的小区; UE将第二信号质 量与第二信号质量目标值进行比较,如果第二信号质量小于第二信号质量目标 值, 获取的 TPC2命令为升功率命令; 如果第二信号质量大于第二信号质量目 标值, 则获取的 TPC2命令为降功率命令。低功率节点接收 UE发送的 TPC2命令 后, 忽略该 TPC2命令, 或者低功率节点不接收该 TPC2命令。 同时, 高功率节 点接收 UE发送的该 TPC2命令, 并对下行传输功率进行控制。
进一步地, 低功率节点可以通过下面几种方式接收 UE发送的 TPC1命令和 TPC2命令: 方式一: 低功率节点可以通过不同的上行信道接收 UE发送的 TPC 1命令和 TPC2命令。 例如低功率节点可以通过现有的 UL DPCCH接收 UE发送的 TPC2 命令, 通过新增的上行信道接收 UE发送的 TPC1命令;
方式二:低功率节点可以在 UL DPCCH的同一时隙中的不同时刻分别接收 UE发送的 TPC1命令和 TPC2命令;
方式三: 低功率节点可以在 UL DPCCH的不同时隙分别接收 UE发送的 TPC1命令和 TPC2命令。
本发明实施例中,低功率节点接收 UE发送的 TPC1命令和 TPC2命令的方式 并不以此为限。 于传输下行数据的下行信道的传输功率。
进一步地, 在上述实施例的基础上, 若 TPC比特的下行传输功率与导频比 特的下行传输功率的差距高于预设门限, 则低功率节点停止向 UE发送下行数 据。 下行数据具体可以是下行的专用物理数据信道(Dedicated Physical Data Channel, 以下简称 DPDCH ) 上传输的数据。
进一步地, 在上述实施例的基础上, 低功率节点以 TPC比特的下行传输功 率为基准, 调整用于高速下行共享信道的共享控制信道 (Shared Control Channel for High Speed Downlink Shared Channel, 以下简称 HS-SCCH ) 、 增强 专用信道绝对授权信道 ( Enhanced Dedicated Channel Absolute Grant Channel, 以下简称 E-AGCH ) 、 增强专用信道混合自动重传请求指示信道(Enhanced Dedicated Channel Hybrid ARQ Indicator Channel , 以下简称 E-HICH )和增强专 用信道相对 4受权信道 ( Enhanced Dedicated Channel Relative Grant Channel, 以 下简称 E-RGCH )的下行传输功率。换言之,低功率节点对 HS-SCCH、 E-AGCH、 E-HICH和 E-RGCH的下行传输功率,均以 TPC比特的下行传输功率为基准值进 行等比例调整。
需要说明的是, 高功率节点如果接收到上述实施例中的 TPC1命令, 则忽 略该 TPC1命令。 高功率节点使用接收到的 TPC2命令对下行传输功率进行调 整。
本实施例提供的下行传输功率控制方法,通过比较低功率节点下行信道对 应的第一信号质量和第一信号质量目标值获取 TPC1命令, 其中第一信号质量 目标值是根据低功率节点下行信道的 TPC比特的 TPC命令错误率获取的。 并且 通过比较低功率节点和高功率节点的下行信道对应的第二信号质量和第二信 号质量目标值获取 TPC2命令,使用 TPC1命令和 TPC2命令分别控制低功率节点 的下行信道的 TPC比特和导频比特的发射功率,从而提高低功率节点下行信道 的传输性能。
图 3为本发明提供的用户设备的一实施例的结构示意图,如图 3所示, 本实 施例提供的用户设备 300可以包括: 处理器 310、 发送器 320和接收器 330, 具体 地:
处理器 310 , 用于根据低功率节点下行信道上的传输功率控制 TPC比特获 取对应的第一信号质量, UE处于低功率节点和高功率节点软切换区中; 将第 一信号质量与第一信号质量目标值进行比较,根据比较结果获取第一传输功率 控制 TPC1命令; 第一信号质量目标值是根据 TPC比特的 TPC命令错误率获取 的;
发送器 320 , 用于将 TPC1命令发送给低功率节点, 以供低功率节点调整 TPC比特的下行传输功率。
进一步地, 处理器 310还用于: 获取第二信号质量, 第二信号质量是 UE根 据低功率节点和高功率节点下行信道上的导频比特获取对应的信号质量获得 的; 将第二信号质量与第二信号质量目标值进行比较,根据比较结果获取用于 控制导频比特的下行传输功率的第二传输功率控制 TPC2命令; 第二信号质量 目标值是根据低功率节点和高功率节点下行信道对应的导频比特的总误码率 或者下行数据的总误块率获取的; 发送器 320还用于: 将 TPC2命令发送给低功 率节点, 以供低功率节点调整导频比特的下行传输功率。
进一步地, 发送器 320具体用于: 通过新增上行信道将所述 TPC1命令发送 给所述低功率节点, 通过不同于所述新增上行信道的上行信道将所述 TPC2命 令发送给所述低功率节点; 或通过修改上行信道的格式, 在同一时隙内分时发 送 TPC1命令和 TPC2命令; 或通过上行信道,在不同的发送时隙分别发送 TPC1 命令和 TPC2命令。
进一步地, 接收器 330, 接收网络侧通过高层信令下发的、 通知 UE使用的 参数信息, 参数信息包括新增上行信道的信道化码, 或上行信道的数据格式, 或 TPC1命令的发送时隙和 TPC2命令的发送时隙。 进一步地,处理器 310还用于:接入 HSPA^务小区由低功率节点对应的小 区切换到高功率节点对应的小区; 或者接收器 330还用于: 接收网络侧下发的 启动信令。
本实施例提供的用户设备 300,可以用于执行图 1所示方法实施例的技术方 案, 其实现原理和技术效果类似, 此处不再赘述。
图 4为本发明提供的基站的一实施例的结构示意图, 如图 4所示, 本实施例 提供的基站 400可以是低功率节点, 基站 400可以包括: 接收器 410、 处理器 420 以及发送器 430, 具体地:
接收器 410 , 用于接收用户设备 UE发送的第一传输功率控制 TPC1命令, TPC1命令是 UE通过比较低功率节点下行信道对应的第一信号质量与第一信 号质量目标值而获取的;第一信号质量是根据低功率节点下行信道上的传输功 率控制 TPC比特获取的, 第一信号质量目标值是根据 TPC比特的 TPC命令错误 率获取的, UE处于低功率节点和高功率节点软切换区中;
处理器 420 , 用于根据 TPC1命令, 调整 TPC比特的下行传输功率。
进一步地, 接收器 410还用于: 接收 UE发送的第二传输功率控制 TPC2命 令, TPC2命令是 UE通过比较第二信号质量与第二信号质量目标值而获取的; 第二信号质量是 UE根据低功率节点和高功率节点下行信道上的导频比特获取 对应的信号质量获得的,第二信号质量目标值是根据低功率节点和高功率节点 下行信道对应的导频比特的总误码率或者下行数据的总误块率获取的;处理器 420还用于: 根据 TPC2命令, 调整下行信道导频比特的下行传输功率。
进一步地, 处理器 420还用于: 以导频比特的下行传输功率为基准, 调整 用于传输下行数据的下行信道的传输功率。
进一步地, 处理器 420还用于: 判断获知 TPC比特的下行传输功率与导频 比特的下行传输功率的差距高于预设门限; 对应地, 发送器 430 , 用于停止向 UE发送下行数据。
进一步地, 处理器 420还用于: 以 TPC比特的下行传输功率为基准, 调整 用于高速下行共享信道的共享控制信道 HS-SCCH、 增强专用信道绝对授权信 道 E-AGCH、 增强专用信道混合自动重传请求指示信道 E-HICH和增强专用信 道相对授权信道 E-RGCH的下行传输功率。
本实施例提供的基站 400 , 可以用于执行图 2所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
另外, 本发明实施例还提供一种下行传输功率控制系统, 可以包括: 如图 3所示实施例中的任一用户设备, 以及如图 4所示实施例中的任一基站, 用户设 备与基站之间通信连接。
综上所述, 本实施例提供的下行传输功率控制方法、 装置及系统, 通过比 较低功率节点下行信道对应的第一信号质量和第一信号质量目标值获取 TPC1 命令, 其中第一信号质量目标值是根据低功率节点下行信道的 TPC比特的 TPC 命令错误率获取的。并且通过比较低功率节点和高功率节点的下行信道对应的 第二信号质量和第二信号质量目标值获取 TPC2命令, 使用 TPC1命令和 TPC2 命令分别控制低功率节点的下行信道的 TPC比特和导频比特的发射功率,从而 提高低功率节点下行信道的传输性能。
图 5为本发明提供的数据传输方法的一实施例的流程图,如图 5所示, 本实 施例提供的数据传输方法可以包括:
S510、 第一基站判断连接用户设备 UE的下行信道的传输质量未达到预设 标准;
S520、 第一基站停止向 UE发送下行数据, UE处于第一基站和第二基站软 切换区中。
本实施例提供的数据传输方法, 通过判断处于软切换区中的 UE的下行信 道的传输质量未达到预设标准, 确定停止向 UE发送下行数据, 从而节约了网 络资源保证了传输质量。
进一步地,第一基站判断连接 UE的下行信道的传输质量未达到预设标准, 包括: 第一基站判断连接 UE的下行信道的传输质量与第二基站连接 UE的下行 信道的传输质量的差距高于预设门限。 例如, 第一基站向 UE发送下行数据的 下行信道的误码率比第二基站向 UE发送下行数据的下行信道的误码率小的值 高于预设门限, 那么第一基站停止向 UE发送下行数据。
进一步地, 所述第一基站为低功率节点, 所述第二基站为高功率节点, 则 第一基站判断连接 UE的下行信道的传输质量与第二基站连接 UE的下行信道 的传输质量的差距高于预设门限, 包括:
低功率节点接收 UE发送的第一传输功率控制 TPC1命令, TPC1命令是 UE 通过比较低功率节点下行信道对应的第一信号质量与第一信号质量目标值而 获取的; 第一信号质量是根据低功率节点下行信道上的传输功率控制 TPC比特 获取的, 第一信号质量目标值是根据 TPC比特的 TPC命令错误率获取的;
低功率节点根据 TPC1命令, 调整 TPC比特的下行传输功率;
低功率节点接收 UE发送的第二传输功率控制 TPC2命令, TPC2命令是 UE 通过比较第二信号质量与第二信号质量目标值而获取的; 第二信号质量是 UE 根据低功率节点和高功率节点下行信道上的导频比特获取对应的信号质量获 得的,第二信号质量目标值是根据低功率节点和高功率节点下行信道对应的导 频比特的总误码率或者下行数据的总误块率获取的;
低功率节点根据 TPC2命令, 调整下行信道导频比特的下行传输功率; 差距高于预设门限。
其中,第一信号质量可以是低功率节点下行信道上的 TPC比特对应的信号 干扰比, 也可以是低功率节点下行信道上的 TPC比特对应的功率谱密度 ( Ec/N0 ) , 该功率频谱密度即低功率节点下行信道上的 TPC比特对应的每码 片(chip )接收能量与低功率节点下行信道上的 TPC比特的总接收信号的比值。
TPC命令错误率例如是 TPC比特的误码率。
进一步地,第一基站判断连接 UE的下行信道的传输质量未达到预设标准, 包括: 第一基站判断 UE发送的信道质量指示符 CQI低于预设 CQI门限。
本实施例提供的数据传输方法,可以通过多种方式判断处于软切换区中的 UE的下行信道的传输质量未达到预设标准, 确定停止向 UE发送下行数据, 从 而节约了网络资源保证了传输质量。
图 6为本发明提供的基站的另一实施例的结构示意图,如图 6所示, 本实施 例提供的基站 600可以是第一基站, 基站 600可以包括: 处理器 610、 发送器 620 以及接收器 630, 具体地:
处理器 610,用于判断连接用户设备 UE的下行信道的传输质量未达到预设 标准;
发送器 620, 用于停止向 UE发送下行数据, UE处于第一基站和第二基站 软切换区中。
进一步地, 处理器 610具体用于: 判断连接 UE的下行信道的传输质量与第 二基站连接 UE的下行信道的传输质量的差距高于预设门限。 进一步地, 所述第一基站为低功率节点, 所述第二基站为高功率节点, 则 接收器 630, 用于接收 UE发送的第一传输功率控制 TPC1命令, TPC1命令是 UE 通过比较低功率节点下行信道对应的第一信号质量与第一信号质量目标值而 获取的; 第一信号质量是根据低功率节点下行信道上的传输功率控制 TPC比特 获取的, 第一信号质量目标值是根据 TPC比特的 TPC命令错误率获取的; 处理 器 610, 用于根据 TPC1命令, 调整 TPC比特的下行传输功率; 接收器 630还用 于: 接收 UE发送的第二传输功率控制 TPC2命令, TPC2命令是 UE通过比较第 二信号质量与第二信号质量目标值而获取的; 第二信号质量是 UE根据低功率 节点和高功率节点下行信道上的导频比特获取对应的信号质量获得的,第二信 号质量目标值是根据低功率节点和高功率节点下行信道对应的导频比特的总 误码率或者下行数据的总误块率获取的; 处理器 610还用于: 根据 TPC2命令, 调整下行信道导频比特的下行传输功率; 处理器 610还用于: 判断 TPC比特的 进一步地, 处理器 610具体用于: 判断 UE发送的信道质量指示符 CQI低于 预设 CQI门限。
本实施例提供的基站 600, 可以用于执行图 4所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
本发明实施例提供的数据传输方法及基站,可以通过多种方式判断处于软 切换区中的 UE的下行信道的传输质量未达到预设标准, 确定停止向 UE发送下 行数据, 从而节约了网络资源保证了传输质量。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划 分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特 征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合 或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是 电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在 ,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以釆用硬件的形式实现, 也可以釆用硬件加软件功能 单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可 读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指令用 以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处 理器(processor )执行本发明各个实施例所述方法的部分步骤。 而前述的存储 介质包括: U盘、 移动硬盘、 只读存储器(Read-Only Memory, ROM )、 随机 存取存储器( Random Access Memory, RAM ) 、 磁碟或者光盘等各种可以存 储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁,仅以上述各功 能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由 不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以 上描述的全部或者部分功能。上述描述的装置的具体工作过程, 可以参考前述 方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并不使相 应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求
1、 一种下行传输功率控制方法, 其特征在于, 包括:
用户设备 UE根据低功率节点下行信道上的传输功率控制 TPC比特获取对 应的第一信号质量, 所述 UE处于所述低功率节点和高功率节点软切换区中; 所述 UE将所述第一信号质量与第一信号质量目标值进行比较, 根据比较 结果获取第一传输功率控制 TPC1命令; 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的;
所述 UE将所述 TPC1命令发送给所述低功率节点, 以供所述低功率节点调 整所述 TPC比特的下行传输功率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述 UE获取第二信号质量, 所述第二信号质量是所述 UE根据所述低功率 节点和所述高功率节点下行信道上的导频比特获取对应的信号质量获得的; 所述 UE将所述第二信号质量与第二信号质量目标值进行比较, 根据比较 结果获取用于控制导频比特的下行传输功率的第二传输功率控制 TPC2命令; 所述第二信号质量目标值是根据所述低功率节点和所述高功率节点下行信道 对应的导频比特的总误码率或者下行数据的总误块率获取的;
所述 UE将所述 TPC2命令发送给所述低功率节点, 以供所述低功率节点调 整所述导频比特的下行传输功率。
3、 根据权利要求 2所述的方法, 其特征在于, 所述 UE将所述 TPC1命令发 送给所述低功率节点, 以及所述 UE将所述 TPC2命令发送给所述低功率节点包 括:
所述 UE通过新增上行信道将所述 TPC1命令发送给所述低功率节点, 所述 UE通过不同于所述新增上行信道的上行信道将所述 TPC2命令发送给所述低 功率节点; 或
所述 UE通过修改上行信道的格式, 在同一时隙内分时发送所述 TPC1命令 和所述 TPC2命令; 或
所述 UE通过上行信道, 在不同的发送时隙分别发送所述 TPC1命令和所述 TPC2命令。
4、 根据权利要求 3所述的方法, 其特征在于, 所述方法还包括: 所述 UE接收网络侧通过高层信令下发的、 通知所述 UE使用的参数信息, 所述参数信息包括所述新增上行信道的信道化码, 或所述上行信道的数据格 式, 或所述 TPC1命令的发送时隙和所述 TPC2命令的发送时隙。
5、 根据权利要求 1至 4任一所述的方法, 其特征在于, 用户设备 UE根据低 功率节点下行信道上的传输功率控制 TPC比特获取对应的第一信号质量之前 还包括:
网络侧将所述低功率节点加入到激活集中; 或者
UE的高速上行链路分组接入 HSPA服务小区由低功率节点对应的小区切 换到高功率节点对应的小区; 或者
UE接收到所述网络侧下发的启动信令。
6、 一种下行传输功率控制方法, 其特征在于, 包括:
低功率节点接收用户设备 UE发送的第一传输功率控制 TPC1命令, 所述 TPC1命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质量 与第一信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行信 道上的传输功率控制 TPC比特获取的, 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的,所述 UE处于所述低功率节点和高功率节点 软切换区中;
所述低功率节点根据所述 TPC1命令, 调整所述 TPC比特的下行传输功率。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括:
所述低功率节点接收所述 UE发送的第二传输功率控制 TPC2命令, 所述 TPC2命令是所述 UE通过比较第二信号质量与第二信号质量目标值而获取的; 所述第二信号质量是所述 UE根据所述低功率节点和所述高功率节点下行信道 上的导频比特获取对应的信号质量获得的,所述第二信号质量目标值是艮据所 述低功率节点和所述高功率节点下行信道对应的导频比特的总误码率或者下 行数据的总误块率获取的;
所述低功率节点根据所述 TPC2命令, 调整下行信道导频比特的下行传输 功率。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
所述低功率节点以所述导频比特的下行传输功率为基准,调整用于传输下 行数据的下行信道的传输功率。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述方法还包括:
10、 根据权利要求 6至 9中任一项所述的方法, 其特征在于, 所述方法还包 括:
所述低功率节点以所述 TPC比特的下行传输功率为基准,调整用于高速下 行共享信道的共享控制信道 HS-SCCH、 增强专用信道绝对授权信道 E-AGCH、 增强专用信道混合自动重传请求指示信道 E-HICH和增强专用信道相对授权信 道 E-RGCH的下行传输功率。
11、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 所述高 功率节点对所接收到的所述 TPC1命令不作处理。
12、 一种数据传输方法, 其特征在于, 包括:
第一基站判断连接用户设备 UE的下行信道的传输质量未达到预设标准; 所述第一基站停止向所述 UE发送下行数据, 所述 UE处于所述第一基站和 第二基站软切换区中。
13、 根据权利要求 12所述的方法, 其特征在于, 所述第一基站判断连接所 述 UE的下行信道的传输质量未达到预设标准, 包括:
所述第一基站判断连接所述 UE的下行信道的传输质量与所述第二基站连 接所述 UE的下行信道的传输质量的差距高于预设门限。
14、 根据权利要求 13所述的方法, 其特征在于, 所述第一基站为低功率节 点, 所述第二基站为高功率节点, 则所述第一基站判断连接所述 UE的下行信 道的传输质量与所述第二基站连接所述 UE的下行信道的传输质量的差距高于 预设门限, 包括:
所述低功率节点接收所述 UE发送的第一传输功率控制 TPC1命令, 所述 TPC1命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质量 与第一信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行信 道上的传输功率控制 TPC比特获取的, 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的;
所述低功率节点根据所述 TPC1命令, 调整所述 TPC比特的下行传输功率; 所述低功率节点接收所述 UE发送的第二传输功率控制 TPC2命令, 所述 TPC2命令是所述 UE通过比较第二信号质量与第二信号质量目标值而获取的; 所述第二信号质量是所述 UE根据所述低功率节点和所述高功率节点下行信道 上的导频比特获取对应的信号质量获得的,所述第二信号质量目标值是艮据所 述低功率节点和所述高功率节点下行信道对应的导频比特的总误码率或者下 行数据的总误块率获取的;
所述低功率节点根据所述 TPC2命令, 调整下行信道导频比特的下行传输 功率; 行传输功率的差距高于预设门限。
15、 根据权利要求 12所述的方法, 其特征在于, 所述第一基站判断连接所 述 UE的下行信道的传输质量未达到预设标准, 包括:
所述第一基站判断所述 UE发送的信道质量指示符 CQI低于预设 CQI门限。
16、 一种用户设备, 其特征在于, 包括:
处理器,用于根据低功率节点下行信道上的传输功率控制 TPC比特获取对 应的第一信号质量, 所述 UE处于所述低功率节点和高功率节点软切换区中; 将所述第一信号质量与第一信号质量目标值进行比较,根据比较结果获取第一 传输功率控制 TPC1命令;所述第一信号质量目标值是根据所述 TPC比特的 TPC 命令错误率获取的;
发送器, 用于将所述 TPC1命令发送给所述低功率节点, 以供所述低功率 节点调整所述 TP C比特的下行传输功率。
17、 根据权利要求 16所述的用户设备, 其特征在于,
所述处理器还用于: 获取第二信号质量, 所述第二信号质量是所述 UE根 据所述低功率节点和所述高功率节点下行信道上的导频比特获取对应的信号 质量获得的; 将所述第二信号质量与第二信号质量目标值进行比较,根据比较 结果获取用于控制导频比特的下行传输功率的第二传输功率控制 TPC2命令; 所述第二信号质量目标值是根据所述低功率节点和所述高功率节点下行信道 对应的导频比特的总误码率或者下行数据的总误块率获取的;
所述发送器还用于: 将所述 TPC2命令发送给所述低功率节点, 以供所述 低功率节点调整所述导频比特的下行传输功率。
18、根据权利要求 17所述的用户设备,其特征在于,所述发送器具体用于: 通过新增上行信道将所述 TPC1命令发送给所述低功率节点, 通过不同于 所述新增上行信道的上行信道将所述 TPC2命令发送给所述低功率节点; 或 通过修改上行信道的格式, 在同一时隙内分时发送所述 TPC1命令和所述 TPC2命令; 或
通过上行信道, 在不同的发送时隙分别发送所述 TPC1命令和所述 TPC2命 令。
19、 根据权利要求 18所述的用户设备, 其特征在于, 还包括:
接收器, 用于接收网络侧通过高层信令下发的、 通知所述 UE使用的参数 信息, 所述参数信息包括新增上行信道的信道化码, 或所述上行信道的数据格 式, 或所述 TPC1命令的发送时隙和所述 TPC2命令的发送时隙。
20、 根据权利要求 16至 19中任一所述的用户设备, 其特征在于, 所述处理器还用于: 接入 HSPA服务小区由低功率节点对应的小区切换到 高功率节点对应的小区; 或者
所述接收器还用于: 接收网络侧下发的启动信令。
21、 一种基站, 所述基站为低功率节点, 其特征在于, 包括:
接收器, 用于接收用户设备 UE发送的第一传输功率控制 TPC1命令, 所述
TPC1命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质量 与第一信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行信 道上的传输功率控制 TPC比特获取的, 所述第一信号质量目标值是根据所述 TPC比特的 TPC命令错误率获取的,所述 UE处于所述低功率节点和高功率节点 软切换区中;
处理器, 用于根据所述 TPC1命令, 调整所述 TPC比特的下行传输功率。
22、 根据权利要求 21所述的基站, 其特征在于,
所述接收器还用于: 接收所述 UE发送的第二传输功率控制 TPC2命令, 所 述 TPC2命令是所述 UE通过比较第二信号质量与第二信号质量目标值而获取 的; 所述第二信号质量是所述 UE根据所述低功率节点和所述高功率节点下行 信道上的导频比特获取对应的信号质量获得的,所述第二信号质量目标值是才艮 据所述低功率节点和所述高功率节点下行信道对应的导频比特的总误码率或 者下行数据的总误块率获取的;
所述处理器还用于: 根据所述 TPC2命令, 调整下行信道导频比特的下行 传输功率。
23、 根据权利要求 22所述的基站, 其特征在于, 所述处理器还用于: 以所述导频比特的下行传输功率为基准,调整用于传输下行数据的下行信 道的传输功率。
24、 根据权利要求 22或 23所述的基站, 其特征在于,
所述处理器还用于: 判断获知所述 TPC比特的下行传输功率与所述导频比 特的下行传输功率的差距高于预设门限; 对应地, 所述基站还包括:
发送器, 用于停止向所述 UE发送下行数据。
25、 根据权利要求 21至 24中任一项所述的基站, 其特征在于,
所述处理器还用于: 以所述 TPC比特的下行传输功率为基准, 调整用于高 速下行共享信道的共享控制信道 HS-SCCH、 增强专用信道绝对授权信道 E-AGCH、 增强专用信道混合自动重传请求指示信道 E-HICH和增强专用信道 相对授权信道 E-RGCH的下行传输功率。
26、 一种下行传输功率控制系统, 其特征在于, 包括:
如权利要求 16~20中任一所述的用户设备,以及如权利要求 21~25中任一所 述的基站, 所述用户设备与所述基站之间通信连接。
27、 一种基站, 所述基站为第一基站, 其特征在于, 包括:
处理器, 用于判断连接用户设备 UE的下行信道的传输质量未达到预设标 准;
发送器, 用于停止向所述 UE发送下行数据, 所述 UE处于所述第一基站和 第二基站软切换区中。
28、 根据权利要求 27所述的基站, 其特征在于, 所述处理器具体用于: 判断连接所述 UE的下行信道的传输质量与所述第二基站连接所述 UE的 下行信道的传输质量的差距高于预设门限。
29、 根据权利要求 28所述的基站, 其特征在于, 所述第一基站为低功率节 点, 所述第二基站为高功率节点, 则所述基站还包括:
接收器, 用于接收所述 UE发送的第一传输功率控制 TPC1命令, 所述 TPC1 命令是所述 UE通过比较所述低功率节点下行信道对应的第一信号质量与第一 信号质量目标值而获取的;所述第一信号质量是根据低功率节点下行信道上的 传输功率控制 TPC比特获取的, 所述第一信号质量目标值是根据所述 TPC比特 的 TPC命令错误率获取的; 所述处理器还用于: 根据所述 TPC1命令, 调整所述 TPC比特的下行传输 功率;
所述接收器还用于: 接收所述 UE发送的第二传输功率控制 TPC2命令, 所 述 TPC2命令是所述 UE通过比较第二信号质量与第二信号质量目标值而获取 的; 所述第二信号质量是所述 UE根据所述低功率节点和所述高功率节点下行 信道上的导频比特获取对应的信号质量获得的,所述第二信号质量目标值是才艮 据所述低功率节点和所述高功率节点下行信道对应的导频比特的总误码率或 者下行数据的总误块率获取的;
所述处理器还用于: 根据所述 TPC2命令, 调整下行信道导频比特的下行 传输功率; 下行传输功率的差距高于预设门限。
30、 根据权利要求 27所述的基站, 其特征在于, 所述处理器具体用于: 判断所述 UE发送的信道质量指示符 CQI低于预设 CQI门限。
PCT/CN2014/072945 2013-04-03 2014-03-06 下行传输功率控制方法、装置及系统 WO2014161418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310115660.XA CN104105183A (zh) 2013-04-03 2013-04-03 下行传输功率控制方法、装置及系统
CN201310115660.X 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014161418A1 true WO2014161418A1 (zh) 2014-10-09

Family

ID=51657571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072945 WO2014161418A1 (zh) 2013-04-03 2014-03-06 下行传输功率控制方法、装置及系统

Country Status (2)

Country Link
CN (1) CN104105183A (zh)
WO (1) WO2014161418A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3160193B1 (en) * 2014-06-20 2018-08-22 Huawei Technologies Co., Ltd. Transmission power control command word generation method, device and system
CN105744547B (zh) * 2014-12-10 2019-03-29 联芯科技有限公司 Wcdma系统同步失步检测的方法及其装置
US10798657B2 (en) * 2015-08-24 2020-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Power control in high speed scenario

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878398A (zh) * 2005-11-29 2006-12-13 华为技术有限公司 一种虚拟软切换的方法
WO2012024454A1 (en) * 2010-08-17 2012-02-23 Qualcomm Incorporated Apparatus and method for controlling inter-cell interference between femtocells and macrocells
CN102572879A (zh) * 2011-12-28 2012-07-11 华为技术有限公司 通信方法、装置及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2666192T3 (es) * 2005-04-29 2018-05-03 Nokia Technologies Oy Aparato, método y programa informático que proporcionan control de potencia de enlace descendente de canal físico especializado fraccional mejorado durante traspaso con continuidad
US8417278B2 (en) * 2006-03-01 2013-04-09 Nec Corporation Wireless communication system, communication terminal device, method of controlling transmission power thereof, and program
CN100583676C (zh) * 2006-07-14 2010-01-20 华为技术有限公司 一种发射功率控制命令字处理方法和模块
US8725083B2 (en) * 2008-05-13 2014-05-13 Qualcomm Incorporated Self calibration of downlink transmit power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1878398A (zh) * 2005-11-29 2006-12-13 华为技术有限公司 一种虚拟软切换的方法
WO2012024454A1 (en) * 2010-08-17 2012-02-23 Qualcomm Incorporated Apparatus and method for controlling inter-cell interference between femtocells and macrocells
CN102572879A (zh) * 2011-12-28 2012-07-11 华为技术有限公司 通信方法、装置及系统

Also Published As

Publication number Publication date
CN104105183A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
RU2501188C2 (ru) Способ передачи отчета о мощности и устройство связи для этого
EP2966906B1 (en) Method and device for processing downlink information
WO2014161485A1 (zh) 设备到设备通信中的发射功率控制方法、装置及系统
WO2014067092A1 (zh) 功率调整方法及设备
US9930622B2 (en) Power control of uplink control channels in heterogeneous networks
US9967867B2 (en) UL control channel consideration for heterogeneous networks
WO2014000562A1 (zh) 通信方法、设备及系统
US10028229B2 (en) Preamble sending method, power control method, terminal, and device
TW201242396A (en) Power control in a mobile device
KR20130121946A (ko) 전력 제어 정보 송신 및 전력 제어 방법, 시스템 및 장치
WO2011020425A1 (zh) 一种上行信道配置方法、系统和设备
BR112016010363A2 (pt) Aparelho e métodos para executar controle de potência de loop externo para terminação prematura de quadro em comunicações sem fio
WO2014161418A1 (zh) 下行传输功率控制方法、装置及系统
WO2006122488A1 (fr) Méthode de contrôle de puissance de terminal
US9756574B2 (en) System and method for improving uplink control channels for weak communication links
WO2014206377A1 (zh) 功率控制方法、装置及ue
WO2014194799A1 (zh) 通信方法、无线网络控制器和用户设备
WO2012019519A1 (zh) 一种发送功率的调整及其指示方法、装置及系统
WO2015096281A1 (zh) 异构网络的不平衡区域的软切换区的信号发送方法及装置
WO2013159595A1 (zh) 内环功率控制的处理方法及系统、无线网络控制器
WO2015032269A1 (zh) 一种软切换下上行授权信息的处理方法、终端及网络设备
WO2013189345A2 (zh) 宏基站和低功率节点间的干扰控制方法及装置
WO2013189419A2 (zh) 对干扰协同管理的方法、系统、低功率基站及rnc
WO2014205747A1 (zh) 一种功率控制方法和设备
US20220377674A1 (en) Power control for bidirectional sidelink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14778617

Country of ref document: EP

Kind code of ref document: A1