WO2014159880A1 - Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation - Google Patents
Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation Download PDFInfo
- Publication number
- WO2014159880A1 WO2014159880A1 PCT/US2014/025389 US2014025389W WO2014159880A1 WO 2014159880 A1 WO2014159880 A1 WO 2014159880A1 US 2014025389 W US2014025389 W US 2014025389W WO 2014159880 A1 WO2014159880 A1 WO 2014159880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temporal patterns
- stimulation
- patterns
- regular temporal
- regular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36071—Pain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
- A61N1/36171—Frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
- A61N1/36178—Burst or pulse train parameters
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
Definitions
- the presently disclosed subject matter relates to spinal cord stimulation, and more specifically, to administering spinal cord stimulation (SCS) based on temporal patterns of electrical stimulation.
- SCS spinal cord stimulation
- SCS has emerged as a viable means of managing chronic pain when kinetic (e.g., physical rehabilitation), pharmaceutical, and surgical therapies have not been effective.
- kinetic e.g., physical rehabilitation
- pharmaceutical, and surgical therapies have not been effective.
- the clinical success of SCS has been highly variable, with a mean of 54.2% and a standard deviation of 20%, and subsequent studies have shown very little improvement.
- Efforts to improve the clinical efficacy of SCS have focused on the development of more spatially selective electrodes, while only minimal attention has been paid to the temporal patterning of SCS or the effects of SCS on the activity of neurons in the dorsal horn pain processing circuit.
- a method includes using a computational model of a wide-dynamic range (WDR) neuron to determine one or more non-regular temporal patterns that results in predetermined WDR neuronal output and stimulation activity for one of efficacy optimization and efficiency optimization. The method also includes administering to a subject spinal cord stimulation based on the determined one or more of the non-regular temporal patterns.
- WDR wide-dynamic range
- FIG. 1 is an anatomic view of a system for stimulating targeted neurological tissue of a human subject in accordance with embodiments of the present disclosure
- FIG. 2 is a flow chart of an example method for SCS in accordance with embodiments of the present disclosure
- FIG. 3 is a flow chart of an example method of model-based design of optimal temporal patterns of SCS in accordance with embodiments of the present disclosure
- FIG. 4 is a schematic of an example computational model for model-based design and evaluation of optimal temporal patterns of SCS in accordance with embodiments of the present disclosure
- FIGs. 5A and 5B illustrate graphs showing patterns of activity in peripheral primary afferent fibers
- FIG. 6 is a timeline of an example experimental run in accordance with embodiments of the present disclosure.
- FIG. 7 are plots showing initial and final populations of stimulation patterns used for genetic algorithm-based optimization of SCS in response to a uniform 1 Hz peripheral input and a randomized input resembling that from a neuroma;
- FIG. 8 shows graphs resulting from a 1 Hz peripheral input and a random input
- FIG. 9 illustrates graphs showing WDR neuron firing frequencies when the best, median, and worst ranked stimulation patterns and fixed frequency control stimulation at the equivalent frequencies were applied using SCS during a 1 Hz peripheral input and a randomized peripheral input;
- FIG. 10 illustrates graphs showing average stimulation frequencies of the best, median, and worst stimulation patterns in all generations of the genetic algorithm during a 1
- FIG. 11 illustrates graphs showing performance comparisons between the best, median, and worst stimulation patterns in all generations of the genetic algorithm versus equivalent fixed frequency stimulation during a 1 Hz peripheral input and a randomized peripheral input;
- FIG. 12 is an illustration of a regular, constant frequency stimulation train wherein the interpulse intervals are constant in time and examples of non-regular temporal patterns of stimulation wherein the interpulse intervals vary in time.
- an element means at least one element and can include more than one element.
- the term “subject” and “patient” are used interchangeably herein and refer to both human and non-human animals.
- the term “non-human animals” of the disclosure includes all vertebrates, e.g., mammals and non-mammals, such as non-human primates, sheep, dog, cat, horse, cow, chickens, amphibians, reptiles, and the like.
- the subject is a human patient in need of spinal cord stimulation.
- the term "neurological disorder” refers to any pathological condition relating to the brain and/or nervous system. Examples include, but are not limited to, pain, which includes chronic and acute neuropathic pain, migraine, trauma, and the like.
- pain refers to the basic bodily sensation induced by a noxious stimulus, received by naked nerve endings, characterized by physical discomfort (e.g. , pricking, throbbing, aching, etc.) and typically leading to an evasive action by the individual.
- pain also includes chronic and acute neuropathic pain.
- chronic pain and "chronic neuropathic pain” are used interchangeably refer to a complex, chronic pain state that is usually accompanied by tissue injury wherein the nerve fibers themselves may be damaged, dysfunctional, or injured. These damaged nerve fibers send incorrect signals to other pain centers.
- the impact of nerve fiber injury includes a change in nerve function both at the site of injury and areas around the injury.
- Chronic neuropathic pain often seems to have no obvious cause, however, some common causes may include, but are not limited to, alcoholism, amputation, back, leg and hip problems, chemotherapy, diabetes, facial nerve problems, HIV infection or AIDS, multiple sclerosis, shingles, spine injury, and the like.
- neuropathic pain may include phantom limb syndrome, which occurs when an arm or leg has been removed because of illness or injury, but the brain still gets pain messages from the nerves that originally carried impulses from the missing limb.
- administering refers to the delivery of an electrical impulse/signal/frequency to a subject to thereby cause stimulation to a nerve, nerve fiber, or group of nerve fibers.
- electrical impulse/signal/frequency may be applied by use of one or more electrodes in electrical communication with a targeted neurological tissue region, such as sub-populations of dorsal column nerve fibers for example.
- the targeted neurological tissue region may include dorsal roots, dorsal root ganglia, a peripheral nerve, and/or the like.
- a system may optimize SCS by using heuristic (genetic algorithm) to optimize the temporal patterning of SCS in such a way as to suppress the transmission of nociceptive information from the spinal cord.
- a system may include a pulse generator configured to generate electrical signals for delivery to targeted neurological tissue of a subject.
- the system may also include one or more SCS electrodes in electrical communication with an output of the pulse generator.
- the contact(s) may be placed in contact with the targeted neurological tissue.
- the contact(s) may be placed in electrical communication with one or more sub -populations of dorsal column nerve fibers.
- a controller of the system may control the pulse generator to administer multiple frequencies of SCS to the electrode contact(s) such that the targeted neurological tissue is stimulated.
- the system may be configured to generate a stimulation pattern and a cost function.
- the system may repeat the steps of generating a stimulation pattern and generating a cost function.
- the cost function may be fixed or determined by a clinician prior to implantation of an SCS device.
- the system may select those patterns that have a cost function that favors a combination of low wide-dynamic range (WDR) neuronal output and low stimulation frequency. Subsequent to pattern selection, the controller may generate and administer an optimal SCS based on the selected patterns to thereby suppress the activity of WDR neurons.
- WDR wide-dynamic range
- the steps are repeated using the generated patterns to thereby provide an optimized pattern.
- steps may be continued iteratively until a specified number of generations or a threshold value for the cost function (fitness) of the best (optimal) solution is reached.
- FIG. 1 illustrates an anatomic view of a system for stimulating targeted neurological tissue of a human subject in accordance with embodiments of the present disclosure.
- the subject may be suffering from a neurological disorder, such as chronic pain.
- the system includes an SCS device 100, an electrical cord 102 and an electrode array generally designated 104.
- the system is shown as being implanted in the subject.
- the electrode array 104 is operatively positioned in the epidural space 106 of a vertebral column 108 of the subject.
- the electrode array 104 is positioned at the site of nerves that are the target of stimulation, e.g., along the spinal cord 110.
- the electrode array 104 may be suitably positioned in any other location for desired electrical stimulation of targeted neurological tissue.
- the cord 102 may include multiple lines or fibers such that different or the same electrical signals can be provided to contacts of the electrode array 104.
- the SCS device 100 may be suitably implanted within the subject such as, but not limited to, implantation within the abdomen or buttocks.
- the electrical cord 102 may operatively connect an output of the SCS device 100 to the electrode array 104.
- the SCS device 100 may include a controller 112 and a pulse generator
- the controller 112 may include hardware, software, firmware, or combinations thereof for implementing functionality described herein.
- the controller 112 may be
- the controller 112 may be operatively connected to the pulse generator 114 for controlling the pulse generator 114 to generate electrical signals for applying patterns of electrical stimulation to targeted neurological tissue.
- the output signals may be received by the electrical cord 102 and carried to the electrode array 104 for electrical stimulation at targeted neurological tissue.
- the SCS device 100 may include a power source 116, such as a battery, for supplying power to the controller 112 and the pulse generator 114.
- the system may also include an external computing device 118 that is not implanted within the subject.
- the computing device may communicate with the SCS device 100 via any suitable communication link (e.g., a wired, wireless, or optical communication link).
- the communication link may also facility battery recharge.
- the computing device 118 may include hardware, software, firmware, or combinations thereof for implementing functionality described herein.
- the computing device 118 may include one or more processors and memory.
- a clinician may interact with a user interface of the computing device for programming the output of the implanted pulse generator 114, including the electrodes that are active, the stimulation pulse amplitude, the stimulation pulse duration, the stimulation pattern (including pulse repetition frequency), and the like applied via each electrode contact to each sub-population.
- the computing device 118 may determine one or more non-regular temporal patterns that results in predetermined WDR neuronal output and stimulation activity.
- the computing device 118 may communicate information for administering the temporal patterns to the SCS device 100, which may then apply the non-regular temporal pattern(s) of electrical stimulation to targeted neurological tissue of the subject.
- a patient may also interact with the user interface of the computing device
- the patient may interact with the user interface for selecting among a set of pre-programmed stimulation parameter sets. These sets may have been programmed or otherwise set by the clinician and stored in the controller 112.
- FIG. 2 illustrates a flow chart of an example method for SCS in accordance with embodiments of the present disclosure.
- the example method is described as being implemented by the system and configuration shown in FIG. 1 , although it should be understood that the method may alternatively be implemented by any other suitable system in any other suitable configuration.
- the method includes determining 204 one or more of the non-regular temporal patterns that results in predetermined WDR neuronal output and stimulation activity.
- Predetermined WDR neuronal output may include, but is not limited to, the output of a model WDR neuron in a simulation implemented in a computational model, which has inputs for modeling a biological WDR neuron. In this sense, the model WDR neuron's output can be used as a proxy for patient pain (i.e., efficacy).
- the computing device 118 may generate and utilize a cost function for optimizing the WDR neuronal output and stimulation activity. Further, the computing device 118 may select one or more of the non- regular temporal patterns based on the cost function.
- the computing device 118 may alter the temporal patterns and determine when a threshold value for the cost function is obtained while altering the temporal patterns. Continuing this example, the computing device 118 may determine that the temporal pattern applied when the threshold value is obtained is the non-regular temporal pattern(s) that results in predetermined WDR neuronal output and stimulation activity. This temporal pattern may be determined to be the temporal pattern that provides the lowest WDR neuronal output and the lowest stimulation activity among all other applied temporal patterns.
- the term "efficacy” refers to the minimization of model WDR activity (i.e., proxy for reduced pain).
- the term “efficiency” refers to a low or the lowest possible device stimulation frequency (i.e., power savings).
- the temporal patterns may be determined by using a search heuristic to determine the patterns that result in the desired WDR neuronal and stimulation activity.
- the search heuristic may utilize a genetic algorithm, a gradient descent, a simulated annealing technique, and/or the like.
- the method of FIG. 2 includes administering 202 to the subject spinal cord stimulation based on the determined one or more of the non-regular temporal patterns.
- the computing device 118 may communicate to the SCS device 100 the temporal patterns.
- the controller 112 may control the pulse generator 114 to use the temporal pattern(s) that resulted in the predetermined WDR neuronal output and stimulation activity. This may be the temporal pattern(s) that resulted in the lowest WDR neuronal output and the lowest stimulation activity among all other applied temporal patterns.
- the controller 112 may be configured to control the pulse generator 114 to generate electrical signals that produce non-regular temporal patterns of electrical stimulation to dorsal column nerve fibers. These may be the temporal patterns provided by the computing device 118. One or more contacts of the electrode array 104 may be placed in electrical communication and in position to apply the electrical stimulation to one or more sub-populations of the dorsal column nerve fibers.
- the pattern of electrical stimulation may be applied at multiple different frequencies and at different timings. Further, for example, the patterns may be applied at different frequencies that are multiples of each other.
- the pattern of electrical stimulation may include regular temporal patterns of stimulation (i.e., constant interpulse intervals) or non-regular temporal patterns of stimulation (i.e., interpulse intervals that vary in time).
- the method of FIG. 2 includes administering 206 to the subject spinal cord stimulation based on the determined one or more of the non-regular temporal patterns.
- the controller 112 may control the pulse generator 114 to use the temporal pattern(s) that resulted in the predetermined WDR neuronal output and stimulation activity. This may be the temporal pattern(s) that resulted in the lowest WDR neuronal output and the lowest stimulation activity among all other applied temporal patterns.
- a system as disclosed herein may implement an algorithm that controls the delivery of multiple frequencies of SCS through different output channels to different contacts on a SCS electrode.
- the algorithm may use the output of model dorsal horn WDR projections neurons responsible for transmitting nociceptive information to the brain to optimize the temporal pattern of stimulation delivered during SCS such that stimulation suppresses the activity of these WDR neurons as much as possible and at the lowest possible frequency.
- the computational model shown in FIG. 4 may be utilized.
- FIG. 3 illustrates a flow chart of an example method of model-based design of optimal temporal patterns of SCS in accordance with embodiments of the present disclosure.
- the example method may be implemented for example by the computing device 118 shown in FIG. 1, although it should be understood that the method may alternatively be implemented by any other computing device or system.
- Each stimulation pattern to be tested may be represented as a "gene" comprising a series of bits representing whether stimulation is on or off over the time interval represented by each bit.
- the method includes generating 300 a set of random temporal patterns using sequences of bits (0 and 1).
- the method of FIG. 3 also includes delivering 302 stimulation to patient using pattern set. Further, the method includes using 304 WDR neuron activity (efficacy) and SCS average frequency (efficiency) to determine "fitness" of pattern. Stimulation can occur according to the stream of bits represented by each pattern within the set of possible patterns for a previously established period of time, after which the "fitness" of the pattern can be evaluated.
- the method of FIG. 3 includes selecting 306 best patterns for preservation in the next generation. Further, the method includes crossing 308 "parent” patterns in the previous generation based on fitness to make “child” patterns, and adding 310 "immigrant” random patterns and point mutations to "children” to create a new generation. Particularly, for example, the best patterns as determined by a cost function that favors a combination of low WDR neuronal output and low stimulation frequency can be kept, and genes of different surviving patterns may be crossed to generate "offspring” patterns for further trials. Further, to introduce variability into the stimulation patterns for the purpose of facilitating convergence to an optimal solution, point mutations may be intermittently applied to the elements in the
- the method may continue iteratively in the loop of steps 302 - 310 until a specified number of generations or a threshold value for the cost function (fitness) of the optimal (best) solution is reached. After the optimization is complete, only the stimulation patterns deemed to be most optimal by the algorithm are delivered to the patient.
- the optimization algorithm may also be toggled on and off (e.g., updates by the physician during check-ups) or set to be on-going with an indefinite endpoint.
- the method may include saving 312 optimal patterns for future use with a patient.
- FIG. 4 illustrates a schematic of an example computational model for model-based design and evaluation of optimal temporal patterns of SCS.
- the computational model may include a network of biophysical neurons that are connected to represent a dorsal horn pain processing network.
- Inputs to the model include 30 A and 30 C primary afferent fibers that convey information from the periphery, and SCS may be delivered to the network via the A fibers to simulate dorsal column fiber activation.
- Multiple AJC fibers and excitatory interneurons may be used to account for the effect of temporal summation on neuronal activity as well as to add variability to the inputs.
- the SCS electrode may be assumed to be 20% of the distance from the dorsal horn network as the peripheral source.
- the "IN” node represents inhibitory interneuron
- the "EX” node represents excitatory interneuron
- the "WDR” node represents WDR projection neurons.
- Synapses 400 denote excitatory connections.
- Synapse 402 denotes an inhibitory connection.
- SCS using the optimization algorithm may be delivered via the A-fiber input.
- FIG. 6 illustrates a timeline of an example experimental run.
- SCS may be delivered following a brief model initialization period and 15 seconds of conditioning stimulation using either constant 1 Hz or randomized inputs similar to those recorded from neuromas in live preparations.
- the output may be tracked and the genetic algorithm may proceed as diagrammed in FIG. 3. More particularly, one second of simulation time was allowed to elapse to allow the model to initialize, and peripheral sensory input including either a constant 1 Hz pulse train synchronized across all fibers or a random spike train based on a Poisson process whose characteristics match those taken from the firing behavior of a peripheral neuroma (See FIGs. 5A and 5B) was then delivered for 15 seconds.
- FIGs. 5A and 5B See FIGs. 5A and 5B
- FIG. 5 A and 5B illustrate graphs showing patterns of activity in peripheral primary afferent fibers. Representative uniform 1 Hz inputs are shown in FIG. 5A, and randomized inputs representing a neuroma are shown in FIG. 5B. In FIGs. 5A and 5B, a 5-second interval (x-axis) of each is shown for all fiber inputs (y-axis; split by A and C fibers). Each black dot on the graph represents a time point at which a spike is registered by a corresponding input to the model. In FIG. 5B, 30% of the A-fiber inputs exhibit bursting behavior.
- the genetic algorithm iterated across 50 generations: the first generation included 25 randomly generated organisms, each containing 1000 "bits" representing 1 millisecond bins during which an SCS pulse may be delivered over a given 1 second interval; the overall SCS pulse train during the 5-second stimulation period was built from 5 successive repeats of a given pattern.
- An ideal stimulation train may have a low average frequency while eliciting a minimal WDR neuronal response, so patterns of stimulation yielding lower costs (i.e., minimize C) were deemed more fit.
- each subsequent generation was constructed using the 5 most fit (lowest cost function) "survivors" from the previous generation, 5 randomly generated “immigrants," and 15 "children” created from the gene crossings from two organisms (patterns) in the previous generation. Although all patterns in the previous generation may be represented in these offspring, patterns that were more fit had a higher probability of being represented in these crossings than organisms that were less fit.
- Full populations from generations 1 and 50 demonstrating these principles are shown in FIG.
- each row is a stimulation pattern
- each black line represents the time point at which a stimulation pulse may be delivered by the stimulator.
- the line generally designated 700 denotes the most fit survivors (i.e., the patterns with the lowest cost functions) from the previous generation.
- the line generally designated 702 denotes randomly generated immigrants.
- the line generally designated 704 denotes the offspring from the crossing of patterns from the previous generation.
- Optimization methods in accordance with embodiments of the present disclosure may be used to design unique temporal patterns of SCS that are more effective at suppressing model WDR neuron behavior versus equivalent regular frequency stimulation through testing of the prototype algorithm using a computational model of pain.
- FIG. 8 shows graphs resulting from a 1 Hz peripheral input and a random input. Particularly, the graphs show the raw cost function scores of the best, median, and worst temporal pattern of stimulation within each generation over the genetic algorithm during a 1 Hz (graph on the left side) and randomized peripheral input (graph on the right side).
- the cost representing the fitness of the best pattern calculated using equation (1) decreased from 309 to 165.
- the cost representing the fitness of the best pattern calculated using equation (1) decreased from 431 to 285.
- This decrease in cost underscored a reduction in the firing frequency of the WDR projection neuron in the model from 30.0 Hz to 15.0 Hz in the 1 Hz input case and 40.8 Hz to 25.4 Hz in the random input case during stimulation using the best pattern from the first and last generations, respectively (see FIG. 9).
- WDR activity during stimulation using the best pattern was consistently suppressed versus a control simulation wherein SCS was not delivered to the computational model both when a 1 Hz and a random peripheral input were delivered. This result indicates that the model-based optimization algorithm is able to generate progressively more effective temporal patterns of SCS relative to a randomly generated initial population.
- FIG. 9 illustrates graphs showing WDR neuron firing frequencies when the best, median, and worst ranked stimulation patterns (top) and fixed frequency control (FFC) stimulation at the equivalent frequencies (bottom) were applied using SCS during a 1 Hz peripheral input (left) and a randomized peripheral input (right).
- the dotted line represents the average firing frequency of the WDR neuron when no SCS is applied.
- FIG. 10 illustrates graphs showing average stimulation frequencies of the best, median, and worst stimulation patterns in all generations of the genetic algorithm during a 1 Hz peripheral input (left) and a randomized peripheral input (right).
- the fitness of SCS using constant frequency stimulation at the equivalent frequency of the best designed (non-regular) patterns of stimulation was compared with the fitness of the designed patterns themselves. After 50 generations, the best designed patterns for both the regular peripheral stimulation case and the random peripheral stimulation case yielded better
- FIG. 11 illustrates graphs showing performance comparisons between the best, median, and worst stimulation patterns in all generations of the genetic algorithm versus equivalent fixed frequency stimulation during a 1 Hz peripheral input (left) and a randomized peripheral input (right).
- a positive ⁇ Cost indicates that fixed frequency stimulation performed better than the stimulation pattern, while a negative ⁇ Cost indicates that the stimulation pattern performed better than fixed frequency stimulation.
- FIG. 12 illustrates a regular, constant frequency stimulation train wherein the interpulse intervals are constant in time and examples of non-regular temporal patterns of stimulation wherein the interpulse intervals vary in time.
- the present subject matter may be a system, a method, and/or a computer program product.
- the computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present subject matter.
- the computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device.
- the computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
- a non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing.
- RAM random access memory
- ROM read-only memory
- EPROM or Flash memory erasable programmable read-only memory
- SRAM static random access memory
- CD-ROM compact disc read-only memory
- DVD digital versatile disk
- memory stick a floppy disk
- a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon
- a computer readable storage medium is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
- Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network.
- the network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers.
- a network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
- Computer readable program instructions for carrying out operations of the present subject matter may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the "C" programming language or similar programming languages.
- the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
- the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
- electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present subject matter.
- These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flow chart and/or block diagram block or blocks.
- the computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flow chart and/or block diagram block or blocks.
- each block in the flow chart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s).
- the functions noted in the block may occur out of the order noted in the figures.
- two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Neurosurgery (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Neurology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Pain & Pain Management (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Electrotherapy Devices (AREA)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP14773114.5A EP2968944B1 (en) | 2013-03-13 | 2014-03-13 | Systems for administering spinal cord stimulation based on temporal patterns of electrical stimulation |
| US14/774,156 US10232179B2 (en) | 2013-03-13 | 2014-03-13 | Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation |
| JP2016501841A JP2016515025A (ja) | 2013-03-13 | 2014-03-13 | 電気刺激の時間パターンに基づいて脊髄刺激を施すシステム及び方法 |
| CA2905004A CA2905004C (en) | 2013-03-13 | 2014-03-13 | Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation |
| AU2014244386A AU2014244386B2 (en) | 2013-03-13 | 2014-03-13 | Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361779632P | 2013-03-13 | 2013-03-13 | |
| US201361779554P | 2013-03-13 | 2013-03-13 | |
| US61/779,632 | 2013-03-13 | ||
| US61/779,554 | 2013-03-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014159880A1 true WO2014159880A1 (en) | 2014-10-02 |
Family
ID=51625282
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/025389 Ceased WO2014159880A1 (en) | 2013-03-13 | 2014-03-13 | Systems and methods for administering spinal cord stimulation based on temporal patterns of electrical stimulation |
| PCT/US2014/025423 Ceased WO2014159896A1 (en) | 2013-03-13 | 2014-03-13 | Systems and methods for applying electrical stimulation for optimizing spinal cord stimulation |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/025423 Ceased WO2014159896A1 (en) | 2013-03-13 | 2014-03-13 | Systems and methods for applying electrical stimulation for optimizing spinal cord stimulation |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US11357983B2 (enExample) |
| EP (2) | EP2968945B1 (enExample) |
| JP (3) | JP2016515026A (enExample) |
| AU (5) | AU2014244318A1 (enExample) |
| CA (2) | CA2905004C (enExample) |
| WO (2) | WO2014159880A1 (enExample) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016182894A1 (en) | 2015-05-08 | 2016-11-17 | Duke University | Systems and methods for spinal cord stimulation |
| WO2017117448A1 (en) * | 2015-12-30 | 2017-07-06 | Boston Scientific Neuromodulation Corporation | System for composing neurostimulation patterns for cumulative effects |
| JP2017533072A (ja) * | 2014-11-04 | 2017-11-09 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | 複合神経刺激パターンをプログラムする方法及び装置 |
| WO2018119220A1 (en) | 2016-12-21 | 2018-06-28 | Duke University | Method to design temporal patterns of nervous system stimulation |
| US10195439B2 (en) | 2015-12-30 | 2019-02-05 | Boston Scientific Neuromodulation Corporation | Method and apparatus for composing spatio-temporal patterns of neurostimulation using a neuronal network model |
| US10252059B2 (en) | 2015-12-30 | 2019-04-09 | Boston Scientific Neuromodulation Corporation | Method and apparatus for guided optimization of spatio-temporal patterns of neurostimulation |
| WO2019118577A1 (en) * | 2017-12-12 | 2019-06-20 | Duke University | Systems and methods for minimizing response variability of spinal cord stimulation |
| US10335601B2 (en) | 2015-07-30 | 2019-07-02 | Boston Scientific Neuromodulation Corporation | User interface for custom patterned electrical stimulation |
| US10449360B2 (en) | 2014-09-15 | 2019-10-22 | Boston Scientific Neuromodulation Corporation | Graphical user interface for programming neurostimulation pulse patterns |
| US10456586B2 (en) | 2015-10-15 | 2019-10-29 | Boston Scientific Neuromodulation Corporation | User interface for neurostimulation waveform composition |
| US20210322775A1 (en) * | 2016-06-01 | 2021-10-21 | Duke University | Systems and methods for determining optimal temporal patterns of neural stimulation |
| US12070606B2 (en) | 2013-03-08 | 2024-08-27 | Boston Scientific Neuromodulation Corporation | Neuromodulation using modulated pulse train |
| US12397162B2 (en) | 2020-12-15 | 2025-08-26 | Boston Scientific Neuromodulation Corporation | Method and apparatus for generating modulated neurostimulation pulse sequence |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109561849B (zh) | 2016-06-24 | 2023-01-13 | 萨鲁达医疗有限公司 | 伪像减少的神经刺激 |
| US20250319312A1 (en) * | 2024-04-15 | 2025-10-16 | Boston Scientific Neuromodulation Corporation | Pathways to pain relief via adaptive electrical neurostimulation treatment |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060015153A1 (en) * | 2004-07-15 | 2006-01-19 | Gliner Bradford E | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
| US20100152807A1 (en) * | 2008-10-03 | 2010-06-17 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
| US20110087309A1 (en) * | 2002-01-11 | 2011-04-14 | Medtronic, Inc. | Variation of Neural Stimulation Parameters |
| US20110213442A1 (en) * | 2000-04-05 | 2011-09-01 | Neuropace, Inc. | Neurostimulator involving stimulation strategies and process for using it |
| US20120136408A1 (en) * | 2010-05-27 | 2012-05-31 | Duke University | Waveform shapes for treating neurological disorders optimized for energy efficiency |
Family Cites Families (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS54119792A (en) | 1978-03-03 | 1979-09-17 | Iriyou Kougaku Kenkiyuushiyo K | Electric stimulation device for removing pain |
| US5716377A (en) | 1996-04-25 | 1998-02-10 | Medtronic, Inc. | Method of treating movement disorders by brain stimulation |
| US7555346B1 (en) | 1999-01-07 | 2009-06-30 | Boston Scientific Neuromodulation Corporation | Implantable pulse generator having current steering means |
| US7305268B2 (en) | 2000-07-13 | 2007-12-04 | Northstar Neurscience, Inc. | Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators |
| PT102508A (pt) | 2000-08-10 | 2002-02-28 | Maria Candida De Carvalho Ferr | Algoritmos geneticos mistos - lineares e nao-lineares - para resolver problemas tais como optimizacao, descoberta de funcoes, planeamento e sintese logica |
| US6560490B2 (en) | 2000-09-26 | 2003-05-06 | Case Western Reserve University | Waveforms for selective stimulation of central nervous system neurons |
| AU2002227147A1 (en) * | 2000-11-02 | 2002-05-15 | Keith L March | Method and system for modulation of oscillating signals to enhance biologic effects |
| US20070191895A1 (en) | 2001-04-20 | 2007-08-16 | Foreman Robert D | Activation of cardiac alpha receptors by spinal cord stimulation produces cardioprotection against ischemia, arrhythmias, and heart failure |
| US7881805B2 (en) | 2002-02-04 | 2011-02-01 | Boston Scientific Neuromodulation Corporation | Method for optimizing search for spinal cord stimulation parameter settings |
| US7236830B2 (en) | 2002-12-10 | 2007-06-26 | Northstar Neuroscience, Inc. | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
| US7344555B2 (en) | 2003-04-07 | 2008-03-18 | The United States Of America As Represented By The Department Of Health And Human Services | Light promotes regeneration and functional recovery after spinal cord injury |
| JP4174825B2 (ja) | 2003-05-23 | 2008-11-05 | 株式会社テクノリンク | 生体刺激装置 |
| US7239926B2 (en) * | 2003-09-15 | 2007-07-03 | Medtronic, Inc. | Selection of neurostimulator parameter configurations using genetic algorithms |
| US8180601B2 (en) | 2006-03-09 | 2012-05-15 | The Cleveland Clinic Foundation | Systems and methods for determining volume of activation for deep brain stimulation |
| US7463927B1 (en) | 2004-09-02 | 2008-12-09 | Intelligent Neurostimulation Microsystems, Llc | Self-adaptive system for the automatic detection of discomfort and the automatic generation of SCS therapies for chronic pain control |
| US8788044B2 (en) | 2005-01-21 | 2014-07-22 | Michael Sasha John | Systems and methods for tissue stimulation in medical treatment |
| WO2007094830A1 (en) * | 2005-11-10 | 2007-08-23 | In Silico Biosciences, Inc. | Method and apparatus for computer modeling the human brain for predicting drug effects |
| US8744597B2 (en) | 2006-06-30 | 2014-06-03 | Medtronic, Inc. | Selecting electrode combinations for stimulation therapy |
| US20090204173A1 (en) | 2007-11-05 | 2009-08-13 | Zi-Ping Fang | Multi-Frequency Neural Treatments and Associated Systems and Methods |
| US8559662B2 (en) | 2008-05-06 | 2013-10-15 | Starkey Laboratories, Inc. | Genetic algorithms with subjective input for hearing assistance devices |
| WO2009139917A2 (en) | 2008-05-15 | 2009-11-19 | Intelect Medical, Inc. | Clinician programmer clinician programmer system and method for generating interface models and displays of volumes of activation |
| AU2009262178A1 (en) | 2008-06-25 | 2009-12-30 | Advanced Neuromodulation Systems, Inc. | Method of electrically stimulating tissue of a patient by shifting a locus of stimulation and system employing the same |
| US8255057B2 (en) * | 2009-01-29 | 2012-08-28 | Nevro Corporation | Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions |
| EP2374083B1 (en) | 2008-12-04 | 2019-05-15 | The Cleveland Clinic Foundation | System and method to define target volume for stimulation in brain |
| US8825168B2 (en) | 2009-09-10 | 2014-09-02 | Cochlear Limited | Using a genetic algorithm employing dynamic mutation |
| WO2012075198A2 (en) * | 2010-11-30 | 2012-06-07 | Nevro Corporation | Extended pain relief via high frequency spinal cord modulation, and associated systems and methods |
| EP4201475A1 (en) | 2011-01-03 | 2023-06-28 | The Regents of the University of California | High density epidural stimulation for facilitation of locomotion, posture, voluntary movement, and recovery of autonomic, sexual, vasomotor, and cognitive function after neurological injury |
| AU2012230699A1 (en) * | 2011-03-24 | 2013-05-23 | California Institute Of Technology | Neurostimulator |
| US8571667B2 (en) | 2011-07-01 | 2013-10-29 | Greatbatch Ltd. | Active current control using the enclosure of an implanted pulse generator |
| CN102521456A (zh) * | 2011-12-15 | 2012-06-27 | 河海大学常州校区 | 基于神经网络和遗传算法的拱梁优化设计方法 |
| US10639477B2 (en) * | 2014-01-17 | 2020-05-05 | Cardiac Pacemakers, Inc. | Systems and methods for delivering pulmonary therapy |
-
2014
- 2014-03-13 WO PCT/US2014/025389 patent/WO2014159880A1/en not_active Ceased
- 2014-03-13 US US14/774,160 patent/US11357983B2/en active Active
- 2014-03-13 EP EP14776331.2A patent/EP2968945B1/en active Active
- 2014-03-13 CA CA2905004A patent/CA2905004C/en active Active
- 2014-03-13 WO PCT/US2014/025423 patent/WO2014159896A1/en not_active Ceased
- 2014-03-13 JP JP2016501846A patent/JP2016515026A/ja active Pending
- 2014-03-13 US US14/774,156 patent/US10232179B2/en active Active
- 2014-03-13 CA CA2905102A patent/CA2905102C/en active Active
- 2014-03-13 AU AU2014244318A patent/AU2014244318A1/en not_active Abandoned
- 2014-03-13 AU AU2014244386A patent/AU2014244386B2/en active Active
- 2014-03-13 EP EP14773114.5A patent/EP2968944B1/en active Active
- 2014-03-13 JP JP2016501841A patent/JP2016515025A/ja active Pending
-
2018
- 2018-08-14 AU AU2018217227A patent/AU2018217227A1/en not_active Abandoned
-
2019
- 2019-06-06 JP JP2019106026A patent/JP7038080B2/ja active Active
-
2020
- 2020-07-15 AU AU2020205274A patent/AU2020205274A1/en not_active Abandoned
-
2022
- 2022-07-18 AU AU2022206452A patent/AU2022206452B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110213442A1 (en) * | 2000-04-05 | 2011-09-01 | Neuropace, Inc. | Neurostimulator involving stimulation strategies and process for using it |
| US20110087309A1 (en) * | 2002-01-11 | 2011-04-14 | Medtronic, Inc. | Variation of Neural Stimulation Parameters |
| US20060015153A1 (en) * | 2004-07-15 | 2006-01-19 | Gliner Bradford E | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
| US20100152807A1 (en) * | 2008-10-03 | 2010-06-17 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
| US20120136408A1 (en) * | 2010-05-27 | 2012-05-31 | Duke University | Waveform shapes for treating neurological disorders optimized for energy efficiency |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12070606B2 (en) | 2013-03-08 | 2024-08-27 | Boston Scientific Neuromodulation Corporation | Neuromodulation using modulated pulse train |
| US11235155B2 (en) | 2014-09-15 | 2022-02-01 | Boston Scientific Neuromodulation Corporation | Graphical user interface for programming neurostimulation pulse patterns |
| US10449360B2 (en) | 2014-09-15 | 2019-10-22 | Boston Scientific Neuromodulation Corporation | Graphical user interface for programming neurostimulation pulse patterns |
| JP2017533072A (ja) * | 2014-11-04 | 2017-11-09 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | 複合神経刺激パターンをプログラムする方法及び装置 |
| CN107847180A (zh) * | 2015-05-08 | 2018-03-27 | 杜克大学 | 脊髓刺激系统及方法 |
| EP3294126A4 (en) * | 2015-05-08 | 2018-12-19 | Duke University | Systems and methods for spinal cord stimulation |
| WO2016182894A1 (en) | 2015-05-08 | 2016-11-17 | Duke University | Systems and methods for spinal cord stimulation |
| US10702696B2 (en) | 2015-05-08 | 2020-07-07 | Duke University | Systems and methods for spinal cord stimulation |
| US11607551B2 (en) | 2015-07-30 | 2023-03-21 | Boston Scientific Neuromodulation Corporation | User interface for custom patterned electrical stimulation |
| US10335601B2 (en) | 2015-07-30 | 2019-07-02 | Boston Scientific Neuromodulation Corporation | User interface for custom patterned electrical stimulation |
| US11071868B2 (en) | 2015-07-30 | 2021-07-27 | Boston Scientific Neuromodulation Corporation | User interface for custom patterned electrical stimulation |
| US11331487B2 (en) | 2015-10-15 | 2022-05-17 | Boston Scientific Neuromodulation Corporation | User interface for neurostimulation waveform composition |
| US11890470B2 (en) | 2015-10-15 | 2024-02-06 | Boston Scientific Neuromodulation Corporation | User interface for neurostimulation waveform composition |
| US10456586B2 (en) | 2015-10-15 | 2019-10-29 | Boston Scientific Neuromodulation Corporation | User interface for neurostimulation waveform composition |
| US10195439B2 (en) | 2015-12-30 | 2019-02-05 | Boston Scientific Neuromodulation Corporation | Method and apparatus for composing spatio-temporal patterns of neurostimulation using a neuronal network model |
| WO2017117448A1 (en) * | 2015-12-30 | 2017-07-06 | Boston Scientific Neuromodulation Corporation | System for composing neurostimulation patterns for cumulative effects |
| US10974051B2 (en) | 2015-12-30 | 2021-04-13 | Boston Scientific Neuromodulation Corporation | Method and apparatus for optimizing spatio-temporal patterns of neurostimulation for varying conditions |
| US10183167B2 (en) | 2015-12-30 | 2019-01-22 | Boston Scientific Neuromodulation Corporation | Method and apparatus for composing spatio-temporal patterns of neurostimulation for cumulative effects |
| US10252059B2 (en) | 2015-12-30 | 2019-04-09 | Boston Scientific Neuromodulation Corporation | Method and apparatus for guided optimization of spatio-temporal patterns of neurostimulation |
| US20210322775A1 (en) * | 2016-06-01 | 2021-10-21 | Duke University | Systems and methods for determining optimal temporal patterns of neural stimulation |
| US12318616B2 (en) * | 2016-06-01 | 2025-06-03 | Duke University | Systems and methods for determining optimal temporal patterns of neural stimulation |
| EP4223358A1 (en) * | 2016-12-21 | 2023-08-09 | Duke University | Method to design temporal patterns of nervous system stimulation |
| WO2018119220A1 (en) | 2016-12-21 | 2018-06-28 | Duke University | Method to design temporal patterns of nervous system stimulation |
| EP3558445A4 (en) * | 2016-12-21 | 2020-07-22 | Duke University | PROCESS FOR DESIGNING TEMPORAL NERVOUS SYSTEM STIMULATION PROFILES |
| US11298546B2 (en) | 2017-12-12 | 2022-04-12 | Duke University | Systems and methods for minimizing response variability of spinal cord stimulation |
| WO2019118577A1 (en) * | 2017-12-12 | 2019-06-20 | Duke University | Systems and methods for minimizing response variability of spinal cord stimulation |
| US12280259B2 (en) | 2017-12-12 | 2025-04-22 | Duke University | Systems and methods for minimizing response variability of spinal cord stimulation |
| US12397162B2 (en) | 2020-12-15 | 2025-08-26 | Boston Scientific Neuromodulation Corporation | Method and apparatus for generating modulated neurostimulation pulse sequence |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2014244386A1 (en) | 2015-10-01 |
| AU2022206452A1 (en) | 2022-08-11 |
| AU2020205274A1 (en) | 2020-08-06 |
| AU2014244318A1 (en) | 2015-10-01 |
| AU2022206452B2 (en) | 2023-11-16 |
| EP2968944A4 (en) | 2016-11-30 |
| US11357983B2 (en) | 2022-06-14 |
| JP2019162508A (ja) | 2019-09-26 |
| JP2016515025A (ja) | 2016-05-26 |
| EP2968944B1 (en) | 2021-09-01 |
| CA2905004A1 (en) | 2014-10-02 |
| CA2905102C (en) | 2023-07-25 |
| EP2968945A1 (en) | 2016-01-20 |
| US20160038740A1 (en) | 2016-02-11 |
| CA2905102A1 (en) | 2014-10-02 |
| JP2016515026A (ja) | 2016-05-26 |
| CA2905004C (en) | 2023-06-27 |
| US10232179B2 (en) | 2019-03-19 |
| EP2968945B1 (en) | 2022-02-23 |
| AU2018217227A1 (en) | 2018-08-30 |
| WO2014159896A1 (en) | 2014-10-02 |
| AU2014244386B2 (en) | 2018-05-24 |
| US20160022993A1 (en) | 2016-01-28 |
| EP2968944A1 (en) | 2016-01-20 |
| EP2968945A4 (en) | 2016-11-30 |
| JP7038080B2 (ja) | 2022-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2968944B1 (en) | Systems for administering spinal cord stimulation based on temporal patterns of electrical stimulation | |
| US11890477B2 (en) | Systems and methods for spinal cord stimulation | |
| US10702696B2 (en) | Systems and methods for spinal cord stimulation | |
| US11298546B2 (en) | Systems and methods for minimizing response variability of spinal cord stimulation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14773114 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2905004 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14774156 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2016501841 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014773114 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2014244386 Country of ref document: AU Date of ref document: 20140313 Kind code of ref document: A |