WO2014157673A1 - 波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法 - Google Patents
波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法 Download PDFInfo
- Publication number
- WO2014157673A1 WO2014157673A1 PCT/JP2014/059302 JP2014059302W WO2014157673A1 WO 2014157673 A1 WO2014157673 A1 WO 2014157673A1 JP 2014059302 W JP2014059302 W JP 2014059302W WO 2014157673 A1 WO2014157673 A1 WO 2014157673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- output port
- wavelength
- input
- switch device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/356—Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/12—Function characteristic spatial light modulator
Definitions
- the present invention relates to a wavelength selective optical switch device and a method for controlling the wavelength selective optical switch device.
- an optical switch In an optical transmission system, an optical switch is used to switch a path of an optical signal such as a wavelength multiplexed optical signal.
- Some of such optical switches use LCOS (Liquid Crystal On Silicon) in order to switch the path of an optical signal (see Patent Documents 1 and 2).
- the LCOS is a spatial light modulator capable of modulating and diffracting the phase of incident light with a liquid crystal. Therefore, in an optical switch using LCOS, an optical switch operation is realized by diffracting an optical signal incident from a certain path by LCOS and outputting it to a specific path.
- an input port for inputting an optical signal and an output port for outputting the optical signal are arranged at equal intervals along a predetermined direction.
- the input port is arranged on the optical axis of the lens. Therefore, the LCOS is configured to diffract the angle of incident light in this arrangement direction.
- An optical switch having N and M (N and M are integers of 1 or more) input and output ports, respectively, is called an N ⁇ M optical switch.
- the present invention has been made in view of the above, and an object of the present invention is to provide a wavelength selective optical switch device having good crosstalk characteristics and a method for controlling the wavelength selective optical switch device.
- a wavelength selective optical switch device has an optical input / output port having at least one port for inputting light from the outside or outputting light to the outside.
- a collimator lens provided corresponding to the port of the light input / output port, and reflects light input from any one of the light input / output ports to be directed to any one of the light input / output ports.
- a spatial modulator having a plurality of phase modulation elements arranged two-dimensionally, and disposed between the optical input / output port and the spatial modulator, the optical input / output port and the spatial modulator being Optically coupled condensing lens system, disposed between the light input / output port and the condensing lens system, and expanding the beam diameter of the light input from the light input / output port side in the beam diameter expansion direction
- a Fresnel lens-like phase modulation is formed in the switch axis direction perpendicular to the wavelength dispersion axis direction of the wavelength dispersion element, and is arranged at the beam waist position of the condenser lens system, and the first-order diffraction by the formed phase modulation.
- the light is coupled to a desired output port.
- the wavelength selective optical switch device is the above-described invention, wherein the spatial light modulator has a Fresnel lens-like phase having different curvatures in the switch axis direction with respect to two or more wavelength bands having different wavelengths. It is characterized by forming a modulation.
- the wavelength selective optical switch device is the above-described invention, wherein the optical input / output port having at least one port for inputting light from the outside or outputting light to the outside, A collimator lens provided corresponding to the port, a spatial modulator that reflects light input from any one of the light input / output ports and outputs the reflected light toward any one of the light input / output ports; A condensing lens system that is disposed between the light input / output port and the spatial modulator and optically couples the light input / output port and the spatial modulator; and the light input / output port and the condensing lens A chromatic dispersion element provided between the chromatic dispersion element and the spatial modulator at a beam waist position with respect to a chromatic dispersion axis direction of the condenser lens system.
- a diffraction grating-like phase modulation is formed in the direction of the wavelength dispersion axis, and first-order diffracted light by the formed phase modulation is
- the spatial modulator forms a diffraction grating phase modulation in the wavelength dispersion axis direction, and the first-order diffracted light by the formed phase modulation. Is coupled to the desired output port.
- the spatial light modulator is a diffraction grating having different reflection angles in the wavelength dispersion axis direction with respect to two or more wavelength bands having different wavelengths.
- the phase modulation is formed.
- the optical axis of the light input / output port and the optical axis of the condenser lens are separated from each other.
- the intervals between the optical input / output port and the collimator lens corresponding to the optical input / output port are unequal intervals.
- control method of the wavelength selective optical switch device includes an optical input / output port having at least one port for inputting light from outside or outputting light to the outside, and a port of the optical input / output port. And a collimator lens provided corresponding to the optical input / output port, the light input from any one of the light input / output ports is reflected and output to any one of the light input / output ports.
- a spatial light modulator having a plurality of phase modulation elements; and a collection unit disposed between the light input / output port and the spatial light modulator and optically coupling the light input / output port and the spatial light modulator.
- An anamorphic optical system that is disposed between an optical lens system and the light input / output port and the condenser lens system and expands the beam diameter of light input from the light input / output port side in the beam diameter expansion direction
- a chromatic dispersion element provided between the anamorphic optical system and the condenser lens system, and the spatial light modulator is configured so that the condenser lens with respect to a wavelength dispersion axis direction of the chromatic dispersion element
- control method of the wavelength selective optical switch device includes an optical input / output port having at least one port for inputting light from outside or outputting light to the outside, and a port of the optical input / output port.
- a spatial light modulator that reflects light input from any one of the light input / output ports and outputs the reflected light to any one of the light input / output ports;
- a condensing lens system disposed between the light input / output port and the spatial light modulator and optically coupling the light input / output port and the spatial light modulator; the light input / output port;
- a chromatic dispersion element provided between the optical lens system and the spatial light modulator at a position of a beam waist with respect to a chromatic dispersion axis direction of the condenser lens system.
- the spatial light modulator forms a diffraction grating phase modulation in the wavelength dispersion axis direction, and the formed phase
- the first-order diffracted light by modulation is coupled to a desired output port.
- the present invention it is possible to realize a wavelength selective optical switch device having good crosstalk characteristics and a method for controlling the wavelength selective optical switch device.
- FIG. 1 is a schematic configuration diagram of a wavelength selective optical switch device according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic configuration diagram of the wavelength selective optical switch device according to the first embodiment of the present invention.
- FIG. 3 is a schematic configuration diagram of the wavelength selective optical switch device according to the first embodiment of the present invention.
- FIG. 4 is a schematic configuration diagram of the wavelength selective optical switch device according to the first embodiment of the present invention.
- FIG. 5 is a schematic configuration diagram of the wavelength selective optical switch device according to the first embodiment of the present invention.
- FIG. 6 is an exploded view of the spatial light modulator shown in FIG.
- FIG. 7 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG. FIG.
- FIG. 8 is a diagram illustrating an example of a display image when the spatial light modulator illustrated in FIG. 1 is not switched.
- FIG. 9 is a diagram illustrating an example of a display image when switching to the proximity port of the spatial light modulator illustrated in FIG. 1.
- FIG. 10 is a diagram illustrating an example of a display image when switching to the remote port of the spatial light modulator illustrated in FIG. 1.
- FIG. 11 is a diagram illustrating the relationship between the focal length of the spatial light modulator and the deviation of the beam waist in the wavelength selective optical switch device according to the first embodiment.
- FIG. 12 shows the focal length of the spatial light modulator, the coupling loss of the first-order diffracted light, and the crosstalk characteristics between the first-order diffracted light and the second-order diffracted light in the wavelength selective optical switch device according to the first embodiment. It is a figure showing these relationships.
- FIG. 13 is a schematic configuration diagram of the wavelength selective optical switch device according to the second embodiment of the present invention.
- FIG. 14 is a schematic configuration diagram of the wavelength selective optical switch device according to the second embodiment of the present invention.
- FIG. 15 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- FIG. 16 is a diagram illustrating the relationship between the angle of the spatial light modulator and the crosstalk in the wavelength selective optical switch device according to the second embodiment.
- FIG. 13 is a schematic configuration diagram of the wavelength selective optical switch device according to the second embodiment of the present invention.
- FIG. 14 is a schematic configuration diagram of the wavelength selective optical switch device according to the second embodiment of the present invention.
- FIG. 17 is a schematic configuration diagram of a wavelength selective optical switch device according to Embodiment 3 of the present invention.
- FIG. 18 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- FIG. 19 is a diagram for describing control during operation of the spatial light modulator illustrated in FIG. 17.
- FIG. 20 is a diagram illustrating crosstalk characteristics for each output port in the wavelength selective optical switch device.
- FIG. 21 is a diagram illustrating crosstalk characteristics for each output port in the wavelength selective optical switch device according to the third embodiment.
- FIG. 22 is a diagram illustrating an example of design of element arrangement in the wavelength selective optical switch device.
- FIG. 23 is a diagram illustrating an example of design of element arrangement in the wavelength selective optical switch device.
- FIG. 24 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- FIG. 1 is a perspective view schematically showing an outline of the operation of the wavelength selective optical switch device 100.
- This wavelength selective optical switch device 100 is a wavelength selective optical switch device that switches the path of light for each wavelength of incident light. For example, as shown in FIG. 1, signals having different wavelengths incident from respective input ports are used. The light is individually switched and output to one output port (COM port). Also, two or more wavelength-multiplexed signal lights having different wavelengths input from one input port (COM port) can be individually switched for each signal light and output to individual output ports.
- 2 and 4 are views of the wavelength selective optical switch device 100 as seen from a direction perpendicular to the wavelength dispersion axis direction of the wavelength dispersion element (the beam diameter expansion direction of the anamorphic prism pair, indicated by the direction D1).
- 3 and 5 are views of the wavelength selective optical switch device 100 as seen from the direction perpendicular to the switch axis direction (indicated by the direction D2) perpendicular to the wavelength dispersion axis direction of the wavelength dispersion element.
- 2 and 3 are diagrams showing the input light as light rays
- FIGS. 4 and 5 are diagrams showing the input light as a spot size locus of the Gaussian beam.
- the wavelength selective optical switch device 100 includes an optical input / output port 110, a collimator lens array 120, an anamorphic prism pair 130 that is an anamorphic optical system, a diffraction grating 140 that is a wavelength dispersion element, and a condensing lens system.
- the condensing lens 150 and the spatial light modulator 160 are arranged in this order.
- the elements from the anamorphic prism pair 130 to the spatial light modulator 160 are arranged before and after the diffraction grating 140 in FIGS. Arranged at an angle.
- the optical path may be shifted in the direction D1, but in FIGS. 2 to 5, the elements are arranged in series for the sake of simplicity.
- the incident signal light is a Gaussian beam in which signal lights having two or more different wavelengths are wavelength-multiplexed.
- the wavelength-multiplexed signal light of each wavelength is, for example, a substantially monochromatic signal light having a frequency managed at an interval of 50 GHz to 100 GHz, and the wavelength selective optical switch device 100 performs switching operation of these signal lights at the same time.
- Can do. 4, 5, 22, and 23, the locus of the spot size of the Gaussian beam of each signal light (the beam radius at which the light intensity is 1 / e 2 ) is indicated by a schematic arrow.
- the wavelength band of the signal light that is input to or output from the wavelength selective optical switch device 100 is not particularly limited, but is signal light for optical communication having a wavelength of 1520 to 1620 nm, for example.
- the optical input / output port 110 includes optical fiber ports 111, 112, 113, 114, 115 made of optical fibers.
- the optical fiber port 111 is a COM port to which wavelength-multiplexed signal light is input. An arbitrary wavelength is extracted from the wavelength-multiplexed signal light and is output from the other optical fiber ports 112 to 115. It is configured.
- the optical fiber ports 111 to 115 are arranged in an array at substantially equal intervals along a predetermined arrangement direction (direction D2 which is the switch axis direction), but may be arranged at unequal intervals. In FIG.
- the optical axis of the optical fiber port 111 and the optical axis of the condensing lens 150 are the same, but the optical axis of each optical fiber port and the optical axis of the condensing lens 150 are separated from each other.
- the optical fiber ports 111 to 115 are for inputting light from the outside or outputting light to the outside.
- the collimator lens array 120 includes a plurality of collimator lenses. 3 and 5, only the collimator lenses 121 and 122 corresponding to the optical fiber ports 111 and 112 constituting the light input / output port 110 are shown as the collimator lens array 120, but each collimator lens of the collimator lens array 120 is shown. Are provided corresponding to each optical fiber port constituting the optical input / output port 110.
- the collimator lens array 120 has a function of making light output from the optical fiber ports 111 to 115 substantially parallel light, or condensing and coupling the input parallel light to the optical fiber ports 111 to 115.
- the spatial light modulator 160 is a spatial light modulator having a plurality of phase modulation elements arranged two-dimensionally, and may be LCOS.
- FIG. 6 is an exploded view of the spatial light modulator shown in FIG.
- the spatial light modulator 160 is an LCOS, and a pixel electrode group 162 that is a reflective layer having a reflectance of approximately 100% on a silicon substrate 161 on which a liquid crystal driving circuit is formed;
- a liquid crystal layer 163 that is a spatial light modulation layer, an alignment film 164, an ITO (Indium Tin Oxide) electrode 165, and a cover glass 166 are sequentially stacked.
- an alignment film may be provided between the pixel electrode group 162 and the liquid crystal layer 163 as needed.
- the alignment film 164, the ITO electrode 165, and the cover glass 166 are referred to as a light incident layer 167.
- the spatial light modulator 160 can control the liquid crystal layer 163 by applying a voltage between the pixel electrode group 162 and the ITO electrode 165 by a controller, and is in a direction perpendicular to the plane of the drawing (direction in FIG. 1).
- a desired refractive index distribution can be formed two-dimensionally by controlling the refractive index of each of a plurality of pixels arranged in D1) and the vertical direction (direction D2 in FIG. 1). Then, by adjusting the refractive index distribution, when light incident from the light incident layer 167 side is reflected by the pixel electrode group 162 and propagates through the liquid crystal layer 163, it is subjected to Fresnel lens-like phase modulation. Can be formed.
- the curvature and the focal length as the Fresnel lens can be set to desired values by controlling the voltage applied to the liquid crystal layer 163 by the controller. it can.
- FIG. 7 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- the dark portion has a high refractive index and the thin portion has a low refractive index. That is, the refractive index of each pixel is controlled by the controller so that the phase modulation period gradually decreases from the bottom to the top in the direction D2 in the figure.
- the curvature of the (Fresnel) lens it is possible to cause the curvature of the (Fresnel) lens to gradually increase as it goes from the bottom to the top in the direction D2.
- FIG. 7 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- the dark portion has a high refractive index and the thin portion has a low refractive index. That is, the refractive index of each pixel is controlled by the controller so that the phase modulation period gradually decreases from the bottom to the top in the direction D2 in the figure.
- the arrangement direction of the optical fiber ports 111 to 115 of the light input / output port 110 matches the gradation direction of the refractive index of the liquid crystal layer 163. . That is, a refractive index distribution is formed in the direction D2.
- the spatial light modulator 160 to which a predetermined voltage is applied by the controller functions as a reflection type Fresnel lens, thereby optimizing the curvature as the Fresnel lens, as shown in FIG.
- the spatial light modulator 160 can reflect the spot size locus of the Gaussian beam so that the signal light L1 and the signal light L2 are substantially the same.
- the spatial light modulator 160 controls the optical axis as the Fresnel lens to be offset in the direction D2 with respect to the optical axis of the signal light L1 while maintaining the periodicity of the refractive index distribution in the direction D2.
- the light emission angle can be controlled so that light having a desired wavelength incident from the optical fiber port 111 can be output to any one of the other optical fiber ports 112 to 115.
- the signal light L2 reflected by the spatial light modulator 160 is coupled to a desired output port.
- FIG. 7 is controlled so that the period of phase modulation is shortened from the bottom to the top of the direction D2, but for example, the center of the optical axis as a Fresnel lens is set to have the longest period.
- the period may be controlled to become shorter as it goes below the direction D2. That is, the incident light can be switched in a desired direction by controlling the refractive index distribution of each pixel of the LCOS so that the center of the optical axis of the Fresnel lens drawn on the LCOS is shifted in the direction D2.
- the curvature of the spatial light modulator 160 as the Fresnel lens is preferably controlled according to the wavelength of the incident signal light L1.
- the reflection mirror (consisting of a plurality of pixels) for switching the signal light of each wavelength of the spatial light modulator 160, if the refractive index distribution is not linear in the direction D1, Since a phase modulation distribution is generated for each wavelength component, it is difficult to simultaneously couple the wavelength components in the signal light of each wavelength to a desired output port. Therefore, in the wavelength selective optical switch device 100, the reflection mirror configured to switch the signal light of each wavelength, which is composed of a plurality of pixels in the spatial light modulator 160, has a linear (including uniform) refractive index distribution in the direction D1. It is preferable to have
- the condenser lens 150 is disposed between the light input / output port 110 and the spatial light modulator 160, and optically couples the optical fiber port 111 and the spatial light modulator 160.
- the condensing lens 150 may be comprised with the lens of 1 sheet, and may be comprised with the lens of several sheets.
- the anamorphic prism pair 130 includes two prisms 131 and 132, and is disposed between the light input / output port 110 and the condenser lens 150.
- the anamorphic prism pair 130 has a function of expanding the beam shape of light input from the light input / output port 110 side in a direction D1 that is a beam diameter expansion direction.
- anamorphic prism pair 130 since the anamorphic prism pair 130 has optical reciprocity, it has a function of reducing the beam shape of the light input from the spatial modulator 160 side in the direction D1.
- the anamorphic prism pair 130 may be replaced with another anamorphic optical system such as a cylindrical lens system.
- an anamorphic prism pair is used as a method for expanding the beam diameter, the present invention is not limited to this, and an anamorphic prism may be used.
- the diffraction grating 140 is, for example, a transmission type diffraction grating, and is disposed between the anamorphic prism pair 130 and the condenser lens 150.
- the diffraction grating 140 outputs signal lights L1a, L1b, and L1c having predetermined wavelengths included in the signal light L1 that is signal light with multiplexed wavelengths at predetermined angles. Since the separated signal lights L1a, L1b, and L1c are incident on the spatial light modulator 160 substantially perpendicularly, the distance between the diffraction grating 140 and the condenser lens 150 is equal to the focal length f1 of the condenser lens 150. It is preferable to do.
- the spatial modulator 160 is disposed at a position away from the condenser lens 150, which is the position of the beam waist W1 of the condenser lens 150 with respect to the direction D1, by a distance d1. Further, the beam shape of the light input from the light input / output port 110 side is expanded only in the direction D1, and is not expanded in the direction D2. Thereby, the distance d2 becomes larger than the distance d1. Accordingly, the position of the distance d2 from the condenser lens 150, which is the position of the beam waist W2 of the condenser lens 150 with respect to the direction D2, is a position farther from the condenser lens 150 than the spatial modulator 160.
- the beam waist of the Gaussian beam is a place where the wavefront of the Gaussian beam is flat and the beam diameter is the smallest.
- wavelength selective optical switch device 100 signal light can be input and output from each optical fiber port. Therefore, for example, as shown in FIG. 1, a 4 ⁇ 1 optical switch that outputs signal light input from each optical fiber port port other than the output port to one output port may be used. Alternatively, as shown in FIG. 3, a 1 ⁇ 4 optical switch that outputs signal light input from one input port to another output port may be used. Furthermore, the present invention is not limited to this, and each optical fiber port may be configured to simultaneously input and output. Furthermore, the number of optical fiber ports may be one, and at this time, the wavelength selective optical switch device 100 performs wavelength ON / OFF switching for each wavelength of signal light having two or more multiplexed wavelengths. Functions as a device.
- the signal light L1 is input to the optical fiber port 111 from the outside.
- the signal light L1 is wavelength-multiplexed signal light and includes signal light L1a, L1b, and L1c having different wavelengths.
- the optical fiber port 111 outputs the input signal light L1 to the collimator lens 121.
- the collimator lens 121 turns the signal light L1 into substantially parallel light having a substantially circular beam shape.
- the anamorphic prism pair 130 expands the beam shape of the signal light L1 made substantially parallel light in the direction D1 to make it elliptical.
- the diffraction grating 140 diffracts the elliptical signal light L1 at a predetermined diffraction angle corresponding to the wavelength. As a result, the signal light L1 is separated into signal lights L1a, L1b, and L1c.
- the condensing lens 150 condenses the diffracted signal lights L1a, L1b, and L1c on the spatial light modulator 160. Since the distance between the diffraction grating 140 and the condenser lens 150 is the focal length f1 of the condenser lens 150, the signal lights L1a, L1b, and L1c are separated in the direction D1 substantially perpendicular to the spatial light modulator 160. Incident. In the spatial light modulator 160, a predetermined refractive index distribution is formed in the direction D2. For example, as shown in FIG.
- the refractive index distribution diffracts light having a desired wavelength in the direction of the optical fiber port 112 out of the signal lights L1a, L1b, and L1c, thereby operating as a wavelength selective optical switch device.
- the diffracted signal light is made parallel to the optical axis of the condenser lens 150 by the condenser lens 150.
- the diffraction grating 140 diffracts the signal light in a direction parallel to the optical axis of the collimator lens 122 due to optical reciprocity.
- the anamorphic prism pair 130 reduces the beam shape of the signal light in the direction D1 and returns it to a substantially circular shape due to optical reciprocity.
- the collimator lens 122 corresponding to the optical fiber port 112 collects the signal light and couples it to the optical fiber port 112.
- the optical fiber port 112 outputs the combined light to the outside.
- the wavelength selective optical switch device 100 switches the path of the signal light having a desired wavelength out of the light input from the optical fiber port 111 to the optical fiber port 112. Similarly, the wavelength selective optical switch device 100 switches the path of light input from the optical fiber port 111 to any one of the other optical fiber ports 112 to 115 under the control of the spatial light modulator 160. Can do. Furthermore, the optical path input from the optical fiber port 111 can be returned to the optical fiber port 111.
- FIG. 8 is a diagram illustrating an example of a display image when the spatial light modulator illustrated in FIG. 1 is not switched.
- a region S1 is a spot size of light incident on the spatial light modulator 160
- an optical axis A COM 1 is an optical axis passing through the center of the light incident on the spatial light modulator 160
- an optical axis A FL 1 is spatial light.
- the optical axis as a Fresnel lens in the direction D2 of the modulator 160 is represented. As shown in FIG. 8, when switching is not performed, the optical axis A COM 1 and the optical axis A FL 1 are arranged on the same straight line. At this time, the spatial light modulator 160 reflects the light vertically incident on the spatial light modulator 160 in the incident direction. That is, the spatial light modulator 160 reflects the light input from the optical fiber port 111 that is a COM port so as to be coupled to the optical fiber port 111.
- FIG. 9 is a diagram illustrating an example of a display image when switching to the proximity port of the spatial light modulator illustrated in FIG. 1.
- the display image is controlled so that the optical axis A FL 1 is positioned below the spatial light modulator 160.
- the spatial light modulator 160 reflects light vertically incident on the spatial light modulator 160 slightly upward from the incident direction. That is, the spatial light modulator 160 reflects the light input from the optical fiber port 111, which is a COM port, so as to be coupled to the optical fiber port 113, for example.
- the spatial light modulator 160 controls the display image so that the optical axis A FL 1 is positioned above the spatial light modulator 160, the light incident perpendicularly to the spatial light modulator 160 is slightly less than the incident direction. Reflects downward.
- FIG. 10 is a diagram illustrating an example of a display image when switching to the remote port of the spatial light modulator illustrated in FIG. 1.
- the phase modulation period is gradually shortened from the bottom to the top in the direction D2, as in FIG.
- the optical axis A FL 1 is not positioned in the spatial light modulator 160, and the virtual optical axis A FL 1 is displayed so as to be positioned further below the lower end of the spatial light modulator 160. Control the image.
- the spatial light modulator 160 reflects light vertically incident on the spatial light modulator 160 upward from the incident direction.
- the spatial light modulator 160 for example, in a 1 ⁇ 20 port wavelength selective optical switch device, couples light input from 11 ports located at the center, which is a COM port, to 1 port located at the upper end, for example. Reflect on.
- the spatial light modulator 160 controls the display image so that the optical axis A FL 1 is positioned further above the upper end of the spatial light modulator 160, the light vertically incident on the spatial light modulator 160 is incident. Reflects downward from the direction.
- the wavelength selective optical switch device 100 controls the position of the optical axis as the Fresnel lens in the direction D2 of the spatial light modulator 160 with respect to the optical axis passing through the center of the light incident on the spatial light modulator 160.
- light input from the optical fiber port 111 which is a COM port, can be coupled to a desired optical fiber port.
- the display image of the spatial light modulator 160 may be controlled to form a concave Fresnel lens (not shown).
- the positional relationship of the optical axis A FL 1 with respect to the optical axis A COM 1 and the vertical relationship of the reflection direction of the spatial light modulator 160 are reversed from those in FIGS. That is, when the display image is controlled so that the optical axis A FL 1 is positioned below the optical axis A COM 1, the spatial light modulator 160 reflects light incident perpendicularly to the spatial light modulator 160 downward from the incident direction.
- the display image is controlled so that the optical axis A FL 1 is positioned above the optical axis A COM 1, the light incident perpendicularly to the spatial light modulator 160 is reflected upward from the incident direction.
- the above operation is performed on the light of each wavelength that is incident on the wavelength selective optical switch device 100 and is divided by the diffraction grating 140 in the direction D1 of the spatial light modulator 160 for each wavelength.
- the width SW1 in FIG. 8 is the width of the area of the spatial light modulator 160 corresponding to one channel, and is assigned to signal light having one or a plurality of wavelengths.
- the width SW1 is at least larger than the width in the direction D1 of the region S1, for example, a width corresponding to several to several tens of pixels in the direction D1.
- the spatial light modulator 160 reflects the light contained in each channel in a predetermined direction of the direction D2 by individually controlling the region having the width SW1 corresponding to each channel, and sets the wavelength selective switch. Realize.
- wavelength selective optical switch device 100 will be described with reference to FIGS. 4, 5 and 6 in comparison with the comparative wavelength selective optical switch device 1000 shown in FIGS.
- the arrangement of the optical system of the wavelength selective optical switch apparatus 100 is the same as the arrangement of the optical system of the wavelength selective optical switch apparatus 1000.
- the wavelength selective optical switch apparatus 1000 includes an optical input / output port 1010, a collimator lens array 1020, and the like.
- An anamorphic prism pair 1030 that is an anamorphic optical system, a diffraction grating 1040 that is a wavelength dispersion element, a condensing lens 1050 that is a condensing lens system, and a spatial light modulator 1060 are arranged in this order. Configured.
- FIG. 24 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- the display image of the spatial light modulator 1060 has a refractive index distribution with respect to the direction D2, and the distribution is a gradation having the same width with respect to the direction D2.
- the spatial light modulator 1060 functions as a blazed diffraction grating.
- Each element other than the spatial light modulator 1060 of the wavelength selective optical switch device 1000 is the same as the wavelength selective optical switch device 100.
- the spatial modulator 160 is disposed at a distance d1 from the condenser lens 150, which is the position of the beam waist W1 of the condenser lens 150 with respect to the direction D1.
- the spatial modulator 160 since the spatial modulator 160 does not have a refractive index distribution and functions as a simple mirror, the signal light L2 that is the signal light reflected by the spatial modulator 160 is condensed by the collimator lens 121. The position also coincides with the end face of the optical fiber port 111. As a result, the diffracted light of the spatial modulator 160 is coupled to a desired output port.
- the wavelength selective optical switch device 1000 performs the same operation.
- the position of the distance d2 from the condenser lens 150 which is the position of the beam waist of the condenser lens 150 with respect to the direction D2, is a position farther from the condenser lens 150 than the spatial modulator 160.
- the spatial modulator 160 functions as a reflection type Fresnel lens by the unequal interval pattern of the display image of the spatial modulator 160 shown in FIG.
- the locus of the spot size of the Gaussian beam of the light L1 and the signal light L2 is made substantially the same.
- the signal light L2 is preferably coupled to the optical fiber port 111.
- the display image of the spatial light modulator 1060 in the wavelength selective optical switch device 1000 has a gradation in which the refractive index distribution is equal in width to the direction D2. Accordingly, the spatial light modulator 1060 does not perform Fresnel lens-like phase modulation and functions as a blazed diffraction grating. At this time, the traveling direction of the signal light L1 is changed but is not refracted. Therefore, as shown in FIG. 23, the locus of Gaussian beam spot size differs between the signal light L1001 and the signal light L1002, and the signal light L1002 is not coupled to the optical fiber port 1011.
- the wavelength selective optical switch device 100 since the spatial modulator 160 performs Fresnel lens-like phase modulation, the difference between the axial position of the beam waist W2 and the position W1 (the surface of the spatial light modulator 160). By compensating (d2-d1), the signal light L2 can be preferably coupled to the optical fiber port 111 in both directions D1 and D2.
- the wavelength selective optical switch device 1000 since the spatial light modulator 1060 does not perform phase modulation, the signal light L1002 is not coupled to the optical fiber port 1011 in the direction D2. Therefore, the wavelength selective optical switch device 100 has better coupling efficiency than the wavelength selective optical switch device 1000.
- the wavelength selective optical switch device 100 is a wavelength selective optical switch device having good crosstalk characteristics.
- d2 can be made smaller than d1 by using a cylindrical lens having optical power in the D2 direction.
- the phase modulation of the LCOS may be a concave mirror shape.
- the optical signal when an optical switch operation is performed to output an optical signal input from a predetermined input port to a predetermined output port, the optical signal is also transmitted to other unintended output ports. Some may be output. In such a case, the crosstalk characteristic between the output ports is deteriorated.
- the main cause of such deterioration of the crosstalk characteristics is due to high-order diffracted light in the spatial light modulator.
- Fresnel lenses and blazed diffraction gratings may generate higher-order diffracted light.
- the signal light incident on the spatial light modulator 160 may be reflected at the interface of each layer of the light incident layer 167, the interface between the light incident layer 167 and the air layer, etc. May occur.
- the crosstalk characteristics deteriorate.
- the spatial modulator 160 causes the signal light L1 and the signal light L2 to have substantially the same spot size trajectory of the Gaussian beam, thereby causing the signal light.
- L 2 is coupled to the optical fiber port 111.
- the beam waist W3 of the signal light L2 is formed at a distance d3 from the collimator lens 121.
- the beam waist W1003 is formed at a position of a distance d1003 that is farther from the collimator lens than the distance d3.
- the first-order diffracted light of the spatial modulator 160 is positioned on the collimator lens side by the position of the beam waist by ⁇ by the Fresnel lens-like phase modulation of the spatial modulator 160. Is modulated.
- the wavelength selection optical switch device 100 has not only high coupling efficiency but also wavelength selection having good crosstalk characteristics that suppresses deterioration of crosstalk due to higher-order diffracted light. It is an optical switch device.
- Example 1 Next, as Example 1, the wavelength selective optical switch device 100 according to Embodiment 1 was actually manufactured and its performance was evaluated.
- the focal length of each collimator lens of the collimator lens array 120 is 0.1 to several mm
- the focal length of the condenser lens 150 is 50 to 200 mm
- the magnification of the anamorphic prism pair 130 is It is about 10 to several tens of times.
- the signal light L1 is incident from the optical fiber port 111 and the signal light L2 is output to the optical fiber port 111.
- the display image of the spatial light modulator 160 was adjusted, the focal length as the Fresnel lens was changed, and the deviation between the beam waist of the signal light L1 by the collimator lens and the beam waist of the signal light L2 by the condenser lens was calculated. .
- FIG. 11 is a diagram illustrating the relationship between the focal length of the spatial light modulator and the deviation of the beam waist in the wavelength selective optical switch device according to the first embodiment.
- FIG. 11 by changing the focal length of the Fresnel lens, it is possible to minimize the deviation between the beam waist of the signal light L1 by the collimator lens and the beam waist of the signal light L2 by the condenser lens.
- the focal length of the spatial light modulator 160 as the Fresnel lens is about 75 mm, the deviation of the beam waist can be minimized.
- FIG. 12 shows the focal length of the spatial light modulator, the coupling loss of the first-order diffracted light, and the crosstalk characteristics between the first-order diffracted light and the second-order diffracted light in the wavelength selective optical switch device according to the first embodiment. It is a figure showing these relationships.
- the crosstalk between the first-order diffracted light and the second-order diffracted light is the output light intensity from the output port of the second-order diffracted light as the output light intensity from the output port of the first-order diffracted light.
- the crosstalk characteristic in FIG. 12 represents how much the crosstalk is improved when the Fresnel lens has a curvature and when the Fresnel lens does not have a curvature at each focal length.
- the focal length as a Fresnel lens is 75 mm
- the coupling loss of the first-order diffracted light is minimized.
- the crosstalk characteristic between the first-order diffracted light and the second-order diffracted light was also greatly improved. This is because the coupling efficiency of the first-order diffracted light is good, the output light intensity of the signal light L2 is large, and further, the second-order diffracted light is not coupled to the optical fiber port and the crosstalk characteristics are not deteriorated.
- FIG. 13 and 14 are schematic configuration diagrams of the wavelength selective optical switch device according to the second embodiment.
- the wavelength selective optical switch device 200 is a wavelength selective optical switch device that performs a switching operation of a light path for each wavelength of incident light.
- FIG. 13 is a view of the wavelength selective optical switch device 200 as viewed from a direction perpendicular to the wavelength dispersion axis direction (indicated by the direction D1) of the wavelength dispersion element.
- FIG. 13 is a view of the wavelength selective optical switch device 200 as viewed from a direction perpendicular to the wavelength dispersion axis direction (indicated by the direction D1) of the wavelength dispersion element.
- 14 is a view of the wavelength selective optical switch device 200 as seen from a direction perpendicular to the switch axis direction (indicated by the direction D2) perpendicular to the wavelength dispersion axis direction of the wavelength dispersion element. 13 and 14 are diagrams showing input light as light rays.
- the wavelength selective optical switch device 200 includes an optical input / output port 210, a collimator lens array 220, a diffraction grating 240 as a wavelength dispersion element, a condenser lens 250 as a condenser lens system, and a spatial light modulator 260. They are arranged in this order.
- an anamorphic optical system is not shown, but it may be included.
- an anamorphic prism pair as described in Embodiment 1 may be disposed between the collimator lens array 220 and the diffraction grating 240.
- the condenser lens 250 may be a lens having a different focal length in the direction D1 and the direction D2 (for example, a combination of a plurality of cylindrical lenses).
- the elements from the condenser lens 250 to the spatial light modulator 260 are arranged with an angle before and after the diffraction grating 240 in FIGS.
- FIG. 15 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG.
- the display image of the spatial light modulator 260 is formed as a gradation having a uniform refractive index distribution with respect to the direction D1, and further, with respect to the direction D2.
- the refractive index distribution is formed as a uniform gradation.
- the spatial light modulator 260 functions as a blazed diffraction grating in the direction D1, and further functions as a blazed diffraction grating in the direction D2.
- the signal light L201 is input to the optical fiber port 211 from the outside.
- the signal light L201 is wavelength-multiplexed signal light and includes a plurality of signal lights having different wavelengths.
- the optical fiber port 211 outputs the input signal light L201 to the collimator lens 221.
- the collimator lens 221 turns the signal light L201 into substantially parallel light having a substantially circular beam shape.
- the diffraction grating 240 diffracts the signal light L201 at a predetermined diffraction angle corresponding to the wavelength. As a result, the signal light L201 is separated for each wavelength. However, in FIG. 13, only the component of the signal light L201 that travels straight through the diffraction grating 240 is shown for the sake of brevity.
- the condensing lens 250 condenses the diffracted signal light L201 on the spatial light modulator 260.
- the distance between the diffraction grating 240 and the condensing lens 250 is the focal length of the condensing lens 250, and the signal light L201 is incident on the spatial light modulator 260 separated in the direction D1 substantially perpendicularly.
- a refractive index distribution is formed in the direction D2. Due to this refractive index distribution, the spatial light modulator 260 functions as a blazed diffraction grating under the control of the controller, and diffracts light of a desired wavelength in the direction of the optical fiber port 212, thereby serving as a wavelength selective optical switch device. Operate.
- the spatial light modulator 260 has an inclination of an angle ⁇ with respect to the direction D1. Therefore, the signal light L201 is reflected in a direction having an angle ⁇ with respect to the incident signal light L201.
- the spatial light modulator 260 has a refractive index distribution also in the direction D2, and functions as a blazed diffraction grating. Therefore, the spatial light modulator 260 emits the first-order diffracted light from the signal light L201 in substantially the same direction as the incident signal light L201.
- the signal light L202a that is the first-order diffracted light becomes light parallel to the optical fiber port 212.
- the signal light L202a is made parallel to the optical axis of the condenser lens 250 by the condenser lens 250. Furthermore, the diffraction grating 240 diffracts the signal light L202a in a direction parallel to the optical axis of the collimator lens 222 due to optical reciprocity.
- the collimator lens 222 corresponding to the optical fiber port 212 condenses the signal light L202a and couples it to the optical fiber port 212.
- the optical fiber port 212 outputs the combined light to the outside.
- the wavelength selective optical switch device 200 uses the path of the signal light L202a having a desired wavelength out of the light input from the optical fiber port 211 as the primary diffracted light of the spatial light modulator 260. Switch to optical fiber port 212. Similarly, the wavelength selective optical switch device 200 switches the path of light input from the optical fiber port 211 to one of the other optical fiber ports 212 to 215 under the control of the spatial light modulator 260. Can do. Further, the path of light input from the optical fiber port 211 can be returned to the optical fiber port 211.
- the spatial light modulator 260 since the spatial light modulator 260 has an inclination of the angle ⁇ with respect to the direction D1, the m-order diffracted light is diffracted by an angle of about m ⁇ . Accordingly, as shown in FIG. 13, for example, the signal light L202b, which is second-order diffracted light, is diffracted by the spatial light modulator 260 by an angle 2 ⁇ with respect to the incident signal light L201. Is diffracted in a direction having an inclination of the angle ⁇ . As a result, the signal light is not coupled to the optical fiber port 212.
- the spatial light modulator is arranged to be inclined with respect to the direction D1, and only the first-order diffracted light by the spatial light modulator is diffracted in the incident direction of the signal light.
- the deterioration of characteristics can be suppressed. That is, the wavelength selective optical switch device 200 controls the diffraction angle as the blazed diffraction grating in the direction D2 with a controller by controlling the diffraction angle as the blazed diffraction grating in the direction D2 with a constant value. Operates as a selective optical switch device. Therefore, the wavelength selective optical switch device 200 according to the second embodiment is a wavelength selective optical switch device having good crosstalk characteristics.
- the Fresnel lens-like phase modulation is performed in the direction D1
- the signal light is not sufficiently diffracted in the direction of the optical fiber port 212, and is coupled. Since efficiency deteriorates, it is not preferable.
- Example 2 Next, as Example 2, the wavelength selective optical switch device 200 according to Embodiment 2 was actually manufactured and its performance was evaluated.
- the conditions of each element are the same as in the first embodiment.
- the signal light L201 is incident from the optical fiber port 211 and the signal light L2 is output to the optical fiber port 211.
- the inclination angle ⁇ of the spatial light modulator 260 is changed, and the refractive index distribution of the spatial light modulator 260 is controlled so that the crosstalk is most improved at each angle ⁇ .
- FIG. 16 is a diagram illustrating the relationship between the angle of the spatial light modulator and the crosstalk in the wavelength selective optical switch device according to the second embodiment.
- the crosstalk is a value obtained by dividing the output light intensity output from the output port of the higher-order diffracted light by the output light intensity output from the output port of the first-order diffracted light.
- the crosstalk characteristic is improved at each angle ⁇ . In particular, at 2 °, an improvement of 8 dB or more was observed. Therefore, the wavelength selective optical switch device 200 according to the second embodiment is a wavelength selective optical switch device having good crosstalk characteristics.
- FIG. 17 is a schematic configuration diagram of a wavelength selective optical switch device according to Embodiment 3 of the present invention.
- the wavelength selective optical switch device 300 is a wavelength selective optical switch device that performs a switching operation of a light path for each wavelength of incident light.
- FIG. 17 is a diagram of the wavelength selective optical switch device 300 viewed from a direction perpendicular to the wavelength dispersion axis direction (indicated by the direction D1) of the wavelength dispersion element.
- FIG. 17 is a diagram showing input light as light rays.
- FIG. 17 is a diagram showing input light as light rays.
- the wavelength selective optical switch device 300 includes an optical input / output port 310, a collimator lens array 320, an anamorphic prism pair 330 that is an anamorphic optical system, a diffraction grating 340 that is a wavelength dispersion element, and a condenser lens system.
- the condensing lens 350 and the spatial light modulator 360 are arranged in this order.
- Each element and each device may be the same as in the first embodiment.
- each element from the anamorphic prism pair 330 to the spatial light modulator 360 is arranged with an angle before and after the diffraction grating 340.
- the optical path may shift in the direction D1, but in FIG. 17, the elements are arranged in series for the sake of simplicity.
- FIG. 18 is a diagram illustrating an example of a display image of the spatial light modulator illustrated in FIG. In FIG. 18, components in each direction of the direction D1 and the direction D2 are described together with a display image when viewed on a certain straight line.
- the display image of the spatial light modulator 360 is different from the first embodiment, and the refractive index distribution having a constant period is formed as a gradation that is linear in each period with respect to the direction D1, The gradation of the refractive index is formed so as to perform the Fresnel lens-like phase modulation with respect to the direction D2.
- the spatial light modulator 360 functions as a blazed diffraction grating in the direction D1 and further functions as a reflective Fresnel lens in the direction D2 under the control of the controller. That is, the wavelength selective optical switch device 300 controls the reflection angle as the reflection type Fresnel lens in the direction D2 by the controller by setting the angle ⁇ that is the diffraction angle as the blazed diffraction grating in the direction D1 to be a constant value. Operates as a wavelength selective optical switch device.
- FIG. 19 is a diagram for describing control during operation of the spatial light modulator illustrated in FIG. 17.
- a region S3 is a spot size of light incident on the spatial light modulator 360
- an optical axis A COM 3 is an optical axis passing through the center of the light incident on the spatial light modulator 360
- an optical axis A FL 3 is spatial light.
- the optical axis as a Fresnel lens in the direction D2 of the modulator 360 is represented.
- the wavelength selective optical switch device 300 operates as a wavelength selective optical switch device by controlling the position of the optical axis A FL 3 with respect to the optical axis A COM 3 of the spatial light modulator 360.
- the display image is controlled so that the optical axis A FL 3 is positioned below the spatial light modulator 360.
- the spatial light modulator 360 reflects the light input from the optical fiber port, which is a COM port, so as to be coupled to an optical fiber port positioned one level higher than the COM port, for example.
- the spatial light modulator 360 when the spatial light modulator 360 is not switched, the spatial light modulator 360 is arranged such that the optical axis A COM 3 and the optical axis A FL 3 are arranged on the same straight line. Can be controlled. Furthermore, as in the first embodiment, for example, when switching to a remote port several ports away from the COM port, the optical axis A FL 3 is not located in the spatial light modulator 360, and the virtual optical axis A The display image may be controlled so that FL 3 is positioned further below the lower end of the spatial light modulator 360.
- the wavelength selective optical switch device 300 controls the position of the optical axis as the Fresnel lens in the direction D2 of the spatial light modulator 360 with respect to the optical axis passing through the center of the light incident on the spatial light modulator 360.
- light input from an optical fiber port which is a COM port, can be coupled to a desired optical fiber port.
- the display image of the spatial light modulator 360 may be controlled to form a concave Fresnel lens (not shown).
- the positional relationship of the optical axis A FL 3 with respect to the optical axis A COM 3 and the vertical relationship of the reflection direction of the spatial light modulator 360 are reversed from the case of FIG.
- the above operation is performed on the light of each wavelength that is incident on the wavelength selective optical switch device 300 and is divided by the diffraction grating 340 in the direction D1 of the spatial light modulator 360 for each wavelength.
- the width SW3 in FIG. 19 is the width of the area of the spatial light modulator 360 corresponding to one channel, and is assigned to signal light having one or a plurality of wavelengths.
- the width SW3 is at least larger than the width in the direction D1 of the region S3, for example, a width corresponding to several to several tens of pixels in the direction D1.
- the spatial light modulator 360 reflects the light included in each channel in a predetermined direction of the direction D2 by individually controlling the region having the width SW3 corresponding to each channel, and sets the wavelength selective switch. Realize.
- FIG. 20 is a diagram illustrating crosstalk characteristics for each output port in the conventional wavelength selective optical switch device.
- FIG. 20 shows measurement results when nine optical fiber ports are formed and the spatial light modulator functions as a blazed diffraction grating as in the wavelength selective optical switch device 1000.
- the first-order diffracted light of incident light is output to each output port, the value obtained by dividing the output light intensity to other than the output port (observation port) by the output light intensity of the first-order diffracted light at the output port is The vertical axis is crosstalk.
- the maximum value of crosstalk exceeds ⁇ 25 dB.
- FIG. 21 is a diagram illustrating crosstalk characteristics for each output port in the wavelength selective optical switch device according to the third embodiment.
- FIG. 21 shows measurement results when the spatial light modulator functions as a reflection type Fresnel lens and the focal length of the Fresnel lens is optimized as in the wavelength selective optical switch device 300.
- the crosstalk is ⁇ 35 dB or less at the maximum. That is, in the wavelength selective optical switch device according to the third embodiment, the crosstalk can be improved by 10 dB or more. Therefore, it has been proved that the wavelength selective optical switch device 300 according to the third embodiment is a wavelength selective optical switch device having good crosstalk characteristics.
- the wavelength selective optical switch device 300 according to the third embodiment is similar to the first embodiment in the position of the beam waist between the first-order diffracted light and the higher-order diffracted light with respect to the direction D2.
- the crosstalk characteristics are improved by shifting the first and second order diffracted light with respect to the direction D1, and the crosstalk characteristics are improved as in the second embodiment. is doing. Therefore, the wavelength selective optical switch device 300 according to the third embodiment is a wavelength selective optical switch device having good crosstalk characteristics.
- the condenser lens 250 may be a lens having a different focal length in the D1 direction and the D2 direction (for example, a combination of a plurality of cylindrical lenses).
- the wavelength selective optical switch device according to the present invention is suitable for use in the field of optical communications.
- Wavelength selective optical switch device 110 210, 310, 1010
- Pixel electrode group 163 Liquid crystal layer 164
- ITO electrode 1 6 cover glass 167 light incident layer A COM 1, A COM 3, A FL 1, A FL 3 optical axis D1, D2 directions d1, d2, d3, d1001, d100
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
波長選択光スイッチ装置は、光を入出力する1つ以上の光入出力ポートと、各ポートに対応して設けられたコリメータレンズと、入力した光を反射していずれかのポートに向けて出力する、2次元配列された複数の位相変調素子を有する空間変調器と、光入出力ポートと空間変調器との間に配置され、それらを光学的に結合させる集光レンズ系と、光入出力ポートと集光レンズ系との間に配置され、入力された光のビーム径をビーム径拡大方向に拡大するアナモルフィック光学系と、アナモルフィック光学系と集光レンズ系との間に設けられた波長分散素子とを備え、空間変調器は、波長分散素子の波長分散軸方向に対する集光レンズ系のビームウエストの位置に配置され、スイッチ軸方向にフレネルレンズ状の位相変調を形成し、該位相変調による1次の回折光が所望の出力ポートへ結合する。これにより、良好なクロストーク特性を有する波長選択光スイッチ装置を提供する。
Description
本発明は、波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法に関するものである。
光伝送システムにおいて、波長多重光信号等の光信号の経路を切り替えるために、光スイッチが使用されている。このような光スイッチには、光信号の経路を切り替えるために、LCOS(Liquid Crystal On Silicon)を用いたものがある(特許文献1,2参照)。LCOSは、入射された光の位相を液晶によって変調し、回折させることができる空間光変調器である。したがって、LCOSを用いた光スイッチでは、ある経路から入射された光信号を、LCOSによって回折させて、特定の経路に出力することにより、光スイッチ動作を実現している。
特許文献1,2に開示される光スイッチでは、光信号が入力される入力ポートと、光信号を出力する出力ポートとが、所定の方向に沿って等間隔で配列している。また、入力ポートはレンズの光軸上に配置されている。したがって、LCOSは、入射光の角度をこの配列方向に回折させるように構成されている。また、入力および出力ポートの数がそれぞれN、M(N、Mは1以上の整数)の光スイッチは、N×M光スイッチと呼ばれる。
しかしながら、本発明者らが特許文献1,2に開示される構成の光スイッチの特性について精査したところ、所定の入力ポートから入力した光信号を所定の出力ポートに出力させるような光スイッチ動作をさせる場合に、意図しない他の出力ポートにも光信号の一部が出力されてしまう場合があるという問題を見出した。このように光スイッチに入力させた光信号の一部が意図しない出力ポートにも出力してしまうと、出力ポート間のクロストーク特性が劣化するという問題が生じる。
本発明は、上記に鑑みてなされたものであって、良好なクロストーク特性を有する波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る波長選択光スイッチ装置は、外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、前記光入出力ポートのポートに対応して設けられたコリメータレンズと、前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する、2次元配列された複数の位相変調素子を有する空間変調器と、前記光入出力ポートと前記空間変調器との間に配置され、前記光入出力ポートと前記空間変調器とを光学的に結合させる集光レンズ系と、前記光入出力ポートと前記集光レンズ系との間に配置され、前記光入出力ポート側から入力された光のビーム径をビーム径拡大方向に拡大するアナモルフィック光学系と、前記アナモルフィック光学系と前記集光レンズ系との間に設けられた波長分散素子と、を備え、前記空間変調器は、前記波長分散素子の波長分散軸方向に対する前記集光レンズ系のビームウエストの位置に配置され、前記波長分散素子の波長分散軸方向に垂直なスイッチ軸方向にフレネルレンズ状の位相変調を形成し、該形成した位相変調による1次の回折光が所望の出力ポートへ結合することを特徴とする。
また、本発明に係る波長選択光スイッチ装置は、上記発明において、前記空間変調器は、異なる波長を有する2以上の波長帯に対して、前記スイッチ軸方向に異なる曲率を有するフレネルレンズ状の位相変調を形成することを特徴とする。
また、本発明に係る波長選択光スイッチ装置は、上記発明において、外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、前記光入出力ポートのポートに対応して設けられたコリメータレンズと、前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する空間変調器と、前記光入出力ポートと前記空間変調器との間に配置され、前記光入出力ポートと前記空間変調器とを光学的に結合させる集光レンズ系と、前記光入出力ポートと前記集光レンズ系との間に設けられた波長分散素子と、を備え、前記空間変調器は、前記集光レンズ系の波長分散軸方向に対するビームウエストの位置に、前記波長分散素子の波長分散軸方向において、前記波長分散軸と傾けて配置され、前記波長分散軸方向に回折格子状の位相変調を形成し、該形成した位相変調による1次の回折光が所望の出力ポートへ結合することを特徴とする。
また、本発明に係る波長選択光スイッチ装置は、上記発明において、前記空間変調器は、前記波長分散軸方向に回折格子状の位相変調を形成し、該形成した位相変調による1次の回折光が所望の出力ポートへ結合することを特徴とする。
また、本発明に係る波長選択光スイッチ装置は、上記発明において、前記空間変調器は、異なる波長を有する2以上の波長帯に対して、前記波長分散軸方向に異なる反射角を有する回折格子状の位相変調を形成することを特徴とする。
また、本発明に係る波長選択光スイッチ装置は、上記発明において、前記光入出力ポートの光軸と、前記集光レンズの光軸とが、離間していることを特徴とする。
また、本発明に係る波長選択光スイッチ装置は、上記発明において、前記光入出力ポートおよび該光入出力ポートに対応する前記コリメータレンズの間隔が、不等間隔であることを特徴とする。
また、本発明に係る波長選択光スイッチ装置の制御方法は、外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、前記光入出力ポートのポートに対応して設けられたコリメータレンズと、前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する、2次元配列された複数の位相変調素子を有する空間光変調器と、前記光入出力ポートと前記空間光変調器との間に配置され、前記光入出力ポートと前記空間光変調器とを光学的に結合させる集光レンズ系と、前記光入出力ポートと前記集光レンズ系との間に配置され、前記光入出力ポート側から入力された光のビーム径をビーム径拡大方向に拡大するアナモルフィック光学系と、前記アナモルフィック光学系と前記集光レンズ系との間に設けられた波長分散素子と、を備え、前記空間光変調器は、前記波長分散素子の波長分散軸方向に対する前記集光レンズ系のビームウエストの位置に配置される波長選択光スイッチ装置の制御方法であって、前記空間光変調器によって前記波長分散素子の波長分散軸方向に垂直なスイッチ軸方向にフレネルレンズ状の位相変調を形成し、該形成した位相変調による1次の回折光を所望の出力ポートへ結合させることを特徴とする。
また、本発明に係る波長選択光スイッチ装置の制御方法は、外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、前記光入出力ポートのポートに対応して設けられたコリメータレンズと、前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する空間光変調器と、前記光入出力ポートと前記空間光変調器との間に配置され、前記光入出力ポートと前記空間光変調器とを光学的に結合させる集光レンズ系と、前記光入出力ポートと前記集光レンズ系との間に設けられた波長分散素子と、を備え、前記空間光変調器は、前記集光レンズ系の波長分散軸方向に対するビームウエストの位置に、前記波長分散素子の波長分散軸方向において、前記波長分散軸と傾けて配置される波長選択光スイッチ装置の制御方法であって、前記空間光変調器によって前記波長分散軸方向に回折格子状の位相変調を形成し、該形成した位相変調による1次の回折光を所望の出力ポートへ結合させることを特徴とする。
本発明によれば、良好なクロストーク特性を有する波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法を実現することができる。
以下に、図面を参照して本発明に係る波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法の実施の形態を説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一または対応する要素には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
図1~5は、実施の形態1に係る波長選択光スイッチ装置の模式的な構成図である。図1は、波長選択光スイッチ装置100の動作の概略を模式的に表す斜視図である。この波長選択光スイッチ装置100は、入射した光の波長ごとに光の経路をスイッチング操作する波長選択光スイッチ装置であって、例えば図1に示すように、各入力ポートから入射した波長の異なる信号光を、それぞれ個別にスイッチング操作し、1つの出力ポート(COMポート)に出力する。また、1つの入力ポート(COMポート)から入力した互いに波長の異なる2以上の波長多重化された信号光を、信号光ごとに個別にスイッチング操作し、個々の出力ポートに出力することもできる。図2,4は、波長選択光スイッチ装置100を、波長分散素子の波長分散軸方向(アナモルフィックプリズムペアのビーム径拡大方向、方向D1で示す)と垂直の方向から見た図である。図3,5は、波長選択光スイッチ装置100を、波長分散素子の波長分散軸方向に垂直なスイッチ軸方向(方向D2で示す)と垂直の方向から見た図である。また、図2,3は、入力される光を光線で示した図であり、図4,5は、入力される光をガウシアンビームのスポットサイズの軌跡で示した図である。
図1~5は、実施の形態1に係る波長選択光スイッチ装置の模式的な構成図である。図1は、波長選択光スイッチ装置100の動作の概略を模式的に表す斜視図である。この波長選択光スイッチ装置100は、入射した光の波長ごとに光の経路をスイッチング操作する波長選択光スイッチ装置であって、例えば図1に示すように、各入力ポートから入射した波長の異なる信号光を、それぞれ個別にスイッチング操作し、1つの出力ポート(COMポート)に出力する。また、1つの入力ポート(COMポート)から入力した互いに波長の異なる2以上の波長多重化された信号光を、信号光ごとに個別にスイッチング操作し、個々の出力ポートに出力することもできる。図2,4は、波長選択光スイッチ装置100を、波長分散素子の波長分散軸方向(アナモルフィックプリズムペアのビーム径拡大方向、方向D1で示す)と垂直の方向から見た図である。図3,5は、波長選択光スイッチ装置100を、波長分散素子の波長分散軸方向に垂直なスイッチ軸方向(方向D2で示す)と垂直の方向から見た図である。また、図2,3は、入力される光を光線で示した図であり、図4,5は、入力される光をガウシアンビームのスポットサイズの軌跡で示した図である。
波長選択光スイッチ装置100は、光入出力ポート110と、コリメータレンズアレイ120と、アナモルフィック光学系であるアナモルフィックプリズムペア130と、波長分散素子である回折格子140と、集光レンズ系である集光レンズ150と、空間光変調器160とが、この順番に配置されて構成されている。
なお、実際には、図1のように回折格子140において光路は曲げられるので、図2~5において、アナモルフィックプリズムペア130から空間光変調器160までの各素子は回折格子140の前後で角度を持って配置される。また、アナモルフィックプリズムペア130において光路が方向D1の方向にシフトすることがあるが、図2~5においては、説明の簡略化のために各素子を直列に配置して示している。
また、入射する信号光は2以上の波長の異なる信号光が波長多重化されたガウシアンビームであるとする。波長多重化された各波長の信号光は、例えば50GHz~100GHz間隔で管理された周波数の略単色の信号光であって、波長選択光スイッチ装置100は、これらの信号光を同時にスイッチング操作することができる。図4,5,22,23では各信号光のガウシアンビームのスポットサイズ(光強度が1/e2となるビーム半径)の軌跡を模式的矢線で示している。なお、波長選択光スイッチ装置100に入力または出力される信号光の波長帯は特に限定されないが、例えば波長1520~1620nmの光通信用の信号光である。
光入出力ポート110は、光ファイバからなる光ファイバポート111,112,113,114,115を備えている。このうち、光ファイバポート111は、波長多重された信号光が入力されるCOMポートであり、該波長多重された信号光から任意波長を取り出して、その他の光ファイバポート112~115から出力するように構成されている。光ファイバポート111~115は、所定の配列方向(スイッチ軸方向である方向D2)に沿って、略等間隔でアレイ状に配列されているが、不等間隔であってもよい。また、図3において、光ファイバポート111の光軸と集光レンズ150の光軸とが同一であるが、各光ファイバポートの光軸と集光レンズ150の光軸とが離間していてもよい。光ファイバポート111~115は、外部から光が入力される、または外部に光を出力するものである。
コリメータレンズアレイ120は、複数のコリメータレンズからなる。図3,5では、コリメータレンズアレイ120としては、光入出力ポート110を構成する光ファイバポート111,112に対応するコリメータレンズ121,122だけ図示してあるが、コリメータレンズアレイ120の各コリメータレンズは、光入出力ポート110を構成する各光ファイバポートに対応して設けられている。コリメータレンズアレイ120は、各光ファイバポート111~115から出力した光を略平行光にする、または、入力された平行光を各光ファイバポート111~115に集光して結合させる機能を有する。
空間光変調器160は、2次元配列された複数の位相変調素子を有する空間光変調器であり、LCOSであってよい。図6は、図1に示す空間光変調器の分解図である。図6に示すように、この空間光変調器160は、LCOSであって、液晶駆動回路が形成されたシリコン基板161上に、反射率がほぼ100%の反射層である画素電極群162と、空間光変調層である液晶層163と、配向膜164と、ITO(Indium Tin Oxide)電極165と、カバーガラス166とが順次積層した構成を有している。なお、必要に応じて画素電極群162と液晶層163の間にも配向膜を設けてもよい。なお、以下では、配向膜164、ITO電極165、およびカバーガラス166を光入射層167とする。
この空間光変調器160は、画素電極群162とITO電極165との間に制御器により電圧を印加することによって、液晶層163を制御することができ、図中紙面垂直方向(図1における方向D1)および上下方向(図1における方向D2)に配列された複数の各画素の屈折率を制御することで、2次元的に所望の屈折率の分布を形成することができる。そして、この屈折率の分布を調整することによって、光入射層167側から入射した光が、画素電極群162により反射して液晶層163を伝搬する際に、フレネルレンズ状の位相変調をするように形成することができる。この空間光変調器160による擬似的な反射型フレネルレンズは、液晶層163への印加電圧を制御器により制御することによって、フレネルレンズとしての曲率および焦点距離を、所望の値に設定することができる。
図7は、図1に示す空間光変調器の表示画像の一例を表す図である。図7おいて、色が濃い部分の屈折率が高く、薄い部分の屈折率が低くなっている。すなわち、位相変調の周期が、図中方向D2の下から上方向に行くにつれ、次第に短くなるように各画素の屈折率が制御器により制御されている。その結果、方向D2の下から上方向に行くにつれ、次第に(フレネル)レンズとしての曲率が大きくなるように作用させることができる。なお、図7に示すように、空間光変調器160の表示画像は、光入出力ポート110の光ファイバポート111~115の配列方向と、液晶層163の屈折率のグラデーションの方向とが一致する。つまり、方向D2に屈折率の分布が形成されている。
このようにして、制御器により所定の電圧を印加された空間光変調器160が反射型のフレネルレンズとして機能することにより、フレネルレンズとしての曲率を最適化することによって、図5に示すように、空間光変調器160は、ガウシアンビームのスポットサイズの軌跡が、信号光L1と信号光L2とで略同一になるように反射することができる。
また、この空間光変調器160は、方向D2において屈折率分布の周期性を保持しつつ、該フレネルレンズとしての光軸を信号光L1の光軸に対しD2方向にオフセットさせるように制御することによって、光ファイバポート111から入射した所望の波長を有する光を他の光ファイバポート112~115のいずれかに向けて出力できるように、光の出射角度を制御することができる。これにより、空間光変調器160に反射された信号光L2は、所望の出力ポートに結合される。
ここで、図7は方向D2の下から上に行くにつれ位相変調の周期が短くなるように制御されているが、たとえば、フレネルレンズとしての光軸中心が、該周期が一番長くなるようにして、方向D2の下側に行くにつれて、該周期が短くなるように制御してもよい。すなわち、LCOS上に描画されたフレネルレンズの光軸中心を方向D2にずらすようにLCOSの各画素の屈折率分布を制御することによって、入射光を所望の方向にスイッチングすることができる。
なお、空間光変調器160のフレネルレンズとしての曲率は、入射する信号光L1の波長に合わせて、制御することが好ましい。また、空間光変調器160の、各波長の信号光をスイッチングする反射ミラー(複数の画素から構成される)において、方向D1に線形でない屈折率の分布を有すると、各波長の信号内において、波長成分ごとに位相変調の分布ができてしまうので、各波長の信号光内の波長成分を同時に所望の出力ポートに結合することは困難となる。したがって、波長選択光スイッチ装置100において、空間光変調器160内の複数画素から構成される、各波長の信号光をスイッチングする反射ミラーは、方向D1において、線形(均一を含む)屈折率の分布を有するようにすると好ましい。
集光レンズ150は、光入出力ポート110と空間光変調器160との間に配置され、光ファイバポート111と空間光変調器160とを光学的に結合させるものである。なお、集光レンズ150は1枚のレンズで構成されていてもよいし、複数枚のレンズで構成されていてもよい。
アナモルフィックプリズムペア130は、2つのプリズム131,132から構成されており、光入出力ポート110と集光レンズ150との間に配置されている。アナモルフィックプリズムペア130は、光入出力ポート110側から入力された光のビーム形状をビーム径拡大方向である方向D1に拡大する機能を有する。
また、アナモルフィックプリズムペア130は、光相反性を有するため、空間変調器160側から入力された光のビーム形状を方向D1に縮小する機能を有する。なお、アナモルフィックプリズムペア130は、例えばシリンドリカルレンズ系などの他のアナモルフィック光学系に置き換えてもよい。また、ビーム径を拡大する方法としてアナモルフィックプリズムペアとしたが、本発明はこれに限らず、アナモルフィックプリズムを用いてもよい。
また、回折格子140は、例えば透過型の回折格子であって、アナモルフィックプリズムペア130と集光レンズ150との間に配置される。回折格子140は、波長が多重化された信号光である信号光L1に含まれる所定の波長の信号光L1a,L1b,L1cをそれぞれ所定の角度に出力する。分離された信号光L1a,L1b,L1cを、空間光変調器160に対して、略垂直に入射させるため、回折格子140と集光レンズ150との間隔は、集光レンズ150の焦点距離f1とすることが好ましい。
ここで、空間変調器160は、方向D1に対する集光レンズ150のビームウエストW1の位置である集光レンズ150から距離d1だけ離れた位置に配置されている。また、光入出力ポート110側から入力された光のビーム形状は、方向D1のみに拡大され、方向D2には拡大されていない。これにより、距離d1より距離d2が大きくなる。したがって、方向D2に対する集光レンズ150のビームウエストW2の位置である集光レンズ150から距離d2の位置は、空間変調器160より集光レンズ150から遠い位置となる。なお、ガウシアンビームのビームウエストとは、ガウシアンビームの波面がフラットになり、ビーム径が最も小さくなる場所である。
この波長選択光スイッチ装置100では、各光ファイバポートから信号光の入出力を行うことができる。したがって、例えば図1のように、出力ポート以外の各光ファイバポートポートから入力した信号光を、1つの出力ポートに出力する4×1光スイッチであってよい。あるいは、図3のように、1つの入力ポートから入力した信号光を、他の出力ポートに出力する1×4光スイッチであってよい。さらに、本発明はこれに限らず、各光ファイバポートは、同時に入出力を行う構成であってよい。さらに、光ファイバポートは1つでもよく、このとき、波長選択光スイッチ装置100は、2以上の多重化された波長を有する信号光の波長ごとに、ON/OFFの切り替えを行う波長選択光スイッチ装置として機能する。
つぎに、この波長選択光スイッチ装置100の動作について、図2,3を用いて説明する。まず、光ファイバポート111に、外部から信号光L1が入力される。信号光L1は、波長多重された信号光であり、互いに異なる波長を有する信号光L1a,L1b,L1cを含むものとする。
光ファイバポート111は、入力された信号光L1をコリメータレンズ121へ出力する。コリメータレンズ121は、信号光L1を、ビーム形状が略円形の略平行光にする。アナモルフィックプリズムペア130は、略平行光にされた信号光L1のビーム形状を方向D1に拡大し、楕円形にする。回折格子140は、楕円形にされた信号光L1をその波長に応じた所定の回折角で回折する。その結果、信号光L1は、信号光L1a,L1b,L1cに分離される。
集光レンズ150は、回折された信号光L1a,L1b,L1cを空間光変調器160に集光させる。回折格子140と集光レンズ150との間隔は、集光レンズ150の焦点距離f1であるから、信号光L1a,L1b,L1cは、空間光変調器160に略垂直に、方向D1に分離されて入射する。空間光変調器160は、方向D2において、所定の屈折率の分布が形成されている。この屈折率の分布によって、例えば図3のように、信号光L1a,L1b,L1cのうち、所望の波長の光を光ファイバポート112の方向に回折することによって、波長選択光スイッチ装置として動作する。回折された信号光は、集光レンズ150によって、集光レンズ150の光軸に対して平行にされる。回折格子140は、光相反性によって、信号光をコリメータレンズ122の光軸と平行な方向に回折する。アナモルフィックプリズムペア130は、光相反性によって、信号光のビーム形状を方向D1の方向に縮小して略円形に戻す。光ファイバポート112に対応するコリメータレンズ122は、信号光を集光し、光ファイバポート112に結合させる。光ファイバポート112は結合された光を外部に出力する。
このようにして、この波長選択光スイッチ装置100は、光ファイバポート111から入力された光のうち、所望の波長を有する信号光の経路を光ファイバポート112に切り換える。なお、同様にして、この波長選択光スイッチ装置100は、空間光変調器160の制御によって、光ファイバポート111から入力された光の経路を他の光ファイバポート112~115のいずれかに切り換えることができる。さらに、光ファイバポート111から入力された光の経路を、光ファイバポート111に戻すことも可能である。
つぎに、波長選択光スイッチ装置100の動作時における空間光変調器160の表示画像の制御について図8~10を用いて説明する。ここで、図8~10では、空間光変調器160の表示画像が凸面形状のフレネルレンズを形成するように制御することを前提として説明する。図8は、図1に示す空間光変調器のスイッチングを行わない場合の表示画像の一例を表す図である。図8において、領域S1は空間光変調器160に入射する光のスポットサイズ、光軸ACOM1は空間光変調器160に入射する光の中央を通る光軸、光軸AFL1は空間光変調器160の方向D2におけるフレネルレンズとしての光軸を表す。図8に示すように、スイッチングを行わない場合、光軸ACOM1と光軸AFL1とは、同一直線上に配置されている。このとき、空間光変調器160は、空間光変調器160に垂直に入射した光を入射方向に反射する。すなわち、空間光変調器160は、COMポートである光ファイバポート111から入力された光を、光ファイバポート111に結合するように反射する。
つぎに、図9は、図1に示す空間光変調器の近接ポートにスイッチングする場合の表示画像の一例を表す図である。図9に示すように、たとえばCOMポートから数ポート以内の近接ポートにスイッチングする場合、光軸AFL1は空間光変調器160の下部に位置するように表示画像を制御する。このとき、空間光変調器160は、空間光変調器160に垂直に入射した光を入射方向よりわずかに上方に反射する。すなわち、空間光変調器160は、COMポートである光ファイバポート111から入力された光を、たとえば光ファイバポート113に結合するように反射する。また、空間光変調器160は、光軸AFL1が空間光変調器160の上部に位置するように表示画像を制御すると、空間光変調器160に垂直に入射した光を入射方向よりわずかに下方に反射する。
続いて、図10は、図1に示す空間光変調器の遠隔ポートにスイッチングする場合の表示画像の一例を表す図である。図10に示すように、たとえばCOMポートから数ポート以上離れた遠隔ポートにスイッチングする場合、位相変調の周期は、図9と同様に方向D2の下から上方向に行くにつれ、次第に短くなるように制御されているが、光軸AFL1は空間光変調器160内には位置せず、仮想的な光軸AFL1が空間光変調器160の下端よりさらに下方に位置にするように表示画像を制御する。このとき、空間光変調器160は、空間光変調器160に垂直に入射した光を入射方向より上方に反射する。すなわち、空間光変調器160は、たとえば1×20ポートの波長選択光スイッチ装置において、COMポートである中央に位置する11ポートから入力された光を、たとえば上端に位置する1ポートに結合するように反射する。また、空間光変調器160は、光軸AFL1が空間光変調器160の上端よりさらに上方に位置にするように表示画像を制御すると、空間光変調器160に垂直に入射した光を入射方向より下方に反射する。
このように、波長選択光スイッチ装置100は、空間光変調器160に入射する光の中央を通る光軸に対する空間光変調器160の方向D2におけるフレネルレンズとしての光軸の位置を制御することにより、たとえばCOMポートである光ファイバポート111から入力された光を、所望の光ファイバポートに結合させることができる。
なお、空間光変調器160の表示画像が凹面形状のフレネルレンズ(図示せず)を形成するように制御してもよい。その場合、光軸ACOM1に対する光軸AFL1の位置関係と空間光変調器160の反射方向の上下関係とが図8~10の場合とは逆転する。すなわち、空間光変調器160は、光軸AFL1が光軸ACOM1より下方に位置するように表示画像を制御すると空間光変調器160に垂直に入射した光を入射方向より下方に反射し、光軸AFL1が光軸ACOM1より上方に位置するように表示画像を制御すると空間光変調器160に垂直に入射した光を入射方向より上方に反射する。
また、上記の動作は、波長選択光スイッチ装置100に入射して回折格子140により空間光変調器160の方向D1に波長ごとに分割された各波長の光に対して行われる。図8における幅SW1は、1つのチャネルに対応する空間光変調器160の領域の幅であり、1または複数の波長からなる信号光に対し割り当てられる。幅SW1は、少なくとも領域S1の方向D1における幅より大きく、たとえば、方向D1において数~10数画素に相当する幅である。このとき、空間光変調器160は、各チャネルに対応する幅SW1を有する領域を、個別に制御することにより、各チャネルに含まれる光を方向D2の所定の方向に反射し、波長選択スイッチを実現する。
つぎに、波長選択光スイッチ装置100について、図4,5,6を用いて、図22,23,24に示す比較形態の波長選択光スイッチ装置1000と対比させて説明する。
波長選択光スイッチ装置100の光学系の配置と、波長選択光スイッチ装置1000の光学系の配置とは同一であり、波長選択光スイッチ装置1000は、光入出力ポート1010と、コリメータレンズアレイ1020と、アナモルフィック光学系であるアナモルフィックプリズムペア1030と、波長分散素子である回折格子1040と、集光レンズ系である集光レンズ1050と、空間光変調器1060とがこの順番に配置されて構成されている。
ここで、空間光変調器160と空間光変調器1060とは、制御器から印加される電圧が異なるため、表示画像が異なる。図24は、図22に示す空間光変調器の表示画像の一例を表す図である。図24に示すように、空間光変調器1060の表示画像は、方向D2に対して屈折率の分布を有するが、その分布は、方向D2に対して等幅なグラデーションである。これによって、空間光変調器1060は、ブレーズド回折格子として機能する。また、波長選択光スイッチ装置1000の空間光変調器1060以外の各素子は、波長選択光スイッチ装置100と同一である。
はじめに、方向D1について、波長選択光スイッチ装置100と波長選択光スイッチ装置1000との動作を説明する。図4のように、波長選択光スイッチ装置100において、空間変調器160は、方向D1に対する集光レンズ150のビームウエストW1の位置である集光レンズ150から距離d1の位置に配置されている。方向D1において、空間変調器160は、屈折率の分布を有さず、単純な鏡として機能するため、空間変調器160で反射された信号光である信号光L2の、コリメータレンズ121による集光位置も、光ファイバポート111の端面と一致する。これによって、空間変調器160の回折光が所望の出力ポートへ結合する。図22に示すように、方向D1においては、波長選択光スイッチ装置1000も同様の動作をする。
次に、方向D2について、波長選択光スイッチ装置100と波長選択光スイッチ装置1000との動作を説明する。まず、光入出力ポート110側から入力された光のビーム形状は、方向D1に拡大されている。これによって、方向D1に対する集光レンズ150のビームウエストW1の位置である距離d1より、方向D2に対する集光レンズ150のビームウエストW2の位置である距離d2が大きくなる。したがって、図5のように、方向D2に対する集光レンズ150のビームウエストの位置である集光レンズ150から距離d2の位置は、空間変調器160より集光レンズ150から遠い位置となる。
このとき、波長選択光スイッチ装置100において、空間変調器160は、図7に示した空間変調器160の表示画像の不等間隔なパターンによって、反射型のフレネルレンズとして機能し、方向D2について信号光L1と信号光L2とのガウシアンビームのスポットサイズの軌跡を略同一とする。これによって、信号光L2は、光ファイバポート111に好適に結合する。
一方で、図24に示すように、波長選択光スイッチ装置1000における空間光変調器1060の表示画像は、方向D2に対して屈折率の分布が等幅なグラデーションとされている。したがって、空間光変調器1060は、フレネルレンズ状の位相変調をせず、ブレーズド回折格子として機能する。このとき、信号光L1は、進行方向を変更されるが、屈折はしない。したがって、図23に示すように、信号光L1001と信号光L1002とのガウシアンビームのスポットサイズの軌跡が異なり、信号光L1002は光ファイバポート1011に結合しない。
このように、波長選択光スイッチ装置100は、空間変調器160がフレネルレンズ状の位相変調を行うため、ビームウエストW2の軸方向位置の、W1の位置(空間光変調器160表面)との差分(d2-d1)を補償して、方向D1およびD2成分の両方につき信号光L2を光ファイバポート111に好適に結合させることができる。一方、波長選択光スイッチ装置1000は、空間光変調器1060が位相変調を行わないため、方向D2において、信号光L1002が光ファイバポート1011に結合しない。したがって、波長選択光スイッチ装置100は、波長選択光スイッチ装置1000よりも結合効率がよい。結合効率がよく、出力光強度が大きい場合、様々なノイズとの光強度差が大きくなるため、クロストーク特性のよい波長選択光スイッチ装置となる。したがって、本実施の形態1に係る波長選択光スイッチ装置100は、良好なクロストーク特性を有する波長選択光スイッチ装置である。
なお、上記実施形態では、凸面鏡状のフレネルレンズを用いた実施形態を記載したが、D2方向に光学力を有するシリンドリカルレンズを用いることで、d1よりd2を小さくすることも出来る。これにより、LCOSの位相変調を凹面鏡状としてもよい。
さらに、このような波長選択光スイッチ装置において、所定の入力ポートから入力した光信号を所定の出力ポートに出力させるような光スイッチ動作をさせる場合に、意図しない他の出力ポートにも光信号の一部が出力されてしまう場合がある。このような場合、出力ポート間のクロストーク特性が劣化することとなる。
このようなクロストーク特性の劣化の主な原因が、空間光変調器における高次の回折光に起因することが、本発明者らによって見出された。フレネルレンズやブレーズド回折格子は、高次の回折光を発生させる場合がある。さらに、空間変調器160に入射した信号光が、光入射層167の各層の界面や、光入射層167と空気層との界面等において、反射される場合があり、これによって高次の回折光が発生する場合がある。このような原因によって発生した高次の回折光が、出力ポートに結合すると、クロストーク特性が劣化する。
ここで、本実施の形態1に係る波長選択光スイッチ装置100において、空間変調器160が、信号光L1と信号光L2とのガウシアンビームのスポットサイズの軌跡を略同一とすることにより、信号光L2は、光ファイバポート111に結合する。このとき、信号光L2のビームウエストW3は、コリメータレンズ121から距離d3に形成される。これに対し、波長選択光スイッチ装置1000において、ビームウエストW1003は、距離d3よりコリメータレンズから離れた距離d1003の位置に形成される。この距離d3と距離d1003との差をΔとすると、空間変調器160の1次の回折光は、空間変調器160のフレネルレンズ状の位相変調によって、ビームウエストの位置をΔだけ、コリメータレンズ側に変調されたこととなる。
このとき、空間変調器160のm次(mは2以上の整数)の回折光のビームウエストの位置は、空間変調器160のフレネルレンズ状の位相変調によって、Δの約m倍コリメータレンズ側に変調されることとなる。すると、このような高次の回折光は光ファイバポート111に結合しなくなる。したがって、高次の回折光によるクロストーク特性の劣化が生じない。このように、本実施の形態1に係る波長選択光スイッチ装置100は、結合効率がよいだけでなく、高次の回折光によるクロストークの劣化を抑制した、良好なクロストーク特性を有する波長選択光スイッチ装置である。
(実施例1)
次に、実施例1として、実施の形態1に係る波長選択光スイッチ装置100を実際に製造し、その性能を評価した。本実施例1において、例えば、コリメータレンズアレイ120の各コリメータレンズの焦点距離は、0.1~数mm、集光レンズ150の焦点距離は、50~200mm、アナモルフィックプリズムペア130の倍率は、10~数10倍程度である。
次に、実施例1として、実施の形態1に係る波長選択光スイッチ装置100を実際に製造し、その性能を評価した。本実施例1において、例えば、コリメータレンズアレイ120の各コリメータレンズの焦点距離は、0.1~数mm、集光レンズ150の焦点距離は、50~200mm、アナモルフィックプリズムペア130の倍率は、10~数10倍程度である。
このとき、図5に示すように、光ファイバポート111から信号光L1を入射し、光ファイバポート111に信号光L2を出力させるとする。そして、空間光変調器160の表示画像を調整し、フレネルレンズとしての焦点距離を変化させ、信号光L1のコリメータレンズによるビームウエストと信号光L2の集光レンズによるビームウエストとのずれを計算した。
図11は、実施例1に係る波長選択光スイッチ装置における空間光変調器の焦点距離とビームウエストのずれとの関係を表す図である。図11に示すように、フレネルレンズとしての焦点距離を変化させることによって、信号光L1のコリメータレンズによるビームウエストと信号光L2の集光レンズによるビームウエストとのずれを最小化することができる。図11に示すとおり、空間光変調器160のフレネルレンズとしての焦点距離を約75mmとした場合に、ビームウエストのずれを最小とすることができる。
次に、空間光変調器160の表示画像を調整し、フレネルレンズとしての焦点距離を変化させた場合の1次の回折光の結合損失と、1次の回折光と2次の回折光とのクロストーク特性がどれだけ改善されるかを計算した。図12は、実施例1に係る波長選択光スイッチ装置における空間光変調器の焦点距離と、1次の回折光の結合損失および1次の回折光と2次の回折光とのクロストーク特性との関係を表す図である。ここで、1次の回折光と2次の回折光とのクロストークとは、2次の回折光の出力ポートからの出力光強度を、1次の回折光の出力ポートからの出力光強度で割った値をデシベルで表示したものの絶対値である。図12におけるクロストーク特性とは、各焦点距離において、フレネルレンズが曲率を有する場合と、フレネルレンズが曲率を有しない場合とで、どれだけクロストークが改善されたかを表す。
図12に示すように、フレネルレンズとしての焦点距離が75mmの場合に、1次の回折光の結合損失は最小となる。このとき、1次の回折光と2次の回折光とのクロストーク特性も最も大きく改善された。これは、1次の回折光の結合効率がよく、信号光L2の出力光強度が大きいことと、さらに、2次の回折光が光ファイバポートに結合せずクロストーク特性を劣化させないことによる。
(実施の形態2)
次に、本発明の実施の形態2に係る波長選択光スイッチ装置について説明する。図13,14は、実施の形態2に係る波長選択光スイッチ装置の模式的な構成図である。この波長選択光スイッチ装置200は、入射した光の波長ごとに光の経路をスイッチング操作する波長選択光スイッチ装置である。図13は、波長選択光スイッチ装置200を、波長分散素子の波長分散軸方向(方向D1で示す)と垂直の方向から見た図である。図14は、波長選択光スイッチ装置200を、波長分散素子の波長分散軸方向に垂直なスイッチ軸方向(方向D2で示す)と垂直の方向から見た図である。また、図13,14は、入力される光を光線で示した図である。
次に、本発明の実施の形態2に係る波長選択光スイッチ装置について説明する。図13,14は、実施の形態2に係る波長選択光スイッチ装置の模式的な構成図である。この波長選択光スイッチ装置200は、入射した光の波長ごとに光の経路をスイッチング操作する波長選択光スイッチ装置である。図13は、波長選択光スイッチ装置200を、波長分散素子の波長分散軸方向(方向D1で示す)と垂直の方向から見た図である。図14は、波長選択光スイッチ装置200を、波長分散素子の波長分散軸方向に垂直なスイッチ軸方向(方向D2で示す)と垂直の方向から見た図である。また、図13,14は、入力される光を光線で示した図である。
波長選択光スイッチ装置200は、光入出力ポート210と、コリメータレンズアレイ220と、波長分散素子である回折格子240と、集光レンズ系である集光レンズ250と、空間光変調器260とがこの順番に配置されて構成されている。本実施の形態では、アナモルフィック光学系を図示していないが、これを含むようにしても良い。例えば、実施の形態1に記載したような、アナモルフィックプリズムペアをコリメータレンズアレイ220と回折格子240との間に配置してもよい。その他、集光レンズ250を、方向D1と方向D2とについて焦点距離が異なるレンズ(例えば複数のシリンドリカルレンズを組合わせたもの)としてもよい。
なお、実際には回折格子240において光路は曲げられるので、図13,14において、集光レンズ250から空間光変調器260までの各素子は回折格子240の前後で角度を持って配置される。
ここで、図13に示すように、空間光変調器260は、方向D1に対して角度θの傾きをつけて配置することができる。また、図15は、図13に示す空間光変調器の表示画像の一例を表す図である。図15には、方向D1および方向D2の各方向の成分を、ある直線上で見た場合の表示画像を合わせて記載している。図15に示すとおり、空間光変調器260の表示画像は、実施の形態1と異なり、方向D1に対して、屈折率の分布が等幅なグラデーションとして形成され、さらに、方向D2に対して、屈折率の分布が等幅なグラデーションとして形成されている。これによって、空間光変調器260は、方向D1において、ブレーズド回折格子として機能し、さらに、方向D2において、ブレーズド回折格子として機能する。
つぎに、この波長選択光スイッチ装置200の動作について、図13,14を用いて説明する。まず、光ファイバポート211に、外部から信号光L201が入力される。信号光L201は、波長多重された信号光であり、互いに異なる波長の複数の信号光を含むものとする。
光ファイバポート211は、入力された信号光L201をコリメータレンズ221へ出力する。コリメータレンズ221は、信号光L201を、ビーム形状が略円形の略平行光にする。回折格子240は、信号光L201をその波長に応じた所定の回折角で回折する。その結果、信号光L201は、波長ごとに分離される。ただし、図13においては説明を簡潔にするため、信号光L201のうち、回折格子240を直進する成分のみを図示している。
集光レンズ250は、回折された信号光L201を空間光変調器260に集光させる。回折格子240と集光レンズ250との間隔は、集光レンズ250の焦点距離であり、信号光L201は、空間光変調器260に略垂直に、方向D1に分離されて入射する。空間光変調器260は、方向D2において、屈折率の分布が形成されている。この屈折率の分布によって、空間光変調器260は、制御器の制御によりブレーズド回折格子として機能し、所望の波長の光を光ファイバポート212の方向に回折することによって、波長選択光スイッチ装置として動作する。
ここで、空間光変調器260は、方向D1に対して角度θの傾きを有する。そのため、信号光L201は、入射する信号光L201に対して角度θの傾きを有する方向に反射する。しかしながら、空間光変調器260は、方向D2に対しても屈折率の分布を有し、ブレーズド回折格子として機能する。そこで、空間光変調器260は、信号光L201を、入射した信号光L201と略同一方向へ、1次の回折光を出射する。これによって、方向D1において、1次の回折光である信号光L202aは光ファイバポート212に平行な光となる。
その後、方向D2において、信号光L202aは、集光レンズ250によって、集光レンズ250の光軸に対して平行にされる。さらに、回折格子240は、光相反性によって、信号光L202aをコリメータレンズ222の光軸と平行な方向に回折する。光ファイバポート212に対応するコリメータレンズ222は、信号光L202aを集光し、光ファイバポート212に結合させる。光ファイバポート212は結合された光を外部に出力する。
このようにして、この波長選択光スイッチ装置200は、光ファイバポート211から入力された光のうち、所望の波長を有する信号光L202aの経路を空間光変調器260の1次の回折光として、光ファイバポート212に切り換える。なお、同様にして、この波長選択光スイッチ装置200は、空間光変調器260の制御によって、光ファイバポート211から入力された光の経路を他の光ファイバポート212~215のいずれかに切り換えることができる。さらに、光ファイバポート211から入力された光の経路を、光ファイバポート211に戻すことも可能である。
ここで、空間光変調器260は、方向D1に対して角度θの傾きを有することにより、m次の回折光は、角度約mθだけ回折されることとなる。したがって、図13に示すように、例えば2次の回折光である信号光L202bは、空間光変調器260によって、空間光変調器260に対して角度2θだけ回折され、入射する信号光L201に対して、角度θの傾きを有する方向に回折される。これによって、信号光は、光ファイバポート212に結合しない。このように、空間光変調器を方向D1に対して傾けて配置し、空間光変調器による1次の回折光のみを信号光の入射方向に回折することで、高次の回折光によるクロストーク特性の悪化を抑制することができる。すなわち、波長選択光スイッチ装置200は、方向D1のブレーズド回折格子としての回折角である角度θを一定の値として、方向D2のブレーズド回折格子としての回折角を制御器により制御することによって、波長選択光スイッチ装置として動作する。したがって、本実施の形態2に係る波長選択光スイッチ装置200は、良好なクロストーク特性を有する波長選択光スイッチ装置である。なお、本実施の形態2に係る波長選択光スイッチ装置200において、方向D1に対してフレネルレンズ状の位相変調を行うと、信号光の光ファイバポート212の方向への回折が不十分となり、結合効率が悪化するため好ましくない。
(実施例2)
次に、実施例2として、実施の形態2に係る波長選択光スイッチ装置200を実際に製造し、その性能を評価した。各素子の条件は、実施例1と同一である。このとき、光ファイバポート211から信号光L201を入射し、光ファイバポート211に信号光L2を出力させるとする。そして、空間光変調器260の傾く角度θを変化させるとともに、各角度θにおいてクロストークが最も改善されるように、空間光変調器260の屈折率の分布を制御し、各角度θにおいてクロストークがどれだけ改善されたかを計算した。図16は、実施例2に係る波長選択光スイッチ装置における空間光変調器の角度とクロストークとの関係を表す図である。ここで、クロストークとは、高次の回折光の出力ポートから出力される出力光強度を、1次の回折光の出力ポートから出力される出力光強度で割った値である。図16に示すように、各角度θにおいて、クロストーク特性が改善されている。特に、2°では、8dB以上の改善が見られた。したがって、本実施例2に係る波長選択光スイッチ装置200は、良好なクロストーク特性を有する波長選択光スイッチ装置である。
次に、実施例2として、実施の形態2に係る波長選択光スイッチ装置200を実際に製造し、その性能を評価した。各素子の条件は、実施例1と同一である。このとき、光ファイバポート211から信号光L201を入射し、光ファイバポート211に信号光L2を出力させるとする。そして、空間光変調器260の傾く角度θを変化させるとともに、各角度θにおいてクロストークが最も改善されるように、空間光変調器260の屈折率の分布を制御し、各角度θにおいてクロストークがどれだけ改善されたかを計算した。図16は、実施例2に係る波長選択光スイッチ装置における空間光変調器の角度とクロストークとの関係を表す図である。ここで、クロストークとは、高次の回折光の出力ポートから出力される出力光強度を、1次の回折光の出力ポートから出力される出力光強度で割った値である。図16に示すように、各角度θにおいて、クロストーク特性が改善されている。特に、2°では、8dB以上の改善が見られた。したがって、本実施例2に係る波長選択光スイッチ装置200は、良好なクロストーク特性を有する波長選択光スイッチ装置である。
(実施の形態3)
次に、本発明の実施の形態3に係る波長選択光スイッチ装置について説明する。図17は、本発明の実施の形態3に係る波長選択光スイッチ装置の模式的な構成図である。この波長選択光スイッチ装置300は、入射した光の波長ごとに光の経路をスイッチング操作する波長選択光スイッチ装置である。図17は、波長選択光スイッチ装置300を、波長分散素子の波長分散軸方向(方向D1で示す)と垂直の方向から見た図である。また、図17は、入力される光を光線で示した図である。また、波長選択光スイッチ装置300を、波長分散素子の波長分散軸方向に垂直なスイッチ軸方向(方向D2で示す)と垂直の方向から見た図は、図3と同一である。また、図17は、入力される光を光線で示した図である。
次に、本発明の実施の形態3に係る波長選択光スイッチ装置について説明する。図17は、本発明の実施の形態3に係る波長選択光スイッチ装置の模式的な構成図である。この波長選択光スイッチ装置300は、入射した光の波長ごとに光の経路をスイッチング操作する波長選択光スイッチ装置である。図17は、波長選択光スイッチ装置300を、波長分散素子の波長分散軸方向(方向D1で示す)と垂直の方向から見た図である。また、図17は、入力される光を光線で示した図である。また、波長選択光スイッチ装置300を、波長分散素子の波長分散軸方向に垂直なスイッチ軸方向(方向D2で示す)と垂直の方向から見た図は、図3と同一である。また、図17は、入力される光を光線で示した図である。
波長選択光スイッチ装置300は、光入出力ポート310と、コリメータレンズアレイ320と、アナモルフィック光学系であるアナモルフィックプリズムペア330と、波長分散素子である回折格子340と、集光レンズ系である集光レンズ350と、空間光変調器360とがこの順番に配置されて構成されている。各素子および各装置は実施の形態1と同一であってよい。
なお、実際には回折格子340において光路は曲げられるので、アナモルフィックプリズムペア330から空間光変調器360までの各素子は回折格子340の前後で角度を持って配置される。また、アナモルフィックプリズムペア330において光路が方向D1の方向にシフトすることがあるが、図17においては、説明の簡略化のために各素子を直列に配置して示している。
ここで、図17に示すように、空間光変調器360は、方向D1に対して角度θの傾きをつけて配置されている。また、図18は、図17に示す空間光変調器の表示画像の一例を表す図である。図18には、方向D1および方向D2の各方向の成分を、ある直線上で見た場合の表示画像を合わせて記載している。図18に示すとおり、空間光変調器360の表示画像は実施の形態1と異なり、方向D1に対して、一定の周期を有する屈折率の分布が各周期において線形であるグラデーションとして形成され、さらに、方向D2に対して、屈折率のグラデーションがフレネルレンズ状の位相変調をするように形成されている。これによって、空間光変調器360は、制御器の制御により、方向D1において、ブレーズド回折格子として機能し、さらに、方向D2において、反射型フレネルレンズとして機能する。すなわち、波長選択光スイッチ装置300は、方向D1のブレーズド回折格子としての回折角である角度θを一定の値として、方向D2の反射型フレネルレンズとしての反射角を制御器により制御することによって、波長選択光スイッチ装置として動作する。
つぎに、波長選択光スイッチ装置300の動作時における空間光変調器360の表示画像の制御について図19を用いて説明する。ここで、図19でも、実施の形態1の場合と同様に、空間光変調器360の表示画像が凸面形状のフレネルレンズを形成するように制御することを前提として説明する。図19は、図17に示す空間光変調器の動作時の制御について説明するための図である。図19において、領域S3は空間光変調器360に入射する光のスポットサイズ、光軸ACOM3は空間光変調器360に入射する光の中央を通る光軸、光軸AFL3は空間光変調器360の方向D2におけるフレネルレンズとしての光軸を表す。波長選択光スイッチ装置300は、実施の形態1と同様に、空間光変調器360の光軸ACOM3に対する光軸AFL3の位置を制御することにより波長選択光スイッチ装置として動作する。
まず、図19に示すように、たとえばCOMポートから数ポート以内の近接ポートにスイッチングする場合、光軸AFL3は空間光変調器360の下部に位置するように表示画像を制御する。その結果、空間光変調器360は、COMポートである光ファイバポートから入力された光を、たとえばCOMポートより1つ上方に位置する光ファイバポートに結合するように反射する。
また、実施の形態1と同様に、空間光変調器360のスイッチングを行わない場合、光軸ACOM3と光軸AFL3とが、同一直線上に配置されるように空間光変調器360を制御すればよい。さらに、実施の形態1と同様に、たとえばCOMポートから数ポート以上離れた遠隔ポートにスイッチングする場合、光軸AFL3は空間光変調器360内には位置せず、仮想的な光軸AFL3が空間光変調器360の下端よりさらに下方に位置にするように表示画像を制御すればよい。
このように、波長選択光スイッチ装置300は、空間光変調器360に入射する光の中央を通る光軸に対する空間光変調器360の方向D2におけるフレネルレンズとしての光軸の位置を制御することにより、たとえばCOMポートである光ファイバポートから入力された光を、所望の光ファイバポートに結合させることができる。
なお、実施の形態1の場合と同様に、空間光変調器360の表示画像が凹面形状のフレネルレンズ(図示せず)を形成するように制御してもよい。その場合、光軸ACOM3に対する光軸AFL3の位置関係と空間光変調器360の反射方向の上下関係とが図19の場合とは逆転する。
また、上記の動作は、波長選択光スイッチ装置300に入射して回折格子340により空間光変調器360の方向D1に波長ごとに分割された各波長の光に対して行われる。図19における幅SW3は、1つのチャネルに対応する空間光変調器360の領域の幅であり、1または複数の波長からなる信号光に対し割り当てられる。幅SW3は、少なくとも領域S3の方向D1における幅より大きく、たとえば、方向D1において数~10数画素に相当する幅である。このとき、空間光変調器360は、各チャネルに対応する幅SW3を有する領域を、個別に制御することにより、各チャネルに含まれる光を方向D2の所定の方向に反射し、波長選択スイッチを実現する。
(実施例3)
さらに、本実施例3に係る波長選択光スイッチ装置において、出力ポート間のクロストーク特性をより詳細に確認した。各素子の条件は、実施例1と同一である。図20は、従来の波長選択光スイッチ装置における出力ポート毎のクロストーク特性を表す図である。図20は、光ファイバポートが9つ形成されており、波長選択光スイッチ装置1000のように、空間光変調器がブレーズド回折格子として機能する場合の測定結果である。入射光の1次の回折光を各出力ポートに出力した場合に、出力ポート以外(観測ポート)への出力光強度を、出力ポートの1次の回折光の出力光強度で割った値が、縦軸のクロストークである。このとき、図20のように、クロストークの最大値は-25dBを超える。
さらに、本実施例3に係る波長選択光スイッチ装置において、出力ポート間のクロストーク特性をより詳細に確認した。各素子の条件は、実施例1と同一である。図20は、従来の波長選択光スイッチ装置における出力ポート毎のクロストーク特性を表す図である。図20は、光ファイバポートが9つ形成されており、波長選択光スイッチ装置1000のように、空間光変調器がブレーズド回折格子として機能する場合の測定結果である。入射光の1次の回折光を各出力ポートに出力した場合に、出力ポート以外(観測ポート)への出力光強度を、出力ポートの1次の回折光の出力光強度で割った値が、縦軸のクロストークである。このとき、図20のように、クロストークの最大値は-25dBを超える。
図21は、実施例3に係る波長選択光スイッチ装置における出力ポート毎のクロストーク特性を表す図である。図21は、波長選択光スイッチ装置300のように、空間光変調器が反射型フレネルレンズとして機能し、フレネルレンズの焦点距離を最適化した場合の測定結果である。図21のように、クロストークは最大でも-35dB以下である。すなわち、本実施例3に係る波長選択光スイッチ装置において、クロストークを10dB以上改善できた。したがって、本実施例3に係る波長選択光スイッチ装置300は、良好なクロストーク特性を有する波長選択光スイッチ装置であることが実証された。
このように、本実施の形態3に係る波長選択光スイッチ装置300は、実施の形態1と同様に、方向D2に対して、1次の回折光と高次の回折光とのビームウエストの位置のずれによって、クロストーク特性を改善し、さらに、実施の形態2と同様に、方向D1に対して、1次の回折光と高次の回折光の回折方向をずらすことによってクロストーク特性を改善している。したがって、本実施の形態3に係る波長選択光スイッチ装置300は、良好なクロストーク特性を有する波長選択光スイッチ装置である。
以上、説明したように、上記実施の形態によれば、良好なクロストーク特性を有する波長選択光スイッチ装置を提供することができる。
なお、本発明の実施の形態1,3等においては、アナモルフィック光学系としてアナモルフィックプリズムペアを用いた物を記載しているが、本発明はこれに限定されない。例えば、集光レンズ250を、D1方向とD2方向とについて焦点距離が異なるレンズ(例えば複数のシリンドリカルレンズを組合わせたもの)としても良い。
また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
以上のように、本発明に係る波長選択光スイッチ装置は、光通信の分野に利用して好適なものである。
100,200,300,1000 波長選択光スイッチ装置
110,210,310,1010 光入出力ポート
111,112,113,114,115,211,212,213,214,215,1011,1012,1013,1014,1015 光ファイバポート
120,220,320,1020 コリメータレンズアレイ
121,122,221,222,1021 コリメータレンズ
130,330,1030 アナモルフィックプリズムペア
131,132,331,332 プリズム
140,240,340,1040 回折格子
150,250,350,1050 集光レンズ
160,260,360,1060 空間光変調器
161 シリコン基板
162 画素電極群
163 液晶層
164 配向膜
165 ITO電極
166 カバーガラス
167 光入射層
ACOM1,ACOM3,AFL1,AFL3 光軸
D1,D2 方向
d1,d2,d3,d1001,d1002,d1003 距離
f1,f1001 焦点距離
θ 角度
L1,L1a,L1b,L1c,L2,L201,L202a,L202b,L301,L302a,L302b,L1001,L1002 信号光
S1,S3 領域
SW1,SW3 幅
W1,W2,W3,W1001,W1002,W1003 ビームウエスト
110,210,310,1010 光入出力ポート
111,112,113,114,115,211,212,213,214,215,1011,1012,1013,1014,1015 光ファイバポート
120,220,320,1020 コリメータレンズアレイ
121,122,221,222,1021 コリメータレンズ
130,330,1030 アナモルフィックプリズムペア
131,132,331,332 プリズム
140,240,340,1040 回折格子
150,250,350,1050 集光レンズ
160,260,360,1060 空間光変調器
161 シリコン基板
162 画素電極群
163 液晶層
164 配向膜
165 ITO電極
166 カバーガラス
167 光入射層
ACOM1,ACOM3,AFL1,AFL3 光軸
D1,D2 方向
d1,d2,d3,d1001,d1002,d1003 距離
f1,f1001 焦点距離
θ 角度
L1,L1a,L1b,L1c,L2,L201,L202a,L202b,L301,L302a,L302b,L1001,L1002 信号光
S1,S3 領域
SW1,SW3 幅
W1,W2,W3,W1001,W1002,W1003 ビームウエスト
Claims (9)
- 外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、
前記光入出力ポートのポートに対応して設けられたコリメータレンズと、
前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する、2次元配列された複数の位相変調素子を有する空間変調器と、
前記光入出力ポートと前記空間変調器との間に配置され、前記光入出力ポートと前記空間変調器とを光学的に結合させる集光レンズ系と、
前記光入出力ポートと前記集光レンズ系との間に配置され、前記光入出力ポート側から入力された光のビーム径をビーム径拡大方向に拡大するアナモルフィック光学系と、
前記アナモルフィック光学系と前記集光レンズ系との間に設けられた波長分散素子と、
を備え、前記空間変調器は、前記波長分散素子の波長分散軸方向に対する前記集光レンズ系のビームウエストの位置に配置され、前記波長分散素子の波長分散軸方向に垂直なスイッチ軸方向にフレネルレンズ状の位相変調を形成し、該形成した位相変調による1次の回折光が所望の出力ポートへ結合することを特徴とする波長選択光スイッチ装置。 - 前記空間変調器は、異なる波長を有する2以上の波長帯に対して、前記スイッチ軸方向に異なる曲率を有するフレネルレンズ状の位相変調を形成することを特徴とする請求項1に記載の波長選択光スイッチ装置。
- 外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、
前記光入出力ポートのポートに対応して設けられたコリメータレンズと、
前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する空間変調器と、
前記光入出力ポートと前記空間変調器との間に配置され、前記光入出力ポートと前記空間変調器とを光学的に結合させる集光レンズ系と、
前記光入出力ポートと前記集光レンズ系との間に設けられた波長分散素子と、
を備え、前記空間変調器は、前記集光レンズ系の波長分散軸方向に対するビームウエストの位置に、前記波長分散素子の波長分散軸方向において、前記波長分散軸と傾けて配置され、前記波長分散軸方向に回折格子状の位相変調を形成し、該形成した位相変調による1次の回折光が所望の出力ポートへ結合することを特徴とする波長選択光スイッチ装置。 - 前記空間変調器は、前記波長分散軸方向に回折格子状の位相変調を形成し、該形成した位相変調による1次の回折光が所望の出力ポートへ結合することを特徴とする請求項1または2に記載の波長選択光スイッチ装置。
- 前記空間変調器は、異なる波長を有する2以上の波長帯に対して、前記波長分散軸方向に異なる反射角を有する回折格子状の位相変調を形成することを特徴とする請求項1または4に記載の波長選択光スイッチ装置。
- 前記光入出力ポートの光軸と、前記集光レンズの光軸とが、離間していることを特徴とする請求項1~5のいずれか1つに記載の波長選択光スイッチ装置。
- 前記光入出力ポートおよび該光入出力ポートに対応する前記コリメータレンズの間隔が、不等間隔であることを特徴とする請求項1~6のいずれか1つに記載の波長選択光スイッチ装置。
- 外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、
前記光入出力ポートのポートに対応して設けられたコリメータレンズと、
前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する、2次元配列された複数の位相変調素子を有する空間光変調器と、
前記光入出力ポートと前記空間光変調器との間に配置され、前記光入出力ポートと前記空間光変調器とを光学的に結合させる集光レンズ系と、
前記光入出力ポートと前記集光レンズ系との間に配置され、前記光入出力ポート側から入力された光のビーム径をビーム径拡大方向に拡大するアナモルフィック光学系と、
前記アナモルフィック光学系と前記集光レンズ系との間に設けられた波長分散素子と、
を備え、前記空間光変調器は、前記波長分散素子の波長分散軸方向に対する前記集光レンズ系のビームウエストの位置に配置される波長選択光スイッチ装置の制御方法であって、
前記空間光変調器によって前記波長分散素子の波長分散軸方向に垂直なスイッチ軸方向にフレネルレンズ状の位相変調を形成し、該形成した位相変調による1次の回折光を所望の出力ポートへ結合させることを特徴とする波長選択光スイッチ装置の制御方法。 - 外部から光が入力される、または外部に光を出力する少なくとも1つのポートを有する光入出力ポートと、
前記光入出力ポートのポートに対応して設けられたコリメータレンズと、
前記光入出力ポートのいずれかのポートから入力した光を反射して前記光入出力ポートのいずれかのポートに向けて出力する空間光変調器と、
前記光入出力ポートと前記空間光変調器との間に配置され、前記光入出力ポートと前記空間光変調器とを光学的に結合させる集光レンズ系と、
前記光入出力ポートと前記集光レンズ系との間に設けられた波長分散素子と、
を備え、前記空間光変調器は、前記集光レンズ系の波長分散軸方向に対するビームウエストの位置に、前記波長分散素子の波長分散軸方向において、前記波長分散軸と傾けて配置される波長選択光スイッチ装置の制御方法であって、
前記空間光変調器によって前記波長分散軸方向に回折格子状の位相変調を形成し、該形成した位相変調による1次の回折光を所望の出力ポートへ結合させることを特徴とする波長選択光スイッチ装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014543697A JP5788109B2 (ja) | 2013-03-29 | 2014-03-28 | 波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-074510 | 2013-03-29 | ||
JP2013074510 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157673A1 true WO2014157673A1 (ja) | 2014-10-02 |
Family
ID=51624630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059302 WO2014157673A1 (ja) | 2013-03-29 | 2014-03-28 | 波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5788109B2 (ja) |
WO (1) | WO2014157673A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015068356A1 (ja) * | 2013-11-08 | 2015-05-14 | 日本電信電話株式会社 | 光スイッチ |
WO2020066760A1 (ja) * | 2018-09-28 | 2020-04-02 | 株式会社Jvcケンウッド | 光スイッチング素子 |
CN111338107A (zh) * | 2020-03-05 | 2020-06-26 | 深圳市科创数字显示技术有限公司 | 硅基液晶空间光调制器及其制作方法与波长选择开关 |
WO2024183528A1 (zh) * | 2023-03-09 | 2024-09-12 | 华为技术有限公司 | 波长选择开关、单板、光交换设备、节点及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6928207B1 (en) * | 2002-12-12 | 2005-08-09 | Silicon Light Machines Corporation | Apparatus for selectively blocking WDM channels |
WO2012046697A1 (ja) * | 2010-10-07 | 2012-04-12 | 古河電気工業株式会社 | 光スイッチ |
WO2012123715A1 (en) * | 2011-03-14 | 2012-09-20 | Cambridge Enterprise Limited | Optical beam routing apparatus and methods |
WO2014061103A1 (ja) * | 2012-10-16 | 2014-04-24 | 住友電気工業株式会社 | 光路制御装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4458494B2 (ja) * | 2007-05-29 | 2010-04-28 | 独立行政法人産業技術総合研究所 | 導波路型波長選択スイッチ |
-
2014
- 2014-03-28 JP JP2014543697A patent/JP5788109B2/ja active Active
- 2014-03-28 WO PCT/JP2014/059302 patent/WO2014157673A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6928207B1 (en) * | 2002-12-12 | 2005-08-09 | Silicon Light Machines Corporation | Apparatus for selectively blocking WDM channels |
WO2012046697A1 (ja) * | 2010-10-07 | 2012-04-12 | 古河電気工業株式会社 | 光スイッチ |
WO2012123715A1 (en) * | 2011-03-14 | 2012-09-20 | Cambridge Enterprise Limited | Optical beam routing apparatus and methods |
WO2014061103A1 (ja) * | 2012-10-16 | 2014-04-24 | 住友電気工業株式会社 | 光路制御装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015068356A1 (ja) * | 2013-11-08 | 2015-05-14 | 日本電信電話株式会社 | 光スイッチ |
JP2015094779A (ja) * | 2013-11-08 | 2015-05-18 | 日本電信電話株式会社 | 光スイッチ |
WO2020066760A1 (ja) * | 2018-09-28 | 2020-04-02 | 株式会社Jvcケンウッド | 光スイッチング素子 |
JP2020056814A (ja) * | 2018-09-28 | 2020-04-09 | 株式会社Jvcケンウッド | 光スイッチング素子 |
JP7124611B2 (ja) | 2018-09-28 | 2022-08-24 | 株式会社Jvcケンウッド | 光スイッチング素子 |
CN111338107A (zh) * | 2020-03-05 | 2020-06-26 | 深圳市科创数字显示技术有限公司 | 硅基液晶空间光调制器及其制作方法与波长选择开关 |
CN111338107B (zh) * | 2020-03-05 | 2024-03-19 | 深圳市科创数字显示技术有限公司 | 硅基液晶空间光调制器及其制作方法与波长选择开关 |
WO2024183528A1 (zh) * | 2023-03-09 | 2024-09-12 | 华为技术有限公司 | 波长选择开关、单板、光交换设备、节点及系统 |
Also Published As
Publication number | Publication date |
---|---|
JP5788109B2 (ja) | 2015-09-30 |
JPWO2014157673A1 (ja) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4860757B2 (ja) | 分散補償器 | |
EP0801319B1 (en) | Outgoing efficiency control device, projection type display apparatus | |
US8437634B2 (en) | Wavelength selective optical switch device | |
US20140072302A1 (en) | Optical switch | |
US20130272650A1 (en) | Wavelength cross connect device | |
KR101214906B1 (ko) | 칼라 분할 광학 장치 및 그것이 적용된 이미지 장치 | |
JP2020514783A (ja) | 均一出力照明を有する導波管 | |
JP5788109B2 (ja) | 波長選択光スイッチ装置、および波長選択光スイッチ装置の制御方法 | |
JP5981903B2 (ja) | 光スイッチ | |
JP5040842B2 (ja) | 波長選択スイッチ | |
US20230003955A1 (en) | Wavelength selective switch | |
JP6943370B2 (ja) | 高速マルチコア一括光スイッチシステム | |
JP2013101201A (ja) | 波長選択光スイッチ装置 | |
US20220052778A1 (en) | Optical Communications Apparatus and Wavelength Selection Method | |
JP5855323B1 (ja) | 光コリメータアレイおよび光スイッチ装置 | |
US20150078748A1 (en) | Wavelength selective switch | |
JP2012185312A (ja) | 光スイッチ装置 | |
US11909513B2 (en) | Spectrum processing apparatus and reconfigurable optical add-drop multiplexer | |
WO2016056534A1 (ja) | 波長選択光スイッチ装置 | |
US7231111B2 (en) | Tunable dispersion compensator | |
JP2017054004A (ja) | 波長選択スイッチ | |
JP6034319B2 (ja) | 光スイッチ | |
WO2012115077A1 (ja) | 波長選択スイッチ | |
JP6117158B2 (ja) | 光操作装置およびその制御方法 | |
JP5959466B2 (ja) | 光操作装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014543697 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14773566 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14773566 Country of ref document: EP Kind code of ref document: A1 |