WO2014157441A1 - Rice transplanter - Google Patents

Rice transplanter Download PDF

Info

Publication number
WO2014157441A1
WO2014157441A1 PCT/JP2014/058724 JP2014058724W WO2014157441A1 WO 2014157441 A1 WO2014157441 A1 WO 2014157441A1 JP 2014058724 W JP2014058724 W JP 2014058724W WO 2014157441 A1 WO2014157441 A1 WO 2014157441A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
planting
arm shaft
planting arm
leveling mechanism
Prior art date
Application number
PCT/JP2014/058724
Other languages
French (fr)
Japanese (ja)
Inventor
竹山 智洋
土井 邦夫
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013075407A external-priority patent/JP2014198027A/en
Priority claimed from JP2013075405A external-priority patent/JP6041737B2/en
Priority claimed from JP2013075408A external-priority patent/JP6041739B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020157028709A priority Critical patent/KR101812768B1/en
Priority to CN201480018845.1A priority patent/CN105072885B/en
Publication of WO2014157441A1 publication Critical patent/WO2014157441A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C19/00Arrangements for driving working parts of fertilisers or seeders
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/003Transplanting machines for aquatic plants; for planting underwater, e.g. rice

Definitions

  • the present invention relates to a rice transplanter that transmits power to a planting arm through an inconstant speed mechanism.
  • a non-constant speed mechanism is provided for sparse planting so that the planting claws escape and move more quickly from the field with reference to the dense planting state, and one of the rotary planting arm shafts that support the planting claws.
  • Japanese Patent Application Laid-Open No. 07-163216 discloses a technique for providing a non-uniform speed transmission mechanism between a planting mission case and a planting arm shaft, and changing the angular velocity during one rotation to make the speed as follows. Is disclosed. That is, when a seedling is taken, a fast section is provided immediately after planting, and a slow section is provided before seedling and before planting, thereby realizing a good seedling harvesting operation and planting operation.
  • the inconstant speed transmission mechanism accelerates and decelerates the angular velocity during one rotation of the rotating shaft, torque fluctuation (load fluctuation) applied to the rotating shaft increases.
  • torque fluctuation load fluctuation
  • Repeated twisting and untwisting of the rotating shaft causes backlash of gears constituting the driving system or backlash due to gaps generated between parts during manufacturing of the driving system and drive system rotation unevenness due to driving system twisting.
  • the acceleration / deceleration phase shifts, leading to poor planting. Therefore, the present invention provides a torque that cancels the torque fluctuation generated in the planting arm shaft, leveles the torque fluctuation, and improves the phase shift, thereby optimizing the locus of the planting claw and preventing poor planting.
  • a rice transplanter is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. While providing the torque leveling mechanism which provides a torque, the said torque leveling mechanism is attached to the said planting arm axis
  • the torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. Furthermore, the torque leveling mechanism is preferably provided for each planting unit provided with the planting arm shaft.
  • the torque leveling mechanism includes a crank mechanism or a cam mechanism, and includes an elastic body that periodically generates an elastic force by the crank mechanism or the cam mechanism. It is preferable that the elastic force of the elastic body is adjustable and interlocks with connection / disconnection of a unit clutch that connects / disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
  • the elastic force of the elastic body is set to be small or zero depending on the number of planted strains.
  • the elastic force of the elastic body is adjusted according to the vehicle speed or the rotation speed of the planting arm shaft.
  • a rice transplanter is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism.
  • a torque leveling mechanism for applying torque is provided, and the torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. .
  • a rice transplanter is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. While providing the torque leveling mechanism which provides a torque, the torque leveling mechanism uses the elastic force of an elastic body.
  • the torque leveling mechanism is provided on a connecting plate that connects between the rotor arm shafts provided on the rotary case, and is provided at a symmetrical position across the planting arm shaft.
  • the elastic body to be attached is attached to a portion facing a side having a length between the pins in the ring as one side.
  • a torque leveling mechanism that applies an impulse torque in a direction that cancels the maximum torque at the timing when the maximum torque is generated in the torque fluctuation generated by the non-uniform speed mechanism.
  • the torque leveling mechanism includes a cam that sets a timing at which the maximum torque is generated, and a solenoid that operates at the timing by the cam and generates the impulse torque.
  • the torque fluctuation generated by the inconstant speed mechanism is leveled and the phase shift is improved, so that the locus of the planting claw can be optimized and planting failure can be prevented.
  • the rice transplanter 1 will be described with reference to the accompanying drawings.
  • the rice transplanter 1 performs the planting work by the planting unit 5 while traveling by driving the front wheels 3 and the rear wheels 4 with the power of the engine 2.
  • the power from the engine 2 is transmitted to the front wheel 3 and the rear wheel 4 through the transmission case 6, and to the planting unit 5 through the transmission case 6 and the stock change device 9, respectively.
  • the planting unit 5 includes a planting center case 10, a planting bevel case 11, a rotary case 12, a planting arm 13, a seedling table 14, and a plurality of floats 15.
  • the planting arm shaft 25 extends into the rotary case 12 provided on the left and right of the planting bevel case 11 and is fixed to the rotary case 12.
  • the sun gear 30 fixed to the planting bevel case 11 is transmitted to the planetary gear 32 via the intermediate gear 31.
  • it is transmitted to the planting arm 13 fixed to the planetary gear 32 via the rotor arm shaft 33, and the planting claw 34 is rotated together with the rotary case 12, so that the seedling can be taken from the seedling stage 14 and planted. .
  • Inconstant speed mechanism An inconstant speed mechanism included in the inter-plant change device 9 for transmitting power to the planting unit 5 and an inconstant speed mechanism including the inconstant speed bevel gears 23a and 23b in the planting bevel case 11 of the planting unit 5.
  • the planting arm shaft 25 rotates at an unequal speed. That is, when the planting claw 34 takes the seedling from the seedling stage 14 and when the planting claw 34 is quickly pulled out from the field after planting the seedling and the seedling remaining on the planting claw 34 is shaken off, the rotary case 12 rotates. The rotational speed of the rotary case 12 is decreased before the seedling is planted in the field and when the planting claw 34 is inserted into the seedling stage 14 while the driving speed is increased.
  • the planting claw 34 scrapes off the seedling from the seedling mounting table 14 in a slanted posture in a side view, and then the planting claw is in a posture close to the vertical and heads to the field, and after having descended, it is necessary to turn upward. Therefore, the sun gear 30, the intermediate gear 31, and the planetary gear 32 in the rotary case 12 are non-circular and eccentric.
  • the rotor arm shaft 33 supporting the planting arm 13 is also rotated at an inconstant speed with respect to the rotary case 12 by an inconstant speed mechanism.
  • a torque leveling mechanism 40 is provided in the planting bevel case 11. That is, the torque leveling mechanism 40 is provided in the planting bevel case 11 provided in each planting unit.
  • the torque leveling mechanism 40 is connected to the gear 41 fixed to the planting arm shaft 25, the double speed gear 42 meshing with the gear 41, the crank arm 43 provided on the root circle of the double speed gear 42, and the crank arm 43.
  • the coil spring 44 is provided.
  • the number of teeth of the double speed gear 42 is half that of the gear 41.
  • the double speed gear 42 is supported by the driven shaft 45 so as to be relatively rotatable.
  • a boss 46a for fixing one end of the coil spring 44 is provided on the crank arm 43.
  • One end of the coil spring 44 is fixed to a boss 46 a provided on the crank arm, and the other end is fixed to a boss 46 b provided on the planting bevel case 11. Further, the position of the boss 46b is determined so that a force always acts on the coil spring 44 in a contracting direction.
  • the gear 41 rotates, and the double speed gear 42 that meshes with the gear 41 rotates around the driven shaft 45.
  • the crank arm 43 rotates at a position eccentric from the rotation center of the double speed gear 42, and the length of the coil spring 44 changes to generate an elastic force in the coil spring 44.
  • torque is generated in conjunction with the rotation of the double speed gear 42.
  • the elastic force generated in the coil spring 44 is transmitted from the double speed gear 42 to the gear 41 via the crank arm 43 and further applied as torque to the planting arm shaft 25.
  • the power transmission from the planting arm shaft 25 to the crank arm 43 is not limited as long as the rotational speed on the crank arm 43 side is twice the rotational speed of the planting arm shaft 25.
  • a sprocket and a chain may be used.
  • the mechanism for generating torque in conjunction with the rotation of the double speed gear 42 is not limited to the crank spring mechanism by the crank arm 43 and the coil spring 44, but a cam that rotates together with the double speed gear 42 and a plate that imparts elastic force to the cam.
  • a cam / spring mechanism constituted by a spring can also be employed.
  • the torque applied by the torque leveling mechanism 40 will be described in detail with reference to FIGS.
  • the planting arm shaft 25 rotates counterclockwise.
  • the gear 41 rotates counterclockwise and the double speed gear 42 rotates clockwise.
  • the elastic force generated in the crank arm 43 as the coil spring 44 expands and contracts is transmitted to the planting arm shaft 25 as a periodic torque.
  • the boss 46b, which is the fixed end of the coil spring 44, and the position and angle of the crank arm 43, that is, the position and angle of the crank arm 43 with respect to the driven shaft 45 vary so as to draw a curve close to a sine curve. Torque is generated.
  • the torque cycle generated by the torque leveling mechanism 40 is matched with the cycle of torque variation generated in the planting arm shaft 25 by the non-uniform speed mechanism to cancel the torque variation generated by the non-uniform speed mechanism.
  • torque is generated by the torque leveling mechanism 40 (so as to have an opposite phase in the drawing).
  • the double speed gear 42 to which the crank arm 43 is fixed rotates at twice the number of rotations of the planting arm shaft 25, so that the torque leveling mechanism 40 is rotated twice while the planting arm shaft 25 rotates once. A period of torque is generated.
  • the torque leveling mechanism 40 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can. In this way, by adjusting the cycle of the torque leveling mechanism 40 to the cycle of torque fluctuation by the inconstant speed mechanism, torque is synthesized to suppress torque fluctuation caused by the inconstant speed mechanism.
  • the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism.
  • the torque fluctuation is completely reversed. It may not be the phase leveling torque.
  • it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation.
  • it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crank arm 43 and the coil spring 44) provided in the double speed gear 42.
  • the reduction ratio of the double speed gear 42 is not limited to double, and may be triple, quadruple, or the like. For example, it can be set according to the timing of the torque generating mechanism provided in the double speed gear 42 as described above.
  • the torque leveling mechanism 40 applies a smooth torque having the same cycle (two cycles for one rotation of the rotary case 12) as the cycle of the torque variation generated by the inconstant speed mechanism, thereby leveling the torque variation.
  • the phase shift of the planting arm shaft 25 can be improved.
  • the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
  • the double speed gear 42 is supported on the driven shaft 45 so as to be relatively rotatable. Therefore, torque fluctuations generated by the torque leveling mechanism 40 can be directly applied to the planting arm shaft 25 without being transmitted to the driven shaft 45.
  • the torque leveling mechanism 40 is directly attached to the planting arm shaft 25 through a gear or chain mechanism in the planting bevel case 11, the torque leveling mechanism 40 is positioned close to the rotary case 12 that is the source of torque fluctuation. Can be put. As a result, torque fluctuations in opposite phases can be effectively applied, and the effect of leveling torque fluctuations can be increased. Further, since the torque leveling mechanism 40 is disposed at a position separated from the planting arm shaft 25 by one gear (driven shaft 45) via a gear or a chain, a space in the planting bevel case 11 can be secured and mounted without difficulty. can do.
  • the torque leveling mechanism 40 Since the torque leveling mechanism 40 is provided on the downstream side in the power transmission path of the unit clutch 24, the torque leveling mechanism 40 operates according to the connection of the unit clutch 24. That is, since the leveling torque does not act when the unit clutch 24 is disconnected, the leveling torque according to the number of operating stripes can be applied.
  • the torque leveling mechanism 40 may be provided downstream of the connecting / disconnecting operation of the unit clutch 24, that is, in a range where power is not transmitted when the unit clutch 24 is in a disconnected state in the power transmission path. For example, when provided at the position shown in FIG. 7, the gear 41 of the torque leveling mechanism 40 is fixed to the cam 24 a of the unit clutch 24. Thus, by placing the torque leveling mechanism 40 downstream of the unit clutch 24, it is possible to link the connection / disconnection operation of the unit clutch 24 with the presence / absence of the operation of the torque leveling mechanism 40.
  • the torque leveling mechanism 50 shown in FIGS. 8 and 9 is provided in the planting bevel case 11. That is, the torque leveling mechanism 50 is provided in the planting bevel case 11 provided in each planting unit.
  • the torque leveling mechanism 50 includes a bevel gear 51 that meshes with a bevel gear 23 b that transmits power to the planting arm shaft 25, a crank shaft 52 to which the bevel gear 51 is fixed, and a coil spring 53 that is connected to the crank shaft 52.
  • the number of teeth of the bevel gear 51 is the same as the number of teeth of the bevel gear 23a and half the number of teeth of the bevel gear 23b. That is, the crankshaft 52 is rotationally driven at a rotational speed twice that of the planting arm shaft 25.
  • a boss 54a for fixing one end of the coil spring 53 is provided on the crankshaft 52.
  • One end of the coil spring 53 is fixed to a boss 54 a provided on the crankshaft 52, and the other end is fixed to a boss 54 b attached to the rear of the planting bevel case 11. Further, the position of the boss 54b is determined so that a force acts on the coil spring 53 in a direction in which the coil spring 53 always contracts.
  • the rotation is transmitted from the bevel gear 23b to the bevel gear 51 as the planting arm shaft 25 rotates, and the crankshaft 52 rotates at a position eccentric from the rotation center as the bevel gear 51 rotates.
  • an elastic force is generated in the coil spring 53 by changing the length of the coil spring 53.
  • torque is generated in conjunction with the rotation of the crankshaft 52.
  • the elastic force generated in the coil spring 53 is transmitted to the bevel gear 51 via the crankshaft 52 and further applied to the planting arm shaft 25 as torque.
  • the power transmission from the planting arm shaft 25 to the crankshaft 52 is not limited as long as the rotational speed on the crankshaft 52 side is twice the rotational speed of the planting arm shaft 25, and instead of the bevel gears 23b and 51. It is also possible to use a sprocket chain. Further, the mechanism for generating torque is not limited to the crank spring mechanism including the crankshaft 52 and the coil spring 53, and is configured by a cam that is rotationally driven by the rotation of the bevel gear 51 and a plate spring or a coil spring that imparts an elastic force to the cam. A cam / spring mechanism can also be used.
  • Rotational motion of the crankshaft 52 causes the elastic force generated with the expansion and contraction of the coil spring 53 to be transmitted to the planting arm shaft 25 through the bevel gears 51 and 23b as a periodic torque.
  • torque that varies so as to draw a curve close to a sine curve is generated according to the position and angle of the boss 54b, which is the fixed end of the coil spring 53, and the crankshaft 52, that is, the rotational phase of the crankshaft 52.
  • the torque leveling mechanism 50 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can. In this way, by matching the cycle of the torque leveling mechanism 50 with the cycle of torque fluctuation by the inconstant speed mechanism, torque is synthesized to suppress torque fluctuation caused by the inconstant speed mechanism.
  • the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism.
  • the torque fluctuation is completely reversed. It may not be the phase leveling torque.
  • it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crankshaft 52 and the coil spring 53) provided in the bevel gear 51.
  • the torque leveling mechanism 50 equalizes torque fluctuations by applying a smooth torque having the same period (two periods for one rotation of the rotary case 12) as the period of torque fluctuations generated by the inconstant speed mechanism.
  • the phase shift of the planting arm shaft 25 can be improved.
  • the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
  • the torque leveling mechanism 50 is directly attached to the planting arm shaft 25 through a gear or chain mechanism in the planting bevel case 11, the torque leveling mechanism 50 is located at a position close to the rotary case 12 that is the source of torque fluctuation. Can be put. As a result, torque fluctuations in opposite phases can be effectively applied, and the effect of leveling torque fluctuations can be increased.
  • the torque leveling mechanism 50 is provided for each planting unit in which the planting arm shaft 25 is provided. In other words, since the leveling torque cancels out in each unit with the torque fluctuation generated by the acceleration / deceleration of the rotary case 12, the torque fluctuation does not go back to the upstream side of the transmission system. it can.
  • the torque leveling mechanism 50 may be provided with an adjustment mechanism 60 that changes the elastic force of the coil spring 53.
  • the adjustment mechanism 60 adjusts the elastic force by changing the length of the coil spring 53.
  • the adjustment mechanism 60 includes a link 61 connected to a boss 54 b provided at one end of the coil spring 53, and a link bar 62 that operates the link 61.
  • the link bar 62 By operating the link bar 62, the posture of the link 61 is changed and the position of one end of the coil spring 53 is changed.
  • the boss 54b is inserted into an appropriate elongated hole, and the length of the coil spring 53 is changed by moving along the elongated hole.
  • the magnitude of the leveling torque can be set according to planting conditions (for example, the number of planted stocks (set value between stocks), vehicle speed (accelerator opening), planting. It can be adjusted according to the rotation speed of the arm shaft 25 (planting rotation speed) or the torque of the planting arm shaft 25 (torque fluctuation amount).
  • the torque load according to the number of actuating lines can be added by interlocking the adjusting mechanism 60 with the unit clutch 24.
  • the adjustment mechanism 60 is not limited to the above-described configuration, and may be any other link mechanism or wire as long as the elastic force generated in the coil spring 53 can be changed by changing the length of the coil spring 53. The one using may be used.
  • the torque leveling mechanism 70 shown in FIGS. 14 and 15 is provided in the planting bevel case 11. That is, the torque leveling mechanism 70 is provided in the planting bevel case 11 provided in each planting unit.
  • the torque leveling mechanism 70 meshes with the inconstant speed bevel gear 23b, and the inconstant speed bevel gear 51 and the inconstant speed bevel gear 51 having the same number of teeth as the inconstant speed bevel gear 23a are fixed.
  • a crankshaft 52 provided on the same axis, a coil spring 53 connected to the crankshaft 52, a sliding member 55 connected to the other end of the coil spring 53, fixed to the other end of the sliding member 55, and adjusting the tension.
  • a wire 56 that moves the sliding member 55, a case 57 that houses the sliding member 55, and a stopper 58 a that is provided on the sliding member 55 and restricts the movable range of the sliding member 55 within the case 57. It has.
  • the inconstant speed bevel gear 51 rotates with the rotation of the planting arm shaft 25, the crankshaft 52 rotates eccentrically from the center of rotation, and the length of the coil spring 53 changes. Elastic force is generated in the coil spring 53. The elastic force generated in the coil spring 53 is transmitted from the inconstant speed bevel gear 51 to the inconstant speed bevel gear 23b via the crankshaft 52, and is further applied as torque to the planting arm shaft 25.
  • a boss 54 a that fixes one end of the coil spring 53 is provided on the crankshaft 52, and a boss 54 b that fixes the other end of the coil spring 53 is provided on the sliding member 55.
  • the boss 54b is disposed above the rotation center O1 of the crankshaft 52.
  • the sliding member 55 is accommodated in a case 57 fixed to the planting bevel case 11, and slides in a direction toward and away from the boss 54a (vertical direction in the drawing). Further, a movable range in the sliding direction is limited by a stopper 58a provided in the middle of the sliding member 55.
  • the torque leveling mechanism 70 is provided with a mechanism for adjusting the elastic force of the coil spring 53 that is an elastic body.
  • the wire 56 can be interlocked with the connection / disconnection of the unit clutch 24. That is, by linking the movement of the actuator 71 that performs the connecting / disconnecting operation of the unit clutch 24 and the movement of the wire 56, if the unit clutch 24 is in the disconnected state, the torque load by the torque leveling mechanism 40 is made zero or substantially zero, If it is in a connected state, a torque load according to the planting conditions can be applied. In this way, by leveling the leveling torque applied by the torque leveling mechanism 70 with the unit clutch 24, the leveling torque according to the number of operating stripes can be applied.
  • the actuator 72 is, for example, a motor or a solenoid that pulls or loosens the wire 56, and the leveling torque by the torque leveling mechanism 70 can be adjusted by sending an electrical signal to the actuator 72.
  • the number of planting stocks (set value between stocks), the vehicle speed (accelerator opening), the rotational speed of the planting arm shaft 25 (planting rotational frequency), or the torque (torque fluctuation amount) of the planting arm shaft 25 is detected.
  • the spring force can be optimally adjusted by transmitting an electrical signal corresponding to these detected values to the actuator 72.
  • the generated torque fluctuation becomes large. Therefore, a large torque is applied by pulling the wire 56, and conversely, if the speed becomes low, the wire 56 is loosened. In this way, a small torque is applied. Thereby, rotation fluctuation can be effectively suppressed in the whole rotation speed.
  • the non-uniform motion increases, so the torque load is increased, and in the case of dense plantings with a large number of planted stocks, constant speed motion or slight acceleration / deceleration is involved. From this, the torque load is reduced or made zero.
  • the elastic force generated in the crankshaft 52 as the coil spring 53 expands and contracts is transmitted to the planting arm shaft 25 as a periodic torque.
  • the torque that varies so as to draw a curve close to a sine curve according to the phase of the tip of the boss 54b supporting the coil spring 53 and the crankshaft 52, that is, the position and angle of the crankshaft 52 with respect to the rotation center. appear.
  • the direction of the torque fluctuation generated by the inconstant speed mechanism is canceled by matching the period of torque generated by the torque leveling mechanism 70 with the period of torque fluctuation generated in the planting arm shaft 25 by the inconstant speed mechanism.
  • torque is generated by the torque leveling mechanism 70 (so as to have an opposite phase in the drawing).
  • the torque leveling mechanism 70 since the crankshaft 52 rotates at twice the number of rotations of the planting arm shaft 25, the torque leveling mechanism 70 generates torque for two cycles while the planting arm shaft 25 rotates once.
  • the torque leveling mechanism 70 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can.
  • the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism.
  • the torque fluctuation is completely reversed. It may not be the phase leveling torque.
  • it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crankshaft 52 and the coil spring 53).
  • the torque leveling mechanism 70 equalizes torque fluctuations by applying a smooth torque having the same period (two periods for one rotation of the rotary case 12) as the period of torque fluctuations generated by the inconstant speed mechanism.
  • the phase shift of the planting arm shaft 25 can be improved.
  • the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
  • FIG. 18 and 19 show another embodiment of the torque leveling mechanism 70.
  • FIG. 18 In the embodiment shown in FIG. 18, one end of the coil spring 53 is deformed into a long hole and fixed to the sliding member 55 fixed to the planting bevel case 11.
  • the boss 54b is arranged so that it can freely move in the elongated hole of the coil spring 53.
  • the relative positional relationship between the sliding member 55 and the coil spring 53 is changed by the operation of the wire 56.
  • FIG. 18A when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero.
  • FIG. 18A when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero.
  • FIG. 18A when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero.
  • a ball 80 is provided on the sliding member 55 instead of the boss 54 b, and the diameter of the circle of one end of the coil spring 53 is made smaller than that of the ball 80, so that the ball 80 is positioned inside the coil spring 53.
  • the relative positional relationship between the sliding member 55 and the coil spring 53 is changed by the operation of the wire 56.
  • FIG. 19A when the ball 80 does not hit the end of the coil spring 53, the coil spring 53 does not expand and contract, and the elastic force becomes zero.
  • FIG. 19B when the ball 80 hits the end of the coil spring 53, a tensile force is generated in the coil spring 53 so that the coil 80 can expand and contract. In this way, the presence or absence of elastic force can be strictly adjusted.
  • a torque leveling mechanism 90 shown in FIG. 20 applies a leveling torque to the planting arm shaft 25 using a magnet.
  • the cam 91 is fixed to the outer peripheral surface of the planting arm shaft 25.
  • Four magnets 92a are arranged at equal intervals in the circumferential direction of the cam 91, and are attached so that the magnetic poles on the outer peripheral side are reversed between adjacent magnets 92a.
  • the magnet 92 b is fixed to the outside of the cam 91.
  • the magnetic pole on the side of the planting arm shaft 25 of the magnet 92b is the S pole
  • a torque in the direction opposite to the rotation direction of the planting arm shaft 25 is generated, and when the magnet 92a leaves.
  • torque in the same direction as the rotation direction of the planting arm shaft 25 is generated, and when away from the magnet 92a, torque in the direction opposite to the rotation direction of the planting arm shaft 25 is generated.
  • the torque fluctuation generated by the torque leveling mechanism 90 using a magnet is a periodic torque fluctuation in which the planting arm shaft 25 has two peaks during one rotation.
  • the magnet 92a is fixed to the outer peripheral surface of the cam 91, and four magnets 92b are arranged at equal intervals in the circumferential direction on the outer side of the cam 91, and adjacent magnets. It can also take the form of attaching so that the magnetic pole which comes to the inner peripheral side may be reversed between 92b.
  • the planting arm shaft 25 similarly has a periodic torque fluctuation having two peaks during one rotation.
  • two magnets 92 a may be arranged in the circumferential direction of the cam 91, and two magnets 92 b may be arranged on the outer peripheral side of the cam 91.
  • the torque leveling mechanism may be provided on the planting horizontal shaft 20.
  • the rotational speed of the planting horizontal shaft 20 is twice the rotational speed of the planting arm shaft 25.
  • the crank shaft 52 is connected to the end of the planting horizontal shaft 20, and the torque leveling mechanism 50 is arranged on the planting horizontal shaft 20 by connecting the coil spring 53 to the crank shaft 52. Yes.
  • the torque leveling mechanism 100 shown in FIG. 22 has a cam 101 fixed to the middle portion of the planting horizontal shaft 20, a roller 102 that rotates in contact with the cam surface 101 a of the cam 101, and biases the roller 102 toward the cam 101.
  • the cam surface 101a of the cam 101 is formed as an inclined surface with one side being low and the other side being high.
  • the base end of the arm 104 is slidably accommodated in the case, and a roller 102 is provided at the tip.
  • a coil spring 103 is disposed between the arm 104 and the roller 102.
  • the cam 101 rotates with the rotation of the planting horizontal shaft 20, and the position of the roller 102 rotating along the cam surface 101a changes, whereby the length of the coil spring 103 expands and contracts. During the expansion and contraction, periodic torque fluctuation is applied to the planting horizontal shaft 20 via the cam 101.
  • a torque leveling mechanism 110 shown in FIG. 23 includes a cam 111 fixed to the middle portion of the planting horizontal shaft 20, a pressing member 112 that contacts the cam 111, and a coil spring 113 that biases the pressing member 112 toward the cam 111. It comprises. One large diameter portion is formed on the cam surface of the cam 111. The proximal end of the coil spring 113 is fixed in the case, and the distal end is fixed to the pressing member 112.
  • the cam 111 rotates with the rotation of the planting horizontal shaft 20 and the pressing member 112 is pushed up by the large diameter portion of the cam surface, the elastic force of the coil spring 113 is applied as a torque resistance.
  • the elastic force of the coil spring 113 is applied as torque.
  • a periodic torque according to the period of the cam 111 is applied.
  • the torque leveling mechanism 120 shown in FIG. 24 is provided on a connecting plate 121 that connects two rotor arm shafts 33 provided on the rotary case 12.
  • the two pins 122 and 122 that are provided to protrude outward from the connecting plate 121 are symmetrical with respect to the planting arm shaft 25 that serves as the rotation center of the rotary case 12.
  • the ring 123 that covers the two pins 122 and 122 from the outer peripheral side is formed in a square shape having the length between the pins 122 as one side of the inner periphery.
  • a coil spring 124 is fixed to the center of the side of the ring 123 opposite to the side in contact with the pin 122.
  • the pin 122 also rotates around the planting arm shaft 25 in accordance with the rotation of the rotary case 12, and pushes down the inner periphery of the ring 123.
  • the coil spring 124 is extended, and an elastic force is generated.
  • the elastic force of the coil spring 124 thus generated is transmitted as torque to the planting arm shaft 25 via the connecting plate 121 and the rotary case 12.
  • the positional relationship between the pin 122 and the ring 123 changes in two cycles of extending, contracting, extending, and contracting the coil spring 124. That is, it is possible to apply a leveling torque having the same period as the torque fluctuation generated in the planting arm shaft 25.
  • the pin 122 has a flange shape, thereby increasing the contact area with the ring 123, or attaching a roller to the pin 122 to reduce the resistance with the inner peripheral surface of the ring 123.
  • the ring 123 may be formed in a triangular shape, and the coil spring 124 may be fixed to the apex facing the side connecting the pins 122. With the triangular shape, the coil spring 124 can be stably fixed.
  • the torque leveling mechanism 130 is connected to the timing cam 131 fixed to the planting horizontal shaft 20, the solenoid 132 that operates at the timing set by the timing cam 131, and the solenoid 132.
  • a micro switch 133 is provided that operates the solenoid 132 by passing an operating current.
  • the timing cam 131 has a step surface 131a extending in the radial direction, and a large diameter portion and a small diameter portion are formed adjacent to each other in the circumferential direction across the step surface 131a.
  • the solenoid 132 is disposed above the micro switch 133, and a base end portion is rotatably supported.
  • the switch portion of the micro switch 133 is disposed at the top, that is, below the solenoid 132.
  • Plunger 132 a of solenoid 132 is arranged along the cam surface of timing cam 131. As shown in FIG. 25 (b), when the plunger 132a of the solenoid 132 passes the step surface 131a, it falls from the large diameter portion to the small diameter portion.
  • the solenoid 132 rotates and contacts the switch portion of the micro switch 133, and an operating current flows from the micro switch 133 to the solenoid 132. Then, the plunger 132a of the solenoid 132 presses the step surface 131a. In this way, impulse torque is applied to the planting horizontal shaft 20 via the timing cam 131.
  • the timing by the timing cam 131 is set to the timing at which the maximum torque is generated in the torque fluctuation caused by the inconstant speed mechanism. Thereby, the impulse torque is generated so as to cancel the maximum torque. As described above, by applying the leveling torque as the impulse torque, the operation time is shortened, so that the timing shift hardly occurs. In addition, since the rotation is assisted by the impulse torque, it does not serve as a brake to the rotational load. Furthermore, since the driving force for applying the torque is independent from the rotational driving force of the rotary case 12, it is not affected.
  • the torque leveling mechanisms 40, 50, 70, 90, 100, 110, and 130 in the above-described embodiment are ranges from the downstream side of the inconstant speed mechanism included in the inter-stock change device 9 to the planting arm shaft 25. If so, the same applies.
  • the power transmission path to the planting unit 5 in the above-described embodiment is mainly a gear, but if the power branched from the planting center case 10 can be transmitted to each planting unit, A chain drive type using a sprocket and a chain is also applicable.
  • the present invention is applicable to a rice transplanter that transmits power to a planting arm through an inconstant speed mechanism.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Transplanting Machines (AREA)
  • Transmission Devices (AREA)

Abstract

Provided is a rice transplanter which equalizes torque variation by applying a torque that cancels out torque variation occurring in a planting arm shaft and ameliorates phase shift, thereby optimizing the trajectory of planting claws to prevent planting errors. This rice transplanter transmits power via a nonuniform speed mechanism to the planting arm shaft that supports a rotary case, wherein a torque equalizing mechanism is provided which applies a torque to cancel out the torque variation occurring due to the nonuniform speed mechanism, and said torque equalizing mechanism is attached to the planting arm shaft.

Description

田植機Rice transplanter
 本発明は、不等速機構を介して植付アームに動力を伝達する田植機に関する。 The present invention relates to a rice transplanter that transmits power to a planting arm through an inconstant speed mechanism.
 従来の田植機では、密植を基準に、下死点付近で植付爪先端の軌跡がほぼ鉛直になるように設定していると、疎植状態では、植付爪が圃場から逃げる速度が遅くなるため、植付けられた苗を前に押し倒す現象が生じやすい。逆に疎植を基準に、下死点付近で植付爪先端の軌跡がほぼ鉛直になるように設定していると、密植状態では、植付爪が圃場に入り込んだまま後ずさりするような現象が生じ、苗がばらけたり泥土がえぐられることで浮き苗が発生しやすい。
 そのため、密植状態を基準にして、植付爪を圃場からより迅速に逃げ移動させるべく疎植の際に、不等速機構を設けて、植付爪を支持するロータリ式植付アーム軸の一回転中の角速度(回転速度)を変化させる方法がある。
With traditional rice transplanters, if the planting claw tip trajectory is set to be nearly vertical near the bottom dead center based on dense planting, the speed at which the planting claw escapes from the field is slow in the sparse planting state. Therefore, a phenomenon that the planted seedling is pushed forward tends to occur. On the contrary, based on sparse planting, if the locus of the tip of the planting claw is set to be almost vertical near the bottom dead center, the planting claw will be pushed back into the field in the dense planting state. Floating seedlings are likely to occur due to the spread of seedlings and mud.
For this reason, a non-constant speed mechanism is provided for sparse planting so that the planting claws escape and move more quickly from the field with reference to the dense planting state, and one of the rotary planting arm shafts that support the planting claws. There is a method of changing the angular velocity (rotational speed) during rotation.
 特開平07-163216号公報には、植付ミッションケースから植付アーム軸の間に不等速伝動機構を設けて、一回転中の角速度を変化させることで、次のように緩急をつける技術が開示される。すなわち、苗取りをする時と、植付直後に速い区間を設けるとともに、苗取り前と植付前に遅い区間を設けることによって良好な苗取り動作及び植付動作を実現している。 Japanese Patent Application Laid-Open No. 07-163216 discloses a technique for providing a non-uniform speed transmission mechanism between a planting mission case and a planting arm shaft, and changing the angular velocity during one rotation to make the speed as follows. Is disclosed. That is, when a seedling is taken, a fast section is provided immediately after planting, and a slow section is provided before seedling and before planting, thereby realizing a good seedling harvesting operation and planting operation.
 不等速伝動機構は回転軸の一回転中での角速度を加減速させるものであるため、回転軸にかかるトルク変動(負荷変動)が大きくなる。回転軸がねじれ、ねじれ解除を繰り返すことにより、駆動系を構成するギアのバックラッシュまたは駆動系製造時に部品間に生じた隙間によるガタや駆動系のねじれに起因した駆動系の回転ムラが発生することで、加減速位相のズレがおき、植付不良につながる。
 そこで、本発明は、植付アーム軸に生じるトルク変動を打ち消すトルクを与えて、トルク変動を平準化し、位相のズレを改善することで、植付爪の軌跡を適正化し、植付不良を防ぐ田植機を提供する。
Since the inconstant speed transmission mechanism accelerates and decelerates the angular velocity during one rotation of the rotating shaft, torque fluctuation (load fluctuation) applied to the rotating shaft increases. Repeated twisting and untwisting of the rotating shaft causes backlash of gears constituting the driving system or backlash due to gaps generated between parts during manufacturing of the driving system and drive system rotation unevenness due to driving system twisting. As a result, the acceleration / deceleration phase shifts, leading to poor planting.
Therefore, the present invention provides a torque that cancels the torque fluctuation generated in the planting arm shaft, leveles the torque fluctuation, and improves the phase shift, thereby optimizing the locus of the planting claw and preventing poor planting. Provide rice transplanters.
 本発明の第一態様に係る田植機は、ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記植付アーム軸に取り付けられる。 A rice transplanter according to a first aspect of the present invention is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. While providing the torque leveling mechanism which provides a torque, the said torque leveling mechanism is attached to the said planting arm axis | shaft.
 前記トルク平準化機構は、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチよりも動力伝達経路における下流側に設けられる。
 さらに、前記トルク平準化機構は、前記植付アーム軸が設けられる植付ユニット毎に設けられることが好ましい。
The torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
Furthermore, the torque leveling mechanism is preferably provided for each planting unit provided with the planting arm shaft.
 前記トルク平準化機構は、クランク機構又はカム機構を含むとともに、当該クランク機構又はカム機構によって周期的に弾性力を発生させる弾性体を備える。
 前記弾性体の弾性力は調節可能であり、かつ、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチの断接に連動することが好ましい。
The torque leveling mechanism includes a crank mechanism or a cam mechanism, and includes an elastic body that periodically generates an elastic force by the crank mechanism or the cam mechanism.
It is preferable that the elastic force of the elastic body is adjustable and interlocks with connection / disconnection of a unit clutch that connects / disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
 前記弾性体の弾性力は、植付株数に応じて小さく又はゼロに設定される。 The elastic force of the elastic body is set to be small or zero depending on the number of planted strains.
 前記弾性体の弾性力は、車速または植付アーム軸の回転数に応じて調節される。 The elastic force of the elastic body is adjusted according to the vehicle speed or the rotation speed of the planting arm shaft.
 本発明の第二態様に係る田植機は、ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチよりも動力伝達経路における下流側に設けられる。 A rice transplanter according to a second aspect of the present invention is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. A torque leveling mechanism for applying torque is provided, and the torque leveling mechanism is provided on the downstream side of the power transmission path with respect to the unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. .
 本発明の第三態様に係る田植機は、ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、弾性体の弾性力を用いる。 A rice transplanter according to a third aspect of the present invention is a rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism, and cancels torque fluctuations caused by the inconstant speed mechanism. While providing the torque leveling mechanism which provides a torque, the torque leveling mechanism uses the elastic force of an elastic body.
 前記トルク平準化機構の別の実施形態では、前記ロータリケースに設けられるロータアーム軸間を連結する連結プレートに設けられるとともに、前記植付アーム軸を挟んで対称位置に設けられ、前記連結プレートの外方側に向けて突出する二本のピンと、当該二本のピンを外周側から覆い、かつ、ピン間の長さを一辺とする正方形状又は三角形状のリングとを備え、前記トルクを付与する弾性体は、前記リングにおけるピン間の長さを一辺とする辺と対向する部位に取り付けられる。 In another embodiment of the torque leveling mechanism, the torque leveling mechanism is provided on a connecting plate that connects between the rotor arm shafts provided on the rotary case, and is provided at a symmetrical position across the planting arm shaft. Two pins projecting outward, and a square or triangular ring that covers the two pins from the outer peripheral side and has a length between the pins as one side, and applies the torque The elastic body to be attached is attached to a portion facing a side having a length between the pins in the ring as one side.
 前記トルク平準化機構の他の実施形態では、前記不等速機構によって生じるトルク変動における最大のトルクが発生するタイミングで、当該最大のトルクを打ち消す方向にインパルストルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記最大のトルクが発生するタイミングを設定するカムと、当該カムによるタイミングで作動し前記インパルストルクを発生するソレノイドと、を備える。 In another embodiment of the torque leveling mechanism, a torque leveling mechanism is provided that applies an impulse torque in a direction that cancels the maximum torque at the timing when the maximum torque is generated in the torque fluctuation generated by the non-uniform speed mechanism. In addition, the torque leveling mechanism includes a cam that sets a timing at which the maximum torque is generated, and a solenoid that operates at the timing by the cam and generates the impulse torque.
 本発明によれば、不等速機構によって発生するトルク変動を平準化し、位相のズレを改善することで、植付爪の軌跡を適正化し、植付不良を防ぐことができる。 According to the present invention, the torque fluctuation generated by the inconstant speed mechanism is leveled and the phase shift is improved, so that the locus of the planting claw can be optimized and planting failure can be prevented.
田植機の側面図である。It is a side view of a rice transplanter. 植付駆動部のスケルトン図である。It is a skeleton figure of a planting drive part. トルク平準化機構の側面図である。It is a side view of a torque leveling mechanism. トルク平準化機構によって付与されるトルクの説明図である。It is explanatory drawing of the torque provided by a torque leveling mechanism. トルク平準化機構によって付与されるトルクの説明図である。It is explanatory drawing of the torque provided by a torque leveling mechanism. 不等速機構により駆動される植付アーム軸に生じるトルク変動及びトルク平準化機構によって付与される平準化トルク、並びにこれらの合成トルクを示す図である。It is a figure which shows the torque fluctuation which arises in the planting arm axis | shaft driven by an inconstant speed mechanism, the leveling torque provided by a torque leveling mechanism, and these synthetic torques. トルク平準化機構を別の位置に設けた実施形態を示すスケルトン図である。It is a skeleton figure which shows embodiment which provided the torque leveling mechanism in another position. 植付駆動部のスケルトン図である。It is a skeleton figure of a planting drive part. トルク平準化機構の側面図である。It is a side view of a torque leveling mechanism. トルク平準化機構によって付与されるトルクの説明図である。It is explanatory drawing of the torque provided by a torque leveling mechanism. トルク平準化機構によって付与されるトルクの説明図である。It is explanatory drawing of the torque provided by a torque leveling mechanism. 不等速機構により駆動される植付アーム軸に生じるトルク変動及びトルク平準化機構によって付与される平準化トルク、並びにこれらの合成トルクを示す図である。It is a figure which shows the torque fluctuation which arises in the planting arm axis | shaft driven by an inconstant speed mechanism, the leveling torque provided by a torque leveling mechanism, and these synthetic torques. トルク平準化機構に弾性力調節機構を設けた実施形態を示す図である。It is a figure which shows embodiment which provided the elastic force adjustment mechanism in the torque leveling mechanism. 植付駆動部のスケルトン図である。It is a skeleton figure of a planting drive part. トルク平準化機構の弾性力の調節を示した図である。It is the figure which showed adjustment of the elastic force of a torque leveling mechanism. トルク平準化機構によって付与されるトルクの説明図である。It is explanatory drawing of the torque provided by a torque leveling mechanism. 不等速機構により駆動される植付アーム軸に生じるトルク変動及びトルク平準化機構によって付与される平準化トルク、並びにこれらの合成トルクを示す図である。It is a figure which shows the torque fluctuation which arises in the planting arm axis | shaft driven by an inconstant speed mechanism, the leveling torque provided by a torque leveling mechanism, and these synthetic torques. トルク平準化機構の別実施形態を示す図である。It is a figure which shows another embodiment of a torque leveling mechanism. トルク平準化機構の別実施形態を示す図である。It is a figure which shows another embodiment of a torque leveling mechanism. マグネットを用いたトルク平準化機構を示す図である。It is a figure which shows the torque leveling mechanism using a magnet. トルク平準化機構を植付横軸に設けた実施形態を示すスケルトン図である。It is a skeleton figure which shows embodiment which provided the torque leveling mechanism in the planting horizontal axis. トルク平準化機構を植付横軸に設けた実施形態を示す図である。It is a figure which shows embodiment which provided the torque leveling mechanism in the planting horizontal axis. トルク平準化機構を植付横軸に設けた実施形態を示す図である。It is a figure which shows embodiment which provided the torque leveling mechanism in the planting horizontal axis. トルク平準化機構の別実施形態を示す図である。It is a figure which shows another embodiment of a torque leveling mechanism. トルク平準化機構の別実施形態を示す図である。It is a figure which shows another embodiment of a torque leveling mechanism.
 添付の図面を参照して田植機1について説明する。
 田植機1は、エンジン2の動力により前輪3及び後輪4を駆動させて走行しながら、植付部5により植付作業を行う。エンジン2からの動力はミッションケース6を経て前輪3及び後輪4に、並びに、ミッションケース6及び株間変更装置9を経て植付部5にそれぞれ伝達される。
 植付部5は、植付センターケース10、植付ベベルケース11、ロータリケース12、植付アーム13、苗載台14、及び、複数のフロート15を具備する。
The rice transplanter 1 will be described with reference to the accompanying drawings.
The rice transplanter 1 performs the planting work by the planting unit 5 while traveling by driving the front wheels 3 and the rear wheels 4 with the power of the engine 2. The power from the engine 2 is transmitted to the front wheel 3 and the rear wheel 4 through the transmission case 6, and to the planting unit 5 through the transmission case 6 and the stock change device 9, respectively.
The planting unit 5 includes a planting center case 10, a planting bevel case 11, a rotary case 12, a planting arm 13, a seedling table 14, and a plurality of floats 15.
 図2は、植付部5の植付駆動に関する伝動系統図である。図2は、一つの植付ユニットについて示しているが、他の植付ユニットについても同様に構成される。
 植付センターケース10から分岐される植付横軸20から、植付ベベルケース11内でベベルギア21a・21bを介して植付縦軸22に伝達される。そして、不等速ベベルギア23a・23bを介して植付縦軸22からユニットクラッチ24に伝達される。
 そしてユニットクラッチ24の断接に応じて接続状態となった場合に、植付アーム軸25に動力が伝達される。他方、ユニットクラッチ24が切断状態となった場合は、植付アーム軸25に動力は伝達されない。
FIG. 2 is a transmission system diagram regarding the planting drive of the planting unit 5. Although FIG. 2 shows one planting unit, the other planting units are similarly configured.
The planting horizontal shaft 20 branched from the planting center case 10 is transmitted to the planting vertical axis 22 in the planting bevel case 11 via the bevel gears 21a and 21b. And it is transmitted to the unit clutch 24 from the planting longitudinal axis 22 via the inconstant speed bevel gears 23a and 23b.
When the unit clutch 24 is connected or disconnected, power is transmitted to the planting arm shaft 25. On the other hand, when the unit clutch 24 is in a disconnected state, power is not transmitted to the planting arm shaft 25.
 植付アーム軸25は、植付ベベルケース11の左右に設けられるロータリケース12内に延出され、ロータリケース12に固定される。ロータリケース12が回転することで、植付ベベルケース11に固定されたサンギア30から中間ギア31を介して遊星ギア32に伝達される。そして、遊星ギア32に固定された植付アーム13にロータアーム軸33を介して伝達され、ロータリケース12とともに植付爪34が回転することで苗載台14から苗を取り、植え付けることができる。 The planting arm shaft 25 extends into the rotary case 12 provided on the left and right of the planting bevel case 11 and is fixed to the rotary case 12. By rotating the rotary case 12, the sun gear 30 fixed to the planting bevel case 11 is transmitted to the planetary gear 32 via the intermediate gear 31. And it is transmitted to the planting arm 13 fixed to the planetary gear 32 via the rotor arm shaft 33, and the planting claw 34 is rotated together with the rotary case 12, so that the seedling can be taken from the seedling stage 14 and planted. .
 [不等速機構]
 植付部5へ動力を伝達する株間変更装置9の内部に含まれる不等速機構、及び、植付部5の植付ベベルケース11内の不等速ベベルギア23a・23bを含む不等速機構によって、植付アーム軸25が不等速で回転運動する。
 すなわち、植付爪34が苗載台14から苗を取る時、及び、苗の植付後に植付爪34を圃場から素早く引き抜くとともに植付爪34に残る苗を振り落とす時にロータリケース12の回転駆動を速くするとともに、圃場へ苗を植付ける前、及び、植付爪34を苗載台14に差し込む時にロータリケース12の回転速度を緩めている。
 このように、不等速機構を介して植付アーム軸25に動力が伝達され、周期的な加減速を伴って回転駆動される。これにより、植付アーム軸25に不等速運動に起因するトルク変動が発生する。具体的には、各植付爪34の苗取時と植付時を基準にそれぞれ加減速しているので、不等速運動に起因するトルク変動は、ロータリケース12が一回転する間に二回のピークを有する周期的な変動となる。
 なお、密植時等、株間変更装置9にて設定される株間数によっては、等速で動力が伝達される場合もあり、常に不等速で動力が伝達されるとは限らない。
[Inconstant speed mechanism]
An inconstant speed mechanism included in the inter-plant change device 9 for transmitting power to the planting unit 5 and an inconstant speed mechanism including the inconstant speed bevel gears 23a and 23b in the planting bevel case 11 of the planting unit 5. Thus, the planting arm shaft 25 rotates at an unequal speed.
That is, when the planting claw 34 takes the seedling from the seedling stage 14 and when the planting claw 34 is quickly pulled out from the field after planting the seedling and the seedling remaining on the planting claw 34 is shaken off, the rotary case 12 rotates. The rotational speed of the rotary case 12 is decreased before the seedling is planted in the field and when the planting claw 34 is inserted into the seedling stage 14 while the driving speed is increased.
In this way, power is transmitted to the planting arm shaft 25 through the inconstant speed mechanism, and is rotationally driven with periodic acceleration / deceleration. Thereby, the torque fluctuation resulting from the inconstant speed motion generate | occur | produces in the planting arm axis | shaft 25. Specifically, since acceleration / deceleration is performed with reference to the time of seedling and planting of each planting claw 34, torque fluctuations caused by non-constant speed motion are two times during one rotation of the rotary case 12. Periodic fluctuations with a peak of times.
In addition, depending on the number of stocks set by the stock change apparatus 9 at the time of dense planting or the like, the power may be transmitted at a constant speed, and the power is not always transmitted at a non-uniform speed.
 さらに、そのトルク変動の大きさは、植付条件に応じて変化する。具体的には、車速が高速、言い換えれば、植付回転数(植付アーム軸25の回転数)が高速ならばトルク変動は大きくなり、低速ならば小さくなる。
 また、株間変更装置9で設定される株間数(植付株数)に応じて不等速の有無や不等速度合いが変わり、植付速度が変わることで同様にトルク変動の大きさが変化する。なお、密植時等、株間変更装置9にて設定される株間数によっては、等速で動力が伝達される場合もあり、常に不等速で動力が伝達されるとは限らない。
Furthermore, the magnitude of the torque variation changes according to the planting conditions. Specifically, the torque fluctuation increases if the vehicle speed is high, in other words, the planting rotation speed (rotation speed of the planting arm shaft 25) is high, and decreases if the vehicle speed is low.
In addition, the presence / absence of unequal speed and the unequal speed change according to the number of stocks (number of planted stocks) set by the stock change device 9, and the magnitude of torque fluctuation similarly changes as the planting speed changes. . In addition, depending on the number of stocks set by the stock change apparatus 9 at the time of dense planting or the like, the power may be transmitted at a constant speed, and the power is not always transmitted at a non-uniform speed.
 また、植付爪34は側面視で斜めにした姿勢で苗載台14から苗を掻き取り、次いで、植付爪は鉛直に近い姿勢になって圃場に向かい、下降しきってから上昇に転じる必要があるため、ロータリケース12内のサンギア30、中間ギア31及び遊星ギア32は非円形で偏心している。そのうえで、植付アーム軸25と同様の理由から、植付アーム13を支持しているロータアーム軸33もロータリケース12に対して不等速機構により不等速で回転させている。 In addition, the planting claw 34 scrapes off the seedling from the seedling mounting table 14 in a slanted posture in a side view, and then the planting claw is in a posture close to the vertical and heads to the field, and after having descended, it is necessary to turn upward. Therefore, the sun gear 30, the intermediate gear 31, and the planetary gear 32 in the rotary case 12 are non-circular and eccentric. In addition, for the same reason as the planting arm shaft 25, the rotor arm shaft 33 supporting the planting arm 13 is also rotated at an inconstant speed with respect to the rotary case 12 by an inconstant speed mechanism.
 [トルク平準化機構]
 図2及び図3に示すように、トルク平準化機構40が植付ベベルケース11内に設けられる。つまり、トルク平準化機構40は各植付ユニットに設けられる植付ベベルケース11に設けられている。
 トルク平準化機構40は、植付アーム軸25に固定されるギア41、ギア41と噛み合う倍速ギア42、倍速ギア42の歯底円上に設けられるクランクアーム43、及び、クランクアーム43に接続されるコイルバネ44を具備する。倍速ギア42の歯数はギア41の半分である。倍速ギア42は従動軸45に相対回転可能に支持されている。
[Torque leveling mechanism]
As shown in FIGS. 2 and 3, a torque leveling mechanism 40 is provided in the planting bevel case 11. That is, the torque leveling mechanism 40 is provided in the planting bevel case 11 provided in each planting unit.
The torque leveling mechanism 40 is connected to the gear 41 fixed to the planting arm shaft 25, the double speed gear 42 meshing with the gear 41, the crank arm 43 provided on the root circle of the double speed gear 42, and the crank arm 43. The coil spring 44 is provided. The number of teeth of the double speed gear 42 is half that of the gear 41. The double speed gear 42 is supported by the driven shaft 45 so as to be relatively rotatable.
 クランクアーム43にコイルバネ44の一端を固定するボス46aを設ける。コイルバネ44は、その一端をクランクアームに設けたボス46aに固定し、他端は植付ベベルケース11に設けたボス46bに固定する。また、コイルバネ44には常に収縮する方向に力が作用するようにボス46bの位置が決定される。 A boss 46a for fixing one end of the coil spring 44 is provided on the crank arm 43. One end of the coil spring 44 is fixed to a boss 46 a provided on the crank arm, and the other end is fixed to a boss 46 b provided on the planting bevel case 11. Further, the position of the boss 46b is determined so that a force always acts on the coil spring 44 in a contracting direction.
 植付アーム軸25の回転に伴ってギア41が回転し、ギア41と噛み合う倍速ギア42が従動軸45回りに回転する。倍速ギア42の回転に伴ってクランクアーム43が倍速ギア42の回転中心から偏心した位置で回転し、コイルバネ44の長さが変わることによりコイルバネ44に弾性力が発生する。このように倍速ギア42の回転に連動してトルクが発生する。コイルバネ44に発生した弾性力は、クランクアーム43を介して倍速ギア42からギア41に伝達され、さらに、植付アーム軸25にトルクとして付与される。 As the planting arm shaft 25 rotates, the gear 41 rotates, and the double speed gear 42 that meshes with the gear 41 rotates around the driven shaft 45. As the double speed gear 42 rotates, the crank arm 43 rotates at a position eccentric from the rotation center of the double speed gear 42, and the length of the coil spring 44 changes to generate an elastic force in the coil spring 44. Thus, torque is generated in conjunction with the rotation of the double speed gear 42. The elastic force generated in the coil spring 44 is transmitted from the double speed gear 42 to the gear 41 via the crank arm 43 and further applied as torque to the planting arm shaft 25.
 なお、植付アーム軸25からクランクアーム43への動力伝達は、クランクアーム43側の回転数が植付アーム軸25の回転数の二倍となるものであれば良く、ギア41・42の代わりにスプロケット及びチェーンを用いたものでも良い。
 また、倍速ギア42の回転に連動してトルクを発生させる機構は、クランクアーム43及びコイルバネ44によるクランク・バネ機構に限らず、倍速ギア42と共に回転するカム及び当該カムに弾性力を付与する板バネによって構成されるカム・バネ機構も採用できる。
The power transmission from the planting arm shaft 25 to the crank arm 43 is not limited as long as the rotational speed on the crank arm 43 side is twice the rotational speed of the planting arm shaft 25. Alternatively, a sprocket and a chain may be used.
Further, the mechanism for generating torque in conjunction with the rotation of the double speed gear 42 is not limited to the crank spring mechanism by the crank arm 43 and the coil spring 44, but a cam that rotates together with the double speed gear 42 and a plate that imparts elastic force to the cam. A cam / spring mechanism constituted by a spring can also be employed.
 図4から図6を用いてトルク平準化機構40によって付与するトルクについて詳述する。
 なお、図示において、植付アーム軸25は反時計回りに回転する。これにより、ギア41は反時計回り、倍速ギア42は時計回りにそれぞれ回転する。
The torque applied by the torque leveling mechanism 40 will be described in detail with reference to FIGS.
In the figure, the planting arm shaft 25 rotates counterclockwise. As a result, the gear 41 rotates counterclockwise and the double speed gear 42 rotates clockwise.
 図4に示すように、クランクアーム43が上側、つまりコイルバネ44による収縮力が倍速ギア42の回転方向と反対方向となる側に位置する場合は、コイルバネ44の弾性力が倍速ギア42の回転方向と反対方向へのトルクが発生する。そして、クランクアーム43を介して倍速ギア42に生じるトルクはそのままギア41を介して植付アーム軸25に伝達される。このとき植付アーム軸25には減速側へのトルクが付与される。 As shown in FIG. 4, when the crank arm 43 is located on the upper side, that is, on the side where the contraction force by the coil spring 44 is opposite to the rotation direction of the double speed gear 42, the elastic force of the coil spring 44 is the rotation direction of the double speed gear 42. Torque in the opposite direction is generated. The torque generated in the double speed gear 42 via the crank arm 43 is transmitted to the planting arm shaft 25 via the gear 41 as it is. At this time, torque to the deceleration side is applied to the planting arm shaft 25.
 図5に示すように、クランクアーム43が下側、つまりコイルバネ44による収縮力が倍速ギア42の回転方向と同一方向となる側に位置する場合は、コイルバネ44の弾性力が倍速ギア42の回転方向と同一方向へのトルクが発生する。そして、クランクアーム43を介して倍速ギア42に生じるトルクはそのままギア41を介して植付アーム軸25に伝達される。このとき植付アーム軸25には加速側へのトルクが付与される。 As shown in FIG. 5, when the crank arm 43 is positioned on the lower side, that is, on the side where the contraction force by the coil spring 44 is in the same direction as the rotation direction of the double speed gear 42, the elastic force of the coil spring 44 is the rotation of the double speed gear 42. Torque is generated in the same direction as the direction. The torque generated in the double speed gear 42 via the crank arm 43 is transmitted to the planting arm shaft 25 via the gear 41 as it is. At this time, torque to the acceleration side is applied to the planting arm shaft 25.
 また、クランクアーム43が従動軸45回りに回転運動することにより、コイルバネ44の伸縮に伴ってクランクアーム43に生じる弾性力は、周期的なトルクとして植付アーム軸25に伝達される。具体的には、コイルバネ44の固定端であるボス46bとクランクアーム43の位置及び角度、つまり、クランクアーム43の従動軸45に対する位置及び角度に応じて正弦曲線に近いカーブを描くように変動するトルクが発生する。 Also, as the crank arm 43 rotates around the driven shaft 45, the elastic force generated in the crank arm 43 as the coil spring 44 expands and contracts is transmitted to the planting arm shaft 25 as a periodic torque. Specifically, the boss 46b, which is the fixed end of the coil spring 44, and the position and angle of the crank arm 43, that is, the position and angle of the crank arm 43 with respect to the driven shaft 45 vary so as to draw a curve close to a sine curve. Torque is generated.
 図6に示すように、トルク平準化機構40によって生じるトルクの周期を、不等速機構によって植付アーム軸25に生じるトルク変動の周期に合わせて、不等速機構によって生じるトルク変動を打ち消す方向に(図示においては逆位相となるように)トルク平準化機構40によるトルクを発生させる。
 このとき、クランクアーム43が固定される倍速ギア42は、植付アーム軸25の回転数の二倍で回転するため、トルク平準化機構40には植付アーム軸25が一回転する間に二周期分のトルクが生じる。つまり、トルク平準化機構40は、不等速機構を介したロータリケース12の一回転の間に発生する二回のピークを有する周期的なトルク変動を打ち消して平準化するトルクを発生させることができる。
 このように、トルク平準化機構40の周期を、不等速機構によるトルク変動の周期に合わせることで、トルクを合成して不等速機構に起因するトルク変動を抑えている。
As shown in FIG. 6, the torque cycle generated by the torque leveling mechanism 40 is matched with the cycle of torque variation generated in the planting arm shaft 25 by the non-uniform speed mechanism to cancel the torque variation generated by the non-uniform speed mechanism. In addition, torque is generated by the torque leveling mechanism 40 (so as to have an opposite phase in the drawing).
At this time, the double speed gear 42 to which the crank arm 43 is fixed rotates at twice the number of rotations of the planting arm shaft 25, so that the torque leveling mechanism 40 is rotated twice while the planting arm shaft 25 rotates once. A period of torque is generated. In other words, the torque leveling mechanism 40 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can.
In this way, by adjusting the cycle of the torque leveling mechanism 40 to the cycle of torque fluctuation by the inconstant speed mechanism, torque is synthesized to suppress torque fluctuation caused by the inconstant speed mechanism.
 なお、本実施形態では、不等速機構によって生じるトルク変動に対して、逆位相の平準化トルクを付与しているが、当該トルク変動を効果的に抑制するものであれば、完全に逆の位相の平準化トルクでなくても良い。例えば、トルク変動に対して30°、45°など適宜遅角させた平準化トルクを付与することでトルク変動を打ち消すことも可能である。この場合、倍速ギア42に設けられるトルク発生機構(本実施形態ではクランクアーム43及びコイルバネ44)のタイミングを変更することで適宜設定可能である。
 また、倍速ギア42の減速比は、二倍に限定されず、三倍、四倍等でも良い。例えば、上述と同様に倍速ギア42に設けられるトルク発生機構のタイミングに応じて設定することも可能である。
In the present embodiment, the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism. However, if the torque fluctuation is effectively suppressed, the torque fluctuation is completely reversed. It may not be the phase leveling torque. For example, it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crank arm 43 and the coil spring 44) provided in the double speed gear 42.
Further, the reduction ratio of the double speed gear 42 is not limited to double, and may be triple, quadruple, or the like. For example, it can be set according to the timing of the torque generating mechanism provided in the double speed gear 42 as described above.
 以上のように、トルク平準化機構40は、不等速機構によって生じるトルク変動の周期と同じ周期(ロータリケース12一回転で二周期)を有する滑らかなトルクを付与することで、トルク変動を平準化して、植付アーム軸25の位相のズレを改善することが可能である。その結果、植付アーム軸25が、ねじれたり、ガタついたりすることなく円滑に不等速回転でき、高速回転時の植付爪34の軌跡を安定させ、植付不良を防ぐことができる。 As described above, the torque leveling mechanism 40 applies a smooth torque having the same cycle (two cycles for one rotation of the rotary case 12) as the cycle of the torque variation generated by the inconstant speed mechanism, thereby leveling the torque variation. Thus, the phase shift of the planting arm shaft 25 can be improved. As a result, the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
 倍速ギア42は従動軸45に相対回転可能に支持されている。そのため、トルク平準化機構40によって発生させるトルク変動を従動軸45に伝動させずに植付アーム軸25に直接付与することができる。 The double speed gear 42 is supported on the driven shaft 45 so as to be relatively rotatable. Therefore, torque fluctuations generated by the torque leveling mechanism 40 can be directly applied to the planting arm shaft 25 without being transmitted to the driven shaft 45.
 トルク平準化機構40は、植付ベベルケース11内において、ギア若しくはチェーンの仕組みを介して植付アーム軸25に直接的に取り付けられるため、トルク変動の発生元であるロータリケース12に近い位置に置くことができる。それにより、逆位相のトルク変動を効果的に与えることができ、トルク変動を平準化する効果を大きくすることができる。
 また、植付アーム軸25からギア若しくはチェーンを介して一軸(従動軸45)離れた位置にトルク平準化機構40を配置するため、植付ベベルケース11内でのスペースを確保でき、無理なく搭載することができる。
Since the torque leveling mechanism 40 is directly attached to the planting arm shaft 25 through a gear or chain mechanism in the planting bevel case 11, the torque leveling mechanism 40 is positioned close to the rotary case 12 that is the source of torque fluctuation. Can be put. As a result, torque fluctuations in opposite phases can be effectively applied, and the effect of leveling torque fluctuations can be increased.
Further, since the torque leveling mechanism 40 is disposed at a position separated from the planting arm shaft 25 by one gear (driven shaft 45) via a gear or a chain, a space in the planting bevel case 11 can be secured and mounted without difficulty. can do.
 トルク平準化機構40は、植付アーム軸25が設けられる植付ユニット毎に設けられている。つまり、平準化トルクがロータリケース12の加減速により発生するトルク変動と各ユニット内で打ち消し合うことにより、伝動系上流までトルク変動がさかのぼることがないので、植付爪34のシャクリを抑えることができる。 The torque leveling mechanism 40 is provided for each planting unit in which the planting arm shaft 25 is provided. In other words, since the leveling torque cancels out in each unit with the torque fluctuation generated by the acceleration / deceleration of the rotary case 12, the torque fluctuation does not go back to the upstream side of the transmission system. it can.
 トルク平準化機構40はユニットクラッチ24の動力伝達経路における下流側に設けているため、ユニットクラッチ24の接続に応じて作用する。すなわち、ユニットクラッチ24の切断時に平準化トルクは作用しないので、作動条数に応じた平準化トルクを作用させることができる。 Since the torque leveling mechanism 40 is provided on the downstream side in the power transmission path of the unit clutch 24, the torque leveling mechanism 40 operates according to the connection of the unit clutch 24. That is, since the leveling torque does not act when the unit clutch 24 is disconnected, the leveling torque according to the number of operating stripes can be applied.
 トルク平準化機構40は、ユニットクラッチ24の断接操作の下流、つまり、動力伝達経路においてユニットクラッチ24が切断状態の時に動力が伝達されない範囲に設けても良い。例えば、図7に示す位置に設ける場合は、ユニットクラッチ24のカム24aにトルク平準化機構40のギア41が固定される。
 このように、ユニットクラッチ24の下流にトルク平準化機構40を置くことで、ユニットクラッチ24の断接動作とトルク平準化機構40の作動の有無を連動させることが可能である。
The torque leveling mechanism 40 may be provided downstream of the connecting / disconnecting operation of the unit clutch 24, that is, in a range where power is not transmitted when the unit clutch 24 is in a disconnected state in the power transmission path. For example, when provided at the position shown in FIG. 7, the gear 41 of the torque leveling mechanism 40 is fixed to the cam 24 a of the unit clutch 24.
Thus, by placing the torque leveling mechanism 40 downstream of the unit clutch 24, it is possible to link the connection / disconnection operation of the unit clutch 24 with the presence / absence of the operation of the torque leveling mechanism 40.
 なお、トルク平準化機構40をユニットクラッチ24の下流に配置する場合、その取り付け位置は植付アーム軸25に限らず、植付アーム軸25から離れた位置に設けても良い。 When the torque leveling mechanism 40 is disposed downstream of the unit clutch 24, the mounting position is not limited to the planting arm shaft 25, and may be provided at a position away from the planting arm shaft 25.
 図8及び図9に示すトルク平準化機構50は、植付ベベルケース11に設けられる。つまり、トルク平準化機構50は各植付ユニットに設けられる植付ベベルケース11に設けられている。
 トルク平準化機構50は、植付アーム軸25に動力を伝達するベベルギア23bと噛み合うベベルギア51、ベベルギア51が固定されるクランク軸52、及び、クランク軸52に接続されるコイルバネ53を具備する。ベベルギア51の歯数はベベルギア23aの歯数と同数、かつ、ベベルギア23bの歯数の半分である。つまり、クランク軸52は、植付アーム軸25の二倍の回転数で回転駆動される。
The torque leveling mechanism 50 shown in FIGS. 8 and 9 is provided in the planting bevel case 11. That is, the torque leveling mechanism 50 is provided in the planting bevel case 11 provided in each planting unit.
The torque leveling mechanism 50 includes a bevel gear 51 that meshes with a bevel gear 23 b that transmits power to the planting arm shaft 25, a crank shaft 52 to which the bevel gear 51 is fixed, and a coil spring 53 that is connected to the crank shaft 52. The number of teeth of the bevel gear 51 is the same as the number of teeth of the bevel gear 23a and half the number of teeth of the bevel gear 23b. That is, the crankshaft 52 is rotationally driven at a rotational speed twice that of the planting arm shaft 25.
 クランク軸52にコイルバネ53の一端を固定するボス54aを設ける。コイルバネ53は、その一端をクランク軸52に設けたボス54aに固定し、他端は植付ベベルケース11の後方に取り付けられるボス54bに固定する。また、コイルバネ53には常に収縮する方向に力が作用するようにボス54bの位置が決定される。 A boss 54a for fixing one end of the coil spring 53 is provided on the crankshaft 52. One end of the coil spring 53 is fixed to a boss 54 a provided on the crankshaft 52, and the other end is fixed to a boss 54 b attached to the rear of the planting bevel case 11. Further, the position of the boss 54b is determined so that a force acts on the coil spring 53 in a direction in which the coil spring 53 always contracts.
 ユニットクラッチ24が接続状態の時、植付アーム軸25の回転に伴ってベベルギア23bからベベルギア51に回転が伝達され、ベベルギア51の回転に伴ってクランク軸52がその回転中心から偏心した位置で回転し、コイルバネ53の長さが変わることによりコイルバネ53に弾性力が発生する。このようにクランク軸52の回転に連動してトルクが発生する。コイルバネ53に発生した弾性力は、クランク軸52を介してベベルギア51に伝達され、さらに、植付アーム軸25にトルクとして付与される。 When the unit clutch 24 is in the connected state, the rotation is transmitted from the bevel gear 23b to the bevel gear 51 as the planting arm shaft 25 rotates, and the crankshaft 52 rotates at a position eccentric from the rotation center as the bevel gear 51 rotates. In addition, an elastic force is generated in the coil spring 53 by changing the length of the coil spring 53. Thus, torque is generated in conjunction with the rotation of the crankshaft 52. The elastic force generated in the coil spring 53 is transmitted to the bevel gear 51 via the crankshaft 52 and further applied to the planting arm shaft 25 as torque.
 なお、植付アーム軸25からクランク軸52への動力伝達は、クランク軸52側の回転数が植付アーム軸25の回転数の二倍となるものであれば良く、ベベルギア23b・51の代わりにスプロケット・チェーンを用いたものでも良い。
 また、トルクを発生させる機構は、クランク軸52及びコイルバネ53によるクランク・バネ機構に限らず、ベベルギア51の回転によって回転駆動されるカム及び当該カムに弾性力を付与する板バネ又はコイルバネによって構成されるカム・バネ機構も採用できる。
The power transmission from the planting arm shaft 25 to the crankshaft 52 is not limited as long as the rotational speed on the crankshaft 52 side is twice the rotational speed of the planting arm shaft 25, and instead of the bevel gears 23b and 51. It is also possible to use a sprocket chain.
Further, the mechanism for generating torque is not limited to the crank spring mechanism including the crankshaft 52 and the coil spring 53, and is configured by a cam that is rotationally driven by the rotation of the bevel gear 51 and a plate spring or a coil spring that imparts an elastic force to the cam. A cam / spring mechanism can also be used.
 図10から図12を用いてトルク平準化機構50によって付与するトルクについて詳述する。
 なお、図示において、ベベルギア51及びクランク軸52は時計回りに回転する。
The torque applied by the torque leveling mechanism 50 will be described in detail with reference to FIGS.
In the figure, the bevel gear 51 and the crankshaft 52 rotate clockwise.
 図10に示すように、クランク軸52が図示において右側、つまりコイルバネ53による収縮力がベベルギア51の回転方向と反対方向となる側に位置する場合は、コイルバネ53の弾性力がベベルギア51の回転方向と反対方向へのトルクが発生する。そして、クランク軸52を介してベベルギア51に生じるトルクはベベルギア23bを介して植付アーム軸25に伝達される。このとき植付アーム軸25には減速側へのトルクが付与される。 As shown in FIG. 10, when the crankshaft 52 is located on the right side in the drawing, that is, on the side where the contraction force by the coil spring 53 is opposite to the rotation direction of the bevel gear 51, the elastic force of the coil spring 53 is the rotation direction of the bevel gear 51. Torque in the opposite direction is generated. The torque generated in the bevel gear 51 via the crankshaft 52 is transmitted to the planting arm shaft 25 via the bevel gear 23b. At this time, torque to the deceleration side is applied to the planting arm shaft 25.
 図11に示すように、クランク軸52が図示において左側、つまりコイルバネ53による収縮力がベベルギア51の回転方向と同一方向となる側に位置する場合は、コイルバネ53の弾性力がベベルギア51の回転方向と同一方向へのトルクが発生する。そして、クランク軸52を介してベベルギア51に生じるトルクはベベルギア23bを介して植付アーム軸25に伝達される。このとき植付アーム軸25には加速側へのトルクが付与される。 As shown in FIG. 11, when the crankshaft 52 is located on the left side in the drawing, that is, on the side where the contraction force by the coil spring 53 is in the same direction as the rotation direction of the bevel gear 51, the elastic force of the coil spring 53 is the rotation direction of the bevel gear 51. Torque is generated in the same direction. The torque generated in the bevel gear 51 via the crankshaft 52 is transmitted to the planting arm shaft 25 via the bevel gear 23b. At this time, torque to the acceleration side is applied to the planting arm shaft 25.
 また、クランク軸52が回転運動することにより、コイルバネ53の伸縮に伴って生じる弾性力は、周期的なトルクとしてベベルギア51・23bを介して植付アーム軸25に伝達される。具体的には、コイルバネ53の固定端であるボス54bとクランク軸52の位置及び角度、つまりクランク軸52の回転位相に応じて正弦曲線に近いカーブを描くように変動するトルクが発生する。 Rotational motion of the crankshaft 52 causes the elastic force generated with the expansion and contraction of the coil spring 53 to be transmitted to the planting arm shaft 25 through the bevel gears 51 and 23b as a periodic torque. Specifically, torque that varies so as to draw a curve close to a sine curve is generated according to the position and angle of the boss 54b, which is the fixed end of the coil spring 53, and the crankshaft 52, that is, the rotational phase of the crankshaft 52.
 図12に示すように、トルク平準化機構50によって生じるトルクの周期を、不等速機構によって植付アーム軸25に生じるトルク変動の周期に合わせて、不等速機構によって生じるトルク変動を打ち消す方向に(図示においては逆位相となるように)トルク平準化機構50によるトルクを発生させる。
 このとき、クランク軸52が固定されるベベルギア51は、植付アーム軸25の回転数の二倍で回転するため、トルク平準化機構50には植付アーム軸25が一回転する間に二周期分のトルクが生じる。つまり、トルク平準化機構50は、不等速機構を介したロータリケース12の一回転の間に発生する二回のピークを有する周期的なトルク変動を打ち消して平準化するトルクを発生させることができる。
 このように、トルク平準化機構50の周期を、不等速機構によるトルク変動の周期に合わせることで、トルクを合成して不等速機構に起因するトルク変動を抑えている。
As shown in FIG. 12, the direction of the torque fluctuation generated by the inconstant speed mechanism is canceled by matching the period of torque generated by the torque leveling mechanism 50 with the period of torque fluctuation generated in the planting arm shaft 25 by the inconstant speed mechanism. In addition, torque is generated by the torque leveling mechanism 50 (so as to have an opposite phase in the drawing).
At this time, since the bevel gear 51 to which the crankshaft 52 is fixed rotates at twice the number of rotations of the planting arm shaft 25, the torque leveling mechanism 50 has two cycles while the planting arm shaft 25 rotates once. Minute torque is generated. That is, the torque leveling mechanism 50 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can.
In this way, by matching the cycle of the torque leveling mechanism 50 with the cycle of torque fluctuation by the inconstant speed mechanism, torque is synthesized to suppress torque fluctuation caused by the inconstant speed mechanism.
 なお、本実施形態では、不等速機構によって生じるトルク変動に対して、逆位相の平準化トルクを付与しているが、当該トルク変動を効果的に抑制するものであれば、完全に逆の位相の平準化トルクでなくても良い。例えば、トルク変動に対して30°、45°など適宜遅角させた平準化トルクを付与することでトルク変動を打ち消すことも可能である。この場合、ベベルギア51に設けられるトルク発生機構(本実施形態ではクランク軸52及びコイルバネ53)のタイミングを変更することで適宜設定可能である。 In the present embodiment, the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism. However, if the torque fluctuation is effectively suppressed, the torque fluctuation is completely reversed. It may not be the phase leveling torque. For example, it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crankshaft 52 and the coil spring 53) provided in the bevel gear 51.
 以上のように、トルク平準化機構50は、不等速機構によって生じるトルク変動の周期と同じ周期(ロータリケース12一回転で二周期)を有する滑らかなトルクを付与することで、トルク変動を平準化して、植付アーム軸25の位相のズレを改善することが可能である。その結果、植付アーム軸25が、ねじれたり、ガタついたりすることなく円滑に不等速回転でき、高速回転時の植付爪34の軌跡を安定させ、植付不良を防ぐことができる。 As described above, the torque leveling mechanism 50 equalizes torque fluctuations by applying a smooth torque having the same period (two periods for one rotation of the rotary case 12) as the period of torque fluctuations generated by the inconstant speed mechanism. Thus, the phase shift of the planting arm shaft 25 can be improved. As a result, the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
 トルク平準化機構50は、植付ベベルケース11内において、ギア若しくはチェーンの仕組みを介して植付アーム軸25に直接的に取り付けられるため、トルク変動の発生元であるロータリケース12に近い位置に置くことができる。それにより、逆位相のトルク変動を効果的に与えることができ、トルク変動を平準化する効果を大きくすることができる。 Since the torque leveling mechanism 50 is directly attached to the planting arm shaft 25 through a gear or chain mechanism in the planting bevel case 11, the torque leveling mechanism 50 is located at a position close to the rotary case 12 that is the source of torque fluctuation. Can be put. As a result, torque fluctuations in opposite phases can be effectively applied, and the effect of leveling torque fluctuations can be increased.
 トルク平準化機構50は、植付アーム軸25が設けられる植付ユニット毎に設けられている。つまり、平準化トルクがロータリケース12の加減速により発生するトルク変動と各ユニット内で打ち消し合うことにより、伝動系上流までトルク変動がさかのぼることがないので、植付爪34のシャクリを抑えることができる。 The torque leveling mechanism 50 is provided for each planting unit in which the planting arm shaft 25 is provided. In other words, since the leveling torque cancels out in each unit with the torque fluctuation generated by the acceleration / deceleration of the rotary case 12, the torque fluctuation does not go back to the upstream side of the transmission system. it can.
 図13に示すように、トルク平準化機構50にコイルバネ53の弾性力を変化させる調節機構60を設けても良い。調節機構60は、コイルバネ53の長さを変更することで、弾性力を調節する。
 例えば、調節機構60は、コイルバネ53の一端に設けられるボス54bに接続されるリンク61、及び、リンク61を操作するリンクバー62を具備する。リンクバー62を操作することでリンク61の姿勢を変更してコイルバネ53の一端の位置を変更する。ボス54bは、適宜の長穴に挿通され、該長穴に沿って移動することでコイルバネ53の長さが変更される。
As shown in FIG. 13, the torque leveling mechanism 50 may be provided with an adjustment mechanism 60 that changes the elastic force of the coil spring 53. The adjustment mechanism 60 adjusts the elastic force by changing the length of the coil spring 53.
For example, the adjustment mechanism 60 includes a link 61 connected to a boss 54 b provided at one end of the coil spring 53, and a link bar 62 that operates the link 61. By operating the link bar 62, the posture of the link 61 is changed and the position of one end of the coil spring 53 is changed. The boss 54b is inserted into an appropriate elongated hole, and the length of the coil spring 53 is changed by moving along the elongated hole.
 以上のように、トルク平準化機構50に調節機構60を設けることで、平準化トルクの大きさを植付条件(例えば、植付株数(株間設定値)、車速(アクセル開度)、植付アーム軸25の回転数(植付回転数)、若しくは植付アーム軸25のトルク(トルク変動量))に応じて調節することができる。また、調節機構60をユニットクラッチ24と連動させることで作動条数に応じたトルク負荷を付加できる。
 なお、調節機構60は、上述の構成に限定されるものではなく、コイルバネ53の長さを変えることによってコイルバネ53に発生する弾性力を変化させることができれば良く、他のリンク機構、又は、ワイヤを用いたものでも良い。
As described above, by providing the adjustment mechanism 60 in the torque leveling mechanism 50, the magnitude of the leveling torque can be set according to planting conditions (for example, the number of planted stocks (set value between stocks), vehicle speed (accelerator opening), planting. It can be adjusted according to the rotation speed of the arm shaft 25 (planting rotation speed) or the torque of the planting arm shaft 25 (torque fluctuation amount). Moreover, the torque load according to the number of actuating lines can be added by interlocking the adjusting mechanism 60 with the unit clutch 24.
The adjustment mechanism 60 is not limited to the above-described configuration, and may be any other link mechanism or wire as long as the elastic force generated in the coil spring 53 can be changed by changing the length of the coil spring 53. The one using may be used.
 図14及び図15に示すトルク平準化機構70は、植付ベベルケース11に設けられる。つまり、トルク平準化機構70は各植付ユニットに設けられる植付ベベルケース11に設けられている。
 トルク平準化機構70は、不等速ベベルギア23bと噛み合い、不等速ベベルギア23aの歯数と同じ歯数を有する不等速ベベルギア51、不等速ベベルギア51が固定され、植付縦軸22と同軸上に設けられるクランク軸52、クランク軸52に接続されるコイルバネ53、コイルバネ53の他端に接続される摺動部材55、摺動部材55の他端に固定され、テンションを調節することで摺動部材55を移動させるワイヤ56、及び、摺動部材55を収容するケース57、並びに、摺動部材55に設けられ、摺動部材55のケース57内での可動域を制限するストッパー58aを具備する。
The torque leveling mechanism 70 shown in FIGS. 14 and 15 is provided in the planting bevel case 11. That is, the torque leveling mechanism 70 is provided in the planting bevel case 11 provided in each planting unit.
The torque leveling mechanism 70 meshes with the inconstant speed bevel gear 23b, and the inconstant speed bevel gear 51 and the inconstant speed bevel gear 51 having the same number of teeth as the inconstant speed bevel gear 23a are fixed. A crankshaft 52 provided on the same axis, a coil spring 53 connected to the crankshaft 52, a sliding member 55 connected to the other end of the coil spring 53, fixed to the other end of the sliding member 55, and adjusting the tension. A wire 56 that moves the sliding member 55, a case 57 that houses the sliding member 55, and a stopper 58 a that is provided on the sliding member 55 and restricts the movable range of the sliding member 55 within the case 57. It has.
 上記のトルク平準化機構70において、植付アーム軸25の回転に伴って不等速ベベルギア51が回転し、クランク軸52がその回転中心から偏心して回転し、コイルバネ53の長さが変わることによりコイルバネ53に弾性力が発生する。コイルバネ53に発生した弾性力は、クランク軸52を介して不等速ベベルギア51から不等速ベベルギア23bへ伝達され、さらに、植付アーム軸25にトルクとして付与される。 In the torque leveling mechanism 70, the inconstant speed bevel gear 51 rotates with the rotation of the planting arm shaft 25, the crankshaft 52 rotates eccentrically from the center of rotation, and the length of the coil spring 53 changes. Elastic force is generated in the coil spring 53. The elastic force generated in the coil spring 53 is transmitted from the inconstant speed bevel gear 51 to the inconstant speed bevel gear 23b via the crankshaft 52, and is further applied as torque to the planting arm shaft 25.
 図15に示すように、クランク軸52にコイルバネ53の一端を固定するボス54aを設け、摺動部材55にコイルバネ53の他端を固定するボス54bを設ける。ボス54bは、クランク軸52の回転中心O1の上方となるよう配置される。
 摺動部材55は、植付ベベルケース11に固定されるケース57に収容されており、ボス54aに近付く方向及び離れる方向(図示では上下方向)に摺動する。また、摺動部材55の中途部に設けられたストッパー58aにより摺動方向への可動域が制限されている。ワイヤ56を操作することで、摺動部材55が上下に移動し、摺動部材55に固定されているコイルバネ53の伸縮によって弾性力の大きさを変えることができる。このように、トルク平準化機構70には弾性体であるコイルバネ53の弾性力を調節する機構が備えられる。
As shown in FIG. 15, a boss 54 a that fixes one end of the coil spring 53 is provided on the crankshaft 52, and a boss 54 b that fixes the other end of the coil spring 53 is provided on the sliding member 55. The boss 54b is disposed above the rotation center O1 of the crankshaft 52.
The sliding member 55 is accommodated in a case 57 fixed to the planting bevel case 11, and slides in a direction toward and away from the boss 54a (vertical direction in the drawing). Further, a movable range in the sliding direction is limited by a stopper 58a provided in the middle of the sliding member 55. By operating the wire 56, the sliding member 55 moves up and down, and the magnitude of the elastic force can be changed by the expansion and contraction of the coil spring 53 fixed to the sliding member 55. Thus, the torque leveling mechanism 70 is provided with a mechanism for adjusting the elastic force of the coil spring 53 that is an elastic body.
 [トルク平準化機構の弾性力の調節]
 具体的には、図15(a)が示すように、摺動部材55に取り付けられたワイヤ56を引っ張ることで、摺動部材55がコイルバネ53を引っ張り、コイルバネ53の長さが長くなることで弾性力が増加する。その状態から、図15(b)が示すように、ワイヤ56を引っ張る力を緩めると、同様に、コイルバネ53の弾性力が弱まる。なお、図15(c)が示すように、ストッパー58aがケース57に当たる位置を、コイルバネ53の弾性力がゼロ若しくはゼロに近くなるように設定している。
 このように、ワイヤ56によって、コイルバネ53の弾性力の大きさ、及び、トルク付加の有無が調節される。そして、調節した弾性力が平準化トルクとして植付アーム軸25に付与される。
[Adjustment of elastic force of torque leveling mechanism]
Specifically, as shown in FIG. 15A, by pulling the wire 56 attached to the sliding member 55, the sliding member 55 pulls the coil spring 53, and the length of the coil spring 53 is increased. Elastic force increases. From this state, as shown in FIG. 15B, when the force pulling the wire 56 is loosened, the elastic force of the coil spring 53 is similarly weakened. As shown in FIG. 15C, the position where the stopper 58a hits the case 57 is set so that the elastic force of the coil spring 53 is zero or close to zero.
Thus, the magnitude of the elastic force of the coil spring 53 and the presence / absence of torque addition are adjusted by the wire 56. The adjusted elastic force is applied to the planting arm shaft 25 as a leveling torque.
 ワイヤ56は、ユニットクラッチ24の断接と連動させることができる。つまり、ユニットクラッチ24の断接操作を行うアクチュエータ71の動きとワイヤ56の動きを連動させることで、ユニットクラッチ24が切断状態ならば、トルク平準化機構40によるトルク負荷をゼロ若しくは略ゼロにし、接続状態ならば植付条件に応じたトルク負荷を付与することができる。
 このように、トルク平準化機構70によって付与される平準化トルクの大きさをユニットクラッチ24に連動させることで、作動条数に応じた平準化トルクを付与することができる。
The wire 56 can be interlocked with the connection / disconnection of the unit clutch 24. That is, by linking the movement of the actuator 71 that performs the connecting / disconnecting operation of the unit clutch 24 and the movement of the wire 56, if the unit clutch 24 is in the disconnected state, the torque load by the torque leveling mechanism 40 is made zero or substantially zero, If it is in a connected state, a torque load according to the planting conditions can be applied.
In this way, by leveling the leveling torque applied by the torque leveling mechanism 70 with the unit clutch 24, the leveling torque according to the number of operating stripes can be applied.
 また、ワイヤ56をアクチュエータ72に接続し、ユニットクラッチ24以外の装置に連動させることも可能である。アクチュエータ72は、例えばワイヤ56を引っ張る又は緩めるモータ又はソレノイドであり、アクチュエータ72に電気信号を送ることで、トルク平準化機構70による平準化トルクを調節可能である。例えば、植付株数(株間設定値)、車速(アクセル開度)、植付アーム軸25の回転数(植付回転数)、若しくは植付アーム軸25のトルク(トルク変動量)を検出し、これらの検出値に応じた電気信号をアクチュエータ72に送信することでバネ力を最適に調節することができる。 It is also possible to connect the wire 56 to the actuator 72 and interlock with a device other than the unit clutch 24. The actuator 72 is, for example, a motor or a solenoid that pulls or loosens the wire 56, and the leveling torque by the torque leveling mechanism 70 can be adjusted by sending an electrical signal to the actuator 72. For example, the number of planting stocks (set value between stocks), the vehicle speed (accelerator opening), the rotational speed of the planting arm shaft 25 (planting rotational frequency), or the torque (torque fluctuation amount) of the planting arm shaft 25 is detected. The spring force can be optimally adjusted by transmitting an electrical signal corresponding to these detected values to the actuator 72.
 具体的には、車速又は植付回転数が高速になれば、発生するトルク変動が大きくなることから、ワイヤ56を引っ張ることで大きなトルクを付与し、反対に、低速になればワイヤ56を緩めることで、小さなトルクを付与する。これにより、回転数全域で効果的に回転変動を抑えることができる。
 また、植付株数が少ない疎植の場合は、不等速運動が大きくなることから、トルク負荷を大きくし、植付株数が多い密植の場合は、等速運動若しくは僅かな加減速を伴うことから、トルク負荷を小さく又はゼロにする。さらに、疎植の条件で低速走行をする場合は、不等速運動に起因するトルク変動が小さくなることから、トルク負荷を小さく又はゼロにする。
 以上のように、植付株数、高速又は低速等の植付条件に応じてトルク平準化機構40のトルク負荷を調節することで、効果的な抑制効果が得られる。
Specifically, if the vehicle speed or planting rotation speed becomes high, the generated torque fluctuation becomes large. Therefore, a large torque is applied by pulling the wire 56, and conversely, if the speed becomes low, the wire 56 is loosened. In this way, a small torque is applied. Thereby, rotation fluctuation can be effectively suppressed in the whole rotation speed.
In addition, in the case of sparse planting with a small number of planted stocks, the non-uniform motion increases, so the torque load is increased, and in the case of dense plantings with a large number of planted stocks, constant speed motion or slight acceleration / deceleration is involved. From this, the torque load is reduced or made zero. Furthermore, when running at low speed under sparse planting conditions, torque fluctuation due to non-uniform speed movement is reduced, so the torque load is reduced or made zero.
As described above, an effective suppression effect can be obtained by adjusting the torque load of the torque leveling mechanism 40 according to the planting conditions such as the number of planted strains, high speed or low speed.
 [トルク平準化機構によって付与するトルク変動の位相]
 次に、図16を用いてトルク平準化機構70によって付与するトルクについて詳述する。図示において、クランク軸52が回転中心に対して時計回りに回転している。クランク軸52に設けられたボス54aには、ワイヤ56によって適宜調節されたコイルバネ53の弾性力が作用する。
[Torque fluctuation phase applied by torque leveling mechanism]
Next, the torque applied by the torque leveling mechanism 70 will be described in detail with reference to FIG. In the figure, the crankshaft 52 rotates clockwise with respect to the rotation center. The elastic force of the coil spring 53 adjusted as appropriate by the wire 56 acts on the boss 54 a provided on the crankshaft 52.
 図16(a)に示すように、クランク軸52が左側、つまりコイルバネ53による収縮力が不等速ベベルギア51の回転方向と同一方向となる側に位置する場合は、コイルバネ53の弾性力が不等速ベベルギア51の回転方向と同一方向へのトルクが発生する。そしてクランク軸52を介して不等速ベベルギア51に生じるトルクはそのまま不等速ベベルギア23bを介して植付アーム軸25に伝達される。このとき植付アーム軸25には加速側へのトルクが付与される。 As shown in FIG. 16A, when the crankshaft 52 is located on the left side, that is, on the side where the contraction force by the coil spring 53 is in the same direction as the rotation direction of the inconstant speed bevel gear 51, the elastic force of the coil spring 53 is not sufficient. Torque is generated in the same direction as the rotation direction of the constant velocity bevel gear 51. The torque generated in the non-uniform speed bevel gear 51 via the crankshaft 52 is transmitted to the planting arm shaft 25 as it is via the non-uniform speed bevel gear 23b. At this time, torque to the acceleration side is applied to the planting arm shaft 25.
 図16(b)に示すように、クランク軸52が右側、つまりコイルバネ53による収縮力が不等速ベベルギア51の回転方向と反対方向となる側に位置する場合は、コイルバネ53の弾性力が不等速ベベルギア51の回転方向と反対方向へのトルクが発生する。そしてクランク軸52を介して不等速ベベルギア51に生じるトルクはそのまま不等速ベベルギア23bを介して植付アーム軸25に伝達される。このとき植付アーム軸25には減速側へのトルクが付与される。 As shown in FIG. 16B, when the crankshaft 52 is located on the right side, that is, on the side where the contraction force by the coil spring 53 is opposite to the rotation direction of the inconstant velocity bevel gear 51, the elastic force of the coil spring 53 is not sufficient. Torque is generated in the direction opposite to the rotation direction of the constant velocity bevel gear 51. The torque generated in the non-uniform speed bevel gear 51 via the crankshaft 52 is transmitted to the planting arm shaft 25 as it is via the non-uniform speed bevel gear 23b. At this time, torque to the deceleration side is applied to the planting arm shaft 25.
 また、クランク軸52が回転運動することにより、コイルバネ53の伸縮に伴ってクランク軸52に生じる弾性力は、周期的なトルクとして植付アーム軸25に伝達される。具体的には、コイルバネ53を支持するボス54bとクランク軸52の先端部の位相、つまり、クランク軸52の回転中心に対する位置及び角度に応じて正弦曲線に近いカーブを描くように変動するトルクが発生する。 Also, as the crankshaft 52 rotates, the elastic force generated in the crankshaft 52 as the coil spring 53 expands and contracts is transmitted to the planting arm shaft 25 as a periodic torque. Specifically, the torque that varies so as to draw a curve close to a sine curve according to the phase of the tip of the boss 54b supporting the coil spring 53 and the crankshaft 52, that is, the position and angle of the crankshaft 52 with respect to the rotation center. appear.
 図17に示すように、トルク平準化機構70によって生じるトルクの周期を、不等速機構によって植付アーム軸25に生じるトルク変動の周期に合わせて、不等速機構によって生じるトルク変動を打ち消す方向に(図示においては逆位相となるように)トルク平準化機構70によるトルクを発生させる。
 このとき、クランク軸52は、植付アーム軸25の回転数の二倍で回転するため、トルク平準化機構70には植付アーム軸25が一回転する間に二周期分のトルクが生じる。つまり、トルク平準化機構70は、不等速機構を介したロータリケース12の一回転の間に発生する二回のピークを有する周期的なトルク変動を打ち消して平準化するトルクを発生させることができる。
 また、コイルバネ53の弾性力を調節することができるため、不等速機構によって発生するトルク変動の大きさに応じて、同程度の大きさのトルクを付与することができる。
 このように、トルク平準化機構70の周期を、不等速機構によるトルク変動の大きさ、及び、周期に合わせることで、トルクを合成して不等速機構に起因するトルク変動を抑えている。
As shown in FIG. 17, the direction of the torque fluctuation generated by the inconstant speed mechanism is canceled by matching the period of torque generated by the torque leveling mechanism 70 with the period of torque fluctuation generated in the planting arm shaft 25 by the inconstant speed mechanism. In addition, torque is generated by the torque leveling mechanism 70 (so as to have an opposite phase in the drawing).
At this time, since the crankshaft 52 rotates at twice the number of rotations of the planting arm shaft 25, the torque leveling mechanism 70 generates torque for two cycles while the planting arm shaft 25 rotates once. In other words, the torque leveling mechanism 70 can generate a torque that cancels out a periodic torque fluctuation having two peaks that occur during one rotation of the rotary case 12 via the inconstant speed mechanism, and equalizes the torque. it can.
In addition, since the elastic force of the coil spring 53 can be adjusted, a torque having the same magnitude can be applied in accordance with the magnitude of torque fluctuation generated by the non-uniform speed mechanism.
As described above, by adjusting the period of the torque leveling mechanism 70 to the magnitude and period of the torque fluctuation due to the inconstant speed mechanism, the torque fluctuation caused by the inconstant speed mechanism is suppressed by synthesizing the torque. .
 なお、本実施形態では、不等速機構によって生じるトルク変動に対して、逆位相の平準化トルクを付与しているが、当該トルク変動を効果的に抑制するものであれば、完全に逆の位相の平準化トルクでなくても良い。例えば、トルク変動に対して30°、45°など適宜遅角させた平準化トルクを付与することでトルク変動を打ち消すことも可能である。この場合、トルク発生機構(本実施形態ではクランク軸52及びコイルバネ53)のタイミングを変更することで適宜設定可能である。 In the present embodiment, the equalized torque in the opposite phase is applied to the torque fluctuation caused by the inconstant speed mechanism. However, if the torque fluctuation is effectively suppressed, the torque fluctuation is completely reversed. It may not be the phase leveling torque. For example, it is possible to cancel the torque fluctuation by applying a leveling torque that is appropriately delayed by 30 ° or 45 ° with respect to the torque fluctuation. In this case, it can be set as appropriate by changing the timing of the torque generating mechanism (in this embodiment, the crankshaft 52 and the coil spring 53).
 以上のように、トルク平準化機構70は、不等速機構によって生じるトルク変動の周期と同じ周期(ロータリケース12一回転で二周期)を有する滑らかなトルクを付与することで、トルク変動を平準化して、植付アーム軸25の位相のズレを改善することが可能である。その結果、植付アーム軸25が、ねじれたり、ガタついたりすることなく円滑に不等速回転でき、高速回転時の植付爪34の軌跡を安定させ、植付不良を防ぐことができる。 As described above, the torque leveling mechanism 70 equalizes torque fluctuations by applying a smooth torque having the same period (two periods for one rotation of the rotary case 12) as the period of torque fluctuations generated by the inconstant speed mechanism. Thus, the phase shift of the planting arm shaft 25 can be improved. As a result, the planting arm shaft 25 can smoothly rotate at a non-uniform speed without twisting or rattling, stabilizing the locus of the planting claw 34 during high-speed rotation, and preventing poor planting.
 図18及び図19は、トルク平準化機構70の別実施形態を示す。
 図18に示す実施形態では、コイルバネ53の一端を長穴に変形させて、植付ベベルケース11に固定された摺動部材55に固定させている。コイルバネ53の長穴の中を自在に移動できるようにボス54bを配置する。
 ワイヤ56の操作によって摺動部材55とコイルバネ53との相対的な位置関係が変わる。図18(a)に示すように、ボス54bがコイルバネ53の長穴の先端部に当たらない場合は、コイルバネ53の伸縮がなく、弾性力がゼロとなる。図18(b)が示すように、ボス54bがコイルバネ53の長穴の先端部に当たる場合に、コイルバネ53に引張力が生じて伸縮可能となる。このように、弾性力の有無を厳密に調節可能である。
18 and 19 show another embodiment of the torque leveling mechanism 70. FIG.
In the embodiment shown in FIG. 18, one end of the coil spring 53 is deformed into a long hole and fixed to the sliding member 55 fixed to the planting bevel case 11. The boss 54b is arranged so that it can freely move in the elongated hole of the coil spring 53.
The relative positional relationship between the sliding member 55 and the coil spring 53 is changed by the operation of the wire 56. As shown in FIG. 18A, when the boss 54b does not hit the tip of the elongated hole of the coil spring 53, the coil spring 53 does not expand and contract and the elastic force becomes zero. As shown in FIG. 18B, when the boss 54 b hits the tip of the elongated hole of the coil spring 53, a tensile force is generated in the coil spring 53 so that the coil spring 53 can expand and contract. In this way, the presence or absence of elastic force can be strictly adjusted.
 図19に示す実施形態では、ボス54bに換えてボール80を摺動部材55に設け、コイルバネ53をその一端の円の直径をボール80よりも小さくすることでボール80がコイルバネ53の内部に位置するように配置されている。
 ワイヤ56の操作によって摺動部材55とコイルバネ53との相対的な位置関係が変わる。図19(a)に示すように、ボール80がコイルバネ53の端部に当たらない場合は、コイルバネ53の伸縮がなく、弾性力がゼロとなる。図19(b)が示すように、ボール80がコイルバネ53の端部に当たる場合に、コイルバネ53に引張力が生じて伸縮可能となる。このように、弾性力の有無を厳密に調節可能である。
In the embodiment shown in FIG. 19, a ball 80 is provided on the sliding member 55 instead of the boss 54 b, and the diameter of the circle of one end of the coil spring 53 is made smaller than that of the ball 80, so that the ball 80 is positioned inside the coil spring 53. Are arranged to be.
The relative positional relationship between the sliding member 55 and the coil spring 53 is changed by the operation of the wire 56. As shown in FIG. 19A, when the ball 80 does not hit the end of the coil spring 53, the coil spring 53 does not expand and contract, and the elastic force becomes zero. As shown in FIG. 19B, when the ball 80 hits the end of the coil spring 53, a tensile force is generated in the coil spring 53 so that the coil 80 can expand and contract. In this way, the presence or absence of elastic force can be strictly adjusted.
 図20に示すトルク平準化機構90は、マグネットを用いて植付アーム軸25に平準化トルクを付与している。
 図20(a)に示すように植付アーム軸25の外周面にカム91を固定させる。カム91の周方向にマグネット92aを等間隔で四つ配置し、かつ、隣接するマグネット92a間で、外周側にくる磁極が逆になるように取り付ける。そして、カム91の外側にマグネット92bを固定する。
 カム91が、植付アーム軸25の回転に伴って回転することにより、マグネット92aとマグネット92bとの間に発生する磁力を利用して平準化トルクを発生させる。例えばマグネット92bの植付アーム軸25側にある磁極がS極ならば、S極が外側にあるマグネット92aが近づくときは植付アーム軸25の回転方向と逆向きのトルクが発生し、離れるときは植付アーム軸25の回転方向と同じ向きのトルクが発生する。反対に、N極が外側にあるマグネット92aが近づくときは植付アーム軸25の回転方向と同じ向きのトルクが発生し、離れるときは植付アーム軸25の回転方向と逆向きのトルクが発生する。
A torque leveling mechanism 90 shown in FIG. 20 applies a leveling torque to the planting arm shaft 25 using a magnet.
As shown in FIG. 20A, the cam 91 is fixed to the outer peripheral surface of the planting arm shaft 25. Four magnets 92a are arranged at equal intervals in the circumferential direction of the cam 91, and are attached so that the magnetic poles on the outer peripheral side are reversed between adjacent magnets 92a. Then, the magnet 92 b is fixed to the outside of the cam 91.
When the cam 91 rotates with the rotation of the planting arm shaft 25, the leveling torque is generated by using the magnetic force generated between the magnet 92a and the magnet 92b. For example, if the magnetic pole on the side of the planting arm shaft 25 of the magnet 92b is the S pole, when the magnet 92a having the S pole on the outside approaches, a torque in the direction opposite to the rotation direction of the planting arm shaft 25 is generated, and when the magnet 92a leaves. Generates torque in the same direction as the rotation direction of the planting arm shaft 25. On the other hand, when the magnet 92a with the N pole on the outside approaches, torque in the same direction as the rotation direction of the planting arm shaft 25 is generated, and when away from the magnet 92a, torque in the direction opposite to the rotation direction of the planting arm shaft 25 is generated. To do.
 したがって、マグネットを用いたトルク平準化機構90によって発生するトルク変動は、植付アーム軸25が一回転中に二回のピークを有する周期的なトルク変動となる。 Therefore, the torque fluctuation generated by the torque leveling mechanism 90 using a magnet is a periodic torque fluctuation in which the planting arm shaft 25 has two peaks during one rotation.
 また、図20(b)に示すように、カム91の外周面にマグネット92aを固定させ、カム91の外方側の周方向にマグネット92bを等間隔で四つ配置し、かつ、隣接するマグネット92b間で、内周側にくる磁極が逆になるように取り付けるといった形態をとることもできる。この場合も同様に植付アーム軸25が一回転中に二回のピークを有する周期的なトルク変動となる。
 さらに、図20(c)に示すように、マグネット92aをカム91の周方向に二つ配置し、かつ、カム91の外周側にマグネット92bを二つ配置しても良い。このとき、マグネット92aの外周側にくる磁極と、マグネット92bの内周側にくる磁極を同じにすることで、植付アーム軸25が一回転する間に二回のピークを有する周期的なトルク変動を付与することができる。
 マグネット92a・92bとして電磁石を用いて、電磁力の大きさ及びタイミングを可変とすることで、最適なトルクを付与することができる。
Further, as shown in FIG. 20B, the magnet 92a is fixed to the outer peripheral surface of the cam 91, and four magnets 92b are arranged at equal intervals in the circumferential direction on the outer side of the cam 91, and adjacent magnets. It can also take the form of attaching so that the magnetic pole which comes to the inner peripheral side may be reversed between 92b. In this case, the planting arm shaft 25 similarly has a periodic torque fluctuation having two peaks during one rotation.
Furthermore, as shown in FIG. 20C, two magnets 92 a may be arranged in the circumferential direction of the cam 91, and two magnets 92 b may be arranged on the outer peripheral side of the cam 91. At this time, by making the magnetic pole on the outer peripheral side of the magnet 92a the same as the magnetic pole on the inner peripheral side of the magnet 92b, a periodic torque having two peaks during one rotation of the planting arm shaft 25. Variations can be imparted.
By using electromagnets as the magnets 92a and 92b and making the magnitude and timing of the electromagnetic force variable, an optimum torque can be applied.
 図21から図23に示すように、トルク平準化機構は植付横軸20に設けても良い。なお、植付横軸20の回転数は、植付アーム軸25の二倍の回転数である。
 図21に示す実施形態では、植付横軸20の端部にクランク軸52を接続し、クランク軸52にコイルバネ53を接続することでトルク平準化機構50を植付横軸20に配置している。
As shown in FIGS. 21 to 23, the torque leveling mechanism may be provided on the planting horizontal shaft 20. The rotational speed of the planting horizontal shaft 20 is twice the rotational speed of the planting arm shaft 25.
In the embodiment shown in FIG. 21, the crank shaft 52 is connected to the end of the planting horizontal shaft 20, and the torque leveling mechanism 50 is arranged on the planting horizontal shaft 20 by connecting the coil spring 53 to the crank shaft 52. Yes.
 図22に示すトルク平準化機構100は、植付横軸20の中途部に固定されるカム101、カム101のカム面101aに当接して回転するローラー102、ローラー102をカム101側に付勢するコイルバネ103、及び、ローラー102とコイルバネ103を支持するアーム104を具備する。カム101のカム面101aは、一側が低く、他側が高くなるような傾斜面として形成される。アーム104の基端は、ケース内に摺動可能に収容されるとともに、先端にローラー102が設けられる。アーム104におけるローラー102との間にコイルバネ103が配置される。
 植付横軸20の回転に伴ってカム101が回転し、カム面101aに沿って回転するローラー102の位置が変わることで、コイルバネ103の長さが伸縮する。この伸縮の際に、カム101を介して植付横軸20に周期的なトルク変動が付与される。
The torque leveling mechanism 100 shown in FIG. 22 has a cam 101 fixed to the middle portion of the planting horizontal shaft 20, a roller 102 that rotates in contact with the cam surface 101 a of the cam 101, and biases the roller 102 toward the cam 101. A coil spring 103 and an arm 104 that supports the roller 102 and the coil spring 103. The cam surface 101a of the cam 101 is formed as an inclined surface with one side being low and the other side being high. The base end of the arm 104 is slidably accommodated in the case, and a roller 102 is provided at the tip. A coil spring 103 is disposed between the arm 104 and the roller 102.
The cam 101 rotates with the rotation of the planting horizontal shaft 20, and the position of the roller 102 rotating along the cam surface 101a changes, whereby the length of the coil spring 103 expands and contracts. During the expansion and contraction, periodic torque fluctuation is applied to the planting horizontal shaft 20 via the cam 101.
 図23に示すトルク平準化機構110は、植付横軸20の中途部に固定されるカム111、カム111に当接する押圧部材112、及び、押圧部材112をカム111側に付勢するコイルバネ113を具備する。カム111のカム面には大径部が一箇所形成される。コイルバネ113の基端はケース内に固定され、先端は押圧部材112に固定される。
 植付横軸20の回転に伴ってカム111が回転し、カム面の大径部によって押圧部材112を押し上げる際に、コイルバネ113の弾性力がトルク抵抗として付与される。他方、カム面の大径部を過ぎた後は、コイルバネ113の弾性力がトルクとして付与される。このように、カム111の周期に応じた周期的なトルクが付与される。
A torque leveling mechanism 110 shown in FIG. 23 includes a cam 111 fixed to the middle portion of the planting horizontal shaft 20, a pressing member 112 that contacts the cam 111, and a coil spring 113 that biases the pressing member 112 toward the cam 111. It comprises. One large diameter portion is formed on the cam surface of the cam 111. The proximal end of the coil spring 113 is fixed in the case, and the distal end is fixed to the pressing member 112.
When the cam 111 rotates with the rotation of the planting horizontal shaft 20 and the pressing member 112 is pushed up by the large diameter portion of the cam surface, the elastic force of the coil spring 113 is applied as a torque resistance. On the other hand, after passing the large diameter portion of the cam surface, the elastic force of the coil spring 113 is applied as torque. Thus, a periodic torque according to the period of the cam 111 is applied.
 図24に示すトルク平準化機構120は、ロータリケース12に設けられる二つのロータアーム軸33間を連結する連結プレート121に設けられる。 The torque leveling mechanism 120 shown in FIG. 24 is provided on a connecting plate 121 that connects two rotor arm shafts 33 provided on the rotary case 12.
 図24(a)に示すように、連結プレート121から外方側に向けて突出して設けられる二本のピン122・122は、ロータリケース12の回転中心となる植付アーム軸25を挟んで対称位置に設けられる。この二本のピン122・122を外周側から覆うリング123は、ピン122間の長さを内周の一辺とする正方形状に形成される。リング123のピン122と当接する側と反対側の辺の中央にはコイルバネ124が固定される。
 図24(b)に示すように、ロータリケース12の回転に応じてピン122も植付アーム軸25回りに回転し、リング123の内周を押し下げる。これにより、コイルバネ124が伸長し、弾性力が生じる。このように発生したコイルバネ124の弾性力は、連結プレート121及びロータリケース12を介して植付アーム軸25にトルクとして伝達される。ロータリケース12が一回転する際に、ピン122とリング123との位置関係は、コイルバネ124を伸ばす、縮める、伸ばす、縮める、の二周期で変化する。つまり、植付アーム軸25に生じるトルク変動と同周期の平準化トルクを付与することが可能である。
As shown in FIG. 24 (a), the two pins 122 and 122 that are provided to protrude outward from the connecting plate 121 are symmetrical with respect to the planting arm shaft 25 that serves as the rotation center of the rotary case 12. Provided in position. The ring 123 that covers the two pins 122 and 122 from the outer peripheral side is formed in a square shape having the length between the pins 122 as one side of the inner periphery. A coil spring 124 is fixed to the center of the side of the ring 123 opposite to the side in contact with the pin 122.
As shown in FIG. 24B, the pin 122 also rotates around the planting arm shaft 25 in accordance with the rotation of the rotary case 12, and pushes down the inner periphery of the ring 123. As a result, the coil spring 124 is extended, and an elastic force is generated. The elastic force of the coil spring 124 thus generated is transmitted as torque to the planting arm shaft 25 via the connecting plate 121 and the rotary case 12. When the rotary case 12 makes one rotation, the positional relationship between the pin 122 and the ring 123 changes in two cycles of extending, contracting, extending, and contracting the coil spring 124. That is, it is possible to apply a leveling torque having the same period as the torque fluctuation generated in the planting arm shaft 25.
 より好ましい実施形態としては、ピン122をフランジ形状にすることで、リング123との接触面積を大きくしたり、ピン122にローラーを取り付けてリング123の内周面との抵抗を低減したりすることも可能である。
 若しくは、リング123を三角形状に形成し、ピン122間を結ぶ辺と対向する頂点にコイルバネ124を固定することも可能である。三角形状とすることでコイルバネ124を安定して固定することができる。
As a more preferred embodiment, the pin 122 has a flange shape, thereby increasing the contact area with the ring 123, or attaching a roller to the pin 122 to reduce the resistance with the inner peripheral surface of the ring 123. Is also possible.
Alternatively, the ring 123 may be formed in a triangular shape, and the coil spring 124 may be fixed to the apex facing the side connecting the pins 122. With the triangular shape, the coil spring 124 can be stably fixed.
 図25に示す実施形態では、トルク平準化機構130は、植付横軸20に固定されるタイミングカム131、タイミングカム131によって設定されるタイミングで作動するソレノイド132、及び、ソレノイド132と接続され、作動電流を流すことによりソレノイド132を作動するマイクロスイッチ133を具備する。 In the embodiment shown in FIG. 25, the torque leveling mechanism 130 is connected to the timing cam 131 fixed to the planting horizontal shaft 20, the solenoid 132 that operates at the timing set by the timing cam 131, and the solenoid 132. A micro switch 133 is provided that operates the solenoid 132 by passing an operating current.
 図25(a)に示すように、タイミングカム131は、径方向に延びる段差面131aを有し、段差面131aを挟んで大径部と小径部が周方向に隣接して形成される。ソレノイド132は、マイクロスイッチ133の上方に配置され、基端部が回動可能に支持されている。マイクロスイッチ133のスイッチ部分は上部、つまりソレノイド132の下方に配置される。ソレノイド132のプランジャ132aは、タイミングカム131のカム面に沿うように配置される。
 図25(b)に示すように、ソレノイド132のプランジャ132aが段差面131aを過ぎると、大径部から小径部に落ちる。これにより、ソレノイド132が回動し、マイクロスイッチ133のスイッチ部に接触し、マイクロスイッチ133からソレノイド132に作動電流が流される。そして、ソレノイド132のプランジャ132aが段差面131aを押圧する。このようにして、タイミングカム131を介して植付横軸20にインパルストルクが付与される。
As shown in FIG. 25A, the timing cam 131 has a step surface 131a extending in the radial direction, and a large diameter portion and a small diameter portion are formed adjacent to each other in the circumferential direction across the step surface 131a. The solenoid 132 is disposed above the micro switch 133, and a base end portion is rotatably supported. The switch portion of the micro switch 133 is disposed at the top, that is, below the solenoid 132. Plunger 132 a of solenoid 132 is arranged along the cam surface of timing cam 131.
As shown in FIG. 25 (b), when the plunger 132a of the solenoid 132 passes the step surface 131a, it falls from the large diameter portion to the small diameter portion. As a result, the solenoid 132 rotates and contacts the switch portion of the micro switch 133, and an operating current flows from the micro switch 133 to the solenoid 132. Then, the plunger 132a of the solenoid 132 presses the step surface 131a. In this way, impulse torque is applied to the planting horizontal shaft 20 via the timing cam 131.
 タイミングカム131によるタイミングは、不等速機構によって生じるトルク変動における最大のトルクが発生するタイミングに設定される。これにより、最大のトルクを打ち消すようにインパルストルクを発生させている。
 以上のように、平準化トルクをインパルストルクとして付与することで、作用時間が短時間になるため、タイミングのズレが生じにくい。また、インパルストルクで回転をアシストするため、回転負荷へのブレーキとならない。さらに、トルク付与にかかる駆動力がロータリケース12の回転駆動力から独立しているため、影響を受けることがない。
 なお、植付横軸20ではなく、植付アーム軸25に設ける場合は、タイミングカム131に180°の位相差を有する段差面131aを設けることで、植付アーム軸25に生じるトルク変動の周期に合わせた平準化トルクを付与することが可能である。
The timing by the timing cam 131 is set to the timing at which the maximum torque is generated in the torque fluctuation caused by the inconstant speed mechanism. Thereby, the impulse torque is generated so as to cancel the maximum torque.
As described above, by applying the leveling torque as the impulse torque, the operation time is shortened, so that the timing shift hardly occurs. In addition, since the rotation is assisted by the impulse torque, it does not serve as a brake to the rotational load. Furthermore, since the driving force for applying the torque is independent from the rotational driving force of the rotary case 12, it is not affected.
In addition, when providing in the planting arm axis | shaft 25 instead of the planting horizontal axis | shaft 20, the period of the torque fluctuation which arises in the planting arm axis | shaft 25 by providing the level | step difference surface 131a which has a phase difference of 180 degrees in the timing cam 131. It is possible to apply a leveling torque according to the above.
 上述の実施形態における各トルク平準化機構40・50・70・90・100・110・130は、株間変更装置9の内部に含まれる不等速機構の下流側から植付アーム軸25までの範囲であれば同様に適用可能である。
 上述の実施形態における植付部5への動力伝達経路は、主にギアを用いたものであるが、植付センターケース10から分岐される動力を各植付ユニットに伝達できるものであれば、スプロケット及びチェーンを用いたチェーン駆動式のものでも同様に適用可能である。
The torque leveling mechanisms 40, 50, 70, 90, 100, 110, and 130 in the above-described embodiment are ranges from the downstream side of the inconstant speed mechanism included in the inter-stock change device 9 to the planting arm shaft 25. If so, the same applies.
The power transmission path to the planting unit 5 in the above-described embodiment is mainly a gear, but if the power branched from the planting center case 10 can be transmitted to each planting unit, A chain drive type using a sprocket and a chain is also applicable.
 本発明は、不等速機構を介して植付アームに動力を伝達する田植機に利用可能である。 The present invention is applicable to a rice transplanter that transmits power to a planting arm through an inconstant speed mechanism.
 1:田植機、5:植付部、9:株間変更装置(不等速機構)、11:植付ベベルケース、12:ロータリケース、13:植付アーム、22:植付縦軸、23a・23b:不等速ベベルギア(不等速機構)、24:ユニットクラッチ、25:植付アーム軸、40:トルク平準化機構、41:ギア、42:倍速ギア、43:クランクアーム、44:コイルバネ、45:従動軸   1: Rice transplanter, 5: Planting part, 9: Stock changer (non-uniform speed mechanism), 11: Planting bevel case, 12: Rotary case, 13: Planting arm, 22: Planting vertical axis, 23a 23b: Inconstant speed bevel gear (unconstant speed mechanism), 24: Unit clutch, 25: Planting arm shaft, 40: Torque leveling mechanism, 41: Gear, 42: Double speed gear, 43: Crank arm, 44: Coil spring, 45: Driven shaft

Claims (9)

  1.  ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、
     前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記植付アーム軸に取り付けられることを特徴とする田植機。
    A rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism,
    A rice transplanter characterized in that a torque leveling mechanism for applying torque that counteracts torque fluctuations caused by the inconstant speed mechanism is provided, and the torque leveling mechanism is attached to the planting arm shaft.
  2.  前記トルク平準化機構は、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチよりも動力伝達経路における下流側に設けられる請求項1に記載の田植機。 The rice transplanter according to claim 1, wherein the torque leveling mechanism is provided on a downstream side of a power transmission path with respect to a unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
  3.  前記トルク平準化機構は、前記植付アーム軸が設けられる植付ユニット毎に設けられる請求項1又は2に記載の田植機。 The rice transplanter according to claim 1 or 2, wherein the torque leveling mechanism is provided for each planting unit on which the planting arm shaft is provided.
  4.  前記トルク平準化機構は、クランク機構又はカム機構を含むとともに、当該クランク機構又はカム機構によって周期的に弾性力を発生させる弾性体を備える請求項1から3の何れか一項に記載の田植機。 4. The rice transplanter according to claim 1, wherein the torque leveling mechanism includes a crank mechanism or a cam mechanism, and includes an elastic body that periodically generates an elastic force by the crank mechanism or the cam mechanism. .
  5.  前記弾性体の弾性力は調節可能であり、かつ、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチの断接に連動する請求項4に記載の田植機。 The rice transplanter according to claim 4, wherein the elastic force of the elastic body is adjustable and interlocks with connection / disconnection of a unit clutch that connects / disconnects power transmission from the inconstant speed mechanism to the planting arm shaft.
  6.  前記弾性体の弾性力は、植付株数に応じて小さく又はゼロに設定される請求項5に記載の田植機。 The rice transplanter according to claim 5, wherein the elastic force of the elastic body is set to be small or zero according to the number of planted strains.
  7.  前記弾性体の弾性力は、車速または植付アーム軸の回転数に応じて調節される請求項5又は6に記載の田植機。 The rice transplanter according to claim 5 or 6, wherein the elastic force of the elastic body is adjusted according to a vehicle speed or a rotation speed of a planting arm shaft.
  8.  ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、
     前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、前記不等速機構から前記植付アーム軸への動力伝達を断接するユニットクラッチよりも動力伝達経路における下流側に設けられることを特徴とする田植機。
    A rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism,
    A torque leveling mechanism that provides torque that counteracts torque fluctuations caused by the inconstant speed mechanism is provided, and the torque leveling mechanism is a unit clutch that connects and disconnects power transmission from the inconstant speed mechanism to the planting arm shaft. A rice transplanter, which is provided downstream of the power transmission path.
  9.  ロータリケースを支持する植付アーム軸に不等速機構を介して動力を伝達する田植機であって、
     前記不等速機構によって生じるトルク変動を打ち消すトルクを付与するトルク平準化機構を設けるとともに、当該トルク平準化機構は、弾性体の弾性力を用いることを特徴とする田植機。  
    A rice transplanter that transmits power to a planting arm shaft that supports a rotary case via an inconstant speed mechanism,
    A rice transplanter characterized in that a torque leveling mechanism that provides torque that counteracts torque fluctuations caused by the inconstant speed mechanism is provided, and the torque leveling mechanism uses the elastic force of an elastic body.
PCT/JP2014/058724 2013-03-29 2014-03-27 Rice transplanter WO2014157441A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157028709A KR101812768B1 (en) 2013-03-29 2014-03-27 Rice transplater
CN201480018845.1A CN105072885B (en) 2013-03-29 2014-03-27 rice transplanter

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-075407 2013-03-29
JP2013-075405 2013-03-29
JP2013-075408 2013-03-29
JP2013075407A JP2014198027A (en) 2013-03-29 2013-03-29 Rice transplanter
JP2013075405A JP6041737B2 (en) 2013-03-29 2013-03-29 Rice transplanter
JP2013075408A JP6041739B2 (en) 2013-03-29 2013-03-29 Rice transplanter

Publications (1)

Publication Number Publication Date
WO2014157441A1 true WO2014157441A1 (en) 2014-10-02

Family

ID=51624403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058724 WO2014157441A1 (en) 2013-03-29 2014-03-27 Rice transplanter

Country Status (3)

Country Link
KR (1) KR101812768B1 (en)
CN (1) CN105072885B (en)
WO (1) WO2014157441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541706A (en) * 2015-01-08 2015-04-29 江西农业大学 Separate transplanting mechanism of hand type space adjustable rice transplanter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109892082A (en) * 2019-04-04 2019-06-18 张振华 Duplicate rows cripple's seedling rice planting rice transplanter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724972Y2 (en) * 1988-11-28 1995-06-07 ヤンマー農機株式会社 Planting unit transmission
JP2012187044A (en) * 2011-03-10 2012-10-04 Yanmar Co Ltd Seedling transplanter
JP2012196199A (en) * 2011-03-10 2012-10-18 Yanmar Co Ltd Seedling transplanter
JP2012244952A (en) * 2011-05-30 2012-12-13 Yanmar Co Ltd Seedling transplanter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833413A (en) * 1994-07-25 1996-02-06 Yanmar Agricult Equip Co Ltd Transmission mechanism giving ununiform rotation speed in transplanting part
JP2842812B2 (en) * 1995-07-17 1999-01-06 三菱農機株式会社 Counter gear
JPH10248330A (en) * 1997-03-12 1998-09-22 Iseki & Co Ltd Walking-type rice transplanter
JP4095885B2 (en) * 2002-12-02 2008-06-04 三菱農機株式会社 Transplanter
JP4991171B2 (en) * 2006-03-20 2012-08-01 ヤンマー株式会社 Rice transplanter
JP5650024B2 (en) * 2011-03-18 2015-01-07 ヤンマー株式会社 Seedling transplanter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724972Y2 (en) * 1988-11-28 1995-06-07 ヤンマー農機株式会社 Planting unit transmission
JP2012187044A (en) * 2011-03-10 2012-10-04 Yanmar Co Ltd Seedling transplanter
JP2012196199A (en) * 2011-03-10 2012-10-18 Yanmar Co Ltd Seedling transplanter
JP2012244952A (en) * 2011-05-30 2012-12-13 Yanmar Co Ltd Seedling transplanter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541706A (en) * 2015-01-08 2015-04-29 江西农业大学 Separate transplanting mechanism of hand type space adjustable rice transplanter
CN104541706B (en) * 2015-01-08 2016-08-17 江西农业大学 The transplanting mechanism of hand-held line-spacing is adjustable rice transplanter

Also Published As

Publication number Publication date
KR20150127706A (en) 2015-11-17
CN105072885B (en) 2017-09-29
CN105072885A (en) 2015-11-18
KR101812768B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
CN105579726B (en) Assembly with friction device
JP5814084B2 (en) Seedling transplanter
JP6250869B2 (en) Planting mechanism of new rice transplanter with wide-narrow planting interval
WO2020117826A1 (en) A multi-input, multi-output actuator and assemblies using same
WO2014157441A1 (en) Rice transplanter
JP5628638B2 (en) Rice transplanter
CN104904394B (en) Telescopic arm type seedling planting mechanism
CN100409736C (en) Differential driving sprit transplanting mechanism of step rice transplanter
JP2009072112A (en) Transplanter
JP6041737B2 (en) Rice transplanter
JP6041739B2 (en) Rice transplanter
CN105746059A (en) Concave tooth-incomplete eccentric circle-non-circular gear planetary system vegetable seedling taking mechanism
CN105638055A (en) Combined incompletely eccentrically circular and non-circular gear planetary train vegetable seedling pick-up mechanism
JP2014198027A (en) Rice transplanter
JP5650024B2 (en) Seedling transplanter
JP6041738B2 (en) Rice transplanter
JP6124741B2 (en) Rice transplanter
WO2015033945A1 (en) Rice planting machine
JP6002605B2 (en) Continuously variable transmission
EP3090194B1 (en) Variable stiffness actuator
CN105451538A (en) Rice transplanter
JP6232233B2 (en) Rice transplanter
CN105090444A (en) Continuously variable transmission
JP2017042121A (en) Planting implement
JP6320234B2 (en) Rice transplanter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018845.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028709

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14773457

Country of ref document: EP

Kind code of ref document: A1