WO2014157441A1 - Rice transplanter - Google Patents
Rice transplanter Download PDFInfo
- Publication number
- WO2014157441A1 WO2014157441A1 PCT/JP2014/058724 JP2014058724W WO2014157441A1 WO 2014157441 A1 WO2014157441 A1 WO 2014157441A1 JP 2014058724 W JP2014058724 W JP 2014058724W WO 2014157441 A1 WO2014157441 A1 WO 2014157441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- planting
- arm shaft
- planting arm
- leveling mechanism
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C19/00—Arrangements for driving working parts of fertilisers or seeders
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C11/00—Transplanting machines
- A01C11/003—Transplanting machines for aquatic plants; for planting underwater, e.g. rice
Definitions
- the present invention relates to a rice transplanter that transmits power to a planting arm through an inconstant speed mechanism.
- a non-constant speed mechanism is provided for sparse planting so that the planting claws escape and move more quickly from the field with reference to the dense planting state, and one of the rotary planting arm shafts that support the planting claws.
- Japanese Patent Application Laid-Open No. 07-163216 discloses a technique for providing a non-uniform speed transmission mechanism between a planting mission case and a planting arm shaft, and changing the angular velocity during one rotation to make the speed as follows. Is disclosed. That is, when a seedling is taken, a fast section is provided immediately after planting, and a slow section is provided before seedling and before planting, thereby realizing a good seedling harvesting operation and planting operation.
- the inconstant speed transmission mechanism accelerates and decelerates the angular velocity during one rotation of the rotating shaft, torque fluctuation (load fluctuation) applied to the rotating shaft increases.
- torque fluctuation load fluctuation
- Repeated twisting and untwisting of the rotating shaft causes backlash of gears constituting the driving system or backlash due to gaps generated between parts during manufacturing of the driving system and drive system rotation unevenness due to driving system twisting.
- the acceleration / deceleration phase shifts, leading to poor planting. Therefore, the present invention provides a torque that cancels the torque fluctuation generated in the planting arm shaft, leveles the torque fluctuation, and improves the phase shift, thereby optimizing the locus of the planting claw and preventing poor planting.
- a rice transplanter is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. While providing the torque leveling mechanism which provides a torque, the said torque leveling mechanism is attached to the said planting arm axis
- the torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. Furthermore, the torque leveling mechanism is preferably provided for each planting unit provided with the planting arm shaft.
- the torque leveling mechanism includes a crank mechanism or a cam mechanism, and includes an elastic body that periodically generates an elastic force by the crank mechanism or the cam mechanism. It is preferable that the elastic force of the elastic body is adjustable and interlocks with connection / disconnection of a unit clutch that connects / disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
- the elastic force of the elastic body is set to be small or zero depending on the number of planted strains.
- the elastic force of the elastic body is adjusted according to the vehicle speed or the rotation speed of the planting arm shaft.
- a rice transplanter is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism.
- a torque leveling mechanism for applying torque is provided, and the torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. .
- a rice transplanter is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. While providing the torque leveling mechanism which provides a torque, the torque leveling mechanism uses the elastic force of an elastic body.
- the torque leveling mechanism is provided on a connecting plate that connects between the rotor arm shafts provided on the rotary case, and is provided at a symmetrical position across the planting arm shaft.
- the elastic body to be attached is attached to a portion facing a side having a length between the pins in the ring as one side.
- a torque leveling mechanism that applies an impulse torque in a direction that cancels the maximum torque at the timing when the maximum torque is generated in the torque fluctuation generated by the non-uniform speed mechanism.
- the torque leveling mechanism includes a cam that sets a timing at which the maximum torque is generated, and a solenoid that operates at the timing by the cam and generates the impulse torque.
- the torque fluctuation generated by the inconstant speed mechanism is leveled and the phase shift is improved, so that the locus of the planting claw can be optimized and planting failure can be prevented.
- the rice transplanter 1 will be described with reference to the accompanying drawings.
- the rice transplanter 1 performs the planting work by the planting unit 5 while traveling by driving the front wheels 3 and the rear wheels 4 with the power of the engine 2.
- the power from the engine 2 is transmitted to the front wheel 3 and the rear wheel 4 through the transmission case 6, and to the planting unit 5 through the transmission case 6 and the stock change device 9, respectively.
- the planting unit 5 includes a planting center case 10, a planting bevel case 11, a rotary case 12, a planting arm 13, a seedling table 14, and a plurality of floats 15.
- the planting arm shaft 25 extends into the rotary case 12 provided on the left and right of the planting bevel case 11 and is fixed to the rotary case 12.
- the sun gear 30 fixed to the planting bevel case 11 is transmitted to the planetary gear 32 via the intermediate gear 31.
- it is transmitted to the planting arm 13 fixed to the planetary gear 32 via the rotor arm shaft 33, and the planting claw 34 is rotated together with the rotary case 12, so that the seedling can be taken from the seedling stage 14 and planted. .
- Inconstant speed mechanism An inconstant speed mechanism included in the inter-plant change device 9 for transmitting power to the planting unit 5 and an inconstant speed mechanism including the inconstant speed bevel gears 23a and 23b in the planting bevel case 11 of the planting unit 5.
- the planting arm shaft 25 rotates at an unequal speed. That is, when the planting claw 34 takes the seedling from the seedling stage 14 and when the planting claw 34 is quickly pulled out from the field after planting the seedling and the seedling remaining on the planting claw 34 is shaken off, the rotary case 12 rotates. The rotational speed of the rotary case 12 is decreased before the seedling is planted in the field and when the planting claw 34 is inserted into the seedling stage 14 while the driving speed is increased.
- the planting claw 34 scrapes off the seedling from the seedling mounting table 14 in a slanted posture in a side view, and then the planting claw is in a posture close to the vertical and heads to the field, and after having descended, it is necessary to turn upward. Therefore, the sun gear 30, the intermediate gear 31, and the planetary gear 32 in the rotary case 12 are non-circular and eccentric.
- the rotor arm shaft 33 supporting the planting arm 13 is also rotated at an inconstant speed with respect to the rotary case 12 by an inconstant speed mechanism.
- a torque leveling mechanism 40 is provided in the planting bevel case 11. That is, the torque leveling mechanism 40 is provided in the planting bevel case 11 provided in each planting unit.
- the torque leveling mechanism 40 is connected to the gear 41 fixed to the planting arm shaft 25, the double speed gear 42 meshing with the gear 41, the crank arm 43 provided on the root circle of the double speed gear 42, and the crank arm 43.
- the coil spring 44 is provided.
- the number of teeth of the double speed gear 42 is half that of the gear 41.
- the double speed gear 42 is supported by the driven shaft 45 so as to be relatively rotatable.
- a boss 46a for fixing one end of the coil spring 44 is provided on the crank arm 43.
- One end of the coil spring 44 is fixed to a boss 46 a provided on the crank arm, and the other end is fixed to a boss 46 b provided on the planting bevel case 11. Further, the position of the boss 46b is determined so that a force always acts on the coil spring 44 in a contracting direction.
- the gear 41 rotates, and the double speed gear 42 that meshes with the gear 41 rotates around the driven shaft 45.
- the crank arm 43 rotates at a position eccentric from the rotation center of the double speed gear 42, and the length of the coil spring 44 changes to generate an elastic force in the coil spring 44.
- torque is generated in conjunction with the rotation of the double speed gear 42.
- the elastic force generated in the coil spring 44 is transmitted from the double speed gear 42 to the gear 41 via the crank arm 43 and further applied as torque to the planting arm shaft 25.
- the power transmission from the planting arm shaft 25 to the crank arm 43 is not limited as long as the rotational speed on the crank arm 43 side is twice the rotational speed of the planting arm shaft 25.
- a sprocket and a chain may be used.
- the mechanism for generating torque in conjunction with the rotation of the double speed gear 42 is not limited to the crank spring mechanism by the crank arm 43 and the coil spring 44, but a cam that rotates together with the double speed gear 42 and a plate that imparts elastic force to the cam.
- a cam / spring mechanism constituted by a spring can also be employed.
- the torque applied by the torque leveling mechanism 40 will be described in detail with reference to FIGS.
- the planting arm shaft 25 rotates counterclockwise.
- the gear 41 rotates counterclockwise and the double speed gear 42 rotates clockwise.
- the elastic force generated in the crank arm 43 as the coil spring 44 expands and contracts is transmitted to the planting arm shaft 25 as a periodic torque.
- the boss 46b, which is the fixed end of the coil spring 44, and the position and angle of the crank arm 43, that is, the position and angle of the crank arm 43 with respect to the driven shaft 45 vary so as to draw a curve close to a sine curve. Torque is generated.
- the torque cycle generated by the torque leveling mechanism 40 is matched with the cycle of torque variation generated in the planting arm shaft 25 by the non-uniform speed mechanism to cancel the torque variation generated by the non-uniform speed mechanism.
- torque is generated by the torque leveling mechanism 40 (so as to have an opposite phase in the drawing).
- the double speed gear 42 to which the crank arm 43 is fixed rotates at twice the number of rotations of the planting arm shaft 25, so that the torque leveling mechanism 40 is rotated twice while the planting arm shaft 25 rotates once. A period of torque is generated.
- the torque leveling mechanism 40 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can. In this way, by adjusting the cycle of the torque leveling mechanism 40 to the cycle of torque fluctuation by the inconstant speed mechanism, torque is synthesized to suppress torque fluctuation caused by the inconstant speed mechanism.
- the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism.
- the torque fluctuation is completely reversed. It may not be the phase leveling torque.
- it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation.
- it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crank arm 43 and the coil spring 44) provided in the double speed gear 42.
- the reduction ratio of the double speed gear 42 is not limited to double, and may be triple, quadruple, or the like. For example, it can be set according to the timing of the torque generating mechanism provided in the double speed gear 42 as described above.
- the torque leveling mechanism 40 applies a smooth torque having the same cycle (two cycles for one rotation of the rotary case 12) as the cycle of the torque variation generated by the inconstant speed mechanism, thereby leveling the torque variation.
- the phase shift of the planting arm shaft 25 can be improved.
- the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
- the double speed gear 42 is supported on the driven shaft 45 so as to be relatively rotatable. Therefore, torque fluctuations generated by the torque leveling mechanism 40 can be directly applied to the planting arm shaft 25 without being transmitted to the driven shaft 45.
- the torque leveling mechanism 40 is directly attached to the planting arm shaft 25 through a gear or chain mechanism in the planting bevel case 11, the torque leveling mechanism 40 is positioned close to the rotary case 12 that is the source of torque fluctuation. Can be put. As a result, torque fluctuations in opposite phases can be effectively applied, and the effect of leveling torque fluctuations can be increased. Further, since the torque leveling mechanism 40 is disposed at a position separated from the planting arm shaft 25 by one gear (driven shaft 45) via a gear or a chain, a space in the planting bevel case 11 can be secured and mounted without difficulty. can do.
- the torque leveling mechanism 40 Since the torque leveling mechanism 40 is provided on the downstream side in the power transmission path of the unit clutch 24, the torque leveling mechanism 40 operates according to the connection of the unit clutch 24. That is, since the leveling torque does not act when the unit clutch 24 is disconnected, the leveling torque according to the number of operating stripes can be applied.
- the torque leveling mechanism 40 may be provided downstream of the connecting / disconnecting operation of the unit clutch 24, that is, in a range where power is not transmitted when the unit clutch 24 is in a disconnected state in the power transmission path. For example, when provided at the position shown in FIG. 7, the gear 41 of the torque leveling mechanism 40 is fixed to the cam 24 a of the unit clutch 24. Thus, by placing the torque leveling mechanism 40 downstream of the unit clutch 24, it is possible to link the connection / disconnection operation of the unit clutch 24 with the presence / absence of the operation of the torque leveling mechanism 40.
- the torque leveling mechanism 50 shown in FIGS. 8 and 9 is provided in the planting bevel case 11. That is, the torque leveling mechanism 50 is provided in the planting bevel case 11 provided in each planting unit.
- the torque leveling mechanism 50 includes a bevel gear 51 that meshes with a bevel gear 23 b that transmits power to the planting arm shaft 25, a crank shaft 52 to which the bevel gear 51 is fixed, and a coil spring 53 that is connected to the crank shaft 52.
- the number of teeth of the bevel gear 51 is the same as the number of teeth of the bevel gear 23a and half the number of teeth of the bevel gear 23b. That is, the crankshaft 52 is rotationally driven at a rotational speed twice that of the planting arm shaft 25.
- a boss 54a for fixing one end of the coil spring 53 is provided on the crankshaft 52.
- One end of the coil spring 53 is fixed to a boss 54 a provided on the crankshaft 52, and the other end is fixed to a boss 54 b attached to the rear of the planting bevel case 11. Further, the position of the boss 54b is determined so that a force acts on the coil spring 53 in a direction in which the coil spring 53 always contracts.
- the rotation is transmitted from the bevel gear 23b to the bevel gear 51 as the planting arm shaft 25 rotates, and the crankshaft 52 rotates at a position eccentric from the rotation center as the bevel gear 51 rotates.
- an elastic force is generated in the coil spring 53 by changing the length of the coil spring 53.
- torque is generated in conjunction with the rotation of the crankshaft 52.
- the elastic force generated in the coil spring 53 is transmitted to the bevel gear 51 via the crankshaft 52 and further applied to the planting arm shaft 25 as torque.
- the power transmission from the planting arm shaft 25 to the crankshaft 52 is not limited as long as the rotational speed on the crankshaft 52 side is twice the rotational speed of the planting arm shaft 25, and instead of the bevel gears 23b and 51. It is also possible to use a sprocket chain. Further, the mechanism for generating torque is not limited to the crank spring mechanism including the crankshaft 52 and the coil spring 53, and is configured by a cam that is rotationally driven by the rotation of the bevel gear 51 and a plate spring or a coil spring that imparts an elastic force to the cam. A cam / spring mechanism can also be used.
- Rotational motion of the crankshaft 52 causes the elastic force generated with the expansion and contraction of the coil spring 53 to be transmitted to the planting arm shaft 25 through the bevel gears 51 and 23b as a periodic torque.
- torque that varies so as to draw a curve close to a sine curve is generated according to the position and angle of the boss 54b, which is the fixed end of the coil spring 53, and the crankshaft 52, that is, the rotational phase of the crankshaft 52.
- the torque leveling mechanism 50 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can. In this way, by matching the cycle of the torque leveling mechanism 50 with the cycle of torque fluctuation by the inconstant speed mechanism, torque is synthesized to suppress torque fluctuation caused by the inconstant speed mechanism.
- the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism.
- the torque fluctuation is completely reversed. It may not be the phase leveling torque.
- it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crankshaft 52 and the coil spring 53) provided in the bevel gear 51.
- the torque leveling mechanism 50 equalizes torque fluctuations by applying a smooth torque having the same period (two periods for one rotation of the rotary case 12) as the period of torque fluctuations generated by the inconstant speed mechanism.
- the phase shift of the planting arm shaft 25 can be improved.
- the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
- the torque leveling mechanism 50 is directly attached to the planting arm shaft 25 through a gear or chain mechanism in the planting bevel case 11, the torque leveling mechanism 50 is located at a position close to the rotary case 12 that is the source of torque fluctuation. Can be put. As a result, torque fluctuations in opposite phases can be effectively applied, and the effect of leveling torque fluctuations can be increased.
- the torque leveling mechanism 50 is provided for each planting unit in which the planting arm shaft 25 is provided. In other words, since the leveling torque cancels out in each unit with the torque fluctuation generated by the acceleration / deceleration of the rotary case 12, the torque fluctuation does not go back to the upstream side of the transmission system. it can.
- the torque leveling mechanism 50 may be provided with an adjustment mechanism 60 that changes the elastic force of the coil spring 53.
- the adjustment mechanism 60 adjusts the elastic force by changing the length of the coil spring 53.
- the adjustment mechanism 60 includes a link 61 connected to a boss 54 b provided at one end of the coil spring 53, and a link bar 62 that operates the link 61.
- the link bar 62 By operating the link bar 62, the posture of the link 61 is changed and the position of one end of the coil spring 53 is changed.
- the boss 54b is inserted into an appropriate elongated hole, and the length of the coil spring 53 is changed by moving along the elongated hole.
- the magnitude of the leveling torque can be set according to planting conditions (for example, the number of planted stocks (set value between stocks), vehicle speed (accelerator opening), planting. It can be adjusted according to the rotation speed of the arm shaft 25 (planting rotation speed) or the torque of the planting arm shaft 25 (torque fluctuation amount).
- the torque load according to the number of actuating lines can be added by interlocking the adjusting mechanism 60 with the unit clutch 24.
- the adjustment mechanism 60 is not limited to the above-described configuration, and may be any other link mechanism or wire as long as the elastic force generated in the coil spring 53 can be changed by changing the length of the coil spring 53. The one using may be used.
- the torque leveling mechanism 70 shown in FIGS. 14 and 15 is provided in the planting bevel case 11. That is, the torque leveling mechanism 70 is provided in the planting bevel case 11 provided in each planting unit.
- the torque leveling mechanism 70 meshes with the inconstant speed bevel gear 23b, and the inconstant speed bevel gear 51 and the inconstant speed bevel gear 51 having the same number of teeth as the inconstant speed bevel gear 23a are fixed.
- a crankshaft 52 provided on the same axis, a coil spring 53 connected to the crankshaft 52, a sliding member 55 connected to the other end of the coil spring 53, fixed to the other end of the sliding member 55, and adjusting the tension.
- a wire 56 that moves the sliding member 55, a case 57 that houses the sliding member 55, and a stopper 58 a that is provided on the sliding member 55 and restricts the movable range of the sliding member 55 within the case 57. It has.
- the inconstant speed bevel gear 51 rotates with the rotation of the planting arm shaft 25, the crankshaft 52 rotates eccentrically from the center of rotation, and the length of the coil spring 53 changes. Elastic force is generated in the coil spring 53. The elastic force generated in the coil spring 53 is transmitted from the inconstant speed bevel gear 51 to the inconstant speed bevel gear 23b via the crankshaft 52, and is further applied as torque to the planting arm shaft 25.
- a boss 54 a that fixes one end of the coil spring 53 is provided on the crankshaft 52, and a boss 54 b that fixes the other end of the coil spring 53 is provided on the sliding member 55.
- the boss 54b is disposed above the rotation center O1 of the crankshaft 52.
- the sliding member 55 is accommodated in a case 57 fixed to the planting bevel case 11, and slides in a direction toward and away from the boss 54a (vertical direction in the drawing). Further, a movable range in the sliding direction is limited by a stopper 58a provided in the middle of the sliding member 55.
- the torque leveling mechanism 70 is provided with a mechanism for adjusting the elastic force of the coil spring 53 that is an elastic body.
- the wire 56 can be interlocked with the connection / disconnection of the unit clutch 24. That is, by linking the movement of the actuator 71 that performs the connecting / disconnecting operation of the unit clutch 24 and the movement of the wire 56, if the unit clutch 24 is in the disconnected state, the torque load by the torque leveling mechanism 40 is made zero or substantially zero, If it is in a connected state, a torque load according to the planting conditions can be applied. In this way, by leveling the leveling torque applied by the torque leveling mechanism 70 with the unit clutch 24, the leveling torque according to the number of operating stripes can be applied.
- the actuator 72 is, for example, a motor or a solenoid that pulls or loosens the wire 56, and the leveling torque by the torque leveling mechanism 70 can be adjusted by sending an electrical signal to the actuator 72.
- the number of planting stocks (set value between stocks), the vehicle speed (accelerator opening), the rotational speed of the planting arm shaft 25 (planting rotational frequency), or the torque (torque fluctuation amount) of the planting arm shaft 25 is detected.
- the spring force can be optimally adjusted by transmitting an electrical signal corresponding to these detected values to the actuator 72.
- the generated torque fluctuation becomes large. Therefore, a large torque is applied by pulling the wire 56, and conversely, if the speed becomes low, the wire 56 is loosened. In this way, a small torque is applied. Thereby, rotation fluctuation can be effectively suppressed in the whole rotation speed.
- the non-uniform motion increases, so the torque load is increased, and in the case of dense plantings with a large number of planted stocks, constant speed motion or slight acceleration / deceleration is involved. From this, the torque load is reduced or made zero.
- the elastic force generated in the crankshaft 52 as the coil spring 53 expands and contracts is transmitted to the planting arm shaft 25 as a periodic torque.
- the torque that varies so as to draw a curve close to a sine curve according to the phase of the tip of the boss 54b supporting the coil spring 53 and the crankshaft 52, that is, the position and angle of the crankshaft 52 with respect to the rotation center. appear.
- the direction of the torque fluctuation generated by the inconstant speed mechanism is canceled by matching the period of torque generated by the torque leveling mechanism 70 with the period of torque fluctuation generated in the planting arm shaft 25 by the inconstant speed mechanism.
- torque is generated by the torque leveling mechanism 70 (so as to have an opposite phase in the drawing).
- the torque leveling mechanism 70 since the crankshaft 52 rotates at twice the number of rotations of the planting arm shaft 25, the torque leveling mechanism 70 generates torque for two cycles while the planting arm shaft 25 rotates once.
- the torque leveling mechanism 70 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can.
- the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism.
- the torque fluctuation is completely reversed. It may not be the phase leveling torque.
- it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crankshaft 52 and the coil spring 53).
- the torque leveling mechanism 70 equalizes torque fluctuations by applying a smooth torque having the same period (two periods for one rotation of the rotary case 12) as the period of torque fluctuations generated by the inconstant speed mechanism.
- the phase shift of the planting arm shaft 25 can be improved.
- the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
- FIG. 18 and 19 show another embodiment of the torque leveling mechanism 70.
- FIG. 18 In the embodiment shown in FIG. 18, one end of the coil spring 53 is deformed into a long hole and fixed to the sliding member 55 fixed to the planting bevel case 11.
- the boss 54b is arranged so that it can freely move in the elongated hole of the coil spring 53.
- the relative positional relationship between the sliding member 55 and the coil spring 53 is changed by the operation of the wire 56.
- FIG. 18A when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero.
- FIG. 18A when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero.
- FIG. 18A when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero.
- a ball 80 is provided on the sliding member 55 instead of the boss 54 b, and the diameter of the circle of one end of the coil spring 53 is made smaller than that of the ball 80, so that the ball 80 is positioned inside the coil spring 53.
- the relative positional relationship between the sliding member 55 and the coil spring 53 is changed by the operation of the wire 56.
- FIG. 19A when the ball 80 does not hit the end of the coil spring 53, the coil spring 53 does not expand and contract, and the elastic force becomes zero.
- FIG. 19B when the ball 80 hits the end of the coil spring 53, a tensile force is generated in the coil spring 53 so that the coil 80 can expand and contract. In this way, the presence or absence of elastic force can be strictly adjusted.
- a torque leveling mechanism 90 shown in FIG. 20 applies a leveling torque to the planting arm shaft 25 using a magnet.
- the cam 91 is fixed to the outer peripheral surface of the planting arm shaft 25.
- Four magnets 92a are arranged at equal intervals in the circumferential direction of the cam 91, and are attached so that the magnetic poles on the outer peripheral side are reversed between adjacent magnets 92a.
- the magnet 92 b is fixed to the outside of the cam 91.
- the magnetic pole on the side of the planting arm shaft 25 of the magnet 92b is the S pole
- a torque in the direction opposite to the rotation direction of the planting arm shaft 25 is generated, and when the magnet 92a leaves.
- torque in the same direction as the rotation direction of the planting arm shaft 25 is generated, and when away from the magnet 92a, torque in the direction opposite to the rotation direction of the planting arm shaft 25 is generated.
- the torque fluctuation generated by the torque leveling mechanism 90 using a magnet is a periodic torque fluctuation in which the planting arm shaft 25 has two peaks during one rotation.
- the magnet 92a is fixed to the outer peripheral surface of the cam 91, and four magnets 92b are arranged at equal intervals in the circumferential direction on the outer side of the cam 91, and adjacent magnets. It can also take the form of attaching so that the magnetic pole which comes to the inner peripheral side may be reversed between 92b.
- the planting arm shaft 25 similarly has a periodic torque fluctuation having two peaks during one rotation.
- two magnets 92 a may be arranged in the circumferential direction of the cam 91, and two magnets 92 b may be arranged on the outer peripheral side of the cam 91.
- the torque leveling mechanism may be provided on the planting horizontal shaft 20.
- the rotational speed of the planting horizontal shaft 20 is twice the rotational speed of the planting arm shaft 25.
- the crank shaft 52 is connected to the end of the planting horizontal shaft 20, and the torque leveling mechanism 50 is arranged on the planting horizontal shaft 20 by connecting the coil spring 53 to the crank shaft 52. Yes.
- the torque leveling mechanism 100 shown in FIG. 22 has a cam 101 fixed to the middle portion of the planting horizontal shaft 20, a roller 102 that rotates in contact with the cam surface 101 a of the cam 101, and biases the roller 102 toward the cam 101.
- the cam surface 101a of the cam 101 is formed as an inclined surface with one side being low and the other side being high.
- the base end of the arm 104 is slidably accommodated in the case, and a roller 102 is provided at the tip.
- a coil spring 103 is disposed between the arm 104 and the roller 102.
- the cam 101 rotates with the rotation of the planting horizontal shaft 20, and the position of the roller 102 rotating along the cam surface 101a changes, whereby the length of the coil spring 103 expands and contracts. During the expansion and contraction, periodic torque fluctuation is applied to the planting horizontal shaft 20 via the cam 101.
- a torque leveling mechanism 110 shown in FIG. 23 includes a cam 111 fixed to the middle portion of the planting horizontal shaft 20, a pressing member 112 that contacts the cam 111, and a coil spring 113 that biases the pressing member 112 toward the cam 111. It comprises. One large diameter portion is formed on the cam surface of the cam 111. The proximal end of the coil spring 113 is fixed in the case, and the distal end is fixed to the pressing member 112.
- the cam 111 rotates with the rotation of the planting horizontal shaft 20 and the pressing member 112 is pushed up by the large diameter portion of the cam surface, the elastic force of the coil spring 113 is applied as a torque resistance.
- the elastic force of the coil spring 113 is applied as torque.
- a periodic torque according to the period of the cam 111 is applied.
- the torque leveling mechanism 120 shown in FIG. 24 is provided on a connecting plate 121 that connects two rotor arm shafts 33 provided on the rotary case 12.
- the two pins 122 and 122 that are provided to protrude outward from the connecting plate 121 are symmetrical with respect to the planting arm shaft 25 that serves as the rotation center of the rotary case 12.
- the ring 123 that covers the two pins 122 and 122 from the outer peripheral side is formed in a square shape having the length between the pins 122 as one side of the inner periphery.
- a coil spring 124 is fixed to the center of the side of the ring 123 opposite to the side in contact with the pin 122.
- the pin 122 also rotates around the planting arm shaft 25 in accordance with the rotation of the rotary case 12, and pushes down the inner periphery of the ring 123.
- the coil spring 124 is extended, and an elastic force is generated.
- the elastic force of the coil spring 124 thus generated is transmitted as torque to the planting arm shaft 25 via the connecting plate 121 and the rotary case 12.
- the positional relationship between the pin 122 and the ring 123 changes in two cycles of extending, contracting, extending, and contracting the coil spring 124. That is, it is possible to apply a leveling torque having the same period as the torque fluctuation generated in the planting arm shaft 25.
- the pin 122 has a flange shape, thereby increasing the contact area with the ring 123, or attaching a roller to the pin 122 to reduce the resistance with the inner peripheral surface of the ring 123.
- the ring 123 may be formed in a triangular shape, and the coil spring 124 may be fixed to the apex facing the side connecting the pins 122. With the triangular shape, the coil spring 124 can be stably fixed.
- the torque leveling mechanism 130 is connected to the timing cam 131 fixed to the planting horizontal shaft 20, the solenoid 132 that operates at the timing set by the timing cam 131, and the solenoid 132.
- a micro switch 133 is provided that operates the solenoid 132 by passing an operating current.
- the timing cam 131 has a step surface 131a extending in the radial direction, and a large diameter portion and a small diameter portion are formed adjacent to each other in the circumferential direction across the step surface 131a.
- the solenoid 132 is disposed above the micro switch 133, and a base end portion is rotatably supported.
- the switch portion of the micro switch 133 is disposed at the top, that is, below the solenoid 132.
- Plunger 132 a of solenoid 132 is arranged along the cam surface of timing cam 131. As shown in FIG. 25 (b), when the plunger 132a of the solenoid 132 passes the step surface 131a, it falls from the large diameter portion to the small diameter portion.
- the solenoid 132 rotates and contacts the switch portion of the micro switch 133, and an operating current flows from the micro switch 133 to the solenoid 132. Then, the plunger 132a of the solenoid 132 presses the step surface 131a. In this way, impulse torque is applied to the planting horizontal shaft 20 via the timing cam 131.
- the timing by the timing cam 131 is set to the timing at which the maximum torque is generated in the torque fluctuation caused by the inconstant speed mechanism. Thereby, the impulse torque is generated so as to cancel the maximum torque. As described above, by applying the leveling torque as the impulse torque, the operation time is shortened, so that the timing shift hardly occurs. In addition, since the rotation is assisted by the impulse torque, it does not serve as a brake to the rotational load. Furthermore, since the driving force for applying the torque is independent from the rotational driving force of the rotary case 12, it is not affected.
- the torque leveling mechanisms 40, 50, 70, 90, 100, 110, and 130 in the above-described embodiment are ranges from the downstream side of the inconstant speed mechanism included in the inter-stock change device 9 to the planting arm shaft 25. If so, the same applies.
- the power transmission path to the planting unit 5 in the above-described embodiment is mainly a gear, but if the power branched from the planting center case 10 can be transmitted to each planting unit, A chain drive type using a sprocket and a chain is also applicable.
- the present invention is applicable to a rice transplanter that transmits power to a planting arm through an inconstant speed mechanism.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- Environmental Sciences (AREA)
- Transplanting Machines (AREA)
- Transmission Devices (AREA)
Abstract
Description
そのため、密植状態を基準にして、植付爪を圃場からより迅速に逃げ移動させるべく疎植の際に、不等速機構を設けて、植付爪を支持するロータリ式植付アーム軸の一回転中の角速度(回転速度)を変化させる方法がある。 With traditional rice transplanters, if the planting claw tip trajectory is set to be nearly vertical near the bottom dead center based on dense planting, the speed at which the planting claw escapes from the field is slow in the sparse planting state. Therefore, a phenomenon that the planted seedling is pushed forward tends to occur. On the contrary, based on sparse planting, if the locus of the tip of the planting claw is set to be almost vertical near the bottom dead center, the planting claw will be pushed back into the field in the dense planting state. Floating seedlings are likely to occur due to the spread of seedlings and mud.
For this reason, a non-constant speed mechanism is provided for sparse planting so that the planting claws escape and move more quickly from the field with reference to the dense planting state, and one of the rotary planting arm shafts that support the planting claws. There is a method of changing the angular velocity (rotational speed) during rotation.
そこで、本発明は、植付アーム軸に生じるトルク変動を打ち消すトルクを与えて、トルク変動を平準化し、位相のズレを改善することで、植付爪の軌跡を適正化し、植付不良を防ぐ田植機を提供する。 Since the inconstant speed transmission mechanism accelerates and decelerates the angular velocity during one rotation of the rotating shaft, torque fluctuation (load fluctuation) applied to the rotating shaft increases. Repeated twisting and untwisting of the rotating shaft causes backlash of gears constituting the driving system or backlash due to gaps generated between parts during manufacturing of the driving system and drive system rotation unevenness due to driving system twisting. As a result, the acceleration / deceleration phase shifts, leading to poor planting.
Therefore, the present invention provides a torque that cancels the torque fluctuation generated in the planting arm shaft, leveles the torque fluctuation, and improves the phase shift, thereby optimizing the locus of the planting claw and preventing poor planting. Provide rice transplanters.
さらに、前記トルク平準化機構は、前記植付アーム軸が設けられる植付ユニット毎に設けられることが好ましい。 The torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
Furthermore, the torque leveling mechanism is preferably provided for each planting unit provided with the planting arm shaft.
前記弾性体の弾性力は調節可能であり、かつ、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチの断接に連動することが好ましい。 The torque leveling mechanism includes a crank mechanism or a cam mechanism, and includes an elastic body that periodically generates an elastic force by the crank mechanism or the cam mechanism.
It is preferable that the elastic force of the elastic body is adjustable and interlocks with connection / disconnection of a unit clutch that connects / disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
田植機1は、エンジン2の動力により前輪3及び後輪4を駆動させて走行しながら、植付部5により植付作業を行う。エンジン2からの動力はミッションケース6を経て前輪3及び後輪4に、並びに、ミッションケース6及び株間変更装置9を経て植付部5にそれぞれ伝達される。
植付部5は、植付センターケース10、植付ベベルケース11、ロータリケース12、植付アーム13、苗載台14、及び、複数のフロート15を具備する。 The
The
The
植付センターケース10から分岐される植付横軸20から、植付ベベルケース11内でベベルギア21a・21bを介して植付縦軸22に伝達される。そして、不等速ベベルギア23a・23bを介して植付縦軸22からユニットクラッチ24に伝達される。
そしてユニットクラッチ24の断接に応じて接続状態となった場合に、植付アーム軸25に動力が伝達される。他方、ユニットクラッチ24が切断状態となった場合は、植付アーム軸25に動力は伝達されない。 FIG. 2 is a transmission system diagram regarding the planting drive of the
The planting
When the
植付部5へ動力を伝達する株間変更装置9の内部に含まれる不等速機構、及び、植付部5の植付ベベルケース11内の不等速ベベルギア23a・23bを含む不等速機構によって、植付アーム軸25が不等速で回転運動する。
すなわち、植付爪34が苗載台14から苗を取る時、及び、苗の植付後に植付爪34を圃場から素早く引き抜くとともに植付爪34に残る苗を振り落とす時にロータリケース12の回転駆動を速くするとともに、圃場へ苗を植付ける前、及び、植付爪34を苗載台14に差し込む時にロータリケース12の回転速度を緩めている。
このように、不等速機構を介して植付アーム軸25に動力が伝達され、周期的な加減速を伴って回転駆動される。これにより、植付アーム軸25に不等速運動に起因するトルク変動が発生する。具体的には、各植付爪34の苗取時と植付時を基準にそれぞれ加減速しているので、不等速運動に起因するトルク変動は、ロータリケース12が一回転する間に二回のピークを有する周期的な変動となる。
なお、密植時等、株間変更装置9にて設定される株間数によっては、等速で動力が伝達される場合もあり、常に不等速で動力が伝達されるとは限らない。 [Inconstant speed mechanism]
An inconstant speed mechanism included in the
That is, when the
In this way, power is transmitted to the
In addition, depending on the number of stocks set by the
また、株間変更装置9で設定される株間数(植付株数)に応じて不等速の有無や不等速度合いが変わり、植付速度が変わることで同様にトルク変動の大きさが変化する。なお、密植時等、株間変更装置9にて設定される株間数によっては、等速で動力が伝達される場合もあり、常に不等速で動力が伝達されるとは限らない。 Furthermore, the magnitude of the torque variation changes according to the planting conditions. Specifically, the torque fluctuation increases if the vehicle speed is high, in other words, the planting rotation speed (rotation speed of the planting arm shaft 25) is high, and decreases if the vehicle speed is low.
In addition, the presence / absence of unequal speed and the unequal speed change according to the number of stocks (number of planted stocks) set by the
図2及び図3に示すように、トルク平準化機構40が植付ベベルケース11内に設けられる。つまり、トルク平準化機構40は各植付ユニットに設けられる植付ベベルケース11に設けられている。
トルク平準化機構40は、植付アーム軸25に固定されるギア41、ギア41と噛み合う倍速ギア42、倍速ギア42の歯底円上に設けられるクランクアーム43、及び、クランクアーム43に接続されるコイルバネ44を具備する。倍速ギア42の歯数はギア41の半分である。倍速ギア42は従動軸45に相対回転可能に支持されている。 [Torque leveling mechanism]
As shown in FIGS. 2 and 3, a
The
また、倍速ギア42の回転に連動してトルクを発生させる機構は、クランクアーム43及びコイルバネ44によるクランク・バネ機構に限らず、倍速ギア42と共に回転するカム及び当該カムに弾性力を付与する板バネによって構成されるカム・バネ機構も採用できる。 The power transmission from the
Further, the mechanism for generating torque in conjunction with the rotation of the
なお、図示において、植付アーム軸25は反時計回りに回転する。これにより、ギア41は反時計回り、倍速ギア42は時計回りにそれぞれ回転する。 The torque applied by the
In the figure, the
このとき、クランクアーム43が固定される倍速ギア42は、植付アーム軸25の回転数の二倍で回転するため、トルク平準化機構40には植付アーム軸25が一回転する間に二周期分のトルクが生じる。つまり、トルク平準化機構40は、不等速機構を介したロータリケース12の一回転の間に発生する二回のピークを有する周期的なトルク変動を打ち消して平準化するトルクを発生させることができる。
このように、トルク平準化機構40の周期を、不等速機構によるトルク変動の周期に合わせることで、トルクを合成して不等速機構に起因するトルク変動を抑えている。 As shown in FIG. 6, the torque cycle generated by the
At this time, the
In this way, by adjusting the cycle of the
また、倍速ギア42の減速比は、二倍に限定されず、三倍、四倍等でも良い。例えば、上述と同様に倍速ギア42に設けられるトルク発生機構のタイミングに応じて設定することも可能である。 In the present embodiment, the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism. However, if the torque fluctuation is effectively suppressed, the torque fluctuation is completely reversed. It may not be the phase leveling torque. For example, it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the
Further, the reduction ratio of the
また、植付アーム軸25からギア若しくはチェーンを介して一軸(従動軸45)離れた位置にトルク平準化機構40を配置するため、植付ベベルケース11内でのスペースを確保でき、無理なく搭載することができる。 Since the
Further, since the
このように、ユニットクラッチ24の下流にトルク平準化機構40を置くことで、ユニットクラッチ24の断接動作とトルク平準化機構40の作動の有無を連動させることが可能である。 The
Thus, by placing the
トルク平準化機構50は、植付アーム軸25に動力を伝達するベベルギア23bと噛み合うベベルギア51、ベベルギア51が固定されるクランク軸52、及び、クランク軸52に接続されるコイルバネ53を具備する。ベベルギア51の歯数はベベルギア23aの歯数と同数、かつ、ベベルギア23bの歯数の半分である。つまり、クランク軸52は、植付アーム軸25の二倍の回転数で回転駆動される。 The
The
また、トルクを発生させる機構は、クランク軸52及びコイルバネ53によるクランク・バネ機構に限らず、ベベルギア51の回転によって回転駆動されるカム及び当該カムに弾性力を付与する板バネ又はコイルバネによって構成されるカム・バネ機構も採用できる。 The power transmission from the
Further, the mechanism for generating torque is not limited to the crank spring mechanism including the
なお、図示において、ベベルギア51及びクランク軸52は時計回りに回転する。 The torque applied by the
In the figure, the
このとき、クランク軸52が固定されるベベルギア51は、植付アーム軸25の回転数の二倍で回転するため、トルク平準化機構50には植付アーム軸25が一回転する間に二周期分のトルクが生じる。つまり、トルク平準化機構50は、不等速機構を介したロータリケース12の一回転の間に発生する二回のピークを有する周期的なトルク変動を打ち消して平準化するトルクを発生させることができる。
このように、トルク平準化機構50の周期を、不等速機構によるトルク変動の周期に合わせることで、トルクを合成して不等速機構に起因するトルク変動を抑えている。 As shown in FIG. 12, the direction of the torque fluctuation generated by the inconstant speed mechanism is canceled by matching the period of torque generated by the
At this time, since the
In this way, by matching the cycle of the
例えば、調節機構60は、コイルバネ53の一端に設けられるボス54bに接続されるリンク61、及び、リンク61を操作するリンクバー62を具備する。リンクバー62を操作することでリンク61の姿勢を変更してコイルバネ53の一端の位置を変更する。ボス54bは、適宜の長穴に挿通され、該長穴に沿って移動することでコイルバネ53の長さが変更される。 As shown in FIG. 13, the
For example, the
なお、調節機構60は、上述の構成に限定されるものではなく、コイルバネ53の長さを変えることによってコイルバネ53に発生する弾性力を変化させることができれば良く、他のリンク機構、又は、ワイヤを用いたものでも良い。 As described above, by providing the
The
トルク平準化機構70は、不等速ベベルギア23bと噛み合い、不等速ベベルギア23aの歯数と同じ歯数を有する不等速ベベルギア51、不等速ベベルギア51が固定され、植付縦軸22と同軸上に設けられるクランク軸52、クランク軸52に接続されるコイルバネ53、コイルバネ53の他端に接続される摺動部材55、摺動部材55の他端に固定され、テンションを調節することで摺動部材55を移動させるワイヤ56、及び、摺動部材55を収容するケース57、並びに、摺動部材55に設けられ、摺動部材55のケース57内での可動域を制限するストッパー58aを具備する。 The
The
摺動部材55は、植付ベベルケース11に固定されるケース57に収容されており、ボス54aに近付く方向及び離れる方向(図示では上下方向)に摺動する。また、摺動部材55の中途部に設けられたストッパー58aにより摺動方向への可動域が制限されている。ワイヤ56を操作することで、摺動部材55が上下に移動し、摺動部材55に固定されているコイルバネ53の伸縮によって弾性力の大きさを変えることができる。このように、トルク平準化機構70には弾性体であるコイルバネ53の弾性力を調節する機構が備えられる。 As shown in FIG. 15, a
The sliding
具体的には、図15(a)が示すように、摺動部材55に取り付けられたワイヤ56を引っ張ることで、摺動部材55がコイルバネ53を引っ張り、コイルバネ53の長さが長くなることで弾性力が増加する。その状態から、図15(b)が示すように、ワイヤ56を引っ張る力を緩めると、同様に、コイルバネ53の弾性力が弱まる。なお、図15(c)が示すように、ストッパー58aがケース57に当たる位置を、コイルバネ53の弾性力がゼロ若しくはゼロに近くなるように設定している。
このように、ワイヤ56によって、コイルバネ53の弾性力の大きさ、及び、トルク付加の有無が調節される。そして、調節した弾性力が平準化トルクとして植付アーム軸25に付与される。 [Adjustment of elastic force of torque leveling mechanism]
Specifically, as shown in FIG. 15A, by pulling the
Thus, the magnitude of the elastic force of the
このように、トルク平準化機構70によって付与される平準化トルクの大きさをユニットクラッチ24に連動させることで、作動条数に応じた平準化トルクを付与することができる。 The
In this way, by leveling the leveling torque applied by the
また、植付株数が少ない疎植の場合は、不等速運動が大きくなることから、トルク負荷を大きくし、植付株数が多い密植の場合は、等速運動若しくは僅かな加減速を伴うことから、トルク負荷を小さく又はゼロにする。さらに、疎植の条件で低速走行をする場合は、不等速運動に起因するトルク変動が小さくなることから、トルク負荷を小さく又はゼロにする。
以上のように、植付株数、高速又は低速等の植付条件に応じてトルク平準化機構40のトルク負荷を調節することで、効果的な抑制効果が得られる。 Specifically, if the vehicle speed or planting rotation speed becomes high, the generated torque fluctuation becomes large. Therefore, a large torque is applied by pulling the
In addition, in the case of sparse planting with a small number of planted stocks, the non-uniform motion increases, so the torque load is increased, and in the case of dense plantings with a large number of planted stocks, constant speed motion or slight acceleration / deceleration is involved. From this, the torque load is reduced or made zero. Furthermore, when running at low speed under sparse planting conditions, torque fluctuation due to non-uniform speed movement is reduced, so the torque load is reduced or made zero.
As described above, an effective suppression effect can be obtained by adjusting the torque load of the
次に、図16を用いてトルク平準化機構70によって付与するトルクについて詳述する。図示において、クランク軸52が回転中心に対して時計回りに回転している。クランク軸52に設けられたボス54aには、ワイヤ56によって適宜調節されたコイルバネ53の弾性力が作用する。 [Torque fluctuation phase applied by torque leveling mechanism]
Next, the torque applied by the
このとき、クランク軸52は、植付アーム軸25の回転数の二倍で回転するため、トルク平準化機構70には植付アーム軸25が一回転する間に二周期分のトルクが生じる。つまり、トルク平準化機構70は、不等速機構を介したロータリケース12の一回転の間に発生する二回のピークを有する周期的なトルク変動を打ち消して平準化するトルクを発生させることができる。
また、コイルバネ53の弾性力を調節することができるため、不等速機構によって発生するトルク変動の大きさに応じて、同程度の大きさのトルクを付与することができる。
このように、トルク平準化機構70の周期を、不等速機構によるトルク変動の大きさ、及び、周期に合わせることで、トルクを合成して不等速機構に起因するトルク変動を抑えている。 As shown in FIG. 17, the direction of the torque fluctuation generated by the inconstant speed mechanism is canceled by matching the period of torque generated by the
At this time, since the
In addition, since the elastic force of the
As described above, by adjusting the period of the
図18に示す実施形態では、コイルバネ53の一端を長穴に変形させて、植付ベベルケース11に固定された摺動部材55に固定させている。コイルバネ53の長穴の中を自在に移動できるようにボス54bを配置する。
ワイヤ56の操作によって摺動部材55とコイルバネ53との相対的な位置関係が変わる。図18(a)に示すように、ボス54bがコイルバネ53の長穴の先端部に当たらない場合は、コイルバネ53の伸縮がなく、弾性力がゼロとなる。図18(b)が示すように、ボス54bがコイルバネ53の長穴の先端部に当たる場合に、コイルバネ53に引張力が生じて伸縮可能となる。このように、弾性力の有無を厳密に調節可能である。 18 and 19 show another embodiment of the
In the embodiment shown in FIG. 18, one end of the
The relative positional relationship between the sliding
ワイヤ56の操作によって摺動部材55とコイルバネ53との相対的な位置関係が変わる。図19(a)に示すように、ボール80がコイルバネ53の端部に当たらない場合は、コイルバネ53の伸縮がなく、弾性力がゼロとなる。図19(b)が示すように、ボール80がコイルバネ53の端部に当たる場合に、コイルバネ53に引張力が生じて伸縮可能となる。このように、弾性力の有無を厳密に調節可能である。 In the embodiment shown in FIG. 19, a
The relative positional relationship between the sliding
図20(a)に示すように植付アーム軸25の外周面にカム91を固定させる。カム91の周方向にマグネット92aを等間隔で四つ配置し、かつ、隣接するマグネット92a間で、外周側にくる磁極が逆になるように取り付ける。そして、カム91の外側にマグネット92bを固定する。
カム91が、植付アーム軸25の回転に伴って回転することにより、マグネット92aとマグネット92bとの間に発生する磁力を利用して平準化トルクを発生させる。例えばマグネット92bの植付アーム軸25側にある磁極がS極ならば、S極が外側にあるマグネット92aが近づくときは植付アーム軸25の回転方向と逆向きのトルクが発生し、離れるときは植付アーム軸25の回転方向と同じ向きのトルクが発生する。反対に、N極が外側にあるマグネット92aが近づくときは植付アーム軸25の回転方向と同じ向きのトルクが発生し、離れるときは植付アーム軸25の回転方向と逆向きのトルクが発生する。 A torque leveling mechanism 90 shown in FIG. 20 applies a leveling torque to the
As shown in FIG. 20A, the
When the
さらに、図20(c)に示すように、マグネット92aをカム91の周方向に二つ配置し、かつ、カム91の外周側にマグネット92bを二つ配置しても良い。このとき、マグネット92aの外周側にくる磁極と、マグネット92bの内周側にくる磁極を同じにすることで、植付アーム軸25が一回転する間に二回のピークを有する周期的なトルク変動を付与することができる。
マグネット92a・92bとして電磁石を用いて、電磁力の大きさ及びタイミングを可変とすることで、最適なトルクを付与することができる。 Further, as shown in FIG. 20B, the
Furthermore, as shown in FIG. 20C, two
By using electromagnets as the
図21に示す実施形態では、植付横軸20の端部にクランク軸52を接続し、クランク軸52にコイルバネ53を接続することでトルク平準化機構50を植付横軸20に配置している。 As shown in FIGS. 21 to 23, the torque leveling mechanism may be provided on the planting
In the embodiment shown in FIG. 21, the
植付横軸20の回転に伴ってカム101が回転し、カム面101aに沿って回転するローラー102の位置が変わることで、コイルバネ103の長さが伸縮する。この伸縮の際に、カム101を介して植付横軸20に周期的なトルク変動が付与される。 The
The
植付横軸20の回転に伴ってカム111が回転し、カム面の大径部によって押圧部材112を押し上げる際に、コイルバネ113の弾性力がトルク抵抗として付与される。他方、カム面の大径部を過ぎた後は、コイルバネ113の弾性力がトルクとして付与される。このように、カム111の周期に応じた周期的なトルクが付与される。 A
When the
図24(b)に示すように、ロータリケース12の回転に応じてピン122も植付アーム軸25回りに回転し、リング123の内周を押し下げる。これにより、コイルバネ124が伸長し、弾性力が生じる。このように発生したコイルバネ124の弾性力は、連結プレート121及びロータリケース12を介して植付アーム軸25にトルクとして伝達される。ロータリケース12が一回転する際に、ピン122とリング123との位置関係は、コイルバネ124を伸ばす、縮める、伸ばす、縮める、の二周期で変化する。つまり、植付アーム軸25に生じるトルク変動と同周期の平準化トルクを付与することが可能である。 As shown in FIG. 24 (a), the two
As shown in FIG. 24B, the
若しくは、リング123を三角形状に形成し、ピン122間を結ぶ辺と対向する頂点にコイルバネ124を固定することも可能である。三角形状とすることでコイルバネ124を安定して固定することができる。 As a more preferred embodiment, the
Alternatively, the
図25(b)に示すように、ソレノイド132のプランジャ132aが段差面131aを過ぎると、大径部から小径部に落ちる。これにより、ソレノイド132が回動し、マイクロスイッチ133のスイッチ部に接触し、マイクロスイッチ133からソレノイド132に作動電流が流される。そして、ソレノイド132のプランジャ132aが段差面131aを押圧する。このようにして、タイミングカム131を介して植付横軸20にインパルストルクが付与される。 As shown in FIG. 25A, the
As shown in FIG. 25 (b), when the
以上のように、平準化トルクをインパルストルクとして付与することで、作用時間が短時間になるため、タイミングのズレが生じにくい。また、インパルストルクで回転をアシストするため、回転負荷へのブレーキとならない。さらに、トルク付与にかかる駆動力がロータリケース12の回転駆動力から独立しているため、影響を受けることがない。
なお、植付横軸20ではなく、植付アーム軸25に設ける場合は、タイミングカム131に180°の位相差を有する段差面131aを設けることで、植付アーム軸25に生じるトルク変動の周期に合わせた平準化トルクを付与することが可能である。 The timing by the
As described above, by applying the leveling torque as the impulse torque, the operation time is shortened, so that the timing shift hardly occurs. In addition, since the rotation is assisted by the impulse torque, it does not serve as a brake to the rotational load. Furthermore, since the driving force for applying the torque is independent from the rotational driving force of the
In addition, when providing in the planting arm axis |
上述の実施形態における植付部5への動力伝達経路は、主にギアを用いたものであるが、植付センターケース10から分岐される動力を各植付ユニットに伝達できるものであれば、スプロケット及びチェーンを用いたチェーン駆動式のものでも同様に適用可能である。 The
The power transmission path to the
Claims (9)
- ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、
前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記植付アーム軸に取り付けられることを特徴とする田植機。 A rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism,
A rice transplanter characterized in that a torque leveling mechanism for applying torque that counteracts torque fluctuations caused by the inconstant speed mechanism is provided, and the torque leveling mechanism is attached to the planting arm shaft. - 前記トルク平準化機構は、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチよりも動力伝達経路における下流側に設けられる請求項1に記載の田植機。 The rice transplanter according to claim 1, wherein the torque leveling mechanism is provided on a downstream side of a power transmission path with respect to a unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
- 前記トルク平準化機構は、前記植付アーム軸が設けられる植付ユニット毎に設けられる請求項1又は2に記載の田植機。 The rice transplanter according to claim 1 or 2, wherein the torque leveling mechanism is provided for each planting unit on which the planting arm shaft is provided.
- 前記トルク平準化機構は、クランク機構又はカム機構を含むとともに、当該クランク機構又はカム機構によって周期的に弾性力を発生させる弾性体を備える請求項1から3の何れか一項に記載の田植機。 4. The rice transplanter according to claim 1, wherein the torque leveling mechanism includes a crank mechanism or a cam mechanism, and includes an elastic body that periodically generates an elastic force by the crank mechanism or the cam mechanism. .
- 前記弾性体の弾性力は調節可能であり、かつ、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチの断接に連動する請求項4に記載の田植機。 The rice transplanter according to claim 4, wherein the elastic force of the elastic body is adjustable and interlocks with connection / disconnection of a unit clutch that connects / disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
- 前記弾性体の弾性力は、植付株数に応じて小さく又はゼロに設定される請求項5に記載の田植機。 The rice transplanter according to claim 5, wherein the elastic force of the elastic body is set to be small or zero according to the number of planted strains.
- 前記弾性体の弾性力は、車速または植付アーム軸の回転数に応じて調節される請求項5又は6に記載の田植機。 The rice transplanter according to claim 5 or 6, wherein the elastic force of the elastic body is adjusted according to a vehicle speed or a rotation speed of a planting arm shaft.
- ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、
前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチよりも動力伝達経路における下流側に設けられることを特徴とする田植機。 A rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism,
A torque leveling mechanism that provides torque that counteracts torque fluctuations caused by the inconstant speed mechanism is provided, and the torque leveling mechanism is a unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. A rice transplanter, which is provided downstream of the power transmission path. - ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、
前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、弾性体の弾性力を用いることを特徴とする田植機。 A rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism,
A rice transplanter characterized in that a torque leveling mechanism that provides torque that counteracts torque fluctuations caused by the inconstant speed mechanism is provided, and the torque leveling mechanism uses the elastic force of an elastic body.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157028709A KR101812768B1 (en) | 2013-03-29 | 2014-03-27 | Rice transplater |
CN201480018845.1A CN105072885B (en) | 2013-03-29 | 2014-03-27 | rice transplanter |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-075407 | 2013-03-29 | ||
JP2013-075405 | 2013-03-29 | ||
JP2013-075408 | 2013-03-29 | ||
JP2013075407A JP2014198027A (en) | 2013-03-29 | 2013-03-29 | Rice transplanter |
JP2013075405A JP6041737B2 (en) | 2013-03-29 | 2013-03-29 | Rice transplanter |
JP2013075408A JP6041739B2 (en) | 2013-03-29 | 2013-03-29 | Rice transplanter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157441A1 true WO2014157441A1 (en) | 2014-10-02 |
Family
ID=51624403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058724 WO2014157441A1 (en) | 2013-03-29 | 2014-03-27 | Rice transplanter |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101812768B1 (en) |
CN (1) | CN105072885B (en) |
WO (1) | WO2014157441A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104541706A (en) * | 2015-01-08 | 2015-04-29 | 江西农业大学 | Separate transplanting mechanism of hand type space adjustable rice transplanter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109892082A (en) * | 2019-04-04 | 2019-06-18 | 张振华 | Duplicate rows cripple's seedling rice planting rice transplanter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724972Y2 (en) * | 1988-11-28 | 1995-06-07 | ヤンマー農機株式会社 | Planting unit transmission |
JP2012187044A (en) * | 2011-03-10 | 2012-10-04 | Yanmar Co Ltd | Seedling transplanter |
JP2012196199A (en) * | 2011-03-10 | 2012-10-18 | Yanmar Co Ltd | Seedling transplanter |
JP2012244952A (en) * | 2011-05-30 | 2012-12-13 | Yanmar Co Ltd | Seedling transplanter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833413A (en) * | 1994-07-25 | 1996-02-06 | Yanmar Agricult Equip Co Ltd | Transmission mechanism giving ununiform rotation speed in transplanting part |
JP2842812B2 (en) * | 1995-07-17 | 1999-01-06 | 三菱農機株式会社 | Counter gear |
JPH10248330A (en) * | 1997-03-12 | 1998-09-22 | Iseki & Co Ltd | Walking-type rice transplanter |
JP4095885B2 (en) * | 2002-12-02 | 2008-06-04 | 三菱農機株式会社 | Transplanter |
JP4991171B2 (en) * | 2006-03-20 | 2012-08-01 | ヤンマー株式会社 | Rice transplanter |
JP5650024B2 (en) * | 2011-03-18 | 2015-01-07 | ヤンマー株式会社 | Seedling transplanter |
-
2014
- 2014-03-27 WO PCT/JP2014/058724 patent/WO2014157441A1/en active Application Filing
- 2014-03-27 CN CN201480018845.1A patent/CN105072885B/en not_active Expired - Fee Related
- 2014-03-27 KR KR1020157028709A patent/KR101812768B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724972Y2 (en) * | 1988-11-28 | 1995-06-07 | ヤンマー農機株式会社 | Planting unit transmission |
JP2012187044A (en) * | 2011-03-10 | 2012-10-04 | Yanmar Co Ltd | Seedling transplanter |
JP2012196199A (en) * | 2011-03-10 | 2012-10-18 | Yanmar Co Ltd | Seedling transplanter |
JP2012244952A (en) * | 2011-05-30 | 2012-12-13 | Yanmar Co Ltd | Seedling transplanter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104541706A (en) * | 2015-01-08 | 2015-04-29 | 江西农业大学 | Separate transplanting mechanism of hand type space adjustable rice transplanter |
CN104541706B (en) * | 2015-01-08 | 2016-08-17 | 江西农业大学 | The transplanting mechanism of hand-held line-spacing is adjustable rice transplanter |
Also Published As
Publication number | Publication date |
---|---|
KR20150127706A (en) | 2015-11-17 |
CN105072885B (en) | 2017-09-29 |
CN105072885A (en) | 2015-11-18 |
KR101812768B1 (en) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105579726B (en) | Assembly with friction device | |
JP5814084B2 (en) | Seedling transplanter | |
JP6250869B2 (en) | Planting mechanism of new rice transplanter with wide-narrow planting interval | |
WO2020117826A1 (en) | A multi-input, multi-output actuator and assemblies using same | |
WO2014157441A1 (en) | Rice transplanter | |
JP5628638B2 (en) | Rice transplanter | |
CN104904394B (en) | Telescopic arm type seedling planting mechanism | |
CN100409736C (en) | Differential driving sprit transplanting mechanism of step rice transplanter | |
JP2009072112A (en) | Transplanter | |
JP6041737B2 (en) | Rice transplanter | |
JP6041739B2 (en) | Rice transplanter | |
CN105746059A (en) | Concave tooth-incomplete eccentric circle-non-circular gear planetary system vegetable seedling taking mechanism | |
CN105638055A (en) | Combined incompletely eccentrically circular and non-circular gear planetary train vegetable seedling pick-up mechanism | |
JP2014198027A (en) | Rice transplanter | |
JP5650024B2 (en) | Seedling transplanter | |
JP6041738B2 (en) | Rice transplanter | |
JP6124741B2 (en) | Rice transplanter | |
WO2015033945A1 (en) | Rice planting machine | |
JP6002605B2 (en) | Continuously variable transmission | |
EP3090194B1 (en) | Variable stiffness actuator | |
CN105451538A (en) | Rice transplanter | |
JP6232233B2 (en) | Rice transplanter | |
CN105090444A (en) | Continuously variable transmission | |
JP2017042121A (en) | Planting implement | |
JP6320234B2 (en) | Rice transplanter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480018845.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14773457 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157028709 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14773457 Country of ref document: EP Kind code of ref document: A1 |