WO2014157820A1 - 나비목 해충에 대한 살충 활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질 유전자 및 그 제조방법 - Google Patents

나비목 해충에 대한 살충 활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질 유전자 및 그 제조방법 Download PDF

Info

Publication number
WO2014157820A1
WO2014157820A1 PCT/KR2014/000657 KR2014000657W WO2014157820A1 WO 2014157820 A1 WO2014157820 A1 WO 2014157820A1 KR 2014000657 W KR2014000657 W KR 2014000657W WO 2014157820 A1 WO2014157820 A1 WO 2014157820A1
Authority
WO
WIPO (PCT)
Prior art keywords
moth
endotoxin protein
gene
bacillus thuringiensis
insecticidal activity
Prior art date
Application number
PCT/KR2014/000657
Other languages
English (en)
French (fr)
Inventor
제연호
최재영
김송은
김재수
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140004841A external-priority patent/KR101555124B1/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2014157820A1 publication Critical patent/WO2014157820A1/ko
Priority to US14/857,257 priority Critical patent/US9512187B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/32Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
    • C07K14/325Bacillus thuringiensis crystal protein (delta-endotoxin)

Definitions

  • the present invention relates to a novel Bacillus thringiensis endotoxin protein gene and a method for producing the same, which have improved insecticidal activity against lepidopteran pests, and more particularly, to insecticidal insects such as cabbage moth, pabam moth, corn light moth, etc. It relates to a Bacillus thuringiensis endotoxin protein gene and a method for producing the same.
  • Major insect pests include Thief moth, Tobacco moth, Green chestnut moth, King Tobacco moth, Tobacco moth, Matsutake moth, Moth, Moth moth, Evening moth, White-crowed moth, Cucumber moth, Soybean moth, Beanworm moth, Bean bean Moth, castor moth, Chinese cabbage butterfly, Chinese cabbage moth, bat moth, small moth, long moth, moth, moth, fine moth, green moth, picture-winged moth, fire moth, silkworm moth, boar moth, sol moth Moths.
  • Bacillus thuringiensis strains are Gram-positive soil bacteria that are well known as biopesticides useful in the control of crops, forests and sanitary pests. In other words, when the growth conditions deteriorate, the BTI strains produce endotoxin proteins with endogenous spores.Because the endotoxin protein crystals are highly toxic to insects of Lepidoptera, fly and coleoptera, the BTI strain itself is used as a microbial insecticide. Can be.
  • Beatty's insecticidal endotoxin protein is not only the strongest and fastest insecticidal among the pesticidal proteins reported to date, but is also safe for human farming and harmless to the environment.
  • Techniques for protecting crops from pests by transforming genes into crops have been recognized as the most common and most efficient methods to date.
  • foreign-developed bitty transgenic crops include Perlak et al., Biotechnol, which has been transformed into a cry1-type endotoxin protein gene that is highly toxic to lepidoptera to control lepidopteran pests .
  • bitty rice Ferjimoto et al ., Biotechnol . 11: 1151-1155,1993
  • bitty corn Bitty corn
  • Viti tobacco Strizhov et al., Proc . Natl. Acad. Sci . USA . 24: 15012-15017, 1997)
  • Viti tomato Perlak et al., Proc. Natl. Acad. Sci . USA 88: 3324- 3328,1991
  • Beatty Bean Stepwart et al., Plant Physiol .
  • 10-0375675 discloses a bitty cabbage with excellent insecticidal effect on lepidoptera by introducing "synthetic toxin gene for transformation of cabbage and crops".
  • Various BT transgenic crops have been developed, but the high insecticidal pressure present in the crops has a problem that the resistance of insect pests to the BTI endogenous protein is high. Therefore, in order to delay the development of insect resistance as described above, it is necessary to search for new genes by fusion between BTI endotoxin protein genes and to improve or supplement the function of BTI endotoxin protein gene.
  • Korean Patent No. 10-0280380 discloses "Endotoxin protein of Bacillus thuringiensis nt0423 strain and microbial insecticide using the same".
  • Korean Patent No. 10-0432140 discloses "Bacillus thuringiensis K-1 strain isolated from soil and microbial insecticide using this strain”.
  • Korean Patent Registration No. 10-0436026 discloses a BT KFAI-2 strain and a microbial insecticide containing the same strain having a double toxicity to lepidoptera and fly tree isolated from domestic forest soil.
  • Korean Patent No. 10-0599414 discloses "Bacillus thuringiensis K-3 strain having a novel endotoxin protein gene showing an insecticidal effect on butterfly pests, and a microbial insecticide using the same.
  • Korean Patent No. 10-0723070 discloses a rice transformant having resistance to cold moth by inserting the N-terminal of the cry1Ac gene into a vector.
  • Chinese Patent No. 200710106077.7 discloses a transformation method of inserting a BTI endogenous protein gene and a hair bead aggregate gene into a vector and then introducing it into a crop.
  • "Development and characterization of transgenic rice expressing two Bacillus thuringiensis gene (Yang Z et al., 2011)" discloses a production method for introducing two mixed species of BTI gene into crops through gene stacking.
  • An object of the present invention is to provide a method for producing a novel endotoxin protein gene with improved pesticidal activity against lepidopteran pests.
  • Another object of the present invention is to provide a novel recombinant endotoxin protein gene according to the above method.
  • Another object of the present invention to provide an expression vector containing the gene.
  • the object of the present invention is to identify the nucleotide sequence and the tertiary structure of the Mod-cry1Ac ( Mod-cry1Ac) gene; Preparing a pIM- Mod-cry1Ac vector using the mode-Cry1A gene obtained in the step; Preparing a mutagenesis primer using the mode-cry1A as a template; Performing amplification (Polymerase Chain Reaction, PCR) using the mutagenesis primer obtained in the above step to produce a new BTI endotoxin protein gene and transforming E.
  • amplification Polymerase Chain Reaction, PCR
  • the present invention has the effect of providing a novel recombinant endotoxin protein gene Mut-N16 (Mut-N16) having a strong insecticidal activity at the same time to a variety of lepidopteran pests, and by transforming the gene into crops to insect-resistant bitty transgenic crop It has a great effect.
  • Figure 1 is a photograph of the tertiary structure of the endotoxin protein encoded by the Mod-cry1Ac ( Mod-cry1Ac ) gene of the present invention.
  • FIG. 2 is a manufacturing process and structure diagram of the PIM- mod-cry1Ac of the present invention (pIM- Mod-cry1Ac ).
  • Figure 3 is a structural diagram of the endotoxin protein mute-N16 (Mut-N16) through the multi-site specific mutagenesis (muti site-directed mutagenesis) of the present invention.
  • Figure 4 is a diagram showing the main part of the amino acid residue sequence substituted in the mute -en16 endotoxin protein compared with the amino acid sequence of the mod-cry1Ac endotoxin protein of the present invention.
  • Figure 5 is a photograph of the tertiary structure of the endotoxin protein amino acid encoded by the mute-en 16 endotoxin protein gene of the present invention.
  • Figure 6 is a structural diagram of the production process of the transition vector POB-Mut-N16 (pOB-Mut-N16) according to the present invention.
  • FIG. 7 shows the results of confirming the expression of mute-N16 endotoxin protein from the polyhedron produced by the recombinant baculovirus Epimut-N16 (ApMut-N16) according to the present invention.
  • Mod-cry1Ac used in the present invention ( Mod-cry1Ac , Korean Patent Registration No. 10-0375675) was used as a test material received by the Rural Research Institute of Agricultural Biotechnology.
  • the base sequence of the Mod-cry1Ac gene and the amino acid sequence of the endotoxin protein encoded by the gene are shown in SEQ ID NOs: 1 and 2, respectively.
  • the Mod-cry1Ac gene which is cloned into the PBt91 vector, contains only the pUC origin and the ampicillin resistance gene (Amp r ).
  • PIM- mod-cry1Ac was prepared by inserting the restriction enzymes Eco RV and Bam HI into the smallest size of the PIM vector.
  • Figure 2 shows the manufacturing process and structure of PIM- mod-cry1Ac as a platform for mutagenesis.
  • Mutational primers 116A E116A
  • E128V E128V
  • A187T A187T
  • V227I V227I
  • A245S A245S
  • Al 254 T R254T
  • mutagenesis primer S283M S283M
  • mouse 286 eggs G286R
  • A309V A309V
  • M322T M322T
  • T334A T334A
  • Eye375P I375P
  • E412V E412V
  • Q424A Q424A
  • FIG. 3 shows the production of recombinant endotoxin protein mute-N16 (Mut-N16) through multi-site specific mutagenesis.
  • DNA sequencing was used to analyze the nucleotide sequence of the recombinant endotoxin protein gene.
  • the tertiary structure of the endotoxin protein was determined by PyMOL Molecular Graphic System (DeLano Scientific; http://jmol.sourceforget.net). /).
  • Recombinant endotoxin protein gene mute-N16 of the present invention was deposited as No. KCTC12293BP dated October 19, 2012 to the Korea Institute of Science and Technology Gene Bank (KTCT).
  • the construction and structure of the transfer vector POB-Mut-N16 for producing recombinant baculovirus according to the present invention are summarized in FIG. 6.
  • PIM-Mut-N16 was treated with restriction enzymes Xba I and Bgl II to cut out 821 bp of fragments, and then the fragments were then treated with the same restriction enzyme as Piobi-Mod-Cry.
  • 1B pOB- Mod-cry1Ac
  • the thus-produced transition vector pOB-Mut-N16 expresses the fusion protein of polyhedrin and endotoxin mute-N16 under the control of the polyhedrin promoter of baculovirus. It is a structure.
  • polygon was purified by centrifugation at 5000 g for 5 minutes and the precipitate was suspended in a small amount of 1 M NaCl and 0.01% Triton X-100 solution. Polymorphs thus purified were used as samples for protein electrophoresis (SDS-PAGE) (Laemmli, Nature, 227, 680-685, 1970).
  • the insecticidal activity of the mute-en16 endotoxin protein embedded in the polymorph of the recombinant baculovirus Epimut-N16 according to the present invention was quantitatively assayed for Chinese cabbage and moths.
  • the polyhedron produced by ApMut-N16 was diluted in 1 M NaCl and 0.01% Triton X-100 solution based on the amount of endotoxin protein embedded in the polyhedron.
  • the amount of endotoxin protein for quantitative bioassay was set at 5-fold concentration ranges from 0.08 ng to 50 ng per larvae for Chinese cabbage moths and 10-fold concentration ranges from 0.01 ng to 100 ng per larvae for cornlight moths. Was set.
  • Mortality was 28.9% at 100 ng / larva.
  • the present invention is a very useful invention for the seed industry and the GM crop industry because it has an excellent effect to secure a novel BTI endogenous protein gene source and create an environmentally friendly agricultural environment through its commercialization.

Abstract

본 발명은 배추좀나방, 파밤나방, 옥수수조명나방 등 나비목 해충에 대한 살충활성이 향상된 신규의 바실러스 트린지엔시스 내독소단백질 유전자 및 그 제조방법에 관한 것으로, 해충 저항성 형질전환 작물의 제작을 위하여 다중부위 특정 돌연변이유발(muti site-directed mutagenesis)를 통해 나비목 해충에 살충활성을 가지는 크라이1-유형(cry1-type) 내독소단백질의 기주범위와 관련된 아미노산 잔기 서열이 치환된 신규 재조합 내독소단백질 유전자 및 그 제조 방법을 제공한다.

Description

나비목 해충에 대한 살충 활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질 유전자 및 그 제조방법
본 발명은 나비목 해충에 대한 살충활성이 향상된 신규의 바실러스 트린지엔시스 내독소단백질 유전자 및 그 제조방법에 관한 것으로, 더욱 상세하게는 배추좀나방, 파밤나방, 옥수수조명나방 등 나비목 곤충에 강력한 살충활성을 갖고 있는 바실러스 트린지엔시스 내독소단백질 유전자 및 그 제조방법에 관한 것이다.
나비목(Lepidoptera)은 그리스어의 인편(lepidos=scale)과 날개(pteros=wing)에서 유래한 것으로 나비류와 나방류가 포함된다. 현재까지 전 세계적으로 알려진 종(種) 수는 약 200,000종으로 동물계의 약 10%를 차지한다. 곤충 중에서는 딱정벌레목 다음으로 많은 종을 보유하고 있고 국내에는 약 3,200여종의 나비, 나방류가 분포하는 것으로 알려져 있다. 나비목 해충은 주로 유충태로서 피해를 주며 대부분의 유충은 광식성(polyphagous)이고 많은 종들이 작물에 심각한 피해를 준다. 우리나라에서는 농작물 해충 가운데 나비목 해충이 약 40%를 차지하는데 꽃, 잎, 줄기를 갉아먹고 때로는 과실에 굴을 파고 들어가 가해하기도 한다. 주요 나비목 해충으로는 도둑나방, 담배거세미나방, 파밤나방, 왕담배나방, 담배나방, 곱추맵시밤나방, 멸강나방, 배저녁나방, 흰눈까마귀밤나방, 오이금무늬밤나방, 콩금무늬밤나방, 콩명나방, 팥나방, 거세미나방, 배추흰나비, 배추좀나방, 박쥐나방, 꼬마굴나방, 긴수염나방, 선굴나방, 가는나방, 파좀나방, 그림날개나방, 불나방, 누에나방, 왕물결나방, 솔나방, 옥수수조명나방 등이 있다.
바실러스 투린지엔시스(Bacillus thuringiensis, 이하 비티) 균주는 그람 양성 토양세균으로 농작물, 산림 및 위생 해충의 방제에 유용한 생물농약으로 잘 알려져 있다. 즉, 성장조건이 악화되면 비티 균주는 내생 포자와 함께 내독소 단백질을 생산하는데 내독소 단백질 결정체는 나비목, 파리목 및 딱정벌레목의 곤충에 대해 강력한 독성을 가지므로 비티 균주는 그 자체가 미생물 살충제로 사용될 수 있다.
현재까지 보고된 비티 내독소단백질 유전자는 121개에 이르고 있는데 최근에는 비티 균주가 생산하는 내독소단백질의 숙주범위 확대와 살충 활성 증진을 위한 분자유전학적 연구와 더불어 이들 내독소단백질 유전자를 작물에 도입함으로써 해충에 저항성을 가지는 형질전환 작물의 개발에 관한 연구가 폭넓게 시도되고 있다. 현재 전 세계 형질전환 작물시장은 매년 급속하게 성장하고 있으며 2014년에는 약 101억 달러의 시장을 확보할 것으로 예측되고 있다. 전 세계적으로 콩(53%), 옥수수(30%), 면화(12%) 및 케놀라(5%)가 주요 형질전환 작물로 개발되고 있으며 대부분의 형질전환 작물은 가축용 사료로서 수요가 많다. 최근에는 바이오 에너지(에탄올) 생산을 위한 원료로서 각광을 받고 있다(ISAAA 2008). 현재 대부분의 형질전환 작물은 제초제 저항성 형질전환 작물(63%)이며 해충 저항성 형질전환 작물은 전체의 37%로 개발이 미흡한 실정이다. 따라서 다양한 해충으로부터 작물의 피해를 줄이기 위하여 높은 살충활성을 보유한 유전자의 확보가 시급하다.
해충 저항성 형질전환 작물의 개발과 관련하여 다양한 곤충병원성 미생물 중에서도 비티의 살충성 내독소단백질은 현재까지 보고된 살충성 단백질 중 가장 강력하고 빠른 살충력을 보일 뿐만 아니라 인축에는 안전하고 환경에 해가 없어 이들 유전자를 작물에 형질전환함으로써 해충으로부터 작물을 보호하는 기술이 현재까지 가장 보편적이면서 가장 효율적인 방법으로 인정되고 있다. 현재까지 외국에서 개발된 비티 형질전환 작물로는 나비목 해충을 방제하기 위해 나비목에 강독성을 보이는 크라이1-유형(cry1-type) 내독소단백질 유전자를 형질전환한 비티 면화(Perlak et al.,Biotechnol.8:939-943,1990), 비티 벼 (Fujimoto et al., Biotechnol.11:1151-1155,1993), 비티 옥수수(Bourguet et al.,Proc.Biol.Sci. 267:117-122,2000), 비티 담배(Strizhov et al.,Proc.Natl .Acad.Sci. U.S.A. 24:15012-15017,1997), 비티 토마토(Perlak et al.,Proc.Natl. Acad.Sci.U.S.A. 88:3324-3328,1991), 비티 콩(Stewart et al.,Plant Physiol. 112:121-129:1996), 비티 알팔파(Strizhov et al.,Proc.Natl.Acad.Sci.U.S.A. 24:15012-15017, 1997) 등 다양한 작물이 있다. 또 딱정벌레목 해충의 방제를 위해 크라이3-유형(cry3-type)의 유전자를 형질전환한 비티 감자(Adang et al.,Plant Mol.Biol.21:1131-1145, 1993) 및 목본류의 해충인 매미나방을 방제하기 위한 형질전환 비티 수목(Kleiner et al.,J.Chem. Eco.29:2585-2602,2003)이 개발되는 등 그 이용범위가 점차 확대되고 있다. 국내 등록특허 제10-0375675호에는 "배추과 작물의 형질전환을 위한 합성 곤충독소 유전자"를 도입하여 나비목에 대한 살충효과가 우수한 비티 배추를 개시한 바 있다. 다양한 비티 형질전환 작물들이 개발되었으나 작물체 내에 존재하는 높은 살충 도태압으로 인해 비티 내독소단백질에 대한 해충의 저항성 발현속도가 빠른다는 문제점이 있었다. 따라서 상기와 같이 해충의 저항성 발달을 지연시키기 위하여 비티 내독소단백질 유전자간의 융합에 의한 신규 유전자를 탐색함으로써 비티 내독소단백질 유전자의 기능을 증진 또는 보완하는 연구가 필요할 것으로 판단된다.
본 발명자들은 국내 등록특허 제10-0280380호에 "바실러스 투린지엔시스 엔티0423 균주의 내독소단백질 및 이를 이용한 미생물 살충제"를 개시한 바 있다. 국내 등록특허 제10-0432140호에는 "토양으로부터 분리된 바실러스 투린지엔시스 케이-1균주 및 이 균주를 이용한 미생물 살충제"를 개시한 바 있다. 국내 등록특허 제10-0436026호에는 국내 산림토양으로부터 분리된 나비목과 파리목에 이중독성을 가지는 비티 케이에프알아이-2 균주 및 동 균주를 함유한 미생물 살충제가 개시된 바 있다. 국내 등록특허 제10-0599414호에는 "나비목 해충에 살충효과를 보이는 신규한 내독소 단백질 유전자를 보유한 바실러스 투린지엔시스 케이-3 균주 및 이를 이용한 미생물 살충제가 개시된 바 있다.
국내 등록특허 제10-0723070호에는 cry1Ac 유전자의 N말단을 벡터에 삽입하여 혹명나방에 저항성을 가지는 벼 형질전환체가 개시된 바 있다. 중국 등록특허 제200710106077.7호에는 비티 내독소단백질 유전자와 털비름 응집소 유전자를 벡터에 삽입한 후 작물에 도입시키는 형질전환 방법이 개시된 바 있다. "Development and characterization of transgenic rice expressing two Bacillus thuringiensis gene(Yang Z 등,2011)"에는 gene stacking을 통하여 비티 유전자 2개의 혼합종을 작물에 도입하는 제조방법을 개시한 바 있다. "Sequential transformation to pyramid two Bt genes in vegetable Indian mustard(Brassica juncea L.) and its potential for control of diamondback moth larvae(Cao J 등,2008)"에는 cry1A 및 cry1C를 벡터에 삽입한 다음 갓에 형질전환하여 cry1A+cry1C 형질전환체를 제조하는 방법을 개시한 바 있다.
그러나 상기 문헌 어디에도 Bt 유전자를 삽입한 벡터에 다중부위 특정 돌연변이를 유발하여 기주 범위를 넓힘과 동시에 나비목 살충활성을 그대로 유지한 발명은 전혀 개시되거나 암시된 바 없다.
본 발명의 목적은 나비목 해충에 살충활성이 향상된 신규의 내독소단백질 유전자의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 상기 방법에 따른 신규의 재조합 내독소단백질 유전자를 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 유전자를 포함하는 발현벡터를 제공하는 데 있다.
본 발명의 상기 목적은 모드-크라이1에이씨(Mod-cry1Ac) 유전자의 염기서열 및 3차 구조를 확인하는 단계와; 상기 단계에서 얻은 모드-크라이1에이씨 유전자를 이용하여 피아이엠-모드-크라이1에이씨(pIM-Mod-cry1Ac) 벡터를 제조하는 단계와; 상기 모드-크라이1에이씨를 주형으로 하여 돌연변이 유발 프라이머를 제조하는 단계와; 상기 단계에서 얻은 돌연변이 유발 프라이머를 이용하여 유전자 증폭반응 (Polymerase Chain Reaction, PCR)을 수행하여 신규 비티 내독소단백질 유전자를 제조한 후 대장균에 형질전환하여 돌연변이 여부를 확인하는 단계와; 상기 단계에서 얻은 신규 비티 내독소단백질 유전자의 염기서열 및 3차 구조를 확인하는 단계와; 상기 단계에서 얻은 신규 비티 내독소단백질 유전자를 재조합 베큘로바이러스를 이용하여 발현하는 단계와; 상기 단계에서 얻은 신규 비티 내독소단백질의 살충활성을 확인하는 단계를 통하여 달성하였다.
본 발명은 다양한 나비목 해충에 동시에 강력한 살충활성을 가지는 신규한 재조합 내독소단백질 유전자 뮤트-엔16(Mut-N16)을 제공하는 효과가 있으며, 이 유전자를 작물에 형질전환함으로써 내충성 비티 형질전환 작물에 활용할 수 있는 뛰어난 효과가 있다.
도 1은 본 발명의 모드-크라이1에이씨(Mod-cry1Ac) 유전자가 암호화하는 내독소단백질의 3차 구조 사진도이다.
도 2는 본 발명의 피아이엠-모드-크라이1에이씨(pIM-Mod-cry1Ac)의 제작과정 및 구조도이다
도 3은 본 발명의 다중부위 특정 돌연변이유발(muti site-directed mutagenesis)을 통한 내독소단백질 유전자 뮤트-엔16(Mut-N16)의 제작과정 구조도이다.
도 4는 본 발명의 모드-크라이1에이씨(Mod-cry1Ac) 내독소단백질의 아미노산 서열과 비교하여 뮤트-엔16 내독소단백질에서 치환된 아미노산 잔기서열의 주요부를 보여주는 그림이다.
도 5는 본 발명의 뮤트-엔16 내독소단백질 유전자가 암호화하는 내독소단백질 아미노산의 3차 구조 사진도이다.
도 6은 본 발명에 따른 전이벡터 피오비-뮤트-엔16(pOB-Mut-N16)의 제작과정 구조도이다.
도 7은 본 발명에 따른 재조합 베큘로바이러스 에이피뮤트-엔16(ApMut-N16)가 생성하는 다각체로부터 뮤트-엔16(Mut-N16) 내독소단백질의 발현을 확인한 결과이다.
이하, 본 발명의 구체적인 내용을 실시예를 들어 상세히 설명하나 본 발명의 내용이 이에 한정되는 것은 아니다.
본 발명에서 사용한 모드-크라이1에이씨(Mod-cry1Ac, 국내 등록특허 제10-0375675호)는 농촌진흥청 농업생명공학연구원에서 분양받아 공시재료로 사용하였다.
실시예 1: 비티 모드-크라이1에이씨( Mod-cry1Ac ) 유전자의 구조분석
디엔에이 염기서열 결정(DNA sequencing)을 통하여 모드-크라이1에이씨 (Mod-cry1Ac) 유전자의 염기서열을 분석하고 변환된 아미노산 서열을 바탕으로한 내독소단백질의 3차 구조는 PyMOL Molecular Graphic System(DeLano Scientific사;http://jmol.sourceforget.net/)을 이용하여 도 1에 나타내었다. 내독소단백질의 3차 구조에서 일곱 개의 알파 헬릭스(alpha helices)로 이루어진 도메인 (Domain )과 세 개의 베타 시트(beta sheet)로 이루어진 도메인 (Domain ) 및 두 개의 역평형 베타 시트(antipararell beta sheet)로 이루어진 도메인 (Domain )을 확인하였다. 이 중 알파 헬릭스 구조의 도메인 과 베타 시트 구조의 도메인 가 살충활성과 관련이 높은 것으로 추정되었다.
모드-크라이1에이씨(Mod-cry1Ac) 유전자의 염기서열 및 상기 유전자가 암호화하는 내독소단백질의 아미노산 서열은 각각 [표 1]의 서열번호 1 및 2와 같다.
표 1 모드-크라이1에이씨(Mod-cry1Ac) 유전자의 염기서열(서열번호 1) 및 유전자가 암호화하는 내독소단백질의 아미노산 서열(서열번호 2)
서열번호 1 TGGGAAACGCCGCTCCACAACAACGTATCGTTGCTCAACTAGGACAGGGTGTCTACAGAACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCGGTATCAACAACCAGCAACTTTCCGTTCTTGACGGAACAGAGTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTTTACAGAAAGAGCGGAACCGTTGATTCCTTGGACGAAATCCCACCACAGAACAACAATGTGCCACCCAGGCAAGGATTCTCCCACAGGCTTAGCCACGTGTCCATGTTCCGTTCCGGATTCAGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCTCTTGGATTCACCGTTCTGCCGAGTTCAACAACATCATCGCATCTGATAGTATTACTCAAATCCCTGCCGTGAAGGGAAACTTCCTTTTCAATGGAAGCGTTATCAGCGGACCAGGATTCACTGGCGGAGATCTTGTGAGACTTAACAGCTCTGGCAACAACATTCAGAATAGAGGCTACATCGAAGTTCCTATCCACTTCCCATCCACATCTACTAGATACAGAGTTAGGGTTAGATACGCCTCTGTGACCCCAATCCACCTTAACGTGAACTGGGGCAATTCATCTATCTTCTCCAACACCGTTCCAGCTACTGCTACCTCACTCGATAATCTTCAATCCAGCGATTTTGGTTACTTCGAAAGTGCCAACGCATTCACTTCTTCATTGGGCAACATCGTGGGTGTTAGGAATTTCAGCGGTACTGCAGGAGTGATCATTGACAGATTCGAGTTCATTCCTGTTACTGCCACTCTTGAGGCTGAGTACAATCTTTAA
서열번호 2 MDNNPNINECIPYNCLSNPEVEVLGGERIETGYTPIDISLSLTQFLLSEFVPGAGFVLGLVDIIWGIFGPSQWDAFLVQIEQLINQRIEEFARNQAISRLEGLSNLYQIYAESFREWEADPTNPALREEMRIQFNDMNSALTTAIPLFAVQNYQVPLLSVYVQAANLHLSVLRDVSVFGQRWGFDAATINSRYNDLTRLIGNYTDYAVRWYNTGLERVWGPDSRDWVRYNQFRRELTLTVLDIVALFPNYDSRRYPIRTVSQLTREIYTNPVLENFDGSFRGSAQGIERSIRSPHLMDILNSITIYTDAHRGYYYWSGHQIMAFPVGFSGPEFTFPLYGTMGNAAPQQRIVAQLGQGVYRTLSSTLYRRPFNIGINNQQLSVLDGTEFAYGTSSNLPSAVYRKSGTVDSLDEIPPQNNNVPPRQGFSHRLSHVSMFRSGFSNSSVSIIRAPMFSWIHRSAEFNNIIASDSITQIPAVKGNFLFNGSVISGPGFTGGDLVRLNSSGNNIQNRGYIEVPIHFPSTSTRYRVRVRYASVTPIHLNVNWGNSSIFSNTVPATATSLDNLQSSDFGYFESANAFTSSLGNIVGVRNFSGTAGVIIDRFEFIPVTATLEAEYNL
실시예 2: 피아이엠-모드-크라이1에이씨(pIM- Mod-cry1Ac )의 제조
재조합 내독소단백질 유전자를 제작하기 위하여 피비티91(pBt91)벡터에 클로닝되어 있는 모드-크라이1에이씨(Mod-cry1Ac) 유전자를 피유씨 오리진(pUC origin)과 앰피실린 저항성 유전자(Ampr)만을 가지고 있는 최소크기의 피아이엠 (pIM)벡터의 제한효소 EcoRV과 BamHI의 위치에 삽입하여 피아이엠-모드-크라이1에이씨(pIM-Mod-cry1Ac)를 제조하였다.
도 2에 돌연변이유발을 위한 플랫폼으로서 피아이엠-모드-크라이1에이씨 (pIM-Mod-cry1Ac)의 제조과정 및 구조를 나타내었다.
실시예 3: 본 발명 비티 내독소단백질 유전자의 제조
모드-크라이1에이씨(Mod-cry1Ac) 유전자의 도메인 과 도메인 부위의 기주범위와 관련된 아미노산 잔기서열들이 치환된 신규 내독소단백질 유전자를 제작하기 위하여 다중부위 특정 돌연변이를 유발하였다. 도메인 부위의 아미노산 잔기서열 치환을 위해서는 돌연변이유발 프라이머 이116에이(E116A), 이128브이 (E128V), 에이187티(A187T), 브이227아이(V227I), 에이245에스(A245S), 피248티 (P248T) 및 알254티(R254T)를 각각 제조하였다.
도메인 부위의 아미노산 잔기서열 치환을 위해서는 돌연변이 유발 프라이머 에스283엠(S283M), 쥐286알(G286R), 에이309브이(A309V), 엠322티(M322T), 티334에이(T334A), 아이375피(I375P), 이412브이(E412V) 및 큐424에이(Q424A)를 각각 제조하였다. 상기의 돌연변이 유발 프라이머의 유전자서열은 [표 2]에 나타내었다. 각 돌연변이유발 프라이머에서 밑줄 친 부분의 염기서열은 모드-크라이1에이씨(Mod-cry1Ac) 유전자에서 치환하고자 하는 염기서열을 나타낸다.
표 2 돌연변이유발 프라이머의 유전자 염기서열
서열번호 돌연변이 유발프라이머 돌연변이유발 프라이머 유전자 염기서열
도메인I 3 E116A 5-GCAGAGAGCTTCAGA GCT TGGGAAGCCG-3
4 E128V 5-CCCAGCTCTCCGC GTG GAAA-3
5 A187T 5-GGGGATTCGATGCT ACC ACCATCAATAGCC G-3
6 V227I 5-CTGATTCTAGAGATTGG ATC AGATACAACCAGTTCAGG-3
7 A245S 5-CAGTTTTGGACATTGTGTC TCT CTTCCCGAAC-3
8 P248T 5-ATTGTGTCTCTCTTC AGC AACTATGACTCCAGA-3
9 R254T 5-CCCGAACTATGACTCCAGA ACC TACCCTATCCGTAC-3
도메인II 10 S283M 5-GGTAGCTTCCGTGGT ATG GCCCAGGGGTATCGAA-3
11 G286R 5-CGTGGTATGGCCCAG A G G ATCGAAAGATCCATC-3
12 A309V 5-CACCGATG TG CACAGAGG-3
13 M322T 5-CAGATCA CC GCCTCTCCAG-3
14 T344A 5-CTCCGGACCTGAGTTT G C T TTTCCTCTCTATGGA-3
15 I375P 5-CCCTTCAATATCGGT CCT AACAACCAGCAACTT-3
16 E412V 5-CCTTGGACG TG ATCCCA-3
17 Q424A 5-CCACAGAACAACAATGTGCCACCCAGG GCT GGATTC-3
피아이엠-모드-크라이1에이씨(pIM-Mod-cry1Ac)를 주형으로 상기의 돌연변이유발 프라이머 3개 내지 4개와 QuikChange Multi Site-Directed Mutagenesis Kit (Stratagene사)를 이용하여 제조사의 방법에 따라 유전자 증폭반응(Polymerase Chain Reaction, PCR)을 수행하였다. 증폭된 유전자산물에 대해 제한효소 Dpn(New England Biolab사)를 처리하여 주형으로 사용된 피아이엠-모드-크라이1에이씨 (pIM-Mod-cry1Ac)를 제거하고 돌연변이가 유발된 단일가닥 디엔에이(single stranded-DNA)를 형질전환용 대장균인 XL-10 Gold Ultracompetent cells (Stratagene사)에 형질전환하였다. 염기서열 결정(DNA sequencing)을 통하여 돌연변이의 유발 여부를 확인하였고 돌연변이가 유발된 것으로 확인된 유전자를 다음 단계의 돌연변이유발 반응을 위한 주형으로 사용하였다.
상기 과정을 돌연변이유발 프라이머를 교체하면서 수회에 걸쳐 반복적으로 수행함으로써 최종적으로 신규한 재조합 내독소단백질 유전자 뮤트-엔16(Mut-N16)을 제조하였다. 도 3에 다중부위 특정 돌연변이유발을 통한 재조합 내독소단백질 유전자 뮤트-엔16(Mut-N16)의 제조과정을 나타내었다.
실시예 4: 재조합 내독소단백질 유전자 뮤트-엔16(Mut-N16)의 구조분석
재조합 내독소단백질 유전자의 염기서열을 분석하기 위하여 디엔에이 염기서열 결정(DNA sequencing)을 통하여 확인하였으며 내독소단백질의 3차 구조는 PyMOL Molecular Graphic System(DeLano Scientific사; http://jmol.sourceforget.net/)을 이용하여 구현하였다.
도 4에 모드-크라이1에이씨와 비교하여 다중부위 특정 돌연변이유발을 통해 제조된 신규한 재조합 내독소단백질 뮤트-엔(Mut-N16)에서 치환된 아미노산 잔기서열을 나타내었다. 도 5에 뮤트-엔16 유전자가 암호화하고 있는 아미노산 서열을 바탕으로 PyMOL Molecular Graphic System을 이용하여 단백질 3차 구조를 구현하였다. 뮤트-엔16 단백질은 모드-크라이1에이씨와 비교하여 단백질 3차 구조상에서 큰 변화를 보이지 않았으므로 내독소단백질 본연의 살충활성이 유지될 것으로 판단되었다. 뮤트-엔16 유전자의 염기서열 및 상기 유전자가 암호화하는 내독소단백질의 아미노산 서열은 각각 [표 3]의 서열번호 18 및 19와 같다.
본 발명의 재조합 내독소단백질 유전자 뮤트-엔16(Mut-N16)은 한국과학기술연구원 부설 생명공학연구소 유전자은행(KTCT)에 2012년 10월 19일자 기탁번호 제KCTC12293BP호로서 기탁되었다.
표 3 본 발명 뮤트-엔16(Mut-N16) 유전자의 염기서열(서열번호 18) 및 유전자가 암호화하는 내독소단백질의 아미노산 서열(서열번호 19)
서열번호 18 TGGGAAACGCCGCTCCACAACAACGTATCGTTGCTCAACTAGGACAGGGTGTCTACAGAACCTTGTCTTCCACCTTGTACAGAAGACCCTTCAATATCGGTCCTAACAACCAGCAACTTTCCGTTCTTGACGGAACAGAGTTCGCCTATGGAACCTCTTCTAACTTGCCATCCGCTGTTTACAGAAAGAGCGGAACCGTTGATTCCTTGGACGTGATCCCACCACAGAACAACAATGTGCCACCCAGGGCTGGATTCTCCCACAGGCTTAGCCACGTGTCCATGTTCCGTTCCGGATTCAGCAACAGTTCCGTGAGCATCATCAGAGCTCCTATGTTCTCTTGGATTCACCGTTCTGCCGAGTTCAACAACATCATCGCATCTGATAGTATTACTCAAATCCCTGCCGTGAAGGGAAACTTCCTTTTCAATGGAAGCGTTATCAGCGGACCAGGATTCACTGGCGGAGATCTTGTGAGACTTAACAGCTCTGGCAACAACATTCAGAATAGAGGCTACATCGAAGTTCCTATCCACTTCCCATCCACATCTACTAGATACAGAGTTAGGGTTAGATACGCCTCTGTGACCCCAATCCACCTTAACGTGAACTGGGGCAATTCATCTATCTTCTCCAACACCGTTCCAGCTACTGCTACCTCACTCGATAATCTTCAATCCAGCGATTTTGGTTACTTCGAAAGTGCCAACGCATTCACTTCTTCATTGGGCAACATCGTGGGTGTTAGGAATTTCAGCGGTACTGCAGGAGTGATCATTGACAGATTCGAGTTCATTCCTGTTACTGCCACTCTTGAGGCTGAGTACAATCTTTAA
서열번호 19 MDNNPNINECIPYNCLSNPEVEVLGGERIETGYTPIDISLSLTQFLLSEFVPGAGFVLGLVDIIWGIFGPSQWDAFLVQIEQLINQRIEEFARNQAISRLEGLSNLYQIYAESFRAWEADPTNPALRVEMRIQFNDMNSALTTAIPLFAVQNYQVPLLSVYVQAANLHLSVLRDVSVFGQRWGFDATTINSRYNDLTRLIGNYTDYAVRWYNTGLERVWGPDSRDWIRYNQFRRELTLTVLDIVSLFSNYDSRTYPIRTVSQLTREIYTNPVLENFDGSFRGMAQRIERSIRSPHLMDILNSITIYTDVHRGYYYWSGHQITASPVGFSGPEFAFPLYGTMGNAAPQQRIVAQLGQGVYRTLSSTLYRRPFNIGPNNQQLSVLDGTEFAYGTSSNLPSAVYRKSGTVDSLDVIPPQNNNVPPRAGFSHRLSHVSMFRSGFSNSSVSIIRAPMFSWIHRSAEFNNIIASDSITQIPAVKGNFLFNGSVISGPGFTGGDLVRLNSSGNNIQNRGYIEVPIHFPSTSTRYRVRVRYASVTPIHLNVNWGNSSIFSNTVPATATSLDNLQSSDFGYFESANAFTSSLGNIVGVRNFSGTAGVIIDRFEFIPVTATLEAEYNL
실시예 5: 재조합바이러스 에이피뮤트-엔16(ApMut-N16)의 제조
본 발명에 따른 재조합 베큘로바이러스를 만들기 위한 전이벡터 피오비-뮤트-엔16(pOB-Mut-N16)의 제작과 구조는 도 6에 요약하였다. 피아이엠-뮤트-엔16(pIM-Mut-N16)에 제한효소 XbaI과 BglII를 처리하여 821 bp의 단편을 도려낸 후, 도려낸 단편을 동일한 제한효소로 처리된 피오비-모드-크라이1에이씨(pOB-Mod-cry1Ac)에 삽입하여 전이벡터 피오비-뮤트-엔16(pOB-Mut-N16)을 제작하였다. 이렇게 제작된 전이벡터 피오비-뮤트-엔16(pOB-Mut-N16)은 베큘로바이러스의 폴리헤드린 프로모터의 조절 하에서 폴리헤드린과 내독소단백질 뮤트-엔16(Mut-N16)의 융합단백질을 발현하는 구조이다.
재조합 베큘로바이러스 에이피뮤트-엔16(ApMut-N16)을 제작하기 위하여 전이벡터 피오비-뮤트-엔16(pOB-Mut-N16) DNA 1 와 비에이피고자(bApGOZA, 서울대학교 농업생명과학대학 농업생명공학부 제연호 교수 제작) 게놈 DNA 500 ng을 혼합하고 10 의 셀펙틴(Cellfectin, Invitrogen사 제품)을 이용하여 제조사의 방법에 따라 에스에프9(Sf9) 세포주(Invitrogen사 제품)에 트랜스펙션(transfection) 하여 목적 재조합바이러스를 제작하였다.
실시예 6: 재조합 내독소단백질 뮤트-엔16(Mut-N16)의 발현
본 발명에 따른 재조합 베큘로바이러스 에이피뮤트-엔16(ApMut-N16)에 감염된 에스에프9(Sf9) 세포로부터 폴리헤드린과 내독소단백질 뮤트-엔16(Mut-N16)의 융합단백질의 발현을 단백질 전기영동법(SDS-PAGE)으로 확인하였다(도 7). 에이피뮤트-엔16(ApMut-N16)에 감염된 에스에프9 세포를 1000 g에서 5분간 원심분리 하여 수거하고 0.5% SDS (10 0.5% SDS/2108Sf9세포)에 현탁시킨 후, 다시 5000 g에서 5분간 원심분리 하고 침전물(pellet)을 동일 부피의 0.5 M NaCl에 현탁시켰다. 최종적으로 5000 g에서 5분간 원심분리 하고 그 침전물을 소량의 1 M NaCl과 0.01% Triton X-100 용액에 현탁시킴으로써 다각체를 정제하였다. 이와 같이 정제된 다각체를 단백질 전기영동 (SDS-PAGE) (Laemmli, Nature, 227, 680-685, 1970) 시료로 사용하였다.
도 7의 2번 레인에서 나타난 바와 같이 재조합 베큘로바이러스 에이피뮤트-엔16(ApMut-N16)의 다각체의 경우 야생주바이러스의 다각체(3번 레인)에서는 볼 수 없는 약 100 kDa의 폴리헤드린과 뮤트-엔16(Mut-N16)의 융합단백질이 발현되어 다각체 내에 매립되는 것을 확인할 수 있었다.
실시예 7: 재조합 내독소단백질 뮤트-엔16(Mut-N16)의 살충활성
본 발명에 따른 재조합 베큘로바이러스 에이피뮤트-엔16(ApMut-N16)의 다각체 내에 매립된 뮤트-엔16 내독소단백질의 살충활성을 배추좀나방과 옥수수조명나방을 대상으로 정량적으로 검정하였다. 먼저, 에이피뮤트-엔16(ApMut-N16)이 생성한 다각체를 다각체 내에 매립된 내독소단백질의 양을 기준으로 1 M NaCl과 0.01% Triton X-100 용액에 희석하였다. 정량 생물검정을 위한 내독소단백질의 양은 배추좀나방에 대해서는 유충 당 0.08 ng부터 50 ng까지 각각 5배 농도구간을 설정하였고, 옥수수조명나방에 대해서는 유충 당 0.01 ng부터 100 ng까지 각각 10배 농도구간을 설정하였다. 이 다각체 희석액 100 씩을 11 cm2크기의 배춧잎에 도말하고 상온에서 건조시킨 후, 각 희석액 당 30 마리의 배추좀나방 3령 유충 또는 옥수수조명나방 1령 유충에 섭식시켰다. 24시간 동안 배춧잎을 모두 섭식시킨 다음, 각 유충을 바이러스를 처리하지 않은 인공사료로 옮겨 주었으며, 24시간 간격으로 26일 동안 유충의 치사 여부를 관찰하였다. 그 결과, 뮤트-엔16(Mut-N16) 내독소단백질은 배추좀나방과 옥수수조명나방 모두에서 대조구로 사용한 Cry1Ac 및 Cry1C 내독소단백질에 비해 높은 살충활성을 가지는 것으로 확인되었다 (표 4와 5).
표 4 본 발명 뮤트-엔16(Mut-N16) 내독소단백질의 배추좀나방에 대한 살충 활성
LD50 (ng/larva) 95% fiducial limit
ApIAc 5.21 1.09-12.16
ApIC >50.00*
N16 0.79 0.36-1.57
치사율은 접종 2일 경과된 후 측정하였다.
* 치사율은 50 ng/larva에서 30%였다.
표 5 본 발명 뮤트-엔16(Mut-N16) 내독소단백질의 옥수수조명나방에 대한 살충 활성
LD50 (ng/larva) 95% fiducial limit
ApIAc 67.83 50.00-95.58
ApIC >100.00*
N16 15.91 5.79-29.30
치사율은 접종 6일 경과된 후 측정하였다.
* 치사율은 100 ng/larva에서 28.9%였다.
본 발명은 신규한 비티 내독소단백질 유전자원을 확보하고 이의 상용화를 통하여 환경친화적인 농업환경을 조성할 수 있는 뛰어난 효과가 있으므로 종자산업 및 GM작물산업상 매우 유용한 발명이다.
[규칙 제26조에 의한 보정 28.04.2014] 
Figure WO-DOC-FIGURE-

Claims (5)

  1. 모드-크라이1에이씨 유전자를 피아이엠 벡터에 삽입하여 피아이엠-모드-크라이1에이씨를 제조하는 단계와;
    서열번호 3 내지 17의 유전자 염기서열로 구성된 돌연변이유발 프라이머를 제조하는 단계와;
    상기 단계에서 얻은 피아이엠-모드-크라이1에이씨를 주형으로 돌연변이유발 프라이머를 이용하여 유전자 증폭반응을 수행하는 단계와;
    상기 단계에서 얻은 단일가닥 디엔에이를 대장균에 형질전환하여 돌연변이 유발여부를 확인하는 단계와;
    상기 단계를 반복적으로 수행하여 서열번호 18의 염기서열로 표시되는 신규 재조합 내독소단백질 유전자를 얻는 단계를 포함하는 제조방법에 따라 제조되는 것을 특징으로 하는, 해충에 대하여 살충 활성을 가지는 바실러스 투린지엔시스 재조합 내독소단백질 유전자 뮤트-엔16(수탁번호:KCTC12293BP).
  2. 청구항 1에 있어서, 상기 해충이 나비목에 속하는 도둑나방, 담배거세미나방, 파밤나방, 왕담배나방, 담배나방, 곱추맵시밤나방, 멸강나방, 배저녁나방, 흰눈까마귀밤나방, 오이금무늬밤나방, 콩금무늬밤나방, 콩명나방, 팥나방, 거세미나방, 배추흰나비, 배추좀나방, 박쥐나방, 꼬마굴나방, 긴수염나방, 선굴나방, 가는나방, 파좀나방, 그림날개나방, 불나방, 누에나방, 왕물결나방, 솔나방, 옥수수조명나방 중 어느 하나인 것을 특징으로 하는 바실러스 투린지엔시스 재조합 내독소단백질 유전자 뮤트-엔16.
  3. 청구항 1 또는 2에 기재한 재조합 내독소단백질 유전자 뮤트-엔16을 암호화하는 서열번호 19로 표시되는 아미노산서열을 가지는 것을 특징으로 하는 살충활성을 가지는 바실러스 투린지엔시스 재조합 내독소단백질.
  4. 제3항 기재의 재조합 내독소단백질을 유효성분으로 함유하는 것이 특징인 해충 방제용 미생물 제제.
  5. 청구항 4에 있어서, 상기 해충이 나비목에 속하는 해충인 것을 특징으로 하는 미생물 제제.
PCT/KR2014/000657 2013-03-26 2014-01-23 나비목 해충에 대한 살충 활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질 유전자 및 그 제조방법 WO2014157820A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/857,257 US9512187B2 (en) 2013-03-26 2015-09-17 Mutant Bacillus thuringiensis proteins and genes encoding the same with improved insecticidal activity and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130032329 2013-03-26
KR10-2013-0032329 2013-03-26
KR1020140004841A KR101555124B1 (ko) 2013-03-26 2014-01-15 나비목 해충에 대한 살충활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질을 코딩하는 유전자 및 그 제조방법
KR10-2014-0004841 2014-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/857,257 Continuation-In-Part US9512187B2 (en) 2013-03-26 2015-09-17 Mutant Bacillus thuringiensis proteins and genes encoding the same with improved insecticidal activity and use thereof

Publications (1)

Publication Number Publication Date
WO2014157820A1 true WO2014157820A1 (ko) 2014-10-02

Family

ID=51624744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000657 WO2014157820A1 (ko) 2013-03-26 2014-01-23 나비목 해충에 대한 살충 활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질 유전자 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2014157820A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170029473A1 (en) * 2015-07-23 2017-02-02 President And Fellows Of Harvard College Evolution of bt toxins
US9771574B2 (en) 2008-09-05 2017-09-26 President And Fellows Of Harvard College Apparatus for continuous directed evolution of proteins and nucleic acids
US10179911B2 (en) 2014-01-20 2019-01-15 President And Fellows Of Harvard College Negative selection and stringency modulation in continuous evolution systems
US10336997B2 (en) 2010-12-22 2019-07-02 President And Fellows Of Harvard College Continuous directed evolution
US10392674B2 (en) 2015-07-22 2019-08-27 President And Fellows Of Harvard College Evolution of site-specific recombinases
US10612011B2 (en) 2015-07-30 2020-04-07 President And Fellows Of Harvard College Evolution of TALENs
US10920208B2 (en) 2014-10-22 2021-02-16 President And Fellows Of Harvard College Evolution of proteases
US11299729B2 (en) 2015-04-17 2022-04-12 President And Fellows Of Harvard College Vector-based mutagenesis system
US11447809B2 (en) 2017-07-06 2022-09-20 President And Fellows Of Harvard College Evolution of tRNA synthetases
US11624130B2 (en) 2017-09-18 2023-04-11 President And Fellows Of Harvard College Continuous evolution for stabilized proteins
US11913044B2 (en) 2018-06-14 2024-02-27 President And Fellows Of Harvard College Evolution of cytidine deaminases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019859A2 (en) * 1999-09-15 2001-03-22 Monsanto Technology Llc LEPIDOPTERAN-ACTIVE BACILLUS THURINGIENSIS δ-ENDOTOXIN COMPOSITIONS AND METHODS OF USE
KR20050075897A (ko) * 2004-01-16 2005-07-25 동부한농화학 주식회사 나비목 해충에 살충효과를 보이는 신규한 내독소 단백질유전자를 보유한 바실러스 투린지엔시스 케이-3 균주 및 이를 이용한 미생물 제제
US20100319087A1 (en) * 1998-11-04 2010-12-16 Corbin David R Methods for Transforming Plants to Express Delta-Endotoxins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319087A1 (en) * 1998-11-04 2010-12-16 Corbin David R Methods for Transforming Plants to Express Delta-Endotoxins
WO2001019859A2 (en) * 1999-09-15 2001-03-22 Monsanto Technology Llc LEPIDOPTERAN-ACTIVE BACILLUS THURINGIENSIS δ-ENDOTOXIN COMPOSITIONS AND METHODS OF USE
KR20050075897A (ko) * 2004-01-16 2005-07-25 동부한농화학 주식회사 나비목 해충에 살충효과를 보이는 신규한 내독소 단백질유전자를 보유한 바실러스 투린지엔시스 케이-3 균주 및 이를 이용한 미생물 제제

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, YANG SU ET AL.: "Mutagenesis of Bacillus thuringiensiscrylAc gene and its in pesticidal activity against Plutella xylostella and Ostrinia furnacalis", BIOLOGICAL CONTROL, vol. 47, no. 2, 30 November 2008 (2008-11-30), pages 222 - 227 *
ROH, JONG YUL ET AL.: "Expression of Bacillus thuringiensis mosquitocidal toxin in an antimicrobial Bacillus brevis strain", JOURNAL OF ASIA-PACIFIC ENTOMOLOGY, vol. 13, no. 1, 31 March 2010 (2010-03-31), pages 61 - 64 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771574B2 (en) 2008-09-05 2017-09-26 President And Fellows Of Harvard College Apparatus for continuous directed evolution of proteins and nucleic acids
US10336997B2 (en) 2010-12-22 2019-07-02 President And Fellows Of Harvard College Continuous directed evolution
US11214792B2 (en) 2010-12-22 2022-01-04 President And Fellows Of Harvard College Continuous directed evolution
US10179911B2 (en) 2014-01-20 2019-01-15 President And Fellows Of Harvard College Negative selection and stringency modulation in continuous evolution systems
US10920208B2 (en) 2014-10-22 2021-02-16 President And Fellows Of Harvard College Evolution of proteases
US11760986B2 (en) 2014-10-22 2023-09-19 President And Fellows Of Harvard College Evolution of proteases
US11299729B2 (en) 2015-04-17 2022-04-12 President And Fellows Of Harvard College Vector-based mutagenesis system
US11905623B2 (en) 2015-07-22 2024-02-20 President And Fellows Of Harvard College Evolution of site-specific recombinases
US11104967B2 (en) 2015-07-22 2021-08-31 President And Fellows Of Harvard College Evolution of site-specific recombinases
US10392674B2 (en) 2015-07-22 2019-08-27 President And Fellows Of Harvard College Evolution of site-specific recombinases
US20170029473A1 (en) * 2015-07-23 2017-02-02 President And Fellows Of Harvard College Evolution of bt toxins
US11524983B2 (en) 2015-07-23 2022-12-13 President And Fellows Of Harvard College Evolution of Bt toxins
WO2017015559A3 (en) * 2015-07-23 2017-04-13 President And Fellows Of Harvard College Evolution of bt toxins
US11078469B2 (en) 2015-07-30 2021-08-03 President And Fellows Of Harvard College Evolution of TALENs
US10612011B2 (en) 2015-07-30 2020-04-07 President And Fellows Of Harvard College Evolution of TALENs
US11913040B2 (en) 2015-07-30 2024-02-27 President And Fellows Of Harvard College Evolution of TALENs
US11447809B2 (en) 2017-07-06 2022-09-20 President And Fellows Of Harvard College Evolution of tRNA synthetases
US11624130B2 (en) 2017-09-18 2023-04-11 President And Fellows Of Harvard College Continuous evolution for stabilized proteins
US11913044B2 (en) 2018-06-14 2024-02-27 President And Fellows Of Harvard College Evolution of cytidine deaminases

Similar Documents

Publication Publication Date Title
WO2014157820A1 (ko) 나비목 해충에 대한 살충 활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질 유전자 및 그 제조방법
KR101555124B1 (ko) 나비목 해충에 대한 살충활성이 향상된 신규의 바실러스 투린지엔시스 내독소단백질을 코딩하는 유전자 및 그 제조방법
AU2014350741B2 (en) Method for controlling pest
CN101686705A (zh) 来自Bacillus thuringiensis的半翅目和鞘翅目活性的毒素蛋白
CN101531980B (zh) 苏云金芽孢杆菌hs18-1及其应用
Liu et al. Cry64Ba and Cry64Ca, two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against hemipteran pests
Jisha et al. An overview on the crystal toxins from Bacillus thuringiensis
CN101503666B (zh) 苏云金芽胞杆菌菌株新菌株及其应用
WO2016101683A1 (zh) 杀虫蛋白的用途
EA032560B1 (ru) Инсектицидные полипептиды с широким спектром активности и их применения
WO2008141578A1 (fr) Séquences polynucléotidiques codant pour la toxine de scorpion et champignons insecticides transformés
CN106928329B (zh) 一种新的杀虫蛋白及其核苷酸序列
Singh et al. Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1
CN110093301B (zh) 一种苏云金芽孢杆菌及其在防治鳞翅目类害虫中的应用
WO2016101684A1 (zh) 杀虫蛋白的用途
CN110042102A (zh) 一种可防蚊控蚊的双链rna、表达载体及其应用
CN111995690B (zh) 一种人工合成的抗虫蛋白mCry1Ia2及其制备方法和应用
CN101531981B (zh) 苏云金芽孢杆菌bm59-2及其应用
KR100280380B1 (ko) 바실러스투린지엔시스 엔티0423 균주의 내독소단백질 및 이를 이용한 미생물 살충제
CN114438118A (zh) 在水稻、玉米中高效表达Bt蛋白Cry56Aa1抗草地贪夜蛾的方法
Pandiarajan et al. Gut resident microbes in groundnut pest Amsacta albistriga (Red Hairy Caterpillar)
CN114717256A (zh) 在水稻中高效表达Bt蛋自Cry2Ag1抗草地贪夜蛾的方法
CN103525837B (zh) Bt蛋白Cry72Aa1操纵子基因及其应用
CN104211790B (zh) 一种高效杀灭同翅目害虫的Bt蛋白Cry21NJ、编码基因及其应用
CN103421097B (zh) 杀线虫晶体蛋白基因cry003-148及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775253

Country of ref document: EP

Kind code of ref document: A1