WO2014157276A1 - Motive-power transmission device - Google Patents

Motive-power transmission device Download PDF

Info

Publication number
WO2014157276A1
WO2014157276A1 PCT/JP2014/058418 JP2014058418W WO2014157276A1 WO 2014157276 A1 WO2014157276 A1 WO 2014157276A1 JP 2014058418 W JP2014058418 W JP 2014058418W WO 2014157276 A1 WO2014157276 A1 WO 2014157276A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
hub
rotating member
ring plate
transmission device
Prior art date
Application number
PCT/JP2014/058418
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 基
義弘 黒須
貴浩 神沢
Original Assignee
小倉クラッチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小倉クラッチ株式会社 filed Critical 小倉クラッチ株式会社
Priority to JP2015508574A priority Critical patent/JP6255387B2/en
Priority to CN201480019902.8A priority patent/CN105121885B/en
Publication of WO2014157276A1 publication Critical patent/WO2014157276A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D7/00Slip couplings, e.g. slipping on overload, for absorbing shock
    • F16D7/02Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type
    • F16D7/021Slip couplings, e.g. slipping on overload, for absorbing shock of the friction type with radially applied torque-limiting friction surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D9/00Couplings with safety member for disconnecting, e.g. breaking or melting member

Definitions

  • the present invention relates to a power transmission device. More specifically, the present invention relates to a power transmission system in which power transmission is interrupted when the load torque of the driven side rotating body increases.
  • Patent Document 1 As a conventional power transmission device of this type, there is, for example, one described in Patent Document 1.
  • the power transmission device disclosed in Patent Document 1 includes a pulley as a drive-side rotation member to which power is transmitted from a power source via a belt, and a driven-side rotation member connected to the pulley via a transmission mechanism. It is equipped with a hub.
  • the pulley is rotatably supported by the housing of the compressor via a bearing.
  • the hub is mounted to rotate integrally with the tip of the rotary shaft of the compressor.
  • the transmission mechanism is press-fitted to the outer circumferential surface of the first tubular metal and the first tubular metal fixed to the outer circumferential surface of the circular tubular rubber, the first tubular metal fixed to the outer circumferential surface of the circular tubular rubber. And a combined second tubular metal.
  • the second tubular metal is fixed to the pulley.
  • the rotation of the pulley is transmitted to the hub via the transmission mechanism.
  • the first tubular metal slips relative to the second tubular metal, and this slip generates frictional heat. This heat is transferred to the tubular rubber via the first tubular metal. Then, the temperature of the bonding portion between the inner circumferential surface of the first circular tubular metal and the outer circumferential surface of the circular rubber increases, and the circular bonding rubber is separated from the first circular tubular metal by breaking. Power transmission is cut off.
  • the present invention has been made to solve such a problem, and it is an object of the present invention to provide a power transmission system in which power transmission is interrupted in a short time after the load torque of the driven side rotating body increases.
  • a power transmission apparatus comprises a drive-side rotating body connected to and driven by a power source, and a driven-side rotating body located coaxially with the drive-side rotating body.
  • a first rotation member provided on one of the drive-side rotation body and the driven-side rotation body, and integrally rotating on the same axis as the rotation body, and a rotation direction of the first rotation member
  • a second rotary member which is movably disposed in the second direction and is separably fitted by being moved in a direction parallel to the rotation axis; and the second rotary member comprises the drive side rotary body and the driven side rotary body
  • An elastic member coupled to the other rotating body so as to be integrally rotatable on the same axis, and urging the first rotating member in a direction parallel to the axis of rotation;
  • the load of the driven side rotating body has a predetermined threshold value.
  • the load on the driven-side rotation body is equal to or more than the threshold value. Is rotated with respect to the first rotating member against the frictional force and moved in a direction parallel to the rotation axis with respect to the first rotating member by a spring force of the elastic member. It is separated from the rotating member of
  • the magnitude of the load of the driven-side device connected to the driven-side rotating body becomes equal to or greater than a predetermined threshold, and the fitting portion between the first rotating member and the second rotating member When the slip occurs, the first rotating member and the second rotating member are forcibly separated by the spring force of the elastic member. That is, the power transmission device does not have to heat the parts with frictional heat to shut off the power transmission, and can shut off the power transmission immediately after the slip occurs. Therefore, according to the present invention, it is possible to provide a power transmission device in which power transmission is interrupted in a short time after the load torque of the driven side rotating body is increased.
  • FIG. 1 is a front view of a power transmission device according to a first embodiment.
  • FIG. 1 is drawn in a state where power is transmitted.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a front view of a ring plate as a second rotating member.
  • FIG. 4 is a front view of the power transmission device according to the first embodiment.
  • FIG. 4 is drawn in the state where the power transmission is cut off.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • FIG. 6A is an enlarged sectional view showing a part of the fitting portion between the first rotation member and the second rotation member according to the second embodiment.
  • FIG. 6A shows a case where a part of the second rotating member protrudes in a direction away from the compressor with respect to the first rotating member.
  • FIG. 6B is an enlarged cross-sectional view showing a part of the fitting portion between the first rotating member and the second rotating member according to the second embodiment.
  • FIG. 6B shows the case where a part of the second rotating member protrudes in a direction approaching the compressor with respect to the first rotating member.
  • FIG. 6C is an enlarged sectional view showing a part of the fitting portion between the first rotation member and the second rotation member according to the second embodiment.
  • FIG. 6C shows a state in which the entire area of the second rotating member is engaged with the first rotating member.
  • FIG. 7 is an enlarged front view showing a part of the second rotation member according to the third embodiment.
  • FIG. 8 is a front view of a power transmission device according to a fourth embodiment.
  • FIG. 8 is drawn in a state where power is transmitted.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a front view of a ring plate as a second rotating member.
  • FIG. 11 is a front view of a hub as a first rotating member.
  • FIG. 12 is a front view of a power transmission device according to a fourth embodiment.
  • FIG. 12 is drawn in the state where the power transmission is cut off.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • the power transmission 1 shown in FIG. 1 has the following two functions.
  • the first function is to transmit the power of the automobile engine (not shown) to the compressor 2 for a car air conditioner shown in FIG.
  • the second function is a function of a torque limiter that shuts off power transmission when an overload occurs on the rotary shaft 3 of the compressor 2.
  • the automobile engine corresponds to the "power source" in the present invention.
  • the power of the automobile engine is transmitted to the pulley 4 of the power transmission 1 via a belt (not shown).
  • the pulley 4 is, as shown in FIG. 2, a cylindrical belt hooking portion 6 having a groove 5 around which the belt is wound, an inner cylindrical portion 7 positioned inside the belt hooking portion 6, and both of them. It is comprised by the intermediate part 8 which connects parts.
  • the belt hooking portion 6, the inner cylindrical portion 7 and the middle portion 8 are integrally formed of plastic material by integral molding.
  • the inner cylindrical portion 7 is rotatably supported by the housing 2 a of the compressor 2 via a bearing 9.
  • the pulley 4 is positioned on the same axis as the rotation shaft 3.
  • the “driven side rotating body” in the present invention is constituted by the rotating shaft 3
  • the “drive side rotating body” in the present invention is constituted by the pulley 4.
  • a hub 11 is attached to an end of the rotary shaft 3.
  • the hub 11 corresponds to the "first rotating member" in the present invention.
  • the hub 11 is formed by processing a material made of hot rolled mild steel plate (SPHC) into a predetermined shape.
  • SPHC hot rolled mild steel plate
  • the hub 11 according to this embodiment includes a boss 11a fixed to the axial end of the rotary shaft 3 and a connecting portion 11b projecting radially outward from the axial tip of the boss 11a. ing.
  • the connecting portion 11 b according to this embodiment is formed in a triangular shape as viewed from the axial direction of the hub 11.
  • Outer peripheral walls 14 having arc-shaped wall surfaces as viewed in the axial direction are respectively formed at three apexes of the connecting portion 11 b. These outer peripheral walls 14 are provided at positions dividing the rotation direction of the hub 11 into three equal parts.
  • the wall surface of the outer peripheral wall 14 extends in the rotation direction of the hub 11 and in the axial direction of the hub 11 (a direction parallel to the rotation axis).
  • the thickness of the outer peripheral wall 14 is formed to a predetermined thickness.
  • a flat portion 15 is formed between the three tops of the connecting portion 11b.
  • the flat portion 15 is formed by a flat surface extending in the axial direction of the hub 11.
  • the flat portion 15 constitutes a "non-fitting portion" as referred to in the second aspect of the invention.
  • the ring plate 12 is formed by punching a material made of cold-rolled steel plate (SPCC) into a predetermined shape by press working.
  • the ring plate 12 constitutes a "second rotating member" in the present invention.
  • the ring plate 12 is constituted by a disc portion 12a in which a hole 13 is formed in an axial center portion, and three flange portions 12b projecting outward in the radial direction from three places in the circumferential direction of the disc portion 12a There is.
  • These flange portions 12 b are provided at positions dividing the circumferential direction of the disc portion 12 a into three equal parts, and are connected to the pulleys 4 via leaf springs 16 described later. That is, power is transmitted from the pulley 4 to the ring plate 12 through the plate spring 16, and the ring plate 12 rotates integrally with the pulley 4.
  • the disk portion 12a is formed with a plurality of elongated holes 12c extending in the circumferential direction. These long holes 12c are positioned in the region between the three flange portions 12b in the disc portion 12a.
  • the holes 13 of the ring plate 12 are composed of three inner peripheral walls 17 adjacent to the elongated holes 12 c and a recess 18 formed such that the diameter of the holes is expanded between the inner peripheral walls 17.
  • the wall surface of the inner peripheral wall 17 extends in a direction parallel to the rotational direction and the rotation axis of the hub 11 and is formed in a shape in which the outer peripheral wall 14 of the hub 11 is fitted.
  • the length in the rotational direction of the outer peripheral wall 14 of the hub 11 is shorter than the length in the rotational direction of the recess 18.
  • the length of the wall surface of the inner peripheral wall 17 in the direction parallel to the rotation axis is substantially equal to the length of the wall surface of the outer peripheral wall 14 in the direction parallel to the rotation axis. That is, the ring plate 12 is detachably engaged with the hub 11 by being movable in the rotational direction and moving in a direction parallel to the rotation axis. The power transmitted from the pulley 4 to the ring plate 12 is transmitted to the hub 11 via the fitting portion 21.
  • the hub 11 and the ring plate 12 are fitted by shrink fitting in order to prevent the fitting surface from being damaged by the galling caused by the contact of the two members.
  • the frictional force (pressure contact force) of the fitting portion 21 becomes unnecessarily high.
  • the ring plate 12 according to this embodiment is heated and expanded, and is fitted to the hub 11 in a state where the inner diameter of the hole 13 is expanded. This fitting is performed by fitting the outer peripheral wall 14 of the hub 11 to the inner peripheral wall 17 of the ring plate 12.
  • the flat portion 15 of the hub 11 does not contact the ring plate 12 in order to face the recess 18 of the ring plate 12 in this fitted state.
  • the temperature of the ring plate 12 returns to normal temperature, and the ring plate 12 contracts to the initial size, whereby the outer peripheral wall 14 of the hub 11 and the inner peripheral wall 17 of the ring plate 12 are coupled in a fitted state Ru.
  • Surface treatment such as cation coating is applied to the surfaces of the hub 11 and the ring plate 12 integrally coupled in this manner.
  • fitting with the ring plate 12 and the hub 11 can be performed by cold fitting other than the above-mentioned shrink fitting. This cold fitting is performed by fitting the outer peripheral wall 14 to the inner peripheral wall 17 of the ring plate 12 in a state in which the hub 11 is cooled and the outer diameter of the connecting portion 11 b of the hub 11 is reduced.
  • the fitting portion 21 between the ring plate 12 and the hub 11 is configured to generate a frictional force (pressure contact force) of a predetermined size when the hub 11 moves relative to the ring plate 12 There is.
  • the magnitude of this frictional force is set to a size that can restrict the movement of the ring plate 12 with respect to the hub 11 when the load of the rotary shaft 3 of the compressor 2 is smaller than a predetermined threshold. Further, the magnitude of the frictional force is set such that the ring plate 12 rotates relative to the hub 11 against the frictional force when the load of the rotary shaft 3 is equal to or greater than the threshold.
  • the threshold corresponds to the value of the load when an overload occurs in the compressor 2.
  • the three plate springs 16 attached to the flange portion 12b of the ring plate 12 have a function of supporting the ring plate 12 on the pulley 4 and a function of urging the ring plate 12 in a direction parallel to the rotation axis as described later. And.
  • These leaf springs 16 are formed in a thin strip by a spring material.
  • a ring plate side attachment portion 16 a which is an end portion on the ring plate 12 side of the plate spring 16, is fixed to the flange portion 12 b by a rivet 22.
  • the pulley side attachment portion 16 b, which is the other end of the plate spring 16, is fixed to the intermediate portion 8 of the pulley 4 by a tapping screw 23.
  • These leaf springs 16 rotatably connect the ring plate 12 to the pulley 4 on the same axis.
  • the middle portion 8 of the pulley 4 is, as shown in FIG. 2, the connection portion 11b of the hub 11 and the housing 2a of the compressor 2 in the axial direction (left and right direction in FIG. 2) of the rotary shaft 3. It is positioned between For this reason, the plate spring 16 is attached to the ring plate 12 and the pulley 4 in a state of being elastically deformed in the axial direction.
  • the plate spring 16 is elastically deformed in a state where both ends are pulled, and the ring plate 12 is urged in the axial direction (direction parallel to the rotation axis) with respect to the hub 11 by an elastic return force (spring force).
  • the direction in which the leaf spring 16 according to this embodiment biases the ring plate 12 is the left direction in FIG. 2 and the direction in which the ring plate 12 approaches the housing 2 a of the compressor 2.
  • the power of the automobile engine is transmitted to the pulley 4 through the belt and transmitted from the pulley 4 to the ring plate 12 through the plate spring 16.
  • the ring plate 12, the hub 11 and the rotating shaft 3 rotate integrally.
  • the compressor 2 is driven by the power of the engine.
  • the ring plate 12 rotates (slip) against the hub 11 against the frictional force generated in the fitting portion 21.
  • the inner circumferential wall 17 of the ring plate 12 rotates with respect to the outer circumferential wall 14 of the hub 11. Further, at this time, the inner peripheral wall 17 is displaced in the axial direction with respect to the outer peripheral wall 14 while slightly by the spring force of the plate spring 16.
  • the power transmission device 1 does not have to heat the parts with frictional heat to shut off the power transmission, and can shut off the power transmission immediately after the slip occurs.
  • the hub 11 and the ring plate 12 according to this embodiment are fitted by shrink fitting or cold fitting. Therefore, the fitting surface of the hub 11 and the fitting surface of the ring plate 12 are fitted without damage.
  • the hub 11 and the ring plate 12 are press-fit and fitted with a press, so-called “gage” tends to occur on the fitting surface (surface to be fitted by press-fitting).
  • galling occurs on the fitting surface, the pressure contact force of the fitting portion 21, that is, the frictional force when one rotating member is displaced in the rotating direction with respect to the other rotating member in the fitting portion 21 becomes larger than necessary.
  • the power transmission device 1 when the pressing force increases, the power transmission can not be interrupted unless the magnitude of the load is larger than the design value, and the timing of the interruption of the power transmission may be delayed.
  • the magnitude of the load when the power transmission is interrupted is as designed. Therefore, according to this embodiment, the reliability of the maximum value of the torque that can be transmitted without operating the torque limiter, that is, the limit value of the transmission torque referred to as so-called blocking torque or limit torque is enhanced, and power of high quality is obtained.
  • a transmission device can be provided.
  • the plate spring 16 according to this embodiment is provided between the ring plate 12 and the pulley 4 in a state of being pulled and elastically deformed.
  • the present invention is not bound by such limitations. That is, the leaf spring 16 can be provided between the ring plate 12 and the pulley 4 in a compressed state. When this configuration is applied to the power transmission 1 described above, the ring plate 12 is displaced in a direction away from the pulley 4 after being separated from the hub 11.
  • a coating for surface protection can be applied to the wall surface of the outer peripheral wall 14 of the hub 11 and the wall surface of the inner peripheral wall 17 of the ring plate 12.
  • these wall surfaces can also be treated to increase the hardness.
  • the coating process and the curing process are applied to the wall surface, thereby reducing the occurrence of metal-to-metal scuffing when the ring plate 12 is separated from the hub 11. As a result, it is possible to set the size of the load when the power transmission is interrupted with higher accuracy.
  • the mounting position of the ring plate 12 can be changed to a position biased to one or the other in the axial direction of the hub 11, as shown in FIGS. 6A and 6B.
  • FIGS. 6A and 6B the same or equivalent members as or to those described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
  • the ring plate 12 shown in FIG. 6A is offset with respect to the outer peripheral wall 14 of the hub 11 in a direction away from the housing 2a of the compressor 2 (not shown) (in the right direction in the figure). Further, the ring plate 12 is biased in the direction (the direction indicated by the arrow R in the figure) separated from the housing 2a by the spring force of a plate spring 16 (not shown). An end 17 a of the inner peripheral wall 17 of the ring plate 12 opposite to the housing 2 a protrudes from the connecting portion 11 b of the hub 11 in the axial direction. The corner portion P located at the tip of the inner peripheral edge of the inner peripheral wall 17 in the direction indicated by the arrow R is not fitted to the outer peripheral wall 14 of the hub 11.
  • the ring plate 12 shown in FIG. 6B is offset from the outer peripheral wall 14 of the hub 11 in the direction (left direction in FIG. 6) close to the housing 2 a of the compressor 2. Further, the ring plate 12 is biased in the direction approaching the housing 2a (in the direction indicated by the arrow R in the figure) by the spring force of a plate spring 16 (not shown). An end 17a of the inner peripheral wall 17 of the ring plate 12 adjacent to the housing 2a protrudes from the connecting portion 11b of the hub 11 in the axial direction. The corner portion P located at the tip of the inner peripheral edge of the inner peripheral wall 17 in the direction indicated by the arrow R is not fitted to the outer peripheral wall 14 of the hub 11.
  • the leaf spring 16 urges the radially outer end of the ring plate 12 in the axial direction. Therefore, as shown in FIG. 6C, in a state in which the entire area of the inner peripheral wall 17 is fitted to the outer peripheral wall 14 of the hub 11, the ring plate 12 is loaded so that the corner portion P becomes a fulcrum 16 spring force). In this case, the surface pressure of the fitting portion between the portion around the corner portion P in the inner circumferential wall 17 and the outer peripheral wall 14 is higher than that of the other fitting portions.
  • galling is likely to occur at the contact portion between the corner portion P and the outer peripheral wall 14.
  • the ring plate 12 can be formed thin except for the end portion 17a located on the protruding side from the alternate long and short dash line L shown in FIGS. 6A and 6B.
  • FIG. 7 in order to increase the pressure contact force of the fitting portion 21, the configuration shown in FIG. 7 can be employed.
  • the same or equivalent members as or to those described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
  • These projections 31 are formed in a mountain shape in cross section by knurling the inner peripheral wall 17.
  • these projections 31 are pressed against the outer peripheral wall 14 of the hub 11 by shrink fitting or cold fitting, the gaps between the protrusions 31 and the outer peripheral wall 14 are filled by so-called plastic flow of metal.
  • plastic flow of metal As a result, the contact area between the ring plate 12 and the hub 11 is increased, and the pressing force is increased.
  • the power transmission device according to the present invention can be configured as shown in FIG. 8 to FIG.
  • FIGS. 8 to 13 in these drawings, the same or equivalent members as or to those described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
  • the hub 11 of the power transmission device 41 shown in FIG. 8 is formed in a predetermined shape by a powder alloy (sintered alloy).
  • the powder alloy is formed by pressing and sintering metal powder.
  • the boss 11a of the hub 11 is connected to the rotary shaft 3 so as to be integrally rotated by spline fitting, and is fixed by a fixing bolt 42 located at the axial center. ing.
  • the fixing bolt 42 penetrates the axial center portion of the hub 11 and is screwed into the screw hole 3 a of the rotating shaft 3.
  • the hub 11 constitutes the “first rotary member” in the present invention
  • the ring plate 12 constitutes the “second rotary member” in the present invention.
  • the connecting portion 11b of the hub 11 is formed in a disk shape as shown in FIGS.
  • the connecting portion 11 b has three engaging grooves 43, a plurality of outer peripheral walls 14, and a non-fitting portion 44.
  • the thickness of the connection portion 11 b is formed thicker than the thickness of the ring plate 12 as shown in FIG. 9.
  • the engagement groove 43 is formed at a position that divides the outer peripheral portion of the connection portion 11 b into three equal parts in the circumferential direction.
  • the engagement grooves 43 are formed to be engageable with the jig 45 (see FIG. 9).
  • the "engagement portion" in the invention according to claim 3 is constituted by the engagement groove 43.
  • the jig 45 engaged with the engagement groove 43 is at least one jig of a tightening jig and a disassembling jig.
  • the fastening jig is used when the hub 11 is fixed to the rotating shaft 3 by the fixing bolt 42.
  • the clamping jig has an arm 45 a inserted into the engagement groove 43 and engaged with the hub 11.
  • the hub 11 is restricted by pressing the hub 11 with this tightening jig, whereby the rotation of the hub 11 is restricted.
  • the disassembly jig is used to pull out the hub 11 from the rotating shaft 3.
  • the disassembling jig is inserted into the engagement groove 43 and is inserted into the through hole of the hub 11 generated by the arm 45a engaging with the hub 11 and the fixing bolt 42 being pulled out, and pushes the rotating shaft 3 And a bolt (not shown).
  • the plurality of outer peripheral walls 14 of the hub 11 are located between the engagement grooves 43 described above.
  • the non-fitting portion 44 is formed between the outer peripheral walls 14 so that the outer diameter of the connecting portion 11 b is smaller.
  • the outer peripheral wall 14 is formed in a trapezoidal shape projecting outward in the radial direction of the connecting portion 11b when viewed from the axial direction of the boss portion 11a.
  • the outer peripheral walls 14 are provided at three locations between the two engaging grooves 43 so as to be separated from each other at a predetermined interval in the circumferential direction of the hub 11.
  • the inner peripheral wall 17 of the ring plate 12 with which the outer peripheral wall 14 is fitted is formed in a trapezoidal shape projecting toward the center of the hole 13 as shown in FIG. It is arranged.
  • the ring plate 12 according to this embodiment is formed of carbon tool steel material (SK material).
  • the fitting of the outer peripheral wall 14 and the inner peripheral wall 17 can be performed by shrink fitting or cold fitting, as in the first embodiment.
  • the ring plate 12 is biased by the plate spring 16 in a direction away from the compressor 2. That is, the ring plate side attachment portion 16 a of the plate spring 16 is attached to the ring plate 12 in a state of being elastically deformed in a direction approaching the compressor 2. The plate spring 16 urges the rotating shaft 3 in the direction of pulling it out of the housing 2 a of the compressor 2. Therefore, the power transmission device 41 according to this embodiment has a so-called shaft tension specification.
  • the pulley side attachment portion 16 b of the plate spring 16 is attached to a nut member 46 embedded in the pulley 4 by an attachment screw 47.
  • the ring plate 12 resists the friction force generated in the fitting portion 21 against the hub 11. Rotate (slip). When slippage occurs in this manner, in the contact portion between the hub 11 and the ring plate 12, the metals may rub against each other and one metal may be scraped by the other metal. When the hub 11 made of powder alloy is scraped, the swarf becomes powdery rather than connected swarf.
  • the power transmission device 41 shown in this embodiment includes a hub 11 formed of a powder alloy.
  • the power transmission device 41 can include a hub 11 formed of hot-rolled mild steel plate (SPHC) and a ring plate 12 formed of a powder alloy.
  • the power transmission device 41 can also include the hub 11 and the ring plate 12 formed of a powder alloy.
  • the hub 11 and the ring plate 12 can be formed of a powder alloy.
  • the ring plate 12 is moved from the hub 11 by the outer peripheral wall 14 of the hub 11 entering the recess 18 formed in the hole 13 of the ring plate 12. It is configured to be separated.
  • the present invention is not bound by such limitations. That is, the opening shape of the holes 13 of the ring plate 12 can be formed circular.
  • the ring plate 12 is moved in the axial direction against the frictional force by the spring force of the plate spring 16 in a state where the slip is generated in the fitting portion 21 and the frictional force is reduced, and the ring plate 12 is separated from the hub 11 Do.
  • the rotary shaft 3 can be used as a drive side rotating body, and the pulley 4 can be configured as a driven side rotating body. That is, the present invention can adopt a configuration in which power is transmitted from the hub 11 to the ring plate 12.

Abstract

Provided are a pulley (4) connected to a motive power source, and a rotating shaft positioned coaxially with respect to the pulley (4). Also provided are a hub (11) provided to the rotating shaft, and a ring plate (12) separably mated to the hub (11). Also provided is a leaf spring (16) for urging the ring plate (12) toward the hub (11) in the direction parallel to the axis of rotation. When the load on the rotating shaft is below a threshold, the hub (11) and ring plate (12) are caused to rotate as a single entity due to friction. When the load on the rotating shaft is equal to or higher than a threshold, the ring plate (12) rotates in relative fashion with respect to the hub (11) and moves parallel to the axis of rotation due to the spring force of the leaf spring (16), so that the ring plate (12) and the hub (11) separate. It is possible to provide a power transmission device in which power transmission is quickly interrupted after the load torque on a driven-side rotating element has increased.

Description

動力伝達装置Power transmission
 本発明は、動力伝達装置に関する。より具体的には、本発明は、従動側回転体の負荷トルクが増大したとき動力伝達が遮断される動力伝達装置に関するものである。 The present invention relates to a power transmission device. More specifically, the present invention relates to a power transmission system in which power transmission is interrupted when the load torque of the driven side rotating body increases.
 従来のこの種の動力伝達装置としては、例えば特許文献1に記載されているものがある。特許文献1に開示された動力伝達装置は、動力源から動力がベルトを介して伝達される駆動側回転部材としてのプーリと、このプーリに伝動機構を介して連結された従動側回転部材としてのハブとを備えている。プーリは、圧縮機のハウジングに軸受を介して回転自在に支持されている。ハブは、圧縮機の回転軸の先端部に一体に回転するように装着されている。 As a conventional power transmission device of this type, there is, for example, one described in Patent Document 1. The power transmission device disclosed in Patent Document 1 includes a pulley as a drive-side rotation member to which power is transmitted from a power source via a belt, and a driven-side rotation member connected to the pulley via a transmission mechanism. It is equipped with a hub. The pulley is rotatably supported by the housing of the compressor via a bearing. The hub is mounted to rotate integrally with the tip of the rotary shaft of the compressor.
 伝動機構は、ハブの外周面に固着された円管状ゴムと、この円管状ゴムの外周面に固着された第1の円管状金属と、この第1の円管状金属の外周面に圧入により嵌合された第2の円管状金属とを備えている。第2の円管状金属は、プーリに固定されている。 The transmission mechanism is press-fitted to the outer circumferential surface of the first tubular metal and the first tubular metal fixed to the outer circumferential surface of the circular tubular rubber, the first tubular metal fixed to the outer circumferential surface of the circular tubular rubber. And a combined second tubular metal. The second tubular metal is fixed to the pulley.
 この動力伝達装置においては、プーリの回転が伝動機構を介してハブに伝達される。この動力伝達状態において、圧縮機の回転軸に過負荷が発生すると、第2の円管状金属に対して第1の円管状金属がスリップし、このスリップにより摩擦熱が発生する。この熱は、第1の円管状金属を介して円管状ゴムに伝達される。そして、第1の円管状金属の内周面と円管状ゴムの外周面との固着部分の温度が上昇し、この固着部分が破断することにより、円管状ゴムが第1の円管状金属から分離して動力伝達が遮断される。 In this power transmission device, the rotation of the pulley is transmitted to the hub via the transmission mechanism. In this power transmission state, when an overload occurs on the rotary shaft of the compressor, the first tubular metal slips relative to the second tubular metal, and this slip generates frictional heat. This heat is transferred to the tubular rubber via the first tubular metal. Then, the temperature of the bonding portion between the inner circumferential surface of the first circular tubular metal and the outer circumferential surface of the circular rubber increases, and the circular bonding rubber is separated from the first circular tubular metal by breaking. Power transmission is cut off.
特開2001-173674号公報JP, 2001-173674, A
 上述した従来の動力伝達装置は、圧縮機に何らかの異常が生じて負荷トルクが増大した後に複数のステップを経て動力伝達が遮断されるものである。これらの複数のステップとは、第1の円管状金属が第2の円管状金属に対してスリップすることにより摩擦熱が発生するステップと、この摩擦熱が第1の円管状金属を介して円管状ゴムの固着部分に伝達されるステップと、固着部分の温度が上昇して円管状ゴムが破断されるステップである。
 このため、従来の動力伝達装置では、圧縮機に過負荷が発生してから動力伝達が遮断されるまでの所要時間が長くなるという問題があった。圧縮機に過負荷が生じている状態で動力伝達が長時間にわたって継続されると、プーリに巻き掛けられているベルトが損傷してしまう。
In the conventional power transmission device described above, power transmission is interrupted through a plurality of steps after the load torque is increased due to some abnormality in the compressor. The plurality of steps are steps of generating frictional heat by the first tubular metal slipping with respect to the second circular tubular metal, and the frictional heat generates a circle through the first tubular metal. The steps of transferring to the fixing portion of the tubular rubber and the steps of increasing the temperature of the fixing portion and breaking the circular rubber.
For this reason, in the conventional power transmission device, there is a problem that the time required from the occurrence of overload in the compressor to the interruption of the power transmission becomes long. If power transmission continues for a long time while the compressor is overloaded, the belt wound around the pulleys will be damaged.
 本発明はこのような問題を解消するためになされたもので、従動側回転体の負荷トルクが増大した後に短時間で動力伝達が遮断される動力伝達装置を提供することを目的とする。 The present invention has been made to solve such a problem, and it is an object of the present invention to provide a power transmission system in which power transmission is interrupted in a short time after the load torque of the driven side rotating body increases.
 この目的を達成するために、本発明に係る動力伝達装置は、動力源に接続されて駆動される駆動側回転体と、この駆動側回転体と同一軸線上に位置する従動側回転体と、前記駆動側回転体と前記従動側回転体とのうち一方の回転体に設けられ、この回転体と同一軸線上で一体に回転する第1の回転部材と、前記第1の回転部材に回転方向へ移動可能にかつ回転軸線と平行な方向へ移動することにより分離可能に嵌合された第2の回転部材と、前記第2の回転部材を前記駆動側回転体と前記従動側回転体とのうち他方の回転体に同一軸線上で一体に回転可能に連結するとともに、前記第1の回転部材に対して前記回転軸線と平行な方向に付勢する弾性部材とを備え、前記第2の回転部材は、前記従動側回転体の負荷の大きさが予め定めた閾値より小さい場合は、前記第1の回転部材との嵌合部に生じる摩擦力によって前記第1の回転部材と一体に回転し、前記従動側回転体の負荷の大きさが前記閾値以上である場合は、前記摩擦力に抗して前記第1の回転部材に対して回転するとともに前記弾性部材のばね力で第1の回転部材に対して前記回転軸線と平行な方向へ移動して前記第1の回転部材から分離されるものである。 In order to achieve this object, a power transmission apparatus according to the present invention comprises a drive-side rotating body connected to and driven by a power source, and a driven-side rotating body located coaxially with the drive-side rotating body. A first rotation member provided on one of the drive-side rotation body and the driven-side rotation body, and integrally rotating on the same axis as the rotation body, and a rotation direction of the first rotation member A second rotary member which is movably disposed in the second direction and is separably fitted by being moved in a direction parallel to the rotation axis; and the second rotary member comprises the drive side rotary body and the driven side rotary body An elastic member coupled to the other rotating body so as to be integrally rotatable on the same axis, and urging the first rotating member in a direction parallel to the axis of rotation; In the member, the load of the driven side rotating body has a predetermined threshold value. In the case where the load is smaller than the first rotation member, the load on the driven-side rotation body is equal to or more than the threshold value. Is rotated with respect to the first rotating member against the frictional force and moved in a direction parallel to the rotation axis with respect to the first rotating member by a spring force of the elastic member. It is separated from the rotating member of
 本発明に係る動力伝達装置は、従動側回転体に接続された従動側装置の負荷の大きさが予め定めた閾値以上になり、第1の回転部材と第2の回転部材との嵌合部にスリップが発生すると、第1の回転部材と第2の回転部材とが弾性部材のばね力で強制的に分離される。すなわち、この動力伝達装置は、動力伝達を遮断するに当たって摩擦熱で部品を加熱する必要はなく、スリップが発生した直後に動力伝達を遮断できるものである。
 したがって、本発明によれば、従動側回転体の負荷トルクが増大した後に短時間で動力伝達が遮断される動力伝達装置を提供することができる。
In the power transmission device according to the present invention, the magnitude of the load of the driven-side device connected to the driven-side rotating body becomes equal to or greater than a predetermined threshold, and the fitting portion between the first rotating member and the second rotating member When the slip occurs, the first rotating member and the second rotating member are forcibly separated by the spring force of the elastic member. That is, the power transmission device does not have to heat the parts with frictional heat to shut off the power transmission, and can shut off the power transmission immediately after the slip occurs.
Therefore, according to the present invention, it is possible to provide a power transmission device in which power transmission is interrupted in a short time after the load torque of the driven side rotating body is increased.
図1は、第1の実施の形態による動力伝達装置の正面図である。図1は、動力が伝達される状態で描いてある。FIG. 1 is a front view of a power transmission device according to a first embodiment. FIG. 1 is drawn in a state where power is transmitted. 図2は、図1におけるII-II線断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図3は、第2の回転部材としてのリングプレートの正面図である。FIG. 3 is a front view of a ring plate as a second rotating member. 図4は、第1の実施の形態による動力伝達装置の正面図である。図4は、動力伝達が遮断される状態で描いてある。FIG. 4 is a front view of the power transmission device according to the first embodiment. FIG. 4 is drawn in the state where the power transmission is cut off. 図5は、図4におけるV-V線断面図である。FIG. 5 is a cross-sectional view taken along the line VV in FIG. 図6Aは、第2の実施の形態による第1の回転部材と第2の回転部材との嵌合部の一部を拡大して示す断面図である。図6Aは、第2の回転部材の一部が第1の回転部材に対して圧縮機から離間する方向へ突出する場合を示す。FIG. 6A is an enlarged sectional view showing a part of the fitting portion between the first rotation member and the second rotation member according to the second embodiment. FIG. 6A shows a case where a part of the second rotating member protrudes in a direction away from the compressor with respect to the first rotating member. 図6Bは、第2の実施の形態による第1の回転部材と第2の回転部材との嵌合部の一部を拡大して示す断面図である。図6Bは、第2の回転部材の一部が第1の回転部材に対して圧縮機に接近する方向へ突出する場合を示す。FIG. 6B is an enlarged cross-sectional view showing a part of the fitting portion between the first rotating member and the second rotating member according to the second embodiment. FIG. 6B shows the case where a part of the second rotating member protrudes in a direction approaching the compressor with respect to the first rotating member. 図6Cは、第2の実施の形態による第1の回転部材と第2の回転部材との嵌合部の一部を拡大して示す断面図である。図6Cは、第2の回転部材の全域が第1の回転部材と嵌合する状態を示している。FIG. 6C is an enlarged sectional view showing a part of the fitting portion between the first rotation member and the second rotation member according to the second embodiment. FIG. 6C shows a state in which the entire area of the second rotating member is engaged with the first rotating member. 図7は、第3の実施の形態による第2の回転部材の一部を拡大して示す正面図である。FIG. 7 is an enlarged front view showing a part of the second rotation member according to the third embodiment. 図8は、第4の実施の形態による動力伝達装置の正面図である。図8は、動力が伝達される状態で描いてある。FIG. 8 is a front view of a power transmission device according to a fourth embodiment. FIG. 8 is drawn in a state where power is transmitted. 図9は、図8におけるIX-IX線断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 図10は、第2の回転部材としてのリングプレートの正面図である。FIG. 10 is a front view of a ring plate as a second rotating member. 図11は、第1の回転部材としてのハブの正面図である。FIG. 11 is a front view of a hub as a first rotating member. 図12は、第4の実施の形態による動力伝達装置の正面図である。図12は、動力伝達が遮断される状態で描いてある。FIG. 12 is a front view of a power transmission device according to a fourth embodiment. FIG. 12 is drawn in the state where the power transmission is cut off. 図13は、図12におけるXIII-XIII線断面図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
(第1の実施の形態)
 以下、本発明に係る動力伝達装置の一実施の形態を図1~図5によって詳細に説明する。
 図1に示す動力伝達装置1は、下記の2つの機能を有するものである。第1の機能は、図2に示すカーエアコン用圧縮機2に自動車エンジン(図示せず)の動力を伝達する機能である。第2の機能は、圧縮機2の回転軸3に過負荷が発生したときに動力伝達を遮断するトルクリミッタの機能である。この実施の形態においては、自動車エンジンが本発明でいう「動力源」に相当する。
First Embodiment
Hereinafter, an embodiment of a power transmission device according to the present invention will be described in detail with reference to FIGS.
The power transmission 1 shown in FIG. 1 has the following two functions. The first function is to transmit the power of the automobile engine (not shown) to the compressor 2 for a car air conditioner shown in FIG. The second function is a function of a torque limiter that shuts off power transmission when an overload occurs on the rotary shaft 3 of the compressor 2. In this embodiment, the automobile engine corresponds to the "power source" in the present invention.
 自動車エンジンの動力は、図示していないベルトを介して動力伝達装置1のプーリ4に伝達される。
 プーリ4は、図2に示すように、ベルトが巻き掛けられる溝5を有する円筒状のベルト掛止部6と、このベルト掛止部6の内側に位置する内側筒状部7と、これら両部どうしを接続する中間部8とによって構成されている。ベルト掛止部6と、内側筒状部7と、中間部8とは、プラスチック材料によって一体成形により一体に形成されている。
The power of the automobile engine is transmitted to the pulley 4 of the power transmission 1 via a belt (not shown).
The pulley 4 is, as shown in FIG. 2, a cylindrical belt hooking portion 6 having a groove 5 around which the belt is wound, an inner cylindrical portion 7 positioned inside the belt hooking portion 6, and both of them. It is comprised by the intermediate part 8 which connects parts. The belt hooking portion 6, the inner cylindrical portion 7 and the middle portion 8 are integrally formed of plastic material by integral molding.
 内側筒状部7は、圧縮機2のハウジング2aに軸受9を介して回転自在に支持されている。このプーリ4は、回転軸3と同一軸線上に位置付けられている。この実施の形態においては、回転軸3によって、本発明でいう「従動側回転体」が構成され、プーリ4によって、本発明でいう「駆動側回転体」が構成されている。 The inner cylindrical portion 7 is rotatably supported by the housing 2 a of the compressor 2 via a bearing 9. The pulley 4 is positioned on the same axis as the rotation shaft 3. In this embodiment, the “driven side rotating body” in the present invention is constituted by the rotating shaft 3, and the “drive side rotating body” in the present invention is constituted by the pulley 4.
 回転軸3の軸端部には、ハブ11が取付けられている。この実施の形態においては、このハブ11が本発明でいう「第1の回転部材」に相当する。ハブ11は、熱間圧延軟鋼板(SPHC)からなる素材を所定の形状に加工して形成されている。
 この実施の形態によるハブ11は、回転軸3の軸端部に固定されるボス部11aと、このボス部11aの軸線方向の先端部から径方向の外側に突出する連結部11bとによって構成されている。
A hub 11 is attached to an end of the rotary shaft 3. In this embodiment, the hub 11 corresponds to the "first rotating member" in the present invention. The hub 11 is formed by processing a material made of hot rolled mild steel plate (SPHC) into a predetermined shape.
The hub 11 according to this embodiment includes a boss 11a fixed to the axial end of the rotary shaft 3 and a connecting portion 11b projecting radially outward from the axial tip of the boss 11a. ing.
 このハブ11の連結部11bは、詳細は後述するが、図1および図2に示すように、後述するリングプレート12の穴13に回転方向および回転軸線と平行な方向に移動可能に嵌合する形状に形成されている。この実施の形態による連結部11bは、ハブ11の軸線方向から見て三角形状に形成されている。 The connection portion 11b of the hub 11, which will be described in detail later, as shown in FIGS. 1 and 2, is fitted in a hole 13 of the ring plate 12 described later so as to be movable in the rotational direction and the direction parallel to the rotational axis. It is formed in shape. The connecting portion 11 b according to this embodiment is formed in a triangular shape as viewed from the axial direction of the hub 11.
 この連結部11bの3つの頂部には、軸線方向から見て円弧状の壁面を有する外周壁14がそれぞれ形成されている。これらの外周壁14は、ハブ11の回転方向を3等分する位置に設けられている。外周壁14の壁面は、ハブ11の回転方向と、ハブ11の軸線方向(回転軸線と平行な方向)とに延びている。外周壁14の厚みは、予め定めた厚みに形成されている。
 連結部11bの3つの頂部どうしの間には、平坦部15が形成されている。この平坦部15は、ハブ11の軸線方向に延びる平坦面によって形成されている。この実施の形態においては、この平坦部15によって、請求項2記載の発明でいう「非嵌合部」が構成されている。
Outer peripheral walls 14 having arc-shaped wall surfaces as viewed in the axial direction are respectively formed at three apexes of the connecting portion 11 b. These outer peripheral walls 14 are provided at positions dividing the rotation direction of the hub 11 into three equal parts. The wall surface of the outer peripheral wall 14 extends in the rotation direction of the hub 11 and in the axial direction of the hub 11 (a direction parallel to the rotation axis). The thickness of the outer peripheral wall 14 is formed to a predetermined thickness.
A flat portion 15 is formed between the three tops of the connecting portion 11b. The flat portion 15 is formed by a flat surface extending in the axial direction of the hub 11. In this embodiment, the flat portion 15 constitutes a "non-fitting portion" as referred to in the second aspect of the invention.
 リングプレート12は、冷間圧延鋼板(SPCC)からなる素材をプレス加工により所定の形状に打ち抜いて形成されている。この実施の形態においては、このリングプレート12によって、本発明でいう「第2の回転部材」が構成されている。
 リングプレート12は、穴13が軸心部に形成された円板部12aと、この円板部12aの周方向の3箇所から径方向の外側に突出する3つのフランジ部12bとによって構成されている。これらのフランジ部12bは、円板部12aの周方向を3等分する位置に設けられており、後述する板ばね16を介してプーリ4にそれぞれ接続されている。すなわち、リングプレート12は、プーリ4から板ばね16を介して動力が伝達されてプーリ4と一体に回転する。
The ring plate 12 is formed by punching a material made of cold-rolled steel plate (SPCC) into a predetermined shape by press working. In this embodiment, the ring plate 12 constitutes a "second rotating member" in the present invention.
The ring plate 12 is constituted by a disc portion 12a in which a hole 13 is formed in an axial center portion, and three flange portions 12b projecting outward in the radial direction from three places in the circumferential direction of the disc portion 12a There is. These flange portions 12 b are provided at positions dividing the circumferential direction of the disc portion 12 a into three equal parts, and are connected to the pulleys 4 via leaf springs 16 described later. That is, power is transmitted from the pulley 4 to the ring plate 12 through the plate spring 16, and the ring plate 12 rotates integrally with the pulley 4.
 円板部12aには、周方向に延びる複数の長孔12cが形成されている。これらの長孔12cは、円板部12aにおける3箇所のフランジ部12bどうしの間となる部位に位置付けられている。リングプレート12の穴13は、この長孔12cと隣り合う3箇所の内周壁17と、これらの内周壁17どうしの間に穴径が拡がるように形成された凹部18とによって構成されている。内周壁17の壁面は、ハブ11の回転方向および回転軸線と平行な方向とに延びており、ハブ11の外周壁14が嵌合する形状に形成されている。ハブ11の外周壁14の回転方向の長さは、凹部18の回転方向の長さより短い。 The disk portion 12a is formed with a plurality of elongated holes 12c extending in the circumferential direction. These long holes 12c are positioned in the region between the three flange portions 12b in the disc portion 12a. The holes 13 of the ring plate 12 are composed of three inner peripheral walls 17 adjacent to the elongated holes 12 c and a recess 18 formed such that the diameter of the holes is expanded between the inner peripheral walls 17. The wall surface of the inner peripheral wall 17 extends in a direction parallel to the rotational direction and the rotation axis of the hub 11 and is formed in a shape in which the outer peripheral wall 14 of the hub 11 is fitted. The length in the rotational direction of the outer peripheral wall 14 of the hub 11 is shorter than the length in the rotational direction of the recess 18.
 また、内周壁17の壁面における回転軸線と平行な方向の長さは、外周壁14の壁面における回転軸線と平行な方向の長さと略等しい。すなわち、このリングプレート12は、ハブ11に回転方向へ移動可能にかつ回転軸線と平行な方向へ移動することにより分離可能に嵌合されている。リングプレート12にプーリ4から伝達された動力は、この嵌合部21を介してハブ11に伝達される。 Further, the length of the wall surface of the inner peripheral wall 17 in the direction parallel to the rotation axis is substantially equal to the length of the wall surface of the outer peripheral wall 14 in the direction parallel to the rotation axis. That is, the ring plate 12 is detachably engaged with the hub 11 by being movable in the rotational direction and moving in a direction parallel to the rotation axis. The power transmitted from the pulley 4 to the ring plate 12 is transmitted to the hub 11 via the fitting portion 21.
 この実施の形態において、ハブ11とリングプレート12とは、これら両部材が接触して生じるかじりによって嵌合面が傷付くことを防ぐために、焼き嵌めによって嵌合されている。嵌合面がかじりにより損傷すると、嵌合部21の摩擦力(圧接力)が不必要に高くなってしまう。この実施の形態によるリングプレート12は、加熱されて膨張し、穴13の内径が拡がる状態でハブ11に嵌合されている。この嵌合は、リングプレート12の内周壁17にハブ11の外周壁14を嵌め合わせて行われる。 In this embodiment, the hub 11 and the ring plate 12 are fitted by shrink fitting in order to prevent the fitting surface from being damaged by the galling caused by the contact of the two members. When the fitting surface is damaged by galling, the frictional force (pressure contact force) of the fitting portion 21 becomes unnecessarily high. The ring plate 12 according to this embodiment is heated and expanded, and is fitted to the hub 11 in a state where the inner diameter of the hole 13 is expanded. This fitting is performed by fitting the outer peripheral wall 14 of the hub 11 to the inner peripheral wall 17 of the ring plate 12.
 ハブ11の平坦部15は、この嵌合状態においてリングプレート12の凹部18と対向するために、リングプレート12と接触することはない。この嵌合後にリングプレート12の温度が常温に戻り、リングプレート12が初期の大きさに収縮することにより、ハブ11の外周壁14とリングプレート12の内周壁17とが嵌合状態で結合される。このように一体に結合されたハブ11とリングプレート12の表面には、カチオン塗装などの表面処理が施される。なお、リングプレート12とハブ11との嵌合は、上述した焼き嵌めの他に、冷し嵌めで行うことができる。この冷し嵌めは、ハブ11を冷却し、ハブ11の連結部11bの外径寸法が減少する状態で外周壁14をリングプレート12の内周壁17に嵌合して行われる。 The flat portion 15 of the hub 11 does not contact the ring plate 12 in order to face the recess 18 of the ring plate 12 in this fitted state. After this fitting, the temperature of the ring plate 12 returns to normal temperature, and the ring plate 12 contracts to the initial size, whereby the outer peripheral wall 14 of the hub 11 and the inner peripheral wall 17 of the ring plate 12 are coupled in a fitted state Ru. Surface treatment such as cation coating is applied to the surfaces of the hub 11 and the ring plate 12 integrally coupled in this manner. In addition, fitting with the ring plate 12 and the hub 11 can be performed by cold fitting other than the above-mentioned shrink fitting. This cold fitting is performed by fitting the outer peripheral wall 14 to the inner peripheral wall 17 of the ring plate 12 in a state in which the hub 11 is cooled and the outer diameter of the connecting portion 11 b of the hub 11 is reduced.
 リングプレート12とハブ11との嵌合部21は、リングプレート12に対してハブ11が相対的に移動するときに予め定めた大きさの摩擦力(圧接力)が発生する構成が採られている。この摩擦力の大きさは、圧縮機2の回転軸3の負荷が予め定めた閾値より小さい場合にハブ11に対するリングプレート12の移動を規制できる大きさに設定されている。また、摩擦力の大きさは、回転軸3の負荷が閾値以上である場合は、この摩擦力に抗してリングプレート12がハブ11に対して回転する大きさに設定されている。閾値は、圧縮機2において過負荷が発生したときの負荷の値に相当する。 The fitting portion 21 between the ring plate 12 and the hub 11 is configured to generate a frictional force (pressure contact force) of a predetermined size when the hub 11 moves relative to the ring plate 12 There is. The magnitude of this frictional force is set to a size that can restrict the movement of the ring plate 12 with respect to the hub 11 when the load of the rotary shaft 3 of the compressor 2 is smaller than a predetermined threshold. Further, the magnitude of the frictional force is set such that the ring plate 12 rotates relative to the hub 11 against the frictional force when the load of the rotary shaft 3 is equal to or greater than the threshold. The threshold corresponds to the value of the load when an overload occurs in the compressor 2.
 リングプレート12のフランジ部12bに取付けられた3枚の板ばね16は、リングプレート12をプーリ4に支持させる機能と、後述するようにリングプレート12を回転軸線と平行な方向に付勢する機能とを有している。これらの板ばね16は、ばね材料によって細い帯板状に形成されている。この板ばね16におけるリングプレート12側の端部となるリングプレート側取付部16aは、フランジ部12bにリベット22によって固定されている。
 板ばね16の他端部となるプーリ側取付部16bは、プーリ4の中間部8にタッピングねじ23によって固定されている。これらの板ばね16は、リングプレート12をプーリ4に同一軸線上で一体に回転可能に連結している。
The three plate springs 16 attached to the flange portion 12b of the ring plate 12 have a function of supporting the ring plate 12 on the pulley 4 and a function of urging the ring plate 12 in a direction parallel to the rotation axis as described later. And. These leaf springs 16 are formed in a thin strip by a spring material. A ring plate side attachment portion 16 a, which is an end portion on the ring plate 12 side of the plate spring 16, is fixed to the flange portion 12 b by a rivet 22.
The pulley side attachment portion 16 b, which is the other end of the plate spring 16, is fixed to the intermediate portion 8 of the pulley 4 by a tapping screw 23. These leaf springs 16 rotatably connect the ring plate 12 to the pulley 4 on the same axis.
 この実施の形態によるプーリ4の中間部8は、図2に示すように、回転軸3の軸線方向(図2においては左右方向)において、ハブ11の連結部11bと、圧縮機2のハウジング2aとの間に位置付けられている。このため、板ばね16は、軸線方向に弾性変形した状態でリングプレート12とプーリ4とに取付けられている。この板ばね16は、両端が引っ張られる状態で弾性変形しており、弾性復帰力(ばね力)でリングプレート12をハブ11に対して軸線方向(回転軸線と平行な方向)に付勢している。この実施の形態による板ばね16がリングプレート12を付勢する方向は、図2において左方向であって、リングプレート12が圧縮機2のハウジング2aに接近する方向である。 The middle portion 8 of the pulley 4 according to this embodiment is, as shown in FIG. 2, the connection portion 11b of the hub 11 and the housing 2a of the compressor 2 in the axial direction (left and right direction in FIG. 2) of the rotary shaft 3. It is positioned between For this reason, the plate spring 16 is attached to the ring plate 12 and the pulley 4 in a state of being elastically deformed in the axial direction. The plate spring 16 is elastically deformed in a state where both ends are pulled, and the ring plate 12 is urged in the axial direction (direction parallel to the rotation axis) with respect to the hub 11 by an elastic return force (spring force). There is. The direction in which the leaf spring 16 according to this embodiment biases the ring plate 12 is the left direction in FIG. 2 and the direction in which the ring plate 12 approaches the housing 2 a of the compressor 2.
 次に、上述したように構成された動力伝達装置1の動作を説明する。
 この実施の形態による動力伝達装置1においては、自動車エンジンの動力がベルトを介してプーリ4に伝達され、プーリ4から板ばね16を介してリングプレート12に伝達される。このとき、圧縮機2の負荷の大きさが予め定めた閾値より小さい場合は、リングプレート12とハブ11および回転軸3が一体に回転する。この場合は、圧縮機2がエンジンの動力で駆動される。
Next, the operation of the power transmission 1 configured as described above will be described.
In the power transmission 1 according to this embodiment, the power of the automobile engine is transmitted to the pulley 4 through the belt and transmitted from the pulley 4 to the ring plate 12 through the plate spring 16. At this time, when the magnitude of the load of the compressor 2 is smaller than a predetermined threshold value, the ring plate 12, the hub 11 and the rotating shaft 3 rotate integrally. In this case, the compressor 2 is driven by the power of the engine.
 圧縮機2の負荷の大きさが上述した閾値以上である場合は、リングプレート12が嵌合部21に生じる摩擦力に抗してハブ11に対して回転する(スリップする)。このとき、リングプレート12の内周壁17がハブ11の外周壁14に対して回転する。また、このときには、内周壁17が外周壁14に対して板ばね16のばね力で僅かながらも軸線方向に変位する。 When the magnitude of the load of the compressor 2 is equal to or more than the above-mentioned threshold value, the ring plate 12 rotates (slip) against the hub 11 against the frictional force generated in the fitting portion 21. At this time, the inner circumferential wall 17 of the ring plate 12 rotates with respect to the outer circumferential wall 14 of the hub 11. Further, at this time, the inner peripheral wall 17 is displaced in the axial direction with respect to the outer peripheral wall 14 while slightly by the spring force of the plate spring 16.
 内周壁17が外周壁14に対して回転すると、内周壁17が外周壁14から外れ、この外周壁14がリングプレート12の凹部18と対向するようになる。すなわち、図4に示すように、リングプレート12がハブ11から分離する。リングプレート12は、この分離状態において、図5に示すように、摩擦力が作用することなく板ばね16のばね力で回転軸線と平行な方向(圧縮機2のハウジング2aに近接する方向)へ移動する。このとき、リングプレート12は、ハブ11の連結部11bと接触することがない位置まで移動し、ハブ11から離間する。このため、リングプレート12とハブ11とによって構成されたトルクリミッタが動作して圧縮機2への動力伝達が遮断され、圧縮機2が停止する。 When the inner peripheral wall 17 rotates with respect to the outer peripheral wall 14, the inner peripheral wall 17 comes off from the outer peripheral wall 14, and this outer peripheral wall 14 comes to face the recess 18 of the ring plate 12. That is, as shown in FIG. 4, the ring plate 12 separates from the hub 11. In this separated state, as shown in FIG. 5, the ring plate 12 is in the direction parallel to the rotation axis (in the direction close to the housing 2a of the compressor 2) by the spring force of the plate spring 16 without any friction force acting. Moving. At this time, the ring plate 12 moves to a position where it does not contact the connection portion 11 b of the hub 11 and separates from the hub 11. For this reason, the torque limiter comprised by the ring plate 12 and the hub 11 operate | moves, the power transmission to the compressor 2 is interrupted | blocked, and the compressor 2 stops.
 したがって、この実施の形態によれば、圧縮機2の負荷の大きさが予め定めた閾値以上になってハブ11とリングプレート12との嵌合部21にスリップが発生すると、リングプレート12がハブ11から板ばね16のばね力で強制的に分離される。すなわち、この動力伝達装置1は、動力伝達を遮断するに当たって摩擦熱で部品を加熱する必要はなく、スリップが発生した直後に動力伝達を遮断できるものである。
 この結果、この実施の形態によれば、圧縮機2の負荷トルクが増大した後に短時間で動力伝達が遮断される動力伝達装置を提供することができる。
Therefore, according to this embodiment, when the magnitude of the load of the compressor 2 becomes equal to or greater than a predetermined threshold and a slip occurs in the fitting portion 21 between the hub 11 and the ring plate 12, the ring plate 12 becomes a hub 11 is forcibly separated by the spring force of the plate spring 16. That is, the power transmission device 1 does not have to heat the parts with frictional heat to shut off the power transmission, and can shut off the power transmission immediately after the slip occurs.
As a result, according to this embodiment, it is possible to provide a power transmission system in which power transmission is interrupted in a short time after the load torque of the compressor 2 is increased.
 この実施の形態においては、ハブ11とリングプレート12との嵌合部21にスリップが生じると、ハブ11の外周壁14がリングプレート12の凹部18に入り、摩擦力が作用することなくリングプレート12が板ばね16のばね力で回転軸線と平行な方向へ移動する。
 したがって、リングプレート12が摩擦力に抗して板ばね16のばね力で回転軸線と平行な方向へ移動してハブ11から分離する場合と比べて、短時間で動力伝達が遮断される。この結果、この実施の形態によれば、より一層速く動力伝達を遮断可能な動力伝達装置を提供することができる。
In this embodiment, when a slip occurs in the fitting portion 21 between the hub 11 and the ring plate 12, the outer peripheral wall 14 of the hub 11 enters the recess 18 of the ring plate 12 and the ring plate does not act. 12 moves in a direction parallel to the rotation axis by the spring force of the plate spring 16.
Therefore, power transmission is interrupted in a short time as compared with the case where ring plate 12 moves in a direction parallel to the rotation axis by the spring force of leaf spring 16 against the frictional force and separates from hub 11. As a result, according to this embodiment, it is possible to provide a power transmission device capable of interrupting the power transmission more quickly.
 この実施の形態によるハブ11とリングプレート12とは、焼き嵌めまたは冷し嵌めによって嵌合されている。
 このため、ハブ11の嵌合面と、リングプレート12の嵌合面とが損傷することなく嵌合する。ハブ11とリングプレート12とをプレスで圧入して嵌合させると、嵌合面(圧入により嵌め合わされる面)にいわゆる「かじり」が発生し易い。嵌合面にかじりが生じると、嵌合部21の圧接力、すなわち嵌合部21において一方の回転部材が他方の回転部材に対して回転方向へ変位するときの摩擦力が必要以上に大きくなってしまう。
The hub 11 and the ring plate 12 according to this embodiment are fitted by shrink fitting or cold fitting.
Therefore, the fitting surface of the hub 11 and the fitting surface of the ring plate 12 are fitted without damage. When the hub 11 and the ring plate 12 are press-fit and fitted with a press, so-called "gage" tends to occur on the fitting surface (surface to be fitted by press-fitting). When galling occurs on the fitting surface, the pressure contact force of the fitting portion 21, that is, the frictional force when one rotating member is displaced in the rotating direction with respect to the other rotating member in the fitting portion 21 becomes larger than necessary. It will
 このように圧接力が大きくなると、負荷の大きさが設計値より大きくなければ動力伝達を遮断できなくなり、動力伝達が遮断される時期が遅れるおそれがある。この実施の形態による動力伝達装置1によれば、嵌合面にかじりが生じることはないから、動力伝達が遮断されるときの負荷の大きさは設計通りの大きさとなる。したがって、この実施の形態によれば、トルクリミッタが動作することなく伝達できるトルクの最大値、いわゆる遮断トルクやリミットトルクと呼称される伝達トルクの限界値の信頼性が高くなり、高い品質の動力伝達装置を提供することができる。 As described above, when the pressing force increases, the power transmission can not be interrupted unless the magnitude of the load is larger than the design value, and the timing of the interruption of the power transmission may be delayed. According to the power transmission device 1 according to this embodiment, since no galling occurs on the fitting surface, the magnitude of the load when the power transmission is interrupted is as designed. Therefore, according to this embodiment, the reliability of the maximum value of the torque that can be transmitted without operating the torque limiter, that is, the limit value of the transmission torque referred to as so-called blocking torque or limit torque is enhanced, and power of high quality is obtained. A transmission device can be provided.
 この実施の形態による板ばね16は、引っ張られて弾性変形した状態でリングプレート12とプーリ4との間に設けられている。しかしながら、本発明は、このような限定にとらわれることはない。すなわち、板ばね16は、圧縮された状態でリングプレート12とプーリ4との間に設けることができる。この構成を上述した動力伝達装置1に適用すると、リングプレート12がハブ11から分離された後にプーリ4から離間する方向に変位する。 The plate spring 16 according to this embodiment is provided between the ring plate 12 and the pulley 4 in a state of being pulled and elastically deformed. However, the present invention is not bound by such limitations. That is, the leaf spring 16 can be provided between the ring plate 12 and the pulley 4 in a compressed state. When this configuration is applied to the power transmission 1 described above, the ring plate 12 is displaced in a direction away from the pulley 4 after being separated from the hub 11.
 上述した実施の形態による動力伝達装置1においては、ハブ11の外周壁14の壁面と、リングプレート12の内周壁17の壁面とに表面保護用のコーティングを施すことができる。また、これらの壁面に硬度が高くなる処理を施すこともできる。コーティング処理や硬化処理が壁面に施されることにより、ハブ11からリングプレート12が分離するときに金属どうしのかじりの発生が少なくなる。この結果、動力伝達が遮断されるときの負荷の大きさをより一層高い精度で設定することが可能になる。 In the power transmission device 1 according to the above-described embodiment, a coating for surface protection can be applied to the wall surface of the outer peripheral wall 14 of the hub 11 and the wall surface of the inner peripheral wall 17 of the ring plate 12. In addition, these wall surfaces can also be treated to increase the hardness. The coating process and the curing process are applied to the wall surface, thereby reducing the occurrence of metal-to-metal scuffing when the ring plate 12 is separated from the hub 11. As a result, it is possible to set the size of the load when the power transmission is interrupted with higher accuracy.
(第2の実施の形態)
 上述した実施の形態において、リングプレート12の取付位置は、図6Aおよび図6Bに示すように、ハブ11の軸線方向の一方または他方に偏る位置に変更することができる。図6Aおよび図6Bにおいて、図1~図5によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
Second Embodiment
In the embodiment described above, the mounting position of the ring plate 12 can be changed to a position biased to one or the other in the axial direction of the hub 11, as shown in FIGS. 6A and 6B. 6A and 6B, the same or equivalent members as or to those described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
 図6Aに示すリングプレート12は、ハブ11の外周壁14に対して圧縮機2(図示せず)のハウジング2aから離間する方向(同図においては右方向)に偏って位置している。また、このリングプレート12は、板ばね16(図示せず)のばね力でハウジング2aから離間する方向(同図中に矢印Rで示す方向)に付勢されている。このリングプレート12の内周壁17におけるハウジング2aとは反対側に位置する端部17aは、軸線方向においてハブ11の連結部11bから突出している。内周壁17の内周縁における矢印Rで示す方向の先端に位置する角部Pは、ハブ11の外周壁14に嵌合していない。 The ring plate 12 shown in FIG. 6A is offset with respect to the outer peripheral wall 14 of the hub 11 in a direction away from the housing 2a of the compressor 2 (not shown) (in the right direction in the figure). Further, the ring plate 12 is biased in the direction (the direction indicated by the arrow R in the figure) separated from the housing 2a by the spring force of a plate spring 16 (not shown). An end 17 a of the inner peripheral wall 17 of the ring plate 12 opposite to the housing 2 a protrudes from the connecting portion 11 b of the hub 11 in the axial direction. The corner portion P located at the tip of the inner peripheral edge of the inner peripheral wall 17 in the direction indicated by the arrow R is not fitted to the outer peripheral wall 14 of the hub 11.
 図6Bに示すリングプレート12は、ハブ11の外周壁14に対して圧縮機2のハウジング2aに近接する方向(同図においては左方向)に偏って位置している。また、このリングプレート12は、板ばね16(図示せず)のばね力でハウジング2aに近接する方向(同図中に矢印Rで示す方向)に付勢されている。このリングプレート12の内周壁17におけるハウジング2aに近接する端部17aは、軸線方向においてハブ11の連結部11bから突出している。内周壁17の内周縁における矢印Rで示す方向の先端に位置する角部Pは、ハブ11の外周壁14に嵌合していない。 The ring plate 12 shown in FIG. 6B is offset from the outer peripheral wall 14 of the hub 11 in the direction (left direction in FIG. 6) close to the housing 2 a of the compressor 2. Further, the ring plate 12 is biased in the direction approaching the housing 2a (in the direction indicated by the arrow R in the figure) by the spring force of a plate spring 16 (not shown). An end 17a of the inner peripheral wall 17 of the ring plate 12 adjacent to the housing 2a protrudes from the connecting portion 11b of the hub 11 in the axial direction. The corner portion P located at the tip of the inner peripheral edge of the inner peripheral wall 17 in the direction indicated by the arrow R is not fitted to the outer peripheral wall 14 of the hub 11.
 板ばね16は、リングプレート12の径方向外側の端部を軸線方向に付勢している。このため、図6Cに示すように、内周壁17の全域がハブ11の外周壁14に嵌合している状態においては、リングプレート12は、角部Pが支点となるように荷重(板ばね16のばね力)を受けることになる。この場合、内周壁17における角部Pの近傍の部位と外周壁14との嵌合部分の面圧が他の嵌合部分と比べて高くなる。このような嵌合状態において、リングプレート12が板ばね16のばね力で軸線方向に移動すると、角部Pと外周壁14との接触部分においてかじりが発生し易い。 The leaf spring 16 urges the radially outer end of the ring plate 12 in the axial direction. Therefore, as shown in FIG. 6C, in a state in which the entire area of the inner peripheral wall 17 is fitted to the outer peripheral wall 14 of the hub 11, the ring plate 12 is loaded so that the corner portion P becomes a fulcrum 16 spring force). In this case, the surface pressure of the fitting portion between the portion around the corner portion P in the inner circumferential wall 17 and the outer peripheral wall 14 is higher than that of the other fitting portions. When the ring plate 12 is moved in the axial direction by the spring force of the plate spring 16 in such a fitted state, galling is likely to occur at the contact portion between the corner portion P and the outer peripheral wall 14.
 しかし、上述した図6Aまたは図6Bに示すように、角部Pがハブ11の外周壁14と嵌合しない構成を採ることにより、かじりの発生を確実に防ぐことができる。また、この構成を採る場合は、嵌合部21の圧入深さ(嵌合面の接触面積)が減少するから、嵌合部21の圧接力が低減する。さらに、この構成を採る場合は、図6Aおよび図6B中に示す一点鎖線Lより突出側に位置する端部17aを除いてリングプレート12を薄く形成することができる。 However, as shown in FIG. 6A or 6B described above, by adopting a configuration in which the corner portion P is not fitted to the outer peripheral wall 14 of the hub 11, the occurrence of galling can be reliably prevented. Moreover, since the press-fit depth (contact area of a fitting surface) of the fitting part 21 reduces when taking this structure, the press-contacting force of the fitting part 21 reduces. Furthermore, in the case of adopting this configuration, the ring plate 12 can be formed thin except for the end portion 17a located on the protruding side from the alternate long and short dash line L shown in FIGS. 6A and 6B.
(第3の実施の形態)
 本発明に係る動力伝達装置1において、嵌合部21の圧接力を高くするためには、図7に示す構成を採ることができる。図7において、図1~図5によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 図7に示すリングプレート12の内周壁17には、ハブ11の外周壁14に回転方向において噛み合う複数の突起31が形成されている。
Third Embodiment
In the power transmission device 1 according to the present invention, in order to increase the pressure contact force of the fitting portion 21, the configuration shown in FIG. 7 can be employed. In FIG. 7, the same or equivalent members as or to those described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
On the inner peripheral wall 17 of the ring plate 12 shown in FIG. 7, a plurality of protrusions 31 meshing with the outer peripheral wall 14 of the hub 11 in the rotational direction are formed.
 これらの突起31は、内周壁17にローレット加工を施すことによって断面山形状に形成されている。これらの突起31は、焼き嵌めや冷し嵌めによってハブ11の外周壁14に押し付けられると、いわゆる金属の塑性流動により外周壁14との間の隙間に充填される。この結果、リングプレート12とハブ11との接触面積が増大し、圧接力が高くなる。 These projections 31 are formed in a mountain shape in cross section by knurling the inner peripheral wall 17. When these projections 31 are pressed against the outer peripheral wall 14 of the hub 11 by shrink fitting or cold fitting, the gaps between the protrusions 31 and the outer peripheral wall 14 are filled by so-called plastic flow of metal. As a result, the contact area between the ring plate 12 and the hub 11 is increased, and the pressing force is increased.
(第4の実施の形態)
 本発明に係る動力伝達装置は、図8~図13に示すように構成することができる。図8~図13において、これらの図において、図1~図5によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
 図8に示す動力伝達装置41のハブ11は、粉末合金(焼結合金)によって所定の形状に形成されている。この粉末合金とは、金属の粉末を加圧成形し、焼き固めて形成されたものである。
Fourth Embodiment
The power transmission device according to the present invention can be configured as shown in FIG. 8 to FIG. In FIGS. 8 to 13, in these drawings, the same or equivalent members as or to those described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and the detailed description will be appropriately omitted.
The hub 11 of the power transmission device 41 shown in FIG. 8 is formed in a predetermined shape by a powder alloy (sintered alloy). The powder alloy is formed by pressing and sintering metal powder.
 この実施の形態によるハブ11のボス部11aは、図9に示すように、回転軸3にスプライン嵌合によって一体に回転するように接続され、軸心部に位置する固定用ボルト42によって固定されている。固定用ボルト42は、ハブ11の軸心部を貫通し、回転軸3のねじ孔3aに螺着されている。この実施の形態においても、ハブ11によって本発明でいう「第1の回転部材」が構成され、リングプレート12によって本発明でいう「第2の回転部材」が構成されている。 As shown in FIG. 9, the boss 11a of the hub 11 according to this embodiment is connected to the rotary shaft 3 so as to be integrally rotated by spline fitting, and is fixed by a fixing bolt 42 located at the axial center. ing. The fixing bolt 42 penetrates the axial center portion of the hub 11 and is screwed into the screw hole 3 a of the rotating shaft 3. Also in this embodiment, the hub 11 constitutes the “first rotary member” in the present invention, and the ring plate 12 constitutes the “second rotary member” in the present invention.
 この実施の形態によるハブ11の連結部11bは、図8および図11に示すように、円板状に形成されている。この連結部11bは、3箇所の係合溝43と、複数の外周壁14と、非嵌合部44とを有している。連結部11bの厚みは、図9に示すように、リングプレート12の厚みより厚く形成されている。
 係合溝43は、連結部11bの外周部を周方向に3等分する位置に形成されている。これらの係合溝43は、治具45(図9参照)と係合可能に形成されている。この実施の形態においては、この係合溝43によって、請求項3記載の発明でいう「係合部」が構成されている。
The connecting portion 11b of the hub 11 according to this embodiment is formed in a disk shape as shown in FIGS. The connecting portion 11 b has three engaging grooves 43, a plurality of outer peripheral walls 14, and a non-fitting portion 44. The thickness of the connection portion 11 b is formed thicker than the thickness of the ring plate 12 as shown in FIG. 9.
The engagement groove 43 is formed at a position that divides the outer peripheral portion of the connection portion 11 b into three equal parts in the circumferential direction. The engagement grooves 43 are formed to be engageable with the jig 45 (see FIG. 9). In this embodiment, the "engagement portion" in the invention according to claim 3 is constituted by the engagement groove 43.
 係合溝43に係合される治具45は、詳細には図示していないが、締付用治具と分解用治具とのうち少なくともいずれか一方の治具である。締付用治具は、ハブ11を回転軸3に固定用ボルト42によって固定するときに使用するものである。この締付用治具は、係合溝43に挿入されてハブ11に係合するアーム45aを有する。固定用ボルト42を回転軸3のねじ孔3aに締め込むときにこの締付用治具でハブ11を押さえることによって、ハブ11の回転が規制される。 Although not shown in detail, the jig 45 engaged with the engagement groove 43 is at least one jig of a tightening jig and a disassembling jig. The fastening jig is used when the hub 11 is fixed to the rotating shaft 3 by the fixing bolt 42. The clamping jig has an arm 45 a inserted into the engagement groove 43 and engaged with the hub 11. When the fixing bolt 42 is tightened into the screw hole 3 a of the rotating shaft 3, the hub 11 is restricted by pressing the hub 11 with this tightening jig, whereby the rotation of the hub 11 is restricted.
 分解用治具は、ハブ11を回転軸3から引き抜くために使用するものである。この分解用治具は、係合溝43に挿入されてハブ11に係合するアーム45aと、固定用ボルト42が抜かれることによって生じたハブ11の貫通孔に挿入されて回転軸3を押すボルト(図示せず)とを有している。 The disassembly jig is used to pull out the hub 11 from the rotating shaft 3. The disassembling jig is inserted into the engagement groove 43 and is inserted into the through hole of the hub 11 generated by the arm 45a engaging with the hub 11 and the fixing bolt 42 being pulled out, and pushes the rotating shaft 3 And a bolt (not shown).
 この実施の形態によるハブ11の複数の外周壁14は、上述した係合溝43どうしの間に位置している。非嵌合部44は、これらの外周壁14どうしの間に連結部11bの外径が小さくなるように形成されている。
 外周壁14は、図11に示すように、ボス部11aの軸線方向から見て、連結部11bの径方向の外側へ向けて突出する台形状に形成されている。これらの外周壁14は、二つの係合溝43の間の3箇所に、ハブ11の周方向へ所定の間隔をおいて互いに離間する状態で設けられている。
The plurality of outer peripheral walls 14 of the hub 11 according to this embodiment are located between the engagement grooves 43 described above. The non-fitting portion 44 is formed between the outer peripheral walls 14 so that the outer diameter of the connecting portion 11 b is smaller.
As shown in FIG. 11, the outer peripheral wall 14 is formed in a trapezoidal shape projecting outward in the radial direction of the connecting portion 11b when viewed from the axial direction of the boss portion 11a. The outer peripheral walls 14 are provided at three locations between the two engaging grooves 43 so as to be separated from each other at a predetermined interval in the circumferential direction of the hub 11.
 これらの外周壁14が嵌合するリングプレート12の内周壁17は、図10に示すように、穴13の中心に向けて突出する台形状に形成されており、外周壁14と対応する位置に配設されている。この実施の形態によるリングプレート12は、炭素工具鋼鋼材(SK材)によって形成されている。外周壁14と内周壁17との嵌合は、第1の実施の形態を採るときと同様に、焼き嵌めや、冷し嵌めによって行うことができる。 The inner peripheral wall 17 of the ring plate 12 with which the outer peripheral wall 14 is fitted is formed in a trapezoidal shape projecting toward the center of the hole 13 as shown in FIG. It is arranged. The ring plate 12 according to this embodiment is formed of carbon tool steel material (SK material). The fitting of the outer peripheral wall 14 and the inner peripheral wall 17 can be performed by shrink fitting or cold fitting, as in the first embodiment.
 また、この実施の形態によるリングプレート12は、板ばね16によって圧縮機2から離間する方向に付勢されている。すなわち、板ばね16のリングプレート側取付部16aは、圧縮機2に接近する方向へ弾性変形した状態でリングプレート12に取付けられている。この板ばね16は、回転軸3を圧縮機2のハウジング2aから引き出す方向へ付勢している。このため、この実施の形態による動力伝達装置41は、いわゆるシャフト引張り仕様のものとなる。板ばね16のプーリ側取付部16bは、プーリ4に埋設されたナット部材46に取付用ねじ47によって取付けられている。 Further, the ring plate 12 according to this embodiment is biased by the plate spring 16 in a direction away from the compressor 2. That is, the ring plate side attachment portion 16 a of the plate spring 16 is attached to the ring plate 12 in a state of being elastically deformed in a direction approaching the compressor 2. The plate spring 16 urges the rotating shaft 3 in the direction of pulling it out of the housing 2 a of the compressor 2. Therefore, the power transmission device 41 according to this embodiment has a so-called shaft tension specification. The pulley side attachment portion 16 b of the plate spring 16 is attached to a nut member 46 embedded in the pulley 4 by an attachment screw 47.
 このように構成された動力伝達装置41において、圧縮機2の負荷の大きさが上述した閾値以上である場合は、リングプレート12が嵌合部21に生じる摩擦力に抗してハブ11に対して回転する(スリップする)。このようにスリップが起こるときには、ハブ11とリングプレート12との接触部分において、金属どうしが互いに擦れ合って一方の金属が他方の金属によって削られることがある。粉末合金からなるハブ11が削れられると、切り粉は、繋がった切り粉ではなく、粉状になる。 In the power transmission device 41 configured as described above, when the magnitude of the load of the compressor 2 is equal to or more than the above-described threshold value, the ring plate 12 resists the friction force generated in the fitting portion 21 against the hub 11. Rotate (slip). When slippage occurs in this manner, in the contact portion between the hub 11 and the ring plate 12, the metals may rub against each other and one metal may be scraped by the other metal. When the hub 11 made of powder alloy is scraped, the swarf becomes powdery rather than connected swarf.
 このため、この実施の形態によれば、ハブ11とリングプレート12の接触部分で「かじり」は発生しないと考えられる。したがって、この実施の形態においては、ハブ11とリングプレート12との接触部分に「かじり」は発生しないか、発生したとしても僅かであるから、リミットトルクと呼称される伝達トルクの限界値の信頼性がより一層高くなり、より一層高い品質の動力伝達装置を提供することができる。 For this reason, according to this embodiment, it is considered that "gage" does not occur at the contact portion between the hub 11 and the ring plate 12. Therefore, in this embodiment, no “gnawing” occurs at the contact portion between the hub 11 and the ring plate 12 or little if any. Therefore, the reliability of the limit value of the transfer torque called limit torque is obtained. This makes it possible to provide a power transmission device of higher quality and higher quality.
 上述したスリップによりリングプレート12がハブ11に対して回転すると、図12に示すように、リングプレート12の凹部18にハブ11の外周壁14が入り、リングプレート12がハブ11から分離する。このようにハブ11とリングプレート12とが分離すると、図13に示すように、リングプレート12が板ばね16のばね力によって回転軸3の軸線方向に移動する。このときにリングプレート12が移動する方向は、圧縮機2から離間する方向である。このため、ハブ11とリングプレート12とによって構成されたトルクリミッタが動作して圧縮機2への動力伝達が遮断され、圧縮機2が停止する。
 したがって、この実施の形態を採る場合であっても上述した実施の形態を採る場合と同等の効果が得られる。
When the ring plate 12 rotates with respect to the hub 11 due to the slip described above, the outer peripheral wall 14 of the hub 11 enters the recess 18 of the ring plate 12 as shown in FIG. When the hub 11 and the ring plate 12 are separated as described above, as shown in FIG. 13, the ring plate 12 is moved in the axial direction of the rotary shaft 3 by the spring force of the plate spring 16. At this time, the direction in which the ring plate 12 moves is the direction away from the compressor 2. For this reason, the torque limiter comprised by the hub 11 and the ring plate 12 operate | moves, the power transmission to the compressor 2 is interrupted | blocked, and the compressor 2 stops.
Therefore, even in the case of adopting this embodiment, the same effect as in the case of adopting the above-described embodiment can be obtained.
 この実施の形態に示す動力伝達装置41は、粉末合金によって形成されたハブ11を備えている。しかし、本発明は、このような限定にとらわれることはない。例えば動力伝達装置41は、熱間圧延軟鋼板(SPHC)によって形成されたハブ11と、粉末合金によって形成されたリングプレート12とを備えることができる。また、動力伝達装置41は、粉末合金によって形成されたハブ11とリングプレート12とを備えることもできる。さらに、図1~図7に示す動力伝達装置においても、ハブ11やリングプレート12を粉末合金によって形成することができる。 The power transmission device 41 shown in this embodiment includes a hub 11 formed of a powder alloy. However, the present invention is not bound by such limitations. For example, the power transmission device 41 can include a hub 11 formed of hot-rolled mild steel plate (SPHC) and a ring plate 12 formed of a powder alloy. The power transmission device 41 can also include the hub 11 and the ring plate 12 formed of a powder alloy. Furthermore, also in the power transmission device shown in FIGS. 1 to 7, the hub 11 and the ring plate 12 can be formed of a powder alloy.
 図1~図5と図8~図13に図示した実施の形態においては、リングプレート12の穴13に形成された凹部18にハブ11の外周壁14が入ることによりリングプレート12がハブ11から分離する構成が採られている。しかし、本発明は、このような限定にとらわれることはない。すなわち、リングプレート12の穴13の開口形状は、円形に形成することができる。この構成を採る場合は、嵌合部21にスリップが生じて摩擦力が低下した状態でリングプレート12が板ばね16のばね力によって摩擦力に抗して軸線方向に移動し、ハブ11から分離する。 In the embodiment illustrated in FIGS. 1 to 5 and 8 to 13, the ring plate 12 is moved from the hub 11 by the outer peripheral wall 14 of the hub 11 entering the recess 18 formed in the hole 13 of the ring plate 12. It is configured to be separated. However, the present invention is not bound by such limitations. That is, the opening shape of the holes 13 of the ring plate 12 can be formed circular. When this configuration is adopted, the ring plate 12 is moved in the axial direction against the frictional force by the spring force of the plate spring 16 in a state where the slip is generated in the fitting portion 21 and the frictional force is reduced, and the ring plate 12 is separated from the hub 11 Do.
 また、図1~図5と図8~図13に図示した実施の形態においては、プーリ4を駆動側回転体とし、回転軸3を従動側回転体とする例を示した。しかし、本発明に係る動力伝達装置1は、回転軸3を駆動側回転体とし、プーリ4を従動側回転体として構成することができるものである。すなわち、本発明は、ハブ11からリングプレート12に動力が伝達される構成を採ることが可能である。 Further, in the embodiments illustrated in FIGS. 1 to 5 and 8 to 13, the example in which the pulley 4 is used as the driving side rotating body and the rotating shaft 3 is used as the driven side rotating body is shown. However, in the power transmission device 1 according to the present invention, the rotary shaft 3 can be used as a drive side rotating body, and the pulley 4 can be configured as a driven side rotating body. That is, the present invention can adopt a configuration in which power is transmitted from the hub 11 to the ring plate 12.
 1,41…動力伝達装置、2…圧縮機、3…回転軸、4…プーリ、11…ハブ、12…リングプレート、13…穴、14…外周壁、15…平坦部、16…板ばね、17…内周壁、18…凹部、21…嵌合部、42…固定用ボルト、43…係合溝、44…非嵌合部。 DESCRIPTION OF SYMBOLS 1, 41 ... Power transmission apparatus, 2 ... Compressor, 3 ... Rotating shaft, 4 ... Pulley, 11 ... Hub, 12 ... Ring plate, 13 ... Hole, 14 ... Outer peripheral wall, 15 ... Flat part, 16 ... Leaf spring, 17 ... inner peripheral wall, 18 ... recessed part, 21 ... fitting part, 42 ... fixing bolt, 43 ... engaging groove, 44 ... non-fitting part.

Claims (5)

  1.  動力源に接続されて駆動される駆動側回転体と、
     この駆動側回転体と同一軸線上に位置する従動側回転体と、
     前記駆動側回転体と前記従動側回転体とのうち一方の回転体に設けられ、この回転体と同一軸線上で一体に回転する第1の回転部材と、
     前記第1の回転部材に回転方向へ移動可能にかつ回転軸線と平行な方向へ移動することにより分離可能に嵌合された第2の回転部材と、
     前記第2の回転部材を前記駆動側回転体と前記従動側回転体とのうち他方の回転体に同一軸線上で一体に回転可能に連結するとともに、前記第1の回転部材に対して前記回転軸線と平行な方向に付勢する弾性部材とを備え、
     前記第2の回転部材は、
     前記従動側回転体の負荷の大きさが予め定めた閾値より小さい場合は、前記第1の回転部材との嵌合部に生じる摩擦力によって前記第1の回転部材と一体に回転し、
     前記従動側回転体の負荷の大きさが前記閾値以上である場合は、前記摩擦力に抗して前記第1の回転部材に対して回転するとともに前記弾性部材のばね力で第1の回転部材に対して前記回転軸線と平行な方向へ移動して前記第1の回転部材から分離されることを特徴とする動力伝達装置。
    A drive-side rotating body connected to and driven by a power source;
    A driven side rotating body located coaxially with the driving side rotating body;
    A first rotating member provided on one of the drive side rotating body and the driven side rotating body, and integrally rotating on the same axis as the rotating body;
    A second rotating member detachably coupled to the first rotating member by being movable in the rotational direction and moving in a direction parallel to the rotation axis;
    The second rotating member is integrally rotatably connected to the other of the drive side rotating body and the driven side rotating body on the same axial line, and the rotation with respect to the first rotating member is performed. And an elastic member biased in a direction parallel to the axis,
    The second rotating member is
    When the magnitude of the load of the driven side rotating body is smaller than a predetermined threshold value, it rotates integrally with the first rotating member by the frictional force generated in the fitting portion with the first rotating member,
    When the magnitude of the load of the driven side rotating body is equal to or more than the threshold value, the first rotating member rotates with respect to the first rotating member against the frictional force and the spring force of the elastic member A power transmission device which is separated from the first rotary member by moving in a direction parallel to the rotation axis.
  2.  請求項1記載の動力伝達装置において、
     前記第2の回転部材は、前記第2の回転部材の軸心部に形成された穴を有し、
     前記穴の穴壁は、第1の回転部材と嵌合する複数の内周壁と、これらの内周壁どうしの間に穴径が拡がるように形成された凹部とを有し、
     前記第1の回転部材は、前記内周壁に嵌合する複数の外周壁と、これらの外周壁どうしの間に外径が小さくなるように形成された非嵌合部とを有し、
     前記外周壁の回転方向の長さは、前記凹部の回転方向の長さより短いことを特徴とする動力伝達装置。
    In the power transmission device according to claim 1,
    The second rotating member has a hole formed in an axial center of the second rotating member,
    The hole wall of the hole has a plurality of inner circumferential walls fitted with the first rotating member, and a recess formed between the inner circumferential walls so as to expand the hole diameter.
    The first rotating member has a plurality of outer peripheral walls fitted to the inner peripheral wall, and a non-fitted portion formed between the outer peripheral walls such that the outer diameter is smaller.
    The power transmission device, wherein a length in a rotational direction of the outer peripheral wall is shorter than a length in the rotational direction of the recess.
  3.  請求項2記載の動力伝達装置において、
     前記第1の回転部材は、前記駆動側回転体と前記従動側回転体とのうちいずれか一方を構成する回転軸の軸端部にスプライン嵌合によって接続されかつボルトによって固定され、締付用治具と分解用治具とのうち少なくともいずれか一方の治具と係合可能な係合部を有することを特徴とする動力伝達装置。
    In the power transmission device according to claim 2,
    The first rotary member is connected by spline fitting to a shaft end portion of a rotary shaft constituting one of the drive side rotary body and the driven side rotary body and is fixed by a bolt, for tightening. A power transmission device characterized by comprising an engagement portion engageable with at least one of a jig and a disassembly jig.
  4.  請求項1ないし請求項3のうちいずれか一つに記載の動力伝達装置において、
     前記第1の回転部材と前記第2の回転部材とは、焼き嵌めまたは冷し嵌めによって嵌合されていることを特徴とする動力伝達装置。
    The power transmission device according to any one of claims 1 to 3.
    The power transmission device, wherein the first rotating member and the second rotating member are fitted by shrink fitting or cold fitting.
  5.  請求項1ないし請求項3のうちいずれか一つに記載の動力伝達装置において、
     前記第1の回転部材と前記第2の回転部材とのうち少なくともいずれか一方の部材は、粉末合金によって形成されたものであることを特徴とする動力伝達装置。
    The power transmission device according to any one of claims 1 to 3.
    A power transmission device characterized in that at least one of the first rotating member and the second rotating member is formed of a powder alloy.
PCT/JP2014/058418 2013-03-29 2014-03-26 Motive-power transmission device WO2014157276A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015508574A JP6255387B2 (en) 2013-03-29 2014-03-26 Power transmission device
CN201480019902.8A CN105121885B (en) 2013-03-29 2014-03-26 Power transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013073314 2013-03-29
JP2013-073314 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157276A1 true WO2014157276A1 (en) 2014-10-02

Family

ID=51624242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058418 WO2014157276A1 (en) 2013-03-29 2014-03-26 Motive-power transmission device

Country Status (3)

Country Link
JP (1) JP6255387B2 (en)
CN (1) CN105121885B (en)
WO (1) WO2014157276A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902279B2 (en) * 2018-09-13 2021-07-14 星野楽器株式会社 Musical instrument pedal device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227155A (en) * 1998-12-24 2000-08-15 Winkelmann & Pannhoff Gmbh Apparatus for transmitting torque from internal combustion engine to compressor
JP2001012492A (en) * 1998-12-11 2001-01-16 Ogura Clutch Co Ltd Power transmission
JP2001059560A (en) * 1999-06-14 2001-03-06 Denso Corp Power transmission device
JP2004263831A (en) * 2003-03-04 2004-09-24 Denso Corp Power transmission mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412495B2 (en) * 1997-03-13 2003-06-03 株式会社デンソー Power transmission device
CN100357625C (en) * 2003-07-18 2007-12-26 康奈可关精株式会社 Coupling member
DE102006047006A1 (en) * 2005-10-11 2007-05-24 OGURA CLUTCH CO., LTD., Kiryu Power transmission device for air conditioning compressor has driving rotary part, rotation transmission part, damping mechanism, threadcutting parts and integrated plate
JP5021988B2 (en) * 2006-09-06 2012-09-12 サンデン株式会社 Power transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012492A (en) * 1998-12-11 2001-01-16 Ogura Clutch Co Ltd Power transmission
JP2000227155A (en) * 1998-12-24 2000-08-15 Winkelmann & Pannhoff Gmbh Apparatus for transmitting torque from internal combustion engine to compressor
JP2001059560A (en) * 1999-06-14 2001-03-06 Denso Corp Power transmission device
JP2004263831A (en) * 2003-03-04 2004-09-24 Denso Corp Power transmission mechanism

Also Published As

Publication number Publication date
JPWO2014157276A1 (en) 2017-02-16
CN105121885B (en) 2017-09-19
JP6255387B2 (en) 2017-12-27
CN105121885A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
US7066819B2 (en) Coupling device
JP6117991B2 (en) Toroidal continuously variable transmission
WO2014148414A1 (en) Power transmission device
US7270606B2 (en) Power transmission device
US11460088B2 (en) Damper
WO2014157276A1 (en) Motive-power transmission device
JP4438676B2 (en) No-back device
JP3479256B2 (en) Power transmission device
JP2001032903A (en) Power transmission mechanism
JP4134648B2 (en) Power transmission device
JP2009156408A (en) One-way clutch
JP2020133868A (en) Reverse input shutoff clutch
JP4613783B2 (en) Power transmission device
JP2006349108A (en) Rotation transmission device
JP5053614B2 (en) Power transmission device
JP4038948B2 (en) Power transmission device
JP2000179455A (en) Motive power transmission of clutchless compressor
JP2007333051A (en) Spring clutch
JP2016121722A (en) Ball screw device
JP2004069055A (en) Pressure actuated clutch pulley
JP2021008935A (en) Pulley device
JP2004257535A (en) Power transmission device
JP2004332913A (en) Torque limiter
JP2005114091A (en) One-way clutch
WO2017195501A1 (en) Power transmission apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775736

Country of ref document: EP

Kind code of ref document: A1