WO2014157991A1 - Method for manufacturing air-suspended single carbon nanowire and overlapping nanoelectrode pair - Google Patents

Method for manufacturing air-suspended single carbon nanowire and overlapping nanoelectrode pair Download PDF

Info

Publication number
WO2014157991A1
WO2014157991A1 PCT/KR2014/002670 KR2014002670W WO2014157991A1 WO 2014157991 A1 WO2014157991 A1 WO 2014157991A1 KR 2014002670 W KR2014002670 W KR 2014002670W WO 2014157991 A1 WO2014157991 A1 WO 2014157991A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist
airborne
insulating layer
manufacturing
carbon
Prior art date
Application number
PCT/KR2014/002670
Other languages
French (fr)
Korean (ko)
Inventor
신흥주
허정일
임영진
Original Assignee
에스케이이노베이션 주식회사
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사, 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 에스케이이노베이션 주식회사
Priority to US14/781,261 priority Critical patent/US9513555B2/en
Priority claimed from KR1020140037107A external-priority patent/KR102140450B1/en
Publication of WO2014157991A1 publication Critical patent/WO2014157991A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00142Bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0292Sensors not provided for in B81B2201/0207 - B81B2201/0285
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate

Definitions

  • the present invention relates to a method of preparing a floating-type single carbon nanowire and a superposed nano-electrode pair, and a floating-type single carbon nanowire and a superposed nano-electrode pair prepared through the preparation method thereof. More specifically, a method for preparing a notary float type single carbon nanowire for minimizing the size of an airborne type single carbon nanowire, and a method for manufacturing a superposed type nanoelectrode pair for forming a thin and dense notched float type carbon nanomesh. It is about.
  • the present invention also relates to a gas sensor or an electrochemical sensor using the airborne type single carbon nanowires and superposed nano-electrode pairs produced through the manufacturing method of the present invention.
  • the conventional semiconductor gas sensor has a limitation on the sensitivity because the sensing material is a semiconductor thin film, for example, it was almost impossible to detect a stable chemical such as carbon dioxide (C0 2 ).
  • sensors for detecting harmful gases such as carbon monoxide (CO) and carbon dioxide can be used for the electrochemical method using the solution method of solution, the optical method by infrared absorption method, and the method of measuring the electrical resistance of nanoparticles or nanowires. This is being applied.
  • harmful gases such as carbon monoxide (CO) and carbon dioxide
  • the electrochemical method is to measure the current flowing through the external circuit by electrochemically oxidizing or reducing the target gas, or by using an electromotive force generated by the action of ions in the gas phase dissolved or ionized in an electrolyte solution or solid, In addition to showing a very slow reaction speed, gas detection range and use environment are limited, and the price is expensive.
  • the optical method by the infrared absorption method has the advantage that it is almost unaffected by other mixed gases or humidity, but the device is not only complicated and large size. The price is also expensive.
  • a chemical sensor has a structure for detecting gas by contact combustion method, and when the gas is reacted with a sensor including a platinum wire as a catalyst, it uses a resistance change of the platinum wire due to an exothermic reaction or an endothermic reaction. It is able to detect gas, improving the stability and sensitivity of the sensor.
  • an oxide semiconductor gas sensor detects most gases including flammable gas. It has been developed to make it possible to achieve smaller size, lower cost, and improved reliability than other gas sensors.
  • Gas sensors using carbon nanotubes applied as such semiconductor gas sensors had to be heated up to about 30C C to detect nitrogen oxides.
  • carbon nanotubes can operate at room temperature. Since the particle size is nanoscale, the sensor's sensitivity is several thousand times higher than that of other sensors.
  • Gas sensors have been developed that measure the change in electrical resistance of nanoparticles themselves or nanoparticle-coated materials depending on the concentration of the measurement gas.
  • the use of nanoparticles makes the sensor highly sensitive because the volume-to-area ratio is very high, and the effect of the surface reaction with the change of gas concentration is very large.
  • sensors using nanoparticles or nanowires disperse these materials irregularly on the surface, connecting electrodes that can measure the change in electrical resistance of these nanomaterials only in specific areas, or by blowing nanomaterials onto pre-patterned electrodes.
  • the electrical resistance was measured by contacting the electrode using an electrospinning method. This method has the disadvantage that the physical and electrical connection between the nanomaterial and the electrode is unstable and the nanomaterial in contact with the surface is affected by the surface during gas sensing.
  • Non-Patent Document 1 the nanowires are fixed by electrospinning on electrodes that are spaced from the surface at predetermined intervals, that is, lamps, or the nanowires are selectively grown from one electrode to the opposite electrode and airborne.
  • a nanowire-based sensor was fabricated in a suspended form.
  • the existing airborne nanowire sensors do not have sufficient sensitivity, the contact between the nanowires and the electrodes is not good, and the manufacturing process is difficult to control due to the complexity of the manufacturing process, resulting in a problem in yield reduction.
  • the manufacturing method is expensive, or the manufacturing time is long, which limits the commercialization through mass production of the sensor.
  • Non-Patent Document 1 S. Sharma, A. Sharma, Y.-K. Cho, ⁇ . Madou, Applied
  • the present invention aims to provide a method for manufacturing a floating-type single carbon nanowire that can effectively improve the yield reduction and manufacturing limitations of the existing floating-type nanowire sensor.
  • An object of the present invention is to provide a method for manufacturing a superposed nano-electrode pair, which is a male form of a wire.
  • the present invention provides a method for preparing a floating single carbon nanowire to minimize the size of the floating single carbon nanowire in order to effectively improve the problems caused by the existing floating nanowires, and a thin and
  • An object of the present invention is to provide a method for manufacturing a superposed nanoelectrode pair for forming a dense airborne carbon nanomesh.
  • the present invention is to provide a gas sensor or an electrochemical sensor applying the airborne type single carbon nanowires and superposed nano-electrode pair prepared according to the manufacturing method of the present invention.
  • micro-photoresist wires 14 connecting the photoresist lamps with each other by secondly exposing the upper portions of the photoresist between the lamps in the form of micro sized wires connecting the lamps through a wire-shaped photomask; Forming a;
  • step (f) the dorsal portion 13 and micro-sized wye remaining after step (e). Pyrolyzing the fish (14) to form an airborne single carbon nanowire (16),
  • step (f) The pyrolysis of step (f) is carried out in two stages, a first stage and a second stage, and the second stage is performed at a higher temperature than the first stage.
  • the substrate 10 is not particularly limited in kind in terms of achieving the object of the present invention, preferably a silicon substrate, more preferably a silicon wafer may be used. In this case, when using a silicon wafer as a substrate, it is also possible to use 6 to 9 inches, which is a common size.
  • the insulating layer 11 deposited on the substrate in step (a) may be made of any material capable of preventing electrical connection between two carbon lamps 15, for example, made of silicon dioxide or silicon nitride. Can be.
  • the deposition may be carried out by a non-limiting method known to those skilled in the art, for example, it is possible to deposit by thermal oxidation method (Thermal oxidation).
  • the step of depositing the insulating layer may be omitted.
  • the insulator substrate material may be quartz or aluminum oxide or the like.
  • step (b) After depositing the insulating layer on the substrate in step (a), it is preferable to wash the insulating layer deposited by the cleaning process before performing the step (b).
  • the photoresist 12 is evenly coated on the insulating layer deposited on the substrate, wherein the coating may be performed by a non-limiting method known to those skilled in the art, for example, spin coating. It may be carried out by various methods such as dip coating or gravure coating.
  • the photoresist coated in step (b) is not limited in principle as long as it can achieve the object of the present invention, it is preferable to use a negative photoresist including a SU-8 photoresist.
  • the thickness of the photoresist coated at this time is 5 to 75 ⁇ , preferably 20 to 40 ⁇ .
  • step (b) After coating the photoresist in step (b), it is preferable to perform a soft bake on the insulating layer and the substrate in the state where the photoresist is coated before performing the step (c). At the end of the soft bake process, the substrate is naturally cooled to the same temperature as the silver before the above step is performed. After checking, perform the next step (c). The specific conditions of soft bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C. In the step (c), the coated photoresist is exposed to ultraviolet rays through a columnar photomask window using a mask aligner to perform primary exposure.
  • the photoresist is cured in a lamp shape on the upper portion of the insulating worm to form the photoresist lamp portion 13.
  • the exposed light energy should be layered so that the photoresist can be cured from the top of the photoresist to just above the insulating layer.
  • a post exposure bake is performed on the insulating layer and the substrate in which the photoresist light emitting part 13 is formed. It is preferable to. At this time, when the post exposure bake process is completed, the substrate is naturally cooled to confirm that the temperature is the same as the temperature before the step (a) is performed.
  • the specific conditions of post exposure bake at this time correspond to 1 to 15 minutes and application at 80 to 120 ° C.
  • the secondary exposure is performed by exposing the photoresist between the lamps to the ultraviolet through a photomask having a micro-sized wire-shaped window on the upper portion of the photoresist between the lamps.
  • the second exposure step only the upper end of the photoresist can be cured by limiting the energy of the ultraviolet light absorbed by the photoresist to less than the first exposure.
  • a portion of the photoresist between the photoresist light emitting portions is cured into a wire shape to form a micro photoresist wire 14 connecting the photoresist light emitting portions to each other.
  • the micro photoresist wire is formed so as to support a predetermined interval from the insulating layer.
  • step (e) After performing the second exposure of step (d), after the exposure to the insulating layer and the substrate in the state where the photoresist light emitting portion 13 and the micro photoresist wire 14 is formed before performing the step (e) It is desirable to proceed with a post exposure bake. At this time, when the post exposure bake process is completed, the substrate is naturally spontaneously sensed to confirm that the temperature is the same as the temperature before the step (a). If it is not sufficiently sensed, the photoresist light emitting part 13 and the micro photoresist wire 14 may be cracked or destroyed by thermal stress in the development step of step (e).
  • the specific conditions of post exposure bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
  • the remaining portions except the exposed portion and the photoresist are applied. Remove as phase.
  • the photoresist development only the micro photoresist wire 14 and the photoresist light emitting portion 13 in the suspended state remain.
  • various types of developers known to those skilled in the art can be used, and for example, a SU-8 developer may be used.
  • step (e) After the development of step (e) is carried out, it is preferable to wash the remaining part of development before the step (f).
  • the specific method of washing in the washing is not limited, and it is also possible to sequentially wash, for example, isopropyl alcohol and methane.
  • step (e) there may be small particles that could not be removed despite the phenomenon of step (e). Therefore, after the development of step (e), the remaining small particles that were not removed in step (e) are cleaned using a photoresist asher before performing step (f). It is also desirable to remove.
  • the micro-resist wire 14 and the photoresist register 13 remaining after the step (e) are thermally decomposed to form an airborne type single carbon nanowire 16.
  • the photoresist lamp is deformed into a carbon post (15) through pyrolysis, and the carbon lamp (15) causes the airborne type single carbon nanowires (16) formed by pyrolysis to be suspended from the insulating layer at a predetermined interval. do.
  • the glass transition temperature of the micro photoresist wire 14 is about 250 ° C. As the pyrolysis process proceeds, the organic gas due to pyrolysis escapes to the outside, thereby increasing the glass transition temperature, and thus the micro photoresist wire before the pyrolysis process.
  • the micro photoresist wire 14 is thus transformed into carbon nanowires 16 without sagging.
  • the wire formed by pyrolysis is subjected to tensile stress from both edges, thereby forming the airborne carbon wire (16). ) Will maintain a straight shape.
  • one object of the present invention is a method for producing a floating-type single carbon nanowires to minimize the size of the floating-type single carbon nanowires
  • the present inventors are characterized by the thermal decomposition of step (f)
  • the pyrolysis of step (f) is carried out in the first and second steps This is done in two stages, with the second stage at a higher temperature than the first stage. Specifically, the first step is carried out for 30 to 90 minutes at 300 to 400 ° C, the second step is carried out at 600 to 1000 ° C, preferably for 30 to 90 minutes at 900 to 1000 ° C. .
  • the first step is performed while maintaining a temperature of 300 ° C. to 1 ° C./min (min) to 300 ° C. to 30 ° to 90 minutes at 300 ° C. to 400 ° C., and then to 600 ° C. to 1000 ° C. preferably it is 900 to 1000 ° in the C 1 ° C / minute (min) temperature increase is from 600 to 1000 ° C to up to, and preferably 900 to 1000 ° C maintained for 30 to 90 minutes in the second step and performed .
  • 3 corresponds to a non-limiting example of the pyrolysis conditions of step (f), but is not limited thereto.
  • the pyrolysis temperature of the second step may be para-selectively adjusted to the electrical conductivity of the desired carbon nanowires.
  • the pyrolysis temperature of the second stage may be para-selectively adjusted to the electrical conductivity of the desired carbon nanowires.
  • the electrical conductivity at room temperature for carbon wires of thickness 400 nm, width 30 nm and length 10 ⁇ is 800 S / m, 1,900 S / m, 14,000 S may vary with / m.
  • a specific type of thermal decomposition is adopted as the characteristic of pyrolysis in step 0, because it exhibits the effect of minimizing residual stress while maximizing the volume change of the micro photoresist wire in the thermal process.
  • the volume change of the micro photoresist wire occurs mostly in the first step above 500 ° C., so the tensile stress applied to the wire formed by pyrolysis is less than 500 V. It can be seen that the most occurs in the first step
  • even a high temperature of 600 to 1000 ° C., preferably 900 to 1000 ° C. is raised to 1: / min (min).
  • the specific atmosphere in which the pyrolysis of step (f) is to be reproduced is not particularly limited so long as it does not interfere with the reproduction of the specific type.
  • the micro photoresist wire 14 and the photoresist formed in step (e). the Insert a gideung portion 13 in an electric furnace using a low vacuum pumps, high vacuum pump, create the atmosphere to 10-7 to 10-5 Torr (torr) can be reproduced that of the particular type.
  • the airborne type single carbon nanowires 16 formed by pyrolysis are naturally carved out and removed from the atmosphere of pyrolysis.
  • photoresist st ashers are preferably used to remove carbon particles generated during pyrolysis.
  • the airborne type single carbon nanowires produced by the above production method has a thickness of 250 nm or less, a width of 250 nm or less, preferably a thickness of 180 to 240 nm, and a width of 170 to 220 nm.
  • the manufacturing method is generally simpler and more economical than the conventional method of manufacturing the airborne nanowires, and thus the yield of the final airborne single carbon nanowires formed is 753 ⁇ 4 or more, preferably 90% or more. Corresponding. Therefore, the manufacturing method is remarkable in that it provides a high yield of airborne type single carbon nanowires with a minimized size.
  • the carbon content of the airborne type single carbon nanowires prepared by the above production method is 95% or more, preferably 98% or more.
  • substantial high temperature conditions of 2000 ° C are theoretically required, but in general, the thermal decomposition of polymer precursors is almost complete at around 1000 ° C.
  • the manufacturing method of the present invention adopting a specific type as a characteristic of the thermal decomposition, there is an effect that the high carbon content of the carbon nanowires is implemented even if the thermal decomposition is completed at an appropriate high temperature conditions around 1000 ° C.
  • the specific form is the optimized form as the thermal decomposition conditions of the production method of the present invention.
  • the gas sensor is applied to the airborne type single carbon nanowire with improved sensitivity and reduced size and volume.
  • an electrochemical sensor may be provided.
  • the gas sensing material is not particularly limited as long as it adopts various ones known to those skilled in the art, but it is preferable to adopt a material whose conductivity is changed to a specific gas such as palladium or platinum. Palladium or platinum can improve the gas sensor's sensitivity and reduce the thermal stress of carbon nanowires.
  • the electrochemical sensing material is also not limited as long as it adopts a variety of known to those skilled in the art. Another embodiment of the present invention is a method of manufacturing a superposed nano-electrode pair (a) depositing an insulator 51 on the substrate 50;
  • step (d) removing the photoresist of portions other than the portions exposed in step (c) by development;
  • micro-photoresist wires 56 connecting the photoresist lamps with each other by exposing the upper portions of the photoresist between the lamps in the form of micro sized wires connecting the pillars through a wire-shaped photomask; Forming a;
  • step (h) removing the photoresist of portions other than the portions exposed in step (g) by development;
  • step (i) The pyrolysis of step (i) is carried out in two stages, a first stage and a second stage, and the second stage is performed at a higher temperature than the first stage. ( Figure 4)
  • the substrate 50 is not particularly limited in kind in terms of achieving the object of the present invention, preferably a silicon substrate, more preferably a silicon wafer can be used. In this case, when using a silicon wafer as a substrate, it is also possible to use 6 to 9 inches, which is a common size.
  • the insulating layer 51 deposited on the substrate in step (a) may be made of any material capable of preventing electrical connection between the two carbon lamps 58 and the planar electrode 57, for example, silicon dioxide or It may be made of silicon nitride.
  • the deposition may be carried out by a non-limiting method known to those skilled in the art, for example, it is possible to deposit by thermal oxidation method (Thermal oxidation).
  • the substrate is used as the insulator in step (a)
  • the step of depositing the insulating layer may be omitted.
  • the insulator substrate material may be quartz or aluminum oxide or the like.
  • the photoresist 52 is uniformly first coated on the insulating layer deposited on the substrate, and the coating may be performed by a non-limiting method known to the skilled person, for example. It can be carried out by various methods such as spin coating, dip coating, or gravure coating.
  • the photoresist coated in the step (b) is not limited in principle, but it is preferable to use a negative photoresist including a SU-8 photoresist.
  • the thickness of the first photoresist to be coated is 2 to 10 ⁇ , preferably 3 to 8 ⁇ .
  • the step (c) After the first coating of the photoresist in the step (b), before performing the step (c), it is preferable to perform a soft bake on the insulating layer and the substrate in the state where the photoresist is first coated. . At this time, when the soft bake process is finished, the substrate is sufficiently natural to check that the substrate is in the same state and temperature as before the step (a), and then the step (c) is performed. .
  • the specific conditions of soft bake at this time correspond to application at 80 to 120 ° C for 1 to 15 minutes.
  • the primary coated photoresist is exposed to ultraviolet rays through a photomask window in the form of a planar electrode to perform the primary exposure.
  • the photoresist coated with a primary shape in the form of a flat electrode is cured on the upper portion of the insulating layer to form the photoresist flat electrode part 53.
  • the exposed optical energy should be layered so that the photoresist can be cured from the top of the photoresist to just above the insulating layer.
  • step (d) the photoresist of the remaining portions except for the portion exposed in the step (c) is removed by development. If the development of step (d) is not performed, chemical destruction may occur due to chemical breakdown of the flat electrode part, the lamp part, and the micro-sized wire formed while the development time of step (h) takes a long time. It is essential to proceed. Step (d) Only the flat electrode portion remains through the photoresist development of.
  • various kinds of developers known to those skilled in the art can be used, and for example, SU-8 developer may be used.
  • step (d) it is another aspect to omit the step (d) and to remove the photoresist of the remaining portions except the portions exposed in the steps (c) and (g) by the development at the same time in the step (h). Is possible.
  • step (e) the photoresist 54 is second-coated on the insulating layer and the planar electrode part remaining after step (d).
  • the coating may be performed by a non-limiting method known to those skilled in the art, for example, may be performed by various methods such as spin coating, dip coating, or gravure coating.
  • the photoresist that is secondary coated in step (e) is not limited in principle, but it is preferable to use a negative photoresist including a SU-8 photoresist.
  • the thickness of the photoresist coated with the secondary is 5 to 75 ⁇ , preferably 20 to 40 ⁇ , and is formed thicker than the photoresist coated first in step (b).
  • the bake is softly baked on the planar electrode portion, the insulating layer, and the substrate in which the photoresist is coated second Is preferred.
  • the substrate is sufficiently spontaneously modified to confirm that the temperature is the same as the temperature before the step (a), and then the step (f) is performed.
  • the specific conditions of soft bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
  • the secondary coated photoresist is exposed to ultraviolet rays through a columnar photomask window to perform secondary exposure on both sides of the planar electrode part.
  • the photoresist is cured in a columnar shape on the upper portion of the insulating layer, and photoresist pillars 55 are formed on both sides of the planar electrode portion 53.
  • the exposed light energy should be layered enough to cure the photoresist from the top of the photoresist to just above the insulating layer.
  • the step (f) After performing the second exposure of the step (f), before the step (g), after exposing the flat electrode portion 53, the insulating layer and the substrate in the state where the photoresist light emitting part 55 is formed It is desirable to proceed with a post exposure bake. If the end of this time the post-exposure baking (t pos exposure bake) process, the substrate layer sufficiently to natural nyaenggak the step (a) Make sure that the temperature is the same as the degree of silver before performing.
  • the specific conditions of post exposure bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
  • a third exposure is performed in which the upper portion of the photoresist between the light emitting portions 55 is exposed to ultraviolet rays through a photomask having a micro-sized wire window.
  • the energy of the ultraviolet light absorbed by the photoresist is limited to less than the second exposure so that only the upper end of the photoresist can be cured.
  • a portion of the photoresist between the photoresist light emitting portions is cured into a wire shape to form a micro photoresist wire 56 connecting the photoresist light emitting portions to each other.
  • the micro photoresist wire 56 is formed so as to support a predetermined interval from the insulating layer.
  • the manufacturing method and purpose of the superposed nano-electrode pair according to the present invention is to form a thin and dense airborne carbon nano mesh 59, between the wire of the wire-type photomask of the step (g) It is more preferable to achieve the above object that the angle of ⁇ is in the range of 40 to 60 degrees. As also disclosed in FIG. 5, the carbon nanomesh that is finally formed when the range of 40 to 60 degrees is adopted as the angle ⁇ between the wires of the photomask used for the third exposure of the step (g) is adopted. You can see the compact form.
  • the planar electrode part 53 in which the photoresist light emitting part 55 and the micro photoresist wire 56 are formed It is preferable to perform post exposure bake on the insulating layer and the substrate. At this time, when the post exposure bake process is completed, the substrate is sufficiently cooled to confirm that the temperature is the same as the temperature before the step (a). If not sufficiently cooled, the planar electrode portion 53, the photoresist light emitting portion 55, and the micro photoresist wire 56 are subjected to thermal stress in the development stage of step (h) to cause cracks or breakage. Because it may.
  • the specific conditions of post exposure bake correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
  • the photoresist of the remaining portion except for the exposed portion is removed by development.
  • the microphotoresist wire 56, the photoresist pillar portion 55 and the flat state of the suspended state Only the surface electrode portion 53 remains.
  • various types of developers known to those skilled in the art can be used.
  • a SU-8 developer may be used.
  • the specific method of washing in washing is not limited, and it is also possible to sequentially wash, for example, isopropyl alcohol and methane.
  • step (h) there may be small particles that could not be removed despite the phenomenon of step (h). Therefore, after the development of the step (h), the photoresist asher is used before the step (i).
  • step (h) It is also desirable to clean the remaining small particles that could not be removed in step (h).
  • the micro-resist wire 56, the photoresist lamp part 55, and the planar electrode part 53 remaining after the step (h) are thermally decomposed to form the planar electrode 57 and the airborne carbon nanoparticles.
  • the flat electrode 57 and the airborne carbon nanomesh 59 may be identified as superimposed nano electrode pairs that form a mesh 59 and are formed by pyrolysis.
  • the photoresist pillar portion 55 is transformed into a carbon post 58 through pyrolysis
  • the planar electrode portion 53 is transformed into a flat electrode 57 through pyrolysis.
  • the micro photoresist wire 56 is deformed into carbon nanomesh 59 without sagging, and in the pyrolysis process, pyrolysis also occurs in the lamppost supporting the micro photoresist wire 56. This is because the nanomesh formed is subjected to tensile stress from both edges.
  • the object of the manufacturing method of the superposed nano-electrode pair according to the present invention is to form a thin and dense airborne carbon nanomesh
  • step (i) The pyrolysis of step ( ⁇ ) is carried out in two stages, the first stage and the second stage, and the second stage is carried out at a higher temperature than the first stage. Specifically, the first stage is performed at 300 to 400 ° C. To 90 minutes, and the second step is carried out at 600 to 1000 ° C., preferably at 900 to 1000 ° C. for 30 to 90 minutes, more specifically 1 ° C./min to 300 to 400 ° C.
  • (min) has been won within 300 Not at 400 ° C while maintaining 30 to 90 minutes is the first step used which after which the temperature was raised with 1 ° C / minute (min) up to 600 to 1000 ° C, to preferably from 900 to 1000 ° C 600
  • the second step is carried out at -1000 ° C, preferably at 30-90 minutes at 900-1000 ° C.
  • the specific atmosphere in which the pyrolysis of step (i) is to be reproduced is not particularly limited so long as it does not prevent the reproduction of the specific type, and for example, the micro photoresist wire 56, the photoresist pillar portion 55 and Insert the flat electrode portion 53 in an electric furnace after all, only a low atmosphere to vacuum and using a high vacuum pump 10-7 to 10-5 Torr (torr) can be reproduced that of the particular type.
  • the planar electrode 57 and the hollow core-type carbon nanomesh 59 formed by pyrolysis are naturally observed and then removed from the atmosphere of pyrolysis.
  • a photoresist asher may be preferably used to remove carbon particles generated during the pyrolysis process.
  • the airborne carbon nanomesh prepared by the above production method has a width of 200 to 400 nm and a carbon nanowire spacing of 3 to 7 ⁇ .
  • the yield of the overlapping nano-electrode pairs to be formed is 70% or more, preferably 80%. It corresponds to the above high yield. Therefore, the manufacturing method has a remarkable effect of providing a thin and dense airborne carbon nanomesh in high yield.
  • a gas sensor or an electrochemical sensor is applied to the superposed nano electrode pair with improved sensitivity and reduced size and volume.
  • the gas sensing material or the electrochemical sensing material may be laminated on both the planar electrode and the airborne carbon nanomesh constituting the superposed nano-electrode pair, and may be laminated only on one side.
  • the gas sensing material is not particularly limited as long as it adopts various ones known to those skilled in the art, but it is preferable to adopt a material whose conductivity is changed to a specific gas such as palladium or platinum. Palladium or platinum can improve the sensitivity of the gas sensor and reduce the thermal stress of carbon nanowires.
  • the electrochemical sensing material is also not limited as long as it adopts a variety of known to those skilled in the art.
  • Method for producing a floating airborne single carbon nanowire according to the present invention is 250 nm thick It provides a high yield of airborne single carbon nanowires with a minimum size of 250 nm or less in width, and implements a high carbon content of carbon nanowires produced by thermal decomposition under appropriate high temperature conditions. Therefore, the airborne single carbon nanowire according to the present invention is expected to effectively improve the yield reduction and manufacturing limitations of the existing airborne nanowire sensors.
  • the method of manufacturing a superposed nanoelectrode pair according to the present invention has the effect of providing a thin and dense airborne carbon nanomesh with high yield.
  • the airborne single carbon nanowires and superposed nanoelectrode pairs have excellent electrical, mechanical, and electrochemical properties, and thus may be applied to gas sensors or electrochemical sensors of an improved form than conventional ones. .
  • FIG. 1 is a view illustrating a manufacturing process of a notarized single carbon nanowire.
  • Figure 2 compares the structural shape of the carbon nanowires formed by pyrolysis with the micro photoresist wire of the pyrolysis process ⁇ in the method of manufacturing airborne single carbon nanowires.
  • Figure 3 corresponds to an example of pyrolysis conditions in the manufacturing method of airborne single carbon nanowires.
  • FIG. 4 is a view illustrating a manufacturing process of a method of manufacturing a superposed nanoelectrode pair.
  • Figure 5 shows the density of the carbon nanomesh finally formed according to the angle ( ⁇ ) between the wires of the photomask in the third exposure step of the manufacturing method of the superposed nano-electrode pair.
  • FIG. 6 illustrates a planar electrode and an airborne carbon nanomesh as a superposed nanoelectrode pair formed by a method of manufacturing a superposed nanoelectrode pair.
  • FIG. 7 analyzes the binding and quantification of carbon (left), oxygen (right), and other elements of airborne carbon nanomeshes using X-ray photoelectron spectroscopy (XPS). ⁇
  • FIG. 8 shows the shape of a dense airborne carbon monanomesh finally formed by Example 3.
  • FIG. 10 shows the results of the stress analysis generated in the airborne type single carbon nanowires by the applied voltage.
  • FIG. 11 shows the electrochemical characteristics of the airborne single carbon nanowires through cyclic-current voltage experiments and their characteristics as an electrochemical sensor of the airborne structure. Specifically, (a) shows the results of electrochemical characterization of airborne single carbon nanowires through cyclic volta ⁇ etry experiments, and (b) shows the results of concentration distribution analysis of airborne single carbon nanowires. (10 mM Ferrocyanide in 0.5 M KC1) and (c) show the concentration distribution analysis results (10 mM Ferrocyanide in 0.5 M KC1) of the planar electrode carbon nanowire.
  • micro photoresist wire 15 carbon pillar
  • micro photoresist wire 57 flat electrode
  • Photoresist After SU-8 was uniformly coated with a thickness of 25 iim on the insulating layer by spin coating, a soft bake was performed at 95 ° C. for 9 minutes. After a soft bake, the silicon wafer was naturally cooled down to confirm that it was at the same temperature as the initial state.
  • the mask aligner is used to expose the ultraviolet light through a pillar-shaped photomask window to perform the first exposure, and after exposure at 95 ° C. for about 3 minutes, baking ( After the post exposure bake, the silicon wafer was sliced again. After further cooling the silicon wafer again, secondary exposure was performed by exposing the silicon wafer to ultraviolet rays through a wire-shaped photomask. After performing the second exposure, after the post exposure bake at 95 ° C. for about 3 minutes, the silicon wafer was again cooled down. After sufficiently etching the silicon wafer, the remaining portions except the exposed portions were removed by development using a SU-8 developer (SU-8 developer).
  • SU-8 developer SU-8 developer
  • pyrolysis was carried out in two stages, the first stage and the second stage. Specifically it is raised by 1 ° C / minute (min) since, as was conducted for the first stage is raised maintained for 60 minutes at 350 ° C as is 1 ° C / min to 900 ° C (min) to 350 ° C
  • the second stage was carried out while maintaining 60 minutes at 900 ° C.
  • the aerial type single carbon nanowires formed after pyrolysis were naturally cooled and then removed from the electric furnace, and the carbon particles generated during the pyrolysis process were removed using a photoresist asher.
  • Example 2 Physical property analysis of airborne type single-stage tasonano wire of Example 1
  • the airborne type single carbon nanowires finally produced by Example 1 have a yield of 90%.
  • the shape and structural features of the airborne single carbon nanowires are shown in SEM (Quanta 200, FEI company USA), HRTEM (JEM-2100F, JE0L Ltd., Japan), FIBCQuanta 3D FEG, FEI company, USA), and Raman spectroscopy system. (alpha300R, WITec GmbH, Germany).
  • the airborne type single carbon nanowires have a measured thickness of 210 nm and a width of 195 nm.
  • X-ray photoelectron spectroscopy was used to measure the carbon content of the prepared airborne single carbon or no-wire.
  • Example 2 It proceeded in common with Example 1 except that a single step of 2 minutes at 300 ° C. was applied under pyrolysis conditions.
  • Example 2 It proceeded in common with Example 1 except that a single step of 2 minutes at 350 ° C. was applied under pyrolysis conditions.
  • Example 2 It proceeded in common with Example 1 except that a single step of 2 minutes at 400 " C was applied as pyrolysis conditions.
  • Example 2 It proceeded in common with Example 1 except for applying a single step of 2 minutes at 450 ° C as pyrolysis conditions.
  • Example 2 It proceeded in common with Example 1 except that a single step of 2 minutes at 500 t was applied under pyrolysis conditions.
  • Example 2 It proceeded in common with Example 1 except that a single step of 60 minutes at 500 ° C. was applied under pyrolysis conditions.
  • the production method of the present invention adopting a specific form of the thermal decomposition conditions as shown in Table 1, it can be seen that the size of the airborne type single carbon nanowires are minimized to less than 250 nm in width. This supports that the specific form is optimized form by the thermal decomposition conditions of the production method of the present invention.
  • Silicon dioxide was deposited by thermal oxidation on a common 6-inch silicon wafer by thermal oxidation, and then SU-8, a photoresist, was evenly coated on the insulating layer with a thickness of 7 ⁇ .
  • the first exposure was performed by sufficiently exposing to ultraviolet rays through a photoelectrode window in the form of a flat electrode, and the first exposed portion using a SU-8 developer (SU-8 developer). The rest was removed as a development. After development, the photoresist S 8 was evenly coated with a thickness of 25 ⁇ on the insulating layer and the flat electrode by spin coating.
  • the temperature was raised with 1 ° C / minute (min) of claim 1 ° C / minute up to 900 ° C since, has, proceed to step 1 (min) while the temperature was raised maintained for 60 minutes at 350 ° C to up to 350 ° C Proceed with the second step while maintaining 60 minutes at 900 ° C.
  • Planar electrode and airborne carbon nanomesh formed after pyrolysis After cooling it was removed from the furnace.
  • the overlapping nano-electrode pair finally formed by Example 3 has a yield of 75%.
  • the shape and structural features of the airborne carbon nanomesh are SEM (Quanta 200, FEI company USA), HRTEMCIEM— 2100F, JEOL Ltd., Japan), Quanta 3D FEG, FEI company, USA (FIB), and Raman spectroscopy system ( alpha300R, WITec GmbH, Germany).
  • the measured width of the airborne carbon nanomesh corresponds to 300 nm and the carbon nanowire spacing corresponds to 4.5 ⁇ . ( Figure 8)
  • FIG. 9 illustrates the crystallinity of airborne type single carbon nanowires using a transmission electron microscope.
  • the temperature of the pyrolysis process is lower than the temperature at which the graphitic phase is formed, about 20% of the graphitic phase is present in volume ratio, which has high electrical conductivity despite being glassy carbon. Means that.
  • Example 6 Observation of mechanical properties of airborne single carbon nanowire of Example 1
  • the results of the stress generated in the airborne single carbon nanowire by applied voltage are shown in FIG. 10.
  • the volume expansion rate of carbon nanowires according to temperature uses general carbon volume expansion rate data.
  • the force is also the highest at the center of the nanowire and the maximum stress analysis result according to the applied voltage is shown in the graph of FIG. 10.
  • Volume expansion with temperature increases compressive stress in airborne single carbon nanowires, but the maximum compressive stress up to IV does not reach the actual stress of fracture of carbon. This means that the airborne type single carbon nanowires prepared in Example 1 have excellent mechanical properties.
  • Example 7 Observation of Hypochemical Properties of Airborne Type Single Tasonano Wire of Example 1
  • FIG. 11 shows the characteristics of the electrochemical sensor of the sex and airborne structure.
  • cyclic-voltage current experiments were conducted to confirm that they had high diffusion limit currents.
  • concentration distribution by redox reaction was simulated using the Comsol Multiphysics program, and the airborne nanowires were compared to the planar nanowires having the same cross-sectional area. It was confirmed that a diffusion limit current was generated per unit length of more than twice.
  • the nanowires were located at least a certain distance (> 8 urn) away from the substrate, they generated almost the same current signal as the nanowires located at least tens of urns away from the substrate. Therefore, it is possible to fully utilize the advantages of the airborne structure without the need to separate the nanowires from the substrate by several tens of microns . This means that the airborne type single carbon nanowires prepared in Example 1 have excellent electrochemical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The present invention provides a method for manufacturing an air-suspended single carbon nanowire and an overlapping nanoelectrode pair, and an air-suspended single carbon nanowire and an overlapping nanoelectrode pair manufactured using said method. An air-suspended single carbon nanowire, which is manufactured at a high yield ratio by the method for manufacturing an air-suspended single carbon nanowire according to the present invention, has a minimized size, and an air-suspended carbon nanomesh, which is manufactured at a high yield ratio by the method for manufacturing an overlapping nanoelectrode pair according to the present invention, is thin and dense. The present invention also provides a gas sensor or an electrochemical sensor, to which an air-suspended single carbon nanowire and an overlapping nanoelectrode pair manufactured by the method according to the present invention are applied.

Description

[명세서]  [Specification]
【발명의 명칭】  [Name of invention]
공중부유형 단일 탄소나노와이어 및 중첩형 나노 전극쌍의 제조방법 [기술분야】  Manufacturing method of airborne single carbon nanowire and superposed nano electrode pair
본 발명은 공중부유형 단일 탄소나노와이어 및 중첩형 나노 전극쌍의 제조방 법, 및 이의 제조방법을 통하여 제조된 공중부유형 단일 탄소나노와이어 및 중첩형 나노 전극쌍에 관한 것이다. 보다 상세하게는 공중부유형 단일 탄소나노와이어의 크기를 최소화하기 위한 공증부유형 단일 탄소나노와이어의 제조 방법, 및 얇고 조 밀한 공증부유형 탄소나노메쉬를 형성하기 위한 중첩형 나노 전극쌍의 제조방법에 관한 것이다. 본 발명은 또한 본 발명의 제조방법을 통하여 제조된 공중부유형 단 일 탄소나노와이어 및 중첩형 나노 전극쌍을 적용한 가스센서 또는 전기화학센서에 관한 것이다.  The present invention relates to a method of preparing a floating-type single carbon nanowire and a superposed nano-electrode pair, and a floating-type single carbon nanowire and a superposed nano-electrode pair prepared through the preparation method thereof. More specifically, a method for preparing a notary float type single carbon nanowire for minimizing the size of an airborne type single carbon nanowire, and a method for manufacturing a superposed type nanoelectrode pair for forming a thin and dense notched float type carbon nanomesh. It is about. The present invention also relates to a gas sensor or an electrochemical sensor using the airborne type single carbon nanowires and superposed nano-electrode pairs produced through the manufacturing method of the present invention.
【배경기술]  Background technology
최근 환경문제에 대한 관심 증가와 정보통신 기기의 발전과 더불어 다양한 가스에 대한 센서가 개발되고 있는 가운데 반도체 기술을 접목함으로써 제조가 간 편해지고 그 성능이 향상되고 있다. 모든 센서는 성능 향상을 위하여 감지도를 높 이는 것이 최대 목표이며, 이러한목표를 달성하기 위한 노력도 증가되고 있다. 한편, 종래의 반도체식 가스센서는 감지 물질이 반도체 박막이기 때문에 감 지도에 대한 한계가 있었으며, 일예로, 이산화탄소 (C02)와 같은 안정된 화학물질의 경우 감지가 거의 불가능하였다. In recent years, with increasing interest in environmental problems and the development of information and communication devices, sensors for various gases are being developed, incorporating semiconductor technology has made manufacturing easier and improved its performance. For all sensors, the highest goal is to increase the sensitivity to improve performance, and efforts to achieve this goal are increasing. On the other hand, the conventional semiconductor gas sensor has a limitation on the sensitivity because the sensing material is a semiconductor thin film, for example, it was almost impossible to detect a stable chemical such as carbon dioxide (C0 2 ).
따라서 일산화탄소 (CO)나 이산화탄소 등과 같은 유해한 가스를 감지하기 위 한 센서는 용액의 도전방식을 이용한 전기화학적 방법과 적외선 흡수법에 의한 광 학적 방법, 그리고 나노입자 또는 나노와이어의 전기 저항을 측정하는 법이 적용되 고 있다.  Therefore, sensors for detecting harmful gases such as carbon monoxide (CO) and carbon dioxide can be used for the electrochemical method using the solution method of solution, the optical method by infrared absorption method, and the method of measuring the electrical resistance of nanoparticles or nanowires. This is being applied.
상기 전기화학적 방법은 대상 가스를 전기화학적으로 산화 또는 환원하여 외 부의 회로에 흐르는 전류를 측정하거나, 전해질 용액이나 고체에 용해 또는 이온화 한 가스 상의 이온이 이온전극에 작용하여 생기는 기전력을 이용하는 것으로서, 이 는 매우 느린 반응속도를 나타냄과 더불어 가스의 감지범위 및 사용 환경이 한정되 어 있는데다가가격도 비싸다는 단점이 있다.  The electrochemical method is to measure the current flowing through the external circuit by electrochemically oxidizing or reducing the target gas, or by using an electromotive force generated by the action of ions in the gas phase dissolved or ionized in an electrolyte solution or solid, In addition to showing a very slow reaction speed, gas detection range and use environment are limited, and the price is expensive.
또한, 적외선 흡수법에 의한 광학적 방법은 여타의 흔합가스나 습도에 의한 영향을 거의 받지 않는다는 장점은 있으나, 장치가 복잡하고 크기가 커질 뿐만 아 니라 가격도 고가라는 단점이 있다. In addition, the optical method by the infrared absorption method has the advantage that it is almost unaffected by other mixed gases or humidity, but the device is not only complicated and large size. The price is also expensive.
일반적으로, 화학센서는 접촉연소법에 의해 가스를 감지하기 위한 구조로 이 루어져 있는 바, 가스가 촉매인 백금선을 포함하는 센서와 반웅하였을 때 발열반웅 이나 흡열반응에 의한 백금선의 저항변화를 이용하여 가스를 감지할 수 있도록 되 어 있어서 센서의 안정성과 감도를 향상시켰다.  In general, a chemical sensor has a structure for detecting gas by contact combustion method, and when the gas is reacted with a sensor including a platinum wire as a catalyst, it uses a resistance change of the platinum wire due to an exothermic reaction or an endothermic reaction. It is able to detect gas, improving the stability and sensitivity of the sensor.
한편 , 최근에는 가스의 화학흡착에 의한 접촉반응과 전자밀도와의 관계가 규 명되면서 산화물 반도체식 가스센서가 개발되어 상용화되고 있는 바, 이러한 반도 체식 가스센사는 가연성 가스를 비롯한 대부분의 가스를 감지할 수 있도록 개발되 었고, 그에 따라 다른 방식의 가스센서에 비해 소형화와, 저가격화, 신뢰성의 향상 이 가능하게 되었다.  On the other hand, as the relationship between the contact reaction and the electron density caused by the chemical adsorption of gas has been recently developed, an oxide semiconductor gas sensor has been developed and commercialized. Such a semiconductor gas sensor detects most gases including flammable gas. It has been developed to make it possible to achieve smaller size, lower cost, and improved reliability than other gas sensors.
이러한 반도체식 가스센서로서 적용되는 탄소나노튜브를 이용한 가스센서는 여타의 센서가 산화질소 등을 검출하기 위해 약 30C C까지 가열하여야 하였지만, 탄소나노튜브가 실온에서도 동작이 가능하고, 탄소나노튜브의 입자크기가 나노단위 이기 때문에 여타의 센서에 비해서 센서의 감도가 수천 배 정도 높다는 장점이 있 다.  Gas sensors using carbon nanotubes applied as such semiconductor gas sensors had to be heated up to about 30C C to detect nitrogen oxides. However, carbon nanotubes can operate at room temperature. Since the particle size is nanoscale, the sensor's sensitivity is several thousand times higher than that of other sensors.
측정 가스의 농도에 따른 나노 입자 자체 또는 나노 입자를 코팅한 물질의 전기 저항 변화를 측정하는 형식의 가스 센서가 개발되었다. 나노입자를 사용하면 부피 대 면적비가 매우 높아 가스농도 변화에 따른 표면 반응의 효과의 전체 부피 에 대한 저항 변화로의 효과가 매우 크기 때문에 감도가 매우 높은 센서 제작이 가 능하다.  Gas sensors have been developed that measure the change in electrical resistance of nanoparticles themselves or nanoparticle-coated materials depending on the concentration of the measurement gas. The use of nanoparticles makes the sensor highly sensitive because the volume-to-area ratio is very high, and the effect of the surface reaction with the change of gas concentration is very large.
일반적으로 나노 입자나 나노와이어를 사용하는 센서는 이러한 물질을 표면 에 불규칙하게 분산시켜 특정 부분에만 이들 나노물질의 전기 저항 변화를 측정할 수 있는 전극을 연결하거나 미리 패터닝된 전극 위에 나노물질을 홀려보내거나 전 기방사법을 사용하여 전극에 접촉시켜 전기 저항을 측정하였다. 이러한 방법은 나 노물질과 전극과의 물리적, 전기적 연결이 불안정하고 표면과 접촉된 형태의 나노 물질은 가스 센싱 과정에서 표면의 영향을 받는다는 단점을 지니고 있다.  In general, sensors using nanoparticles or nanowires disperse these materials irregularly on the surface, connecting electrodes that can measure the change in electrical resistance of these nanomaterials only in specific areas, or by blowing nanomaterials onto pre-patterned electrodes. Alternatively, the electrical resistance was measured by contacting the electrode using an electrospinning method. This method has the disadvantage that the physical and electrical connection between the nanomaterial and the electrode is unstable and the nanomaterial in contact with the surface is affected by the surface during gas sensing.
이후, 비특허문헌 1의 개시와 같이 나노와이어를 표면과 일정 간격 이격되어 있는 형태, 즉 기등 형태의 전극 위에 전기방사법으로 고착시키거나 나노와이어를 한 쪽 전극에서 반대 쪽 전극으로 선택적으로 성장시켜 공중부유 형태로 나노와이 어 기반 센서를 제작하였다. 이러한 기존 공중부유형 나노와이어 센서는 감도가 만 족할 만한 수준에 미치지 못하였으며, 나노와이어와 전극의 접촉이 좋지 않고, 제 조 과정의 복잡성에 의하여 제조 과정의 제어가 어려워 수율 저하 문제가 발생하 고, 제조 방식이 비용이 많이 들거나 제조 시간이 길어 센서의 대량생산을 통한 상 용화에 한계를 지니고 있다. Subsequently, as disclosed in Non-Patent Document 1, the nanowires are fixed by electrospinning on electrodes that are spaced from the surface at predetermined intervals, that is, lamps, or the nanowires are selectively grown from one electrode to the opposite electrode and airborne. A nanowire-based sensor was fabricated in a suspended form. The existing airborne nanowire sensors do not have sufficient sensitivity, the contact between the nanowires and the electrodes is not good, and the manufacturing process is difficult to control due to the complexity of the manufacturing process, resulting in a problem in yield reduction. In addition, the manufacturing method is expensive, or the manufacturing time is long, which limits the commercialization through mass production of the sensor.
[비특허문헌]  [Non-Patent Documents]
(비특허문헌 1) S. Sharma, A. Sharma, Y.-K. Cho, Μ. Madou, Applied (Non-Patent Document 1) S. Sharma, A. Sharma, Y.-K. Cho, Μ. Madou, Applied
Materials and Interface 2012, 4, 34-39. Materials and Interface 2012, 4, 34-39.
【발명의 상세한 설명】  [Detailed Description of the Invention]
[기술적 과제]  [Technical Challenges]
본 발명은 기존의 공중부유형 나노와이어 센서의 수율 저하 및 제조적 한계 문제 등을 효과적으로 개선할 수 있는 공중부유형 단일 탄소나노와이어의 제조방법 을 제공하는 것을 목적으로 하며, 공중부유형 단일 탄소나노와이어의 제조방법의 웅용 형태인 중첩형 나노 전극쌍의 제조방법을 제공하기 위한 것이다.  Disclosure of Invention The present invention aims to provide a method for manufacturing a floating-type single carbon nanowire that can effectively improve the yield reduction and manufacturing limitations of the existing floating-type nanowire sensor. An object of the present invention is to provide a method for manufacturing a superposed nano-electrode pair, which is a male form of a wire.
구체적으로 본 발명은 기존의 공중부유형 나노와이어에 의한 문제를 효과적 으로 개선하기 위한 차원에서 공중부유형 단일 탄소나노와이어의 크기를 최소화하 기 위한 공중부유형 단일 탄소나노와이어의 제조 방법, 및 얇고 조밀한 공중부유형 탄소나노메쉬를 형성하기 위한 중첩형 나노 전극쌍의 제조방법을 제공하기 위한 것 이다.  Specifically, the present invention provides a method for preparing a floating single carbon nanowire to minimize the size of the floating single carbon nanowire in order to effectively improve the problems caused by the existing floating nanowires, and a thin and An object of the present invention is to provide a method for manufacturing a superposed nanoelectrode pair for forming a dense airborne carbon nanomesh.
또한, 본 발명은 본 발명의 제조 방법에 따라 제조된 공중부유형 단일 탄소 나노와이어 및 중첩형 나노 전극쌍을 적용한 가스센서 또는 전기화학센서를 제공하 기 위한 것이다.. ᅳ  In addition, the present invention is to provide a gas sensor or an electrochemical sensor applying the airborne type single carbon nanowires and superposed nano-electrode pair prepared according to the manufacturing method of the present invention.
[기술적 해결방법]  [Technical Solution]
본 발명의 하나의 양태인 공중부유형 단일 탄소나노와이어의 제조 방법은 One embodiment of the present invention is a method for producing airborne single carbon nanowires
(a) 기판 (10)위에 절연층 (11)을 증착하는 단계; (a) depositing an insulating layer 11 on the substrate 10;
(b) 상기 절연층 상에 포토레지스트 (12)를 코팅하는 단계;  (b) coating a photoresist (12) on the insulating layer;
(c) 상기 포토레지스트를 기등 모양의 포토마스크를 통하여 1차 노광하여 상 기 절연층의 상부에 포토레지스트 기등부 (13)를 형성하는 단계;  (c) first exposing the photoresist through a light-shaped photomask to form a photoresist light emitting part 13 on the insulating layer;
(d) 상기 기등부 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 기등부를 연결하는 마이크로 크기의 와이어 형태로 2차 노광함으로서, 상기 포토레지스트 기등부를 서로 연결하는 마이크로 포토레지스트 와이어 (14)를 형성하는 단계;  (d) micro-photoresist wires 14 connecting the photoresist lamps with each other by secondly exposing the upper portions of the photoresist between the lamps in the form of micro sized wires connecting the lamps through a wire-shaped photomask; Forming a;
(e) 상기 (c), (d) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지 스트를 현상 (development)으로 제거하는 단계; 및  (e) removing the photoresist of the remaining portions except for the portions exposed in the steps (c) and (d) by development; And
(f) 상기 (e) 단계 이후 남아있는 상기 기등부 (13) 및 마이크로 크기의 와이 어 (14)를 열분해하여 공중부유형 단일 탄소나노와이어 (16)를 형성하는 단계를 포함 하며, (f) the dorsal portion 13 and micro-sized wye remaining after step (e). Pyrolyzing the fish (14) to form an airborne single carbon nanowire (16),
상기 (f) 단계의 열분해는 제 1 단계 및 제 2 단계의 두 단계로 행해지며, 제 2단계가 제 1단계보다 높은 온도에서 행해진다. (도 1)  The pyrolysis of step (f) is carried out in two stages, a first stage and a second stage, and the second stage is performed at a higher temperature than the first stage. (Figure 1)
상기 기판 (10)은 본 발명의 목적 달성을 위한 측면에 있어서 종류에 특별한 제한을 두지는 않으나, 바람직하게는 실리콘 기판, 더욱 바람직하게는 실리콘 웨이 퍼를 사용할 수 있다. 이 때 실리콘 웨이퍼를 기판으로 사용하는 경우 일반적인 크 기인 6내지 9 인치의 사용도 가능하다.  The substrate 10 is not particularly limited in kind in terms of achieving the object of the present invention, preferably a silicon substrate, more preferably a silicon wafer may be used. In this case, when using a silicon wafer as a substrate, it is also possible to use 6 to 9 inches, which is a common size.
상기 (a)단계에서 기판에 증착되는 절연층 (11)은 두 탄소 기등 (15) 간의 전 기적 연결을 방지할 수 있는 임의의 물질로 이루어질 수 있으며, 예를 들면 이산화 규소 또는 실리콘 나이트라이드로 이루어질 수 있다. 또한 상기 (a)단계에서는 기 판의 상면 전체에 절연층을 증착함이 바람직하다. 이 때 증착은 통상의 기술자에게 공지된 비제한적인 방법에 의하여 수행될 수 있고, 예를 들면 열산화방법 (Thermal oxidation)에 의한 증착이 가능하다.  The insulating layer 11 deposited on the substrate in step (a) may be made of any material capable of preventing electrical connection between two carbon lamps 15, for example, made of silicon dioxide or silicon nitride. Can be. In addition, in the step (a), it is preferable to deposit an insulating layer on the entire upper surface of the substrate. At this time, the deposition may be carried out by a non-limiting method known to those skilled in the art, for example, it is possible to deposit by thermal oxidation method (Thermal oxidation).
상기 (a)단계에서 기판을 절연체로 사용할 경우, 절연층을 증착하는 단계를 생략할 수도 있다. 절연체 기판 물질로는 석영 또는 산화알루미늄 등이 될 수 있 다.  When the substrate is used as the insulator in step (a), the step of depositing the insulating layer may be omitted. The insulator substrate material may be quartz or aluminum oxide or the like.
상기 (a) 단계에서 기판위에 절연층을 증착한 후에는, 상기 (b)단계를 수행 하기 전에 세척 공정으로 증착된 절연층을 세척함이 바람직하다. 이 때 세척의 구 체적인 방법은 비제한적이며, 예를 들면 피라나 용액 (Piranha solution - 황산 (H2S04):과산화수소 (¾02)=4:1흔합용액)에 의한 세척도 가능하다. 상기 (b) 단계에서는 기판 위에 증착된 절연층 상에 포토레지스트 (12)를 고 르게 코팅하며 , 이 때 코팅은 통상의 기술자에게 공지된 비제한적인 방법으로 수행 될 수 있으며, 예를 들면 스핀 코팅 딥 코팅, 또는 그라비아 코팅 등의 다양한 방 법에 의하여 수행될 수 있다. 상기 (b) 단계에서 코팅되는 포토레지스트는 본 발명 의 목적을 달성할 수 있는 것이라면 원칙적으로 제한을 두지 않으나, SU-8 포토레 지스트를 포함하는 네가티브 포토레지스트를 이용함이 바람직하다. 이 때 코팅되는 포토레지스트의 두께는 5내지 75 μηι, 바람직하게는 20 내지 40 μιη이다. After depositing the insulating layer on the substrate in step (a), it is preferable to wash the insulating layer deposited by the cleaning process before performing the step (b). At this time, the specific method of washing is not limited. For example, washing with a Piranha solution (Piranha solution-sulfuric acid (H 2 SO 4 ): hydrogen peroxide (¾0 2 ) = 4: 1 mixed solution) is also possible. In step (b), the photoresist 12 is evenly coated on the insulating layer deposited on the substrate, wherein the coating may be performed by a non-limiting method known to those skilled in the art, for example, spin coating. It may be carried out by various methods such as dip coating or gravure coating. The photoresist coated in step (b) is not limited in principle as long as it can achieve the object of the present invention, it is preferable to use a negative photoresist including a SU-8 photoresist. The thickness of the photoresist coated at this time is 5 to 75 μηι, preferably 20 to 40 μηι.
상기 (b) 단계에서 포토레지스트를 코팅한 후에는, 상기 (c)단계를 수행하기 전에 포토레지스트가 코팅된 상태의 절연층 및 기판에 약하게 굽기 (soft bake)를 진행함이 바람직하다. 아 때 약하게 굽기 (soft bake) 과정을 종료하면, 기판을 충 분히 자연 냉각시켜 상기 ) 단계를 수행하기 전의 은도와 동일한 상태의 온도임 을 확인한 후에 다음 단계인 상기 (c) 단계를 수행한다 . 이 때 약하게 굽기 (soft bake)의 구체적 조건은 80 내지 120 °C에서 1 내지 15분 동안의 적용에 해당한다. 상기 (c) 단계에서는 코팅된 포토레지스트를 마스크얼라이너 (mask al igner) 를 이용하여 기둥 모양의 포토마스크 창을 통하여 자외선에 노출시켜 1차 노광을 수행한다. 이와 같이 1차 노광이 완료되면 , 절연충의 상부에는 기등 모양으로 포토 레지스트가 경화되어 포토레지스트 기등부 (13)가 형성된다 . 이 때 노광된 광 에너 지는 포토레지스트가 포토레지스트 최상부부터 절연층 바로 위까지 경화될 수 있을 만큼 층분하여야 한다. After coating the photoresist in step (b), it is preferable to perform a soft bake on the insulating layer and the substrate in the state where the photoresist is coated before performing the step (c). At the end of the soft bake process, the substrate is naturally cooled to the same temperature as the silver before the above step is performed. After checking, perform the next step (c). The specific conditions of soft bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C. In the step (c), the coated photoresist is exposed to ultraviolet rays through a columnar photomask window using a mask aligner to perform primary exposure. When the primary exposure is completed in this way, the photoresist is cured in a lamp shape on the upper portion of the insulating worm to form the photoresist lamp portion 13. At this time, the exposed light energy should be layered so that the photoresist can be cured from the top of the photoresist to just above the insulating layer.
상기 (c) 단계의 1차 노광올 수행한 후에는, 상기 (d)단계를 수행하기 전에 포토레지스트 기등부 (13)가 형성된 상태의 절연층 및 기판에 노광 후 굽기 (post exposure bake)를 진행함이 바람직하다. 이 때 노광 후 굽기 (post exposure bake) 과정을 종료하면, 기판을 층분히 자연 냉각시 켜 상기 (a) 단계를 수행하기 전의 온 도와 동일한 상태의 온도임을 확인한다. 이 때 노광 후 굽기 (post exposure bake) 의 구체적 조건은 80 내지 120 °C에서 1 내지 15분 동안와 적용에 해당한다 . After performing the first exposure of step (c), before exposure step (d), a post exposure bake is performed on the insulating layer and the substrate in which the photoresist light emitting part 13 is formed. It is preferable to. At this time, when the post exposure bake process is completed, the substrate is naturally cooled to confirm that the temperature is the same as the temperature before the step (a) is performed. The specific conditions of post exposure bake at this time correspond to 1 to 15 minutes and application at 80 to 120 ° C.
상기 (d) 단계에서는 기등부 (13) 사이의 포토레지스트 상부를 마이크로 크기 의 와이어 형 태의 창을 가진 포토마스크를 통하여 기등부 사이의 포토레지스트를 자외선에 노출시 키는 2차 노광을 수행한다. 2차 노광 단계에서는 포토레지스트가 흡수할 수 있는 자외선의 에너지를 1차 노광보다 적도록 제한하여 포토레지스트의 상단만을 경화할 수 있도록 한다 . 상기 2차 노광을 통하여, 포토레지스트 기등부들 사이의 포토레지스트 일부가 와이어 형상으로 경화되어 상기 포토레지스트 기등부 들을 서로 연결하는 마이크로 포토레지스트 와이어 (14)를 형성 한다. 이 때 상기 마 이크로 포토레지스트 와이어는 절연층에서부터 소정 간격 부양되도록 형성된다. 상기 (d) 단계의 2차 노광을 수행한 후에는 , 상기 (e)단계를 수행하기 전에 포토레지스트 기등부 (13) 및 마이크로 포토레지스트 와이어 (14)가 형성된 상태의 절연층 및 기판에 노광 후 굽기 (post exposure bake)를 진행함이 바람직하다 . 이 때 노광 후 굽기 (post exposure bake) 과정을 종료하면, 기판을 층분히 자연 넁각 시켜 상기 (a) 단계를 수행하기 전의 온도와 동일한 상태의 온도임을 확인한다. 충 분히 넁각되지 않으면 상기 (e)단계의 현상 (development ) 단계에서 포토레지스트 기등부 (13) 및 마이크로 포토레지스트 와이어 (14)가 열응력에 의해 크랙이나 파괴 가 일어날 수도 있기 때문이 다. 이 때 노광 후 굽기 (post exposure bake)의 구체적 조건은 80 내지 120 °C에서 1 내지 15분 동안의 적용에 해당한다 . In the step (d), the secondary exposure is performed by exposing the photoresist between the lamps to the ultraviolet through a photomask having a micro-sized wire-shaped window on the upper portion of the photoresist between the lamps. In the second exposure step, only the upper end of the photoresist can be cured by limiting the energy of the ultraviolet light absorbed by the photoresist to less than the first exposure. Through the secondary exposure, a portion of the photoresist between the photoresist light emitting portions is cured into a wire shape to form a micro photoresist wire 14 connecting the photoresist light emitting portions to each other. At this time, the micro photoresist wire is formed so as to support a predetermined interval from the insulating layer. After performing the second exposure of step (d), after the exposure to the insulating layer and the substrate in the state where the photoresist light emitting portion 13 and the micro photoresist wire 14 is formed before performing the step (e) It is desirable to proceed with a post exposure bake. At this time, when the post exposure bake process is completed, the substrate is naturally spontaneously sensed to confirm that the temperature is the same as the temperature before the step (a). If it is not sufficiently sensed, the photoresist light emitting part 13 and the micro photoresist wire 14 may be cracked or destroyed by thermal stress in the development step of step (e). The specific conditions of post exposure bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
상기 (e)단계에서는 노광된 부분을 제외한 나머지 부분와 포토레지스트를 현 상 (development )으로 제거한다. 이 러한 포토레지스트 현상 (development )을 통하여 부유된 상태의 마이크로 포토레지스트 와이어 (14) 및 포토레지스트 기등부 (13)만이 남는다. 현상 (development )의 방법으로는 통상의 기술자에 게 공지된 다양한 종류의 현상액 (developer)의 사용이 가능하며, 예를 들면 SU-8 현상액 (SU-8 developer)을 사용할 수도 있다 . In the step (e), the remaining portions except the exposed portion and the photoresist are applied. Remove as phase. Through this photoresist development, only the micro photoresist wire 14 and the photoresist light emitting portion 13 in the suspended state remain. As a development method, various types of developers known to those skilled in the art can be used, and for example, a SU-8 developer may be used.
상기 (e) 단계의 현상 (development )을 수행한 후에는 , 상기 (f )단계를 수행 하기 전에 현상으로 남는 부분을 세척을 함이 바람직하다. 세척 에 있어 세척의 구 체적 인 방법은 비제한적 이며, 예를 들면 이소프로필 알코올과 메탄을 순서로 순차 적인 세척을 하는 것도 가능하다 .  After the development of step (e) is carried out, it is preferable to wash the remaining part of development before the step (f). The specific method of washing in the washing is not limited, and it is also possible to sequentially wash, for example, isopropyl alcohol and methane.
또한 상기 (e)단계의 현상에도 불구하고 제거되지 못한 작은 입자들이 존재 할 수도 았다. 따라서 상기 (e) 단계의 현상 (development )을 수행한 후에는 , 상기 (f)단계를 수행하기 전에 포토레지스트 애셔 (Photoresist asher)를 이용하여 상기 (e)단계에서 제거되지 못한 나머지 작은 입자들을 깨끗하게 제거하는 것도 바람직 하다 .  In addition, there may be small particles that could not be removed despite the phenomenon of step (e). Therefore, after the development of step (e), the remaining small particles that were not removed in step (e) are cleaned using a photoresist asher before performing step (f). It is also desirable to remove.
상기 (f) 단계에서는 상기 (e) 단계 이후 남아있는 마이크로 포토레지스트 와이어 (14)와 포토레지스트 기등부 (13)를 열분해하여 공중부유형 단일 탄소나노와 이어 (16)를 형성 한다 . 이 때 포토레지스트 기등부는 열분해를 통해 탄소 기등 (carbon post )(15)으로 변형되며, 탄소 기등 (15)은 열분해로 형성된 공중부유형 단 일 탄소나노와이어 (16)가 절연층으로부터 소정 간격 부양되게 한다. 상기 마이크로 포토레지스트 와이어 (14)의 유리 전이온도는 약 250 °C 이나, 열분해 과정 이 진행되 면서 열분해로 인한 유기물 기체가 외부로 빠져나가면서 유리전이온도가 증가하게 되어 열분해 과정 전의 마이크로 포토레지스트 와이어 (14)와 열분해로 형성된 탄소 나노와이어 (16)는 형상 면에서 차이는 없다 . (도 2) 따라서 상기 열분해 과정에 있 어 마이크로 포토레지스트 와이어 (14)는 처 짐 없이 탄소나노와이어 (16)로 변형된다. 또한 상기 열분해 과정에 있어 마이크로 포토레지스트 와이어 (14)를 지 탱하고 있는 기둥부분의 부피 감소로 인하여, 열분해로 형성되는 와이어는 양쪽 가장자리로부터 인장응력윷 받게 되므로 최종 형성되는 공중부유형 탄소와이어 (16)가 반듯한 형상 을 유지하게 된다. In the step (f), the micro-resist wire 14 and the photoresist register 13 remaining after the step (e) are thermally decomposed to form an airborne type single carbon nanowire 16. At this time, the photoresist lamp is deformed into a carbon post (15) through pyrolysis, and the carbon lamp (15) causes the airborne type single carbon nanowires (16) formed by pyrolysis to be suspended from the insulating layer at a predetermined interval. do. The glass transition temperature of the micro photoresist wire 14 is about 250 ° C. As the pyrolysis process proceeds, the organic gas due to pyrolysis escapes to the outside, thereby increasing the glass transition temperature, and thus the micro photoresist wire before the pyrolysis process. (14) and carbon nanowires 16 formed by pyrolysis do not differ in shape. 2, the micro photoresist wire 14 is thus transformed into carbon nanowires 16 without sagging. In addition, due to the volume reduction of the column portion supporting the micro photoresist wire 14 in the pyrolysis process, the wire formed by pyrolysis is subjected to tensile stress from both edges, thereby forming the airborne carbon wire (16). ) Will maintain a straight shape.
한편 본 발명의 하나의 목적은 공중부유형 단일 탄소나노와이어의 크기를 최 소화하기 위 한 공중부유형 단일 탄소나노와이어의 제조 방법에 있는 만큼, 본 발명 자들은 상기 (f )단계의 열분해의 특징으로 특정 형 태의 것을 채택함이 상기 목적에 보다 바람직함을 알게 되 었다 . 상기 (f )단계의 열분해는 제 1 단계 및 제 2 단계의 두 단계로 행해지며, 제 2 단계가 제 1단계보다 높은 온도에서 행해진다. 구체적으 로는 상기 제 1단계는 300 내지 400 °C에서 30 내지 90분 동안 행해지며, 상기 제 2단계는 600 내지 1000 °C에서 , 바람직하게는 900 내지 1000 °C에서 30 내지 90분 동안 행해진다. 보다 구체적으로 300 내지 400 °C까지 1 °C/분 (min)으로 승온되어 300 내지 400 °C에서 30 내지 90분을 유지하면서 상기 제 1단계가 행해지며, 이후 에는 600 내지 1000 °C까지 , 바람직하게는 900 내지 1000 °C까지 1 °C/분 (min)으로 승온되어 600 내지 1000 °C에서, 바람직하게는 900 내지 1000 °C에서 30 내지 90분 을 유지하면서 상기 제 2단계가 행해진다. 도 3은 상기 (f) 단계의 열분해 조건의 비제한적인 예시에 해당하지만 이에 '한정되는 것은 아니다. On the other hand, one object of the present invention is a method for producing a floating-type single carbon nanowires to minimize the size of the floating-type single carbon nanowires, the present inventors are characterized by the thermal decomposition of step (f) As a result, it has been found that the adoption of a particular type is more preferable for this purpose. The pyrolysis of step (f) is carried out in the first and second steps This is done in two stages, with the second stage at a higher temperature than the first stage. Specifically, the first step is carried out for 30 to 90 minutes at 300 to 400 ° C, the second step is carried out at 600 to 1000 ° C, preferably for 30 to 90 minutes at 900 to 1000 ° C. . More specifically, the first step is performed while maintaining a temperature of 300 ° C. to 1 ° C./min (min) to 300 ° C. to 30 ° to 90 minutes at 300 ° C. to 400 ° C., and then to 600 ° C. to 1000 ° C. preferably it is 900 to 1000 ° in the C 1 ° C / minute (min) temperature increase is from 600 to 1000 ° C to up to, and preferably 900 to 1000 ° C maintained for 30 to 90 minutes in the second step and performed . 3 corresponds to a non-limiting example of the pyrolysis conditions of step (f), but is not limited thereto.
또한, 여기서 제 2단계의 열분해 온도는 원하는 탄소 나노와이어의 전기전도 도에 파라 선택적으로 조절할 수 있다. 예를 들어, 제 2단계의 열분해 온도를 각각 In addition, the pyrolysis temperature of the second step may be para-selectively adjusted to the electrical conductivity of the desired carbon nanowires. For example, the pyrolysis temperature of the second stage
700°C, 800°C, 900°C로 수행하는 경우, 두께 400 nm, 너비 30 nm, 길이 10 μπι의 탄 소 와이어의 상온에서의 전기 전도도는 800 S/m, 1,900 S/m, 14,000 S/m로 달라질 수 있다. When performed at 700 ° C, 800 ° C, and 900 ° C, the electrical conductivity at room temperature for carbon wires of thickness 400 nm, width 30 nm and length 10 μπι is 800 S / m, 1,900 S / m, 14,000 S may vary with / m.
상기와 같이 상기 (0 단계에서 열분해의 특징으로 특정 형태의 것을 채택함 이 바람직한 이유는 열½ "해 과정에서 마이크로 포토레지스트 와이어의 부피 변화를 최대화함과 동시에 잔류 응력을 최소화 하는 효과를 발휘하기 때문인 것으로 해석 된다. 특히 열분해 과정의 구체적 형태에 있어 마이크로 포토레지스트 와이어의 부 피 변화는 500 °C 이전인 상기 제 1단계에서 대부분 발생하므로, 열분해로 형성되 는 와이어에 가해지는 인장 응력은 500 V 이전인 상기 제 1단계에서 대부분 발생 한다는 것을 알 수 있다. 나아가 열분해 과정의 구체적 형태에 있어서는 600 내지 1000 °C의, 바람직하게는 900 내지 1000 °C의 고온까지도 1 :/분 (min)으로 승온되 어 600 내지 1000 °C에서, 바람직하게는 900 내지 1000 °C에서 30 내지 90분을 유 지하기 때문에 구조변화로 인해 발생되는 응력이 많이 해소되기에 실제 걸리는 웅 력의 정도는 작을 것으로 예상된다. 또한 열분해 공정이 끝난 후에는 형성된 나노 와이어를 자연 넁각 방식으로 냉각하기 때문에 어닐링 (annealing) 효과로 인한 잔 류 응력의 감소도 예상된다. As described above, a specific type of thermal decomposition is adopted as the characteristic of pyrolysis in step 0, because it exhibits the effect of minimizing residual stress while maximizing the volume change of the micro photoresist wire in the thermal process. Particularly in the specific form of the pyrolysis process, the volume change of the micro photoresist wire occurs mostly in the first step above 500 ° C., so the tensile stress applied to the wire formed by pyrolysis is less than 500 V. It can be seen that the most occurs in the first step In addition, in the specific form of the pyrolysis process, even a high temperature of 600 to 1000 ° C., preferably 900 to 1000 ° C., is raised to 1: / min (min). Because of maintaining the structure for 30 to 90 minutes at 600 to 1000 ° C, preferably at 900 to 1000 ° C. It is expected that the amount of actual stress required to dissipate many of the stresses generated is small, and after the pyrolysis process, the formed nanowires are cooled in a natural angled manner, thus reducing the residual stresses due to the annealing effect. A decrease is also expected.
상기 (f) 단계의 열분해가 재현될 구체적 분위기는 상기 특정 형태의 것의 재현을 방해하지 않는 한 특별한 제한은 없으며, 예를 들면 상기 (e)단계에서 형성 된 마이크로 포토레지스트 와이어 (14) 및 포토레지스트 기등부 (13)를 전기로에 넣 고 저진공 펌프 및 고진공펌프를 이용하여 10—7 내지 10— 5 토르 (torr)까지 분위기를 만든 후 상기 특정 형태의 것을 재현할 수도 있다. 상기 ( f ) 단계를 진행한 후에는 열분해에 의하여 형성된 공중부유형 단일 탄 소나노와이어 (16)를 자연 넁각한 후 열분해의 분위기에서 꺼 낸다. 추가적으로 바람 직하게는 포토레지스트 애셔 (Photoresi st asher)를 이용하여 열분해 과정에서 발생 된 탄소 입자를 제거할 수 있다. The specific atmosphere in which the pyrolysis of step (f) is to be reproduced is not particularly limited so long as it does not interfere with the reproduction of the specific type. For example, the micro photoresist wire 14 and the photoresist formed in step (e). the Insert a gideung portion 13 in an electric furnace using a low vacuum pumps, high vacuum pump, create the atmosphere to 10-7 to 10-5 Torr (torr) can be reproduced that of the particular type. After the step (f), the airborne type single carbon nanowires 16 formed by pyrolysis are naturally carved out and removed from the atmosphere of pyrolysis. In addition, photoresist st ashers are preferably used to remove carbon particles generated during pyrolysis.
상기 제조방법에 의하여 제조되는 공중부유형 단일 탄소나노와이어의 두께는 250 nm 이하, 너비가 250 nm 이하 , 좋게는 두께는 180 내지 240 nm이며, 너비는 170 내지 220 nm이다. 또한 상기 제조방법은 전반적으로 종래의 공중부유형 나노와 이어 의 제조방법에 비해 간단하고 경 제적이므로, 최종 형성되는 공중부유형 단일 탄소나노와이어의 수율은 75¾ 이상 , 좋게는 90%이상의 고수율에 해당한다. 따라사 상기 제조방법은 크기가 최소화된 공중부유형 단일 탄소나노와이어를 고수율로 제 공하는 현저성이 있다.  The airborne type single carbon nanowires produced by the above production method has a thickness of 250 nm or less, a width of 250 nm or less, preferably a thickness of 180 to 240 nm, and a width of 170 to 220 nm. In addition, the manufacturing method is generally simpler and more economical than the conventional method of manufacturing the airborne nanowires, and thus the yield of the final airborne single carbon nanowires formed is 75¾ or more, preferably 90% or more. Corresponding. Therefore, the manufacturing method is remarkable in that it provides a high yield of airborne type single carbon nanowires with a minimized size.
또한 상기 제조방법에 의하여 제조되는 공중부유형 단일 탄소나노와이어의 탄소 함량은 95% 이상 , 좋게는 98% 이상의 고함량이다. 통상적으로 고분자 전구체 를 열분해하여 탄소의 함량이 100%인 탄소나노와이어를 형성하기 위하여는 2000 °C 의 상당한 고온 조건이 이론상 요구되지만, 일반적으로 고분자 전구체의 열분해는 1000 °C 부근에서 거의 완료되는 제약이 있어 종래에는 상기 고 탄소함량을 구현하 기 위하여는 열분해가 아닌 다른 외부 조건을 이용할 수 밖에 없는 기술적 곤란이 있었다. 하지만 열분해의 특징으로 특정 형 태의 것을 채택하는 상기 본 발명의 제 조방법에 의하면, 1000 °C 부근의 적 절한 고온 조건에서 열분해가 완료되어도 탄소 나노와이어의 고 탄소함량이 구현되는 효과가 있다. 이는 상기 본 발명의 제조방법 의 열분해 조건으로 특정 형 태의 것이 최 작화된 형 태임을 다시 한 번 지지한다 . 나아가 상기 제조방법에 의하여 제조된 공중부유형 단일 탄소나노와이어에 가스 감지 물질 또는 전기화학 감지 물질을 적층하여 , 감지성 아 향상되고 크기 및 부피가 감소된 공중부유형 단일 탄소나노와이어를 적용한 가스센서 또는 전기화학 센서가 제공될 수도 있다. 상기 가스 감지 물질은 통상의 기술자에 게 공지된 다양 한 것을 채택하는 한 특별한 제한은 없지만 , 팔라듐 또는 백금과 같이 특정 가스에 전도성 이 변화되는 물질을 채택함이 바람직하다. 팔라듐 또는 백금은 가스센서의 감도를 향상시키고 , 탄소나노와이어의 열적 스트레스를 감소시 킬 수 있게 되기 때 문이다. 상기 전기화학 감지 물질 역시 통상의 기술자에게 공지된 다양한 것을 채 택하는 한 별도의 제한은 없다. 본 발명의 또 다른 양태인 중첩 형 나노 전극쌍의 제조방법은 (a) 기판 (50)위에 절연충 (51)을 증착하는 단계; In addition, the carbon content of the airborne type single carbon nanowires prepared by the above production method is 95% or more, preferably 98% or more. Usually, in order to pyrolyze polymer precursors to form carbon nanowires containing 100% of carbon, substantial high temperature conditions of 2000 ° C are theoretically required, but in general, the thermal decomposition of polymer precursors is almost complete at around 1000 ° C. In order to realize the high carbon content, there has been a technical difficulty in using external conditions other than pyrolysis. However, according to the manufacturing method of the present invention adopting a specific type as a characteristic of the thermal decomposition, there is an effect that the high carbon content of the carbon nanowires is implemented even if the thermal decomposition is completed at an appropriate high temperature conditions around 1000 ° C. This again supports that the specific form is the optimized form as the thermal decomposition conditions of the production method of the present invention. Furthermore, by stacking a gas sensing material or an electrochemical sensing material on the airborne type single carbon nanowire manufactured by the manufacturing method, the gas sensor is applied to the airborne type single carbon nanowire with improved sensitivity and reduced size and volume. Or an electrochemical sensor may be provided. The gas sensing material is not particularly limited as long as it adopts various ones known to those skilled in the art, but it is preferable to adopt a material whose conductivity is changed to a specific gas such as palladium or platinum. Palladium or platinum can improve the gas sensor's sensitivity and reduce the thermal stress of carbon nanowires. The electrochemical sensing material is also not limited as long as it adopts a variety of known to those skilled in the art. Another embodiment of the present invention is a method of manufacturing a superposed nano-electrode pair (a) depositing an insulator 51 on the substrate 50;
(b) 상기 절연층 상에 포토레지스트 (52)를 1차 코팅하는 단계;  (b) first coating a photoresist (52) on the insulating layer;
(c) 상기 1차 코팅된 포토레지스트를 평면 전극 모양의 포토마스크를통하여 1차 노광하여 상기 절연층의 상부에 포토레지스트 평면 전극부 (53)를 형성하는 단 계;  (c) firstly exposing the first coated photoresist through a planar electrode-shaped photomask to form a photoresist planar electrode portion 53 on the insulating layer;
(d) 상기 (c) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 (development)으로 제거하는 단계;  (d) removing the photoresist of portions other than the portions exposed in step (c) by development;
(e) 상기 (d) 단계 이후 남아있는 상기 절연층 및 평면 전극부 상에 포토레 지스트 (54)를 2차코팅하는 단계;  (e) secondary coating a photoresist (54) on the insulating layer and the planar electrode portion remaining after the step (d);
(f) 상기 2차 코팅된 포토레지스트를 기등 모양의 포토마스크를 통하여 2차 노광하여 상기 절연층의 상부에 포토레지스트 기등부 (55)를 형성하는단계;  (f) secondly exposing the second coated photoresist through a light-shaped photomask to form a photoresist light emitting portion 55 on the insulating layer;
(g) 상기 기등부 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 기둥부를 연결하는마이크로 크기의 와이어 형태로 3차 노광함으로서, 상기 포토레지스트 기등부를 서로 연결하는 마이크로 포토레지스트 와이어 (56)를 형성하는 단계;  (g) micro-photoresist wires 56 connecting the photoresist lamps with each other by exposing the upper portions of the photoresist between the lamps in the form of micro sized wires connecting the pillars through a wire-shaped photomask; Forming a;
(h) 상기 (g) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 (development)으로 제거하는 단계; 및  (h) removing the photoresist of portions other than the portions exposed in step (g) by development; And
(i) 상기 (h) 단계 이후 남아있는 상기 평면 전극부 (53), 기등부 (55) 및 마 이크로 크기와와이어 (56)를 열분해하여 평면 전극 (57)과 공중부유형 탄소나노메쉬 (59)를 형성하는 단계를 포함하며,  (i) thermally decomposing the planar electrode part 53, the lamp part 55, and the micro-sized wire 56 remaining after the step (h) to form the planar electrode 57 and the airborne carbon nanomesh 59 Forming a)
상기 (i) 단계의 열분해는 제 1 단계 및 제 2 단계의 두 단계로 행해지며, 제 2 단계가 제 1단계보다 높은 온도에서 행해진다. (도 4)  The pyrolysis of step (i) is carried out in two stages, a first stage and a second stage, and the second stage is performed at a higher temperature than the first stage. (Figure 4)
상기 기판 (50)은 본 발명의 목적 달성을 위한 측면에 있어서 종류에 특별한 제한을 두지는 않으나, 바람직하게는 실리콘 기판, 더욱 바람직하게는 실리콘 웨이 퍼를 사용할 수 있다. 이 때 실리콘 웨이퍼를 기판으로 사용하는 경우 일반적인 크 기인 6 내지 9 인치의 사용도 가능하다.  The substrate 50 is not particularly limited in kind in terms of achieving the object of the present invention, preferably a silicon substrate, more preferably a silicon wafer can be used. In this case, when using a silicon wafer as a substrate, it is also possible to use 6 to 9 inches, which is a common size.
상기 (a)단계에서 기판에 증착되는 절연층 (51)은 두 탄소 기등 (58) 및 평면 전극 (57)간의 전기적 연결을 방지할 수 있는 임의의 물질로 이루어질 수 있으며, 예를 들면 이산화규소 또는 실리콘 나이트라이드로 이루어질 수 있다. 또한 상기 (a)단계에서는 기판의 상면 전체에 절연층을 증착함이 바람직하다. 이 때 증착은 통상의 기술자에게 공지된 비제한적인 방법에 의하여 수행될 수 있고, 예를 들면 열산화방법 (Thermal oxidation)에 의한 증착이 가능하다. 상기 (a)단계에서 기판을 절연체로 사용할 경우, 절연층을 증착하는 단계를 생략할 수도 있다. 절연체 기판 물질로는 석영 또는 산화알루미늄 등이 될 수 있 다. The insulating layer 51 deposited on the substrate in step (a) may be made of any material capable of preventing electrical connection between the two carbon lamps 58 and the planar electrode 57, for example, silicon dioxide or It may be made of silicon nitride. In addition, in the step (a), it is preferable to deposit an insulating layer on the entire upper surface of the substrate. At this time, the deposition may be carried out by a non-limiting method known to those skilled in the art, for example, it is possible to deposit by thermal oxidation method (Thermal oxidation). When the substrate is used as the insulator in step (a), the step of depositing the insulating layer may be omitted. The insulator substrate material may be quartz or aluminum oxide or the like.
상기 (a) 단계에서 기판위에 절연층을 증착한 후에는, 상기 (b)단계를 수행 하기 전에 세척 공정으로 증착된 절연층을 세척함이 바람직하다. 이 때 세척의 구 체적인 방법은 비제한적이며, 예를 들면 피라나 용액 (Piranha solution - 황산 (H2S04):과산화수소 (¾02)=4:1흔합용액)에 의한 세척도 가능하다. 상기 (b) 단계에서는 기판 위에 증착된 절연층 상에 포토레지스트 (52)를 고 르게 1차 코팅하며, 이 때 코팅은릉상의 기술자에게 공지된 비제한적인 방법으로 수행될 수 있으며, 예를 들면 스핀 코팅, 딥 코팅, 또는 그라비아 코팅 등의 다양 한 방법에 의하여 수행될 수 있다. 상기 (b) 단계에서 1차 코팅되는 포토레지스트 는 원칙적으로 제한을 두지 않으나, SU-8 포토레지스트를 포함하는 네가티브 포토 레지스트를 이용함이 바람직하다. 이 때 1차 코팅되는 포토레지스트의 두께는 2 내 지 10 μπι, 바람직하게는 3내지 8 μπι이다. After depositing the insulating layer on the substrate in step (a), it is preferable to wash the insulating layer deposited by the cleaning process before performing the step (b). At this time, the specific method of washing is not limited. For example, washing with a Piranha solution (Piranha solution-sulfuric acid (H 2 SO 4 ): hydrogen peroxide (¾0 2 ) = 4: 1 mixed solution) is also possible. In the step (b), the photoresist 52 is uniformly first coated on the insulating layer deposited on the substrate, and the coating may be performed by a non-limiting method known to the skilled person, for example. It can be carried out by various methods such as spin coating, dip coating, or gravure coating. The photoresist coated in the step (b) is not limited in principle, but it is preferable to use a negative photoresist including a SU-8 photoresist. At this time, the thickness of the first photoresist to be coated is 2 to 10 μπι, preferably 3 to 8 μπι.
상기 (b) 단계에서 포토레지스트를 1차 코팅한후에는, 상기 (c)단계를 수행 하기 전에 포토레지스트가 1차 코팅된 상태의 절연층 및 기판에 약하게 굽기 (soft bake)를 진행함이 바람직하다. 이 때 약하게 굽기 (soft bake) 과정을 종료하면, 기 판을 층분히 자연 넁각시켜 상기 (a) 단계를 수행하기 전의 온도와 동일한 상태와 온도임을 확인한 후에 다음 단계인 상기 (c) 단계를 수행한다. 이 때 약하게 굽기 (soft bake)의 구체적 조건은 80 내자 120 °C에서 1 내지 15분 동안와 적용에 해당 한다. After the first coating of the photoresist in the step (b), before performing the step (c), it is preferable to perform a soft bake on the insulating layer and the substrate in the state where the photoresist is first coated. . At this time, when the soft bake process is finished, the substrate is sufficiently natural to check that the substrate is in the same state and temperature as before the step (a), and then the step (c) is performed. . The specific conditions of soft bake at this time correspond to application at 80 to 120 ° C for 1 to 15 minutes.
상기 (c) 단계에서는 1차코팅된 포토레지스트를 평면 전극 모양의 포토마스 크 창을 통하여 자외선에 노출시켜 1차 노광을 수행한다. 이와 같아 1차노광이 완 료되면, 절연층의 상부에는 평면 전극 모양으로 1차 코팅된 포토레지스트가 경화되 어 포토레지스트 평면 전극부 (53)가 형성된다. 이 때 노광된 광 에너자는 포토레지 스트가 포토레지스트 최상부부터 절연층 바로 위까지 경화될 수 있을 만큼 층분하 여야 한다.  In the step (c), the primary coated photoresist is exposed to ultraviolet rays through a photomask window in the form of a planar electrode to perform the primary exposure. As such, when the primary exposure is completed, the photoresist coated with a primary shape in the form of a flat electrode is cured on the upper portion of the insulating layer to form the photoresist flat electrode part 53. At this time, the exposed optical energy should be layered so that the photoresist can be cured from the top of the photoresist to just above the insulating layer.
상기 (d) 단계에서는 상기 (c) 단계에서 노광된 부분을 제외한 나머지 부분 의 포토레지스트를 현상 (development)으로 제거한다. 상기 (d) 단계의 현상 (development)을 하지 않으면, 상기 (h)단계의 현상 (development ) 시간이 오래 걸 리면서 형성된 평면 전극부, 기등부 및 마이크로 크기의 와이어에 화학적 파괴가 일어나 크랙이 발생할 수 있기 때문에 필수적으로 진행되어야 한다. 상기 (d) 단계 의 포토레지스트 현상 (development)을 통하여 평면 전극부만이 남는다. 현상 (development)의 방법으로는 통상의 기술자에게 공지된 다양한 종류의 현상액 (developer)의 사용이 가능하며, 예를 들면 SU— 8 현상액 (SU-8 developer)을 사용할 수도 있다. In the step (d), the photoresist of the remaining portions except for the portion exposed in the step (c) is removed by development. If the development of step (d) is not performed, chemical destruction may occur due to chemical breakdown of the flat electrode part, the lamp part, and the micro-sized wire formed while the development time of step (h) takes a long time. It is essential to proceed. Step (d) Only the flat electrode portion remains through the photoresist development of. As a method of development, various kinds of developers known to those skilled in the art can be used, and for example, SU-8 developer may be used.
또한 상기 (d) 단계를 생략하고 상기 (c) 단계와 상기 (g) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지스트를 상기 (h) 단계에서 한꺼번에 현상 (development)으로 제거하는 것도 또 다른 양태로 가능하다.  In addition, it is another aspect to omit the step (d) and to remove the photoresist of the remaining portions except the portions exposed in the steps (c) and (g) by the development at the same time in the step (h). Is possible.
상기 (e)단계에서는 (d) 단계 이후 남아있는 상기 절연층 및 평면 전극부 상 에 포토레지스트 (54)를 2차 코팅한다. 이 때 코팅은 통상의 기술자에게 공지된 비 제한적인 방법으로 수행될 수 있으며, 예를 들면 스핀 코팅, 딥 코팅, 또는 그라비 아 코팅 등의 다양한 방법에 의하여 수행될 수 있다. 상기 (e) 단계에서 2차 코팅 되는 포토레지스트는 원칙적으로 제한을 두지 않으나, SU-8 포토레지스트를 포함하 는 네가티브 포토레지스트를 이용함이 바람직하다. 이 때 2차 코팅되는 포토레지스 트의 두께는 5 내지 75 μπι, 바람직하게는 20 내지 40 μπι으로 상기 (b) 단계에서 1차코팅되는 포토레지스트보다 두껍게 형성된다.  In step (e), the photoresist 54 is second-coated on the insulating layer and the planar electrode part remaining after step (d). At this time, the coating may be performed by a non-limiting method known to those skilled in the art, for example, may be performed by various methods such as spin coating, dip coating, or gravure coating. The photoresist that is secondary coated in step (e) is not limited in principle, but it is preferable to use a negative photoresist including a SU-8 photoresist. At this time, the thickness of the photoresist coated with the secondary is 5 to 75 μπι, preferably 20 to 40 μπι, and is formed thicker than the photoresist coated first in step (b).
상기 (e) 단계에서 포토레지스트를 2차 코팅한 후에는, 상기 (f) 단계를 수 행하기 전에 포토레지스트가 2차 코팅된 상태의 평면 전극부, 절연층 및 기판에 약 하게 굽기 (soft bake)를 진행함이 바람직하다. 이 때 약하게 굽기 (soft bake) 과정 을 종료하면, 기판을 층분히 자연 넁각시켜 상기 (a) 단계를 수행하기 전의 온도와 동일한 상태의 온도임을 확인한 후에 다음 단계인 상기 (f) 단계를 수행한다. 이 때 약하게 굽기 (soft bake)의 구체적 조건은 80 내지 120 °C에서 1 내지 15분 동안 의 적용에 해당한다. After the second coating of the photoresist in the step (e), before the step (f) is carried out, the bake is softly baked on the planar electrode portion, the insulating layer, and the substrate in which the photoresist is coated second Is preferred. At this time, when the soft bake process is terminated, the substrate is sufficiently spontaneously modified to confirm that the temperature is the same as the temperature before the step (a), and then the step (f) is performed. The specific conditions of soft bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
상기 (f) 단계에서는 2차 코팅된 포토레지스트를 기둥 모양의 포토마스크 창 을 통하여 자외선에 노출시켜 평면 전극부의 양 측면에 2차 노광을 수행한다. 이와 같이 2차 노광이 완료되면, 절연층의 상부에는 기둥 모양으로 포토레지스트가 경화 되어 포토레지스트 기둥부 (55)가 평면 전극부 (53)의 양 측면에 형성된다. 이 때 노 광된 광 에너지는 포토레지스트가 포토레지스트 최상부부터 절연층 바로 위까지 경 화될 수 있을 만큼 층분하여야 한다.  In the step (f), the secondary coated photoresist is exposed to ultraviolet rays through a columnar photomask window to perform secondary exposure on both sides of the planar electrode part. When the secondary exposure is completed in this manner, the photoresist is cured in a columnar shape on the upper portion of the insulating layer, and photoresist pillars 55 are formed on both sides of the planar electrode portion 53. At this point, the exposed light energy should be layered enough to cure the photoresist from the top of the photoresist to just above the insulating layer.
상기 (f) 단계의 2차 노광을 수행한 후에는, 상기 (g)단계를 수행하기 전쌔 포토레지스트 기등부 (55)가 형성된 상태의 평면 전극부 (53), 절연층 및 기판에 노 광 후 굽기 (post exposure bake)를 진행함이 바람직하다. 이 때 노광 후 굽기 (post exposure bake) 과정을 종료하면, 기판을 층분히 자연 넁각시켜 상기 (a) 단계를 수행하기 전의 은도와 동일한 상태의 온도임을 확인한다 . 이 때 노광 후 굽기 (post exposure bake)의 구체적 조건은 80 내지 120 °C에서 1 내지 15분 동안의 적용에 해당한다 . After performing the second exposure of the step (f), before the step (g), after exposing the flat electrode portion 53, the insulating layer and the substrate in the state where the photoresist light emitting part 55 is formed It is desirable to proceed with a post exposure bake. If the end of this time the post-exposure baking (t pos exposure bake) process, the substrate layer sufficiently to natural nyaenggak the step (a) Make sure that the temperature is the same as the degree of silver before performing. The specific conditions of post exposure bake at this time correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
상기 (g) 단계에서는 기등부 (55) 사이의 포토레지스트 상부를 마이크로 크기 의 와이어 형 태의 창을 가진 포토마스크를 통하여 기등부 사이 의 포토레지스트를 자외선에 노출시키는 3차 노광을 수행한다 . 3차 노광 단계에서는 포토레지스트가 흡수할 수 있는 자외선의 에너지를 2차 노광보다 적도록 제한하여 포토레지스트의 상단만을 경화할 수 있도록 한다 . 상기 3차 노광을 통하여, 포토레지스트 기등부들 사이의 포토레지스트 일부가 와이어 형상으로 경화되어 상기 포토레지스트 기등부 들을 서로 연결하는 마이크로 포토레지스트 와이어 (56)를 형성 한다 . 이 때 상기 마 이크로 포토레지스트 와이어 (56)는 절연층에서부터 소정 간격 부양되도록 형성된 다 .  In the step (g), a third exposure is performed in which the upper portion of the photoresist between the light emitting portions 55 is exposed to ultraviolet rays through a photomask having a micro-sized wire window. In the third exposure step, the energy of the ultraviolet light absorbed by the photoresist is limited to less than the second exposure so that only the upper end of the photoresist can be cured. Through the third exposure, a portion of the photoresist between the photoresist light emitting portions is cured into a wire shape to form a micro photoresist wire 56 connecting the photoresist light emitting portions to each other. At this time, the micro photoresist wire 56 is formed so as to support a predetermined interval from the insulating layer.
한편 본 발명에 따른 중첩 형 나노 전극쌍의 제조방법와 목적은 얇고 조밀한 공중부유형 탄소나노메쉬 (59)를 형성하기 위한 것에 있는 만큼 , 상기 (g)단계의 와 이어 형 태의 포토마스크의 와이어 사이의 각도 ( Θ )는 40 내지 60도의 범위를 채택 함이 상기 목적 달성에 더욱 바람직하다. 도 5에도 개시가 된 바와 같이, 상기 (g) 단계의 3차 노광에 사용되는 포토마스크의 와이어 사이의 각도 ( Θ )로 40 내지 60도 의 범위가 채택될 때 최종 형성되는 탄소나노메쉬가 가장 초밀한 형 태를 띰을 알 수 있다.  On the other hand, the manufacturing method and purpose of the superposed nano-electrode pair according to the present invention is to form a thin and dense airborne carbon nano mesh 59, between the wire of the wire-type photomask of the step (g) It is more preferable to achieve the above object that the angle of Θ is in the range of 40 to 60 degrees. As also disclosed in FIG. 5, the carbon nanomesh that is finally formed when the range of 40 to 60 degrees is adopted as the angle Θ between the wires of the photomask used for the third exposure of the step (g) is adopted. You can see the compact form.
상기 (g) 단계의 3차 노광을 수행한 후에는, 상기 (h)단계를 수행하기 전에 포토레지스트 기등부 (55) 및 마이크로 포토레지스트 와이어 (56)가 형성된 상태의 평면 전극부 (53), 절연층 및 기판에 노광 후 굽기 (post exposure bake)를 진행함이 바람직하다. 이 때 노광 후 꿉기 (post exposure bake) 과정을 종료하면, 기판을 충 분히 자연 냉각시켜 상기 (a) 단계를 수행하기 전의 온도와 동일한 상태의 온도임 을 확인한다. 층분히 냉각되지 않으면 상기 (h)단계의 현상 (development ) 단계에서 평 면 전극부 (53), 포토레지스트 기등부 (55) 및 마이크로 포토레지스트 와이어 (56) 가 열응력에 꾀해 크랙이나 파괴가 일어날 수도 있기 때문이다. 이 띠] 노광 후 굽 기 (post exposure bake)의 구체적 조건은 80 내지 120 °C에서 1 내지 15분 동안의 적용에 해당한다. After performing the third exposure of step (g), before performing the step (h), the planar electrode part 53 in which the photoresist light emitting part 55 and the micro photoresist wire 56 are formed, It is preferable to perform post exposure bake on the insulating layer and the substrate. At this time, when the post exposure bake process is completed, the substrate is sufficiently cooled to confirm that the temperature is the same as the temperature before the step (a). If not sufficiently cooled, the planar electrode portion 53, the photoresist light emitting portion 55, and the micro photoresist wire 56 are subjected to thermal stress in the development stage of step (h) to cause cracks or breakage. Because it may. The specific conditions of post exposure bake correspond to the application for 1 to 15 minutes at 80 to 120 ° C.
상기 (h)단계에서는 노광된 부분을 제외 한 나머지 부분의 포토레지스트를 현 상 (development )으로 제거 한다. 이 러한 포토레지스트 현상 (development )을 통하여 부유된 상태의 마이크로 포토레지스트 와이어 (56) , 포토레자스트 기둥부 (55) 및 평 면 전극부 (53)만이 남는다. 현상 (development)의 방법으로는 통상의 기술자에게 공 지된 다양한 종류의 현상액 (developer)의 사용이 가능하며, 예를 들면 SU-8 현상액 (SU-8 developer)을 사용할 수도 있다. In the step (h), the photoresist of the remaining portion except for the exposed portion is removed by development. Through this photoresist development, the microphotoresist wire 56, the photoresist pillar portion 55 and the flat state of the suspended state Only the surface electrode portion 53 remains. As a development method, various types of developers known to those skilled in the art can be used. For example, a SU-8 developer may be used.
상기 (h) 단계의 현상 (development)을 수행한 후에는, 상기 (i)단계를 수행 하기 전에 현상으로 남는 부분을 세척을 함이 바람직하다. 세척에 있어 세척의 구 체적인 방법은 비제한적이며, 예를 들면 이소프로필 알코올과 메탄을 순서로 순차 적인 세척을 하는 것도 가능하다.  After performing the development of the step (h), it is preferable to wash the remaining part of the development before performing the step (i). The specific method of washing in washing is not limited, and it is also possible to sequentially wash, for example, isopropyl alcohol and methane.
또한 상기 (h)단계의 현상에도 불구하고 제거되지 못한 작은 입자들이 존재 할 수도 있다. 따라서 상기 (h) 단계의 현상 (development)을 수행한 후에는, 상기 (i)단계를 수행하기 전에 포토레지스트 애셔, (Photoresist asher)를 이용하여 상기 In addition, there may be small particles that could not be removed despite the phenomenon of step (h). Therefore, after the development of the step (h), the photoresist asher is used before the step (i).
(h)단계에서 제거되지 못한 나머지 작은 입자들을 깨끗하게 제거하는 것도 바람직 하다. It is also desirable to clean the remaining small particles that could not be removed in step (h).
상기 (i) 단계에서는 상기 (h) 단계 아후 남아있는 마이크로 포토레지스트 와이어 (56), 포토레지스트 기등부 (55) 및 평면 전극부 (53)를 열분해하여 평면 전극 (57)과 공중부유형 탄소나노메쉬 (59)를 형성하며, 열분해로 형성되는 중첩형 나노 전극쌍으로 평면 전극 (57)과 공중부유형 탄소나노메쉬 (59)는 도 6에 의하여 확인할 수 있다. 이 때 포 ^레지스트 기둥부 (55)는 열분해를 통해 탄소 기둥 (carbon post)(58)으로 변형되고 평면 전극부 (53)는 열분해를 통해 평면 전극 (57)으로 변 형되며 , 탄소 기등 (58)은 열분해로 형성된 공중부유형 탄소나노메쉬 (59)를 절연층 으로부터 소정 간격 부양되게 한다. 또한 상기 열분해 과정에 있어 마이크로 포토 레지스트 와이어 (56)는 처짐없이 탄소나노메쉬 (59)로 변형되며, 이는 상기 열분해 과정에 있어 마이크로 포토레지스트 와이어 (56)를 지탱하고 있는 기등부분에서도 열분해가 일어나면서 형성되는 나노메쉬는 양쪽 가장자리로부터 인장응력을 받게 되기 때문이다.  In the step (i), the micro-resist wire 56, the photoresist lamp part 55, and the planar electrode part 53 remaining after the step (h) are thermally decomposed to form the planar electrode 57 and the airborne carbon nanoparticles. 6, the flat electrode 57 and the airborne carbon nanomesh 59 may be identified as superimposed nano electrode pairs that form a mesh 59 and are formed by pyrolysis. At this time, the photoresist pillar portion 55 is transformed into a carbon post 58 through pyrolysis, and the planar electrode portion 53 is transformed into a flat electrode 57 through pyrolysis. ) Causes the airborne type carbon nanomesh 59 formed by pyrolysis to be floated from the insulating layer by a predetermined interval. In addition, in the pyrolysis process, the micro photoresist wire 56 is deformed into carbon nanomesh 59 without sagging, and in the pyrolysis process, pyrolysis also occurs in the lamppost supporting the micro photoresist wire 56. This is because the nanomesh formed is subjected to tensile stress from both edges.
한편 본 발명에 따른 중첩형 나노 전극쌍의 제조방법의 목적은 얇고 조밀한 공중부유형 탄소나노메쉬를 형성하기 위한 것에 있는 만큼, 본 발명자들은 상기 On the other hand, the object of the manufacturing method of the superposed nano-electrode pair according to the present invention is to form a thin and dense airborne carbon nanomesh,
(i)단계의 열분해의 특징으로 특정 형태의 것을 채택함이 상기 목적에 보다 바람직 함을 알게 되었다. 상기 (Π단계의 열분해는 제 1 단계 및 제 2 단계의 두 단계로 행해지며, 제 2 단계가 제 1단계보다 높은 온도에서 행해진다. 구체적으로는 상기 제 1단계는 300 내지 400 °C에서 30 내지 90분 동안 행해지며, 상기 제 2단계는 600 내지 1000 °C에서, 바람직하게는 900 내지 1000 °C에서 30 내지 90분 동안 행 해진다. 보다 구체적으로 300 내지 400 °C까지 1 °C/분 (min)으로 승은되어 300 내 지 400 °C에서 30 내지 90분을 유지하면서 상기 제 1단계가 행해지며, 이후에는 600 내지 1000 °C까지 , 바람직하게는 900 내지 1000 °C까지 1 °C/분 (min)으로 승온 되어 600 내지 1000 °C에서, 바람직하게는 900 내지 1000 °C에서 30 내지 90분을 유지하면서 상기 제 2단계가 행해진다. It has been found that it is more preferable for this purpose to adopt certain types of features as a characteristic of the pyrolysis of step (i). The pyrolysis of step (Π) is carried out in two stages, the first stage and the second stage, and the second stage is carried out at a higher temperature than the first stage. Specifically, the first stage is performed at 300 to 400 ° C. To 90 minutes, and the second step is carried out at 600 to 1000 ° C., preferably at 900 to 1000 ° C. for 30 to 90 minutes, more specifically 1 ° C./min to 300 to 400 ° C. (min) has been won within 300 Not at 400 ° C while maintaining 30 to 90 minutes is the first step used which after which the temperature was raised with 1 ° C / minute (min) up to 600 to 1000 ° C, to preferably from 900 to 1000 ° C 600 The second step is carried out at -1000 ° C, preferably at 30-90 minutes at 900-1000 ° C.
상기 (i) 단계의 열분해가 재현될 구체적 분위기는 상기 특정 형태의 것의 재현을 방해하지 않는 한 특별한 제한은 없으며, 예를 들면 상기 마이크로 포토레 지스트 와이어 (56), 포토레지스트 기둥부 (55) 및 평면 전극부 (53)를 전기로에 넣고 저진공 펌프 및 고진공펌프를 이용하여 10— 7 내지 10— 5 토르 (torr)까지 분위기를 만 든 후 상기 특정 형태의 것을 재현할 수도 있다. The specific atmosphere in which the pyrolysis of step (i) is to be reproduced is not particularly limited so long as it does not prevent the reproduction of the specific type, and for example, the micro photoresist wire 56, the photoresist pillar portion 55 and Insert the flat electrode portion 53 in an electric furnace after all, only a low atmosphere to vacuum and using a high vacuum pump 10-7 to 10-5 Torr (torr) can be reproduced that of the particular type.
상기 (i) 단계를 진행한후에는 열분해에 의하여 형성된 평면 전극 (57)과 공 중부유형 탄소나노메쉬 (59)를 자연 넁각한 후 열분해의 분위기에서 꺼낸다. 추가적 으로 바람직하게는 포토레지스트 애셔 (Photoresist asher)를 이용하여 열분해 과정 에서 발생된 탄소 입자를 제거할 수 있다.  After the step (i), the planar electrode 57 and the hollow core-type carbon nanomesh 59 formed by pyrolysis are naturally observed and then removed from the atmosphere of pyrolysis. In addition, a photoresist asher may be preferably used to remove carbon particles generated during the pyrolysis process.
상기 제조방법에 의하여 제조되는 공중부유형 탄소나노메쉬의 너비가 200 내 지 400 nm, 탄소나노와이어 간격이 3 내지 7 μπι이디-. 또한 상기 제조방법은 본 발 명에 따른 공중부유형 단일 탄소나노와이어의 제조방법의 응용 형태인 만큼 간단하 고 경제적이므로, 최종 형성되는 중첩형 나노 전극쌍의 수율은 70% 이상, 좋게는 80%이상의 고수율에 해당한다. 따라서 상기 제조방법은 얇고 조밀한 공중부유형 탄 소나노메쉬를 고수율로 제공하는 현저성이 있다.  The airborne carbon nanomesh prepared by the above production method has a width of 200 to 400 nm and a carbon nanowire spacing of 3 to 7 μπι. In addition, since the manufacturing method is simple and economical as it is an application form of the method for preparing a floating-type single carbon nanowire according to the present invention, the yield of the overlapping nano-electrode pairs to be formed is 70% or more, preferably 80%. It corresponds to the above high yield. Therefore, the manufacturing method has a remarkable effect of providing a thin and dense airborne carbon nanomesh in high yield.
나아가 상기 제조방법에 의하여 제조된 중첩형 나노 전극쌍에 가스 감지 물 질 또는 전기화학 감지 물질을 적층하여, 감지성이 향상되고 크기 및 부피가 감소 된 중첩형 나노 전극쌍를 적용한 가스센서 또는 전기화학센서가 제공될 수도 있다. 이 때 가스 감지 물질 또는 전기화학 감지 물질은 중첩형 나노 전극쌍을 구성하는 평면전극과 공중부유형 탄소나노메쉬 모두에 적층될 수 있으며, 어느 일방에만 적 층될 수도 있다. 상기 가스 감지 물질은 통상의 기술 에게 공지된 다양한 것을 채 택하는 한 특별한 제한은 없지만, 팔라듐 또는 백금과 같이 특정 가스에 전도성이 변화되는 물질을 채택함이 바람직하다. 팔라듐 또는 백금은 가스센서의 감도를 향 상시키고, 탄소나노와이어의 열적 스트레스를 감소시킬 수 있게 되기 때문이다. 상 기 전기화학 감지 물질 역시 통상의 기술자에게 공지된 다양한 것을 채택하는 한 별도의 제한은 없다.  Furthermore, by stacking a gas sensing material or an electrochemical sensing material on the superposed nanoelectrode pair manufactured by the manufacturing method, a gas sensor or an electrochemical sensor is applied to the superposed nano electrode pair with improved sensitivity and reduced size and volume. May be provided. In this case, the gas sensing material or the electrochemical sensing material may be laminated on both the planar electrode and the airborne carbon nanomesh constituting the superposed nano-electrode pair, and may be laminated only on one side. The gas sensing material is not particularly limited as long as it adopts various ones known to those skilled in the art, but it is preferable to adopt a material whose conductivity is changed to a specific gas such as palladium or platinum. Palladium or platinum can improve the sensitivity of the gas sensor and reduce the thermal stress of carbon nanowires. The electrochemical sensing material is also not limited as long as it adopts a variety of known to those skilled in the art.
【유리한 효과】  Advantageous Effects
본 발명에 따른 공중부유형 단일 탄소나노와이어의 제조방법은 두께 250 nm 이하, 너비 250 nm 이하로 크기가 최소화된 공중부유형 단일 탄소나노와이어를 고 수율로 제공하며, 적절한 고온 조건의 열분해에 의하여도 제조되는 탄소나노와이어 의 고 탄소함량을 구현한다. 따라서 본 발명에 따른 공중부유형 단일 탄소나노와이 어는 기존의 공중부유형 나노와이어 센서의 수율 저하 및 제조적 한계 문제 등을 효과적으로 개선할 수 있을 것으로 기대된다. Method for producing a floating airborne single carbon nanowire according to the present invention is 250 nm thick It provides a high yield of airborne single carbon nanowires with a minimum size of 250 nm or less in width, and implements a high carbon content of carbon nanowires produced by thermal decomposition under appropriate high temperature conditions. Therefore, the airborne single carbon nanowire according to the present invention is expected to effectively improve the yield reduction and manufacturing limitations of the existing airborne nanowire sensors.
본 발명에 따른 중첩형 나노 전극쌍의 제조방법은 얇고 조밀한 공중부유형 탄소나노메쉬를 고수율로 제공하는 효과가 있다.  The method of manufacturing a superposed nanoelectrode pair according to the present invention has the effect of providing a thin and dense airborne carbon nanomesh with high yield.
본 발명의 공중부유형 단일 탄소나노와이어 및 중첩형 나노 전극쌍은 전기 적, 기계적, 및 전기화학적 특성도 우수하여 종래의 것보다 개선된 형태의 가스 센 서 또는 전기화학 센서로의 적용 가능성도 있다.  The airborne single carbon nanowires and superposed nanoelectrode pairs have excellent electrical, mechanical, and electrochemical properties, and thus may be applied to gas sensors or electrochemical sensors of an improved form than conventional ones. .
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 공증부유형 단일 탄소나노와이어의 제조 과정을 도시한 도면이다. 도 2는 공중부유형 단일 탄소나노와이어의 제조 방법에 있어 열분해 과정 껀 의 마이크로 포토레지스트 와이어와 열분해로 형성된 탄소나노와이어의 구조 형상 을 비교한 것이다.  FIG. 1 is a view illustrating a manufacturing process of a notarized single carbon nanowire. Figure 2 compares the structural shape of the carbon nanowires formed by pyrolysis with the micro photoresist wire of the pyrolysis process 제조 in the method of manufacturing airborne single carbon nanowires.
도 3은 공중부유형 단일 탄소나노와이어의 제조 방법에 있어 열분해 조건의 예시에 해당한다.  Figure 3 corresponds to an example of pyrolysis conditions in the manufacturing method of airborne single carbon nanowires.
도 4는 중첩형 나노 전극쌍의 제조방법의 제조 과정을 도시한 도면이다. 도 5는 중첩형 나노 전극쌍의 제조방법의 3차 노광 단계에 있어 포토마스크 의 와이어 사이의 각도 (Θ)에 따른 최종 형성되는 탄소나노메쉬의 조밀도를 나타낸 것이다.  4 is a view illustrating a manufacturing process of a method of manufacturing a superposed nanoelectrode pair. Figure 5 shows the density of the carbon nanomesh finally formed according to the angle (Θ) between the wires of the photomask in the third exposure step of the manufacturing method of the superposed nano-electrode pair.
도 6은 중첩형 나노 전극쌍의 제조방법에 의해 형성되는 중첩형 나노 전극쌍 으로 평면 전극과 공중부유형 탄소나노메쉬를 나타낸다.  FIG. 6 illustrates a planar electrode and an airborne carbon nanomesh as a superposed nanoelectrode pair formed by a method of manufacturing a superposed nanoelectrode pair.
도 7은 X-선 광전자 분광법 (X-ray Photoelectron Spectroscopy; XPS)을 이용 하여 공중부유형 탄소나노메쉬의 탄소 (왼쪽), 산소 (오른쪽), 및 그 외의 원소들의 결합 및 정량을 분석한 것이다. ᅳ  FIG. 7 analyzes the binding and quantification of carbon (left), oxygen (right), and other elements of airborne carbon nanomeshes using X-ray photoelectron spectroscopy (XPS). ᅳ
도 8은 실시예 3에 의하여 최종적으로 형성된 조밀한 형태의 공중부유형 탄 소나노메쉬의 형상을 나타낸다.  FIG. 8 shows the shape of a dense airborne carbon monanomesh finally formed by Example 3. FIG.
도 9는 투과전자현미경을 이용하여 공중부유형 단일 탄소나노와이어의 결정 화도를 확인한 결과이다.  9 is a result of confirming the crystallinity of the airborne type single carbon nanowires using a transmission electron microscope.
도 10은 인가 전압에 의해 공중부유형 단일 탄소나노와이어에서 발생되는응 력 해석 결과를 나타낸다. 도 11은 순환-전류전압실험을 통한 공중부유형 단일 탄소나노와이어의 전기 화학적 특성 및 공중부유형 구조의 전기화학적 센서로서의 특징을 보여준다. 구체 적으로 (a)는 순환-전류전압 (Cyclic volta隱 etry) 실험을 통한 공중부유형 단일 탄소 나노와이어의 전기화학적 특성 연구 결과, (b)는 공중부유형 단일 탄소 나노 와이어의 농도분포 해석 결과 (10 mM Ferrocyanide in 0.5 M KC1), (c)는 평면전극 형 탄소나노와이어의 농도분포 해석 결과 (10 mM Ferrocyanide in 0.5 M KC1)를 나 타낸다. Figure 10 shows the results of the stress analysis generated in the airborne type single carbon nanowires by the applied voltage. FIG. 11 shows the electrochemical characteristics of the airborne single carbon nanowires through cyclic-current voltage experiments and their characteristics as an electrochemical sensor of the airborne structure. Specifically, (a) shows the results of electrochemical characterization of airborne single carbon nanowires through cyclic volta 隱 etry experiments, and (b) shows the results of concentration distribution analysis of airborne single carbon nanowires. (10 mM Ferrocyanide in 0.5 M KC1) and (c) show the concentration distribution analysis results (10 mM Ferrocyanide in 0.5 M KC1) of the planar electrode carbon nanowire.
[부호의 설명]  [Description of the code]
10: 기판 11: 절연층  10: substrate 11: insulating layer
12: 포토레지스트 13: 포토레지스트 기둥부  12: photoresist 13: photoresist pillar
14: 마이크로 포토레지스트 와이어 15: 탄소 기둥  14: micro photoresist wire 15: carbon pillar
16: 공중부유형 단일 탄소나노와이어  16: Airborne Single Carbon Nanowires
50: 기판 51: 절연층  50: substrate 51: insulating layer
52: 1차코팅 포토레지스트 53: 포토레지스트 평면 전극부 52: primary coating photoresist 53: photoresist flat electrode portion
54: 2차코팅 포토레지스트 55: 포토레지스트 기등부 54 : Secondary coating photoresist 55: Photoresist light register
56: 마이크로 포토레지스트 와이어 57: 평면 전극  56: micro photoresist wire 57: flat electrode
58: 탄소 기둥 59: 공중부유형 탄소나노메쉬 58: carbon column 59: airborne carbon nanomesh
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
이하, 본 발명에 따른 구체적인 실시예를 상세히 설명하기로 한다. 이에 앞 서, 본 발명의 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나사전적안 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설땅하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하 여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.  Hereinafter, specific embodiments of the present invention will be described in detail. Prior to this, the terms or words used in the specification and claims of the present invention should not be construed as being limited to ordinary or dictionary meanings, and the inventors should understand the concept of terms in order to install their own invention in the best way. Based on the principle that can be properly defined, it should be interpreted as meanings and concepts corresponding to the technical spirit of the present invention.
따라서 본 발명의 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명 의 가장 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술작 사상을 모두 대변하 는 것은 아니므로, 본 발명의 출원시점에 있어서 이들은 대체할 수 있는 균등한 변 형 예들이 있음을 이해하여야 한다.  Therefore, the embodiments described in the specification of the present invention and the configuration shown in the drawings are only the most preferred embodiments of the present invention, and do not represent all of the technical ideas of the present invention, so at the time of filing of the present invention, It should be understood that there are equivalent variations that can be substituted.
[실시예 1] 공중부유형 단일 탄소나노와이어의 제조 Example 1 Preparation of Airborne Type Single Carbon Nanowires
일반적인 6인치의 실리콘 웨이퍼위에 절연층으로 이산화규소를 열산화방법 (Thermal oxidation)으로 증착한 후, 세척 공정 (피라나 용액 (Piranha solution - 황산 (¾S04):과산화수소 (H202)=4:l 흔합용액)에 의함)을 진행하였다. 포토레지스트인 SU-8을 스핀 코팅으로 절연층 위에 두께 25 iim로 고르게 코팅한 후, 95 °C에서 9 분 동안 약하게 굽기 (soft bake)를 진행했다. 약하게 굽기 (soft bake)를 진행한 후 , 실리콘 웨이퍼를 층분히 자연 냉각시켜 처음 상태와 동일한 상태의 온도임을 확 인했다. 실리콘 웨이퍼를 층분히 냉각시킨 후 마스크얼라이너 (mask aligner)를 이 용하여 기둥 모양의 포토마스크 창을 통하여 자외선에 충분히 노출시켜 1차 노광을 수행하고, 95 °C에서 약 3분 동안 노광 후 굽기 (post exposure bake)를 한 후 실리 콘 웨이퍼를 다시 층분히 넁각시켰다. 실리콘 웨이퍼를 다시 층분히 냉각시킨 후, 와이어 형태의 포토마스크를 통하여 자외선에 층분히 노출시켜 2차 노광을 수행하 였다. 2차 노광을 수행한 후, 95 °C에사 약 3분 동안 노광 후 굽기 (post exposure bake)를 한 후 실리콘 웨이퍼를 다시 층분히 냉각시켰다. 실리콘 웨이퍼를 다시 충 분히 넁각시킨 후, SU— 8 현상액 (SU-8 developer)을 이용하여 노광된 부분을 제외한 나머지 부분을 현상 (development)으로 제거했다. 현상 후 이소프로필 말코을과 메 탄올 순서로 순차적인 세척을 하고, 현상 단계에서 제거되지 못한 작은 입자들이 남아있는 것을 감안하여 포토레지스트 애셔 (Photoresist asher)를 이용하여 제거되 지 못한 나머지 작은 입자들을 깨끗하게 제거했다. 깨끗한 상태의 마이크로 SU-8 와이어 및 SU-8 기등부를 전기로에 넣고 저진공 펌프 및 고진공펌프를 이용하여 10_ Silicon dioxide was deposited by thermal oxidation on a typical 6-inch silicon wafer, followed by a cleaning process (Piranha solution-sulfuric acid (¾S0 4 ): hydrogen peroxide (H 2 0 2 ) = 4 : l mixed solution)). Photoresist After SU-8 was uniformly coated with a thickness of 25 iim on the insulating layer by spin coating, a soft bake was performed at 95 ° C. for 9 minutes. After a soft bake, the silicon wafer was naturally cooled down to confirm that it was at the same temperature as the initial state. After the silicon wafer has been cooled down sufficiently, the mask aligner is used to expose the ultraviolet light through a pillar-shaped photomask window to perform the first exposure, and after exposure at 95 ° C. for about 3 minutes, baking ( After the post exposure bake, the silicon wafer was sliced again. After further cooling the silicon wafer again, secondary exposure was performed by exposing the silicon wafer to ultraviolet rays through a wire-shaped photomask. After performing the second exposure, after the post exposure bake at 95 ° C. for about 3 minutes, the silicon wafer was again cooled down. After sufficiently etching the silicon wafer, the remaining portions except the exposed portions were removed by development using a SU-8 developer (SU-8 developer). After developing, sequential washing with isopropyl malco and methanol, and small particles that could not be removed in the developing step are removed, and the remaining small particles that cannot be removed by using a photoresist asher are cleaned. did. Put the clean micro SU-8 wire and the SU-8 lamp into an electric furnace and use a low vacuum pump and a high vacuum pump.
6토르 (torr)까지 분위기를 만든 후, 제 1 단계 및 제 2 단계의 두 단계로 열분해를 진행했다. 구체적으로 350 °C까지 1 °C/분 (min)으로 승온되어 350 °C에서 60분을 유지하면서 제 1단계를 진행했으며, 이후에는 900 °C까지 1 °C/분 (min)으로 승온되 어 900 °C에서 60분을 유지하면서 제 2단계를 진행했다. 열분해 후 형성된 공중부 유형 단일 탄소나노와이어를 자연 냉각한 후 전기로에서 꺼내고, 포토레지스트 애 셔 (Photoresist asher)를 이용하여 열분해 과정에서 발생된 탄소 입자를 제거하였 다. After the atmosphere was made up to 6 torr, pyrolysis was carried out in two stages, the first stage and the second stage. Specifically it is raised by 1 ° C / minute (min) since, as was conducted for the first stage is raised maintained for 60 minutes at 350 ° C as is 1 ° C / min to 900 ° C (min) to 350 ° C The second stage was carried out while maintaining 60 minutes at 900 ° C. The aerial type single carbon nanowires formed after pyrolysis were naturally cooled and then removed from the electric furnace, and the carbon particles generated during the pyrolysis process were removed using a photoresist asher.
[실시예 2] 실시예 1의 공중부유형 단임 타소나노와이어의 물성 분석 Example 2 Physical property analysis of airborne type single-stage tasonano wire of Example 1
실시예 1에 의하여 최종적으로 제조된 공중부유형 단일 탄소나노와이어는 수 율이 90% 이다. 공중부유형 단일 탄소나노와이어의 모양과 구조적 특징은 SEM(Quanta 200, FEI company USA), HRTEM(JEM-2100F, JE0L Ltd. , Japan) , FIBCQuanta 3D FEG, FEI company, USA), 및 라만 분광 시스템 (alpha300R, WITec GmbH, Germany)을 이용하여 측정하였다. 공중부유형 단일 탄소나노와이어의 측정된 두께는 210 nm, 너비는 195 nm 에 해당한다. 또한 제조된 공중부유형 단일 탄소나 노와이어의 탄소 함량 측정을 위해 X—선 광전자 분광법을 이용하였으며, X-선 광전 자 분광법의 범의 크기가 수 마이크로이므로 ¾중부유형 단일 탄소나노와이어를 직 접 측정하는 것은 용이하지 않은 관계로 와이어를 지지하고 있는 탄소 기등부분을 분석했다. 분석 결과 c-c, C-0, 및 으 0 함량에 있어서 열분해 전과 후에 많은 변화 가 관찰됐으며, 열분해 후의 탄소 함량은 96.9 %로 측정되었다. 구체적으로 도 7의 개시와 같이 열분해 후 C-C 함량은 증가하였고, C— 0 및 0-0 함량은 거의 존재하지 않는 것을 확인하였다. The airborne type single carbon nanowires finally produced by Example 1 have a yield of 90%. The shape and structural features of the airborne single carbon nanowires are shown in SEM (Quanta 200, FEI company USA), HRTEM (JEM-2100F, JE0L Ltd., Japan), FIBCQuanta 3D FEG, FEI company, USA), and Raman spectroscopy system. (alpha300R, WITec GmbH, Germany). The airborne type single carbon nanowires have a measured thickness of 210 nm and a width of 195 nm. In addition, X-ray photoelectron spectroscopy was used to measure the carbon content of the prepared airborne single carbon or no-wire. Since the range of magnetic spectroscopy is several microns, it is not easy to measure ¾ middle-type single carbon nanowires directly. As a result, many changes were observed before and after pyrolysis in cc, C-0, and 0 content, and the carbon content after pyrolysis was 96.9%. Specifically, as shown in FIG. 7, CC content was increased after pyrolysis, and C-0 and 0-0 contents were confirmed to be hardly present.
[비교예 1] Comparative Example 1
열분해 조건으로 300 °C에서 2분의 단일 단계를 적용한 것을 제외하고는 실 시예 1과 공통적으로 진행하였다. It proceeded in common with Example 1 except that a single step of 2 minutes at 300 ° C. was applied under pyrolysis conditions.
[비교예 2] Comparative Example 2
열분해 조건으로 350 °C에서 2분의 단일 단계를 적용한 것을 제외하고는 실 시예 1과 공통적으로 진행하였다. It proceeded in common with Example 1 except that a single step of 2 minutes at 350 ° C. was applied under pyrolysis conditions.
[비교예 3] Comparative Example 3
열분해 조건으로 400 "C에서 2분의 단일 단계를 적용한 것을 제외하고는 실 시예 1과 공통적으로 진행하였다. It proceeded in common with Example 1 except that a single step of 2 minutes at 400 " C was applied as pyrolysis conditions.
[비교예 4] [Comparative Example 4]
열분해 조건으로 450 °C에서 2분의 단일 단계를 적용한 것을 제외하고는 실 시예 1과 공통적으로 진행하였다. It proceeded in common with Example 1 except for applying a single step of 2 minutes at 450 ° C as pyrolysis conditions.
[비교예 5] [Comparative Example 5]
열분해 조건으로 500 t에서 2분의 단일 단계를 적용한 것을 제외하고는 실 시예 1과 공통적으로 진행하였다.  It proceeded in common with Example 1 except that a single step of 2 minutes at 500 t was applied under pyrolysis conditions.
[비교예 6] Comparative Example 6
열분해 조건으로 500 °C에서 60분의 단일 단계를 적용한 것을 제외하고는 실 시예 1과 공통적으로 진행하였다. It proceeded in common with Example 1 except that a single step of 60 minutes at 500 ° C. was applied under pyrolysis conditions.
[실시예 1과 비교예들의 비교] 【표 1] [Comparison of Example 1 and Comparative Examples] [Table 1]
Figure imgf000021_0001
상기 [표 1]의 개시와 같이 열분해의 조건으로 특정 형태의 것을 채택한 본 발명의 제조방법에 의하면 너비가 250 nm 이하로 최소화된 크기꾀 공중부유형 단일 탄소나노와이어가 제공됨을 알 수 있다. 이는 본 발명의 제조방법의 열분해 조건으 로 특정 형태의 것이 최적화된 형태임을 지지한다.
Figure imgf000021_0001
According to the production method of the present invention adopting a specific form of the thermal decomposition conditions as shown in Table 1, it can be seen that the size of the airborne type single carbon nanowires are minimized to less than 250 nm in width. This supports that the specific form is optimized form by the thermal decomposition conditions of the production method of the present invention.
[실시예 3] 증첩형 나노 저극쌍의 제조 Example 3 Preparation of Foldable Nano-pole Pair
일반적인 6인치의 실리콘 웨이퍼위에 절연층으로 이산화규소를 열산화방법 (Thermal oxidation)으로 증착한 후, 포토레지스트인 SU-8을 스핀 코팅으로 절연층 위에 두께 7 μηι로 고르게 코팅하였다. SU-8을 1차 코팅한 후 평면 전극 모양의 포 토마스크 창을 통하여 자외선에 충분히 노출시켜 1차 노광을 수행하고, SU-8 현상 액 (SU-8 developer)을 이용하여 1차 노광된 부분을 제외한 나머지 부분을 현상 (development)으로 제거했다. 현상 후 포토레지스트인 Sl 8을 스핀 코팅으로 절연 층 및 평면 전극부 위에 두께 25 μιη로 고르게 코팅하였다. SU-8을 2차 코팅한후 기등 모양의 포토마스크 창을 통하여 자외선에 충분히 노출시켜 2차 노광을 수행하 고, 와이어 사이의 각도 (θ)가 45도인 포토마스크를 통하여 자외선에 층분히 노출 시켜 3차 노광을 수행하였다. 3차 노광을 수행한 후, SU— 8 현상액 (SU-8 developer) 을 이용하여 노광된 부분을 제외한 나머지 부분을 현상 (development)으로 제거했 다. 현상 후 마이크로 SU-8 와이어, SU-8 기등부 및 SU-8 평면전극부를 전기로에 넣고 저진공 펌프 및 고진공펌프를 이용하여 1으 6 토르 (torr)까지 분위기를 만든 후 , 제 1 단계 및 제 2 단계의 두 단계로 열분해를 진행했다. 구체적으로 350 °C까지 1 °C/분 (min)으로 승온되어 350 °C에서 60분을 유지하면서 제 1단계를 진행했으며, 이후에는 900 °C까지 1 °C/분 (min)으로 승온되어 900 °C에서 60분을 유지하면서 제 2단계를 진행했다. 열분해 후 형성된 평면 전극과 공중부유형 탄소나노메쉬를 자연 냉각한후 전기로에서 꺼냈다. Silicon dioxide was deposited by thermal oxidation on a common 6-inch silicon wafer by thermal oxidation, and then SU-8, a photoresist, was evenly coated on the insulating layer with a thickness of 7 μηι. After the first coating of SU-8, the first exposure was performed by sufficiently exposing to ultraviolet rays through a photoelectrode window in the form of a flat electrode, and the first exposed portion using a SU-8 developer (SU-8 developer). The rest was removed as a development. After development, the photoresist S 8 was evenly coated with a thickness of 25 μιη on the insulating layer and the flat electrode by spin coating. After the SU-8 secondary coating sufficiently exposed to ultraviolet light through a photo mask window of gideung shape perform a second exposure and, by the angle (θ) between the wire exposed sufficiently layer to ultraviolet radiation through 45 degrees photomasks Third exposure was performed. After the third exposure, the remaining portions except the exposed portions were removed by development using a SU-8 developer (SU-8 developer). After the development, the micro SU-8 wire, the SU-8 lamp and the SU-8 flat electrode were placed in an electric furnace to create an atmosphere of 1 to 6 torr using a low vacuum pump and a high vacuum pump. Pyrolysis was carried out in two stages. Specifically, the temperature was raised with 1 ° C / minute (min) of claim 1 ° C / minute up to 900 ° C since, has, proceed to step 1 (min) while the temperature was raised maintained for 60 minutes at 350 ° C to up to 350 ° C Proceed with the second step while maintaining 60 minutes at 900 ° C. Planar electrode and airborne carbon nanomesh formed after pyrolysis After cooling it was removed from the furnace.
[실시예 4] 심시예 3의 중첩형 나노 전극쌍의 물성 분석 Example 4 Physical property analysis of superposed nanoelectrode pairs
실시예 3에 의하여 최종적으로 형성된 중첩형 나노 전극쌍은수율이 75% 이 다. 공중부유형 탄소나노메쉬의 모양과 구조적 특징은 SEM(Quanta 200, FEI company USA), HRTEMCIEM— 2100F, JEOL Ltd., Japan) , FIB(Quanta 3D FEG, FEI company, USA), 및 라만 분광 시스템 (alpha300R, WITec GmbH, Germany)을 이용하여 측정하였다. 공중부유형 탄소나노메쉬의 측정된 너비는 300 nm, 탄소나노와이어 간 격은 4.5 μηι에 해당한다. (도 8)  The overlapping nano-electrode pair finally formed by Example 3 has a yield of 75%. The shape and structural features of the airborne carbon nanomesh are SEM (Quanta 200, FEI company USA), HRTEMCIEM— 2100F, JEOL Ltd., Japan), Quanta 3D FEG, FEI company, USA (FIB), and Raman spectroscopy system ( alpha300R, WITec GmbH, Germany). The measured width of the airborne carbon nanomesh corresponds to 300 nm and the carbon nanowire spacing corresponds to 4.5 μηι. (Figure 8)
[실시예 5] 심시예 1의 공중부유형 단임 탄소나노와이어의 저기적 특성 관참 도 9는 투과전자현미경을 이용하여 공중부유형 단일 탄소나노와이어의 결정 화도를 확인한 결과이다. 혹연 (graphitic) 상의 비율이 높을수톡 에너지 밴드갭이 작아지는 것은 알려져 있고, 투과전자현미경상에서도 가장자리 부분에 흑연 (graphitic) 상이 중심 부분에 비해 높은 것으로 확인되었다. 열분해 과정의 온도 조건이 혹연 (graphitic) 상이 형성되는 온도보다 낮음에도 불구하고 부피 비율로 약 20 % 정도의 혹연 (graphitic) 상이 존재하였고, 이는 유리 탄소 (glassy carbon) 임에도불구하고 높은 전기적 전도도를 가지는 것을 의미한다. Example 5 Investigation of Resistant Characteristics of Airborne Type Single Carbon Nanowires of Cympic Example 1 FIG. 9 illustrates the crystallinity of airborne type single carbon nanowires using a transmission electron microscope. The higher the ratio of graphitic phases, the smaller the energy bandgap is known to be, and the transmission of the graphitic phase at the edge of the electron microscope image was found to be higher than the central portion. Although the temperature of the pyrolysis process is lower than the temperature at which the graphitic phase is formed, about 20% of the graphitic phase is present in volume ratio, which has high electrical conductivity despite being glassy carbon. Means that.
[실시예 6] 실시예 1의 공중부유형 단일 탄소나노와이어의 기계적 특성 관찰 인가 전압에 의해 공중부유형 단일 탄소나노와이어에서 발생되는 응력에 관 한 결과는 도 10에 개시된다. 온도에 따른 탄소나노와이어의 부피팽창율은 일반적 인 탄소의 부피 팽창율 데이터를사용한다. 웅력 역시 나노와이어 정중앙에서 최고 가 되며 인가 전압에 따른 최대 웅력 해석 결과는 도 10의 그래프와 같다. 온도 상 승에 따른 부피 팽창은 공중부유형 단일 탄소나노와이어에 압축응력이 발생하게 하 나, IV까지 최대 압축웅력의 크기가 실제 탄소의 파괴응력에 미치지는 못한다. 이 는 실시예 1에 의하여 제조된 공중부유형 단일 탄소나노와이어가 우수한 기계적 특 성을 가지는 것을 의미한다. Example 6 Observation of mechanical properties of airborne single carbon nanowire of Example 1 The results of the stress generated in the airborne single carbon nanowire by applied voltage are shown in FIG. 10. The volume expansion rate of carbon nanowires according to temperature uses general carbon volume expansion rate data. The force is also the highest at the center of the nanowire and the maximum stress analysis result according to the applied voltage is shown in the graph of FIG. 10. Volume expansion with temperature increases compressive stress in airborne single carbon nanowires, but the maximum compressive stress up to IV does not reach the actual stress of fracture of carbon. This means that the airborne type single carbon nanowires prepared in Example 1 have excellent mechanical properties.
[실시예 7] 심시예 1의 공중부유형 단일 타소나노와이어의 저기화학적 특성 관찰 Example 7 Observation of Hypochemical Properties of Airborne Type Single Tasonano Wire of Example 1
순환-전류전압실험을 통한 공중부유형 단일 탄소나노와이어의 전기화학적 특 성 및 공중부유형 구조의 전기화학적 센서로서의 특징을 보여주는 그림은 도 11과 같다. 공중부유형 단일 탄소 나노와이어의 전기화학적 특징을 확인하기 위히ᅵ 순환- 전압전류실험을 진행하여 높은 확산한계전류를 가지는 것을 확인하였다. 공중부유 형 전극과 평면 전극과의 구조적 차이를 확인하기 위해 Comsol Multiphysics 프로 그램을 이용하여 산화환원 반응에 의한 농도 분포를 시뮬레이션한 결과 공중부유형 나노와이어가 같은 단면적을 가지는 평면상의 나노와이어에 비해 2배 이상의 단위 길이당 확산한계전류를 발생시키는 것을 확인하였다. 또한 나노와이어가 기판으로 부터 일정 간격 이상 (>8 urn) 떨어지게 위치하면, 기판으로부터 수십 urn 이상 떨 어져 위치한 나노와이어와 거의 동일한 전류 신호를 발생시키는 것도 확인하였다. 따라서 나노와이어를 기판으로부터 수십 μίη 이상 분리시킬 필요 없이 공중부유형 구조의 장점을 충분히 활용할 수 있는 효과가 있다. 이는 실시예 1에 의하여 제조 된 공중부유형 단일 탄소나노와이어가 우수한 전기화학적 특성을 가지는 것을 의미 한다. Electrochemical Characteristics of Airborne Single Carbon Nanowires Using Cyclic-Current Voltage Experiments Figure 11 shows the characteristics of the electrochemical sensor of the sex and airborne structure. In order to confirm the electrochemical characteristics of the airborne single carbon nanowires, cyclic-voltage current experiments were conducted to confirm that they had high diffusion limit currents. In order to confirm the structural difference between the airborne electrode and the planar electrode, the concentration distribution by redox reaction was simulated using the Comsol Multiphysics program, and the airborne nanowires were compared to the planar nanowires having the same cross-sectional area. It was confirmed that a diffusion limit current was generated per unit length of more than twice. It was also confirmed that when the nanowires were located at least a certain distance (> 8 urn) away from the substrate, they generated almost the same current signal as the nanowires located at least tens of urns away from the substrate. Therefore, it is possible to fully utilize the advantages of the airborne structure without the need to separate the nanowires from the substrate by several tens of microns . This means that the airborne type single carbon nanowires prepared in Example 1 have excellent electrochemical properties.

Claims

【청구의 범위] [Claim]
【청구항 1】  [Claim 1]
(a) 기판위에 절연층을 증착하는단계;  (a) depositing an insulating layer on the substrate;
(b) 상기 절연층 상에 포토레지스트를 코팅하는 단계;  (b) coating a photoresist on the insulating layer;
(c) 상기 포토레지스트를 기둥 모양의 포토마스크를 통하여 1차 노광하여 상 기 절연층의 상부에 포토레지스트 기등부를 형성하는 단계;  (c) first exposing the photoresist through a pillar-shaped photomask to form a photoresist lamp on the insulating layer;
(d) 상기 기등부 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 기둥부를 연결하는 마이크로 크기의 와이어 형태로 2차 노광함으로서, 상기 포토레지스트 기둥부를 서로 연결하는 마이크로 포토레지스트 와이어를 형성 하는 단계 ;  (d) secondly exposing the upper portions of the photoresist between the lamps in the form of micro sized wires connecting the pillars through a wire-shaped photomask to form micro photoresist wires connecting the photoresist pillars to each other; step ;
(e) 상기 (c), (d) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지 스트를 현상 (development)으로 제거하는 단계; 및  (e) removing the photoresist of the remaining portions except for the portions exposed in the steps (c) and (d) by development; And
(f) 상기 (e) 단계 이후 남아있는 상기 기등부 및 마이크로 크기의 와이어를 열분해하여 공중부유형 단일 탄소나노와이어를 형성하는 단계를 포함하며,  (f) thermally decomposing the lamp and the micro-sized wire remaining after the step (e) to form an airborne single carbon nanowire,
상기 ω단계의 열분해는 제 1 단계 및 제 2 단계의 두 단계로 행해지며, 제 2 단계가 제 1단계보다 높은 온도에서 행해지는 공중부유형 단일 탄소나노와이 어의 제조방법.  The pyrolysis of the step ω is performed in two steps, a first step and a second step, wherein the second step is carried out at a higher temperature than the first step.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 기판은 실리콘 기판인 공중부유형 단일 탄소나노와이어의 제조방법.  Said substrate is a silicon substrate is a method of manufacturing a floating type single carbon nanowires.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 절연층은 이산화규소 또는 실리콘 나이트라이드로 이루어지는공중부유 형 단일 탄소나노와이어의 제조방법.  The insulating layer is a method for producing a floating airborne single carbon nanowires made of silicon dioxide or silicon nitride.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 포토레지스트는 SU-8인 공중부유형 단일 탄소나노와이어의 제조방법 .  The photoresist is SU-8 floating airborne type carbon nanowire manufacturing method.
【청구항 5】 [Claim 5]
거 1 1항에 있어서,  According to the clause 1
상기 (f) 단계의 열분해에 있어서 상기 제 1단계는 300 내지 400 °C에서 30 내지 90분 동안 행해지며, 상가 제 2단계는 600 내지 1000 °C에서 30 내지 90분 동 안 행해지는 공중부유형 단일 탄소나노와이어의 제조방법. In the pyrolysis of step (f), the first step is performed for 30 to 90 minutes at 300 to 400 ° C., and the second phase of the floating phase is performed for 30 to 90 minutes at 600 to 1000 ° C. Method for producing a single carbon nanowire.
【청구항 6】 [Claim 6]
제 5항에 있어서 상기 공중부유형 탄소나노와이어의 두께가 250 nm 이하, 너 비가 250 nm 이하인 공중부유형 단일 탄소나노와이어의 제조방법 .  The method of claim 5, wherein the thickness of the airborne carbon nanowires is 250 nm or less, and the width of the airborne type carbon nanowires is 250 nm or less.
【청구항 7】  [Claim 7]
제 6항에 있어서,  The method of claim 6,
상기 두께는 180 내지 240 nm이며, 상기 너비는 170 내지 220 nm인 공중부유 형 단일 탄소나노와이어의 제조방법 .  The thickness is 180 to 240 nm, the width is 170 to 220 nm airborne type single carbon nanowire manufacturing method.
【청구항 8】  [Claim 8]
(a) 기판위에 절연층을 종착하는 단계;  (a) terminating the insulating layer on the substrate;
(b) 상기 절연층 상에 포토레지스트를 1차코팅하는 단계;  (b) first coating a photoresist on the insulating layer;
(c) 상기 1차 코팅된 포토레지스트를 평면 전극 모양의 포토마스크를통하여 1차 노광하여 상기 절연층의 상부에 포토레지스트 평면 전극부를 형성하는 단계;  (c) first exposing the first coated photoresist through a planar electrode shaped photomask to form a photoresist planar electrode portion on the insulating layer;
(d) 상기 (c) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 (development)으로 제거하는 단계;  (d) removing the photoresist of portions other than the portions exposed in step (c) by development;
(e) 상기 (d) 단계 이후 남아있는 상기 절연층 및 평면 전극부 상에 포토레 지스트를 2차코팅하는 단계 ;  (e) secondary coating a photoresist on the insulating layer and the planar electrode portion remaining after the step (d);
(f) 상기 2차 코팅된 포토레지스트를 기등 모양의 포토마스크를 통하여 2차 노광하여 상기 절연층의 상부에 포토레지스트 기둥부를 형성하는 단계;  (f) secondly exposing the second coated photoresist through a light-shaped photomask to form a photoresist pillar on the insulating layer;
(g) 상기 기등부 사이의 포토레지스트 상부를 와이어 형태의 포토마스크를 통하여 상기 기등부를 연결하는 마이크로 크기의 와이어 형태로 3차 노광함으로서, 상기 포토레지스트 기둥부를 서로 연결하는 마이크로 포토레지스트 와이어를 형성 하는 단계 ;  (g) tertiary exposure of the photoresist between the light emitting portions in the form of a micro-sized wire connecting the light emitting portions through a wire-shaped photomask to form micro photoresist wires connecting the photoresist pillars to each other; step ;
(h) 상기 (g) 단계에서 노광된 부분을 제외한 나머지 부분의 포토레지스트를 현상 (development)으로 제거하는 단계; 및  (h) removing the photoresist of portions other than the portions exposed in step (g) by development; And
(i) 상기 (h) 단계 이후 남아있는 상기 평면 전극부, 기등부 및 마이크로 크 기의 와이어를 열분해하여 평면 전극과 공중부유형 탄소나노메쉬를 형성하는 단계 를 포함하며,  (i) thermally decomposing the planar electrode portion, the lamp portion, and the micro-sized wire remaining after the step (h) to form a planar electrode and an airborne carbon nanomesh;
상기 (i) 단계의 열분해는 제 1 단계 및 제 2 단계의 두 단계로 행해지며, 제 2 단계가 제 1단계보다 높은 온도에서 행해지는 중첩형 나노 전극쌍의 제조방 법.  The pyrolysis of step (i) is carried out in two steps, the first step and the second step, wherein the second step is performed at a higher temperature than the first step.
【청구항 9】  [Claim 9]
제 8항에 있어서, 상기 기판은 실리콘 기판인 중첩형 나노 전극쌍의 쎄조방법. The method of claim 8, Said substrate is a silicon substrate, the method of cleaning a nested nano-electrode pair.
【청구항 10】  [Claim 10]
제 8항에 있어서 ,  The method of claim 8,
상기 절연층은 이산화규소 또는 실리콘 나이트라이드로 이루어지는 증첩형 나노 전극쌍의 제조방법 .  The insulating layer is a method of manufacturing a folding nano-electrode pair consisting of silicon dioxide or silicon nitride.
【청구항 11】  [Claim 11]
제 8항에 있어서,  The method of claim 8,
상기 1차 코팅 및 2차 코팅된 포토레지스트는 SU-8인 중첩형 나노 전극쌍의 제조방법.  The primary coating and the secondary coated photoresist is SU-8 manufacturing method of the superposed nano-electrode pair.
【청구항 12】  [Claim 12]
제 8항에 있어서 ,  The method of claim 8,
상기 2차 코팅된 포토레지스트는 상기 1차 코팅된 포토레지스트보다 두껍게 형성되는 중첩형 나노 전극쌍의 제조방법.  The secondary coated photoresist is thicker than the primary coated photoresist forming method of manufacturing a pair of nano-electrodes.
【청구항 13】  [Claim 13]
제 8항에 있어서,  The method of claim 8,
상기 와이어 형태의 포토마스크의 와이어 사이의 각도 (Θ)는 40 내지 60도인 중첩형 나노 전극쌍의 제조방법 .  The angle (Θ) between the wire of the wire-shaped photomask is a method of manufacturing a superposed nano-electrode pair is 40 to 60 degrees.
[청구항 14】  [Claim 14]
제 8항에 있어서,  The method of claim 8,
상기 제 1단계는 300 내지 400 °C에서 30 내지 90분 동안 행해지며, 상기 제 2단계는 600 내지 1000 X:에서 30 내지 90분 동안 행해지는 중첩형 나노 전극쌍의 제조방법. The first step is performed for 30 to 90 minutes at 300 to 400 ° C., The second step is performed for 30 to 90 minutes at 600 to 1000 X: Method of manufacturing a superposed nano-electrode pair.
【청구항 15】  [Claim 15]
. 제 14항에 있어서, . The method of claim 14,
상기 공중부유형 탄소나노메쉬의 너비가 200 내지 400 nm, 탄소나노와이어 간격이 3 내지 7 um인 중첩형 나노 전극쌍의 제조방법 .  The method of manufacturing a superposed nano-electrode pair having a width of the airborne carbon nano mesh is 200 to 400 nm, carbon nanowire spacing of 3 to 7 um.
PCT/KR2014/002670 2013-03-29 2014-03-28 Method for manufacturing air-suspended single carbon nanowire and overlapping nanoelectrode pair WO2014157991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/781,261 US9513555B2 (en) 2013-03-29 2014-03-28 Method for manufacturing a suspended single carbon nanowire and piled nano-electrode pairs

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130034415 2013-03-29
KR10-2013-0034415 2013-03-29
KR10-2014-0037107 2014-03-28
KR1020140037107A KR102140450B1 (en) 2013-03-29 2014-03-28 Fabrication method for monolithic suspended carbon nanowires, and piled nano-electrode pairs

Publications (1)

Publication Number Publication Date
WO2014157991A1 true WO2014157991A1 (en) 2014-10-02

Family

ID=51624845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002670 WO2014157991A1 (en) 2013-03-29 2014-03-28 Method for manufacturing air-suspended single carbon nanowire and overlapping nanoelectrode pair

Country Status (1)

Country Link
WO (1) WO2014157991A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051446A1 (en) * 2006-04-10 2010-03-04 Chunlei Wang Fabrication of suspended carbon micro and nanoscale structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051446A1 (en) * 2006-04-10 2010-03-04 Chunlei Wang Fabrication of suspended carbon micro and nanoscale structures

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HEO, JEONG-IL ET AL.: "SCALABLE SUSPENDED CARBON NANOWIRE MESHES AS ULTRASENSITIVE ELECTROCHEMICAL SENSING PLATFORMS", MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2012 IEEE 25TH INTERNATIONAL CONFERENCE, 29 January 2012 (2012-01-29) - 22 February 2012 (2012-02-22), pages 878 - 881 *
LIM, YEONG JIN ET AL.: "Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform", NANOSCALE RESEARCH LETTERS, vol. 8, no. 1, 20 November 2013 (2013-11-20), pages 1 - 9 *
SWATI, SHARMA ET AL.: "Increased Graphitization in Electrospun Single Suspended Carbon Nanowires Integrated with Carbon-MEMS and Carbon-NEMS Platforms", ACS APPLIED MATERIALS & INTERFACES, vol. 4, no. 1, 3 January 2012 (2012-01-03), pages 34 - 39 *
VARUN, PENMATSA ET AL.: "Fabrication of carbon nanostructures using photo- nanoimprint lithography and pyrolysis", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 22, no. 4, 23 March 2012 (2012-03-23), pages 045024 - 045031 *

Similar Documents

Publication Publication Date Title
KR102140450B1 (en) Fabrication method for monolithic suspended carbon nanowires, and piled nano-electrode pairs
Pak et al. Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons
US10782275B2 (en) Semiconductor hydrogen sensor and manufacturing method thereof
Choi et al. Dual functional sensing mechanism in SnO2–ZnO core–shell nanowires
US10132768B2 (en) Gas sensor and method for manufacturing same
US9568447B2 (en) Fluid sensor chip and method for manufacturing the same
Yi et al. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors
KR101027074B1 (en) nanostructure gas sensors and nanostructure gas sensor array with metal oxide layer and method of producing the same
US9052283B2 (en) Nanodevices for generating power from molecules and batteryless sensing
Xiao et al. Interconnected graphene networks with uniform geometry for flexible conductors
Tang et al. Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography
JP4438049B2 (en) Field effect transistor, sensor using the same, and manufacturing method thereof
Xu et al. Carrier mobility-dominated gas sensing: a room-temperature gas-sensing mode for SnO2 nanorod array sensors
KR101364138B1 (en) ZnSnO3 nanorods coated with palladium particles, a preparation method thereof, and gas sensor using the same
JP2010540967A5 (en)
KR101403406B1 (en) Fabrication method for gas sensor and temperature sensor based on suspended carbon nanowires
Fedorov et al. Toward new gas-analytical multisensor chips based on titanium oxide nanotube array
JP6394301B2 (en) Gas sensor and manufacturing method thereof
Han et al. Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor
KR101682501B1 (en) Transparant electrode containing silver nanowire-patterned layer and graphene layer, and manufacturing method thereof
KR20150026012A (en) GAS SENSOR and Method for Manufacturing GAS SENSOR
KR102125278B1 (en) GAS SENSOR and Method for Manufacturing GAS SENSOR
Lee et al. Highly selective ppb-level detection of NH3 and NO2 gas using patterned porous channels of ITO nanoparticles
KR20180069372A (en) ZnO nanowire gas sensor functionalized with Au, Pt and Pd nanoparticle using room temperature sensing properties and method of manufacturing the same
KR20180119151A (en) Hydrogen gas sensor and Fabrication method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781261

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14772964

Country of ref document: EP

Kind code of ref document: A1