WO2014157060A1 - Solar cell and manufacturing method for dye-sensitized solar cell - Google Patents

Solar cell and manufacturing method for dye-sensitized solar cell Download PDF

Info

Publication number
WO2014157060A1
WO2014157060A1 PCT/JP2014/058027 JP2014058027W WO2014157060A1 WO 2014157060 A1 WO2014157060 A1 WO 2014157060A1 JP 2014058027 W JP2014058027 W JP 2014058027W WO 2014157060 A1 WO2014157060 A1 WO 2014157060A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
electrode
solar cell
dye
anode electrode
Prior art date
Application number
PCT/JP2014/058027
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 健了
俊久 藤高
河野 充
健二 肆矢
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2015508468A priority Critical patent/JPWO2014157060A1/en
Publication of WO2014157060A1 publication Critical patent/WO2014157060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode structure of a solar cell.
  • the solar cell refers to all photoelectric conversion elements that convert light into electric power in a broad sense.
  • a solar cell is a semiconductor element using a pn junction of p-type and n-type semiconductors.
  • Examples of solar cells made of such semiconductor elements include silicon-based solar cells using silicon semiconductors, compound thin-film solar cells using compound semiconductors, and organic thin-film solar cells using organic semiconductors.
  • the dye-sensitized solar cell has an electrolyte solution as described below for the battery structure. Since it is used, a reliable sealing structure is required.
  • the latter dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized by having an electrochemical cell structure typified by an iodine solution.
  • Dye-sensitized solar cells are porous, such as a titania layer formed by baking titanium dioxide powder or the like on a transparent conductive glass plate (transparent conductive substrate anode electrode laminated with a transparent conductive film) and adsorbing the dye to this. It has a simple structure in which an iodine solution or the like is disposed as an electrolytic solution (electrolyte) between a counter electrode composed of a semiconductor layer and a conductive glass plate (conductive substrate cathode electrode).
  • the dye adsorbed on the surface of the porous titanium oxide electrode absorbs light and causes excitation of electrons.
  • the dye that has lost the electrons receives and regenerates electrons from iodine ions.
  • Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production. However, since dye-sensitized solar cells have lower power generation efficiency than other solar cells, further improvement in power generation efficiency is required.
  • conventional dye-sensitized solar cells have extraction electrodes that are electrically connected to the anode electrode and the cathode electrode, respectively, extending around the cell, such as opposite ends of the cell in plan view. To do.
  • a conductor wiring is connected to the external connection terminal of each extraction electrode, and a load is provided between the two conductor wirings to generate power (see, for example, Patent Document 1).
  • the extension part of the extraction electrode provided in the periphery of the battery can be said to be a non-power generation area, in which the battery cannot be arranged with respect to the battery as the power generation area.
  • the incident light direction changing unit is arranged so as to cover a part of the power generation amount region, which causes a decrease in light transmittance. Further, the cost of providing the incident light direction changing unit is high.
  • the present inventors have a laminated structure part composed of a porous semiconductor layer adsorbing a dye, a conductor layer serving as a cathode electrode, and a conductive metal layer serving as an anode electrode.
  • One end portion of each of the layer and the conductor layer extends to be provided with an extending portion, in other words, an extraction electrode, and the laminated structure portion and the extending portion are sealed together with the encapsulated electrolyte by a sealing material, and conductive metal
  • a dye-sensitized solar cell is proposed in which a part of each layer and the extended portion of each conductor layer is exposed from a sealing material to serve as an external connection terminal (see Patent Document 3). Thereby, it can prevent reliably that electrolyte solution leaks from the extraction location of the extension part electrically connected to a conductive metal layer and a conductor layer.
  • the problem to be solved is that in the conventional solar cell, the effective planar area of the battery cell which is the power generation region is restricted by the non-power generation region occupied by the electrode structure.
  • a solar cell according to the present invention includes a photoelectric conversion unit, a porous anode electrode provided on the opposite side of the photoelectric conversion unit from the light incident side, and a nonporous cathode electrode or nonporous material provided to face the anode electrode.
  • a solar cell having a cathode electrode formed by laminating a material and a porous material and sealing the whole a non-porous conductor portion is laminated on the side opposite to the light incident side of a part of the electrode of the anode electrode And a part of the non-porous conductor part is exposed from the first opening formed in the sealing part at a position not overlapping the cathode electrode in plan view on the side opposite to the light incident side. And a part of the cathode electrode is exposed from a second opening formed on a side opposite to the light incident side at a position different from the first opening of the sealing portion, It is a connection terminal.
  • the photoelectric conversion part is disposed on the light incident side, and is a porous semiconductor layer that adsorbs a dye
  • the anode electrode is light incident on the porous semiconductor layer that adsorbs the dye.
  • the method for producing a dye-sensitized solar cell according to the present invention includes applying a slurry-like raw material of a porous anode electrode onto a base material that can be dissolved by chemical treatment, and sintering the slurry-like raw material to obtain a sintered body. Then, the substrate is separated from the sintered body by chemical treatment, and a dye-adsorbing porous semiconductor layer is formed on the sintered body to obtain a porous anode electrode with a dye-adsorbing porous semiconductor layer.
  • a step of laminating a non-porous conductor portion at one corner on the anode side of a porous anode electrode with a porous semiconductor layer, and a substantially same plane dimension as a porous anode electrode with a dye-adsorbing porous semiconductor layer A non-porous cathode electrode or a non-porous material and a porous material laminated with a non-porous cathode electrode formed by notching a portion corresponding to the non-porous conductor portion when overlapped with the anode electrode.
  • Process with a dye adsorbing porous semiconductor layer A step of laminating a porous anode electrode and a cathode electrode while aligning a non-porous conductor part of a porous anode electrode with a dye-adsorbing porous semiconductor layer and a notch part of the cathode electrode, and a resin sheet and an outer side of the cathode electrode Sealing with at least one of the sealing materials, and further forming an opening that exposes at least a part of the non-porous conductor part and a part of the cathode electrode to the outside of the cathode electrode.
  • the solar cell according to the present invention includes a photoelectric conversion unit, a nonporous transparent anode electrode provided on the light incident side of the photoelectric conversion unit, and a nonporous material provided to face the anode electrode with the photoelectric conversion unit interposed therebetween.
  • a part of the electrode of the anode electrode is a flat surface on the side opposite to the light incident side.
  • a fourth external connection terminal is exposed from a fourth opening formed at a position different from the third opening of the stopper.
  • a nonporous conductor portion is laminated on the side opposite to the light incident side of a part of the electrode of the porous anode, and a part of the nonporous conductor portion is formed on the light incident side. Is exposed from a first opening formed in the sealing portion on the opposite side to serve as a first external connection terminal, and a non-porous cathode electrode or a cathode electrode in which a non-porous material and a porous material are laminated A part of the electrode is exposed from a second opening formed at a position different from the first opening of the sealing portion on the side opposite to the light incident side to serve as a second external connection terminal.
  • the extraction electrode does not extend to the end portions of the anode and cathode electrodes in plan view, the planar area of the battery cell as the power generation region is restricted by the non-power generation region occupied by the electrode structure.
  • an internal structure component such as a photoelectric conversion part in contact with the porous anode electrode is interposed through the porous anode electrode. Since it does not substantially communicate with the outside, it is possible to reduce contamination of internal structural components due to the external atmosphere.
  • the solar cell is a porous semiconductor layer that adsorbs the dye
  • the photoelectric conversion part is disposed on the light incident side
  • the anode electrode is opposite to the light incident side of the porous semiconductor layer that adsorbs the dye
  • a porous conductor layer provided on the side surface, and the cathode electrode is porous with a non-porous conductor layer or a non-porous material provided opposite to the porous conductor layer via an electrolyte layer to be sealed
  • the conductive layer is formed by laminating a porous material, there is little possibility that the electrolyte will leak to the outside through the porous anode electrode.
  • the method for producing a dye-sensitized solar cell according to the present invention can suitably obtain the above-described dye-sensitized solar cell.
  • the solar cell according to the present invention is a third portion formed in a sealing portion at a position where a part of the electrode of the nonporous transparent anode electrode does not overlap the cathode electrode in a plan view on the side opposite to the light incident side.
  • a fourth opening that is exposed from the opening to serve as a third external connection terminal, and a part of the cathode electrode is formed at a position opposite to the incident side at a position different from the third opening of the sealing portion.
  • the internal structure components such as the photoelectric conversion part that is in contact with the porous anode electrode are passed through the porous anode electrode with a simple configuration that directly exposes a part of the electrode of the anode electrode. Therefore, the internal structural components can be prevented from being contaminated by the external atmosphere.
  • FIG. 1 is a plan view of a solar cell according to a first example of the present embodiment as viewed from the light incident side.
  • FIG. 2 is a partial cross-sectional view as seen from the direction AA in FIG.
  • FIG. 3 is a partial cross-sectional view as seen from the direction BB in FIG.
  • FIG. 4 is an example showing an overlapping state of the anode electrode and the cathode electrode in the solar cell according to the first example of the present embodiment.
  • FIG. 5 is an example different from FIG. 4 showing the overlapping state of the anode and cathode in the solar cell according to the first example of the present embodiment.
  • FIG. 6 is a plan view of the solar cell according to the second example of the present embodiment as viewed from the light incident side.
  • FIG. 7 is a partial cross-sectional view as seen from the direction AA in FIG.
  • FIG. 8 is a partial cross-sectional view seen from the BB direction in FIG.
  • a solar cell 10 according to the first example of the present embodiment shown in FIGS. 1 to 3 includes a photoelectric conversion unit 12, a porous anode electrode 14, and a non-porous cathode electrode 16.
  • the anode 14 is provided on the side opposite to the light incident side of the photoelectric conversion unit 12.
  • the cathode electrode 16 is provided to face the anode electrode 14.
  • the solar cell 10 is provided with a transparent substrate 18 on the outside of the photoelectric conversion unit 12 and a transparent substrate 19 on the outside of the cathode electrode 16, and is entirely sealed with an appropriate sealing material or sealing member.
  • 2 and 3 show an example of sealing with a sealing material (sealing portion) 20.
  • the cathode electrode 16 may be a laminate of a non-porous material and a porous material. It is sufficient that the sealing material or the sealing member can seal the photoelectric conversion unit 12. As shown in FIGS. 2 and 3, a transparent substrate 18 is provided on the outer surface of the photoelectric conversion unit 12, while the cathode electrode 16 itself is formed of a non-porous metal layer. It can be said that the photoelectric conversion part 12 is sealed by 18 and the cathode electrode 16, and eventually the entire solar cell 10 is sealed. In order to securely seal by a simple method, it is preferable to omit the transparent substrate 18 and the substrate 19 and seal the entire solar cell 10 with the sealing material 20.
  • the solar cell 10 is preferably a dye-sensitized solar cell
  • the photoelectric conversion unit 12 is a porous semiconductor layer that adsorbs a dye and is disposed on the light incident side
  • the anode electrode 14 is a porous that adsorbs the dye.
  • a porous conductor layer provided on the surface opposite to the light incident side of the porous semiconductor layer, the cathode 16 being an anode via an electrolyte layer (not shown in FIGS. 1 to 3) enclosed It is a non-porous conductor layer provided opposite to the electrode 14 or a conductor layer in which a non-porous material and a porous material are laminated.
  • the reason why the anode 14 is porous is to obtain good liquid permeability of the electrolyte between the cathode 16 side and the porous semiconductor layer, or hole or electron conductivity.
  • An insulating layer 22 is preferably provided between the anode 14 and the cathode 16. Thereby, even when the bending force is applied to the solar cell 10, the anode 14 and the cathode 16 can be reliably insulated.
  • a specific configuration of the dye-sensitized solar cell can be applied as it is, and is not essence of the present invention. Note that these configurations can also be applied to a solar cell according to a second example of the present embodiment described later.
  • the anode 14 may be a metal mesh, a metal layer in which numerous holes are formed in advance, or a porous metal layer formed by thermal spraying or thin film formation.
  • the material of the anode electrode 14 is not particularly limited, but Ti, W, Ni, Pt, Ta, Nb, Zr, Au, and the like can be suitably used.
  • the thickness of the anode 14 is not particularly limited, but is preferably 0.2 ⁇ m-600 ⁇ m.
  • the cathode 16 is a catalyst film or a non-porous conductive film laminated on a catalyst film.
  • a noble metal such as platinum, high surface area carbon, or the like can be used.
  • a platinum film is formed by, for example, a sputtering method, a non-porous film is formed, and when high surface area carbon is formed by, for example, a carbon particle printing method, a porous film is formed. In either case, the electrolyte does not leak to the outside due to the presence of the nonporous conductive film.
  • the thickness of the cathode electrode 16 is not particularly limited, but is preferably, for example, about several tens of nm or more from the viewpoint of obtaining good conductivity.
  • an appropriate metal oxide such as TiO 2, ZnO, or SnO 2 can be used as a semiconductor material.
  • the thickness of the porous semiconductor layer is not particularly limited, but is preferably 10 ⁇ m or more.
  • the dye adsorbed on the porous semiconductor layer has absorption at a wavelength of 400 nm to 1200 nm.
  • the electrolyte layer can use a known electrolyte solution or solid electrolyte, and includes, for example, iodine, lithium ion, ionic liquid, t-butylpyridine, etc.
  • iodine it consists of a combination of iodide ions and iodine.
  • a redox form can be used.
  • the electrolyte layer contains an appropriate solvent capable of dissolving these redox substances.
  • the transparent substrate 18 and the substrate 19 may be glass or a transparent resin sheet.
  • the material of the transparent resin sheet is, for example, PP, PE, PS, ABS, PS, PC, PMMA, PVC, PA, POM, PET, PEN, PIB, PVB, PA6, polyimide, polyamide, polyolefin, polyester, polyether, Examples thereof include a cured acrylic resin, a cured epoxy resin, a cured silicone resin, various engineering plastics, and a cyclic polymer obtained by metathesis polymerization.
  • the substrate 19 provided in contact with the cathode electrode 16 does not have to be transparent.
  • the thickness of the substrate 19 is not particularly limited, and can be, for example, 1 ⁇ m to 3 mm.
  • the material of the sealing portion 20 for example, an acrylic resin, an epoxy resin, an ionomer resin, a silicone resin, or the like can be used.
  • the thickness of the sealing portion 20 that seals the substrate 19 is not particularly limited, and can be, for example, 1 ⁇ m to 10 ⁇ m.
  • a non-porous conductor 24 is provided on the side opposite to the light incident side of a part of the electrode of the anode 14, and a first opening formed in the sealing part 20 at a position not overlapping the cathode 16 in plan view. A part of the non-porous conductor portion 24 is exposed from 26 to form the first external connection terminal 28. On the other hand, a part of the electrode of the cathode electrode 16 is exposed from the second opening 30 formed at a position different from the first opening 26 of the sealing portion 20 on the side opposite to the light incident side, and the second external connection. Terminal 32 is used. As a result, the anode 14 and the first external connection terminal 28 are reliably electrically insulated from the cathode 16 and the second external connection terminal 32.
  • the external connection terminals 28 and 32 seem to be largely retracted from the openings 26 and 30, but in reality, the substrate 19 and the sealing portion 20 are thin, and thus the external connection terminals 28 and 28 are thin. , 32 are exposed to a degree sufficient to connect the conductor wiring. If the external connection terminals 28 and 32 are arranged close to each other as shown in FIG. 1, it is preferable in terms of the layout of the conductor wiring connected thereto.
  • the material of the non-porous conductor portion 24 is not particularly limited, but is a metal material such as Ti, W, Ni, Pt, Ta, Nb, Zr and Au, or a compound thereof, or is covered with these. A material is preferred.
  • the following electrodes are used. It can be a structure. For example, as shown in FIG. 4, a notch is formed at a position of the cathode electrode 16 corresponding to a region overlapping with the nonporous conductor portion 24, in other words, a region where the first opening 26 appears (indicated by an arrow A in FIG. 4). ).
  • the area of the cathode electrode 16 that does not overlap the anode electrode 14 in plan view can be made only a cut-out portion, and the overlapping area of the anode electrode 14 and the cathode electrode 16, that is, an effective power generation area can be increased. it can. Further, for example, as shown in FIG. 5, a region where the length dimension L2 of the cathode electrode 16 overlaps with the porous conductor portion 24 rather than the length dimension L1 of the anode electrode 14, in other words, a region where the first opening 26 appears. If it is shortened by this amount, the step of notching the cathode electrode 16 can be omitted.
  • the extraction electrodes that are electrically connected to the anode electrode and the cathode electrode in the conventional solar cell have opposite ends of the cell in plan view, etc.
  • the non-power generation region generated by extending around the battery is eliminated, and the plane area of the battery cell that is the power generation region can be increased accordingly.
  • a planar area of a battery cell that is a power generation region can be secured by 6.56 cm 2 , a part of the cathode electrode is notched in the solar battery 10.
  • the planar area of the battery cell that is the power generation region can be expanded to, for example, 8.38 cm 2 .
  • the planar area of the battery cell as the power generation region is the same as the anode electrode without notches.
  • the area can be as large as, for example, 8.8 cm 2 .
  • the internal structure components such as the photoelectric conversion unit in contact with the porous anode electrode are porous.
  • the solar cell 10 Since it does not substantially communicate with the outside via the quality anode electrode, the contamination of the internal structural components due to the external atmosphere can be reduced.
  • the solar cell 10 is a dye-sensitized solar cell, it can prevent that electrolyte solution leaks outside via a porous anode electrode.
  • the solar cell 10 since the solar cell 10 does not have an extraction electrode in the appearance seen from the light incident side, it is excellent in design.
  • the dye-sensitized solar cell according to the first example of this embodiment can be suitably obtained.
  • the method for manufacturing a dye-sensitized solar cell includes a step (first step) of obtaining a porous anode electrode with a dye-adsorbing porous semiconductor layer provided with a nonporous conductor portion, and a notch A step of obtaining a cathode electrode formed with a cathode (second step), a step of laminating a porous anode electrode with a dye-adsorbing porous semiconductor layer and a cathode electrode (third step), A step of providing at least one of the substrate having the opening formed therein or the sealing resin sheet having the sixth opening formed therein and the seventh opening formed at a position corresponding to the notch (fourth step) ).
  • the slurry-like raw material of the porous anode electrode is coated on a dissolvable substrate by chemical treatment, and the slurry-like raw material is sintered to form a sintered body, and then the substrate is formed by chemical treatment.
  • a dye-adsorbing porous semiconductor layer is formed on the sintered body to obtain a porous anode electrode with a dye-adsorbing porous semiconductor layer, and an anode of a porous anode electrode with a dye-adsorbing porous semiconductor layer
  • a non-porous conductor is laminated at one corner on the pole side.
  • a slurry-like raw material for the porous anode for example, a slurry-like composition in which titanium powder having a particle size of 3 to 40 ⁇ m and an average particle size of 10 ⁇ m is mixed with, for example, an ethylcellulose binder can be used.
  • This slurry-like composition is applied onto a base material, such as iron foil, that can be dissolved by chemical treatment using a metal mask, for example, by a squeegee method (screen printing method), and dried under reduced pressure to obtain a pre-fired shaped body. Thereafter, the molded body before firing is pressed. And this sintered compact is heated together with the iron foil and degreased. Further, firing is performed to obtain a sintered body.
  • the sintered body is immersed in, for example, an aqueous sulfuric acid solution, and the iron foil portion in contact with the sintered body is dissolved to peel the iron foil from the sintered body.
  • the obtained sintered body is repeatedly washed with distilled water or the like to remove sulfuric acid and then dried by heating. Further, for example, a titania paste is printed, dried and fired, and the operation of printing and firing the titania base is repeated a plurality of times to obtain a porous Ti sheet substrate with a titania layer. Furthermore, the non-film-formed portions on the four sides of the porous Ti sheet substrate with a titania layer are removed.
  • a porous Ti sheet substrate with a titania layer prepared is impregnated with a mixed solvent solution of N719 dye acetonitrile and t-butyl alcohol, the dye is adsorbed on the titania surface, and the adsorbed substrate is acetonitrile and t-butyl. Wash with a mixed solvent of alcohol and dry.
  • a titanium foil as a non-porous conductor portion is laminated at one corner on the back side of the porous Ti sheet substrate with the dye-adsorbing titania layer, which is not attached with the non-porous conductor portion. The provided porous anode with a dye adsorbing porous semiconductor layer is obtained.
  • substantially the same plane dimensions as the porous anode electrode with a dye-adsorbing porous semiconductor layer are formed, and the portion corresponding to the nonporous conductor portion is notched when the anode electrode is overlapped with the notched portion.
  • the formed cathode is obtained.
  • platinum is sputtered on one surface of a titanium foil to obtain a Ti substrate with a Pt catalyst layer.
  • a hole for inserting an electrolytic solution is formed in the central portion of the Ti substrate with the Pt catalyst layer, and a portion corresponding to the non-porous conductor portion is cut out when overlapped with the anode electrode to obtain a cathode electrode.
  • a Ti substrate with a carbon catalyst layer in which carbon particles are deposited on one side of a titanium foil may be used.
  • the porous anode electrode and cathode electrode with a dye-adsorbing porous semiconductor layer are aligned with the nonporous conductor portion of the porous anode electrode with the dye-adsorbing porous semiconductor layer and the notch portion of the cathode electrode. Laminate while.
  • a substrate or a sealing resin sheet is provided outside the cathode electrode.
  • the substrate forms a fifth opening at an arbitrary position.
  • the sealing resin sheet is provided together with the substrate, the sealing resin sheet is formed at a position corresponding to the fifth opening.
  • the sealing resin sheet is provided alone, the sealing resin sheet is formed at a position corresponding to the notch while forming the sixth opening at an arbitrary position.
  • a resin sheet for example, a PEN sheet is used, and the substrate is laminated by, for example, a roll press method.
  • a notch is formed at a position corresponding to the notch of the cathode electrode, or a portion that overlaps at least a part of the non-porous conductor in plan view of the PEN sheet is opened by, for example, a drill, and the like A part of the cathode electrode is opened.
  • a thermoplastic adhesive sheet is used as the sealing material.
  • an opening that exposes at least a part of the non-porous conductor part and a part of the cathode electrode to the outside of the cathode electrode is formed.
  • an electrolytic solution of a tetraglyme solvent containing iodine and LiI is injected under reduced pressure from the electrolytic solution insertion hole, and then the electrolytic solution insertion hole is sealed with a UV curable resin to obtain a dye-sensitized solar cell.
  • a solar cell 10a according to a second example of the present embodiment shown in FIGS. 6 to 8 includes a photoelectric conversion unit 12, a nonporous transparent anode electrode 14a, and a nonporous cathode electrode 16.
  • the anode 14 a is provided on the light incident side of the photoelectric conversion unit 12.
  • the cathode electrode 16 is provided to face the anode electrode 14a with the photoelectric conversion unit 12 interposed therebetween.
  • the cathode electrode 16 may be a laminate of a non-porous material and a porous material.
  • the solar cell 10a can be suitably applied to a dye-sensitized solar cell and can also be suitably applied to other thin film solar cells having a transparent conductive film.
  • the solar cell 10 a is provided with a transparent substrate 18 outside the photoelectric conversion unit 12, and is entirely sealed with an appropriate sealing material or sealing member.
  • 7 and 8 show an example of sealing with a sealing material (sealing portion) 20.
  • the solar cell 10 a is sufficient if the sealing material or the sealing member can seal the photoelectric conversion unit 12.
  • a transparent substrate 18 is provided on the outer surface of the nonporous transparent anode electrode 14a, while the cathode electrode 16 itself is formed of a nonporous metal layer.
  • the photoelectric conversion unit 12 is sealed by the transparent substrate 18 and the cathode electrode 16, and eventually the entire solar cell 10 is sealed.
  • the sealing material 20 it is preferable to seal the entire solar cell 10 with the sealing material 20.
  • the solar cell 10 a may be provided with an insulating layer.
  • a well-known one of a dye-sensitized solar cell and other thin film solar cells having a transparent conductive film can be applied as it is, and since it is not the essence of the present invention, a detailed description is omitted. .
  • a part of the anode 14 is exposed from the third opening 26a formed in the sealing part 20 at a position not overlapping the cathode 16 in plan view on the side opposite to the light incident side of a part of the electrode of the anode 14.
  • the third external connection terminal 28a On the other hand, a part of the electrode of the cathode electrode 18 is exposed from a fourth opening 30a formed at a position different from the third opening 26a of the sealing portion 20 on the side opposite to the light incident side, and the fourth external connection. Terminal 32a.
  • the external connection terminals 28a and 32a appear to be largely retracted from the openings 26a and 30a. However, since the sealing portion 20 is actually thin, it is necessary to connect the conductor wiring.
  • the material of the nonporous transparent anode electrode 14a is not particularly limited, and may be, for example, a commonly used ITO (tin doped indium film), FTO (fluorine doped tin oxide film), or SnO 2 film. May be.
  • a metal mesh using an inexpensive metal, a metal layer in which an infinite number of holes are formed in advance, or a metal layer formed by thermal spraying or a thin film forming method can be used.
  • the electrode structure similar to that of the solar cell 10 described above can be used.
  • the manufacturing method of the solar cell 10a can be performed according to the manufacturing method of the dye-sensitized solar cell which concerns on this Example.
  • the extraction electrode electrically connected to each of the anode electrode and the cathode electrode has a plan view.
  • the non-power generation region generated by extending around the battery, such as the opposite ends of the battery is eliminated, and the plane area of the battery cell that is the power generation region can be increased accordingly.
  • the solar cell 10a is substantially free from the outside through the anode electrode, and the internal structure components such as the photoelectric conversion unit in contact with the anode electrode are provided without providing the nonporous conductor 24 that is essential in the solar cell 10. Therefore, the contamination of the internal structural components due to the external atmosphere can be reduced.
  • the solar cell 10a When the solar cell 10a is a dye-sensitized solar cell, it can prevent that electrolyte solution leaks outside via a porous anode electrode. In addition, the solar cell 10a is excellent in the design property since there is no extraction electrode in the appearance seen from the light incident side, like the solar cell 10.

Abstract

Provided is a solar cell whereby it is possible to solve the problem of effective planar area of the cell, which is a power-generating area, being constrained as a result of a non-power-generating area occupied by an electrode structure. A solar cell (10) has: a photovoltaic conversion unit (12); a porous anode (14); and a cathode (16), in which a non-porous cathode, or non-porous material and porous material, are stacked. The anode (14) is provided on the opposite side of a light-incident side of the photovoltaic conversion unit (12), and the cathode (16) is provided so as to face the anode (14). A non-porous conductor unit (24) is provided on the opposite side of the light-incident side of a portion of the electrode of the anode (14), and a portion of the non-porous conductor unit (24) is exposed from a first aperture (26) formed on a sealing portion (20) at a position not overlapping the cathode (16) in plan view so as to form a first external connection terminal (28). Meanwhile, a portion of the electrode of the cathode (16) is exposed from a second aperture (30) formed at a position different from the first aperture (26) of the sealing portion (20) at the opposite side from the light-incident portion and forms a second external connection terminal (32).

Description

太陽電池および色素増感太陽電池の製造方法Solar cell and method for producing dye-sensitized solar cell
 本発明は、太陽電池の電極構造に関する。 The present invention relates to an electrode structure of a solar cell.
 太陽電池は、広義には光を電力に変換する光電変換素子全般を指す。太陽電池は、一般には、p型およびn型半導体のpn接合を利用した半導体素子である。このような半導体素子からなる太陽電池には、シリコン半導体を利用したシリコン系太陽電池、化合物半導体を利用した化合物薄膜系太陽電池、有機半導体を利用した有機薄膜太陽電池等がある。一方、半導体を利用せず、色素が光を吸収して電子を発生する原理を利用した色素増感太陽電池もある。
 いずれのタイプの太陽電池も、実用化のためには、発電効率を損なうことなく電力を取り出すことができる電極構造の長期信頼性を達成することが共通する大きな課題である。なお、太陽電池を大気雰囲気から遮断するための封止構造の長期信頼性を達成することも課題であり、特に、色素増感太陽電池は、電池構造を以下に説明するように、電解液を用いることから、確実な封止構造が求められる。
The solar cell refers to all photoelectric conversion elements that convert light into electric power in a broad sense. Generally, a solar cell is a semiconductor element using a pn junction of p-type and n-type semiconductors. Examples of solar cells made of such semiconductor elements include silicon-based solar cells using silicon semiconductors, compound thin-film solar cells using compound semiconductors, and organic thin-film solar cells using organic semiconductors. On the other hand, there is also a dye-sensitized solar cell that uses the principle that a dye absorbs light and generates electrons without using a semiconductor.
In order to put all types of solar cells into practical use, it is a common big problem to achieve long-term reliability of an electrode structure that can extract power without impairing power generation efficiency. It is also an object to achieve long-term reliability of a sealing structure for shielding the solar cell from the atmospheric atmosphere, and in particular, the dye-sensitized solar cell has an electrolyte solution as described below for the battery structure. Since it is used, a reliable sealing structure is required.
 上記後者の色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、ヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。色素増感太陽電池は、透明な導電性ガラス板(透明導電膜を積層した透明導電性基板 アノード電極)に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性ガラス板(導電性基板 カソード電極)からなる対極の間に電解液(電解質)としてヨウ素溶液等を配置した、簡易な構造を有する。ポーラスな酸化チタン電極の表面に吸着した色素が光を吸収し、電子の励起を生じる。電子を失った色素はヨウ素イオンから電子を受け取り再生する。
 色素増感太陽電池は、材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されている。
 しかし、色素増感太陽電池は、他の太陽電池に比べて発電効率が低いことから、発電効率のさらなる向上が求められている。
The latter dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized by having an electrochemical cell structure typified by an iodine solution. Dye-sensitized solar cells are porous, such as a titania layer formed by baking titanium dioxide powder or the like on a transparent conductive glass plate (transparent conductive substrate anode electrode laminated with a transparent conductive film) and adsorbing the dye to this. It has a simple structure in which an iodine solution or the like is disposed as an electrolytic solution (electrolyte) between a counter electrode composed of a semiconductor layer and a conductive glass plate (conductive substrate cathode electrode). The dye adsorbed on the surface of the porous titanium oxide electrode absorbs light and causes excitation of electrons. The dye that has lost the electrons receives and regenerates electrons from iodine ions.
Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production.
However, since dye-sensitized solar cells have lower power generation efficiency than other solar cells, further improvement in power generation efficiency is required.
 従来の色素増感太陽電池は、他の太陽電池と同様に、アノード電極およびカソード電極それぞれに電気的に接続される取り出し電極が、平面視で電池の対向する両端等、電池の周囲に延出する。そしてそれぞれの取り出し電極の外部接続端子に導体配線が接続され、2つの導体配線間に負荷が設けられて、発電が行われる(例えば特許文献1参照)。
 この電池の周辺に設けられる取り出し電極の延出部は、発電領域としての電池に対して、電池を配置することができない、いわば非発電領域といえる。
As with other solar cells, conventional dye-sensitized solar cells have extraction electrodes that are electrically connected to the anode electrode and the cathode electrode, respectively, extending around the cell, such as opposite ends of the cell in plan view. To do. A conductor wiring is connected to the external connection terminal of each extraction electrode, and a load is provided between the two conductor wirings to generate power (see, for example, Patent Document 1).
The extension part of the extraction electrode provided in the periphery of the battery can be said to be a non-power generation area, in which the battery cannot be arranged with respect to the battery as the power generation area.
 この不具合を改善するものとして、隣接するセル間に設けられた配線部(非発電領域)に向かって入射する光の方向を、入射光方向変更部によって、発電領域に向かうように変更する方法が開示されている(特許文献2参照)。
 しかし、この場合、入射光方向変更部が発電量領域の一部を覆うように配置されるため、光透過率の低下の原因となる。また、入射光方向変更部を設けるコストが大きい。
As a method for improving this problem, there is a method in which the direction of light incident toward the wiring portion (non-power generation region) provided between adjacent cells is changed to the power generation region by the incident light direction changing unit. It is disclosed (see Patent Document 2).
However, in this case, the incident light direction changing unit is arranged so as to cover a part of the power generation amount region, which causes a decrease in light transmittance. Further, the cost of providing the incident light direction changing unit is high.
 なお、本発明者等は、色素を吸着した多孔質半導体層と、カソード極となる導電体層と、アノード極となる導電性金属層からなる積層構造部を備え、積層構造部から導電性金属層および導電体層それぞれの一端部が延出して延出部、言い換えれば取出し電極が設けられ、積層構造部および延出部が、封入される電解質とともにシール材料によってシールされるとともに、導電性金属層および該導電体層それぞれの延出部の一部がシール材料より露出して外部接続端子とされる色素増感太陽電池を提案している(特許文献3参照)。これにより、導電性金属層および導電体層に電気的に接続される延出部の取出し箇所から電解液が漏れ出すことを確実に防止することができる。 In addition, the present inventors have a laminated structure part composed of a porous semiconductor layer adsorbing a dye, a conductor layer serving as a cathode electrode, and a conductive metal layer serving as an anode electrode. One end portion of each of the layer and the conductor layer extends to be provided with an extending portion, in other words, an extraction electrode, and the laminated structure portion and the extending portion are sealed together with the encapsulated electrolyte by a sealing material, and conductive metal A dye-sensitized solar cell is proposed in which a part of each layer and the extended portion of each conductor layer is exposed from a sealing material to serve as an external connection terminal (see Patent Document 3). Thereby, it can prevent reliably that electrolyte solution leaks from the extraction location of the extension part electrically connected to a conductive metal layer and a conductor layer.
WO/2011/013581WO / 2011/013581 WO/2009/098857WO / 2009/098857 WO/2011/135811WO / 2011/13581
 解決しようとする問題点は、従来の太陽電池は、電極構造が占める非発電領域によって発電領域である電池セルの有効な平面面積が制約を受けている点である。 The problem to be solved is that in the conventional solar cell, the effective planar area of the battery cell which is the power generation region is restricted by the non-power generation region occupied by the electrode structure.
 本発明に係る太陽電池は、光電変換部と、光電変換部の光入射側とは反対側に設けられる多孔質アノード極と、アノード極と対向して設けられる非孔質カソード極または非孔質材料と多孔質材料が積層されてなるカソード極を有し、全体が封止される太陽電池において、アノード極の電極の一部の光入射側とは反対側に非孔質導電体部が積層され、非孔質導電体部の一部が光入射側とは反対側に、平面視でカソード極と重ならない位置の封止部に形成した第一の開口から露出されて第一の外部接続端子とされるとともに、カソード極の電極の一部が光入射側とは反対側に封止部の該第一の開口とは異なる位置に形成した第二の開口から露出されて第二の外部接続端子とされることを特徴とする。 A solar cell according to the present invention includes a photoelectric conversion unit, a porous anode electrode provided on the opposite side of the photoelectric conversion unit from the light incident side, and a nonporous cathode electrode or nonporous material provided to face the anode electrode. In a solar cell having a cathode electrode formed by laminating a material and a porous material and sealing the whole, a non-porous conductor portion is laminated on the side opposite to the light incident side of a part of the electrode of the anode electrode And a part of the non-porous conductor part is exposed from the first opening formed in the sealing part at a position not overlapping the cathode electrode in plan view on the side opposite to the light incident side. And a part of the cathode electrode is exposed from a second opening formed on a side opposite to the light incident side at a position different from the first opening of the sealing portion, It is a connection terminal.
 また、上記の太陽電池は、好ましくは、光電変換部が、光入射側に配置される、色素を吸着した多孔質半導体層であり、アノード極が、色素を吸着した多孔質半導体層の光入射側とは反対側の面に設けられる多孔質導電体層であり、カソード極が、封入される電解質層を介して多孔質導電体層と対向して設けられる非孔質導電体層または非孔質材料と多孔質材料が積層されてなる導電体層であることを特徴とする。 In the above solar cell, preferably, the photoelectric conversion part is disposed on the light incident side, and is a porous semiconductor layer that adsorbs a dye, and the anode electrode is light incident on the porous semiconductor layer that adsorbs the dye. A non-porous conductor layer or a non-porous conductor layer provided on a surface opposite to the side, the cathode electrode being provided to face the porous conductor layer via the sealed electrolyte layer It is a conductor layer formed by laminating a porous material and a porous material.
 また、本発明に係る色素増感太陽電池の製造方法は、多孔質アノード極のスラリ状原料を化学的処理により溶解可能な基材上に塗布し、スラリ状原料を焼結して焼結体とした後に化学的処理により基材を焼結体から分離し、焼結体上に色素吸着多孔質半導体層を形成して色素吸着多孔質半導体層付き多孔質アノード極を得、さらに色素吸着多孔質半導体層付き多孔質アノード極のアノード極の側の1つの隅部分に非孔質導電体部を積層する工程と、色素吸着多孔質半導体層付き多孔質アノード極と実質的に同一平面寸法で、アノード極と重ねたときに非孔質導電体部と対応する箇所を切欠いて切欠き部を形成した、非孔質カソード極または非孔質材料と多孔質材料が積層されてなるカソード極を得る工程と、色素吸着多孔質半導体層付き多孔質アノード極とカソード極を色素吸着多孔質半導体層付き多孔質アノード極の非孔質導電体部とカソード極の切欠き部を位置合わせしながら積層する工程と、カソード極の外側を樹脂シートおよび封止材の少なくともいずれか一方で封止し、さらに、非孔質導電体部の少なくとも一部およびカソード極の一部をカソード極の外側に露出させる開口を形成する工程と、を有することを特徴とする。 In addition, the method for producing a dye-sensitized solar cell according to the present invention includes applying a slurry-like raw material of a porous anode electrode onto a base material that can be dissolved by chemical treatment, and sintering the slurry-like raw material to obtain a sintered body. Then, the substrate is separated from the sintered body by chemical treatment, and a dye-adsorbing porous semiconductor layer is formed on the sintered body to obtain a porous anode electrode with a dye-adsorbing porous semiconductor layer. A step of laminating a non-porous conductor portion at one corner on the anode side of a porous anode electrode with a porous semiconductor layer, and a substantially same plane dimension as a porous anode electrode with a dye-adsorbing porous semiconductor layer A non-porous cathode electrode or a non-porous material and a porous material laminated with a non-porous cathode electrode formed by notching a portion corresponding to the non-porous conductor portion when overlapped with the anode electrode. Process with a dye adsorbing porous semiconductor layer A step of laminating a porous anode electrode and a cathode electrode while aligning a non-porous conductor part of a porous anode electrode with a dye-adsorbing porous semiconductor layer and a notch part of the cathode electrode, and a resin sheet and an outer side of the cathode electrode Sealing with at least one of the sealing materials, and further forming an opening that exposes at least a part of the non-porous conductor part and a part of the cathode electrode to the outside of the cathode electrode. Features.
 また、本発明に係る太陽電池は、光電変換部と、光電変換部の光入射側に設けられる非孔質透明アノード極と、光電変換部を挟んでアノード極と対向して設けられる非孔質カソード極または非孔質材料と多孔質材料が積層されてなるカソード極を有し、全体が封止される太陽電池において、アノード極の電極の一部が光入射側とは反対側に、平面視でカソード極と重ならない位置の封止部に形成した第三の開口から露出されて第三の外部接続端子とされるとともに、カソード極の電極の一部が入射側とは反対側に封止部の第三の開口とは異なる位置に形成した第四の開口から露出されて第四の外部接続端子とされることを特徴とする。 The solar cell according to the present invention includes a photoelectric conversion unit, a nonporous transparent anode electrode provided on the light incident side of the photoelectric conversion unit, and a nonporous material provided to face the anode electrode with the photoelectric conversion unit interposed therebetween. In a solar cell having a cathode electrode or a cathode electrode in which a non-porous material and a porous material are laminated, and the whole is sealed, a part of the electrode of the anode electrode is a flat surface on the side opposite to the light incident side. It is exposed from the third opening formed in the sealing part at a position where it does not overlap with the cathode electrode as viewed to be the third external connection terminal, and a part of the cathode electrode is sealed on the side opposite to the incident side. A fourth external connection terminal is exposed from a fourth opening formed at a position different from the third opening of the stopper.
 本発明に係る太陽電池は、多孔質アノード極の電極の一部の光入射側とは反対側に非孔質導電体部が積層され、非孔質導電体部の一部が光入射側とは反対側に封止部に形成した第一の開口から露出されて第一の外部接続端子とされるとともに、非孔質カソード極または非孔質材料と多孔質材料が積層されてなるカソード極の電極の一部が光入射側とは反対側に封止部の該第一の開口とは異なる位置に形成した第二の開口から露出されて第二の外部接続端子とされる。
 このため、平面視でアノード極およびカソード極それぞれの電極の端部に取出し電極が延出しないので、電極構造が占める非発電領域によって発電領域である電池セルの平面面積が制約を受けている点を効果的に軽減することができ、また、多孔質アノード極の電極の一部が直接露出しないため、多孔質アノード極に接する光電変換部等の内部構造構成要素が多孔質アノード極を介して外部と実質的に連通することがないので、外部雰囲気による内部構造構成要素の汚損等を軽減することができる。
In the solar cell according to the present invention, a nonporous conductor portion is laminated on the side opposite to the light incident side of a part of the electrode of the porous anode, and a part of the nonporous conductor portion is formed on the light incident side. Is exposed from a first opening formed in the sealing portion on the opposite side to serve as a first external connection terminal, and a non-porous cathode electrode or a cathode electrode in which a non-porous material and a porous material are laminated A part of the electrode is exposed from a second opening formed at a position different from the first opening of the sealing portion on the side opposite to the light incident side to serve as a second external connection terminal.
For this reason, since the extraction electrode does not extend to the end portions of the anode and cathode electrodes in plan view, the planar area of the battery cell as the power generation region is restricted by the non-power generation region occupied by the electrode structure. In addition, since a part of the electrode of the porous anode electrode is not directly exposed, an internal structure component such as a photoelectric conversion part in contact with the porous anode electrode is interposed through the porous anode electrode. Since it does not substantially communicate with the outside, it is possible to reduce contamination of internal structural components due to the external atmosphere.
 このとき、太陽電池が、光電変換部が、光入射側に配置される、色素を吸着した多孔質半導体層であり、アノード極が、色素を吸着した多孔質半導体層の光入射側とは反対側の面に設けられる多孔質導電体層であり、カソード極が、封入される電解質層を介して多孔質導電体層と対向して設けられる非孔質導電体層または非孔質材料と多孔質材料が積層されてなる導電体層であると、多孔質アノード極を介して電解質が外部にもれるおそれが少ない。 At this time, the solar cell is a porous semiconductor layer that adsorbs the dye, the photoelectric conversion part is disposed on the light incident side, and the anode electrode is opposite to the light incident side of the porous semiconductor layer that adsorbs the dye A porous conductor layer provided on the side surface, and the cathode electrode is porous with a non-porous conductor layer or a non-porous material provided opposite to the porous conductor layer via an electrolyte layer to be sealed When the conductive layer is formed by laminating a porous material, there is little possibility that the electrolyte will leak to the outside through the porous anode electrode.
 また、本発明に係る色素増感太陽電池の製造方法は、上記の色素増感太陽電池を好適に得ることができる。 In addition, the method for producing a dye-sensitized solar cell according to the present invention can suitably obtain the above-described dye-sensitized solar cell.
 また、本発明に係る太陽電池は、非孔質透明アノード極の電極の一部が光入射側とは反対側に、平面視でカソード極と重ならない位置の封止部に形成した第三の開口から露出されて第三の外部接続端子とされるとともに、カソード極の電極の一部が入射側とは反対側に封止部の第三の開口とは異なる位置に形成した第四の開口から露出されて第四の外部接続端子とされる。
 このため、平面視でアノード極およびカソード極それぞれの電極の端部に取出し電極が延出しないので、電極構造が占める非発電領域によって発電領域である電池セルの平面面積が制約を受けている点を効果的に軽減することができ、また、アノード極の電極の一部を直接露出する簡易な構成で、多孔質アノード極に接する光電変換部等の内部構造構成要素が多孔質アノード極を介して外部と実質的に連通することがないので、外部雰囲気による内部構造構成要素の汚損等を軽減することができる。
Further, the solar cell according to the present invention is a third portion formed in a sealing portion at a position where a part of the electrode of the nonporous transparent anode electrode does not overlap the cathode electrode in a plan view on the side opposite to the light incident side. A fourth opening that is exposed from the opening to serve as a third external connection terminal, and a part of the cathode electrode is formed at a position opposite to the incident side at a position different from the third opening of the sealing portion. To be a fourth external connection terminal.
For this reason, since the extraction electrode does not extend to the end portions of the anode and cathode electrodes in plan view, the planar area of the battery cell as the power generation region is restricted by the non-power generation region occupied by the electrode structure. In addition, the internal structure components such as the photoelectric conversion part that is in contact with the porous anode electrode are passed through the porous anode electrode with a simple configuration that directly exposes a part of the electrode of the anode electrode. Therefore, the internal structural components can be prevented from being contaminated by the external atmosphere.
図1は本実施の形態の第一の例に係る太陽電池を光入射側から見た平面図である。FIG. 1 is a plan view of a solar cell according to a first example of the present embodiment as viewed from the light incident side. 図2は、図1中A-A方向から見た部分断面図である。FIG. 2 is a partial cross-sectional view as seen from the direction AA in FIG. 図3は、図1中B-B方向から見た部分断面図である。FIG. 3 is a partial cross-sectional view as seen from the direction BB in FIG. 図4は、本実施の形態の第一の例に係る太陽電池において、アノード極とカソード極の重なり状態を示す一例である。FIG. 4 is an example showing an overlapping state of the anode electrode and the cathode electrode in the solar cell according to the first example of the present embodiment. 図5は、本実施の形態の第一の例に係る太陽電池において、アノード極とカソード極の重なり状態を示す図4とは異なる一例である。FIG. 5 is an example different from FIG. 4 showing the overlapping state of the anode and cathode in the solar cell according to the first example of the present embodiment. 図6は本実施の形態の第二の例に係る太陽電池を光入射側から見た平面図である。FIG. 6 is a plan view of the solar cell according to the second example of the present embodiment as viewed from the light incident side. 図7は、図6中A-A方向から見た部分断面図である。FIG. 7 is a partial cross-sectional view as seen from the direction AA in FIG. 図8は、図6中B-B方向から見た部分断面図である。FIG. 8 is a partial cross-sectional view seen from the BB direction in FIG.
 本発明の実施の形態(以下、本実施の形態例という。)について、図を参照して、以下に説明する。 DETAILED DESCRIPTION Embodiments of the present invention (hereinafter referred to as “examples of the present embodiment”) will be described below with reference to the drawings.
 まず、本実施の形態の第一の例に係る太陽電池について、図1~図5を参照して説明する。
 図1~図3に示す本実施の形態の第一の例に係る太陽電池10は、光電変換部12と、多孔質のアノード極14と、非孔質のカソード極16を有する。アノード極14は、光電変換部12の光入射側とは反対側に設けられる。カソード極16はアノード極14と対向して設けられる。太陽電池10は、光電変換部12の外側に透明基板18およびカソード極16の外側に透明基板19が設けられるとともに、適宜の封止材料または封止部材により全体が封止される。図2、図3はシール材(封止部)20により封止する例を示す。なお、カソード極16の外側、言い換えれば裏面は、基板19または封止部20のいずれかで封止すれば十分であり、基板19および封止部20の双方を設けることは必須ではない。カソード極16は、非孔質材料と多孔質材料が積層されたものであってもよい。
 封止材料または封止部材は光電変換部12を封止できれば足りるものである。図2、図3に示すように光電変換部12の外側の面に透明基板18が設けられ、一方、カソード極16はそれ自体が非孔質の金属層で形成されることにより、これら透明基板18およびカソード極16によって光電変換部12が封止され、結局、太陽電池10全体が封止されるということができる。なお、簡易な方法により確実に封止するためには、透明基板18および基板19を省略して太陽電池10の全体をシール材20で封止することが好適である。
First, a solar cell according to a first example of the present embodiment will be described with reference to FIGS.
A solar cell 10 according to the first example of the present embodiment shown in FIGS. 1 to 3 includes a photoelectric conversion unit 12, a porous anode electrode 14, and a non-porous cathode electrode 16. The anode 14 is provided on the side opposite to the light incident side of the photoelectric conversion unit 12. The cathode electrode 16 is provided to face the anode electrode 14. The solar cell 10 is provided with a transparent substrate 18 on the outside of the photoelectric conversion unit 12 and a transparent substrate 19 on the outside of the cathode electrode 16, and is entirely sealed with an appropriate sealing material or sealing member. 2 and 3 show an example of sealing with a sealing material (sealing portion) 20. It is sufficient to seal the outside of the cathode electrode 16, in other words, the back surface with either the substrate 19 or the sealing portion 20, and it is not essential to provide both the substrate 19 and the sealing portion 20. The cathode electrode 16 may be a laminate of a non-porous material and a porous material.
It is sufficient that the sealing material or the sealing member can seal the photoelectric conversion unit 12. As shown in FIGS. 2 and 3, a transparent substrate 18 is provided on the outer surface of the photoelectric conversion unit 12, while the cathode electrode 16 itself is formed of a non-porous metal layer. It can be said that the photoelectric conversion part 12 is sealed by 18 and the cathode electrode 16, and eventually the entire solar cell 10 is sealed. In order to securely seal by a simple method, it is preferable to omit the transparent substrate 18 and the substrate 19 and seal the entire solar cell 10 with the sealing material 20.
 太陽電池10は、好ましくは色素増感太陽電池であり、光電変換部12が、光入射側に配置される、色素を吸着した多孔質半導体層であり、アノード極14が、色素を吸着した多孔質半導体層の光入射側とは反対側の面に設けられる多孔質導電体層であり、カソード極16が、封入される電解質層(図1~図3において図示せず。)を介してアノード極14と対向して設けられる非孔質導電体層または非孔質材料と多孔質材料が積層された導電体層である。アノード極14を多孔質とするのは、カソード極16側と多孔質半導体層との間の電解質の良好な通液性、または正孔もしくは電子の伝導性を得るためである。
 アノード極14とカソード極16の間には、好ましくは、絶縁層22が設けられる。これにより、太陽電池10に屈曲させる力が作用したときでもアノード極14とカソード極16を確実に絶縁することができる。
 色素増感太陽電池の具体的な構成は周知のものをそのまま適用でき、また、本発明の本質ではないため、以下、簡単に例示する。なお、後述する本実施の形態の第二の例に係る太陽電池についても、これらの構成を適用できる。
 アノード極14は、金属メッシュ、予め無数の孔を形成した金属層または溶射や薄膜形成法等により形成した多孔質金属層等を用いることができる。アノード極14の材料は、特に限定するものではないが、Ti、W、Ni、Pt、Ta、Nb、Z rおよびAu等を好適に用いることができる。アノード極14の厚みは、特に限定するものではないが、0.2μm-600μmとすることが好適である。
 カソード極16は、触媒膜または触媒膜に非孔質導電膜を積層したものである。触媒膜は、白金等の貴金属や高表面積カーボン等を用いることができる。白金膜を例えばスパッタ法で形成すると、非孔質膜となり、高表面積カーボンを例えばカーボン粒子印刷法で形成すると多孔質膜となる。いずれの場合も、非孔質導電膜の存在により、電解質が外部に漏れることがない。カソード極16の厚みは、特に限定するものではないが、良好な導電性を得る観点からは例えば数十nm程度以上あることが好適である。
 色素を吸着した多孔質半導体層は、半導体材料として、例えば、TiO2、Z nOまたはSnO2等の適宜の金属酸化物を用いることができる。多孔質半導体層は、その厚みを特に限定するものではないが、10 μ m以上の厚みとすると好適である。多孔質半導体層に吸着される色素は、400nm-1200nmの波長に吸収を持つものであり、例えば、ルテニウム色素、フタロシアニン色素、オスミウム系、鉄系および白金系などの金属錯体、シアニン色素、メチン系、マーキュロクロム系、キサンテン系、ポルフィリン系、フタロシアニン系、サブフタロシアニン系、アゾ系、クマリン系などの有機色素である。
電解質層は、公知の電解質溶液または固体電解質を使用でき、例えば、ヨウ素、リチウムイオン、イオン液体、t-ブチルピリジン等を含むものであり、例えばヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからなる酸化還元体を用いることができる。電解質層は、これらの酸化還元体を溶解可能な適宜の溶媒を含む。
 透明基板18および基板19は、ガラスであってもよく、また、透明樹脂シートであってもよい。透明樹脂シートの材料は、例えば、PP、PE、PS、ABS、PS、PC、PMMA、PVC、PA、POM、PET、PEN、PIB、PVB、PA6、ポリイミド、ポリアミド、ポリオレフィン、ポリエステル、ポリエーテル、硬化アクリル樹脂、硬化エポキシ樹脂、硬化シリコーン樹脂、各種エンジニアリングフラスチックス、メタセシス重合で得られる環状ポリマ等が挙げられる。なお、カソード極16に接して設けられる基板19は、透明でなくともよい。基板19の厚みは、特に限定するものではなく、例えば、1μm~3mmとすることができる。
 封止部20の材料は、例えば、アクリル樹脂、エポキシ樹脂、アイオノマー樹脂、シリコーン樹脂等を用いることができる。基板19を封止する封止部20の厚みは、特に限定するものではなく、例えば、1μm~10μmとすることができる。
The solar cell 10 is preferably a dye-sensitized solar cell, the photoelectric conversion unit 12 is a porous semiconductor layer that adsorbs a dye and is disposed on the light incident side, and the anode electrode 14 is a porous that adsorbs the dye. A porous conductor layer provided on the surface opposite to the light incident side of the porous semiconductor layer, the cathode 16 being an anode via an electrolyte layer (not shown in FIGS. 1 to 3) enclosed It is a non-porous conductor layer provided opposite to the electrode 14 or a conductor layer in which a non-porous material and a porous material are laminated. The reason why the anode 14 is porous is to obtain good liquid permeability of the electrolyte between the cathode 16 side and the porous semiconductor layer, or hole or electron conductivity.
An insulating layer 22 is preferably provided between the anode 14 and the cathode 16. Thereby, even when the bending force is applied to the solar cell 10, the anode 14 and the cathode 16 can be reliably insulated.
A specific configuration of the dye-sensitized solar cell can be applied as it is, and is not essence of the present invention. Note that these configurations can also be applied to a solar cell according to a second example of the present embodiment described later.
The anode 14 may be a metal mesh, a metal layer in which numerous holes are formed in advance, or a porous metal layer formed by thermal spraying or thin film formation. The material of the anode electrode 14 is not particularly limited, but Ti, W, Ni, Pt, Ta, Nb, Zr, Au, and the like can be suitably used. The thickness of the anode 14 is not particularly limited, but is preferably 0.2 μm-600 μm.
The cathode 16 is a catalyst film or a non-porous conductive film laminated on a catalyst film. As the catalyst film, a noble metal such as platinum, high surface area carbon, or the like can be used. When a platinum film is formed by, for example, a sputtering method, a non-porous film is formed, and when high surface area carbon is formed by, for example, a carbon particle printing method, a porous film is formed. In either case, the electrolyte does not leak to the outside due to the presence of the nonporous conductive film. The thickness of the cathode electrode 16 is not particularly limited, but is preferably, for example, about several tens of nm or more from the viewpoint of obtaining good conductivity.
In the porous semiconductor layer that has adsorbed the dye, an appropriate metal oxide such as TiO 2, ZnO, or SnO 2 can be used as a semiconductor material. The thickness of the porous semiconductor layer is not particularly limited, but is preferably 10 μm or more. The dye adsorbed on the porous semiconductor layer has absorption at a wavelength of 400 nm to 1200 nm. For example, ruthenium dye, phthalocyanine dye, osmium-based, iron-based and platinum-based metal complexes, cyanine dye, methine-based , Organic dyes such as mercurochrome, xanthene, porphyrin, phthalocyanine, subphthalocyanine, azo, and coumarin.
The electrolyte layer can use a known electrolyte solution or solid electrolyte, and includes, for example, iodine, lithium ion, ionic liquid, t-butylpyridine, etc. For example, in the case of iodine, it consists of a combination of iodide ions and iodine. A redox form can be used. The electrolyte layer contains an appropriate solvent capable of dissolving these redox substances.
The transparent substrate 18 and the substrate 19 may be glass or a transparent resin sheet. The material of the transparent resin sheet is, for example, PP, PE, PS, ABS, PS, PC, PMMA, PVC, PA, POM, PET, PEN, PIB, PVB, PA6, polyimide, polyamide, polyolefin, polyester, polyether, Examples thereof include a cured acrylic resin, a cured epoxy resin, a cured silicone resin, various engineering plastics, and a cyclic polymer obtained by metathesis polymerization. The substrate 19 provided in contact with the cathode electrode 16 does not have to be transparent. The thickness of the substrate 19 is not particularly limited, and can be, for example, 1 μm to 3 mm.
As the material of the sealing portion 20, for example, an acrylic resin, an epoxy resin, an ionomer resin, a silicone resin, or the like can be used. The thickness of the sealing portion 20 that seals the substrate 19 is not particularly limited, and can be, for example, 1 μm to 10 μm.
 アノード極14の電極の一部の光入射側とは反対側に非孔質導電体部24が設けられ、平面視でカソード極16と重ならない位置の封止部20に形成した第一の開口26から非孔質導電体部24の一部が露出されて第一の外部接続端子28とされる。一方、カソード極16の電極の一部が光入射側とは反対側に封止部20の第一の開口26とは異なる位置に形成した第二の開口30から露出されて第二の外部接続端子32とされる。これにより、アノード極14および第一の外部接続端子28とカソード極16および第二の外部接続端子32が確実に電気的に絶縁される。
 なお、図2および図3では、外部接続端子28、32は開口26、30から大きく後退しているように見えるが、実際は、基板19および封止部20は薄厚であるため、外部接続端子28、32は導体配線を接続するのに十分な程度に露出する。
 外部接続端子28、32は、図1に示すように近接して配置されると、これらに接続される導体配線のレイアウト上好適である。
 非孔質導電体部24の材料は特に限定するものではないが、Ti、W、Ni、Pt、Ta、Nb、Z rおよびAu等の金属材料またはこれらの化合物であるか、これらで被覆した材料であることが好ましい。
A non-porous conductor 24 is provided on the side opposite to the light incident side of a part of the electrode of the anode 14, and a first opening formed in the sealing part 20 at a position not overlapping the cathode 16 in plan view. A part of the non-porous conductor portion 24 is exposed from 26 to form the first external connection terminal 28. On the other hand, a part of the electrode of the cathode electrode 16 is exposed from the second opening 30 formed at a position different from the first opening 26 of the sealing portion 20 on the side opposite to the light incident side, and the second external connection. Terminal 32 is used. As a result, the anode 14 and the first external connection terminal 28 are reliably electrically insulated from the cathode 16 and the second external connection terminal 32.
2 and 3, the external connection terminals 28 and 32 seem to be largely retracted from the openings 26 and 30, but in reality, the substrate 19 and the sealing portion 20 are thin, and thus the external connection terminals 28 and 28 are thin. , 32 are exposed to a degree sufficient to connect the conductor wiring.
If the external connection terminals 28 and 32 are arranged close to each other as shown in FIG. 1, it is preferable in terms of the layout of the conductor wiring connected thereto.
The material of the non-porous conductor portion 24 is not particularly limited, but is a metal material such as Ti, W, Ni, Pt, Ta, Nb, Zr and Au, or a compound thereof, or is covered with these. A material is preferred.
 非孔質導電体部24とカソード極16が平面視で重ならないようにするため、言い換えれば、非孔質導電体部24とカソード極16の絶縁を確保するためには、以下のような電極構造とすることができる。
 例えば図4に示すように、非孔質導電体部24と重なる領域、言い換えれば第一の開口26が現れる領域に対応するカソード極16の箇所に切り欠き(図4中、矢印Aで示す。)を形成する。これにより、平面視でアノード極14と重ならないカソード極16の領域を切り欠き部分のみとすることができ、アノード極14とカソード極16の重なり部分、言い換えれば有効な発電領域を大きくとることができる。
 また、例えば図5に示すように、アノード極14の長さ寸法L1よりもカソード極16の長さ寸法L2を、孔質導電体部24と重なる領域、言い換えれば第一の開口26が現れる領域の分だけ短くすると、カソード極16を切り欠き加工する工程を省略できる。
In order to prevent the non-porous conductor portion 24 and the cathode electrode 16 from overlapping each other in plan view, in other words, in order to ensure insulation between the non-porous conductor portion 24 and the cathode electrode 16, the following electrodes are used. It can be a structure.
For example, as shown in FIG. 4, a notch is formed at a position of the cathode electrode 16 corresponding to a region overlapping with the nonporous conductor portion 24, in other words, a region where the first opening 26 appears (indicated by an arrow A in FIG. 4). ). As a result, the area of the cathode electrode 16 that does not overlap the anode electrode 14 in plan view can be made only a cut-out portion, and the overlapping area of the anode electrode 14 and the cathode electrode 16, that is, an effective power generation area can be increased. it can.
Further, for example, as shown in FIG. 5, a region where the length dimension L2 of the cathode electrode 16 overlaps with the porous conductor portion 24 rather than the length dimension L1 of the anode electrode 14, in other words, a region where the first opening 26 appears. If it is shortened by this amount, the step of notching the cathode electrode 16 can be omitted.
 以上説明した本実施の形態の第一の例に係る太陽電池10は、従来の太陽電池においてアノード電極およびカソード電極それぞれに電気的に接続される取り出し電極が、平面視で電池の対向する両端等、電池の周囲に延出することにより生じていた非発電領域が解消され、その分だけ発電領域である電池セルの平面面積を大きくとることができる。
 例えば、従来の取出し電極を平面的に延出した電池セルにおいて発電領域である電池セルの平面面積を6.56cm確保できるとするとき、太陽電池10においてカソード極の一部を切り欠いて非孔質導電体部を露出させることで、発電領域である電池セルの平面面積を例えば8.38cmに拡張することができる。なお、切欠きが形成されていない色素吸着チタニア層付きアノード極がカソード極の寸法と無関係に機能することを考慮すると、発電領域である電池セルの平面面積は切欠きのないアノード極と同一の面積、例えば8.8cmにまで大きくとることができる。
 また、本実施の形態の第一の例に係る太陽電池10は、多孔質アノード極の電極の一部が直接露出しないため、多孔質アノード極に接する光電変換部等の内部構造構成要素が多孔質アノード極を介して外部と実質的に連通することがないので、外部雰囲気による内部構造構成要素の汚損等を軽減することができる。太陽電池10が色素増感太陽電池の場合、電解液が多孔質アノード極を介して外部に漏れることを防止できる。
 なお、太陽電池10は、光入射側から見た外観に取出し電極がないため、意匠性に優れる。
In the solar cell 10 according to the first example of the present embodiment described above, the extraction electrodes that are electrically connected to the anode electrode and the cathode electrode in the conventional solar cell have opposite ends of the cell in plan view, etc. The non-power generation region generated by extending around the battery is eliminated, and the plane area of the battery cell that is the power generation region can be increased accordingly.
For example, in a battery cell in which a conventional extraction electrode is extended in a planar manner, when a planar area of a battery cell that is a power generation region can be secured by 6.56 cm 2 , a part of the cathode electrode is notched in the solar battery 10. By exposing the porous conductor portion, the planar area of the battery cell that is the power generation region can be expanded to, for example, 8.38 cm 2 . In consideration of the fact that the anode electrode with a dye-adsorbing titania layer in which notches are not formed functions independently of the dimensions of the cathode electrode, the planar area of the battery cell as the power generation region is the same as the anode electrode without notches. The area can be as large as, for example, 8.8 cm 2 .
In addition, in the solar cell 10 according to the first example of the present embodiment, since a part of the electrode of the porous anode electrode is not directly exposed, the internal structure components such as the photoelectric conversion unit in contact with the porous anode electrode are porous. Since it does not substantially communicate with the outside via the quality anode electrode, the contamination of the internal structural components due to the external atmosphere can be reduced. When the solar cell 10 is a dye-sensitized solar cell, it can prevent that electrolyte solution leaks outside via a porous anode electrode.
In addition, since the solar cell 10 does not have an extraction electrode in the appearance seen from the light incident side, it is excellent in design.
 つぎに、本実施の形態例に係る色素増感太陽電池の製造方法を説明する。本実施の形態例に係る色素増感太陽電池の製造方法によれば、本実施の形態の第一の例に係る色素増感太陽電池を好適に得ることができる。 Next, a method for manufacturing a dye-sensitized solar cell according to this embodiment will be described. According to the method for manufacturing a dye-sensitized solar cell according to this embodiment, the dye-sensitized solar cell according to the first example of this embodiment can be suitably obtained.
 本実施の形態に係る色素増感太陽電池の製造方法は、非孔質導電体部を設けた色素吸着多孔質半導体層付き多孔質アノード極を得る工程(第一の工程)と、切欠き部を形成したカソード極を得る工程(第二の工程)と、色素吸着多孔質半導体層付き多孔質アノード極とカソード極を積層する工程(第三の工程)と、カソード極の外側に、第五の開口を形成した基板、または第六の開口を形成するとともに切欠き部に対応する位置に第七の開口を形成した封止用樹脂シートの少なくともいずれか1つを設ける工程(第四の工程)とを有する。 The method for manufacturing a dye-sensitized solar cell according to the present embodiment includes a step (first step) of obtaining a porous anode electrode with a dye-adsorbing porous semiconductor layer provided with a nonporous conductor portion, and a notch A step of obtaining a cathode electrode formed with a cathode (second step), a step of laminating a porous anode electrode with a dye-adsorbing porous semiconductor layer and a cathode electrode (third step), A step of providing at least one of the substrate having the opening formed therein or the sealing resin sheet having the sixth opening formed therein and the seventh opening formed at a position corresponding to the notch (fourth step) ).
 第一の工程では、多孔質アノード極のスラリ状原料を化学的処理により溶解可能な基材上に塗布し、スラリ状原料を焼結して焼結体とした後に化学的処理により基材を焼結体から分離し、焼結体上に色素吸着多孔質半導体層を形成して色素吸着多孔質半導体層付き多孔質アノード極を得、さらに色素吸着多孔質半導体層付き多孔質アノード極のアノード極の側の1つの隅部分に非孔質導電体部を積層する。
 多孔質アノード極のスラリ状原料は、例えば粒径3~40μm、平均粒径10μmのチタン粉末を例えばエチルセルロース系結着剤と混合したスラリ状組成物を用いることができる。このスラリ状組成物を例えばメタルマスクを使ってスキージ法(スクリーン印刷法)により化学的処理により溶解可能な基材、例えば鉄箔上に塗布し、減圧乾燥を行い、焼成前成形体を得る。その後、焼成前成形体をプレス処理する。そして、この焼成前成形体を鉄箔ごと加熱し、脱脂処理する。さらに、焼成し、焼結体を得る。この焼結体を、例えば硫酸水溶液に浸漬させて、焼結体と接触している鉄箔部分を溶解させて焼結体から鉄箔を剥離させる。得られる焼結体を蒸留水等で繰り返し洗浄し硫酸を除去した後、加熱乾燥する。さらに、例えばチタニアペーストを印刷し、乾燥後、焼成し、このチタニアベーストを印刷、焼成する操作を複数回繰り返し、チタニア層付き多孔質Tiシート基板を得る。さらに、チタニア層付き多孔質Tiシート基板の4辺の未製膜部分を除去する。ついで、例えばN719色素のアセトニトリルとt‐ブチルアルコールの混合溶媒溶液に、作製したチタニア層付き多孔質Tiシート基板を含浸させ、チタニア表面に色素を吸着し、吸着後の基板をアセトニトリルとt‐ブチルアルコールの混合溶媒で洗浄、乾燥する。さらに、非孔質導電体部としての例えばチタン箔を、色素吸着チタニア層付き多孔質Tiシート基板の色素吸着チタニア層が付いていない裏側の1つの隅に積層して非孔質導電体部を設けた色素吸着多孔質半導体層付き多孔質アノード極を得る。
In the first step, the slurry-like raw material of the porous anode electrode is coated on a dissolvable substrate by chemical treatment, and the slurry-like raw material is sintered to form a sintered body, and then the substrate is formed by chemical treatment. Separated from the sintered body, a dye-adsorbing porous semiconductor layer is formed on the sintered body to obtain a porous anode electrode with a dye-adsorbing porous semiconductor layer, and an anode of a porous anode electrode with a dye-adsorbing porous semiconductor layer A non-porous conductor is laminated at one corner on the pole side.
As the slurry-like raw material for the porous anode, for example, a slurry-like composition in which titanium powder having a particle size of 3 to 40 μm and an average particle size of 10 μm is mixed with, for example, an ethylcellulose binder can be used. This slurry-like composition is applied onto a base material, such as iron foil, that can be dissolved by chemical treatment using a metal mask, for example, by a squeegee method (screen printing method), and dried under reduced pressure to obtain a pre-fired shaped body. Thereafter, the molded body before firing is pressed. And this sintered compact is heated together with the iron foil and degreased. Further, firing is performed to obtain a sintered body. The sintered body is immersed in, for example, an aqueous sulfuric acid solution, and the iron foil portion in contact with the sintered body is dissolved to peel the iron foil from the sintered body. The obtained sintered body is repeatedly washed with distilled water or the like to remove sulfuric acid and then dried by heating. Further, for example, a titania paste is printed, dried and fired, and the operation of printing and firing the titania base is repeated a plurality of times to obtain a porous Ti sheet substrate with a titania layer. Furthermore, the non-film-formed portions on the four sides of the porous Ti sheet substrate with a titania layer are removed. Next, for example, a porous Ti sheet substrate with a titania layer prepared is impregnated with a mixed solvent solution of N719 dye acetonitrile and t-butyl alcohol, the dye is adsorbed on the titania surface, and the adsorbed substrate is acetonitrile and t-butyl. Wash with a mixed solvent of alcohol and dry. Further, for example, a titanium foil as a non-porous conductor portion is laminated at one corner on the back side of the porous Ti sheet substrate with the dye-adsorbing titania layer, which is not attached with the non-porous conductor portion. The provided porous anode with a dye adsorbing porous semiconductor layer is obtained.
 第二の工程では、色素吸着多孔質半導体層付き多孔質アノード極と実質的に同一平面寸法で、アノード極と重ねたときに非孔質導電体部と対応する箇所を切欠いて切欠き部を形成したカソード極を得る。
 例えばチタン箔の片面に、白金をスパッタし、Pt触媒層付きTi基板を得る。さらに、Pt触媒層付きTi基板の中央部に、電解液挿入用の孔を空け、アノード極と重ねたときに非孔質導電体部と対応する箇所を切欠き、カソード極を得る。カソード極は、例えば白金の代わりに、チタン箔の片側に炭素粒子を堆積させた炭素触媒層付きTi基板を用いてもよい。
In the second step, substantially the same plane dimensions as the porous anode electrode with a dye-adsorbing porous semiconductor layer are formed, and the portion corresponding to the nonporous conductor portion is notched when the anode electrode is overlapped with the notched portion. The formed cathode is obtained.
For example, platinum is sputtered on one surface of a titanium foil to obtain a Ti substrate with a Pt catalyst layer. Further, a hole for inserting an electrolytic solution is formed in the central portion of the Ti substrate with the Pt catalyst layer, and a portion corresponding to the non-porous conductor portion is cut out when overlapped with the anode electrode to obtain a cathode electrode. For the cathode electrode, for example, instead of platinum, a Ti substrate with a carbon catalyst layer in which carbon particles are deposited on one side of a titanium foil may be used.
 第三の工程では、色素吸着多孔質半導体層付き多孔質アノード極とカソード極を色素吸着多孔質半導体層付き多孔質アノード極の非孔質導電体部とカソード極の切欠き部を位置合わせしながら積層する。 In the third step, the porous anode electrode and cathode electrode with a dye-adsorbing porous semiconductor layer are aligned with the nonporous conductor portion of the porous anode electrode with the dye-adsorbing porous semiconductor layer and the notch portion of the cathode electrode. Laminate while.
  第四の工程では、カソード極の外側に、基板を設け、または、封止用樹脂シートを設ける。このとき、基板および封止用樹脂シートの双方を設けてもよい。基板は任意の位置に第五の開口を形成する。封止用樹脂シートは、基板とともに設けるときは、第五の開口と対応する位置に、また、単独で設けるときは任意の位置に第六の開口を形成するとともに切欠き部に対応する位置に第七の開口を形成する。
このとき、アノード極の表面も樹脂シートで封止し、あるいは電池全体を封止材で封止する。
 基板は、例えば樹脂シートを用いる場合、例えばPENシートを用い、例えばロールプレス法で積層する。基板は、カソード極の切欠き部と対応する位置に切欠き部を形成し、または、PENシートの平面視で非孔質導電体部の少なくとも一部と重なる箇所を例えばドリルで開口し、同様にカソード極の一部の箇所を開口する。
 封止材として例えば熱可塑性接着シートを用いる。PENシートの場合と同様にして、非孔質導電体部の少なくとも一部およびカソード極の一部をカソード極の外側に露出させる開口を形成する。
 さらに、電解液挿入孔から、例えばヨウ素、LiIを含むテトラグライム溶媒の電解液を減圧注入した後、電解液挿入孔をUV硬化樹脂で封止し、色素増感太陽電池を得る。
In the fourth step, a substrate or a sealing resin sheet is provided outside the cathode electrode. At this time, you may provide both a board | substrate and the resin sheet for sealing. The substrate forms a fifth opening at an arbitrary position. When the sealing resin sheet is provided together with the substrate, the sealing resin sheet is formed at a position corresponding to the fifth opening. When the sealing resin sheet is provided alone, the sealing resin sheet is formed at a position corresponding to the notch while forming the sixth opening at an arbitrary position. Forming a seventh opening;
At this time, the surface of the anode electrode is also sealed with a resin sheet, or the whole battery is sealed with a sealing material.
For example, when a resin sheet is used as the substrate, for example, a PEN sheet is used, and the substrate is laminated by, for example, a roll press method. In the substrate, a notch is formed at a position corresponding to the notch of the cathode electrode, or a portion that overlaps at least a part of the non-porous conductor in plan view of the PEN sheet is opened by, for example, a drill, and the like A part of the cathode electrode is opened.
For example, a thermoplastic adhesive sheet is used as the sealing material. Similarly to the case of the PEN sheet, an opening that exposes at least a part of the non-porous conductor part and a part of the cathode electrode to the outside of the cathode electrode is formed.
Further, for example, an electrolytic solution of a tetraglyme solvent containing iodine and LiI is injected under reduced pressure from the electrolytic solution insertion hole, and then the electrolytic solution insertion hole is sealed with a UV curable resin to obtain a dye-sensitized solar cell.
 つぎに、本実施の形態の第二の例に係る太陽電池について、図6~図8を参照して説明する。
 図6~図8に示す本実施の形態の第二の例に係る太陽電池10aは、光電変換部12と、非孔質透明アノード極14aと、非孔質のカソード極16を有する。アノード極14aは、光電変換部12の光入射側に設けられる。カソード極16は光電変換部12を挟んでアノード極14aと対向して設けられる。カソード極16は、非孔質材料と多孔質材料が積層されたものであってもよい。
 太陽電池10aは、色素増感太陽電池に好適に適用できるとともに、透明導電膜を有するその他の薄膜太陽電池に好適に適用できる。
 太陽電池10aは、光電変換部12の外側に透明基板18が設けられるとともに、適宜の封止材料または封止部材により、全体が封止される。図7、図8はシール材(封止部)20により封止する例を示す。
 太陽電池10aは、太陽電池10と同様に、封止材料または封止部材は光電変換部12を封止できれば足りるものである。図7、図8に示すように非孔質透明アノード極14aの外側の面に透明基板18が設けられ、一方、カソード極16はそれ自体が非孔質の金属層で形成されることにより、これら透明基板18およびカソード極16によって光電変換部12封止され、結局、太陽電池10全体が封止されるということができる。なお、簡易な方法により確実に封止するためには、太陽電池10の全体をシール材20で封止することが好適である。
 太陽電池10aは、太陽電池10と同様に、絶縁層を設けてもよい。
 太陽電池の具体的な構成は、色素増感太陽電池や透明導電膜を有するその他の薄膜太陽電池の周知のものをそのまま適用でき、また、本発明の本質ではないため、詳細な説明は省略する。
Next, a solar cell according to a second example of the present embodiment will be described with reference to FIGS.
A solar cell 10a according to a second example of the present embodiment shown in FIGS. 6 to 8 includes a photoelectric conversion unit 12, a nonporous transparent anode electrode 14a, and a nonporous cathode electrode 16. The anode 14 a is provided on the light incident side of the photoelectric conversion unit 12. The cathode electrode 16 is provided to face the anode electrode 14a with the photoelectric conversion unit 12 interposed therebetween. The cathode electrode 16 may be a laminate of a non-porous material and a porous material.
The solar cell 10a can be suitably applied to a dye-sensitized solar cell and can also be suitably applied to other thin film solar cells having a transparent conductive film.
The solar cell 10 a is provided with a transparent substrate 18 outside the photoelectric conversion unit 12, and is entirely sealed with an appropriate sealing material or sealing member. 7 and 8 show an example of sealing with a sealing material (sealing portion) 20.
As with the solar cell 10, the solar cell 10 a is sufficient if the sealing material or the sealing member can seal the photoelectric conversion unit 12. As shown in FIGS. 7 and 8, a transparent substrate 18 is provided on the outer surface of the nonporous transparent anode electrode 14a, while the cathode electrode 16 itself is formed of a nonporous metal layer. It can be said that the photoelectric conversion unit 12 is sealed by the transparent substrate 18 and the cathode electrode 16, and eventually the entire solar cell 10 is sealed. In order to securely seal by a simple method, it is preferable to seal the entire solar cell 10 with the sealing material 20.
As with the solar cell 10, the solar cell 10 a may be provided with an insulating layer.
As the specific configuration of the solar cell, a well-known one of a dye-sensitized solar cell and other thin film solar cells having a transparent conductive film can be applied as it is, and since it is not the essence of the present invention, a detailed description is omitted. .
 アノード極14の電極の一部の光入射側とは反対側に平面視でカソード極16と重ならない位置の封止部20に形成した第三の開口26aからアノード極14の一部が露出されて第三の外部接続端子28aとされる。一方、カソード極18の電極の一部が光入射側とは反対側に封止部20の第三の開口26aとは異なる位置に形成した第四の開口30aから露出されて第四の外部接続端子32aとされる。
 なお、図7および図8では、外部接続端子28a、32aは開口26a、30aから大きく後退しているように見えるが、実際は、封止部20は薄厚であるため、導体配線を接続するのに十分な程度に露出する。
 外部接続端子28a、32aは、図6に示すように近接して配置されると、これらに接続される導体配線のレイアウト上好適である。
 非孔質透明アノード極14aの材料は特に限定するものではなく、例えば通常用いられるITO(スズをドープしたインジウム膜)、FTO(フッ素をドープした酸化スズ膜)、あるいはまたSnO膜等であってもよい。また、安価な金属を用いた金属メッシュ、予め無数の孔を形成した金属層または溶射や薄膜形成法等により形成した金属層等を用いることができる。
 なお、露出されるアノード極14の一部に太陽電池10と同様に非孔質導電体部を積層することは好適な実施態様である。
A part of the anode 14 is exposed from the third opening 26a formed in the sealing part 20 at a position not overlapping the cathode 16 in plan view on the side opposite to the light incident side of a part of the electrode of the anode 14. The third external connection terminal 28a. On the other hand, a part of the electrode of the cathode electrode 18 is exposed from a fourth opening 30a formed at a position different from the third opening 26a of the sealing portion 20 on the side opposite to the light incident side, and the fourth external connection. Terminal 32a.
In FIGS. 7 and 8, the external connection terminals 28a and 32a appear to be largely retracted from the openings 26a and 30a. However, since the sealing portion 20 is actually thin, it is necessary to connect the conductor wiring. Expose to a sufficient extent.
If the external connection terminals 28a and 32a are arranged close to each other as shown in FIG. 6, it is preferable in terms of the layout of the conductor wiring connected to them.
The material of the nonporous transparent anode electrode 14a is not particularly limited, and may be, for example, a commonly used ITO (tin doped indium film), FTO (fluorine doped tin oxide film), or SnO 2 film. May be. In addition, a metal mesh using an inexpensive metal, a metal layer in which an infinite number of holes are formed in advance, or a metal layer formed by thermal spraying or a thin film forming method can be used.
In addition, it is a preferred embodiment to laminate a non-porous conductor portion on a part of the exposed anode electrode 14 similarly to the solar cell 10.
 太陽電池10aの非孔質透明アノード極14aとカソード極16が平面視で重ならないようにするために、先に述べた太陽電池10と同様の電極構造とすることができる。
 また、太陽電池10aの製造方法は、本実施の形態例に係る色素増感太陽電池の製造法に準じて行うことができる。
In order to prevent the nonporous transparent anode electrode 14a and the cathode electrode 16 of the solar cell 10a from overlapping each other in plan view, the electrode structure similar to that of the solar cell 10 described above can be used.
Moreover, the manufacturing method of the solar cell 10a can be performed according to the manufacturing method of the dye-sensitized solar cell which concerns on this Example.
 以上説明した本実施の形態の第二の例に係る太陽電池10aは、太陽電池10と同様に、従来の太陽電池においてアノード電極およびカソード電極それぞれに電気的に接続される取り出し電極が、平面視で電池の対向する両端等、電池の周囲に延出することにより生じていた非発電領域が解消され、その分だけ発電領域である電池セルの平面面積を大きくとることができる。
 また、太陽電池10aは、太陽電池10で必須であった非孔質導電体部24を設けることなく、アノード極に接する光電変換部等の内部構造構成要素がアノード極を介して外部と実質的に連通することがないので、外部雰囲気による内部構造構成要素の汚損等を軽減することができる。太陽電池10aが色素増感太陽電池の場合、電解液が多孔質アノード極を介して外部に漏れることを防止できる。
 なお、太陽電池10aは、太陽電池10と同様に、光入射側から見た外観に取出し電極がないため、意匠性に優れる。
In the solar cell 10a according to the second example of the present embodiment described above, in the same manner as the solar cell 10, in the conventional solar cell, the extraction electrode electrically connected to each of the anode electrode and the cathode electrode has a plan view. Thus, the non-power generation region generated by extending around the battery, such as the opposite ends of the battery, is eliminated, and the plane area of the battery cell that is the power generation region can be increased accordingly.
In addition, the solar cell 10a is substantially free from the outside through the anode electrode, and the internal structure components such as the photoelectric conversion unit in contact with the anode electrode are provided without providing the nonporous conductor 24 that is essential in the solar cell 10. Therefore, the contamination of the internal structural components due to the external atmosphere can be reduced. When the solar cell 10a is a dye-sensitized solar cell, it can prevent that electrolyte solution leaks outside via a porous anode electrode.
In addition, the solar cell 10a is excellent in the design property since there is no extraction electrode in the appearance seen from the light incident side, like the solar cell 10.
 10、10a 太陽電池
 12 光電変換部
 14、14a のアノード極
 16 カソード極
 18 透明基板
 19 基板
 20 封止部
 22 絶縁層
 24 非孔質導電体部
 26 第一の開口
 26a 第三の開口
 28 第一の外部接続端子
 28a 第三の外部接続端子
 30 第二の開口
 30a 第四の開口
 32 第二の外部接続端子
 32a 第四の外部接続端子

 
DESCRIPTION OF SYMBOLS 10, 10a Solar cell 12 Photoelectric conversion part 14, 14a Anode pole 16 Cathode pole 18 Transparent substrate 19 Substrate 20 Sealing part 22 Insulating layer 24 Nonporous conductor part 26 First opening 26a Third opening 28 First External connection terminal 28a Third external connection terminal 30 Second opening 30a Fourth opening 32 Second external connection terminal 32a Fourth external connection terminal

Claims (4)

  1.  光電変換部と、該光電変換部の光入射側とは反対側に設けられる多孔質アノード極と、該アノード極と対向して設けられる非孔質カソード極または非孔質材料と多孔質材料が積層されたカソード極を有し、全体が封止される太陽電池において、
     該アノード極の電極の一部の光入射側とは反対側に非孔質導電体部が積層され、該非孔質導電体部の一部が光入射側とは反対側に、平面視で該カソード極と重ならない位置の該封止部に形成した第一の開口から露出されて第一の外部接続端子とされるとともに、該カソード極の電極の一部が光入射側とは反対側に該封止部の該第一の開口とは異なる位置に形成した第二の開口から露出されて第二の外部接続端子とされることを特徴とする太陽電池。
    A photoelectric conversion unit, a porous anode electrode provided on the side opposite to the light incident side of the photoelectric conversion unit, and a non-porous cathode electrode or a non-porous material and a porous material provided to face the anode electrode. In a solar cell having a laminated cathode electrode and entirely sealed,
    A non-porous conductor part is laminated on the opposite side of the anode electrode to the light incident side, and a part of the non-porous conductor part is opposite to the light incident side in plan view. Exposed from the first opening formed in the sealing portion at a position not overlapping with the cathode electrode to be a first external connection terminal, and a part of the electrode of the cathode electrode is on the side opposite to the light incident side A solar cell, wherein the solar cell is exposed from a second opening formed at a position different from the first opening of the sealing portion to serve as a second external connection terminal.
  2.  前記光電変換部が、光入射側に配置される、色素を吸着した多孔質半導体層であり、前記アノード極が、該色素を吸着した多孔質半導体層の光入射側とは反対側の面に設けられる多孔質導電体層であり、前記カソード極が、封入される電解質層を介して多孔質導電体層と対向して設けられる非孔質導電体層または非孔質材料と多孔質材料が積層された導電体層であることを特徴とする請求項1記載の太陽電池。 The photoelectric conversion unit is a porous semiconductor layer that is disposed on the light incident side and adsorbs a dye, and the anode electrode is on a surface opposite to the light incident side of the porous semiconductor layer that adsorbs the dye. A non-porous conductor layer or a non-porous material and a porous material, wherein the non-porous conductor layer or the non-porous material is provided so that the cathode electrode is opposed to the porous conductor layer via an electrolyte layer to be sealed The solar cell according to claim 1, wherein the solar cell is a laminated conductor layer.
  3.  光電変換部と、該光電変換部の光入射側に設けられる非孔質透明アノード極または非孔質材料と多孔質材料が積層されたカソード極と、該光電変換部を挟んで該アノード極と対向して設けられる非孔質カソード極を有し、全体が封止される太陽電池において、
     該アノード極の電極の一部が光入射側とは反対側に、平面視で該カソード極と重ならない位置の該封止部に形成した第三の開口から露出されて第三の外部接続端子とされるとともに、該カソード極の電極の一部が光入射側とは反対側に該封止部の該第三の開口とは異なる位置に形成した第四の開口から露出されて第四の外部接続端子とされることを特徴とする太陽電池。
    A photoelectric conversion unit, a nonporous transparent anode electrode provided on the light incident side of the photoelectric conversion unit or a cathode electrode in which a nonporous material and a porous material are laminated, and the anode electrode across the photoelectric conversion unit In a solar cell having a nonporous cathode electrode provided oppositely and sealed entirely,
    A part of the electrode of the anode electrode is exposed from a third opening formed in the sealing portion at a position not overlapping the cathode electrode in a plan view on the side opposite to the light incident side, and a third external connection terminal And a part of the electrode of the cathode electrode is exposed from a fourth opening formed on a side opposite to the light incident side at a position different from the third opening of the sealing portion. A solar cell characterized by being an external connection terminal.
  4.  多孔質アノード極のスラリ状原料を化学的処理により溶解可能な基材上に塗布し、該スラリ状原料を焼結して焼結体とした後に化学的処理により該基材を該焼結体から分離し、該焼結体上に色素吸着多孔質半導体層を形成して色素吸着多孔質半導体層付き多孔質アノード極を得、さらに色素吸着多孔質半導体層付き多孔質アノード極のアノード極の側の1つの隅部分に非孔質導電体部を積層する工程と、
     該色素吸着多孔質半導体層付き多孔質アノード極と実質的に同一平面寸法で、該アノード極と重ねたときに該非孔質導電体部と対応する箇所を切欠いて切欠き部を形成した、非孔質カソード極または非孔質材料と多孔質材料が積層されてなるカソード極を得る工程と、
     該色素吸着多孔質半導体層付き多孔質アノード極と該カソード極を該色素吸着多孔質半導体層付き多孔質アノード極の該非孔質導電体部と該カソード極の該切欠き部を位置合わせしながら積層する工程と、
     該カソード極の外側に、第五の開口を形成した基板、または第六の開口を形成するとともに該切欠き部に対応する位置に第七の開口を形成した封止用樹脂シートの少なくともいずれか1つを設ける工程と、
    を有することを特徴とする色素増感太陽電池の製造方法。

     
    The slurry-like raw material of the porous anode electrode is coated on a dissolvable base material by chemical treatment, and the slurry-like raw material is sintered to form a sintered body, and then the base material is subjected to chemical treatment. And forming a dye-adsorbing porous semiconductor layer on the sintered body to obtain a porous anode electrode with a dye-adsorbing porous semiconductor layer. Laminating a non-porous conductor portion at one corner on the side;
    A non-porous portion having substantially the same planar dimensions as the porous anode electrode with the dye-adsorbing porous semiconductor layer and notched with a portion corresponding to the non-porous conductor portion when overlapped with the anode electrode, Obtaining a porous cathode or a cathode formed by laminating a non-porous material and a porous material;
    The porous anode electrode with the dye-adsorbing porous semiconductor layer and the cathode electrode are aligned with the non-porous conductor portion of the porous anode electrode with the dye-adsorbing porous semiconductor layer and the notch portion of the cathode electrode. Laminating steps;
    At least one of a substrate in which a fifth opening is formed outside the cathode electrode, or a sealing resin sheet in which a sixth opening is formed and a seventh opening is formed at a position corresponding to the notch Providing one,
    The manufacturing method of the dye-sensitized solar cell characterized by having.

PCT/JP2014/058027 2013-03-29 2014-03-24 Solar cell and manufacturing method for dye-sensitized solar cell WO2014157060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508468A JPWO2014157060A1 (en) 2013-03-29 2014-03-24 Solar cell and method for producing dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072119 2013-03-29
JP2013072119 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157060A1 true WO2014157060A1 (en) 2014-10-02

Family

ID=51624034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058027 WO2014157060A1 (en) 2013-03-29 2014-03-24 Solar cell and manufacturing method for dye-sensitized solar cell

Country Status (3)

Country Link
JP (1) JPWO2014157060A1 (en)
TW (1) TW201507183A (en)
WO (1) WO2014157060A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226554A (en) * 2007-03-09 2008-09-25 Geomatec Co Ltd Dye sensitized solar battery and complex type apparatus equipped with this
JP2009289736A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2011135811A1 (en) * 2010-04-29 2011-11-03 新日鐵化学株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2011243298A (en) * 2010-05-14 2011-12-01 Panasonic Corp Mounted type dye-sensitized solar cell
JP2012174596A (en) * 2011-02-23 2012-09-10 Sony Corp Dye sensitized solar cell, method for manufacturing dye sensitized solar cell, and dye sensitized solar cell module
WO2013005770A1 (en) * 2011-07-06 2013-01-10 ペクセル・テクノロジーズ株式会社 Dye sensitization type photoelectric conversion element and dye sensitization type solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226554A (en) * 2007-03-09 2008-09-25 Geomatec Co Ltd Dye sensitized solar battery and complex type apparatus equipped with this
JP2009289736A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2011135811A1 (en) * 2010-04-29 2011-11-03 新日鐵化学株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2011243298A (en) * 2010-05-14 2011-12-01 Panasonic Corp Mounted type dye-sensitized solar cell
JP2012174596A (en) * 2011-02-23 2012-09-10 Sony Corp Dye sensitized solar cell, method for manufacturing dye sensitized solar cell, and dye sensitized solar cell module
WO2013005770A1 (en) * 2011-07-06 2013-01-10 ペクセル・テクノロジーズ株式会社 Dye sensitization type photoelectric conversion element and dye sensitization type solar cell module

Also Published As

Publication number Publication date
JPWO2014157060A1 (en) 2017-02-16
TW201507183A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
KR100658263B1 (en) Tandem structured photovoltaic cell and preparation method thereof
JP5815509B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5388209B2 (en) Method for producing dye-sensitized solar cell
JP5797555B2 (en) Dye-sensitized solar cell
KR20110124239A (en) Dye-sensitized solar cell
JP5165253B2 (en) Dye-sensitized solar cell and method for producing the same
JP2008016351A (en) Dye-sensitized solar battery module and its manufacturing method
JP2005100875A (en) Photoelectric conversion element module
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
JP4620748B2 (en) Dye-sensitized solar cell
US20110108106A1 (en) Dye-sensitized solar cell electrode and dye-sensitized solar cell
JP5253476B2 (en) Photoelectric conversion element
JP2012028314A (en) Photoelectric conversion module
JP2013200958A (en) Solar battery
WO2014157060A1 (en) Solar cell and manufacturing method for dye-sensitized solar cell
JP5498265B2 (en) Extraction electrode for solar cell, solar cell and solar cell module
JP2014022180A (en) Dye-sensitized solar cell, and method of manufacturing the same
KR20110130040A (en) Dye sensitized solar cell
JP5367670B2 (en) Dye-sensitized solar cell
JP2023166208A (en) Dye-sensitized solar cell
KR101744984B1 (en) Dye sensitized solar cell and method of the manufacturing the same
JP2005268052A (en) Dye-sensitized solar cell module and its manufacturing method
JP2013098153A (en) Dye-sensitized solar cell and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775791

Country of ref document: EP

Kind code of ref document: A1