WO2014157166A1 - 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム - Google Patents

動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム Download PDF

Info

Publication number
WO2014157166A1
WO2014157166A1 PCT/JP2014/058223 JP2014058223W WO2014157166A1 WO 2014157166 A1 WO2014157166 A1 WO 2014157166A1 JP 2014058223 W JP2014058223 W JP 2014058223W WO 2014157166 A1 WO2014157166 A1 WO 2014157166A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference pixel
color difference
unit
luminance
thinning
Prior art date
Application number
PCT/JP2014/058223
Other languages
English (en)
French (fr)
Inventor
圭 河村
内藤 整
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Priority to US14/779,838 priority Critical patent/US9942563B2/en
Priority to EP14773896.7A priority patent/EP2981084A4/en
Priority to CN201480017299.XA priority patent/CN105284109B/zh
Publication of WO2014157166A1 publication Critical patent/WO2014157166A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • H04N9/8045Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock

Definitions

  • the present invention relates to a video encoding device, a video decoding device, a video encoding method, a video decoding method, and a program.
  • HEVC High Efficiency Video Coding
  • FIG. 11 is a block diagram of a moving picture coding apparatus MM according to a conventional example that codes a moving picture using the above-described moving picture coding method.
  • the moving picture coding apparatus MM includes an inter prediction unit 10, an intra prediction unit 20, a transform / quantization unit 30, an entropy coding unit 40, an inverse quantization / inverse transform unit 50, an in-loop filter unit 60, and a first buffer. Unit 70 and a second buffer unit 80.
  • the inter prediction unit 10 receives an input image a and a later-described local decoded image g supplied from the first buffer unit 70 as inputs.
  • the inter prediction unit 10 performs inter prediction (interframe prediction) using the input image a and the local decoded image g to generate and output an inter predicted image b.
  • the intra prediction unit 20 receives an input image a and a later-described local decoded image f supplied from the second buffer unit 80 as inputs.
  • the intra prediction unit 20 performs intra prediction (intraframe prediction) using the input image a and the local decoded image f to generate and output an intra predicted image c.
  • the transform / quantization unit 30 receives an error (residual) signal between the input image a and the inter predicted image b or the intra predicted image c.
  • the transform / quantization unit 30 transforms and quantizes the input residual signal to generate a quantized coefficient d and outputs it.
  • the entropy encoding unit 40 receives the quantization coefficient d and side information not shown.
  • the entropy encoding unit 40 performs entropy encoding on the input signal and outputs it as a bit stream z.
  • the inverse quantization / inverse transform unit 50 receives the quantization coefficient d.
  • the inverse quantization / inverse transform unit 50 inversely quantizes and inversely transforms the quantization coefficient d to generate and output an inversely transformed residual signal e.
  • the second buffer unit 80 accumulates the local decoded image f and supplies it to the intra prediction unit 20 and the in-loop filter unit 60 as appropriate.
  • the local decoded image f is a signal obtained by adding up the inter predicted image b or the intra predicted image c and the inversely transformed residual signal e.
  • the in-loop filter unit 60 receives the local decoded image f.
  • the in-loop filter unit 60 applies a filter such as a deblocking filter to the local decoded image f to generate and output a local decoded image g.
  • the first buffer unit 70 accumulates the local decoded image g and supplies it to the inter prediction unit 10 as appropriate.
  • FIG. 12 is a block diagram of a moving picture decoding apparatus NN according to a conventional example that decodes a moving picture from the bit stream z generated by the moving picture encoding apparatus MM.
  • the video decoding device NN includes an entropy decoding unit 110, an inverse transform / inverse quantization unit 120, an inter prediction unit 130, an intra prediction unit 140, an in-loop filter unit 150, a first buffer unit 160, and a second buffer unit. 170.
  • the entropy decoding unit 110 receives the bitstream z.
  • the entropy decoding unit 110 performs entropy decoding on the bit stream z to generate and output a quantized coefficient B.
  • the inverse transform / inverse quantization unit 120, the inter prediction unit 130, the intra prediction unit 140, the in-loop filter unit 150, the first buffer unit 160, and the second buffer unit 170 respectively have the inverse quantum shown in FIG. 11. It operates in the same manner as the conversion / inverse conversion unit 50, the inter prediction unit 10, the intra prediction unit 20, the in-loop filter unit 60, the first buffer unit 70, and the second buffer unit 80.
  • Non-Patent Document 1 shows that for each color component, the pixel value of a block to be encoded is predicted using the pixel value of a reference pixel that is a reconstructed pixel that has been encoded. Yes.
  • 34 types of prediction methods for luminance components are shown in addition to DC and Planar.
  • a prediction method of the color difference component a method using the same prediction type as the luminance component and DC, Planar, horizontal, and vertical independent of the luminance component are shown. According to these, spatial redundancy can be reduced for each color component.
  • Non-Patent Document 2 discloses an LM mode as a technique for reducing redundancy between color components. For example, a case where the LM mode is used for an image in the YUV420 format will be described with reference to FIG.
  • (A) in FIG. 13 shows pixels of color difference components
  • (B) in FIG. 13 shows pixels of luminance components.
  • the color difference component is linearly predicted using the prediction formula shown in the following formula (1) using the luminance components reconstructed in the pixels indicated by the 16 white circles in FIG.
  • Equation (1) P L indicates the pixel value of the luminance component, and pred c indicates the predicted pixel value of the color difference component.
  • ⁇ and ⁇ are parameters that can be obtained using the reference pixels indicated by the eight black circles in FIG. 13A and the eight black circles in FIG. 13B. Determined by (2) and (3).
  • P ′ C represents the pixel value of the reference pixel of the color difference component.
  • P ⁇ L indicates a pixel value of a luminance component in consideration of the phase between luminance and color difference, and is determined by the following formula (4).
  • TU Transform Unit
  • FIG. 15 is a block diagram of the intra prediction units 20 and 140 that perform intra prediction using the LM mode described above.
  • the intra prediction units 20 and 140 each include a luminance reference pixel acquisition unit 21, a chrominance reference pixel acquisition unit 22, a prediction coefficient derivation unit 23, and a chrominance linear prediction unit 24.
  • the luminance reference pixel acquisition unit 21 receives the luminance component of the local decoded image f.
  • the luminance reference pixel acquisition unit 21 acquires pixel values of reference pixels around the luminance block corresponding to the color difference prediction target block, adjusts the phase, and outputs the reference pixel value h.
  • the color difference reference pixel acquisition unit 22 receives the color difference component of the local decoded image f as an input.
  • the color difference reference pixel acquisition unit 22 acquires pixel values of reference pixels around the color difference prediction target block, and outputs the pixel values as a color difference reference pixel value i.
  • the prediction coefficient deriving unit 23 receives the luminance reference pixel value h and the color difference reference pixel value i as inputs. The prediction coefficient deriving unit 23 uses these input pixel values to obtain the parameters ⁇ and ⁇ by the above formulas (2) to (4), and outputs them as the prediction coefficient j.
  • the color difference linear prediction unit 24 receives the luminance component of the local decoded image f and the prediction coefficient j.
  • the chrominance linear prediction unit 24 obtains a predicted pixel value of the chrominance component by the above-described equation (1) using these input signals, and outputs it as a chrominance predicted pixel value k.
  • the available memory capacity is increasing with the progress of semiconductor technology.
  • the granularity of memory access increases.
  • the memory bandwidth is not so wide compared to the increase in memory capacity.
  • a memory is used, and therefore, memory access granularity and memory bandwidth have become bottlenecks.
  • a memory (for example, SRAM) closest to the calculation core has higher manufacturing cost and power consumption than an external memory (for example, DRAM). For this reason, it is preferable that the memory capacity of the memory closest to the calculation core can be reduced as much as possible.
  • the worst values specified in the specifications must be able to encode and decode moving images, so the memory closest to the calculation core is the average memory requirement (granularity, size, number, etc.) ), But must be able to meet the worst-case memory requirements.
  • parameters are derived for each TU, so that the number of reference pixels increases and the number of calculations and memory accesses increases.
  • the number of calculations for parameter derivation and the number of reference pixels when the LM mode is used for an image in the YUV420 format will be discussed below.
  • the size of the LCU (Largest Coding Unit) that is the maximum processing block is defined as 64 ⁇ 64 or less in the main profile of Non-Patent Document 1, and the size of the minimum CU that is the minimum processing block is 4 ⁇ 4.
  • Non-Patent Document 2 shows a method for deriving parameters for each CU (Coding Unit) in order to reduce the worst value of the number of parameter derivations for non-YUV420 format images.
  • FIG. 16 shows the number of calculations and the number of reference pixels when a parameter is derived for each TU and when a parameter is derived for each CU.
  • JCTVC-L1003 High efficiency video coding (HEVC) text specification draft 10 (for FDIS & Consent) JCTVC-L0240, AHG7: The performance of extended intra chroma prediction for non 4: 2: 0 format
  • the present invention has been made in view of the above-described problems, and an object thereof is to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • the present invention proposes the following matters in order to solve the above problems.
  • the present invention is a moving image encoding apparatus (for example, corresponding to the moving image encoding apparatus AA in FIG. 1) that encodes a moving image including a plurality of color components, and includes intra-frame prediction.
  • Intra-frame prediction means (for example, equivalent to the intra prediction unit 20A in FIG. 1) is provided, and the intra-frame prediction means thins out luminance reference pixels that thin out reference pixels around the luminance block corresponding to the color difference prediction target block.
  • Means for example, the luminance reference pixel acquisition unit 21A in FIG. 2
  • luminance reference pixel acquisition means for example, the luminance reference pixel in FIG.
  • Color difference linear prediction means for linearly predicting the prediction pixel value of each pixel constituting the color difference prediction target block using the local decoded pixel value of the luminance block corresponding to the prediction block and the prediction coefficient derived by the prediction coefficient derivation means (For example, corresponding to the color difference linear prediction unit 24 in FIG. 2) is proposed.
  • reference pixels around the luminance block corresponding to the color difference prediction target block are thinned out, and reference pixels around the color difference prediction target block are thinned out. For this reason, it is possible to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • the present invention relates to the moving picture coding apparatus according to (1), wherein the luminance reference pixel thinning means and the color difference reference pixel thinning means are used only when the coding unit is a predetermined minimum coding unit.
  • a moving picture coding apparatus that performs the thinning is proposed.
  • the above-described thinning is performed only when the encoding unit is a predetermined minimum encoding unit. For this reason, the number of reference pixels to be referred to in order to reduce redundancy between color components can be reduced only when the coding unit is a predetermined minimum coding unit.
  • the above-described thinning is always performed regardless of the encoding unit. For this reason, it is possible to always reduce the number of reference pixels to be referred to in order to reduce redundancy between color components regardless of the coding unit.
  • the present invention relates to any one of (1) to (3) in the moving picture coding apparatus, wherein the luminance reference pixel thinning means thins out a reference pixel close to the upper left of the luminance block (for example, FIG. (See (B)), the color difference reference pixel thinning means thins out the reference pixels close to the upper left of the color difference prediction target block (see, for example, (A) in FIG. 8), Has proposed.
  • the reference pixel close to the upper left of the luminance block and the reference pixel close to the upper left of the color difference prediction target block are thinned out. did.
  • the luminance intra prediction performance is higher toward the upper left, the contribution to the prediction coefficient is small. For this reason, the number of reference pixels that are referred to in order to reduce the redundancy of the color components can always be reduced regardless of the luminance intra prediction performance and the coding unit.
  • the luminance reference pixel thinning unit includes reference pixels around a luminance block corresponding to the color difference prediction target block.
  • the moving picture coding apparatus has been proposed in which the color difference reference pixel thinning means thins out the reference pixels around the color difference prediction target block in half.
  • the reference pixels are thinned in half. For this reason, the number of reference pixels referred to reduce the redundancy between the color components can be reduced by half.
  • the present invention is a moving picture decoding apparatus (for example, equivalent to the moving picture decoding apparatus BB in FIG. 6) that decodes a moving picture that includes a plurality of color components, and that performs intra-frame prediction.
  • An intra-prediction unit e.g., equivalent to the intra prediction unit 140A in FIG. 6
  • the intra-frame prediction unit e.g., a luminance reference pixel decimation unit (e.g. , Corresponding to the luminance reference pixel acquisition unit 21A in FIG. 2) and luminance reference pixel acquisition means (for example, the luminance reference pixel acquisition unit 21A in FIG. 2) for acquiring the pixel value of the reference pixel after thinning by the luminance reference pixel thinning unit.
  • a color difference reference pixel thinning means for thinning out reference pixels around the color difference prediction target block (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2)
  • the color Color difference reference pixel acquisition means for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2 for acquiring the pixel value of the reference pixel after thinning by the reference pixel thinning means, and the pixel value acquired by the luminance reference pixel acquisition means
  • a prediction coefficient deriving unit for example, corresponding to the prediction coefficient deriving unit 23 in FIG.
  • Color difference linear prediction means for linearly predicting the predicted pixel value of each pixel constituting the color difference prediction target block using the local decoded pixel value of the corresponding luminance block and the prediction coefficient derived by the prediction coefficient derivation means
  • reference pixels around the luminance block corresponding to the color difference prediction target block are thinned out, and reference pixels around the color difference prediction target block are thinned out. For this reason, it is possible to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • the present invention relates to the moving picture decoding apparatus according to (6), in which the luminance reference pixel thinning unit and the chrominance reference pixel thinning unit are described only when the coding unit is a predetermined minimum coding unit.
  • a video decoding apparatus characterized by performing thinning is proposed.
  • the above-described thinning-out is performed only when the encoding unit is a predetermined minimum encoding unit. For this reason, the number of reference pixels to be referred to in order to reduce redundancy between color components can be reduced only when the coding unit is a predetermined minimum coding unit.
  • the above thinning is always performed regardless of the encoding unit. For this reason, it is possible to always reduce the number of reference pixels to be referred to in order to reduce redundancy between color components regardless of the coding unit.
  • the luminance reference pixel thinning unit thins the reference pixel close to the upper left of the luminance block (for example, (( B)), and the chrominance reference pixel thinning means thins out a reference pixel close to the upper left of the chrominance prediction target block (for example, see FIG. 8A). is doing.
  • the reference pixel close to the upper left of the luminance block and the reference pixel close to the upper left of the color difference prediction target block are thinned out.
  • the luminance intra prediction performance is higher toward the upper left, the contribution to the prediction coefficient is small. For this reason, the number of reference pixels that are referred to in order to reduce the redundancy of the color components can always be reduced regardless of the luminance intra prediction performance and the coding unit.
  • the luminance reference pixel thinning unit halves reference pixels around a luminance block corresponding to the color difference prediction target block. Further, the moving picture decoding apparatus has been proposed in which the color difference reference pixel thinning means thins out the reference pixels around the color difference prediction target block in half.
  • the reference pixels are thinned out in half. For this reason, the number of reference pixels referred to reduce the redundancy between the color components can be reduced by half.
  • the present invention relates to luminance reference pixel thinning means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), luminance reference pixel acquisition means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), color difference Reference pixel thinning means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), color difference reference pixel acquisition means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), prediction coefficient derivation means (for example, FIG. 2) 1 and a color difference linear prediction unit (for example, equivalent to the color difference linear prediction unit 24 in FIG. 2) and perform intra-frame prediction (for example, intra prediction in FIG. 1).
  • luminance reference pixel acquisition means for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2
  • color difference Reference pixel thinning means for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2
  • color difference reference pixel acquisition means for example, equivalent to the color difference reference
  • Moving image encoding method in a moving image encoding device (e.g., corresponding to the moving image encoding device AA in FIG. 1) that encodes a moving image including a plurality of color components. So
  • the luminance reference pixel decimation unit first decimates the reference pixels around the luminance block corresponding to the color difference prediction target block, and the luminance reference pixel acquisition unit performs decimation by the luminance reference pixel decimation unit.
  • a moving picture coding method characterized by comprising:
  • reference pixels around the luminance block corresponding to the color difference prediction target block are thinned out, and reference pixels around the color difference prediction target block are thinned out. For this reason, it is possible to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • the present invention relates to luminance reference pixel thinning means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), luminance reference pixel acquisition means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), color difference Reference pixel thinning means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), color difference reference pixel acquisition means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), prediction coefficient derivation means (for example, FIG. 2) 1 and a color difference linear prediction unit (for example, equivalent to the color difference linear prediction unit 24 in FIG. 2) and perform intra-frame prediction (for example, intra prediction in FIG. 1).
  • luminance reference pixel acquisition means for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2
  • color difference Reference pixel thinning means for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2
  • color difference reference pixel acquisition means for example, equivalent to the color difference reference
  • a video decoding method in a video decoding device that decodes a video that includes a plurality of color components.
  • a second step of obtaining a pixel value of the color difference a third step in which the color difference reference pixel thinning unit thins out reference pixels around the color difference prediction target block, and the color difference reference pixel obtaining unit includes the color difference reference.
  • a fifth step of deriving a prediction coefficient using the pixel values obtained, and the color difference linear prediction means corresponding to the color difference prediction target block A sixth step of linearly predicting the predicted pixel value of each pixel constituting the color difference prediction target block using the local decoded pixel value of the luminance block and the prediction coefficient derived by the prediction coefficient deriving unit;
  • the video decoding method characterized by comprising is proposed.
  • reference pixels around the luminance block corresponding to the color difference prediction target block are thinned out, and reference pixels around the color difference prediction target block are thinned out. For this reason, it is possible to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • the present invention relates to luminance reference pixel thinning means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), luminance reference pixel acquisition means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), color difference Reference pixel thinning means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), color difference reference pixel acquisition means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), prediction coefficient derivation means (for example, FIG. 2) 1 and a color difference linear prediction unit (for example, equivalent to the color difference linear prediction unit 24 in FIG. 2) and perform intra-frame prediction (for example, intra prediction in FIG. 1).
  • luminance reference pixel acquisition means for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2
  • color difference Reference pixel thinning means for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2
  • color difference reference pixel acquisition means for example, equivalent to the color difference reference
  • the luminance reference pixel thinning unit is a program for causing a computer to execute the first step of thinning out reference pixels around a luminance block corresponding to a color difference prediction target block, and the luminance reference pixel acquisition unit includes: A second step of acquiring a pixel value of a reference pixel after thinning by the luminance reference pixel thinning unit; and a third step of thinning out the reference pixels around the color difference prediction target block by the color difference reference pixel thinning unit; A fourth step in which the chrominance reference pixel obtaining unit obtains a pixel value of a reference pixel after thinning by the chrominance reference pixel thinning unit; and the prediction coefficient deriving unit is obtained by the luminance reference pixel obtaining unit.
  • the difference linear prediction means uses the local decoded pixel value of the luminance block corresponding to the color difference prediction target block and the prediction coefficient derived by the prediction coefficient derivation means, for each pixel constituting the color difference prediction target block.
  • a program for causing a computer to execute a sixth step of linearly predicting a predicted pixel value is proposed.
  • reference pixels around the luminance block corresponding to the color difference prediction target block are thinned out, and reference pixels around the color difference prediction target block are thinned out. For this reason, it is possible to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • the present invention relates to luminance reference pixel thinning means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), luminance reference pixel acquisition means (for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2), color difference Reference pixel thinning means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), color difference reference pixel acquisition means (for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2), prediction coefficient derivation means (for example, FIG. 2) 1 and a color difference linear prediction unit (for example, equivalent to the color difference linear prediction unit 24 in FIG. 2) and perform intra-frame prediction (for example, intra prediction in FIG. 1).
  • luminance reference pixel acquisition means for example, equivalent to the luminance reference pixel acquisition unit 21A in FIG. 2
  • color difference Reference pixel thinning means for example, equivalent to the color difference reference pixel acquisition unit 22A in FIG. 2
  • color difference reference pixel acquisition means for example, equivalent to the color difference reference
  • the luminance reference pixel thinning unit includes a first step of thinning out reference pixels around a luminance block corresponding to a color difference prediction target block
  • the luminance reference pixel obtaining unit includes: A second step of obtaining a pixel value of the reference pixel after thinning by the luminance reference pixel thinning unit; a third step in which the color difference reference pixel thinning unit thins out the reference pixels around the color difference prediction target block; and A fourth step in which the chrominance reference pixel obtaining unit obtains a pixel value of a reference pixel after thinning by the chrominance reference pixel thinning unit; and a pixel obtained by the prediction coefficient deriving unit by the luminance reference pixel obtaining unit.
  • the measuring means uses the local decoded pixel value of the luminance block corresponding to the color difference prediction target block and the prediction coefficient derived by the prediction coefficient deriving means, and the prediction pixel of each pixel constituting the color difference prediction target block
  • a program for causing a computer to execute a sixth step of linearly predicting a value is proposed.
  • reference pixels around the luminance block corresponding to the color difference prediction target block are thinned out, and reference pixels around the color difference prediction target block are thinned out. For this reason, it is possible to reduce the number of reference pixels to be referred to in order to reduce redundancy between color components.
  • FIG. 1 is a block diagram of a video encoding apparatus according to a first embodiment of the present invention. It is a block diagram of the intra estimation part with which the moving image encoder which concerns on the said embodiment is provided. It is a figure for demonstrating operation
  • FIG. 1 is a block diagram of a video encoding apparatus AA according to the first embodiment of the present invention.
  • the video encoding device AA differs from the video encoding device MM according to the conventional example shown in FIG. 11 in that an intra prediction unit 20A is provided instead of the intra prediction unit 20.
  • the same components as those of the moving picture coding apparatus MM are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 2 is a block diagram of the intra prediction unit 20A.
  • the intra prediction unit 20A is different from the intra prediction unit 20 according to the conventional example illustrated in FIG. 15 in that the luminance reference pixel acquisition unit 21A is provided instead of the luminance reference pixel acquisition unit 21, and the color difference reference pixel acquisition unit 22 is replaced. The difference is that a color difference reference pixel acquisition unit 22A is provided.
  • the luminance reference pixel acquisition unit 21A receives the luminance component of the local decoded image f.
  • the luminance reference pixel acquisition unit 21A acquires pixel values of reference pixels around the luminance block corresponding to the color difference prediction target block, adjusts the phase, and outputs the pixel value as a luminance reference pixel value h. Further, the luminance reference pixel acquisition unit 21A thins out the reference pixels around the luminance block corresponding to the color difference prediction target block with integer pixels in the minimum CU block whose encoding unit is the minimum encoding unit of CU, The pixel value of the reference pixel after the thinning is acquired and output as the luminance reference pixel value h.
  • the color difference reference pixel acquisition unit 22A receives the color difference component of the local decoded image f as an input.
  • the chrominance reference pixel acquisition unit 22A acquires the pixel values of reference pixels around the chrominance prediction target block, and outputs them as a chrominance reference pixel value i. Further, the chrominance reference pixel acquisition unit 22A thins out the reference pixels around the chrominance prediction target block with integer pixels in the minimum CU block whose coding unit is the minimum coding unit of the CU, and performs reference after thinning out the reference pixels. The pixel value of the pixel is acquired and output as the color difference reference pixel value i.
  • FIG. 5 shows the number of calculations and the number of reference pixels in the case where the parameters are derived by the intra prediction unit 20A and the case where the parameters are derived for each CU according to the conventional example.
  • FIG. 3A shows the pixels of the color difference component
  • FIG. 3B shows the pixels of the luminance component.
  • the number of reference pixels around the long side of the luminance block corresponding to the encoding target block is halved from eight to four by thinning out by the luminance reference pixel acquisition unit 21A.
  • the number of reference pixels around the long side of the encoding target block is halved from 8 to 4 by thinning out by the color difference reference pixel acquisition unit 22A.
  • FIG. 4A shows the pixels of the color difference component
  • FIG. 4B shows the pixels of the luminance component.
  • the number of reference pixels around the long side of the luminance block corresponding to the encoding target block is halved from 16 to 8 by thinning out by the luminance reference pixel acquisition unit 21A.
  • the number of reference pixels around the long side of the block to be encoded is halved from 16 to 8 by thinning out by the color difference reference pixel acquisition unit 22A.
  • FIG. 6 is a block diagram of the video decoding device BB according to the first embodiment of the present invention.
  • the video decoding device BB differs from the video decoding device NN according to the conventional example shown in FIG. 12 in that an intra prediction unit 140A is provided instead of the intra prediction unit 140.
  • the same components as those of the video decoding device NN are denoted by the same reference numerals, and the description thereof is omitted.
  • the intra prediction unit 140A includes the luminance reference pixel acquisition unit 21A, the chrominance reference pixel acquisition unit 22A, the prediction coefficient derivation unit 23, and the chrominance linear prediction unit 24 illustrated in FIG. 2, similarly to the intra prediction unit 20A.
  • the moving image encoding device AA and the moving image decoding device BB are configured to detect the luminance block corresponding to the color difference prediction target block in the minimum CU block whose encoding unit is the minimum encoding unit by the luminance reference pixel acquisition unit 21A.
  • the surrounding reference pixels are thinned with integer pixels, and the pixel value of the reference pixel after thinning is obtained.
  • the reference pixels around the color difference prediction target block are thinned out with integer pixels, and the reference after thinning out is performed. Get the pixel value of the pixel. For this reason, in order to reduce the redundancy between color components, the number of pixels to be referred to can be reduced by half.
  • the video encoding device CC is different from the video encoding device AA according to the first embodiment of the present invention shown in FIG. 1 in that an intra prediction unit 20B is provided instead of the intra prediction unit 20A.
  • the same components as those of the video encoding device AA are denoted by the same reference numerals, and the description thereof is omitted.
  • the intra prediction unit 20B is different from the intra prediction unit 20A according to the first embodiment of the present invention shown in FIG. 1 in that a luminance reference pixel acquisition unit 21B is provided instead of the luminance reference pixel acquisition unit 21A, and a color difference reference pixel The difference is that a color difference reference pixel acquisition unit 22B is provided instead of the acquisition unit 22A.
  • the luminance reference pixel acquisition unit 21B receives the luminance component of the local decoded image f.
  • the luminance reference pixel acquisition unit 21B acquires pixel values of reference pixels around the luminance block corresponding to the color difference prediction target block, adjusts the phase, and outputs the pixel value as a luminance reference pixel value h. Further, the luminance reference pixel acquisition unit 21B thins out the integer positions of the reference pixels around the luminance block corresponding to the color difference prediction target block in half in the minimum CU block whose encoding unit is the minimum encoding unit of the CU. To obtain the pixel value of the reference pixel after the thinning and output as a luminance reference pixel value h.
  • the color difference reference pixel acquisition unit 22B receives the color difference component of the local decoded image f as an input.
  • the chrominance reference pixel acquisition unit 22B acquires the pixel values of reference pixels around the chrominance prediction target block, and outputs them as a chrominance reference pixel value i. Further, the color difference reference pixel acquisition unit 22B thins out and thins out the integer positions of the reference pixels around the color difference prediction target block in the minimum CU block whose encoding unit is the minimum encoding unit of the CU.
  • the pixel value of the later reference pixel is acquired and output as the color difference reference pixel value i.
  • the operation of the intra prediction unit 20B will be described with reference to FIG. 7 when the input image a is an image in the YUV420 format.
  • FIG. 7A shows pixels of color difference components
  • FIG. 7B shows pixels of luminance components.
  • the number of reference pixels around the long side of the luminance block corresponding to the encoding target block is halved from eight to four by thinning out by the luminance reference pixel acquisition unit 21B.
  • the number of reference pixels around the long side of the block to be encoded is halved from 8 to 4 by thinning out by the color difference reference pixel acquisition unit 22B.
  • a video decoding device DD according to the second embodiment of the present invention will be described below.
  • the video decoding device DD is different from the video decoding device BB according to the first embodiment of the present invention shown in FIG. 6 in that an intra prediction unit 140B is provided instead of the intra prediction unit 140A.
  • the same components as those of the video decoding device BB are denoted by the same reference numerals, and the description thereof is omitted.
  • the intra prediction unit 140B includes a luminance reference pixel acquisition unit 21B, a color difference reference pixel acquisition unit 22B, a prediction coefficient derivation unit 23, and a color difference linear prediction unit 24, similarly to the intra prediction unit 20B.
  • the moving image encoding device CC and the moving image decoding device DD use the luminance reference pixel acquisition unit 21B to determine the luminance block corresponding to the color difference prediction target block in the minimum CU block whose encoding unit is the minimum encoding unit. Thinning out is performed in half with respect to the integer positions of the surrounding reference pixels, and the pixel values of the reference pixels after the thinning are obtained. Further, by the color difference reference pixel acquisition unit 22B, in the minimum CU block whose encoding unit is the minimum encoding unit of the CU, the integer positions of the reference pixels around the color difference prediction target block are thinned out in half and thinned out. The pixel value of the later reference pixel is acquired. For this reason, in order to reduce the redundancy between color components, the number of reference pixels to be referred to can be reduced by half.
  • a video encoding device EE according to the third embodiment of the present invention will be described below.
  • the video encoding device EE is different from the video encoding device AA according to the first embodiment of the present invention shown in FIG. 1 in that an intra prediction unit 20C is provided instead of the intra prediction unit 20A.
  • the same components as those of the video encoding device AA are denoted by the same reference numerals, and the description thereof is omitted.
  • the intra prediction unit 20C is different from the intra prediction unit 20A according to the first embodiment of the present invention illustrated in FIG. 1 in that a luminance reference pixel acquisition unit 21C is provided instead of the luminance reference pixel acquisition unit 21A, and a color difference reference pixel The difference is that a color difference reference pixel acquisition unit 22C is provided instead of the acquisition unit 22A.
  • the luminance reference pixel acquisition unit 21C receives the luminance component of the local decoded image f.
  • the luminance reference pixel acquisition unit 21C always performs decimation in half with respect to the integer positions of the reference pixels around the luminance block corresponding to the color difference prediction target block regardless of the encoding unit, and the pixel of the reference pixel after the decimation A value is acquired and output as a luminance reference pixel value h.
  • the color difference reference pixel acquisition unit 22C receives the color difference component of the local decoded image f as an input. This chrominance reference pixel acquisition unit 22C always decimates the integer position of the reference pixels around the chrominance prediction target block in half regardless of the encoding unit, and acquires the pixel value of the reference pixel after the culling, Output as a color difference reference pixel value i.
  • the video decoding device FF according to the third embodiment of the present invention will be described below.
  • the video decoding device FF is different from the video decoding device BB according to the first embodiment of the present invention shown in FIG. 6 in that an intra prediction unit 140C is provided instead of the intra prediction unit 140A.
  • the same components as those of the moving picture decoding apparatus BB are denoted by the same reference numerals and the description thereof is omitted.
  • the intra prediction unit 140C includes a luminance reference pixel acquisition unit 21C, a color difference reference pixel acquisition unit 22C, a prediction coefficient derivation unit 23, and a color difference linear prediction unit 24, similarly to the intra prediction unit 20C.
  • the moving image encoding device EE and the moving image decoding device FF by using the luminance reference pixel acquisition unit 21C, always halve the integer positions of the reference pixels around the luminance block corresponding to the color difference prediction target block regardless of the encoding unit.
  • the pixel value of the reference pixel after the thinning is acquired.
  • the color difference reference pixel acquisition unit 22C always thins out the integer positions of the reference pixels around the color difference prediction target block in half regardless of the encoding unit, and acquires the pixel value of the reference pixel after the thinning. . For this reason, in order to reduce the redundancy between color components, the number of reference pixels to be referred to can be reduced by half.
  • the processing of the moving image encoding devices AA, CC, EE and the moving image decoding devices BB, DD, FF of the present invention are recorded on a computer-readable non-transitory recording medium and recorded on this recording medium.
  • the present invention can be realized by reading and executing the program into the moving image encoding devices AA, CC, and EE and the moving image decoding devices BB, DD, and FF.
  • a nonvolatile memory such as an EPROM or a flash memory
  • a magnetic disk such as a hard disk, a CD-ROM, or the like
  • reading and execution of the program recorded on the recording medium is performed by a processor provided in the moving image encoding devices AA, CC, EE and the moving image decoding devices BB, DD, FF.
  • the above-described program is transmitted from the moving image encoding devices AA, CC, EE and the moving image decoding devices BB, DD, FF storing the program in a storage device or the like via the transmission medium or in the transmission medium. It may be transmitted to another computer system by a transmission wave.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above-described program may be for realizing a part of the above-described function.
  • the above-described functions can be realized by a combination with programs already recorded in the moving image encoding devices AA, CC, EE and the moving image decoding devices BB, DD, FF, so-called difference files (difference programs). May be.
  • the reference pixels around the long side of the luminance block corresponding to the encoding target block and the reference pixels around the long side of the encoding target block are thinned out every other pixel.
  • the present invention is not limited to this.
  • reference pixels around the long side of the luminance block corresponding to the block to be encoded and reference pixels around the long side of the block to be encoded are viewed from above as in FIG. While thinning out four, reference pixels around the short side of the luminance block corresponding to the block to be encoded and reference pixels around the short side of the block to be encoded may be thinned out from the left.
  • the reference pixels around the long side and the short side of the luminance block corresponding to the encoding target block and the reference pixels around the long side and the short side of the encoding target block are set every other pixel. Thinned out.
  • the present invention is not limited to this, and as shown in FIG. 10, reference pixels around the long side of the luminance block corresponding to the block to be encoded and reference pixels around the long side of the block to be encoded are viewed from above. While thinning out four, reference pixels around the short side of the luminance block corresponding to the encoding target block and reference pixels around the short side of the coding target block may be thinned out from the left.
  • luminance intra prediction performance is higher in the upper left, the contribution to the prediction coefficient is small. For this reason, as shown in FIGS. 8 to 10 described above, luminance pixels corresponding to the encoding target block and reference pixels near the upper left of the encoding target block are thinned out, and reference pixels far from the upper left of these blocks are derived from the prediction coefficient j. As a result, the number of reference pixels to be referred to in order to reduce the redundancy of the color component can always be reduced regardless of the luminance intra prediction performance and the coding unit.
  • the performance degradation due to the video encoding device and the video decoding device in each of the above-described embodiments is about 0.04% to 0.05% with respect to Non-Patent Document 2 under the common experimental conditions of the standardization meeting. is there. Therefore, it is possible to reduce the number of pixels to be referred to by half in order to reduce the redundancy between the color components as described above, while suppressing the performance degradation to a negligible level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

 フレーム内予測を行うイントラ予測部20Aは、輝度参照画素取得部21Aおよび色差参照画素取得部22Aを備える。輝度参照画素取得部21Aは、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を整数画素で間引きし、間引いた後の参照画素の画素値を取得する。色差参照画素取得部22Aは、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックの周囲にある参照画素を整数画素で間引きし、間引いた後の参照画素の画素値を取得する。これにより、色成分間の冗長性を削減するために参照する参照画素数を減少させる。

Description

動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム
 本発明は、動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラムに関する。
 イントラ予測およびインター予測と、残差変換と、を用いた動画像符号化方式として、HEVC(High Efficiency Video Coding)が提案されている(例えば、非特許文献1参照)。
[動画像符号化装置MMの構成および動作]
 図11は、上述の動画像符号化方式を利用して動画像を符号化する、従来例に係る動画像符号化装置MMのブロック図である。動画像符号化装置MMは、インター予測部10、イントラ予測部20、変換・量子化部30、エントロピー符号化部40、逆量子化・逆変換部50、インループフィルタ部60、第1のバッファ部70、および第2のバッファ部80を備える。
 インター予測部10は、入力画像aと、第1のバッファ部70から供給される後述のローカルデコード画像gと、を入力とする。このインター予測部10は、入力画像aおよびローカルデコード画像gを用いてインター予測(フレーム間予測)を行ってインター予測画像bを生成し、出力する。
 イントラ予測部20は、入力画像aと、第2のバッファ部80から供給される後述のローカル復号画像fと、を入力とする。このイントラ予測部20は、入力画像aおよびローカル復号画像fを用いてイントラ予測(フレーム内予測)を行ってイントラ予測画像cを生成し、出力する。
 変換・量子化部30は、入力画像aと、インター予測画像bまたはイントラ予測画像cと、の誤差(残差)信号を入力とする。この変換・量子化部30は、入力された残差信号を変換および量子化して量子化係数dを生成し、出力する。
 エントロピー符号化部40は、量子化係数dと、図示しないサイド情報と、を入力とする。このエントロピー符号化部40は、入力された信号をエントロピー符号化し、ビットストリームzとして出力する。
 逆量子化・逆変換部50は、量子化係数dを入力とする。この逆量子化・逆変換部50は、量子化係数dを逆量子化および逆変換して、逆変換された残差信号eを生成し、出力する。
 第2のバッファ部80は、ローカル復号画像fを蓄積し、適宜、イントラ予測部20およびインループフィルタ部60に供給する。ローカル復号画像fとは、インター予測画像bまたはイントラ予測画像cと、逆変換された残差信号eと、を合算した信号のことである。
 インループフィルタ部60は、ローカル復号画像fを入力とする。このインループフィルタ部60は、ローカル復号画像fに対してデブロックフィルタといったフィルタを適用して、ローカルデコード画像gを生成し、出力する。
 第1のバッファ部70は、ローカルデコード画像gを蓄積し、適宜、インター予測部10に供給する。
[動画像復号装置NNの構成および動作]
 図12は、動画像符号化装置MMにより生成されたビットストリームzから動画像を復号する、従来例に係る動画像復号装置NNのブロック図である。動画像復号装置NNは、エントロピー復号部110、逆変換・逆量子化部120、インター予測部130、イントラ予測部140、インループフィルタ部150、第1のバッファ部160、および第2のバッファ部170を備える。
 エントロピー復号部110は、ビットストリームzを入力とする。このエントロピー復号部110は、ビットストリームzについてエントロピー復号して、量子化係数Bを生成し、出力する。
 逆変換・逆量子化部120、インター予測部130、イントラ予測部140、インループフィルタ部150、第1のバッファ部160、および第2のバッファ部170は、それぞれ、図11に示した逆量子化・逆変換部50、インター予測部10、イントラ予測部20、インループフィルタ部60、第1のバッファ部70、および第2のバッファ部80と同様に動作する。
[イントラ予測の詳細]
 上述のイントラ予測について、以下に詳述する。イントラ予測について、非特許文献1には、色成分ごとに、符号化済みの再構成された画素である参照画素の画素値を用いて符号化対象ブロックの画素値を予測することが示されている。また、輝度成分の予測方法としては、DC、Planarに加えて、32方向の全34種類が示されている。また、色差成分の予測方法としては、輝度成分と同じ予測種別を用いる方法と、輝度成分とは独立したDC、Planar、水平、垂直と、が示されている。これらによれば、色成分ごとに空間的な冗長性を削減することができる。
 また、非特許文献2には、色成分間の冗長性を削減する手法として、LMモードが示されている。例えばYUV420形式の画像に対してLMモードを利用する場合について、図13を用いて説明する。
 図13の(A)は、色差成分の画素を示し、図13の(B)は、輝度成分の画素を示す。LMモードでは、図13の(B)の16個の白丸で示される画素において再構成された輝度成分を用いて、以下の数式(1)に示す予測式を用いて色差成分を線形予測する。
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、Pは、輝度成分の画素値を示し、predは、色差成分の予測画素値を示す。また、αおよびβは、図13の(A)の8個の黒丸と図13の(B)の8個の黒丸とで示される参照画素を用いて求めることのできるパラメータを示し、以下の数式(2)、(3)により定まる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 数式(2)、(3)において、P’は、色差成分の参照画素の画素値を示す。また、P^は、輝度と色差との位相を考慮した輝度成分の画素値を示し、以下の数式(4)により定まる。
Figure JPOXMLDOC01-appb-M000004
 なお、上部の参照画素については、メモリアクセスを削減するために、位相がずれたままである。また、色差予測は、TU(Transform Unit)と呼ばれる最小処理ブロックごとに行われる。
 また、上述のYUV420形式の画像に対するLMモードを拡張して、YUV422形式の画像に対して利用する場合には、図14に示すように、垂直方向の参照画素が増加する。
 図15は、上述のLMモードを用いてイントラ予測を行うイントラ予測部20、140のブロック図である。イントラ予測部20、140は、それぞれ、輝度参照画素取得部21、色差参照画素取得部22、予測係数導出部23、および色差線形予測部24を備える。
 輝度参照画素取得部21は、ローカル復号画像fの輝度成分を入力とする。この輝度参照画素取得部21は、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の画素値を取得して位相を調整し、輝度参照画素値hとして出力する。
 色差参照画素取得部22は、ローカル復号画像fの色差成分を入力とする。この色差参照画素取得部22は、色差予測対象ブロックの周囲にある参照画素の画素値を取得して、色差参照画素値iとして出力する。
 予測係数導出部23は、輝度参照画素値hと、色差参照画素値iと、を入力とする。この予測係数導出部23は、これら入力された画素値を用いて、上述の数式(2)から(4)によりパラメータα、βを求め、予測係数jとして出力する。
 色差線形予測部24は、ローカル復号画像fの輝度成分と、予測係数jと、を入力とする。この色差線形予測部24は、これら入力された信号を用いて、上述の数式(1)により色差成分の予測画素値を求め、色差予測画素値kとして出力する。
 ところで、利用可能なメモリ容量は、半導体技術の進歩に伴って増加している。しかし、メモリ容量が増加するに従って、メモリアクセスの粒度が大きくなる。一方、メモリ帯域は、メモリ容量の増加と比べて、あまり広くなっていない。動画像の符号化および復号では、メモリが用いられるため、メモリアクセスの粒度やメモリ帯域がボトルネックになっていた。
 また、計算コアに最も近いメモリ(例えば、SRAMなど)は、外部メモリ(例えば、DRAMなど)に比べて製造コストも消費電力も高い。このため、計算コアに最も近いメモリのメモリ容量は、できる限り少なくできることが好ましい。しかし、仕様書に定められた最悪値であっても、動画像の符号化および復号が可能でなければならないため、計算コアに最も近いメモリは、平均的なメモリ要求(粒度、サイズ、個数など)ではなく、最悪値でのメモリ要求を満たすことができなければならない。
 LMモードでは、上述のように、TUごとにパラメータの導出が行われるため、参照画素数が増加し、計算回数およびメモリアクセス回数が多くなる。
 例えば、YUV420形式の画像に対してLMモードを利用する場合における、パラメータ導出のための計算回数および参照画素数について、以下に検討する。最大処理ブロックであるLCU(Largest Coding Unit)のサイズは、非特許文献1のmain profileにおいて64×64以下と規定されており、最小処理ブロックである最小CUのサイズは、4×4である。また、YUV420形式では、色差が1/4の画素数であるため、最小計算ブロックは、輝度成分において8×8になる。このため、パラメータ導出のための計算回数は、(64÷8)=64回となり、参照画素数は、28×64回となる。
 そこで、非特許文献2には、非YUV420形式の画像に対してパラメータ導出回数の最悪値を削減するために、CU(Coding Unit)ごとにパラメータを導出する手法が示されている。TUごとにパラメータを導出した場合と、CUごとにパラメータを導出した場合と、における計算回数および参照画素数を、図16に示す。
JCTVC-L1003, High efficiency video coding (HEVC) text specification draft 10 (for FDIS & Consent) JCTVC-L0240, AHG7: The performance of extended intra chroma prediction for non 4:2:0 format
 図16のYUV444形式の画像のように、LCU単位で考える場合にパラメータの導出に用いる最悪値の参照画素数が多いという課題があった。
 そこで、本発明は、上述の課題を鑑みてなされたものであり、色成分間の冗長性を削減するために参照する参照画素数を減少させることを目的とする。
 本発明は、上記の課題を解決するために、以下の事項を提案している。
 (1) 本発明は、複数の色成分を含んで構成される動画像を符号化する動画像符号化装置(例えば、図1の動画像符号化装置AAに相当)であって、フレーム内予測を行うフレーム内予測手段(例えば、図1のイントラ予測部20Aに相当)を備え、前記フレーム内予測手段は、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く輝度参照画素間引き手段(例えば、図2の輝度参照画素取得部21Aに相当)と、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する輝度参照画素取得手段(例えば、図2の輝度参照画素取得部21Aに相当)と、前記色差予測対象ブロックの周囲にある参照画素を間引く色差参照画素間引き手段(例えば、図2の色差参照画素取得部22Aに相当)と、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する色差参照画素取得手段(例えば、図2の色差参照画素取得部22Aに相当)と、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する予測係数導出手段(例えば、図2の予測係数導出部23に相当)と、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する色差線形予測手段(例えば、図2の色差線形予測部24に相当)と、を有することを特徴とする動画像符号化装置を提案している。
 この発明によれば、フレーム内予測において、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引くとともに、色差予測対象ブロックの周囲にある参照画素を間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
 (2) 本発明は、(1)の動画像符号化装置について、前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位が予め定められた最小符号化単位である場合にのみ前記間引きを行うことを特徴とする動画像符号化装置を提案している。
 この発明によれば、(1)の動画像符号化装置において、符号化単位が予め定められた最小符号化単位である場合にのみ、上述の間引きを行うこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を、符号化単位が予め定められた最小符号化単位である場合にのみ減少させることができる。
 (3) 本発明は、(1)の動画像符号化装置について、前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位によらず常に前記間引きを行うことを特徴とする動画像符号化装置を提案している。
 この発明によれば、(1)の動画像符号化装置において、符号化単位よらず常に、上述の間引きを行うこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を、符号化単位によらず常に減少させることができる。
 (4) 本発明は、(1)から(3)のいずれかの動画像符号化装置について、前記輝度参照画素間引き手段は、前記輝度ブロックの左上に近い参照画素を間引き(例えば、図8の(B)を参照)、前記色差参照画素間引き手段は、前記色差予測対象ブロックの左上に近い参照画素を間引く(例えば、図8の(A)を参照)ことを特徴とする動画像符号化装置を提案している。
 この発明によれば、(1)から(3)のいずれかの動画像符号化装置において、輝度ブロックの左上に近い参照画素と、色差予測対象ブロックの左上に近い参照画素と、を間引くこととした。ここで、左上ほど、輝度イントラ予測性能が高いため、予測係数への寄与が少ない。このため、色成分の冗長性を削減するために参照する参照画素数を、輝度イントラ予測性能や符号化単位によらず常に減少させることができる。
 (5) 本発明は、(1)から(4)のいずれかの動画像符号化装置について、前記輝度参照画素間引き手段は、前記色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を半分に間引き、前記色差参照画素間引き手段は、前記色差予測対象ブロックの周囲にある参照画素を半分に間引くことを特徴とする動画像符号化装置を提案している。
 この発明によれば、(1)から(4)のいずれかの動画像符号化装置において、参照画素を半分に間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を、半分に減少させることができる。
 (6) 本発明は、複数の色成分を含んで構成される動画像を復号する動画像復号装置(例えば、図6の動画像復号装置BBに相当)であって、フレーム内予測を行うフレーム内予測手段(例えば、図6のイントラ予測部140Aに相当)を備え、前記フレーム内予測手段は、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く輝度参照画素間引き手段(例えば、図2の輝度参照画素取得部21Aに相当)と、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する輝度参照画素取得手段(例えば、図2の輝度参照画素取得部21Aに相当)と、前記色差予測対象ブロックの周囲にある参照画素を間引く色差参照画素間引き手段(例えば、図2の色差参照画素取得部22Aに相当)と、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する色差参照画素取得手段(例えば、図2の色差参照画素取得部22Aに相当)と、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する予測係数導出手段(例えば、図2の予測係数導出部23に相当)と、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する色差線形予測手段(例えば、図2の色差線形予測部24に相当)と、を有することを特徴とする動画像復号装置を提案している。
 この発明によれば、フレーム内予測において、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引くとともに、色差予測対象ブロックの周囲にある参照画素を間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
 (7) 本発明は、(6)の動画像復号装置について、前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位が予め定められた最小符号化単位である場合にのみ前記間引きを行うことを特徴とする動画像復号装置を提案している。
 この発明によれば、(6)の動画像復号装置において、符号化単位が予め定められた最小符号化単位である場合にのみ、上述の間引きを行うこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を、符号化単位が予め定められた最小符号化単位である場合にのみ減少させることができる。
 (8) 本発明は、(6)の動画像復号装置について、前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位によらず常に前記間引きを行うことを特徴とする動画像復号装置を提案している。
 この発明によれば、(6)の動画像復号装置において、符号化単位よらず常に、上述の間引きを行うこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を、符号化単位によらず常に減少させることができる。
 (9) 本発明は、(6)から(8)のいずれかの動画像復号装置について、前記輝度参照画素間引き手段は、前記輝度ブロックの左上に近い参照画素を間引き(例えば、図8の(B)を参照)、前記色差参照画素間引き手段は、前記色差予測対象ブロックの左上に近い参照画素を間引く(例えば、図8の(A)を参照)ことを特徴とする動画像復号装置を提案している。
 この発明によれば、(6)から(8)のいずれかの動画像復号装置において、輝度ブロックの左上に近い参照画素と、色差予測対象ブロックの左上に近い参照画素と、を間引くこととした。ここで、左上ほど、輝度イントラ予測性能が高いため、予測係数への寄与が少ない。このため、色成分の冗長性を削減するために参照する参照画素数を、輝度イントラ予測性能や符号化単位によらず常に減少させることができる。
 (10) 本発明は、(6)から(9)のいずれかの動画像復号装置について、前記輝度参照画素間引き手段は、前記色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を半分に間引き、前記色差参照画素間引き手段は、前記色差予測対象ブロックの周囲にある参照画素を半分に間引くことを特徴とする動画像復号装置を提案している。
 この発明によれば、(6)から(9)のいずれかの動画像復号装置において、参照画素を半分に間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を、半分に減少させることができる。
 (11) 本発明は、輝度参照画素間引き手段(例えば、図2の輝度参照画素取得部21Aに相当)、輝度参照画素取得手段(例えば、図2の輝度参照画素取得部21Aに相当)、色差参照画素間引き手段(例えば、図2の色差参照画素取得部22Aに相当)、色差参照画素取得手段(例えば、図2の色差参照画素取得部22Aに相当)、予測係数導出手段(例えば、図2の予測係数導出部23に相当)、および色差線形予測手段(例えば、図2の色差線形予測部24に相当)を有してフレーム内予測を行うフレーム内予測手段(例えば、図1のイントラ予測部20Aに相当)を備え、複数の色成分を含んで構成される動画像を符号化する動画像符号化装置(例えば、図1の動画像符号化装置AAに相当)における動画像符号化方法であって、前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、を備えることを特徴とする動画像符号化方法を提案している。
 この発明によれば、フレーム内予測において、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引くとともに、色差予測対象ブロックの周囲にある参照画素を間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
 (12) 本発明は、輝度参照画素間引き手段(例えば、図2の輝度参照画素取得部21Aに相当)、輝度参照画素取得手段(例えば、図2の輝度参照画素取得部21Aに相当)、色差参照画素間引き手段(例えば、図2の色差参照画素取得部22Aに相当)、色差参照画素取得手段(例えば、図2の色差参照画素取得部22Aに相当)、予測係数導出手段(例えば、図2の予測係数導出部23に相当)、および色差線形予測手段(例えば、図2の色差線形予測部24に相当)を有してフレーム内予測を行うフレーム内予測手段(例えば、図1のイントラ予測部20Aに相当)を備え、複数の色成分を含んで構成される動画像を復号する動画像復号装置(例えば、図6の動画像復号装置BBに相当)における動画像復号方法であって、前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、を備えることを特徴とする動画像復号方法を提案している。
 この発明によれば、フレーム内予測において、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引くとともに、色差予測対象ブロックの周囲にある参照画素を間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
 (13) 本発明は、輝度参照画素間引き手段(例えば、図2の輝度参照画素取得部21Aに相当)、輝度参照画素取得手段(例えば、図2の輝度参照画素取得部21Aに相当)、色差参照画素間引き手段(例えば、図2の色差参照画素取得部22Aに相当)、色差参照画素取得手段(例えば、図2の色差参照画素取得部22Aに相当)、予測係数導出手段(例えば、図2の予測係数導出部23に相当)、および色差線形予測手段(例えば、図2の色差線形予測部24に相当)を有してフレーム内予測を行うフレーム内予測手段(例えば、図1のイントラ予測部20Aに相当)を備え、複数の色成分を含んで構成される動画像を符号化する動画像符号化装置(例えば、図1の動画像符号化装置AAに相当)における動画像符号化方法を、コンピュータに実行させるためのプログラムであって、前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、をコンピュータに実行させるためのプログラムを提案している。
 この発明によれば、フレーム内予測において、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引くとともに、色差予測対象ブロックの周囲にある参照画素を間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
 (14) 本発明は、輝度参照画素間引き手段(例えば、図2の輝度参照画素取得部21Aに相当)、輝度参照画素取得手段(例えば、図2の輝度参照画素取得部21Aに相当)、色差参照画素間引き手段(例えば、図2の色差参照画素取得部22Aに相当)、色差参照画素取得手段(例えば、図2の色差参照画素取得部22Aに相当)、予測係数導出手段(例えば、図2の予測係数導出部23に相当)、および色差線形予測手段(例えば、図2の色差線形予測部24に相当)を有してフレーム内予測を行うフレーム内予測手段(例えば、図1のイントラ予測部20Aに相当)を備え、複数の色成分を含んで構成される動画像を復号する動画像復号装置(例えば、図6の動画像復号装置BBに相当)における動画像復号方法を、コンピュータに実行させるためのプログラムであって、前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、をコンピュータに実行させるためのプログラムを提案している。
 この発明によれば、フレーム内予測において、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引くとともに、色差予測対象ブロックの周囲にある参照画素を間引くこととした。このため、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
 本発明によれば、色成分間の冗長性を削減するために参照する参照画素数を減少させることができる。
本発明の第1実施形態に係る動画像符号化装置のブロック図である。 前記実施形態に係る動画像符号化装置が備えるイントラ予測部のブロック図である。 前記実施形態に係る動画像符号化装置が備えるイントラ予測部の動作を説明するための図である。 前記実施形態に係る動画像符号化装置が備えるイントラ予測部の動作を説明するための図である。 前記実施形態に係る動画像符号化装置が備えるイントラ予測部の動作を説明するための図である。 本発明の第1実施形態に係る動画像復号装置のブロック図である。 本発明の第2実施形態に係る動画像符号化装置が備えるイントラ予測部の動作を説明するための図である。 本発明の変形例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部の動作を説明するための図である。 本発明の変形例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部の動作を説明するための図である。 本発明の変形例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部の動作を説明するための図である。 従来例に係る動画像符号化装置のブロック図である。 従来例に係る動画像復号装置のブロック図である。 従来例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部の動作を説明するための図である。 従来例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部の動作を説明するための図である。 従来例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部のブロック図である。 従来例に係る動画像符号化装置および動画像復号装置が備えるイントラ予測部の動作を説明するための図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施形態における構成要素は適宜、既存の構成要素などとの置き換えが可能であり、また、他の既存の構成要素との組み合せを含む様々なバリエーションが可能である。したがって、以下の実施形態の記載をもって、特許請求の範囲に記載された発明の内容を限定するものではない。
<第1実施形態>
[動画像符号化装置AAの構成および動作]
 図1は、本発明の第1実施形態に係る動画像符号化装置AAのブロック図である。動画像符号化装置AAは、図11に示した従来例に係る動画像符号化装置MMとは、イントラ予測部20の代わりにイントラ予測部20Aを備える点が異なる。なお、動画像符号化装置AAにおいて、動画像符号化装置MMと同一構成要件については、同一符号を付し、その説明を省略する。
 図2は、イントラ予測部20Aのブロック図である。イントラ予測部20Aは、図15に示した従来例に係るイントラ予測部20とは、輝度参照画素取得部21の代わりに輝度参照画素取得部21Aを備える点と、色差参照画素取得部22の代わりに色差参照画素取得部22Aを備える点と、が異なる。
 輝度参照画素取得部21Aは、ローカル復号画像fの輝度成分を入力とする。この輝度参照画素取得部21Aは、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の画素値を取得して位相を調整し、輝度参照画素値hとして出力する。さらに、輝度参照画素取得部21Aは、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を整数画素で間引きし、間引いた後の参照画素の画素値を取得し、輝度参照画素値hとして出力する。
 色差参照画素取得部22Aは、ローカル復号画像fの色差成分を入力とする。この色差参照画素取得部22Aは、色差予測対象ブロックの周囲にある参照画素の画素値を取得して、色差参照画素値iとして出力する。さらに、色差参照画素取得部22Aは、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックの周囲にある参照画素を整数画素で間引きし、間引いた後の参照画素の画素値を取得し、色差参照画素値iとして出力する。
 イントラ予測部20Aの動作について、入力画像aがYUV422形式の画像である場合を図3を用いて説明し、入力画像aがYUV444形式の画像である場合を図4を用いて説明する。また、イントラ予測部20Aによりパラメータを導出した場合と、従来例に係るCUごとにパラメータを導出した場合と、における計算回数および参照画素数を、図5に示す。
 図3の(A)は、色差成分の画素を示し、図3の(B)は、輝度成分の画素を示す。図3の(B)に示すように、輝度参照画素取得部21Aによる間引きにより、符号化対象ブロックに対応する輝度ブロックの長辺の周囲の参照画素数が8個から4個に半減する。また、図3の(A)に示すように、色差参照画素取得部22Aによる間引きにより、符号化対象ブロックの長辺の周囲の参照画素数が8個から4個に半減する。
 また、図4の(A)は、色差成分の画素を示し、図4の(B)は、輝度成分の画素を示す。図4の(B)に示すように、輝度参照画素取得部21Aによる間引きにより、符号化対象ブロックに対応する輝度ブロックの長辺の周囲の参照画素数が16個から8個に半減する。また、図4の(A)に示すように、色差参照画素取得部22Aによる間引きにより、符号化対象ブロックの長辺の周囲の参照画素数が16個から8個に半減する。
[動画像復号装置BBの構成および動作]
 図6は、本発明の第1実施形態に係る動画像復号装置BBのブロック図である。動画像復号装置BBは、図12に示した従来例に係る動画像復号装置NNとは、イントラ予測部140の代わりにイントラ予測部140Aを備える点が異なる。なお、動画像復号装置BBにおいて、動画像復号装置NNと同一構成要件については、同一符号を付し、その説明を省略する。
 イントラ予測部140Aは、イントラ予測部20Aと同様に、図2に示した輝度参照画素取得部21A、色差参照画素取得部22A、予測係数導出部23、および色差線形予測部24を備える。
 以上の動画像符号化装置AAおよび動画像復号装置BBによれば、以下の効果を奏することができる。
 動画像符号化装置AAおよび動画像復号装置BBは、輝度参照画素取得部21Aにより、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を整数画素で間引きし、間引いた後の参照画素の画素値を取得する。また、色差参照画素取得部22Aにより、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックの周囲にある参照画素を整数画素で間引きし、間引いた後の参照画素の画素値を取得する。このため、色成分間の冗長性を削減するために参照する画素数を半分に減少させることができる。
<第2実施形態>
[動画像符号化装置CCの構成および動作]
 本発明の第2実施形態に係る動画像符号化装置CCについて、以下に説明する。動画像符号化装置CCは、図1に示した本発明の第1実施形態に係る動画像符号化装置AAとは、イントラ予測部20Aの代わりにイントラ予測部20Bを備える点が異なる。なお、動画像符号化装置CCにおいて、動画像符号化装置AAと同一構成要件については、同一符号を付し、その説明を省略する。
 イントラ予測部20Bは、図1に示した本発明の第1実施形態に係るイントラ予測部20Aとは、輝度参照画素取得部21Aの代わりに輝度参照画素取得部21Bを備える点と、色差参照画素取得部22Aの代わりに色差参照画素取得部22Bを備える点と、が異なる。
 輝度参照画素取得部21Bは、ローカル復号画像fの輝度成分を入力とする。この輝度参照画素取得部21Bは、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の画素値を取得して位相を調整し、輝度参照画素値hとして出力する。さらに、輝度参照画素取得部21Bは、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得し、輝度参照画素値hとして出力する。
 色差参照画素取得部22Bは、ローカル復号画像fの色差成分を入力とする。この色差参照画素取得部22Bは、色差予測対象ブロックの周囲にある参照画素の画素値を取得して、色差参照画素値iとして出力する。さらに、色差参照画素取得部22Bは、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得し、色差参照画素値iとして出力する。
 イントラ予測部20Bの動作について、入力画像aがYUV420形式の画像である場合を図7を用いて説明する。
 図7の(A)は、色差成分の画素を示し、図7の(B)は、輝度成分の画素を示す。図7の(B)に示すように、輝度参照画素取得部21Bによる間引きにより、符号化対象ブロックに対応する輝度ブロックの長辺の周囲の参照画素数が8個から4個に半減する。また、図7の(A)に示すように、色差参照画素取得部22Bによる間引きにより、符号化対象ブロックの長辺の周囲の参照画素数が8個から4個に半減する。
[動画像復号装置DDの構成および動作]
 本発明の第2実施形態に係る動画像復号装置DDについて、以下に説明する。動画像復号装置DDは、図6に示した本発明の第1実施形態に係る動画像復号装置BBとは、イントラ予測部140Aの代わりにイントラ予測部140Bを備える点が異なる。なお、動画像復号装置DDにおいて、動画像復号装置BBと同一構成要件については、同一符号を付し、その説明を省略する。
 イントラ予測部140Bは、イントラ予測部20Bと同様に、輝度参照画素取得部21B、色差参照画素取得部22B、予測係数導出部23、および色差線形予測部24を備える。
 以上の動画像符号化装置CCおよび動画像復号装置DDによれば、以下の効果を奏することができる。
 動画像符号化装置CCおよび動画像復号装置DDは、輝度参照画素取得部21Bにより、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得する。また、色差参照画素取得部22Bにより、符号化単位がCUの最小符号化単位である最小CUブロックにおいては、色差予測対象ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得する。このため、色成分間の冗長性を削減するために参照する参照画素数を半分に減少させることができる。
<第3実施形態>
[動画像符号化装置EEの構成および動作]
 本発明の第3実施形態に係る動画像符号化装置EEについて、以下に説明する。動画像符号化装置EEは、図1に示した本発明の第1実施形態に係る動画像符号化装置AAとは、イントラ予測部20Aの代わりにイントラ予測部20Cを備える点が異なる。なお、動画像符号化装置EEにおいて、動画像符号化装置AAと同一構成要件については、同一符号を付し、その説明を省略する。
 イントラ予測部20Cは、図1に示した本発明の第1実施形態に係るイントラ予測部20Aとは、輝度参照画素取得部21Aの代わりに輝度参照画素取得部21Cを備える点と、色差参照画素取得部22Aの代わりに色差参照画素取得部22Cを備える点と、が異なる。
 輝度参照画素取得部21Cは、ローカル復号画像fの輝度成分を入力とする。この輝度参照画素取得部21Cは、符号化単位によらず常に、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得し、輝度参照画素値hとして出力する。
 色差参照画素取得部22Cは、ローカル復号画像fの色差成分を入力とする。この色差参照画素取得部22Cは、符号化単位によらず常に、色差予測対象ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得し、色差参照画素値iとして出力する。
[動画像復号装置FFの構成および動作]
 本発明の第3実施形態に係る動画像復号装置FFについて、以下に説明する。動画像復号装置FFは、図6に示した本発明の第1実施形態に係る動画像復号装置BBとは、イントラ予測部140Aの代わりにイントラ予測部140Cを備える点が異なる。なお、動画像復号装置FFにおいて、動画像復号装置BBと同一構成要件については、同一符号を付し、その説明を省略する。
 イントラ予測部140Cは、イントラ予測部20Cと同様に、輝度参照画素取得部21C、色差参照画素取得部22C、予測係数導出部23、および色差線形予測部24を備える。
 以上の動画像符号化装置EEおよび動画像復号装置FFによれば、以下の効果を奏することができる。
 動画像符号化装置EEおよび動画像復号装置FFは、輝度参照画素取得部21Cにより、符号化単位によらず常に、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得する。また、色差参照画素取得部22Cにより、符号化単位によらず常に、色差予測対象ブロックの周囲にある参照画素の整数位置について半分に間引きを行い、間引いた後の参照画素の画素値を取得する。このため、色成分間の冗長性を削減するために参照する参照画素数を半分に減少させることができる。
 なお、本発明の動画像符号化装置AA、CC、EEや動画像復号装置BB、DD、FFの処理を、コンピュータ読み取り可能な非一時的な記録媒体に記録し、この記録媒体に記録されたプログラムを動画像符号化装置AA、CC、EEや動画像復号装置BB、DD、FFに読み込ませ、実行することによって、本発明を実現できる。
 ここで、上述の記録媒体には、例えば、EPROMやフラッシュメモリといった不揮発性のメモリ、ハードディスクといった磁気ディスク、CD-ROMなどを適用できる。また、この記録媒体に記録されたプログラムの読み込みおよび実行は、動画像符号化装置AA、CC、EEや動画像復号装置BB、DD、FFに設けられたプロセッサによって行われる。
 また、上述のプログラムは、このプログラムを記憶装置などに格納した動画像符号化装置AA、CC、EEや動画像復号装置BB、DD、FFから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネットなどのネットワーク(通信網)や電話回線などの通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上述のプログラムは、上述の機能の一部を実現するためのものであってもよい。さらに、上述の機能を動画像符号化装置AA、CC、EEや動画像復号装置BB、DD、FFにすでに記録されているプログラムとの組み合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計なども含まれる。
 例えば、図3では、符号化対象ブロックに対応する輝度ブロックの長辺の周囲の参照画素と、符号化対象ブロックの長辺の周囲の参照画素と、を1画素おきに間引いた。しかし、これに限らず、例えば、図8に示すように、上から4つ間引いてもよい。また、図9に示すように、符号化対象ブロックに対応する輝度ブロックの長辺の周囲の参照画素と、符号化対象ブロックの長辺の周囲の参照画素と、を図8と同様に上から4つ間引くとともに、符号化対象ブロックに対応する輝度ブロックの短辺の周囲の参照画素と、符号化対象ブロックの短辺の周囲の参照画素と、を左から2つ間引いてもよい。
 また、図4では、符号化対象ブロックに対応する輝度ブロックの長辺および短辺の周囲の参照画素と、符号化対象ブロックの長辺および短辺の周囲の参照画素と、を1画素おきに間引いた。しかし、これに限らず、図10に示すように、符号化対象ブロックに対応する輝度ブロックの長辺の周囲の参照画素と、符号化対象ブロックの長辺の周囲の参照画素と、を上から4つ間引くとともに、符号化対象ブロックに対応する輝度ブロックの短辺の周囲の参照画素と、符号化対象ブロックの短辺の周囲の参照画素と、を左から4つ間引いてもよい。
 ここで、左上ほど、輝度イントラ予測性能が高いため、予測係数への寄与が少ない。このため、上述の図8から10のように、符号化対象ブロックに対応する輝度ブロックや符号化対象ブロックの左上に近い参照画素を間引き、これらブロックの左上から遠い参照画素を予測係数jの導出に用いることで、色成分の冗長性を削減するために参照する参照画素数を、輝度イントラ予測性能や符号化単位によらず常に減少させることができる。
 なお、上述の各実施形態における動画像符号化装置および動画像復号装置による性能低下は、標準化会合の共通実験条件下において、非特許文献2に対して0.04%から0.05%程度である。このため、性能低下を無視できる程度に抑えつつ、上述のように色成分間の冗長性を削減するために参照する画素数を半分に減少させることができる。
 AA、CC、EE、MM・・・動画像符号化装置
 BB、DD、FF、NN・・・動画像復号装置
 20、20A~20C、140、140A~140C・・・イントラ予測部
 21、21A~21C・・・輝度参照画素取得部
 22、22A~22C・・・色差参照画素取得部
 23・・・予測係数導出部
 24・・・色差線形予測部

Claims (14)

  1.  複数の色成分を含んで構成される動画像を符号化する動画像符号化装置であって、
     フレーム内予測を行うフレーム内予測手段を備え、
     前記フレーム内予測手段は、
     色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く輝度参照画素間引き手段と、
     前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する輝度参照画素取得手段と、
     前記色差予測対象ブロックの周囲にある参照画素を間引く色差参照画素間引き手段と、
     前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する色差参照画素取得手段と、
     前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する予測係数導出手段と、
     前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する色差線形予測手段と、を有することを特徴とする動画像符号化装置。
  2.  前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位が予め定められた最小符号化単位である場合にのみ前記間引きを行うことを特徴とする請求項1に記載の動画像符号化装置。
  3.  前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位によらず常に前記間引きを行うことを特徴とする請求項1に記載の動画像符号化装置。
  4.  前記輝度参照画素間引き手段は、前記輝度ブロックの左上に近い参照画素を間引き、
     前記色差参照画素間引き手段は、前記色差予測対象ブロックの左上に近い参照画素を間引くことを特徴とする請求項1から3のいずれかに記載の動画像符号化装置。
  5.  前記輝度参照画素間引き手段は、前記色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を半分に間引き、
     前記色差参照画素間引き手段は、前記色差予測対象ブロックの周囲にある参照画素を半分に間引くことを特徴とする請求項1から4のいずれかに記載の動画像符号化装置。
  6.  複数の色成分を含んで構成される動画像を復号する動画像復号装置であって、
     フレーム内予測を行うフレーム内予測手段を備え、
     前記フレーム内予測手段は、
     色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く輝度参照画素間引き手段と、
     前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する輝度参照画素取得手段と、
     前記色差予測対象ブロックの周囲にある参照画素を間引く色差参照画素間引き手段と、
     前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する色差参照画素取得手段と、
     前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する予測係数導出手段と、
     前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する色差線形予測手段と、を有することを特徴とする動画像復号装置。
  7.  前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位が予め定められた最小符号化単位である場合にのみ前記間引きを行うことを特徴とする請求項6に記載の動画像復号装置。
  8.  前記輝度参照画素間引き手段および前記色差参照画素間引き手段は、符号化単位によらず常に前記間引きを行うことを特徴とする請求項6に記載の動画像復号装置。
  9.  前記輝度参照画素間引き手段は、前記輝度ブロックの左上に近い参照画素を間引き、
     前記色差参照画素間引き手段は、前記色差予測対象ブロックの左上に近い参照画素を間引くことを特徴とする請求項6から8のいずれかに記載の動画像復号装置。
  10.  前記輝度参照画素間引き手段は、前記色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を半分に間引き、
     前記色差参照画素間引き手段は、前記色差予測対象ブロックの周囲にある参照画素を半分に間引くことを特徴とする請求項6から9のいずれかに記載の動画像復号装置。
  11.  輝度参照画素間引き手段、輝度参照画素取得手段、色差参照画素間引き手段、色差参照画素取得手段、予測係数導出手段、および色差線形予測手段を有してフレーム内予測を行うフレーム内予測手段を備え、複数の色成分を含んで構成される動画像を符号化する動画像符号化装置における動画像符号化方法であって、
     前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、
     前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、
     前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、
     前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、
     前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、
     前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、を備えることを特徴とする動画像符号化方法。
  12.  輝度参照画素間引き手段、輝度参照画素取得手段、色差参照画素間引き手段、色差参照画素取得手段、予測係数導出手段、および色差線形予測手段を有してフレーム内予測を行うフレーム内予測手段を備え、複数の色成分を含んで構成される動画像を復号する動画像復号装置における動画像復号方法であって、
     前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、
     前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、
     前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、
     前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、
     前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、
     前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、を備えることを特徴とする動画像復号方法。
  13.  輝度参照画素間引き手段、輝度参照画素取得手段、色差参照画素間引き手段、色差参照画素取得手段、予測係数導出手段、および色差線形予測手段を有してフレーム内予測を行うフレーム内予測手段を備え、複数の色成分を含んで構成される動画像を符号化する動画像符号化装置における動画像符号化方法を、コンピュータに実行させるためのプログラムであって、
     前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、
     前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、
     前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、
     前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、
     前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、
     前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、をコンピュータに実行させるためのプログラム。
  14.  輝度参照画素間引き手段、輝度参照画素取得手段、色差参照画素間引き手段、色差参照画素取得手段、予測係数導出手段、および色差線形予測手段を有してフレーム内予測を行うフレーム内予測手段を備え、複数の色成分を含んで構成される動画像を復号する動画像復号装置における動画像復号方法を、コンピュータに実行させるためのプログラムであって、
     前記輝度参照画素間引き手段が、色差予測対象ブロックに対応する輝度ブロックの周囲にある参照画素を間引く第1のステップと、
     前記輝度参照画素取得手段が、前記輝度参照画素間引き手段による間引き後の参照画素の画素値を取得する第2のステップと、
     前記色差参照画素間引き手段が、前記色差予測対象ブロックの周囲にある参照画素を間引く第3のステップと、
     前記色差参照画素取得手段が、前記色差参照画素間引き手段による間引き後の参照画素の画素値を取得する第4のステップと、
     前記予測係数導出手段が、前記輝度参照画素取得手段により取得された画素値と、前記色差参照画素取得手段により取得された画素値と、を用いて予測係数を導出する第5のステップと、
     前記色差線形予測手段が、前記色差予測対象ブロックに対応する輝度ブロックのローカル復号画素値と、前記予測係数導出手段により導出された予測係数と、を用いて当該色差予測対象ブロックを構成する各画素の予測画素値を線形予測する第6のステップと、をコンピュータに実行させるためのプログラム。
PCT/JP2014/058223 2013-03-28 2014-03-25 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム WO2014157166A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/779,838 US9942563B2 (en) 2013-03-28 2014-03-25 Video encoding using subsampling to reduce number of reference pixels
EP14773896.7A EP2981084A4 (en) 2013-03-28 2014-03-25 DYNAMIC IMAGE CODING DEVICE, DYNAMIC IMAGE DECODING DEVICE, DYNAMIC IMAGE CODING METHOD, DYNAMIC PICTURE DECODING PROCESS AND PROGRAM
CN201480017299.XA CN105284109B (zh) 2013-03-28 2014-03-25 运动图像编码装置、运动图像解码装置、运动图像编码方法、运动图像解码方法、及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013070215A JP6005572B2 (ja) 2013-03-28 2013-03-28 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム
JP2013-070215 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157166A1 true WO2014157166A1 (ja) 2014-10-02

Family

ID=51624137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058223 WO2014157166A1 (ja) 2013-03-28 2014-03-25 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム

Country Status (5)

Country Link
US (1) US9942563B2 (ja)
EP (1) EP2981084A4 (ja)
JP (1) JP6005572B2 (ja)
CN (1) CN105284109B (ja)
WO (1) WO2014157166A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023332B2 (ja) * 2013-07-10 2016-11-09 Kddi株式会社 動画像符号化装置、動画像復号装置、動画像システム、動画像符号化方法、動画像復号方法、およびプログラム
US20190200021A1 (en) * 2016-09-22 2019-06-27 Lg Electronics Inc. Illumination compensation-based inter-prediction method and apparatus in image coding system
JP6680260B2 (ja) * 2017-04-28 2020-04-15 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法及び画像符号化プログラム、並びに画像復号化装置、画像復号化方法及び画像復号化プログラム
JP6825506B2 (ja) 2017-07-19 2021-02-03 富士通株式会社 動画像符号化装置、動画像符号化方法、動画像符号化用コンピュータプログラム、動画像復号装置及び動画像復号方法ならびに動画像復号用コンピュータプログラム
WO2019221465A1 (ko) * 2018-05-14 2019-11-21 인텔렉추얼디스커버리 주식회사 영상 복호화 방법/장치, 영상 부호화 방법/장치 및 비트스트림을 저장한 기록 매체
JP2019213096A (ja) * 2018-06-06 2019-12-12 Kddi株式会社 画像復号装置、画像符号化装置、画像処理システム、画像復号方法及びプログラム
KR101956756B1 (ko) * 2018-06-12 2019-03-11 광운대학교 산학협력단 성분 간 참조 기반의 비디오 신호 처리 방법 및 장치
US11265579B2 (en) * 2018-08-01 2022-03-01 Comcast Cable Communications, Llc Systems, methods, and apparatuses for video processing
CN112313950B (zh) * 2018-09-21 2023-06-02 Oppo广东移动通信有限公司 视频图像分量的预测方法、装置及计算机存储介质
AU2018454766A1 (en) 2018-12-25 2021-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Decoding prediction method and apparatus, and computer storage medium
JP7304153B2 (ja) 2018-12-27 2023-07-06 Kddi株式会社 動画像復号装置、動画像復号方法及びプログラム
US20220070452A1 (en) * 2018-12-27 2022-03-03 Intellectual Discovery Co., Ltd. Image encoding/decoding method and device
CN112970257A (zh) 2019-01-02 2021-06-15 Oppo广东移动通信有限公司 解码预测方法、装置及计算机存储介质
EP3910948A4 (en) * 2019-01-16 2022-07-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. INFORMATION PROCESSING METHOD AND APPARATUS, AND DEVICE AND STORAGE MEDIA
CN110460854B (zh) * 2019-07-15 2021-09-03 珠海市杰理科技股份有限公司 图像压缩方法
JP6879401B2 (ja) * 2020-02-27 2021-06-02 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法及び画像符号化プログラム、並びに画像復号化装置、画像復号化方法及び画像復号化プログラム
CN111818333B (zh) * 2020-06-16 2022-04-29 中国科学院深圳先进技术研究院 一种帧内预测方法、装置、终端及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148619A1 (ja) * 2006-06-21 2007-12-27 Nec Corporation 動画像復号装置、復号画像記録装置、それらの方法及びプログラム
JP2013034163A (ja) * 2011-06-03 2013-02-14 Sony Corp 画像処理装置及び画像処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617644B2 (ja) * 2003-07-18 2011-01-26 ソニー株式会社 符号化装置及び方法
KR101246915B1 (ko) * 2005-04-18 2013-03-25 삼성전자주식회사 동영상 부호화 또는 복호화 방법 및 장치
JP2010268259A (ja) * 2009-05-15 2010-11-25 Sony Corp 画像処理装置および方法、並びにプログラム
EP2536151A4 (en) * 2010-02-10 2014-03-19 Lg Electronics Inc METHOD AND DEVICE FOR PROCESSING A VIDEO SIGNAL
GB2501535A (en) * 2012-04-26 2013-10-30 Sony Corp Chrominance Processing in High Efficiency Video Codecs
DK2855667T3 (da) * 2012-05-25 2023-10-30 Cellectis Fremgangsmåder til manipulation af allogeniske og immunosuppressiv-resistante T-celler til immunterapi
US9264710B2 (en) * 2012-07-06 2016-02-16 Texas Instruments Incorporated Method and system for video picture intra-prediction estimation
JP6023332B2 (ja) * 2013-07-10 2016-11-09 Kddi株式会社 動画像符号化装置、動画像復号装置、動画像システム、動画像符号化方法、動画像復号方法、およびプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148619A1 (ja) * 2006-06-21 2007-12-27 Nec Corporation 動画像復号装置、復号画像記録装置、それらの方法及びプログラム
JP2013034163A (ja) * 2011-06-03 2013-02-14 Sony Corp 画像処理装置及び画像処理方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"High efficiency video coding (HEVC) text specification draft 10", JCTVC-L1003
"The performance of extended intra chroma prediction for non 4:2:0 format", JCTVC-L0240, AHG7
KAZUSHI SATO: "Complexity Reduction of Chroma Intra Prediction by Reconstructed Luma Samples", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT- VC) OF ITU-T SG 16 WP3 AND ISO/IEC JTC1/SC29/ WG11 6TH MEETING, 12 July 2011 (2011-07-12), TORINO, IT, pages 1 - 4, XP030049424 *
KEI KAWAMURA ET AL.: "AHG5: CU based chroma intra prediction with reduced reference", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT- VC) OF ITU-T SG 16 WP3 AND ISO/IEC JTC1/SC29/ WG11 13TH MEETING, 20 April 2013 (2013-04-20), INCHEON, KR, pages 1 - 5, XP030114369 *
MADHUKAR BUDAGAVI ET AL.: "CE6.a: Sub- sampling portion of neighboring pixels in calculation of LM parameters", JOINT COLLABORATIVE TEAM ON VIDEO CODING(JCT-VC)OF ITU-T SG 16 WP3 AND ISO/IEC JTC1/SC29/WG11 7TH MEETING, 21 November 2011 (2011-11-21), GENEVA, CH, pages 1 - 3, XP030110113 *
See also references of EP2981084A4 *

Also Published As

Publication number Publication date
JP6005572B2 (ja) 2016-10-12
EP2981084A1 (en) 2016-02-03
US20160065988A1 (en) 2016-03-03
CN105284109A (zh) 2016-01-27
JP2014195142A (ja) 2014-10-09
US9942563B2 (en) 2018-04-10
EP2981084A4 (en) 2016-10-12
CN105284109B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
JP6005572B2 (ja) 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、およびプログラム
JP6023332B2 (ja) 動画像符号化装置、動画像復号装置、動画像システム、動画像符号化方法、動画像復号方法、およびプログラム
TWI782904B (zh) 合併用於視訊寫碼之用於多類別區塊之濾波器
TWI705694B (zh) 片級內部區塊複製及其他視訊寫碼改善
US11910014B2 (en) Image encoding method using a skip mode, and a device using the method
US10116942B2 (en) Method and apparatus for decoding a video using an intra prediction
US20180139453A1 (en) Method of processing video signal and device for same
KR20210113390A (ko) 인트라 예측의 인코더, 디코더 및 대응하는 방법
KR102501972B1 (ko) 영상 복호화 장치
WO2020125595A1 (zh) 视频译码器及相应方法
JP2023153802A (ja) イントラ・サブパーティション・コーディング・ツールによって引き起こされるサブパーティション境界のためのデブロッキングフィルタ
KR20140007097A (ko) 적응적 필터링을 이용하는 인트라 예측 방법 및 장치
KR101596085B1 (ko) 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법
US20200154103A1 (en) Image processing method on basis of intra prediction mode and apparatus therefor
KR101943058B1 (ko) 영상 부호화/복호화 방법 및 장치
KR101911587B1 (ko) 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법
CN111327899A (zh) 视频译码器及相应方法
JP7267444B2 (ja) イントラ予測のためのイントラモードコーディングを使用するエンコーダ、デコーダ、および対応する方法
JP6154753B2 (ja) 動画像復号装置、動画像復号方法、およびプログラム
US20220385945A1 (en) Image processing device and image processing method
KR20180040827A (ko) 부호화 유닛의 그룹을 사용하는 비디오 코딩 방법 및 장치
JP5969408B2 (ja) 映像圧縮フォーマット変換装置、映像圧縮フォーマット変換方法、およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017299.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014773896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14779838

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE