WO2014157183A1 - Error detection device for hybrid vehicles and error detection method - Google Patents

Error detection device for hybrid vehicles and error detection method Download PDF

Info

Publication number
WO2014157183A1
WO2014157183A1 PCT/JP2014/058245 JP2014058245W WO2014157183A1 WO 2014157183 A1 WO2014157183 A1 WO 2014157183A1 JP 2014058245 W JP2014058245 W JP 2014058245W WO 2014157183 A1 WO2014157183 A1 WO 2014157183A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
ratio
motor
rotation
speed
Prior art date
Application number
PCT/JP2014/058245
Other languages
French (fr)
Japanese (ja)
Inventor
倫平 天野
創 田坂
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to JP2015508536A priority Critical patent/JP6158915B2/en
Publication of WO2014157183A1 publication Critical patent/WO2014157183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a technique for detecting abnormality of a continuously variable transmission in a hybrid vehicle.
  • JP2010-155590A discloses a hybrid vehicle including an engine and a motor generator.
  • the engine output and the motor generator output are controlled by controlling the engagement state of the two clutches provided between the engine and the motor generator and between the motor generator and the stepped transmission. It is transmitted to the drive wheels via a step transmission.
  • a continuously variable transmission can be applied to the hybrid vehicle as described above.
  • the gear ratio is controlled based on the rotation speeds of the primary pulley and the secondary pulley, so it is necessary to detect any abnormality in the rotation speed sensor that detects the rotation speed of both pulleys. There is.
  • the present invention has been made in view of such technical problems, and an object of the present invention is to detect an abnormality in the rotational speed sensor of a continuously variable transmission in a hybrid vehicle.
  • an engine a motor arranged in series with the engine, a continuously variable transmission that changes the rotation of at least one of the engine and the motor and outputs it to drive wheels,
  • a first clutch disposed between the engine and the motor; a second clutch disposed between the motor and the continuously variable transmission; and a motor rotational speed detecting means for detecting the rotational speed of the motor.
  • a primary rotation speed sensor that detects an input rotation speed of the continuously variable transmission, and a secondary rotation speed sensor that detects an output rotation speed of the continuously variable transmission.
  • the calculated differential rotation is greater than a predetermined value, and the calculated transmission ratio is the maximum transmission ratio of the continuously variable transmission. If it is larger or smaller than the minimum speed ratio, it is determined that the primary rotational speed sensor is abnormal, the calculated differential rotation is less than a predetermined value, and the calculated speed ratio is the maximum speed ratio.
  • FIG. 1 is an overall configuration diagram of a hybrid vehicle.
  • FIG. 2 is a flowchart showing an abnormality detection procedure of the rotation speed sensor according to the embodiment of the present invention.
  • FIG. 1 is an overall configuration diagram of a hybrid vehicle (hereinafter referred to as a vehicle) 100.
  • vehicle 100 includes an engine 1, a first clutch 2, a motor generator (hereinafter referred to as MG) 3, a first oil pump 4, a second oil pump 5, a second clutch 6, and a continuously variable transmission. (Hereinafter referred to as CVT) 7, drive wheel 8, and integrated controller 50.
  • MG motor generator
  • CVT continuously variable transmission
  • Engine 1 is an internal combustion engine that uses gasoline, diesel, or the like as fuel, and the rotational speed, torque, and the like are controlled based on an engine control command from integrated controller 50.
  • the first clutch 2 is a normally open hydraulic clutch interposed between the engine 1 and the MG 3.
  • the engagement / release state of the first clutch 2 is controlled by the control hydraulic pressure generated by the hydraulic control valve unit 71 based on a command from the integrated controller 50.
  • a dry multi-plate clutch is used as the first clutch 2.
  • MG3 is a synchronous rotating electrical machine in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the MG 3 is controlled by applying the three-phase alternating current generated by the inverter 9 based on the MG control command from the integrated controller 50.
  • the MG 3 can operate as an electric motor that is rotationally driven by the supply of electric power from the battery 10. Further, when the rotor receives rotational energy from the engine 1 or the drive wheel 8, the MG 3 functions as a generator that generates electromotive force at both ends of the stator coil and can charge the battery 10.
  • the first oil pump 4 is a vane pump driven by the engine 1 or MG3.
  • the first oil pump 4 sucks up the hydraulic oil stored in the oil pan 72 of the CVT 7 and supplies the hydraulic pressure to the hydraulic control valve unit 71.
  • the second oil pump 5 is an electric oil pump that operates by receiving power from the battery 10.
  • the second oil pump 5 is driven when the amount of oil is insufficient with only the first oil pump 4 based on a command from the integrated controller 50, and is stored in the oil pan 72 of the CVT 7 in the same manner as the first oil pump 4.
  • the hydraulic oil is sucked up and the hydraulic pressure is supplied to the hydraulic control valve unit 71.
  • the second clutch 6 is interposed between the MG 3 and the CVT 7.
  • the CVT 7 select position is a forward position (D, L, 2, 1, etc.)
  • the second clutch 6 is engaged to achieve a forward state in which the rotation of the engine 1 and MG 3 is transmitted to the CVT 7 as it is.
  • the clutch is provided with a forward / reverse switching mechanism that realizes a reverse state in which the rotation of the engine 1 and the MG 3 is decelerated and reversed to be transmitted to the CVT 7 when engaged. .
  • the engagement / release of the second clutch 6 is controlled by the control oil pressure generated by the oil pressure control valve unit 71 based on a command from the integrated controller 50.
  • the second clutch 6 for example, a normally open wet multi-plate clutch is used.
  • the CVT 7 is disposed downstream of the MG 3 and includes a primary pulley 73, a secondary pulley 74, and a belt 75 that spans both pulleys.
  • the CVT 7 can change the gear ratio steplessly based on the rotation speed of the primary pulley 73, the rotation speed of the secondary pulley 74, the accelerator opening, and the like.
  • the discharge pressure from the first oil pump 4 and the second oil pump 5 is used as a primary pressure, and a primary pulley pressure and a secondary pulley pressure are created.
  • the pulley pressure causes the movable pulley of the primary pulley 73 and the movable pulley of the secondary pulley 74 to move in the axial direction. To change the pulley contact radius of the belt 75, thereby changing the gear ratio steplessly.
  • a differential 12 is connected to an output shaft of the CVT 7 via a final reduction gear mechanism (not shown), and a drive wheel 8 is connected to the differential 12 via a drive shaft 13.
  • the integrated controller 50 switches between the EV mode and the HEV mode as the operation mode of the vehicle 100.
  • the EV mode is a mode in which the first clutch 2 is disengaged and the vehicle travels using only MG3 as a drive source.
  • the EV mode is selected when the required driving force is low and the amount of charge of the battery 10 is sufficient.
  • HEV mode is a mode in which the first clutch 2 is engaged and the engine 1 and the MG 3 are used as driving sources.
  • the HEV mode is selected when the required driving force is high or when the charge amount of the battery 10 is insufficient.
  • the speed ratio is controlled using the rotation speed of the primary pulley 73 and the rotation speed of the secondary pulley 74. Therefore, the rotation speed sensor 52 that detects the rotation speed of the pulleys 73 and 74, When an abnormality occurs in 55, it is necessary to detect this.
  • the integrated controller 50 performs the abnormality detection process according to the procedure shown in the flowchart of FIG. 2 in order to enable the abnormality detection of the rotation speed sensors 52 and 55 while ensuring the detection accuracy.
  • the abnormality detection processing of the rotational speed sensors 52 and 55 will be described with reference to this.
  • the integrated controller 50 determines whether or not the vehicle state is a detection permission state.
  • the detection permission state is a state in which the second clutch 6 is engaged, for example, when the select position of the CVT 7 is a forward position or a reverse position and the vehicle speed is 20 km / h or higher.
  • the vehicle 100 does not include a torque converter unlike a conventional vehicle equipped with an automatic transmission, the vehicle 100 starts while slipping the second clutch 6. Therefore, while the second clutch 6 is being slipped, the rotation speed of MG3, which will be described later, cannot be compared with the rotation speed of the primary pulley 73 detected by the primary rotation speed sensor 52. Therefore, no abnormality is detected during this time. It seems to be. The effect of not detecting abnormality in this way will be described later together with the effect of comparing the rotational speed of MG3 and the rotational speed of primary pulley 73.
  • the process proceeds to S2. If it is determined that the vehicle state is not the detection permission state, the process is performed again from S1.
  • the integrated controller 50 calculates a differential rotation between the rotation speed of the MG 3 and the rotation speed of the primary pulley 73 detected by the primary rotation speed sensor 52, and determines whether or not the differential rotation is equal to or less than a predetermined value.
  • the predetermined value is a value that can be determined that the second clutch 6 is normally engaged, and is, for example, 1000 rpm.
  • the rotation speed of MG3 is obtained from the MG control command.
  • the integrated controller 50 determines that the primary rotation speed sensor 52 and the second clutch 6 are normal when the differential rotation between the rotation speed of the MG 3 and the rotation speed of the primary pulley 73 is equal to or less than a predetermined value (S3). , The process proceeds to S4. If it is determined that the differential rotation between the rotation speed of MG3 and the rotation speed of the primary pulley 73 is greater than a predetermined value, it is determined that the primary rotation speed sensor 52 or the second clutch 6 is abnormal (S7), and the process proceeds to S8. To migrate.
  • the integrated controller 50 calculates the actual gear ratio calculated based on the rotation speed of the primary pulley 73 detected by the primary rotation speed sensor 52 and the rotation speed of the secondary pulley 74 detected by the secondary rotation speed sensor 55 in the structure in the CVT 7. It is determined whether or not it is larger than the above set maximum gear ratio (the lowest Low gear ratio) and smaller than the set minimum gear ratio (the highest High gear ratio).
  • the set maximum speed ratio and the set minimum speed ratio are the maximum speed ratio and the minimum speed ratio that can be taken in the structure of the CVT 7 as described above. Therefore, in a state where the primary rotational speed sensor 52 is normal, an actual speed ratio exceeding the range of the set maximum speed ratio and the set minimum speed ratio is generated only when the secondary speed sensor 55 is abnormal. .
  • the integrated controller 50 determines that the actual speed ratio is greater than the set maximum speed ratio, or determines that the actual speed ratio is less than the set minimum speed ratio, the integrated controller 50 determines that the secondary rotational speed sensor 55 is abnormal (S5). ), The process is terminated. If it is determined that the actual speed ratio is less than or equal to the set maximum speed ratio and the actual speed ratio is greater than or equal to the set minimum speed ratio, it is determined that the secondary rotational speed sensor 55 is normal (S6), and the process proceeds to S1.
  • the primary rotational speed sensor 52 and the second clutch 6 are normal, and further, the secondary rotational speed sensor is compared by comparing the actual speed ratio with the set maximum speed ratio and the set minimum speed ratio. The presence or absence of 55 abnormalities can be detected.
  • the integrated controller 50 determines whether or not the actual gear ratio is larger than the set maximum gear ratio and smaller than the set minimum gear ratio, as in S4.
  • the actual speed ratio is a range between the set maximum speed ratio and the set minimum speed ratio. None exceed. In other words, when the actual speed ratio exceeds the range between the set maximum speed ratio and the set minimum speed ratio, the primary rotational speed sensor 52 is abnormal, and the actual speed ratio is within the range between the set maximum speed ratio and the set minimum speed ratio. If this is the case, the second clutch 6 becomes abnormal.
  • the integrated controller 50 determines that the primary rotational speed sensor 52 is abnormal when it is determined that the actual speed ratio is greater than the set maximum speed ratio or when the actual speed ratio is less than the set minimum speed ratio. (S9), the process ends. If it is determined that the actual speed ratio is less than or equal to the set maximum speed ratio and the actual speed ratio is greater than or equal to the set minimum speed ratio, it is determined that the second clutch 6 is abnormal (S10), and the process ends.
  • the primary rotational speed sensor 52 or the second clutch 6 is abnormal, and further, the primary rotational speed sensor is compared by comparing the actual speed ratio with the set maximum speed ratio and the set minimum speed ratio. It can be detected which of 52 and the second clutch 6 is abnormal.
  • the rotational speed of the MG3 and the rotational speed of the primary pulley 73 are compared (S2), and the actual speed ratio is compared with the set maximum speed ratio and the set minimum speed ratio (S4). , S8), the abnormality of the primary rotational speed sensor 52 and the secondary rotational speed sensor 55 can be detected.
  • the rotation speed of the MG3 and the rotation speed of the primary pulley 73 are compared (S2), and further, the actual speed ratio is compared with the set maximum speed ratio and the set minimum speed ratio (S8). An abnormality of the clutch 6 can be detected.
  • the set maximum speed ratio and the set minimum speed ratio are the maximum speed ratio and the minimum speed ratio that can be taken in the structure of the CVT 7.
  • slip loss of the belt 75, and the like. May be set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

An error detection device comprising: a means that arithmetically calculates the differential rotation between the rotation speed of a motor and the input rotation speed detected by a primary rotation speed sensor; a gear ratio arithmetic calculation means that arithmetically calculates the gear ratio for a continuously variable transmission, on the basis of the input rotation speed detected by the primary rotation speed sensor and the output rotation speed detected by a secondary rotation speed sensor; and an error detection means that determines that the primary rotation speed sensor has an error, if the differential rotation is larger than a prescribed value and the gear ratio is larger than the maximum gear ratio or is smaller than the minimum gear ratio for the continuously variable transmission, when a second clutch is engaged during travel, and determines that the secondary rotation speed sensor has an error, if the differential rotation is no more than the prescribed value and the gear ratio is larger than the maximum gear ratio or is smaller than the minimum gear ratio.

Description

ハイブリッド車両の異常検知装置及び異常検知方法Abnormality detection device and abnormality detection method for hybrid vehicle
 本発明は、ハイブリッド車両において無段変速機の異常を検知する技術に関する。 The present invention relates to a technique for detecting abnormality of a continuously variable transmission in a hybrid vehicle.
 JP2010-155590Aには、エンジンとモータジェネレータとを備えたハイブリッド車両が開示されている。 JP2010-155590A discloses a hybrid vehicle including an engine and a motor generator.
 上記のハイブリッド車両では、エンジンとモータジェネレータとの間及びモータジェネレータと有段変速機との間にそれぞれ設けられた2つのクラッチの締結状態を制御して、エンジン出力とモータジェネレータ出力とを、有段変速機を介して駆動輪に伝達する。 In the hybrid vehicle described above, the engine output and the motor generator output are controlled by controlling the engagement state of the two clutches provided between the engine and the motor generator and between the motor generator and the stepped transmission. It is transmitted to the drive wheels via a step transmission.
 ところで、上記のようなハイブリッド車両には、無段変速機を適用することも可能である。 Incidentally, a continuously variable transmission can be applied to the hybrid vehicle as described above.
 無段変速機では、プライマリプーリ及びセカンダリプーリの回転速度に基づいて変速比の制御を行うため、両プーリの回転速度を検出する回転速度センサに異常が発生した場合には、これを検知する必要がある。 In a continuously variable transmission, the gear ratio is controlled based on the rotation speeds of the primary pulley and the secondary pulley, so it is necessary to detect any abnormality in the rotation speed sensor that detects the rotation speed of both pulleys. There is.
 本発明は、このような技術的課題に鑑みてなされたもので、ハイブリッド車両において無段変速機の回転速度センサの異常を検知することを目的とする。 The present invention has been made in view of such technical problems, and an object of the present invention is to detect an abnormality in the rotational speed sensor of a continuously variable transmission in a hybrid vehicle.
 本発明のある態様によれば、エンジンと、前記エンジンに対して直列に配置されるモータと、前記エンジン及び前記モータの少なくとも一方の回転を変速して駆動輪に出力する無段変速機と、前記エンジンと前記モータとの間に配置される第1クラッチと、前記モータと前記無段変速機との間に配置される第2クラッチと、前記モータの回転速度を検出するモータ回転速度検出手段と、前記無段変速機の入力回転速度を検出するプライマリ回転速度センサと、前記無段変速機の出力回転速度を検出するセカンダリ回転速度センサと、を備えたハイブリッド車両の異常検知装置であって、前記モータ回転速度検出手段によって検出された前記モータの回転速度と前記プライマリ回転速度センサによって検出された前記入力回転速度との差回転を演算する差回転演算手段と、前記プライマリ回転速度センサによって検出された前記入力回転速度と前記セカンダリ回転速度センサによって検出された前記出力回転速度とに基づき前記無段変速機の変速比を演算する変速比演算手段と、前記第2クラッチを締結して走行しているときに、演算された前記差回転が所定値より大きく、かつ、演算された前記変速比が前記無段変速機の最大変速比より大きい又は最小変速比より小さい場合は、前記プライマリ回転速度センサが異常であると判定し、演算された前記差回転が所定値以下であり、かつ、演算された前記変速比が前記最大変速比より大きい又は前記最小変速比より小さい場合は、前記セカンダリ回転速度センサが異常であると判定する異常検知手段と、を備えたハイブリッド車両の異常検知装置が提供される。 According to an aspect of the present invention, an engine, a motor arranged in series with the engine, a continuously variable transmission that changes the rotation of at least one of the engine and the motor and outputs it to drive wheels, A first clutch disposed between the engine and the motor; a second clutch disposed between the motor and the continuously variable transmission; and a motor rotational speed detecting means for detecting the rotational speed of the motor. A primary rotation speed sensor that detects an input rotation speed of the continuously variable transmission, and a secondary rotation speed sensor that detects an output rotation speed of the continuously variable transmission. The differential rotation between the rotation speed of the motor detected by the motor rotation speed detection means and the input rotation speed detected by the primary rotation speed sensor Shift for calculating a gear ratio of the continuously variable transmission based on the differential rotation calculation means for calculating, the input rotation speed detected by the primary rotation speed sensor, and the output rotation speed detected by the secondary rotation speed sensor When the vehicle is traveling with the ratio calculating means and the second clutch engaged, the calculated differential rotation is greater than a predetermined value, and the calculated transmission ratio is the maximum transmission ratio of the continuously variable transmission. If it is larger or smaller than the minimum speed ratio, it is determined that the primary rotational speed sensor is abnormal, the calculated differential rotation is less than a predetermined value, and the calculated speed ratio is the maximum speed ratio. An abnormality detecting means for determining that the secondary rotational speed sensor is abnormal when it is larger or smaller than the minimum gear ratio. Atmospheric sensing device is provided.
 また、これに対応する異常検知方法が提供される。 Also, a corresponding abnormality detection method is provided.
図1は、ハイブリッド車両の全体構成図である。FIG. 1 is an overall configuration diagram of a hybrid vehicle. 図2は、本発明の実施形態による回転速度センサの異常検知手順を示すフローチャートである。FIG. 2 is a flowchart showing an abnormality detection procedure of the rotation speed sensor according to the embodiment of the present invention.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、ハイブリッド車両(以下、車両という。)100の全体構成図である。車両100は、エンジン1と、第1クラッチ2と、モータジェネレータ(以下、MGという。)3と、第1オイルポンプ4と、第2オイルポンプ5と、第2クラッチ6と、無段変速機(以下、CVTという。)7と、駆動輪8と、統合コントローラ50とを備える。 FIG. 1 is an overall configuration diagram of a hybrid vehicle (hereinafter referred to as a vehicle) 100. The vehicle 100 includes an engine 1, a first clutch 2, a motor generator (hereinafter referred to as MG) 3, a first oil pump 4, a second oil pump 5, a second clutch 6, and a continuously variable transmission. (Hereinafter referred to as CVT) 7, drive wheel 8, and integrated controller 50.
 エンジン1は、ガソリン、ディーゼル等を燃料とする内燃機関であり、統合コントローラ50からのエンジン制御指令に基づいて、回転速度、トルク等が制御される。 Engine 1 is an internal combustion engine that uses gasoline, diesel, or the like as fuel, and the rotational speed, torque, and the like are controlled based on an engine control command from integrated controller 50.
 第1クラッチ2は、エンジン1とMG3との間に介装されたノーマルオープンの油圧式クラッチである。第1クラッチ2は、統合コントローラ50からの指令に基づき油圧コントロールバルブユニット71により作り出された制御油圧によって、締結・解放状態が制御される。第1クラッチ2としては、例えば、乾式多板クラッチが用いられる。 The first clutch 2 is a normally open hydraulic clutch interposed between the engine 1 and the MG 3. The engagement / release state of the first clutch 2 is controlled by the control hydraulic pressure generated by the hydraulic control valve unit 71 based on a command from the integrated controller 50. For example, a dry multi-plate clutch is used as the first clutch 2.
 MG3は、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型回転電機である。MG3は、統合コントローラ50からのMG制御指令に基づいて、インバータ9により作り出された三相交流を印加することにより制御される。MG3は、バッテリ10からの電力の供給を受けて回転駆動する電動機として動作することができる。また、MG3は、ロータがエンジン1や駆動輪8から回転エネルギーを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ10を充電することができる。 MG3 is a synchronous rotating electrical machine in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. The MG 3 is controlled by applying the three-phase alternating current generated by the inverter 9 based on the MG control command from the integrated controller 50. The MG 3 can operate as an electric motor that is rotationally driven by the supply of electric power from the battery 10. Further, when the rotor receives rotational energy from the engine 1 or the drive wheel 8, the MG 3 functions as a generator that generates electromotive force at both ends of the stator coil and can charge the battery 10.
 第1オイルポンプ4は、エンジン1又はMG3によって駆動されるベーンポンプである。第1オイルポンプ4は、CVT7のオイルパン72に貯留される作動油を吸い上げ、油圧コントロールバルブユニット71に油圧を供給する。 The first oil pump 4 is a vane pump driven by the engine 1 or MG3. The first oil pump 4 sucks up the hydraulic oil stored in the oil pan 72 of the CVT 7 and supplies the hydraulic pressure to the hydraulic control valve unit 71.
 第2オイルポンプ5は、バッテリ10から電力の供給を受けて動作する電動オイルポンプである。第2オイルポンプ5は、統合コントローラ50からの指令に基づき、第1オイルポンプ4のみでは油量が不足する場合に駆動され、第1オイルポンプ4と同様にCVT7のオイルパン72に貯留される作動油を吸い上げ、油圧コントロールバルブユニット71に油圧を供給する。 The second oil pump 5 is an electric oil pump that operates by receiving power from the battery 10. The second oil pump 5 is driven when the amount of oil is insufficient with only the first oil pump 4 based on a command from the integrated controller 50, and is stored in the oil pan 72 of the CVT 7 in the same manner as the first oil pump 4. The hydraulic oil is sucked up and the hydraulic pressure is supplied to the hydraulic control valve unit 71.
 第2クラッチ6は、MG3とCVT7との間に介装される。第2クラッチ6は、CVT7のセレクトポジションが前進用ポジション(D、L、2、1等)である場合は、締結することでエンジン1及びMG3の回転がそのままCVT7に伝達される前進状態が実現され、後進用ポジション(R)である場合は、締結することでエンジン1及びMG3の回転が減速かつ逆転されてCVT7に伝達される後進状態が実現される前後進切換機構を備えたクラッチである。 The second clutch 6 is interposed between the MG 3 and the CVT 7. When the CVT 7 select position is a forward position (D, L, 2, 1, etc.), the second clutch 6 is engaged to achieve a forward state in which the rotation of the engine 1 and MG 3 is transmitted to the CVT 7 as it is. In the reverse position (R), the clutch is provided with a forward / reverse switching mechanism that realizes a reverse state in which the rotation of the engine 1 and the MG 3 is decelerated and reversed to be transmitted to the CVT 7 when engaged. .
 第2クラッチ6は、統合コントローラ50からの指令に基づき、油圧コントロールバルブユニット71により作り出された制御油圧により、締結・解放が制御される。第2クラッチ6としては、例えば、ノーマルオープンの湿式多板クラッチが用いられる。 The engagement / release of the second clutch 6 is controlled by the control oil pressure generated by the oil pressure control valve unit 71 based on a command from the integrated controller 50. As the second clutch 6, for example, a normally open wet multi-plate clutch is used.
 CVT7は、MG3の下流に配置され、プライマリプーリ73と、セカンダリプーリ74と、両プーリに掛け渡されたベルト75とを備える。CVT7は、プライマリプーリ73の回転速度、セカンダリプーリ74の回転速度、アクセル開度等に基づき、変速比を無段階に変更することができる。第1オイルポンプ4及び第2オイルポンプ5からの吐出圧を元圧とし、プライマリプーリ圧とセカンダリプーリ圧を作り出し、プーリ圧によりプライマリプーリ73の可動プーリとセカンダリプーリ74の可動プーリとを軸方向に動かし、ベルト75のプーリ接触半径を変化させることで、変速比を無段階に変更する。 The CVT 7 is disposed downstream of the MG 3 and includes a primary pulley 73, a secondary pulley 74, and a belt 75 that spans both pulleys. The CVT 7 can change the gear ratio steplessly based on the rotation speed of the primary pulley 73, the rotation speed of the secondary pulley 74, the accelerator opening, and the like. The discharge pressure from the first oil pump 4 and the second oil pump 5 is used as a primary pressure, and a primary pulley pressure and a secondary pulley pressure are created. The pulley pressure causes the movable pulley of the primary pulley 73 and the movable pulley of the secondary pulley 74 to move in the axial direction. To change the pulley contact radius of the belt 75, thereby changing the gear ratio steplessly.
 CVT7の出力軸には、図示しない終減速ギヤ機構を介してディファレンシャル12が接続され、ディファレンシャル12には、ドライブシャフト13を介して駆動輪8が接続される。 A differential 12 is connected to an output shaft of the CVT 7 via a final reduction gear mechanism (not shown), and a drive wheel 8 is connected to the differential 12 via a drive shaft 13.
 統合コントローラ50には、エンジン1の回転速度を検出する回転速度センサ51、CVT7の入力回転速度(=プライマリプーリ73の回転速度)を検出するプライマリ回転速度センサ52、CVT7のセレクトポジション(前進、後進、ニュートラル及びパーキングを切り替えるセレクトレバー又はセレクトスイッチの状態)を検出するインヒビタスイッチ54、CVT7の出力回転速度(=セカンダリプーリ74の回転速度)を検出するセカンダリ回転速度センサ55等からの信号が入力され、統合コントローラ50は、これらに基づき、エンジン1、MG3(インバータ9)、CVT7に対する各種制御を行う。 The integrated controller 50 includes a rotation speed sensor 51 that detects the rotation speed of the engine 1, a primary rotation speed sensor 52 that detects the input rotation speed of the CVT 7 (= the rotation speed of the primary pulley 73), and a select position (forward, reverse) of the CVT 7. , A signal from an inhibitor switch 54 that detects the state of a select lever or a switch that switches between neutral and parking), a secondary rotational speed sensor 55 that detects an output rotational speed of the CVT 7 (= rotational speed of the secondary pulley 74), and the like. Based on these, the integrated controller 50 performs various controls on the engine 1, MG3 (inverter 9), and CVT7.
 また、統合コントローラ50は、車両100の運転モードとして、EVモードとHEVモードとを切り換える。 Further, the integrated controller 50 switches between the EV mode and the HEV mode as the operation mode of the vehicle 100.
 EVモードは、第1クラッチ2を解放状態とし、MG3のみを駆動源として走行するモードである。EVモードは、要求駆動力が低く、バッテリ10の充電量が十分な時に選択される。 The EV mode is a mode in which the first clutch 2 is disengaged and the vehicle travels using only MG3 as a drive source. The EV mode is selected when the required driving force is low and the amount of charge of the battery 10 is sufficient.
 HEVモードは、第1クラッチ2を締結状態とし、エンジン1とMG3とを駆動源として走行するモードである。HEVモードは、要求駆動力が高い時、あるいは、バッテリ10の充電量が不足する時に選択される。 HEV mode is a mode in which the first clutch 2 is engaged and the engine 1 and the MG 3 are used as driving sources. The HEV mode is selected when the required driving force is high or when the charge amount of the battery 10 is insufficient.
 ところで、CVT7では、上記の通り、プライマリプーリ73の回転速度とセカンダリプーリ74の回転速度とを用いて変速比の制御が行われるので、プーリ73、74の回転速度を検出する回転速度センサ52、55に異常が発生した場合には、これを検知する必要がある。 By the way, in the CVT 7, as described above, the speed ratio is controlled using the rotation speed of the primary pulley 73 and the rotation speed of the secondary pulley 74. Therefore, the rotation speed sensor 52 that detects the rotation speed of the pulleys 73 and 74, When an abnormality occurs in 55, it is necessary to detect this.
 そこで、統合コントローラ50は、検知精度を確保しつつ回転速度センサ52、55の異常検知を可能とするべく、図2のフローチャートに示される手順で異常検知処理を実施する。以下、これを参照しながら回転速度センサ52、55の異常検知処理について説明する。 Therefore, the integrated controller 50 performs the abnormality detection process according to the procedure shown in the flowchart of FIG. 2 in order to enable the abnormality detection of the rotation speed sensors 52 and 55 while ensuring the detection accuracy. Hereinafter, the abnormality detection processing of the rotational speed sensors 52 and 55 will be described with reference to this.
 S1では、統合コントローラ50は、車両状態が検知許可状態であるか否かを判定する。検知許可状態とは、第2クラッチ6が締結された状態であり、例えば、CVT7のセレクトポジションが前進用ポジション又は後進用ポジションであって、車速が20km/h以上の場合である。 In S1, the integrated controller 50 determines whether or not the vehicle state is a detection permission state. The detection permission state is a state in which the second clutch 6 is engaged, for example, when the select position of the CVT 7 is a forward position or a reverse position and the vehicle speed is 20 km / h or higher.
 車両100は、従来の自動変速機搭載車両のようにトルクコンバータを備えていないので、発進時は第2クラッチ6をスリップさせながら発進する。したがって、第2クラッチ6をスリップさせている間は、後述するMG3の回転速度とプライマリ回転速度センサ52により検出したプライマリプーリ73の回転速度との比較ができなくなるので、この間は異常検知を行わないようしている。このように異常検知を行わないことの作用効果については、MG3の回転速度とプライマリプーリ73の回転速度との比較をすることの作用効果と併せて後述する。 Since the vehicle 100 does not include a torque converter unlike a conventional vehicle equipped with an automatic transmission, the vehicle 100 starts while slipping the second clutch 6. Therefore, while the second clutch 6 is being slipped, the rotation speed of MG3, which will be described later, cannot be compared with the rotation speed of the primary pulley 73 detected by the primary rotation speed sensor 52. Therefore, no abnormality is detected during this time. It seems to be. The effect of not detecting abnormality in this way will be described later together with the effect of comparing the rotational speed of MG3 and the rotational speed of primary pulley 73.
 統合コントローラ50は、車両状態が検知許可状態であると判定した場合は、S2に処理を移行する。車両状態が検知許可状態でないと判定した場合は、再度、S1から処理を実施する。 If the integrated controller 50 determines that the vehicle state is the detection-permitted state, the process proceeds to S2. If it is determined that the vehicle state is not the detection permission state, the process is performed again from S1.
 S2では、統合コントローラ50は、MG3の回転速度とプライマリ回転速度センサ52により検出したプライマリプーリ73の回転速度との差回転を演算し、差回転が所定値以下か否かを判定する。所定値は、後述するように、第2クラッチ6が正常に締結されていると判定できる値であり、例えば、1000rpmである。なお、MG3の回転速度は、MG制御指令から求められる。 In S2, the integrated controller 50 calculates a differential rotation between the rotation speed of the MG 3 and the rotation speed of the primary pulley 73 detected by the primary rotation speed sensor 52, and determines whether or not the differential rotation is equal to or less than a predetermined value. As will be described later, the predetermined value is a value that can be determined that the second clutch 6 is normally engaged, and is, for example, 1000 rpm. The rotation speed of MG3 is obtained from the MG control command.
 第2クラッチ6をスリップさせる制御を行っていない状態では、MG3とプライマリプーリ73とが直結され、MG3の回転速度とプライマリプーリ73の回転速度との差回転が上記の所定値を超えることがない。したがって、MG3の回転速度とプライマリプーリ73の回転速度との差回転が所定値より大きい場合は、プライマリ回転速度センサ52が異常であるか、第2クラッチ6が異常であるかのいずれかとなる。 In a state where the control for slipping the second clutch 6 is not performed, the MG 3 and the primary pulley 73 are directly connected, and the differential rotation between the rotation speed of the MG 3 and the rotation speed of the primary pulley 73 does not exceed the predetermined value. . Therefore, when the differential rotation between the rotation speed of MG3 and the rotation speed of the primary pulley 73 is larger than a predetermined value, either the primary rotation speed sensor 52 is abnormal or the second clutch 6 is abnormal.
 また、第2クラッチ6をスリップさせる制御が行われている状態では、MG3の回転速度とプライマリプーリ73の回転速度との差回転が大きくなる。したがって、この状態でS2の判定を行うと、プライマリ回転速度センサ52及び第2クラッチ6が正常であっても、異常と判定することになるので、あらかじめ異常検知を行わないようにすることで誤検知を防止している。 In the state where the control for slipping the second clutch 6 is performed, the differential rotation between the rotation speed of the MG 3 and the rotation speed of the primary pulley 73 increases. Therefore, if the determination of S2 is performed in this state, even if the primary rotational speed sensor 52 and the second clutch 6 are normal, it is determined that there is an abnormality. Detection is prevented.
 統合コントローラ50は、MG3の回転速度とプライマリプーリ73の回転速度との差回転が所定値以下と判定した場合は、プライマリ回転速度センサ52及び第2クラッチ6が正常であると判定し(S3)、S4に処理を移行する。MG3の回転速度とプライマリプーリ73の回転速度との差回転が所定値より大きいと判定した場合は、プライマリ回転速度センサ52又は第2クラッチ6が異常であると判定し(S7)、S8に処理を移行する。 The integrated controller 50 determines that the primary rotation speed sensor 52 and the second clutch 6 are normal when the differential rotation between the rotation speed of the MG 3 and the rotation speed of the primary pulley 73 is equal to or less than a predetermined value (S3). , The process proceeds to S4. If it is determined that the differential rotation between the rotation speed of MG3 and the rotation speed of the primary pulley 73 is greater than a predetermined value, it is determined that the primary rotation speed sensor 52 or the second clutch 6 is abnormal (S7), and the process proceeds to S8. To migrate.
 S4では、統合コントローラ50は、プライマリ回転速度センサ52により検出したプライマリプーリ73の回転速度とセカンダリ回転速度センサ55により検出したセカンダリプーリ74の回転速度とに基づき演算した実変速比が、CVT7における構造上の設定最大変速比(最Low変速比)より大きいか否か及び設定最小変速比(最High変速比)より小さいか否かを判定する。 In S4, the integrated controller 50 calculates the actual gear ratio calculated based on the rotation speed of the primary pulley 73 detected by the primary rotation speed sensor 52 and the rotation speed of the secondary pulley 74 detected by the secondary rotation speed sensor 55 in the structure in the CVT 7. It is determined whether or not it is larger than the above set maximum gear ratio (the lowest Low gear ratio) and smaller than the set minimum gear ratio (the highest High gear ratio).
 設定最大変速比及び設定最小変速比は、上記のように、CVT7の構造上取り得る最大変速比及び最小変速比である。したがって、プライマリ回転速度センサ52が正常である状態では、設定最大変速比と設定最小変速比との範囲を超える実変速比は、セカンダリ回転速度センサ55が異常である場合にしか発生しないことになる。 The set maximum speed ratio and the set minimum speed ratio are the maximum speed ratio and the minimum speed ratio that can be taken in the structure of the CVT 7 as described above. Therefore, in a state where the primary rotational speed sensor 52 is normal, an actual speed ratio exceeding the range of the set maximum speed ratio and the set minimum speed ratio is generated only when the secondary speed sensor 55 is abnormal. .
 統合コントローラ50は、実変速比が設定最大変速比より大きいと判定した場合又は実変速比が設定最小変速比より小さいと判定した場合は、セカンダリ回転速度センサ55が異常であると判定し(S5)、処理を終了する。実変速比が設定最大変速比以下かつ実変速比が設定最小変速比以上と判定した場合は、セカンダリ回転速度センサ55が正常であると判定し(S6)、S1に処理を移行する。 If the integrated controller 50 determines that the actual speed ratio is greater than the set maximum speed ratio, or determines that the actual speed ratio is less than the set minimum speed ratio, the integrated controller 50 determines that the secondary rotational speed sensor 55 is abnormal (S5). ), The process is terminated. If it is determined that the actual speed ratio is less than or equal to the set maximum speed ratio and the actual speed ratio is greater than or equal to the set minimum speed ratio, it is determined that the secondary rotational speed sensor 55 is normal (S6), and the process proceeds to S1.
 このように、プライマリ回転速度センサ52及び第2クラッチ6が正常であることを確認し、さらに、実変速比と、設定最大変速比及び設定最小変速比とを比較することで、セカンダリ回転速度センサ55の異常の有無を検知できる。 In this way, it is confirmed that the primary rotational speed sensor 52 and the second clutch 6 are normal, and further, the secondary rotational speed sensor is compared by comparing the actual speed ratio with the set maximum speed ratio and the set minimum speed ratio. The presence or absence of 55 abnormalities can be detected.
 S8では、統合コントローラ50は、S4と同様に、実変速比が設定最大変速比より大きいか否か及び設定最小変速比より小さいか否かを判定する。 In S8, the integrated controller 50 determines whether or not the actual gear ratio is larger than the set maximum gear ratio and smaller than the set minimum gear ratio, as in S4.
 プライマリ回転速度センサ52と第2クラッチ6とのいずれかが異常である場合において、仮に、プライマリ回転速度センサ52が正常であれば、実変速比が設定最大変速比と設定最小変速比との範囲を超えることはない。つまり、実変速比が設定最大変速比と設定最小変速比との範囲を超える場合は、プライマリ回転速度センサ52が異常であり、実変速比が設定最大変速比と設定最小変速比との範囲内である場合は、第2クラッチ6が異常となる。 If either the primary rotational speed sensor 52 or the second clutch 6 is abnormal, and if the primary rotational speed sensor 52 is normal, the actual speed ratio is a range between the set maximum speed ratio and the set minimum speed ratio. Never exceed. In other words, when the actual speed ratio exceeds the range between the set maximum speed ratio and the set minimum speed ratio, the primary rotational speed sensor 52 is abnormal, and the actual speed ratio is within the range between the set maximum speed ratio and the set minimum speed ratio. If this is the case, the second clutch 6 becomes abnormal.
 したがって、統合コントローラ50は、実変速比が設定最大変速比より大きいと判定した場合又は実変速比が設定最小変速比より小さいと判定した場合は、プライマリ回転速度センサ52が異常であると判定し(S9)、処理を終了する。実変速比が設定最大変速比以下かつ実変速比が設定最小変速比以上と判定した場合は、第2クラッチ6が異常であると判定し(S10)、処理を終了する。 Therefore, the integrated controller 50 determines that the primary rotational speed sensor 52 is abnormal when it is determined that the actual speed ratio is greater than the set maximum speed ratio or when the actual speed ratio is less than the set minimum speed ratio. (S9), the process ends. If it is determined that the actual speed ratio is less than or equal to the set maximum speed ratio and the actual speed ratio is greater than or equal to the set minimum speed ratio, it is determined that the second clutch 6 is abnormal (S10), and the process ends.
 このように、プライマリ回転速度センサ52又は第2クラッチ6が異常であることを確認し、さらに、実変速比と、設定最大変速比及び設定最小変速比とを比較することで、プライマリ回転速度センサ52と第2クラッチ6とのいずれが異常であるかを検知できる。 In this way, it is confirmed that the primary rotational speed sensor 52 or the second clutch 6 is abnormal, and further, the primary rotational speed sensor is compared by comparing the actual speed ratio with the set maximum speed ratio and the set minimum speed ratio. It can be detected which of 52 and the second clutch 6 is abnormal.
 上記態様によれば、MG3の回転速度と、プライマリプーリ73の回転速度とを比較し(S2)、さらに、実変速比と、設定最大変速比及び設定最小変速比とを比較することで(S4、S8)、プライマリ回転速度センサ52及びセカンダリ回転速度センサ55の異常を検知できる。 According to the above aspect, the rotational speed of the MG3 and the rotational speed of the primary pulley 73 are compared (S2), and the actual speed ratio is compared with the set maximum speed ratio and the set minimum speed ratio (S4). , S8), the abnormality of the primary rotational speed sensor 52 and the secondary rotational speed sensor 55 can be detected.
 また、MG3の回転速度と、プライマリプーリ73の回転速度とを比較し(S2)、さらに、実変速比と、設定最大変速比及び設定最小変速比とを比較することで(S8)、第2クラッチ6の異常を検知できる。 Further, the rotation speed of the MG3 and the rotation speed of the primary pulley 73 are compared (S2), and further, the actual speed ratio is compared with the set maximum speed ratio and the set minimum speed ratio (S8). An abnormality of the clutch 6 can be detected.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above, but the above embodiment is merely a part of an application example of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not.
 例えば、上記実施形態では、設定最大変速比及び設定最小変速比は、CVT7の構造上取り得る最大変速比及び最小変速比としているが、各部品の製造ばらつきやベルト75のスリップロス等を考慮して設定してもよい。 For example, in the above embodiment, the set maximum speed ratio and the set minimum speed ratio are the maximum speed ratio and the minimum speed ratio that can be taken in the structure of the CVT 7. However, in consideration of manufacturing variations of each part, slip loss of the belt 75, and the like. May be set.
 本願は2013年3月25日に日本国特許庁に出願された特願2013-062517に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-062517 filed with the Japan Patent Office on March 25, 2013, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  エンジンと、前記エンジンに対して直列に配置されるモータと、前記エンジン及び前記モータの少なくとも一方の回転を変速して駆動輪に出力する無段変速機と、前記エンジンと前記モータとの間に配置される第1クラッチと、前記モータと前記無段変速機との間に配置される第2クラッチと、前記モータの回転速度を検出するモータ回転速度検出手段と、前記無段変速機の入力回転速度を検出するプライマリ回転速度センサと、前記無段変速機の出力回転速度を検出するセカンダリ回転速度センサと、を備えたハイブリッド車両の異常検知装置であって、
     前記モータ回転速度検出手段によって検出された前記モータの回転速度と前記プライマリ回転速度センサによって検出された前記入力回転速度との差回転を演算する差回転演算手段と、
     前記プライマリ回転速度センサによって検出された前記入力回転速度と前記セカンダリ回転速度センサによって検出された前記出力回転速度とに基づき前記無段変速機の変速比を演算する変速比演算手段と、
     前記第2クラッチを締結して走行しているときに、演算された前記差回転が所定値より大きく、かつ、演算された前記変速比が前記無段変速機の最大変速比より大きい又は最小変速比より小さい場合は、前記プライマリ回転速度センサが異常であると判定し、演算された前記差回転が所定値以下であり、かつ、演算された前記変速比が前記最大変速比より大きい又は前記最小変速比より小さい場合は、前記セカンダリ回転速度センサが異常であると判定する異常検知手段と、
    を備えたハイブリッド車両の異常検知装置。
    An engine, a motor arranged in series with the engine, a continuously variable transmission that shifts and outputs at least one of the engine and the motor to drive wheels, and between the engine and the motor A first clutch disposed; a second clutch disposed between the motor and the continuously variable transmission; motor rotational speed detecting means for detecting a rotational speed of the motor; and an input of the continuously variable transmission. An abnormality detection device for a hybrid vehicle, comprising: a primary rotation speed sensor that detects a rotation speed; and a secondary rotation speed sensor that detects an output rotation speed of the continuously variable transmission,
    Differential rotation calculation means for calculating a differential rotation between the rotation speed of the motor detected by the motor rotation speed detection means and the input rotation speed detected by the primary rotation speed sensor;
    Gear ratio calculation means for calculating a gear ratio of the continuously variable transmission based on the input rotation speed detected by the primary rotation speed sensor and the output rotation speed detected by the secondary rotation speed sensor;
    When traveling with the second clutch engaged, the calculated differential rotation is greater than a predetermined value, and the calculated speed ratio is greater than the maximum speed ratio of the continuously variable transmission or the minimum speed change. If the ratio is smaller than the ratio, it is determined that the primary rotational speed sensor is abnormal, the calculated differential rotation is less than or equal to a predetermined value, and the calculated speed ratio is greater than the maximum speed ratio or the minimum An abnormality detecting means for determining that the secondary rotational speed sensor is abnormal when the speed ratio is smaller than;
    An abnormality detection device for a hybrid vehicle comprising:
  2.  請求項1に記載の異常検知装置であって、
     前記異常検知手段は、
     前記第2クラッチを締結して走行しているときに、演算された前記差回転が所定値より大きく、かつ、演算された前記変速比が前記最大変速比と前記最小変速比との範囲内である場合は、前記第2クラッチが異常であると判定するハイブリッド車両の異常検知装置。
    The abnormality detection device according to claim 1,
    The abnormality detection means is
    When traveling with the second clutch engaged, the calculated differential rotation is greater than a predetermined value, and the calculated speed ratio is within the range of the maximum speed ratio and the minimum speed ratio. If there is, an abnormality detection device for a hybrid vehicle that determines that the second clutch is abnormal.
  3.  エンジンと、前記エンジンに対して直列に配置されるモータと、前記エンジン及び前記モータの少なくとも一方の回転を変速して駆動輪に出力する無段変速機と、前記エンジンと前記モータとの間に配置される第1クラッチと、前記モータと前記無段変速機との間に配置される第2クラッチと、前記モータの回転速度を検出するモータ回転速度検出手段と、前記無段変速機の入力回転速度を検出するプライマリ回転速度センサと、前記無段変速機の出力回転速度を検出するセカンダリ回転速度センサと、を備えたハイブリッド車両の異常検知方法であって、
     前記モータ回転速度検出手段によって検出された前記モータの回転速度と前記プライマリ回転速度センサによって検出された前記入力回転速度との差回転を演算し、
     前記プライマリ回転速度センサによって検出された前記入力回転速度と前記セカンダリ回転速度センサによって検出された前記出力回転速度とに基づき前記無段変速機の変速比を演算し、
     前記第2クラッチを締結して走行しているときに、演算された前記差回転が所定値より大きく、かつ、演算された前記変速比が前記無段変速機の最大変速比より大きい又は最小変速比より小さい場合は、前記プライマリ回転速度センサが異常であると判定し、演算された前記差回転が所定値以下であり、かつ、演算された前記変速比が前記最大変速比より大きい又は前記最小変速比より小さい場合は、前記セカンダリ回転速度センサが異常であると判定するハイブリッド車両の異常検知方法。
    An engine, a motor arranged in series with the engine, a continuously variable transmission that shifts and outputs at least one of the engine and the motor to drive wheels, and between the engine and the motor A first clutch disposed; a second clutch disposed between the motor and the continuously variable transmission; motor rotational speed detecting means for detecting a rotational speed of the motor; and an input of the continuously variable transmission. An abnormality detection method for a hybrid vehicle, comprising: a primary rotation speed sensor that detects a rotation speed; and a secondary rotation speed sensor that detects an output rotation speed of the continuously variable transmission,
    Calculating a differential rotation between the rotation speed of the motor detected by the motor rotation speed detection means and the input rotation speed detected by the primary rotation speed sensor;
    Calculating a gear ratio of the continuously variable transmission based on the input rotational speed detected by the primary rotational speed sensor and the output rotational speed detected by the secondary rotational speed sensor;
    When traveling with the second clutch engaged, the calculated differential rotation is greater than a predetermined value, and the calculated speed ratio is greater than the maximum speed ratio of the continuously variable transmission or the minimum speed change. If the ratio is smaller than the ratio, it is determined that the primary rotational speed sensor is abnormal, the calculated differential rotation is less than or equal to a predetermined value, and the calculated speed ratio is greater than the maximum speed ratio or the minimum A hybrid vehicle abnormality detection method for determining that the secondary rotational speed sensor is abnormal when the speed ratio is smaller.
PCT/JP2014/058245 2013-03-25 2014-03-25 Error detection device for hybrid vehicles and error detection method WO2014157183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508536A JP6158915B2 (en) 2013-03-25 2014-03-25 Abnormality detection device and abnormality detection method for hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013062517 2013-03-25
JP2013-062517 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014157183A1 true WO2014157183A1 (en) 2014-10-02

Family

ID=51624154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058245 WO2014157183A1 (en) 2013-03-25 2014-03-25 Error detection device for hybrid vehicles and error detection method

Country Status (2)

Country Link
JP (1) JP6158915B2 (en)
WO (1) WO2014157183A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039345A (en) * 2015-08-18 2017-02-23 トヨタ自動車株式会社 vehicle
CN109268487A (en) * 2018-11-29 2019-01-25 潍柴动力股份有限公司 A kind of calculation method and device of output shaft revolving speed
KR101973870B1 (en) * 2017-12-18 2019-04-29 현대트랜시스 주식회사 Control apparatus and control method for vehicle
US10696307B2 (en) 2018-07-10 2020-06-30 Ford Global Technologies, Llc Anomaly detector for vehicle control signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102375153B1 (en) * 2019-12-04 2022-03-18 현대자동차주식회사 Vehicle transmission control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203438A (en) * 1987-02-18 1988-08-23 Daihatsu Motor Co Ltd Detection of speed change ratio of continuously variable transmission
JPH10205614A (en) * 1997-01-24 1998-08-04 Aichi Mach Ind Co Ltd Rotational speed sensor abnormality detection device for continuously variable transmission
JP2009274566A (en) * 2008-05-14 2009-11-26 Honda Motor Co Ltd Vehicle control device
JP2010179860A (en) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd Control device for hybrid vehicle
WO2012056862A1 (en) * 2010-10-27 2012-05-03 日産自動車株式会社 Control device and control method for hybrid vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291395A (en) * 2004-03-31 2005-10-20 Jatco Ltd Hydraulic controller for belt type continuously variable transmission for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203438A (en) * 1987-02-18 1988-08-23 Daihatsu Motor Co Ltd Detection of speed change ratio of continuously variable transmission
JPH10205614A (en) * 1997-01-24 1998-08-04 Aichi Mach Ind Co Ltd Rotational speed sensor abnormality detection device for continuously variable transmission
JP2009274566A (en) * 2008-05-14 2009-11-26 Honda Motor Co Ltd Vehicle control device
JP2010179860A (en) * 2009-02-09 2010-08-19 Nissan Motor Co Ltd Control device for hybrid vehicle
WO2012056862A1 (en) * 2010-10-27 2012-05-03 日産自動車株式会社 Control device and control method for hybrid vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039345A (en) * 2015-08-18 2017-02-23 トヨタ自動車株式会社 vehicle
US9944278B2 (en) 2015-08-18 2018-04-17 Toyota Jidosha Kabushiki Kaisha Vehicle
KR101973870B1 (en) * 2017-12-18 2019-04-29 현대트랜시스 주식회사 Control apparatus and control method for vehicle
US10696307B2 (en) 2018-07-10 2020-06-30 Ford Global Technologies, Llc Anomaly detector for vehicle control signals
CN109268487A (en) * 2018-11-29 2019-01-25 潍柴动力股份有限公司 A kind of calculation method and device of output shaft revolving speed

Also Published As

Publication number Publication date
JPWO2014157183A1 (en) 2017-02-16
JP6158915B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5981650B2 (en) Hybrid vehicle failure determination device and failure determination method thereof
US9707860B2 (en) Vehicle control device and vehicle control method
US10316955B2 (en) Lubricant flowrate control device of automatic transmission and lubricant flowrate control method
JP6158915B2 (en) Abnormality detection device and abnormality detection method for hybrid vehicle
JP6152422B2 (en) Hybrid vehicle failure determination device and failure determination method thereof
JP6106265B2 (en) Vehicle control apparatus and vehicle control method
US9664123B2 (en) Vehicle control device and vehicle control method
US11383697B2 (en) Vehicle control apparatus
JP5945628B2 (en) Hybrid vehicle failure determination device and failure determination method thereof
JP6457912B2 (en) Hybrid vehicle diagnostic device and diagnostic method thereof
JP6101125B2 (en) Lubrication flow rate control device and lubrication flow rate control method for automatic transmission
JP6175943B2 (en) Vehicle control device
JP2012206663A (en) Speed change control device of hybrid vehicle
JP2017062005A (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775655

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015508536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775655

Country of ref document: EP

Kind code of ref document: A1