WO2014161263A1 - 一种宏基站与低功率基站共小区的协同处理方法及系统 - Google Patents

一种宏基站与低功率基站共小区的协同处理方法及系统 Download PDF

Info

Publication number
WO2014161263A1
WO2014161263A1 PCT/CN2013/082213 CN2013082213W WO2014161263A1 WO 2014161263 A1 WO2014161263 A1 WO 2014161263A1 CN 2013082213 W CN2013082213 W CN 2013082213W WO 2014161263 A1 WO2014161263 A1 WO 2014161263A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
macro base
low power
uplink
radio link
Prior art date
Application number
PCT/CN2013/082213
Other languages
English (en)
French (fr)
Inventor
詹建明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014161263A1 publication Critical patent/WO2014161263A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for co-processing a common cell between a macro base station and a low power base station.
  • a radio network controller RNC and a node Node B are included, and from a general network construction mode, the main coverage is generally through an RNC plus a multi-sector integrated macro base station.
  • the RNC plus the distributed base station baseband processing unit BBU + macro radio remote unit RRU to solve, in addition, there are a few micro base stations to supplement blind or hotspot coverage, in general, from the perspective of the whole network coverage is a macro cell plus a small micro area.
  • the maximum number of the same-frequency neighbors in the current neighbor list is limited. The maximum number is 31. Deploying more Small cells will result in insufficient configuration of the neighbor list. 2. There are too many Small Cells, which leads to insufficient scrambling resources. The scrambling codes of neighboring cells may be the same, thus interfering with each other. 3. The uplink and downlink imbalances of the macro base station and the low power base station cause mutual interference.
  • each Small Cell must establish a connection with the RNC.
  • the transmission is difficult to obtain.
  • engineers need to configure multiple Small Cell connections on the RNC side.
  • the network deployment and expansion are both It is cumbersome, so that each extended hotspot needs to be configured on the RNC side. 5.
  • the RNC needs to be expanded. First, the number of base stations connected to the RNC is limited. As a result, a large number of Small Cell deployments will lead to a large expansion of the RNC, and the space of the equipment room will also increase, bringing about a sharp increase in CAPEX and OPEX.
  • the software switching between the Small Cell and the Macro Cell of the UE becomes an Iur soft handover across the RNC, with many signaling interactions, extended handover, high call drop rate, and high resource consumption.
  • the present invention provides a cooperative processing method and system for a common cell of a base station and a low power base station, to solve at least one of the above problems, that is, to solve a macro base station by combining a macro base station and a low power base station into one cell.
  • One or more of the above problems encountered when the low power base station is configured as a conventional different cell.
  • a method for co-processing a co-cell of a macro base station and a low-power base station is provided.
  • the low-power base station is located in a coverage area of the macro base station, and the method includes the following steps:
  • the low power base station in the coverage area is configured as the same cell; the macro base station and the low power base station respectively measure pilot signal received power of the uplink random access channel RACH; and the uplink RACH pilot signal measured according to the macro base station and the low power base station respectively Receiving power, determining whether the terminal is located in a macro base station coverage area or a low power base station coverage area; According to the judgment result, a wireless link between the terminal and the macro base station or the low power base station is established.
  • the step of configuring the macro base station and the low power base station in the coverage area thereof to be the same cell comprises: configuring a primary common pilot channel P-CPICH, a primary common control physical channel P-CCPCH, and a secondary common control for the macro base station Physical channel S-CCPCH; configuring a primary common pilot channel P-CPICH, a primary common control physical channel P-CCPCH, a secondary common control physical channel S-CCPCH, and a secondary common pilot channel S-CPICH for the low power base station;
  • the P-CPICH/P-CCPCH/S-CCPCH of the macro base station and the low power base station are scrambled using the same primary scrambling code PSC, and the S-CPICH of the low power base station is scrambled using the secondary scrambling code SSC.
  • the step of determining whether the terminal is located in the macro base station coverage area or the low power base station coverage area comprises: the macro base station measuring the uplink RACH pilot signal received power of the low power base station
  • the received signal power of the pilot signal of the RACH is subtracted, and the received power difference of the pilot signal of the uplink RACH is obtained; the received power difference of the pilot signal of the uplink RACH is compared with a preset uplink RACH threshold; if the pilot signal of the uplink RACH is received If the power difference is greater than or equal to the preset uplink RACH threshold, the macro base station determines that the terminal is located in the coverage area of the low power base station, otherwise the macro base station determines that the terminal is located in the coverage area of the macro base station.
  • the step of establishing a wireless link between the terminal and the macro base station or the low power base station according to the determination result includes:
  • the RNC obtains a determination result that the terminal from the macro base station is located in the macro base station coverage area or the low power base station coverage area; when the terminal is located in the macro base station coverage area, the RNC sends a radio link establishment request message to the macro base station to enable the macro base station Establishing a transmission channel resource and a physical channel resource associated with the radio link, where the radio link setup request message carries information for specifying a radio link downlink physical channel with a P-CPICH as a phase reference; When the terminal is located in the coverage area of the low-power base station, the RNC sends a radio link setup request message to the macro base station, so that the macro base station notifies the low-power base station to establish a transport channel resource and a physical channel resource related to the radio link, where The terminal supports the tuner frequency and the auxiliary scrambling code, and the radio link setup request message carries information for specifying the radio link downlink physical channel with the S-CPICH as the phase reference.
  • the radio chain The path setup request message carries information for specifying a radio link downlink physical channel with a P-CPICH as a phase reference.
  • the method further includes: after the wireless link is established, the macro base station and the low power base station respectively measure the pilot signal receiving power of the uplink dedicated physical control channel DPCCH; and receive the pilot signal of the uplink DPCCH according to the macro base station and the low power base station respectively. Power, generating a measurement event trigger message for triggering radio link adjustment; adjusting the radio link with the measurement event trigger message, preferably, the step of generating a measurement event trigger message for triggering radio link adjustment
  • the method includes: the macro base station compares the pilot signal received power of the uplink DPCCH measured by the low power base station with the measured uplink
  • the pilot signal received power of the DPCCH is subtracted, and the pilot signal received power difference of the uplink DPCCH is obtained; the pilot signal received power difference of the uplink DPCCH is compared with a preset uplink DPCCH threshold; and the corresponding measurement event trigger is generated according to the comparison result.
  • the message is sent to the RNC.
  • the preset uplink DPCCH threshold includes an uplink DPCCH first threshold, an uplink DPCCH second threshold, and an uplink DPCCH third threshold
  • the step of generating a corresponding measurement event trigger message according to the comparison result includes: using the uplink DPCCH The pilot signal received power difference is compared with the uplink DPCCH first threshold, the uplink DPCCH second threshold, and the uplink DPCCH third threshold; when the user moves from the macro base station coverage area to the low power base station coverage area If the pilot signal received power difference of the uplink DPCCH is greater than or equal to the third threshold of the uplink DPCCH, the macro base station generates a measurement event trigger message for triggering deletion of the macro base station as a cell secondary service signal source; if the uplink DPCCH The pilot signal received power difference is less than the third threshold of the uplink DPCCH, and is greater than or equal to the first threshold of the uplink DPCCH, and the macro base station generates a measurement event trigger message for triggering the low power base station
  • the step of adjusting the wireless link by using the measurement event trigger message comprises: sending, by the RNC, a measurement event trigger message for triggering deletion of the macro base station as a cell service signal source, and sending the wireless to the macro base station a link deletion request message, so that the macro base station deletes the radio link; after receiving the measurement event trigger message for triggering the low power base station as the cell main service signal source, the RNC sends the radio link reconfiguration preparation to the macro base station.
  • the RNC Transmitting, by the macro base station, the low-power base station to re-allocate the wireless link; after receiving the measurement event trigger message for triggering the increase of the low-power base station as the cell auxiliary service signal source, the RNC sends a radio link addition message to the macro base station, And causing the macro base station to notify the low power base station to establish a transmission channel resource and a physical channel resource related to the radio link; after receiving the measurement event trigger message for triggering the increase of the macro base station as the cell auxiliary service signal source, the RNC The station transmits a radio link addition message, so that the macro base station establishes a transmission channel resource associated with the radio link and a physical channel resource; the RNC receives a measurement event trigger message for triggering the macro base station as a cell primary service signal source, and sends a radio link reconfiguration preparation message to the macro base station to reconfigure the radio link; After receiving the measurement event trigger message for triggering the deletion of the low-power base station as the cell auxiliary service signal source, the
  • a co-processing system for a co-cell of a macro base station and a low-power base station is provided.
  • the low-power base station is located in a coverage area of the macro base station, and the system includes: a setting module, configured to The macro base station and the low-power base station in the coverage area are configured as the same cell;
  • the first measurement module is configured to measure the pilot signal received power of the uplink RACH of the macro base station;
  • the second measurement module is configured to measure the received power of the pilot signal of the uplink RACH of the low power base station;
  • the determining module is configured to determine the received power of the pilot signal of the uplink RACH of the macro base station and the low power base station respectively, and determine that the terminal is located in the coverage area of the macro base station Or a low-power base station coverage area;
  • the wireless link establishing module is configured to establish a wireless link between the terminal and the macro base station or the low-power base station according to the judgment result obtained by the determining module.
  • the method further includes: a third measurement module, configured to: after the radio link is established, measure pilot signal receiving power of the uplink dedicated physical control channel DPCCH of the macro base station; and the fourth measurement module is configured to: after the wireless link is established, Measuring a pilot signal receiving power of the uplink DPCCH of the low power base station; the link adjustment triggering module is configured to generate a measurement for triggering the wireless link adjustment according to the pilot signal received power of the uplink DPCCH measured by the macro base station and the low power base station respectively
  • the event triggering message is configured to: adjust the wireless link according to the measurement event trigger message obtained by the link adjustment triggering module.
  • the present invention does not cause a cell neighbor list to be restricted by 31 cells due to the addition of a large number of Small Cells;
  • the invention can avoid the scrambling code confusion problem caused by insufficient primary scrambling code
  • the present invention can avoid the mutual interference problem caused by the same scrambling code between the traditional macro base station cell and the low power base station cell. 4.
  • the present invention can avoid the process of changing the RNC configuration involved in the process of adding the low power base station, which is beneficial to rapid expansion. And opening;
  • the invention can avoid the expansion of the RNC cabinet due to the insufficient number of cells, and improve the resource utilization of the RNC;
  • FIG. 1 is a schematic block diagram of a method for cooperative processing of a macro-base station and a low-power base station co-cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a low-power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention
  • FIG. 1 is a schematic block diagram of a method for cooperative processing of a macro-base station and a low-power base station co-cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a low-power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention
  • FIG. 1 is a schematic block diagram of a method for cooperative processing of a macro-base station and a low-power base station co-cell according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a low-power base station in a coverage area of a macro base station and a macro base station according to an
  • FIG. 3 is a schematic diagram of a pilot configuration of a low-power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a UE initiating a call within a coverage of a low-power base station according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a UE initiating a call within a coverage of a macro base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a downlink primary and secondary public control of a low power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a UE initiating a call within a coverage of a low-power base station according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a UE initiating a call within a coverage of a macro base station according to an embodiment of the
  • FIG. 7 is a schematic diagram of a low-power base station service using a secondary scrambling code SSC scrambling, using a pilot frequency S-CPICH as a reference channel
  • FIG. 8 is a schematic diagram of a macro base station according to an embodiment of the present invention
  • FIG. 9 is a main scrambling code PSC for a service of a low-power base station according to an embodiment of the present invention. Interference, using dominant frequency
  • P-CPICH is a schematic diagram of a reference channel
  • FIG. 10 is a schematic diagram of a downlink channel configuration of a low-power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a UE in a Cell_DCH state according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of the UE transmitting the measurement event D from the macro base station to the low-power base station in the Cell_DCH state according to the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a downlink channel configuration of a low-power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a UE in a Cell_DCH
  • FIG. 13 is a flowchart of a process of reporting a measurement event B reported by a macro base station to a low-power base station by a UE in a Cell_DCH state according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a schematic block diagram of a method for co-processing a macro-base station and a low-power base station co-cell according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps. Step 100: Configure the macro base station and the low power base station in its coverage area as the same cell.
  • the macro base station configures the P-CPICH/P-CCPCH/S-CCPCH and the low-power base station configuration P-CPICH/P-CCPCH/S-CCPCH to use the same primary scrambling code PSC scrambling, and the macro base station P-CPICH and The low power base station P-CPICH has the same channelization code, the macro base station P-CCPCH has the same channelization code as the low power base station P-CCPCH, and the macro base station S-CCPCH has the same channelization code as the low power base station S-CCPCH. .
  • the low-power base station also adds a configuration pilot frequency S-CPICH, and the pilot frequency S-CPICH is scrambled by the secondary scrambling code SSC. That is to say, the low power base station is located in the coverage area of the macro base station, and the macro base station and the low power base station of the common cell have the same primary scrambling code scrambled dominant frequency channel and common control channel.
  • Step 101 The macro base station and the low power base station respectively measure pilot signal received power of the uplink RACH.
  • Step 102 Determine, according to the received power of the uplink RACH pilot signal measured by the macro base station and the low power base station, whether the terminal is located in the macro base station coverage area or the low power base station coverage area.
  • the macro base station subtracts the pilot signal received power of the uplink RACH measured by the low power base station from the pilot signal received power of the uplink RACH, and obtains the pilot signal received power difference of the uplink RACH, and compares the uplink RACH.
  • the pilot signal received power difference and the preset uplink RACH threshold If the pilot signal received power difference of the uplink RACH is greater than or equal to the preset uplink RACH threshold, the macro base station determines that the terminal is located in the low power base station coverage area, otherwise the macro base station It is determined that the terminal is located in a macro base station coverage area.
  • the macro base station sends a judgment result of the terminal in the macro base station coverage area or the low power base station coverage area to the RNC.
  • the macro base station sends a RACH transmission channel message to the RNC to indicate that the call is from the macro base station.
  • the coverage area is also derived from the low power base station coverage area identification.
  • the RNC obtains a determination result that the terminal from the macro base station is located in the macro base station coverage area or the low power base station coverage area, and when the terminal is located in the macro base station coverage area, the RNC sends a radio link establishment request message to the macro base station,
  • the radio link request message carries a downlink physical channel for specifying a radio link.
  • the P-CPICH is used as the phase reference information, so that the macro base station establishes the transmission channel resource and the physical channel resource associated with the radio link; when the terminal is located in the coverage area of the low power base station, the RNC sends the radio link establishment to the macro base station. Requesting a message, causing the macro base station to notify the low power base station to establish a transmission channel resource and a physical channel resource related to the radio link, and the RNC is in the radio link setup request message according to the capability of the terminal to support the pilot frequency and the secondary scrambling code Carrying information for specifying a radio link downlink physical channel with S-CPICH or P-CPICH as a phase reference.
  • Step 104 After the radio link is established, the macro base station and the low power base station respectively measure pilot signal receiving power of the uplink dedicated physical control channel DPCCH.
  • Step 105 Generate a measurement event trigger message for triggering radio link adjustment according to the pilot signal received power of the uplink DPCCH measured by the macro base station and the low power base station respectively.
  • Step 106 Adjust the wireless link by using the measurement event trigger message.
  • the macro base station subtracts the pilot signal received power of the uplink DPCCH measured by the low power base station from the pilot signal received power of the uplink DPCCH, and obtains the pilot signal receiving of the uplink DPCCH.
  • the preset uplink DPCCH threshold includes an uplink DPCCH first threshold, an uplink DPCCH second threshold, and an uplink DPCCH third threshold, and the pilot signal received power difference of the uplink DPCCH and the uplink DPCCH first threshold, Comparing the second threshold of the uplink DPCCH and the third threshold of the uplink DPCCH, when the user moves from the coverage area of the macro base station to the coverage area of the low power base station, if the pilot signal receiving power difference of the uplink DPCCH is greater than or equal to The third base threshold of the uplink DPCCH, the macro base station generates a measurement event trigger message for triggering the deletion of the macro base station as a cell service signal source, and the RNC receives the measurement event trigger message for triggering the deletion of the macro base
  • the macro base station Sending a radio link deletion request message to the macro base station, so that the macro base station deletes the radio link; if the pilot signal received power difference of the uplink DPCCH is less than the third threshold of the uplink DPCCH, and is greater than or equal to the uplink DPCCH The first threshold, the macro base station generates a measurement event trigger for triggering the low power base station as the cell primary service signal source.
  • the RNC After receiving the measurement event trigger message for triggering the low power base station as the cell primary service signal source, the RNC sends a radio link reconfiguration preparation message to the macro base station, so that the macro base station notifies the low power base station to reconfigure the radio link; If the pilot signal received power difference of the uplink DPCCH is less than the first threshold of the uplink DPCCH and greater than or equal to the second threshold of the uplink DPCCH, the macro base station generates a signal for triggering the addition of the low power base station as a cell auxiliary service signal source.
  • the RNC sends a radio link addition message to the macro base station, so that the macro base station notifies the low-power base station to establish and Radio link related transport channel resources and physical channel resources.
  • the macro base station When the user covers the area from the low power base station coverage area to the macro base station If the pilot signal received power difference of the uplink DPCCH is less than the third threshold of the uplink DPCCH and is greater than or equal to the first threshold of the uplink DPCCH, the macro base station generates a macro base station for triggering to increase the macro base station as a cell auxiliary.
  • the RNC sends a radio link addition message to the macro base station, so that the macro base station establishes the a radio link-related transmission channel resource and a physical channel resource; if the pilot signal received power difference of the uplink DPCCH is less than the first threshold of the uplink DPCCH and greater than or equal to the second threshold of the uplink DPCCH, the macro base station generates After the measurement event triggering message is triggered by the macro base station as the cell primary service signal source, the RNC sends a radio link reconfiguration preparation message to the macro base station after receiving the measurement event trigger message for triggering the macro base station as the cell main service signal source.
  • the macro base station if the pilot signal received power difference of the uplink DPCCH is smaller than the uplink DP The second threshold of the CCH, the macro base station generates a measurement event trigger message for triggering the deletion of the low power base station as the cell auxiliary service signal source, and the RNC receives the measurement event trigger for triggering the deletion of the low power base station as the cell auxiliary service signal source.
  • the radio link deletion message is sent to the macro base station, so that the macro base station notifies the low power base station to delete the transmission channel resource and the physical channel resource associated with the radio link.
  • the low-power base station may include a baseband processing unit BBU and a radio frequency processing unit RRU, or only a radio frequency processing unit RRU (excluding a baseband processing unit BBU).
  • the cooperative processing method of the macro base station and the low power base station co-cell can be applied to cooperative processing between the wideband code division multiple access WCDMA macro base station and the WCDMA low power base station.
  • the embodiment of the present invention further provides a cooperative processing system for a co-cell of a macro base station and a low-power base station, where the low-power base station is located in a coverage area of the macro base station, and is shared with the macro base station, where the system includes
  • the setting module is located at the RNC, and is configured to configure the macro base station and the low-power base station in the coverage area thereof to be the same cell;
  • the first measurement module is located at the macro base station, and is configured to measure the pilot signal receiving power of the uplink RACH of the macro base station;
  • the second measurement module is located at the low-power base station, and is configured to measure the received power of the pilot signal of the uplink RACH of the low-power base station;
  • the determining module is located at the macro base station, and is configured to receive the pilot signal according to the uplink RACH of the macro base station and the low-power base station respectively.
  • the radio link establishing module is configured to establish a radio link between the terminal and the macro base station or the low power base station according to the determination result obtained by the determining module.
  • the third measurement module is located at the macro base station, and is configured to measure the pilot signal receiving power of the uplink DPCCH of the macro base station after the wireless link is established; the fourth measurement module is located at the low power base station, and is set to measure after the wireless link is established.
  • the link adjustment triggering module is configured to generate a measurement event for triggering the wireless link adjustment according to the pilot signal received power of the uplink DPCCH measured by the macro base station and the low power base station respectively a triggering message;
  • the wireless link adjusting module is configured to adjust the wireless link according to the measurement event trigger message obtained by the link adjustment triggering module.
  • 2 is a network diagram of a low-power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention. As shown in FIG. 2, one or more low-power base stations are deployed in a coverage area of a macro base station, and these low-power base stations are deployed.
  • the base station and the macro base station are connected by a wired transmission method (for example, an optical fiber, an Ethernet line, etc.) or a wireless transmission method (for example, WLAN or microwave, etc.).
  • 3 is a schematic diagram of pilot configuration of a low power base station in a coverage area of a macro base station and a macro base station according to an embodiment of the present invention. As shown in FIG. 3, a macro base station configures a P-CPICH, and a low power base station configures a P-CPICH and an S- CPICH.
  • the primary scrambling code PSC of the low power base station P-CPICH is the same as the primary scrambling code PSC of the macro base station P-CPICH, and the S-CPICH is scrambled by the secondary scrambling code SSC.
  • 6 is a schematic diagram of a configuration of a downlink main-slave common control physical channel of a low-power base station in a coverage area between a macro base station and a macro base station according to an embodiment of the present invention, where the macro base station configures a P-CCPCH/S-CCPCH and a low-power base station to configure a P-CCPCH.
  • /S-CCPCH is scrambled with the same primary scrambling code PSC.
  • the downlink control channels used by the UEs in the macro-base station or the low-power base station coverage area in the IDLE state use the same common control physical channel P-CCPCH/S-CCPCH.
  • the radio resource allocation process for the UE to initiate a call includes: First, the UE simultaneously sends the RACH access message to the macro base station and the low power base station.
  • the macro base station and the low power base station respectively measure the pilot signal received power of the uplink RACH, that is, the Pilot RSCP (pilot RSCP) measurement value M_RACH_RSCP of the uplink RACH measured by the macro base station and the Pilot RSCP of the uplink RACH measured by the low power base station.
  • the measured value S_RACH_RSCP is the pilot RSCP (pilot RSCP) measurement value M_RACH_RSCP of the uplink RACH measured by the macro base station and the Pilot RSCP of the uplink RACH measured by the low power base station.
  • S_RACH_RSCP pilot RSCP
  • the low power base station reports its measured S RACH RSCP to the macro base station.
  • the macro base station determines whether the terminal is located in the macro base station coverage area or the low power base station coverage area according to the S_RACH_RSCP and the M_RACH_RSCP, and sends the determination result to the RNC through the RACH transmission channel to establish a wireless link.
  • S_RACH_RSCP - M_RACH_RSCP When S_RACH_RSCP - M_RACH_RSCP is set to 1 (that is, the preset uplink RACH threshold), as shown in FIG. 4, the macro base station sends the RACH data to the RNC, and also informs the RNC that the UE of the call belongs to a certain low-power base station cell coverage. After the macro base station receives the radio link setup request message initiated by the RNC, the macro base station notifies the low power base station to establish a transport channel and a physical channel resource associated with the radio link, and does not establish a macro link with the radio link. Transport channel and physical channel resources. When S_RACH_RSCP - M_RACH_RSCP4 is set to 1 (that is, the preset uplink RACH threshold), as shown in FIG.
  • the macro base station sends the RACH data to the RNC, and also informs the RNC that the UE of the call belongs to the macro base station cell coverage.
  • the macro base station After the macro base station receives the radio link setup request message initiated by the RNC, the macro base station will establish a transport channel and a physical channel resource associated with the radio link at the base station without notifying the low power base station to establish a radio link related to the radio link. Transport channel and physical channel resources.
  • the RNC determines whether the UE supports the supplementary frequency and the secondary scrambling code by using the capability information provided by the UE.
  • the RNC specifies the downlink physical channel of the radio link with the S-CPICH in the radio link setup request message sent to the macro base station (Secondary Scrambling Code SSC)
  • the scrambling is the reference channel, and the radio link created by the low-power base station for the UE will also be scrambled by the secondary scrambling code SSC, as shown in FIG. 4, FIG. 7, and FIG.
  • the RNC 8 uses the downlink physical channel scrambled by the SSC secondary scrambling code, and can multiplex the downlink code resource, that is, the channelization code of the downlink physical channel that the multiplex macro base station uses the primary scrambling code PSC to scramble, that is,
  • the macro base station and the multiple low-power base stations are combined into the same cell, which can implement code resource multiplexing in different downlink coverage areas, and improve the throughput and the number of users of the entire cell.
  • the RNC specifies the downlink physical channel of the radio link to be the same P-type as the macro base station in the radio link setup request message sent to the macro base station.
  • the CPICH Primary Scrambling Code PSC Scrambling
  • the radio link created by the low power base station for the UE will also be scrambled with the primary scrambling code PSC, as shown in Figures 4, 9 and 10.
  • the low-power base station uses the SSC secondary scrambling code to scramble the downlink physical channel, and the downlink code resource cannot be multiplexed, that is, the channelization code of the downlink physical channel scrambled by the macro base station primary scrambling code PSC is different.
  • the downlink physical channel of the low-power base station coverage area UE service uses the S-CPICH as the phase reference information, and is scrambled by the secondary scrambling code SSC, for the UE that does not support the S-CPICH and the SSC.
  • the downlink physical channel of the low-power base station coverage area UE service uses P-CPICH as the phase reference information, and is scrambled by the primary scrambling code PSC.
  • the RNC specifies the downlink physical channel of the radio link in the radio link setup request message sent to the macro base station to P. - CPICH (primary scrambling code PSC scrambling) as the phase reference information, the downlink physical channel of the radio link will also be scrambled with the primary scrambling code PSC, as shown in FIG. As shown in FIG. 4 to FIG.
  • the embodiment of the present invention selects a radio link resource required for a UE call access based on a Pilot RSCP measurement comparison of a base station to a UE uplink RACH, and selects between a macro base station and a low power base station. And configuration.
  • the UE in the coverage area of the macro base station or the low-power base station is in the service connection state Cell_DCH, and the macro base station needs to adjust the radio resource during the movement between the macro base station and the low-power base station. .
  • the macro base station and the low power base station respectively measure the pilot signal received power of the uplink DPCCH, that is, the Pilot RSCP measurement value M_ULPilot_RSCP of the uplink DPCCH measured by the macro base station and the Pilot RSCP measurement value SJJLPilot_RSCP of the uplink DPCCH measured by the low power base station.
  • the low power base station reports its measured S_ULPilot_RSCP to the macro base station.
  • the macro base station adjusts the radio link according to the M_ULPilot_RSCP and the SJJLPilot_RSCP. Specifically, the macro base station determines the radio of the UE and the macro base station and the low power base station in the same cell by comparing the S_ULPilot_RSCP and the M_ULPilot_RSCP difference value with the set threshold. Connection relationship.
  • the processing procedure for triggering the macro base station to report the corresponding measurement event trigger message to the RNC is similar, and the UE is in the Cell_DCH state from the Acer base.
  • the mobile station moves to the low-power base station as an example. Referring to FIG. 11 to FIG. 13 , the process flow of triggering the macro base station to report the corresponding measurement event trigger message to the RNC is specifically described.
  • the macro base station When the UE moves from the macro base station coverage area to the low power base station coverage area in the Cell_DCH state, when S_ULPilot_RSCP-M_ULPilot_RSCP ⁇ sets the threshold 2 (ie, the uplink DPCCH second threshold), the macro base station sends a measurement event A report message to the RNC (ie, The measurement event A report message triggers the addition of the low power base station as the secondary service signal source in the cell, and the RNC sends the wireless link addition message to the macro base station.
  • the RNC determines, according to the capability information of the UE that supports the S-CPICH, whether the newly added radio link is referenced by the S-CPICH.
  • the newly added radio link uses the S-CPICH as the phase reference.
  • the macro base station notifies the low power base station to establish a transport channel and a physical channel resource associated with the radio link, as shown in FIG.
  • the S_ULPilot_RSCP-M_ULPilot_RSCP sets the threshold 1 (ie, the uplink DPCCH first threshold)
  • the RNC sends a measurement event D report message (ie, a measurement event trigger message used to trigger the low power base station as a cell primary service signal source), and the measurement event D report message triggers the low power base station as a primary service signal source for the service in the cell, and the RNC
  • the macro base station transmits a radio link reconfiguration preparation message, and the macro base station notifies the low power base station to reconfigure the radio link, as shown in FIG.
  • the macro base station sends a measurement event B report message to the RNC ( That is, the measurement event trigger message used to trigger the deletion of the macro base station as the cell service signal source), the measurement event B report message triggers the deletion of the macro base station as the service signal source in the cell, and the RNC sends a radio link deletion request message to the macro base station, the Acer The station deletes the wireless link, as shown in Figure 13.
  • the UE In the Cell_DCH state, the UE sets the threshold 3 ⁇ set the threshold 1 ⁇ set the threshold 2 .
  • the embodiment of the present invention determines the selection and configuration of the UE radio link resource between the macro base station and the low power base station based on the Pilot RSCP measurement comparison of the base station to the UE uplink DPCCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了宏基站与低功率基站共小区的协同处理方法及系统,方法包括:将宏基站和其覆盖区域内的低功率基站配置为同一小区;宏基站和低功率基站分别测量上行RACH的导频信号接收功率;根据宏基站与低功率基站分别测量的上行RACH的导频信号接收功率,判断终端位于宏基站覆盖区域还是低功率基站覆盖区域;根据判断结果,建立终端与宏基站或低功率基站之间的无线链路。本发明能够解决宏基站与低功率基站配置为不同小区时所出现的问题。

Description

一种宏基站与低功率基站共小区的协同处理方法及系统 技术领域 本发明涉及通信领域, 特别涉及一种宏基站与低功率基站共小区的协同处理方法 及系统。 背景技术 在 UMTS无线接入系统中,包含无线网络控制器 RNC和节点 Node B两种关键网 元, 从普遍的建网模式来看, 主要覆盖一般通过 RNC 加上多扇区一体化宏基站、 或 RNC加上分布式基站基带处理单元 BBU+宏射频拉远单元 RRU来解决, 另外有少许 的微基站补盲或热点覆盖, 总之从全网覆盖来看是宏小区加上少许的微小区。 近几年移动宽带业务发展迅猛, 各种 3GPP制式智能终端 (例如手机、 数据卡、 iPad等) 的数据业务井喷式应用直接导致热点地区 (包括室外室内各种场景) 数据流 量呈现爆炸式增长趋势, 仅仅增强传统的宏小区性能很难完全解决问题, 需要在原传 统的宏基站网络基础上提供新的网络解决方案。 移动通信行业达成高度共识, 可以采 用 Small Cell基站来解决急速增长的数据流量需求。 Small Cell目前 Iub行业内有多种形态, 主要有以下三种形式:
1、 Micro Cell (2x5w~2xl0w)
2、 Metro Cell (2xlw)
3、 Pico Cell (2x250mw) 这些 Small Cell规格可能应用在室外热点或热区覆盖, 室内热点或深度热区覆盖, 数量会非常多, 数量可能是宏基站的几倍甚至十几倍, 尤其是 Metro Cell和 Pico Cell 的数量会非常多。如果依然采用传统的小基站形态来大规模部署 Small Cell,会导致以 下问题:
1、当前的邻区列表的最大同频邻区数量有限制,最大为 31,部署较多 Small Cell, 将导致邻区列表不够配置。 2、 Small Cell太多, 导致扰码资源不够, 可能出现相邻小区的扰码相同, 从而相 互干扰。 3、 宏基站与低功率基站的上下行链路不平衡导致相互干扰。
4、对于多个 Small Cell的部署, 每个 Small Cell都要与 RNC建立连接, 传输的获 取比较麻烦, 同时在网络部署中需要工程人员在 RNC侧配置多个 Small Cell连接, 网 络部署和扩容都比较麻烦, 这样导致每次扩展热点都需要在 RNC侧进行配置。 5、多个 Small Cell部署时,经常需要 RNC扩容,首先 RNC连接的基站数量有限, 这样大量 Small Cell部署会导致大量扩容 RNC,机房站点空间也将增加,带来 CAPEX 和 OPEX的急剧增加。
6、 RNC连接的小区数量有限, 利用率较低, 大量的 Small Cell应用, 导致 RNC 的配置急速扩容,由于一般对一个 RNC的容量来讲,小区容量是重要瓶颈,一个 Small Cell基站的一个小区虽然容量比较小,但是 RNC还需要像宏小区一样为该基站分配一 个小区的资源及处理能力, 比如, 一个 4载波 3扇区平均每个小区需要有 64〜96个 HSPA+用户, 每个扇区总共要处理 4*64〜4*96=256〜384个 HSPA+用户。 但是一个 Small Cell基站每个小区只需要支持 16〜32个 HSPA+用户, 从宏小区与 Small Cell要 求处理的用户容量来看, 宏小区的用户容量是微小区容量的 2〜6倍。 7、 Small Cell与 Macro Cell由于在逻辑连接上连接到不同的 RNC上, 导致终端
UE在 Small Cell与 Macro Cell之间的软件切换成为跨 RNC的 Iur软切换,信令交互多, 切换时延长, 切换掉话率高, 资源消耗大。 发明内容 本发明提供了一种基站与低功率基站共小区的协同处理方法及系统, 以解决以上 问题至少之一, 也就是说, 通过把宏基站与低功率基站合并为一个小区, 解决宏基站 与低功率基站配置为传统的不同小区时所遇到的以上问题中的一个或多个。 根据本发明的一个方面,提供了一种宏基站与低功率基站共小区的协同处理方法, 所述低功率基站位于所述宏基站的覆盖区域内, 所述方法包括以下步骤: 将宏基站和其覆盖区域内的低功率基站配置为同一小区; 宏基站和低功率基站分别测量上行随机接入信道 RACH的导频信号接收功率; 根据宏基站与低功率基站分别测量的上行 RACH的导频信号接收功率, 判断终端 位于宏基站覆盖区域还是低功率基站覆盖区域; 根据判断结果, 建立终端与宏基站或低功率基站之间的无线链路。 优选地,所述将宏基站和其覆盖区域内的低功率基站配置为同一小区的步骤包括: 为宏基站配置主公共导频信道 P-CPICH、 主公共控制物理信道 P-CCPCH和辅公 共控制物理信道 S-CCPCH; 为低功率基站配置主公共导频信道 P-CPICH、主公共控制物理信道 P-CCPCH、辅 公共控制物理信道 S-CCPCH, 并配置辅公共导频信道 S-CPICH; 其中, 宏基站和低功率基站的 P-CPICH/P-CCPCH/S-CCPCH 使用相同的主扰码 PSC加扰, 低功率基站的 S-CPICH使用辅扰码 SSC加扰。 优选地,所述判断终端位于宏基站覆盖区域还是低功率基站覆盖区域的步骤包括: 宏基站将低功率基站测量的上行 RACH 的导频信号接收功率与其测量的上行
RACH的导频信号接收功率相减, 得到上行 RACH的导频信号接收功率差; 比较所述上行 RACH的导频信号接收功率差与预设上行 RACH门限; 若所述上行 RACH的导频信号接收功率差大于等于预设上行 RACH门限,则宏基 站判断所述终端位于低功率基站覆盖区域, 否则宏基站判断所述终端位于宏基站覆盖 区域。 优选地, 所述根据判断结果建立终端与宏基站或低功率基站之间的无线链路的步 骤包括:
RNC 获取来自宏基站的所述终端位于宏基站覆盖区域还是低功率基站覆盖区域 的判断结果; 当所述终端位于宏基站覆盖区域时, RNC向宏基站发送无线链路建立请求消息, 使宏基站建立与所述无线链路相关的传输信道资源和物理信道资源, 其中, 所述无线 链路建立请求消息中携带用于指定无线链路下行物理信道以 P-CPICH作为相位参考的 信息; 当所述终端位于低功率基站覆盖区域时, RNC向宏基站发送无线链路建立请求消 息, 使宏基站通知低功率基站建立与所述无线链路相关的传输信道资源和物理信道资 源, 其中, 若所述终端支持辅导频和辅扰码, 则在所述无线链路建立请求消息中携带 用于指定无线链路下行物理信道以 S-CPICH作为相位参考的信息, 否则, 所述无线链 路建立请求消息中携带用于指定无线链路下行物理信道以 P-CPICH作为相位参考的信 息。 优选地, 还包括: 无线链路建立后, 宏基站和低功率基站分别测量上行专用物理控制信道 DPCCH 的导频信号接收功率; 根据宏基站与低功率基站分别测量的上行 DPCCH的导频信号接收功率, 生成用 于触发无线链路调整的测量事件触发消息; 利用所述测量事件触发消息, 调整所述无线链路 优选地, 所述生成用于触发无线链路调整的测量事件触发消息的步骤包括: 宏基站将低功率基站测量的上行 DPCCH 的导频信号接收功率与其测量的上行
DPCCH的导频信号接收功率相减, 得到上行 DPCCH的导频信号接收功率差; 比较所述上行 DPCCH的导频信号接收功率差与预设上行 DPCCH门限; 根据比较结果, 生成相应的测量事件触发消息, 并发送至 RNC。 优选地,所述预设上行 DPCCH门限包括上行 DPCCH第一门限、上行 DPCCH第 二门限、 上行 DPCCH第三门限, 所述根据比较结果生成相应的测量事件触发消息的 步骤包括: 将所述上行 DPCCH的导频信号接收功率差与所述上行 DPCCH第一门限、 所述 上行 DPCCH第二门限、 所述上行 DPCCH第三门限进行比较; 当用户从宏基站覆盖区域向低功率基站覆盖区域方向移动时,若所述上行 DPCCH 的导频信号接收功率差大于等于所述上行 DPCCH第三门限, 则宏基站生成用于触发 删除宏基站作为小区辅服务信号源的测量事件触发消息; 若所述上行 DPCCH的导频 信号接收功率差小于所述上行 DPCCH第三门限, 且大于等于所述上行 DPCCH第一 门限,则宏基站生成用于触发低功率基站作为小区主服务信号源的测量事件触发消息; 若所述上行 DPCCH的导频信号接收功率差小于所述上行 DPCCH第一门限, 且大于 等于所述上行 DPCCH第二门限, 则宏基站生成用于触发增加低功率基站作为小区辅 服务信号源的测量事件触发消息; 当用户从低功率基站覆盖区域向宏基站覆盖区域方向移动时,若所述上行 DPCCH 的导频信号接收功率差小于所述上行 DPCCH第三门限,且大于等于所述上行 DPCCH 第一门限时, 则宏基站生成用于触发增加宏基站作为小区辅服务信号源的测量事件触 发消息; 若所述上行 DPCCH的导频信号接收功率差小于所述上行 DPCCH第一门限, 且大于等于所述上行 DPCCH第二门限, 则宏基站生成用于触发宏基站作为小区主服 务信号源的测量事件触发消息; 若所述上行 DPCCH的导频信号接收功率差小于所述 上行 DPCCH第二门限, 则宏基站生成用于触发删除低功率基站作为小区辅服务信号 源的测量事件触发消息。 优选地, 所述利用所述测量事件触发消息调整所述无线链路的步骤包括: 所述 RNC收到用于触发删除宏基站作为小区服务信号源的测量事件触发消息后, 向宏基站发送无线链路删除请求消息, 使宏基站删除所述无线链路; 所述 RNC 收到用于触发低功率基站作为小区主服务信号源的测量事件触发消息 后, 向宏基站发送无线链路重配准备消息, 使宏基站通知低功率基站重配无线链路; 所述 RNC 收到用于触发增加低功率基站作为小区辅服务信号源的测量事件触发 消息后, 向宏基站发送无线链路增加消息, 使宏基站通知低功率基站建立与所述无线 链路相关的传输信道资源和物理信道资源; 所述 RNC 收到用于触发增加宏基站作为小区辅服务信号源的测量事件触发消息 后, 向宏基站发送无线链路增加消息, 使宏基站建立与所述无线链路相关的传输信道 资源和物理信道资源; 所述 RNC收到用于触发宏基站作为小区主服务信号源的测量事件触发消息后,向 宏基站发送无线链路重配准备消息, 使宏基站重配无线链路; 所述 RNC 收到用于触发删除低功率基站作为小区辅服务信号源的测量事件触发 消息后, 向宏基站发送无线链路删除消息, 使宏基站通知低功率基站删除与所述无线 链路相关的传输信道资源和物理信道资源。 根据本发明的另一方面,提供了一种宏基站与低功率基站共小区的协同处理系统, 所述低功率基站位于所述宏基站的覆盖区域内, 所述系统包括: 设置模块, 设置为将宏基站和其覆盖区域内的低功率基站配置为同一小区; 第一测量模块, 设置为测量宏基站上行 RACH的导频信号接收功率; 第二测量模块, 设置为测量低功率基站上行 RACH的导频信号接收功率; 判断模块, 设置为根据分别测量宏基站与低功率基站上行 RACH的导频信号接收 功率, 判断终端位于宏基站覆盖区域还是低功率基站覆盖区域; 无线链路建立模块, 设置为根据判断模块得出的判断结果, 建立终端与宏基站或 低功率基站之间的无线链路。 优选地, 还包括: 第三测量模块, 设置为在无线链路建立后, 测量宏基站上行专用物理控制信道 DPCCH的导频信号接收功率; 第四测量模块, 设置为在无线链路建立后, 测量低功率基站上行 DPCCH的导频 信号接收功率; 链路调整触发模块, 设置为根据宏基站与低功率基站分别测量的上行 DPCCH的 导频信号接收功率, 生成用于触发无线链路调整的测量事件触发消息; 无线链路调整模块,设置为根据链路调整触发模块得出的所述测量事件触发消息, 调整所述无线链路。 与现有技术相比较, 本发明的有益效果在于:
1、 本发明不会因为增加大量 Small Cell导致小区邻区列表受 31个小区的限制;
2、 本发明能够避免主扰码不足导致的扰码混淆问题;
3、本发明能够避免传统宏基站小区与低功率基站小区之间的出现相同扰码导致的 相互干扰问题; 4、 本发明能够避免增加低功率基站过程中涉及 RNC配置变更过程, 有利于快速 扩容和开通;
5、 本发明能够避免由于小区数量不足导致的扩容增加 RNC 机柜, 提升了 RNC 的资源利用率;
6、 本发明能够避免由于低功率基站增加导致 RNC机柜增加扩容所引起的跨 lur 切换较多的问题, 避免由此导致的用户基于 lur切换体验差的问题。 附图说明 图 1 是本发明实施例提供的宏基站与低功率基站共小区的协同处理方法原理框 图; 图 2是本发明实施例提供的宏基站与宏基站覆盖区域内的低功率基站组网图; 图 3是本发明实施例提供的宏基站与宏基站覆盖区域内的低功率基站的导频配置 示意图; 图 4是本发明实施例提供的 UE在低功率基站覆盖范围内发起呼叫的流程图; 图 5是本发明实施例提供的 UE在宏基站覆盖范围内发起呼叫的流程图; 图 6是本发明实施例提供的宏基站与宏基站覆盖区内的低功率基站下行主辅公共 控制物理信道配置示意图; 图 7是本发明实施例提供的低功率基站的业务采用辅扰码 SSC加扰, 采用辅导频 S-CPICH为参考信道的示意图; 图 8是本发明实施例提供的宏基站与宏基站覆盖区内的低功率基站的下行信道配 置示意图; 图 9是本发明实施例提供的低功率基站的业务采用主扰码 PSC加扰, 采用主导频
P-CPICH为参考信道的示意图; 图 10 是本发明实施例提供的宏基站与宏基站覆盖区内的低功率基站的下行信道 配置示意图; 图 11是本发明实施例提供的 UE在 Cell_DCH状态下从宏基站向低功率基站移动 触发宏基站上报测量事件 A上报的处理流程图; 图 12是本发明实施例提供的 UE在 Cell_DCH状态下从宏基站向低功率基站移动 触发宏基站上报测量事件 D上报的处理流程图; 图 13是本发明实施例提供的 UE在 Cell_DCH状态下从宏基站向低功率基站移动 触发宏基站上报测量事件 B上报的处理流程图。 具体实施方式 以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下所说明的优 选实施例仅用于说明和解释本发明, 并不用于限定本发明。 图 1 是本发明实施例提供的宏基站与低功率基站共小区的协同处理方法原理框 图, 如图 1所示, 该方法包括以下步骤。 步骤 100、 将宏基站和其覆盖区域内的低功率基站配置为同一小区。 具体地, 宏基站配置 P-CPICH/P-CCPCH/S-CCPCH 与低功率基站配置 P-CPICH/P-CCPCH/S-CCPCH都采用相同的主扰码 PSC加扰, 宏基站 P-CPICH与低 功率基站 P-CPICH具有相同的信道化码, 宏基站 P-CCPCH与低功率基站 P-CCPCH 具有相同的信道化码,宏基站 S-CCPCH与低功率基站 S-CCPCH具有相同的信道化码。 另外低功率基站还增加配置辅导频 S-CPICH, 辅导频 S-CPICH采用辅扰码 SSC加扰。 也就是说, 低功率基站位于宏基站的覆盖区域内, 共小区的宏基站和低功率基站具有 相同的主扰码加扰的主导频信道和公共控制信道。 步骤 101、 宏基站和低功率基站分别测量上行 RACH的导频信号接收功率。 步骤 102、根据宏基站与低功率基站分别测量的上行 RACH的导频信号接收功率, 判断终端位于宏基站覆盖区域还是低功率基站覆盖区域。 具体地, 宏基站将低功率基站测量的上行 RACH的导频信号接收功率与其测量的 上行 RACH的导频信号接收功率相减,得到上行 RACH的导频信号接收功率差, 比较 所述上行 RACH的导频信号接收功率差与预设上行 RACH门限, 若所述上行 RACH 的导频信号接收功率差大于等于预设上行 RACH门限, 则宏基站判断所述终端位于低 功率基站覆盖区域, 否则宏基站判断所述终端位于宏基站覆盖区域。 宏基站将所述终端位于宏基站覆盖区域还是低功率基站覆盖区域的判断结果发送 至 RNC, 具体地, 宏基站在向 RNC发送 RACH传输信道消息中包含一种用来指示该 呼叫是来自宏基站覆盖区还是来自低功率基站覆盖区标识。 步骤 103、 根据判断结果, 建立终端与宏基站或低功率基站之间的无线链路。 具体地, RNC获取来自宏基站的所述终端位于宏基站覆盖区域还是低功率基站覆 盖区域的判断结果, 当所述终端位于宏基站覆盖区域时, RNC向宏基站发送无线链路 建立请求消息, 所述无线链路请求消息中携带用于指定无线链路下行物理信道以 P-CPICH作为相位参考的信息, 使宏基站建立与所述无线链路相关的传输信道资源和 物理信道资源; 当所述终端位于低功率基站覆盖区域时, RNC向宏基站发送无线链路 建立请求消息, 使宏基站通知低功率基站建立与所述无线链路相关的传输信道资源和 物理信道资源, RNC根据终端支持辅导频和辅扰码的能力, 在所述无线链路建立请求 消息中携带用于指定无线链路下行物理信道以 S-CPICH或 P-CPICH作为相位参考的 信息。 步骤 104、 无线链路建立后, 宏基站和低功率基站分别测量上行专用物理控制信 道 DPCCH的导频信号接收功率。 步骤 105、 根据宏基站与低功率基站分别测量的上行 DPCCH的导频信号接收功 率, 生成用于触发无线链路调整的测量事件触发消息。 步骤 106、 利用所述测量事件触发消息, 调整所述无线链路。 在所述步骤 105和所述步骤 106中, 宏基站将低功率基站测量的上行 DPCCH的 导频信号接收功率与其测量的上行 DPCCH 的导频信号接收功率相减, 得到上行 DPCCH的导频信号接收功率差,比较所述上行 DPCCH的导频信号接收功率差与预设 上行 DPCCH门限, 根据比较结果, 生成相应的测量事件触发消息, 并发送至 RNC。 具体地,所述预设上行 DPCCH门限包括上行 DPCCH第一门限、上行 DPCCH第二门 限、 上行 DPCCH第三门限, 将所述上行 DPCCH的导频信号接收功率差与所述上行 DPCCH第一门限、所述上行 DPCCH第二门限、所述上行 DPCCH第三门限进行比较, 当用户从宏基站覆盖区域往低功率基站覆盖区域方向移动时, 若所述上行 DPCCH的 导频信号接收功率差大于等于所述上行 DPCCH第三门限, 则宏基站生成用于触发删 除宏基站作为小区服务信号源的测量事件触发消息,所述 RNC收到用于触发删除宏基 站作为小区服务信号源的测量事件触发消息后,向宏基站发送无线链路删除请求消息, 使宏基站删除所述无线链路; 若所述上行 DPCCH的导频信号接收功率差小于所述上 行 DPCCH第三门限, 且大于等于所述上行 DPCCH第一门限, 则宏基站生成用于触 发低功率基站作为小区主服务信号源的测量事件触发消息,所述 RNC收到用于触发低 功率基站作为小区主服务信号源的测量事件触发消息后, 向宏基站发送无线链路重配 准备消息, 使宏基站通知低功率基站重配无线链路; 若所述上行 DPCCH的导频信号 接收功率差小于所述上行 DPCCH第一门限, 且大于等于所述上行 DPCCH第二门限, 则宏基站生成用于触发增加低功率基站作为小区辅服务信号源的测量事件触发消息, 所述 RNC 收到用于触发增加低功率基站作为小区辅服务信号源的测量事件触发消息 后, 向宏基站发送无线链路增加消息, 使宏基站通知低功率基站建立与所述无线链路 相关的传输信道资源和物理信道资源。 当用户从低功率基站覆盖区域向宏基站覆盖区 域方向移动时, 若所述上行 DPCCH的导频信号接收功率差小于所述上行 DPCCH第 三门限, 且大于等于所述上行 DPCCH第一门限, 则宏基站生成用于触发增加宏基站 作为小区辅服务信号源的测量事件触发消息,所述 RNC收到用于触发增加宏基站作为 小区辅服务信号源的测量事件触发消息后, 向宏基站发送无线链路增加消息, 使宏基 站建立与所述无线链路相关的传输信道资源和物理信道资源; 若所述上行 DPCCH的 导频信号接收功率差小于所述上行 DPCCH第一门限, 且大于等于所述上行 DPCCH 第二门限,则宏基站生成用于触发宏基站作为小区主服务信号源的测量事件触发消息, 所述 RNC收到用于触发宏基站作为小区主服务信号源的测量事件触发消息后,向宏基 站发送无线链路重配准备消息, 使宏基站重配无线链路; 若所述上行 DPCCH的导频 信号接收功率差小于所述上行 DPCCH第二门限, 则宏基站生成用于触发删除低功率 基站作为小区辅服务信号源的测量事件触发消息,所述 RNC收到用于触发删除低功率 基站作为小区辅服务信号源的测量事件触发消息后,向宏基站发送无线链路删除消息, 使宏基站通知低功率基站删除与所述无线链路相关的传输信道资源和物理信道资源。 上述低功率基站既可以包括基带处理单元 BBU和射频处理单元 RRU, 也可以仅 仅射频处理单元 RRU (不包括基带处理单元 BBU)。 优选地, 该宏基站与低功率基站共小区的协同处理方法可以应用于宽带码分多址 WCDMA宏基站与 WCDMA低功率基站之间的协同处理。 本发明实施例还提供了一种宏基站与低功率基站共小区的协同处理系统, 所述低 功率基站位于所述宏基站的覆盖区域内, 并与所述宏基站共小区, 所述系统包括: 设置模块, 位于 RNC, 设置为将宏基站和其覆盖区域内的低功率基站配置为同一 小区; 第一测量模块,位于宏基站,设置为测量宏基站上行 RACH的导频信号接收功率; 第二测量模块, 位于低功率基站, 设置为测量低功率基站上行 RACH的导频信号 接收功率; 判断模块, 位于宏基站, 设置为根据分别测量宏基站与低功率基站上行 RACH的 导频信号接收功率, 判断终端位于宏基站覆盖区域还是低功率基站覆盖区域; 无线链路建立模块, 设置为根据所述判断模块得出的判断结果, 建立终端与宏基 站或低功率基站之间的无线链路。 第三测量模块, 位于宏基站, 设置为在无线链路建立后, 测量宏基站上行 DPCCH 的导频信号接收功率; 第四测量模块, 位于低功率基站, 设置为在无线链路建立后, 测量低功率基站上 行 DPCCH的导频信号接收功率; 链路调整触发模块, 设置为根据宏基站与低功率基站分别测量的上行 DPCCH的 导频信号接收功率, 生成用于触发无线链路调整的测量事件触发消息; 无线链路调整模块,设置为根据链路调整触发模块得出的所述测量事件触发消息, 调整所述无线链路。 图 2是本发明实施例提供的宏基站与宏基站覆盖区域内的低功率基站组网图, 如 图 2所示, 宏基站小区覆盖范围内部署有一个或多个低功率基站, 这些低功率基站与 宏基站通过有线传输方式(例如光纤、 以太网线等)或无线传输方式(例如 WLAN或 微波等) 进行组网连接。 图 3 是本发明实施例提供的宏基站与宏基站覆盖区域内的低功率基站的导频配 置示意图,如图 3所示,宏基站配置 P-CPICH,低功率基站配置 P-CPICH和 S-CPICH。 其中, 低功率基站 P-CPICH的主扰码 PSC与宏基站 P-CPICH的主扰码 PSC相同, S-CPICH采用辅扰码 SSC加扰。 图 6是本发明实施例提供的宏基站与宏基站覆盖区内的低功率基站下行主辅公共 控制物理信道配置示意图, 其中宏基站配置 P-CCPCH/S-CCPCH 与低功率基站配置 P-CCPCH/S-CCPCH都采用相同的主扰码 PSC加扰。 宏基站与低功率基站共小区场景 下, 处于宏基站或低功率基站覆盖区域内的 UE在 IDLE状态下所使用的下行控制信 道都采用相同的公共控制物理信道 P-CCPCH/S-CCPCH。UE发起呼叫的无线资源分配 过程如图 4和图 5所示, 步骤包括: 首先、 UE将 RACH接入消息同时发送给宏基站和低功率基站。 其次、 宏基站和低功率基站分别测量上行 RACH的导频信号接收功率, 即宏基站 测量得到的上行 RACH的 Pilot RSCP (导频 RSCP )测量值 M_RACH_RSCP和低功率 基站测量得到的上行 RACH的 Pilot RSCP测量值 S_RACH_RSCP。 再次、 低功率基站将其测量的 S RACH RSCP上报至宏基站。 最后、 宏基站根据 S_RACH_RSCP和 M_RACH_RSCP, 判断终端位于宏基站覆 盖区域还是低功率基站覆盖区域,并将判断结果通过 RACH传输信道发送至 RNC, 以 便建立无线链路。 当 S_RACH_RSCP - M_RACH_RSCP 置门限 1 (即预设上行 RACH门限) 时, 如图 4所示, 宏基站向 RNC发送 RACH数据的同时还通知 RNC该呼叫的 UE属于某 个低功率基站小区覆盖范围。当宏基站收到 RNC发起的无线链路建立请求消息后,宏 基站将通知该低功率基站建立与该无线链路相关的传输信道和物理信道资源, 而不在 宏基站建立与该无线链路相关的传输信道和物理信道资源。 当 S_RACH_RSCP - M_RACH_RSCP4 置门限 1 (即预设上行 RACH门限) 时, 如图 5所示, 宏基站向 RNC发送 RACH数据的同时还通知 RNC该呼叫的 UE属于宏 基站小区覆盖范围。当宏基站接收到 RNC发起的无线链路建立请求消息后,宏基站将 在基站将建立与该无线链路相关的传输信道和物理信道资源, 而不通知低功率基站建 立与该无线链路相关的传输信道和物理信道资源。 当宏基站向 RNC发送 RACH数据的同时还通知 RNC该呼叫的 UE属于某个低功 率基站小区覆盖范围时, RNC通过 UE提供的能力信息来判断该 UE是否支持辅导频 和辅扰码。 当低功率基站覆盖区的该 UE支持辅导频和辅扰码时, RNC在向宏基站发 送的无线链路建立请求消息中指定该无线链路的下行物理信道以 S-CPICH (辅扰码 SSC加扰)为参考信道,低功率基站为该 UE创建的无线链路也将以辅扰码 SSC加扰, 如图 4、 图 7、 图 8所示。 图 8中低功率基站采用 SSC辅扰码加扰的下行物理信道, 可以复用下行码资源,即复用宏基站采用主扰码 PSC加扰的下行物理信道的信道化码, 也就是说, 本发明实施例将宏基站与多个低功率基站合并为同一小区, 能够实现不同 下行覆盖区的码资源复用,提升整个小区的吞吐量和用户数。 当低功率基站覆盖区的 该 UE不支持辅导频和辅扰码时, RNC在向宏基站发送的无线链路建立请求消息中指 定该无线链路的下行物理信道以与宏基站相同的 P-CPICH (主扰码 PSC加扰)为参考 相位,低功率基站为该 UE创建的无线链路也将以主扰码 PSC加扰, 如图 4、 图 9和图 10所示。 图 10中低功率基站采用 SSC辅扰码加扰的下行物理信道, 不能复用下行码 资源, 即与宏基站主扰码 PSC 加扰的下行物理信道的信道化码不相同。 即对于支持 S-CPICH和 SSC的 UE, 低功率基站覆盖区 UE业务的下行物理信道以 S-CPICH作为 相位参考的信息, 以辅扰码 SSC加扰, 对于不支持 S-CPICH和 SSC的 UE, 低功率基 站覆盖区 UE业务的下行物理信道以 P-CPICH作为相位参考的信息,以主扰码 PSC加 扰。 当宏基站向 RNC发送 RACH数据的同时还通知 RNC该呼叫的 UE属于宏基站小 区覆盖范围时, RNC在向宏基站发送的无线链路建立请求消息中指定该无线链路的下 行物理信道以 P-CPICH (主扰码 PSC加扰)作为相位参考的信息, 该无线链路的下行 物理信道也将以主扰码 PSC加扰, 如图 5所示。 通过图 4至图 10可知, 在同一小区内, 本发明实施例基于基站对 UE上行 RACH 的 Pilot RSCP测量比较来决策 UE呼叫接入所需无线链路资源在宏基站和低功率基站 之间选择和配置。 宏基站与低功率基站共小区场景下, 处于宏基站或低功率基站覆盖区域内的 UE 在业务连接状态 Cell_DCH下, UE在宏基站与低功率基站之间移动过程中, 宏基站需 要调整无线资源。 以下以 UE在 Cell_DCH状态下从宏基站覆盖区域向低功率基站覆 盖区域移动过程中调整无线资源为例, 结合图 11、 图 12、 图 13进一步说明。 首先, 宏基站和低功率基站分别测量上行 DPCCH的导频信号接收功率, 即宏基 站测量得到的上行 DPCCH的 Pilot RSCP测量值 M_ULPilot_RSCP和低功率基站测量 得到的上行 DPCCH的 Pilot RSCP测量值 SJJLPilot _RSCP。 其次, 低功率基站将其测量的 S_ ULPilot_RSCP上报至宏基站。 最后, 宏基站根据 M_ULPilot_RSCP和 SJJLPilot _RSCP, 调整无线链路, 具体 地, 宏基站通过将 S_ULPilot_RSCP与 M_ULPilot_RSCP差值大小与设置门限比较, 来决策在同一个小区内 UE与宏基站、 低功率基站的无线连接关系。
UE在 Cell_DCH状态下从宏基站向低功率基站移动与从低功率基站向宏基站移动 时, 触发宏基站向 RNC上报相应的测量事件触发消息的处理流程相似, 下面以 UE在 Cell_DCH状态下从宏基站向低功率基站移动为例, 结合图 11至图 13, 具体说明触发 宏基站向 RNC上报相应的测量事件触发消息的处理流程。
UE 在 Cell_DCH 状态下从宏基站覆盖区向低功率基站覆盖区移动期间, 当 S_ULPilot_RSCP-M_ULPilot_RSCP≥设置门限 2 (即上行 DPCCH第二门限) 时, 宏基 站向 RNC发送测量事件 A报告消息 (即用于触发增加低功率基站作为小区辅服务信 号源的测量事件触发消息), 测量事件 A报告消息触发在该小区内增加低功率基站为 辅服务信号源, RNC向宏基站发送无线链路增加消息, RNC根据该 UE的支持 S-CPICH 的能力信息确定新增加的无线链路是否以 S-CPICH 为参考相位, 当该 UE 支持 S-CPICH时, 新增加的无线链路以 S-CPICH为相位参考, 宏基站通知低功率基站建立 与该无线链路相关的传输信道和物理信道资源, 如图 11所示。 UE 在 Cell_DCH 状态下从宏基站覆盖区向低功率基站覆盖区移动期间, 当 S_ ULPilot_RSCP-M_ULPilot_RSCP 置门限 1 (即上行 DPCCH第一门限), 宏基站向
RNC发送测量事件 D报告消息(即用于触发低功率基站作为小区主服务信号源的测量 事件触发消息), 测量事件 D报告消息触发低功率基站作为该小区内业务的主服务信 号源, RNC向宏基站发送无线链路重配准备消息, 宏基站通知低功率基站重配无线链 路, 如图 12所示。
UE 在 Cell_DCH 状态下从宏基站覆盖区向低功率基站覆盖区移动期间, 当 S ULPilot _RSCP-M_ULPilot_RSCP≥设置门限 3 (即上行 DPCCH第三门限)时, 宏基 站向 RNC发送测量事件 B报告消息 (即用于触发删除宏基站作为小区服务信号源的 测量事件触发消息), 测量事件 B报告消息触发删除宏基站作为该小区内的服务信号 源, RNC 向宏基站发送无线链路删除请求消息, 宏基站删除所述无线链路, 如图 13 所示。
UE在 Cell_DCH状态下, 设置门限 3≥设置门限 1≥设置门限 2。 通过图 11至图 13可知,在同一小区内,本发明实施例基于基站对 UE上行 DPCCH 的 Pilot RSCP测量比较来决策 UE无线链路资源在宏基站和低功率基站之间的选择和 配置。 尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领域技术人员 可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原理所作的修改, 都应当 理解为落入本发明的保护范围。

Claims

权 利 要 求 书 、 一种宏基站与低功率基站共小区的协同处理方法, 包括:
将宏基站和其覆盖区域内的低功率基站配置为同一小区;
宏基站和低功率基站分别测量上行随机接入信道 RACH 的导频信号接收 功率;
根据宏基站与低功率基站分别测量的上行 RACH的导频信号接收功率,判 断终端位于宏基站覆盖区域还是低功率基站覆盖区域;
根据判断结果, 建立终端与宏基站或低功率基站之间的无线链路。 、 根据权利要求 1所述的方法, 其中, 所述将宏基站和其覆盖区域内的低功率基 站配置为同一小区的步骤包括:
为宏基站配置主公共导频信道 P-CPICH、 主公共控制物理信道 P-CCPCH 和辅公共控制物理信道 S-CCPCH;
为低功率基站配置 P-CPICH、 P-CCPCH, S-CCPCH, 并配置辅公共导频物 理信道 S-CPICH;
其中,宏基站和低功率基站的 P-CPICH/P-CCPCH/S-CCPCH使用相同的主 扰码 PSC加扰, 低功率基站的 S-CPICH使用辅扰码 SSC加扰。 、 根据权利要求 2所述的方法, 其中, 所述判断终端位于宏基站覆盖区域还是低 功率基站覆盖区域的步骤包括:
宏基站将低功率基站测量的上行 RACH 的导频信号接收功率与其测量的 上行 RACH的导频信号接收功率相减, 得到上行 RACH的导频信号接收功率 差;
比较所述上行 RACH的导频信号接收功率差与预设上行 RACH门限; 若所述上行 RACH的导频信号接收功率差大于等于预设上行 RACH门限, 则宏基站判断所述终端位于低功率基站覆盖区域, 否则宏基站判断所述终端位 于宏基站覆盖区域。 、 根据权利要求 3所述的方法, 其中, 所述根据判断结果建立终端与宏基站或低 功率基站之间的无线链路的步骤包括: 无线网络控制器 RNC 获取来自宏基站的所述终端位于宏基站覆盖区域还 是低功率基站覆盖区域的判断结果;
当所述终端位于宏基站覆盖区域时, RNC向宏基站发送无线链路建立请求 消息, 使宏基站建立与所述无线链路相关的传输信道资源和物理信道资源, 其 中, 所述无线链路建立请求消息中携带用于指定无线链路下行物理信道以 P-CPICH作为相位参考的信息;
当所述终端位于低功率基站覆盖区域时, RNC向宏基站发送无线链路建立 请求消息, 使宏基站通知低功率基站建立与所述无线链路相关的传输信道资源 和物理信道资源, 其中, 若所述终端支持辅导频和辅扰码, 则在所述无线链路 建立请求消息中携带用于指定无线链路下行物理信道以 S-CPICH 作为相位参 考的信息, 否则, 所述无线链路建立请求消息中携带用于指定无线链路下行物 理信道以 P-CPICH作为相位参考的信息。 、 根据权利要求 1-4任意一项所述的方法, 还包括: 无线链路建立后, 宏基站和低功率基站分别测量上行专用物理控制信道 DPCCH的导频信号接收功率;
根据宏基站与低功率基站分别测量的上行 DPCCH的导频信号接收功率, 生成用于触发无线链路调整的测量事件触发消息;
利用所述测量事件触发消息, 调整所述无线链路。 、 根据权利要求 5所述的方法, 其中, 所述生成用于触发无线链路调整的测量事 件触发消息的步骤包括:
宏基站将低功率基站测量的上行 DPCCH的导频信号接收功率与其测量的 上行 DPCCH的导频信号接收功率相减, 得到上行 DPCCH的导频信号接收功 率差;
比较所述上行 DPCCH的导频信号接收功率差与预设上行 DPCCH门限; 根据比较结果, 生成相应的测量事件触发消息, 并发送至 RNC。 、 根据权利要求 6所述的方法,其中,所述预设上行 DPCCH门限包括上行 DPCCH 第一门限、 上行 DPCCH第二门限、 上行 DPCCH第三门限, 所述根据比较结 果生成相应的测量事件触发消息的步骤包括:
将所述上行 DPCCH的导频信号接收功率差与所述上行 DPCCH第一门限、 所述上行 DPCCH第二门限、 所述上行 DPCCH第三门限进行比较; 当用户从宏基站覆盖区域向低功率基站覆盖区域方向移动时, 若所述上行 DPCCH的导频信号接收功率差大于等于所述上行 DPCCH第三门限,则宏基站 生成用于触发删除宏基站作为小区服务信号源的测量事件触发消息; 若所述上 行 DPCCH的导频信号接收功率差小于所述上行 DPCCH第三门限, 且大于等 于所述上行 DPCCH第一门限, 则宏基站生成用于触发低功率基站作为小区主 服务信号源的测量事件触发消息; 若所述上行 DPCCH的导频信号接收功率差 小于所述上行 DPCCH第一门限, 且大于等于所述上行 DPCCH第二门限时, 则宏基站生成用于触发增加低功率基站作为小区辅服务信号源的测量事件触发 消息;
当用户从低功率基站覆盖区域向宏基站覆盖区域方向移动时, 若所述上行 DPCCH的导频信号接收功率差小于所述上行 DPCCH第三门限,且大于等于所 述上行 DPCCH第一门限, 则宏基站生成用于触发增加宏基站作为小区辅服务 信号源的测量事件触发消息; 若所述上行 DPCCH的导频信号接收功率差小于 所述上行 DPCCH第一门限, 且大于等于所述上行 DPCCH第二门限, 则宏基 站生成用于触发宏基站作为小区主服务信号源的测量事件触发消息; 若所述上 行 DPCCH的导频信号接收功率差小于所述上行 DPCCH第二门限, 则宏基站 生成用于触发删除低功率基站作为小区辅服务信号源的测量事件触发消息。 根据权利要求 7所述的方法, 其中, 所述利用所述测量事件触发消息调整所述 无线链路的步骤包括:
所述 RNC 收到用于触发删除宏基站作为小区服务信号源的测量事件触发 消息后, 向宏基站发送无线链路删除请求消息, 使宏基站删除所述无线链路; 所述 RNC 收到用于触发低功率基站作为小区主服务信号源的测量事件触 发消息后, 向宏基站发送无线链路重配准备消息, 使宏基站通知低功率基站重 配无线链路;
所述 RNC 收到用于触发增加低功率基站作为小区辅服务信号源的测量事 件触发消息后, 向宏基站发送无线链路增加消息, 使宏基站通知低功率基站建 立与所述无线链路相关的传输信道资源和物理信道资源;
所述 RNC 收到用于触发增加宏基站作为小区辅服务信号源的测量事件触 发消息后, 向宏基站发送无线链路增加消息, 使宏基站建立与所述无线链路相 关的传输信道资源和物理信道资源;
所述 RNC 收到用于触发宏基站作为小区主服务信号源的测量事件触发消 息后, 向宏基站发送无线链路重配准备消息, 使宏基站重配无线链路; 所述 RNC 收到用于触发删除低功率基站作为小区辅服务信号源的测量事 件触发消息后, 向宏基站发送无线链路删除消息, 使宏基站通知低功率基站删 除与所述无线链路相关的传输信道资源和物理信道资源。 、 一种宏基站与低功率基站共小区的协同处理系统, 包括:
设置模块,设置为将宏基站和其覆盖区域内的低功率基站配置为同一小区; 第一测量模块,设置为测量宏基站上行随机接入信道 RACH的导频信号接 收功率;
第二测量模块, 设置为测量低功率基站上行 RACH的导频信号接收功率; 判断模块,设置为根据分别测量宏基站与低功率基站上行 RACH的导频信 号接收功率, 判断终端位于宏基站覆盖区域还是低功率基站覆盖区域;
无线链路建立模块, 设置为根据所述判断模块得出的判断结果, 建立终端 与宏基站或低功率基站之间的无线链路。 、 根据权利要求 9所述的系统, 还包括: 第三测量模块, 设置为在无线链路建立后, 测量宏基站上行专用物理控制 信道 DPCCH的导频信号接收功率;
第四测量模块, 设置为在无线链路建立后, 测量低功率基站上行 DPCCH 的导频信号接收功率;
链路调整触发模块, 设置为根据宏基站与低功率基站分别测量的上行 DPCCH 的导频信号接收功率, 生成用于触发无线链路调整的测量事件触发消 息;
无线链路调整模块, 设置为根据链路调整触发模块得出的所述测量事件触 发消息, 调整所述无线链路。
PCT/CN2013/082213 2013-04-01 2013-08-23 一种宏基站与低功率基站共小区的协同处理方法及系统 WO2014161263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310110903.0 2013-04-01
CN201310110903.0A CN104093157A (zh) 2013-04-01 2013-04-01 一种宏基站与低功率基站共小区的协同处理方法及系统

Publications (1)

Publication Number Publication Date
WO2014161263A1 true WO2014161263A1 (zh) 2014-10-09

Family

ID=51640826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082213 WO2014161263A1 (zh) 2013-04-01 2013-08-23 一种宏基站与低功率基站共小区的协同处理方法及系统

Country Status (2)

Country Link
CN (1) CN104093157A (zh)
WO (1) WO2014161263A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578481B (zh) * 2015-12-17 2019-01-18 京信通信系统(中国)有限公司 一种共小区方法、Smallcell及本地控制器
CN106900016A (zh) * 2015-12-21 2017-06-27 中兴通讯股份有限公司 上行信道处理资源配置方法及装置
CN113891417B (zh) * 2021-10-25 2023-11-03 中国联合网络通信集团有限公司 路径选择方法、装置及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306347A1 (en) * 2010-06-09 2011-12-15 Korea Advanced Institute Of Science And Technology Communication method of mobile terminal, pico base station, and macro base station in heterogeneous network
CN102857934A (zh) * 2011-06-28 2013-01-02 索尼公司 合作集合选择方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463560C (zh) * 2005-06-06 2009-02-18 上海原动力通信科技有限公司 基于时分双工系统的小区切换方法
CN101179822B (zh) * 2006-11-07 2010-05-12 华为技术有限公司 一种实现软切换的方法、装置及系统
CN102960014B (zh) * 2012-08-30 2016-05-25 华为技术有限公司 一种处理通信业务的方法、装置及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110306347A1 (en) * 2010-06-09 2011-12-15 Korea Advanced Institute Of Science And Technology Communication method of mobile terminal, pico base station, and macro base station in heterogeneous network
CN102857934A (zh) * 2011-06-28 2013-01-02 索尼公司 合作集合选择方法和装置

Also Published As

Publication number Publication date
CN104093157A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
RU2733219C1 (ru) Измерительное окно для повторного выбора ячейки в системе, использующей технологию "новое радио"
US10397807B2 (en) Interference management and network performance optimization in small cells
JP6411511B2 (ja) シグナリング負荷低減、時間同期、kpiフィルタ処理およびスペクトル協調のためのスモールセルクラスタ
EP2922347B1 (en) Method, sn, base station, and system for cell combination based on multiple smallcell base stations
TWI653847B (zh) 支援移動性之方法以及使用者設備
JP5281017B2 (ja) 上りリンクの電力制御
US9451466B2 (en) Base station employing shared resources among antenna units
JP6339223B2 (ja) 複数のイベントに基づく測定レポーティングを使用するハンドオーバーのためのユーザ装置及び方法
US8798525B2 (en) Composite reporting of wireless relay power capability
JP2018514966A (ja) 特定セル確率負荷分散の装置、システム及び方法
EP2716129B1 (en) Carrier aggregation support for home base stations
EP2996428B1 (en) Link establishment method, base station, and system
US20160192283A1 (en) Method for searching wireless lan and method for transferring wireless lan search information
WO2013189402A2 (zh) 一种对多个小基站进行小区合并的方法、管理方法和系统
JP2012514927A (ja) 移動体装置を有する無線通信システム内における無線リンクを管理する方法とその方法を履行する装置
WO2014015472A1 (zh) 一种数据分流的方法、用户设备、宏基站和小节点
WO2014012192A1 (en) Network system with local cluster, central controller, micro base station and macro base station
Wang et al. Dedicated carrier deployment in heterogeneous networks with inter-site carrier aggregation
WO2014180191A1 (zh) 一种获取无线访问节点服务质量的方法、系统及装置
CN103826247B (zh) 一种异构网中对无线链路进行监测的方法
WO2013107213A1 (zh) 无线室内优化方法和设备
JP2016529816A (ja) ダウンリンクパワー調整の通知方法及び装置、ならびにダウンリンクパワー調整の取得方法及び装置
WO2014161263A1 (zh) 一种宏基站与低功率基站共小区的协同处理方法及系统
KR20150114442A (ko) 무선 통신 시스템에서 스몰 셀 배치 및 액세스를 제공하는 방법 및 시스템
CN102892130B (zh) 一种切换参数调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881320

Country of ref document: EP

Kind code of ref document: A1