WO2013005770A1 - Dye sensitization type photoelectric conversion element and dye sensitization type solar cell module - Google Patents

Dye sensitization type photoelectric conversion element and dye sensitization type solar cell module Download PDF

Info

Publication number
WO2013005770A1
WO2013005770A1 PCT/JP2012/067076 JP2012067076W WO2013005770A1 WO 2013005770 A1 WO2013005770 A1 WO 2013005770A1 JP 2012067076 W JP2012067076 W JP 2012067076W WO 2013005770 A1 WO2013005770 A1 WO 2013005770A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
layer
photoelectric conversion
oxide semiconductor
solar cell
Prior art date
Application number
PCT/JP2012/067076
Other languages
French (fr)
Japanese (ja)
Inventor
健次郎 手島
伸三 岸本
和志 池上
Original Assignee
ペクセル・テクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペクセル・テクノロジーズ株式会社 filed Critical ペクセル・テクノロジーズ株式会社
Publication of WO2013005770A1 publication Critical patent/WO2013005770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye-sensitized solar cell module having high photoelectric conversion efficiency over a wide range from low illuminance (500 lux) to high illuminance (100,000 lux) and a method for producing the same.
  • solid pn junction solar cells have been actively studied as photoelectric conversion elements that convert solar energy into electric power.
  • the solid junction solar cell uses a silicon crystal, an amorphous silicon thin film, or a multilayer thin film of a non-silicon compound semiconductor.
  • these solar cells are manufactured at a high temperature or under vacuum, there are disadvantages that the cost of the plant is high and the energy payback time is long.
  • a dye-sensitized solar cell is a wet solar cell that employs a solid (semiconductor) -liquid (electrolyte) junction instead of a solid (semiconductor) -solid (semiconductor) junction in a solid junction solar cell.
  • a dye-sensitized solar cell is a photo-active electrode substrate (light-sensitive substrate) in which a sensitizing dye is supported on a porous semiconductor fine particle layer made of metal oxide semiconductor nanoparticles typified by titanium dioxide nanoparticles formed on a transparent conductive substrate.
  • Electrode) and a counter electrode substrate (counter electrode) in which a platinum or carbon counter electrode layer is formed on a conductive substrate, are arranged to face each other, the electrolyte solution is filled between the substrates, and the electrolyte solution is sealed Consists of.
  • the sensitizing dye absorbs light and generates electrons, and the generated electrons move from the photoelectrode to the counter electrode through an external electric circuit. Then, the moved electrons are carried by the ions in the electrolytic solution and return to the photoelectrode. Energy can be continuously extracted from the dye-sensitized solar cell by repeating such a series of electron transfer.
  • the current obtained from one dye-sensitized solar cell unit (hereinafter referred to as “dye-sensitized photoelectric conversion element” in the present invention) is the area of the porous semiconductor fine particle layer carrying the sensitizing dye. (Hereinafter referred to as “power generation area” in the present invention).
  • power generation area the area of the porous semiconductor fine particle layer carrying the sensitizing dye.
  • Patent Document 2 As a means for increasing the photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element, it has been proposed to mix scattering particles with a porous semiconductor fine particle layer in order to effectively utilize incident external light (Patent Document 2). , 3). Further, in order to reduce the electrical resistance of the current collecting electrode in the photoelectrode, a current collector made of a conductive porous film is provided in the porous semiconductor fine particle layer (Patent Document 4), and from a fine wire mesh provided on the transparent substrate. It has been proposed to form a porous semiconductor fine particle layer on a current collector (Patent Document 5).
  • the above-described technique is based on the premise of increasing the size and area of the dye-sensitized solar cell.
  • Dye-sensitized solar cells especially film-type dye-sensitized solar cells that have been reduced in weight for portable purposes, are expected to be used on the assumption that they are used indoors at low illuminance (500 lux) or outdoors at high illuminance (100,000 lux). It is necessary to consider the conversion efficiency. In this case, in a miniaturized dye-sensitized solar cell, it has not been clarified how the planar shape of the power generation area is designed to improve the photoelectric conversion efficiency from low illuminance to high illuminance.
  • a solar cell module in which a plurality of dye-sensitized photoelectric conversion elements are integrated in series or in parallel (hereinafter referred to as “dye-sensitized solar cell module” in the present invention) can be provided. Practical voltage and battery life can be realized. The present invention has been made to solve such a problem.
  • the present invention can be implemented in the following aspects (1) to (3).
  • a transparent substrate, a transparent electrode layer formed on the transparent substrate, an undercoat layer formed on the transparent electrode layer, and a sensitizing dye formed on the undercoat layer are supported.
  • the porous semiconductor fine particle layer, the base material facing the porous semiconductor fine particle layer, the electrode layer formed on the surface of the opposing base material on the porous semiconductor fine particle layer side, and formed on the electrode layer A dye-sensitized photoelectric conversion element having a formed catalyst layer, an electrolyte layer provided between the porous semiconductor fine particle layer and the catalyst layer, and a sealing layer provided around the electrolyte layer
  • the planar shape of the porous semiconductor fine particle layer carrying the sensitizing dye is rectangular,
  • the area (S) of the rectangle is 300 mm 2 to 600 mm 2 , and the ratio (L) of the length of the long side to the short side of the rectangle is included in the region satisfying the following expressions (1) and (2).
  • S is a rectangular area (mm 2 ) of the porous oxide semiconductor layer containing the sensitizing dye
  • L is a rectangular shape of the porous oxide semiconductor layer containing the sensitizing dye. The ratio of the length of the long side to the short side.
  • (Aspect 2) A base material facing the porous semiconductor fine particle layer, an electrode layer formed on the surface of the opposing base material on the porous semiconductor fine particle layer side, and a catalyst layer formed on the electrode layer Any of these are formed from a transparent material,
  • the electrolytic solution is colored by the formation of triiodide ions (I3 ⁇ ), the light energy conversion efficiency is lowered, and the battery is further deteriorated by the oxidation corrosion reaction of iodine.
  • a dye-sensitized solar cell module comprising the dye-sensitized photoelectric conversion elements described in (Aspect 1) to (Aspect 3) connected in parallel or in series. This is because a practical voltage and battery life can be realized by providing various integrated modules using the dye-sensitized photoelectric conversion element of the present invention.
  • the dye-sensitized solar cell module in which the dye-sensitized photoelectric conversion elements are connected in series is connected in series with the dye-sensitized photoelectric change element through an electrode connection portion made of a current collector and conductive fine particles.
  • a battery module is obtained.
  • FIG. 1 is a cross-sectional view showing a structural example of the dye-sensitized photoelectric conversion device of the present invention.
  • the dye-sensitized photoelectric conversion element 1 includes a transparent electrode 11 having a transparent conductive layer 12, an undercoat layer 13, and a porous semiconductor fine particle layer 14 carrying a sensitizing dye laminated on a transparent substrate 11 in this order, and a transparent substrate.
  • a transparent conductive layer 12 and a catalyst layer 17 laminated in this order a counter electrode layer 18, an electrolyte layer 16 provided between the photoelectrode layer 15 and the counter electrode layer 18, and a sealing surrounding the electrolyte layer It is composed of a layer 19, a collector line 20, and terminals 21.
  • the photoelectrode layer 15, the electrolytic solution layer 16, the counter electrode layer 18, and the sealing layer 19 will be described in this order.
  • Plastic substrate material used in the present invention is a material that is uncolored, highly transparent, highly heat resistant, excellent in chemical resistance and gas barrier properties, and low in cost.
  • preferable materials include, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), polysulfone ( PSF), polyester sulfone (PES), polyetherimide (PEI), transparent polyimide (PI) and the like are used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN are particularly preferable in terms of chemical stability and cost
  • most preferable is polyethylene naphthalate (PEN).
  • the transparent conductive layer used in the present invention includes metals (eg, platinum, gold, silver, copper, aluminum, indium, titanium), carbon, conductive metal oxides (eg, tin oxide, zinc oxide). ) Or composite metal oxides (eg, indium-tin oxide, indium-zinc oxide). Of these, conductive metal oxides are preferable in view of high optical transparency, and indium-tin composite oxide (ITO), zinc oxide, and indium-zinc oxide (IZO) are particularly preferable. Most preferred are indium-tin composite oxide (ITO) and indium-zinc oxide (IZO), which are excellent in heat resistance and chemical stability.
  • the surface resistance value of the transparent conductive layer is preferably 100 ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ or less, further preferably 30 ⁇ / ⁇ or less, still more preferably 10 ⁇ / ⁇ or less, and most preferably 5 ⁇ / ⁇ or less.
  • the light transmittance (measurement wavelength: 500 nm) of the photoelectrode substrate provided with a transparent electrode layer on the transparent substrate is preferably 60% or more, more preferably 75% or more, and most preferably 80% or more.
  • a metal In order to achieve a low surface resistance value, it is preferable to use a metal, but the problem of being not transparent can be solved by forming a transparent conductive layer having a metal mesh structure.
  • an auxiliary lead for current collection can be placed on this conductive layer by patterning, etc., and it is made of a low-resistance metal material (eg, copper, silver, aluminum, platinum, gold, titanium, nickel). Is done.
  • the resistance value of the surface including the auxiliary lead is preferably controlled to 1 ⁇ / ⁇ or less.
  • Such an auxiliary lead pattern is preferably formed on a transparent substrate by vapor deposition, sputtering or the like, and a transparent conductive layer made of tin oxide, ITO film, IZO film or the like is further provided thereon.
  • the undercoat layer When the electrolyte layer is a liquid, the undercoat layer has a structure in which the electrolyte layer is in contact with the transparent conductive layer. Therefore, reverse electron transfer in which electrons leak from the transparent conductive layer to the electrolyte layer.
  • the internal short-circuit phenomenon called the occurrence of reverse current unrelated to light irradiation and the prevention of the decrease in photoelectric conversion efficiency, and the adhesion of the porous semiconductor fine particle layer to the conductive substrate is improved It has a role.
  • the material for the undercoat layer is not particularly limited as long as it is a high resistance semiconductor and insulating material.
  • a high resistance semiconductor and insulating material for example, there are titanium oxide, niobium oxide, tungsten oxide, and the like.
  • a method of forming the undercoat layer a method of directly sputtering the material on the transparent conductive layer, a solution in which the material is dissolved in a solvent, a solution in which a metal hydroxide that is a precursor of a metal oxide is dissolved, Alternatively, there is a method in which a solution containing a metal hydroxide obtained by dissolving an organometallic compound in a mixed solvent containing water is applied onto a conductive substrate composed of a substrate and a conductive layer, dried, and sintered as necessary.
  • the undercoat layer of the present invention is preferably formed of an organic titanium oligomer and a hydrolysis product thereof.
  • the organic titanium oligomer used in the present invention is a compound having a multimeric structure (—Ti—O—Ti—) in the molecule by condensing a titanium alkoxide (Ti—OR) compound or a titanium chelate compound.
  • Ti—OR titanium alkoxide
  • Ti—OR titanium alkoxide
  • the undercoat layer When the undercoat layer is formed on a conductive substrate, a good undercoat layer can be formed even under conditions in which cracking occurs in film formation with a titanium monomer. Further, metal alkoxides conventionally used for undercoat layers are highly reactive and easily hydrolyzed, making it difficult to control the properties of the coating film surface.
  • the organotitanium oligomer used in the present invention has a slow hydrolysis rate, a stable coating surface property, and a coating layer surface property of the undercoat layer when a semiconductor porous layer made of a metal oxide is overlaid. Has the advantage of being stable over a long period of time.
  • the organotitanium oligomer used in the present invention is produced by a method of hydrolysis by adding water or a mixture of water and a water-soluble solvent without substantially diluting tetraalkoxytitanium with a solvent (special feature). Open 2008-156280).
  • the organic titanium oligomer used in the present invention is a silicon compound having one or more alkoxy groups in the molecule with respect to the titanium compound oligomer in order to improve the coating film formability and coating film adhesion (adhesiveness).
  • it may be a composite compound (Japanese Patent Laid-Open No. 2008-143990) having a structure obtained by reacting or a mixture.
  • the undercoat layer on the conductive substrate it is preferable to use a sol-gel method in which an organic titanium oligomer solution is applied on the conductive substrate, dried and baked by heating to form a film.
  • the solvent is preferably an alcohol such as butanol, a hydrocarbon such as hexane or toluene, or a mixture thereof having a boiling point of about 100 ° C. from the viewpoint of drying speed.
  • Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
  • the wetting tension on the surface of the undercoat layer is less than 50 mN / m.
  • the metal oxide semiconductor fine particles are overlaid.
  • the metal oxide semiconductor nanoparticles contained in the metal oxide semiconductor nanoparticle dispersion of the present invention can be produced using a known method.
  • a production method for example, the sol-gel method described in “Science of Sol-Gel Process”, Agne Jofu Co., Ltd. (1998), or metal chloride is converted to an oxide by high-temperature hydrolysis in an inorganic oxyhydrogen salt. It can be prepared by a production method, a vapor-phase spray pyrolysis method in which a metal compound is thermally decomposed at a high temperature in a gas phase to form ultrafine particles.
  • TiO2 titanium dioxide
  • the metal oxide semiconductor material examples include oxides of titanium, tin, zinc, iron, tungsten, zirconium, strontium, indium, cerium, vanadium, niobium, tantalum, cadmium, lead, antimony, and bismuth.
  • the semiconductor material there is an n-type inorganic semiconductor material. Specifically, TiO2, ZnO, Nb2O3, SnO2, WO3, Si, CdS, CdSe, V2O5, ZnS, ZnSe, KTaO3, FeS2, PbS, etc. are preferable, TiO2, ZnO, Nb2O3, SnO2, and WO3 are more preferable, and dioxide dioxide. Titanium (TiO2) is particularly preferred.
  • a method for producing titanium dioxide there are a liquid phase method in which titanium tetrachloride and titanyl sulfate are hydrolyzed and a gas phase method in which titanium tetrachloride and oxygen or an oxygen-containing gas are mixed and burned.
  • a liquid phase method in which titanium tetrachloride and titanyl sulfate are hydrolyzed
  • a gas phase method in which titanium tetrachloride and oxygen or an oxygen-containing gas are mixed and burned.
  • anatase can be obtained as the main phase, but it becomes a sol or slurry, and drying is necessary to use it as a powder, but there is a problem that aggregation (secondary particle formation) proceeds by drying.
  • the vapor phase method is characterized by excellent dispersibility, high temperature during synthesis, and excellent crystallinity compared to the liquid phase method because no solvent is used.
  • titanium oxide is produced by a vapor phase method, titanium oxide that is stable at the lowest temperature is anatase type, and is converted into a brookite type or a rutile type as heat treatment is applied.
  • the crystal structure can be determined by measuring a diffraction pattern by an X-ray diffraction method or detecting a crystal lattice image by observation with a transmission electron microscope.
  • the average particle diameter of the titanium dioxide nanoparticles can be calculated from a particle size distribution measurement by a light correlation method using a laser light scattering method or a scanning electron microscope observation method.
  • the crystalline titanium dioxide nanoparticles having an average primary particle size of 40 to 70 nm used in the present invention are those obtained by a gas phase method, and are a mixture of rutile type crystals and anatase type crystals. % Or less. This is because when the rutile ratio exceeds 40%, the function as a photocatalyst is lowered and the photovoltaic power is lowered, so that sufficient performance as a dye-sensitized solar cell cannot be obtained.
  • the form of the titanium dioxide nanoparticles may be various forms such as amorphous, spherical, polyhedral, fibrous, and nanotube-like, but a polyhedral or nanotube-like form is preferable, and a polyhedral form is more preferable.
  • the solid content concentration contained in the metal oxide semiconductor nanoparticle dispersion is 0.1 to 25 wt%, preferably 0.5 to 20 wt%, and more preferably 0.5 to 15 wt%.
  • metal oxide semiconductor nanoparticles having an average primary particle size of 10 to 30 nm used in the present invention are prepared as an acidic sol aqueous solution in which titanium dioxide nanoparticles containing brookite crystals obtained by a liquid phase method are dispersed. Yes.
  • brookite-type titanium oxide is excellent in binding property to a dye and can provide higher photoelectric conversion efficiency than rutile or anatase-type titanium oxide.
  • Brookite-type titanium oxide produced by a liquid phase method particularly brookite-type titanium oxide produced by hydrolysis of titanium tetrachloride or titanium trichloride is preferred.
  • the aqueous medium is adjusted to be acidic, and the pH is 1 to 6, preferably 3 to 5.
  • the solid content concentration contained in the metal oxide semiconductor nanoparticle dispersion is 1 to 15 wt%, preferably 2 to 12 wt%, and more preferably 2 to 10 wt%.
  • the present invention is a dye-sensitized photoelectric conversion in which a metal oxide semiconductor nanoparticle dispersion is applied on a conductive substrate and heat-treated to form a porous semiconductor fine particle layer.
  • the present invention relates to a device photoelectrode.
  • a dispersion composition not containing a binder material such as resin or latex added for the purpose of improving the film forming property and leveling property of the dispersion is preferable.
  • the metal oxide semiconductor nanoparticle dispersion of the present invention is a viscous milky white liquid in which metal oxide semiconductor nanoparticles are dispersed in a solvent composed of a mixture of water and an alcohol having 5 or less carbon atoms.
  • the solvent used for the metal oxide semiconductor nanoparticle dispersion of the present invention is a mixed solvent of water and a hydrophilic organic solvent mainly composed of ethanol.
  • a hydrophilic solvent other alcohols having 3 to 5 carbon atoms can be selected, and t-butanol, 2-butanol and the like can be added.
  • water is used as a dispersion solvent in addition to the alcohol. This is added for the purpose of maintaining the dispersion stability of the metal oxide semiconductor nanoparticles and maintaining the viscosity of the dispersion at an appropriate level.
  • the dispersion includes both metal oxide semiconductor nanoparticles having an average primary particle diameter of 10 to 30 nm and metal oxide semiconductor nanoparticles having an average primary particle diameter of 40 to 70 nm. It is a feature.
  • metal oxide semiconductor nanoparticles that do not overlap in the average particle size range of the primary particles, the specific surface area is large and the amount of sensitizing dye supported is large, and the electrolyte that forms the electrolyte layer is a porous semiconductor.
  • a porous semiconductor fine particle layer having a porous structure capable of diffusing to details of the fine particle layer can be easily produced.
  • a metal oxide semiconductor nanoparticle dispersion containing metal oxide semiconductor nanoparticles and a solvent as essential components as proposed in Japanese Patent Application Laid-Open No. 2002-324591 is obtained by changing the composition of the dispersion continuously or discontinuously. There is no need to spray. Moreover, the volume shrinkage distortion at the time of drying can be relieve
  • a paint conditioner In the method of dispersing metal oxide semiconductor nanoparticles having an average primary particle size of 40 to 70 nm in the present invention in a solvent, a paint conditioner, a homogenizer, an ultrasonic stirring device, or the like is used. A conditioner is preferably used. After the metal oxide semiconductor nanoparticles having an average primary particle size of 40 to 70 nm are dispersed in a solvent, an aqueous acidic sol solution in which metal oxide semiconductor nanoparticles having an average primary particle size of 10 to 30 nm are dispersed is added. Then, a metal oxide semiconductor nanoparticle dispersion is prepared.
  • the solid content concentration of the entire metal oxide semiconductor nanoparticles contained in the dispersion is 5 to 30 wt%, preferably 8 to 25 wt%, more preferably 8 to 20 wt%.
  • FIG. 2 shows an embodiment in which the dye-sensitized photoelectric conversion elements of the present invention are manufactured in 6 rows.
  • the porous semiconductor fine particle layer of the present invention is obtained by laminating a mask film 22 on a transparent conductive substrate 21 on which an undercoat layer is formed, and on an open portion 23 of the bonded mask film. It forms by apply
  • the open part of the mask film serves as a model of the semiconductor fine particle layer of the present invention.
  • the planar shape of the open portion 23 of the mask film is a rectangle having four rounded corners, and its size is determined by the planar shape of the porous semiconductor fine particle layer to be formed.
  • the mask film of the present invention has an open portion serving as a template for the semiconductor fine particle layer of the present invention, and at the same time can be easily attached to a transparent conductive substrate on which an undercoat layer is formed.
  • an adhesive film having an adhesive layer that can be easily peeled off after the particle dispersion is applied is a laminated film in which a slightly adhesive layer and a release film are provided on one side of a base film, and an antistatic layer and an antifouling layer are provided on the other side.
  • a peeling film is peeled at the time of use, and a mask film is bonded to the transparent conductive substrate in which the undercoat layer was formed.
  • the base film is of the same level as the transparent conductive substrate on which the undercoat layer is formed. It must be heat shrinkage. Specifically, the thermal contraction rate (MD ⁇ TD) under heating conditions (150 ° C., 30 min) is 0.5% or less, more preferably 0.2% or less.
  • the mask film of the present invention can be used by laminating a plurality of mask films having different adhesive forces. This is because, after the porous semiconductor fine particle layer is formed, the uppermost layer is peeled off, and the mask film can be peeled off after protecting the transparent conductive substrate on which the undercoat layer is formed at the time of dye adsorption.
  • the planar shape of the porous semiconductor fine particle layer is a rectangle, the area (S) of the rectangle is 300 mm 2 to 600 mm 2 , and the ratio (L) of the length of the long side to the short side of the rectangle is It is included in the region satisfying the expressions (1) and (2).
  • S is a rectangular area (mm 2 ) of the porous oxide semiconductor layer containing the sensitizing dye
  • L is a rectangular shape of the porous oxide semiconductor layer containing the sensitizing dye. The ratio of the length of the long side to the short side.
  • a coating method of the metal oxide semiconductor nanoparticle dispersion liquid As a coating method of the metal oxide semiconductor nanoparticle dispersion liquid, a known method such as a screen printing method, a drop casting method, a spin coating method, an air spray method, or the like can be used. From the viewpoint of the uniformity of the formed porous semiconductor fine particle layer, an air spray method using a spray device is preferred.
  • the spraying apparatus used for spraying the metal oxide semiconductor nanoparticle dispersion of the present invention can form the metal oxide semiconductor nanoparticle dispersion in a mist of 200 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the device For example, there are an air spray device, an inkjet device, and an ultrasonic spray device.
  • the air spray device refers to a device that scatters liquid in a certain direction using a pressure difference generated by expansion of compressed air. From the viewpoint of uniformly forming a coating film having a certain width, it is preferable to use a two-fluid slit nozzle.
  • An ink jet device refers to a device that discharges liquid as fine particles by volume shrinking or increasing the temperature of a fine nozzle filled with a liquid to be sprayed.
  • the ultrasonic spray device refers to a device that scatters liquid in a mist form by irradiating the liquid with ultrasonic waves.
  • the thickness of the porous semiconductor fine particle layer formed by spraying the metal oxide semiconductor nanoparticle dispersion on the transparent conductive substrate is preferably less than 30 ⁇ m and more preferably less than 20 ⁇ m in consideration of absorption loss of transmitted light. This is because if the thickness of the porous semiconductor fine particle layer is smaller than the above range, a layer having a uniform thickness cannot be formed, and if it is larger than this range, the resistance of the porous semiconductor fine particle layer becomes high.
  • the porosity of the formed porous semiconductor fine particle layer (ratio of the volume occupied by the pores in the film) is preferably 50 to 85%, more preferably 65 to 85%.
  • the heat treatment temperature is within the range of heat resistance of the conductive substrate. For example, when the transparent conductive substrate is a plastic substrate, the porous semiconductor is formed by a low temperature film formation method (eg, 200 ° C. or lower, preferably 150 ° C. or lower). A fine particle layer can be formed.
  • a dye molecule used for sensitization of the sensitizing dye porous semiconductor fine particle layer various organic and metal complexes conventionally used for spectral sensitization of semiconductor electrodes using dye molecules in the field of electrochemistry are used. Systematic sensitizing materials are used. Also, in order to make the wavelength range of photoelectric conversion as wide as possible and increase the conversion efficiency, two or more kinds of dyes may be used in combination, and the dyes to be mixed in accordance with the wavelength range and intensity distribution of the light source The mixing ratio may be selected.
  • Sensitizing dyes include organic dyes (eg, cyanine dyes, merocyanine dyes, oxonol dyes, xanthene dyes, squarylium dyes, polymethine dyes, coumarin dyes, riboflavin dyes, perylene dyes) and metal complex dyes (eg, phthalocyanine complexes, porphyrin complexes) including.
  • organic dyes eg, cyanine dyes, merocyanine dyes, oxonol dyes, xanthene dyes, squarylium dyes, polymethine dyes, coumarin dyes, riboflavin dyes, perylene dyes
  • metal complex dyes eg, phthalocyanine complexes, porphyrin complexes
  • the metal constituting the metal complex dye include ruthenium and magnesium.
  • Adsorption of the dye to the porous semiconductor fine particle layer As a method of adsorbing the dye to the porous semiconductor fine particle layer, a method of immersing a conductive substrate having a well-dried porous semiconductor fine particle layer in a dye solution, Alternatively, a method of applying a dye solution to the porous semiconductor fine particle layer can be used. In the case of the immersion method, the dye may be adsorbed at room temperature, or may be carried out by heating and refluxing as described in JP-A-7-249790.
  • a coating method such as a wire bar method, a slide hopper method, an extrusion method, a curtain method, a spin method, or a spray method, or a printing method such as letterpress, offset, gravure, or screen printing can be used.
  • the solvent used for the dye solution can be appropriately selected according to the solubility of the dye.
  • alcohols methanol, ethanol, t-butanol, benzyl alcohol, etc.
  • nitriles acetonitrile, propionitrile, 3-methoxypropionitrile, etc.
  • nitromethane halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.) ), Ethers (diethyl ether, tetrahydrofuran, etc.), dimethyl sulfoxide, amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, esters (ethyl acetate, butyl acetate, etc.), carbonates (diethyl carbonate, ethylene carbonate, propylene carbonate,
  • the dye adsorption method may be appropriately selected according to the viscosity of the dye solution, the coating amount, the material of the transparent conductive substrate, the coating speed, and the like. From the viewpoint of mass production, it is preferable to shorten the time required for dye adsorption after coating as much as possible.
  • the total amount of the dye used is preferably 0.01 to 100 mmol per unit surface area (1 m 2 ) of the transparent conductive substrate. If the amount of dye adsorbed is too small, the sensitizing effect will be insufficient, and if the amount of dye adsorbed is too large, the dye not adhering to the porous semiconductor fine particle layer will float, reducing the sensitizing effect.
  • the porous semiconductor fine particle layer is preferably heat-treated before adsorption.
  • the dye is quickly adsorbed at a temperature of 40 ° C. to 80 ° C. without returning to the normal temperature after the heat treatment. Is preferred.
  • the unadsorbed dye is preferably removed by washing immediately after adsorption. The washing is preferably performed using an organic solvent such as acetonitrile or an alcohol solvent.
  • a colorless compound having properties as a surfactant may be added to the dye solution and co-adsorbed on the porous semiconductor fine particle layer.
  • the coadsorbing compound include steroid compounds having a carboxyl group (eg, cholic acid, chenodeoxycholic acid).
  • the surface of the porous semiconductor fine particle layer may be treated with amines after adsorbing the dye.
  • amines include pyridine, 4-t-butylpyridine, and polyvinylpyridine. When these are liquids, they may be used as they are, or may be used after being dissolved in an organic solvent.
  • the electrolytic solution constituting the electrolytic solution layer of the present invention is characterized by not containing an oxidation-reduction pair (I ⁇ / I 3 ⁇ ) composed of a combination of iodine and iodide.
  • an inorganic salt and an iodide salt which is an ionic liquid for example, an imidazolium salt, a tetraalkylammonium salt, a salt of a compound having a quaternary nitrogen atom as a spiro atom
  • typical electrolyte components will be described.
  • a mixture of an inorganic salt represented by the general formula (1) and an imidazolium salt represented by the general formula (2) can be used.
  • M is an alkali metal, an alkaline earth metal, or ammonium
  • X is Cl, Br, or I.
  • R 21 , R 22 and R 23 are hydrogen or an alkyl group having 1 to 8 carbon atoms
  • X is Cl, Br, or I.
  • an alkali metal halide, alkaline earth metal halide, or ammonium halide represented by the general formula (1) is preferably used.
  • the halogen of the halide chlorine, bromine and iodine are preferably used, bromine and iodine are particularly preferred, and iodine is most preferred.
  • inorganic salts used in the present invention include alkali metal halides (eg, lithium iodide, sodium iodide, potassium iodide, lithium bromide, sodium bromide, potassium bromide, lithium chloride, sodium chloride, etc.). , Alkaline earth metal halides (eg, magnesium iodide, calcium iodide, magnesium bromide, calcium bromide, magnesium chloride, calcium chloride, etc.), ammonium halides (eg, ammonium iodide, ammonium bromide, ammonium chloride) and so on.
  • alkali metal halides eg, lithium iodide, sodium iodide, potassium iodide, lithium bromide, sodium bromide, potassium bromide, lithium chloride, sodium chloride, etc.
  • Alkaline earth metal halides eg, magnesium iodide, calcium iodide, magnesium bromide, calcium bromide, magnesium chloride
  • a halide having a solubility in water of 90 to 220 g / 100 g water (25 ° C.) is preferable because of its excellent solubility in the solvents of the following general formulas (3) and (4), Among these, iodine compounds (eg, potassium iodide, sodium iodide, lithium iodide, magnesium iodide, calcium iodide, ammonium iodide, etc.) are particularly preferable because of high photoelectric conversion efficiency.
  • iodine compounds eg, potassium iodide, sodium iodide, lithium iodide, magnesium iodide, calcium iodide, ammonium iodide, etc.
  • the addition concentration of the halide of the present invention is preferably 0.01 to 3.0 mol / L, more preferably 0.05 to 2.0 mol / L.
  • the ionic liquid used in the present invention a so-called room temperature molten salt that becomes liquid near room temperature (25 ° C.) can be used.
  • the halide salt of alkyl imidazolium represented by the general formula (2) it is preferable to use the iodide salt of an alkyl imidazolium.
  • Specific examples of the alkyl imidazolium iodide salt of the present invention include iodide salts of dimethyl imidazolium, methyl propyl imidazolium, methyl butyl imidazolium, and methyl hexyl imidazolium.
  • the concentration of the ionic liquid used in the present invention is preferably 0.01 to 5.0 mol / L, and preferably 0.05 to 2.0 mol / L in view of high energy conversion efficiency.
  • the solvent of the electrolytic solution of the present invention it has a low viscosity and a high ion mobility, a high dielectric constant and an effective carrier concentration can be increased, or both. What can express is preferable. This is because the dye-sensitized semiconductor thin film layer obtained by adsorbing the dye to the porous semiconductor fine particle layer is used as a photoelectrode, so that the permeability to the porous semiconductor fine particle layer is necessary for improving the photoelectric conversion efficiency. Moreover, it is preferable that it is a high boiling point, especially a boiling point is 200 degreeC or more in order to hold
  • glycol ethers represented by the following general formula (3) are preferable, and dialkyl glycol ethers are more preferable in terms of high energy conversion efficiency.
  • R 31 and R 32 are hydrogen or an alkyl group having 1 to 8 carbon atoms, and n is an integer of 1 to 10.
  • solvents include glycols (eg, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, etc.), monoalkyl glycol ethers (eg, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol).
  • glycols eg, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, etc.
  • monoalkyl glycol ethers eg, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol.
  • Monohexyl ether diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monopentyl ether, diethylene glycol monohexyl ether, diethylene glycol monooctyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether Ter, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, triethylene glycol monopentyl ether, etc.), dialkyl glycol ethers (eg, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol) Diethyl ether, triethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol diethyl ether, etc.). Two or more of these glycol
  • a 5-membered cyclic ether represented by the general formula (4).
  • Specific examples of the 5-membered cyclic ester ( ⁇ -lactone) include ⁇ -butyrolactone.
  • R 41 , R 42 and R 43 are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • a small amount of a reducing agent may be added to the electrolytic solution in order to remove a trace amount of iodine compound ions (I 3 ⁇ ) in the electrolytic solution.
  • the reducing agent include inorganic compounds such as sodium thiosulfate and sodium sulfite, and organic compounds such as thiosalicylic acid, ascorbic acid, hydroquinone, phenidone, and paramethylaminophenol sulfate.
  • the electrolytic solution can further contain other components.
  • other components include benzimidazole compounds represented by the following general formula (5), (iso) thiocyanate ions, and guanidinium ions represented by the general formula (6) described later.
  • a benzimidazole compound is preferably used in combination because the conversion efficiency is further improved.
  • R 51 is an aliphatic group having 1 to 20 carbon atoms
  • R 52 is a hydrogen atom or an aliphatic group having 1 to 6 carbon atoms.
  • the concentration of the benzimidazole compound in the electrolytic solution is preferably 0.01 to 1M, more preferably 0.02 to 0.8M. Most preferred is 0.05 to 0.6M.
  • benzimidazole compound examples include N-methylbenzimidazole, N-ethylbenzimidazole, 1,2-dimethylbenzimidazole, N-butylbenzimidazole, N-hexylbenzimidazole, N-pentylbenzimidazole, N-isopropyl.
  • Benzimidazole N-isobutylbenzimidazole, N-benzylbenzimidazole, N- (2-methoxyethyl) benzimidazole, N- (3-methylbutyl) benzimidazole, 1-butyl-2-methylbenzimidazole, N- (2 -Ethoxyethyl) benzimidazole, N- (2-isopropoxyethyl) benzimidazole and the like.
  • the total concentration of thiocyanate ions and isothiocyanate ions in the electrolyte is 0.00. 01 to 1M is preferable, 0.02 to 0.5M is more preferable, and 0.05 to 0.2M is most preferable.
  • the isothiocyanate ion as a salt.
  • the counter ion of the salt is preferably a guanidinium ion described later.
  • the concentration of guanidinium ions in the electrolytic solution is preferably 0.01 to 1M, more preferably 0.02 to 0.5M. Preferably, 0.05 to 0.2M is most preferable.
  • R 61 , R 62 and R 63 are each independently a hydrogen atom or an aliphatic group having 1 to 20 carbon atoms.
  • the number of carbon atoms in the aliphatic group is preferably 1 to 12, more preferably 1 to 6, and most preferably 1 to 3.
  • a hydrogen atom is preferred over an aliphatic group. That is, unsubstituted guanidinium ions are most preferred.
  • guanidinium ions are preferably added as a salt.
  • the counter ion of the salt is preferably an iodide ion or an isothiocyanate ion, and more preferably an isothiocyanate ion.
  • an anionic surfactant a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant may be added to the electrolytic solution.
  • the electrolytic solution layer is a layer made of an electrolytic solution having a function of replenishing electrons to the oxidant of the dye.
  • the photoelectrode layer preferably has pores in its porous structure filled with an electrolytic solution. Specifically, the ratio of the pores of the photoelectrode layer filled with the electrolyte is preferably 20% by volume or more, and more preferably 50% by volume or more.
  • the thickness of the electrolytic solution layer can be adjusted by, for example, the size of the spacer provided between the photoelectrode layer and the counter electrode layer.
  • the thickness of the portion where the electrolytic solution exists alone outside the photoelectrode is preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, still more preferably 1 ⁇ m to 20 ⁇ m, and most preferably 1 ⁇ m to 15 ⁇ m.
  • the light transmittance of the electrolyte layer is preferably 70% or more (in the optical path length of 30 ⁇ m) when the thickness of the electrolyte layer is 30 ⁇ m at a measurement wavelength of 400 nm, and preferably 80% or more. Is more preferable, and 90% or more is most preferable.
  • the light transmittance preferably has the above-described transmittance in the entire wavelength region of 350 nm to 900 nm.
  • a method of injecting a liquid may be used.
  • an additive such as a coating property improver (leveling agent, etc.) is added to the electrolyte containing a molten salt, and this is applied to a spin coating method, a dip coating method, an air knife coating. It may be applied by a method such as a coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, an extrusion coating method using a hopper, or a multilayer simultaneous coating method, and then heated as necessary.
  • the heating temperature for heating may be appropriately selected depending on the heat resistant temperature of the dye, etc., but is usually preferably 10 ° C. to 150 ° C., more preferably 10 ° C.
  • the heating time depends on the heating temperature and the like, it is preferably about 5 minutes to 72 hours.
  • the obtained electrolyte solution layer is opposed from the boundary of the photoelectrode layer with the transparent conductive layer. It exists between the boundary of the electrode layer and the transparent conductive layer.
  • the thickness of the electrolyte layer (excluding the semiconductor particle layer) is preferably 0.001 ⁇ m to 200 ⁇ m, more preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 0.1 to 50 ⁇ m. Particularly preferred.
  • the thickness of the electrolyte layer (the thickness of the layer substantially containing the electrolyte) is preferably 0.1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 130 ⁇ m, and 2 ⁇ m to 75 ⁇ m. Particularly preferred.
  • the counter electrode layer functions as a positive electrode when the photoelectric conversion element is a photochemical battery.
  • the counter electrode is preferably composed of a transparent substrate and a transparent conductive layer. The details of the transparent substrate and the transparent conductive layer are the same as those of the transparent substrate and the transparent conductive layer of the photoelectrode layer.
  • the catalyst layer of the counter electrode is preferably noble metal particles having a catalytic action.
  • a preferred counter electrode with a catalyst layer can be produced by providing a catalyst layer on the conductive film of the counter electrode.
  • the noble metal particles are not particularly limited as long as they have a catalytic action, but are preferably composed of at least one of metal platinum, metal palladium and metal ruthenium having a relatively high catalytic action.
  • the method for applying the catalyst layer is not particularly limited. For example, these metals may be applied by a vapor deposition method or a sputtering method, and a dispersion obtained by dispersing the metal fine particles in a solvent may be coated or sprayed.
  • the electrode may also be placed on the conductive layer.
  • the dispersion liquid may further contain a binder, and a conductive polymer is preferably used.
  • the conductive polymer is not particularly limited as long as it has conductivity and can disperse the noble metal particles, but higher conductivity is preferable.
  • Examples of such highly conductive polymers include Poly (thiophene-2,5-diyl), Poly (3-butylthiophene-2,5-diyl), Polythiophene such as Poly (3-hexylthiophene-2,5-diyl), poly (2,3-dihydrothieno- [3,4-b] -1,4-dioxin), polyacetylene and its derivatives, polyaniline and its derivatives, polypyrrole And its derivatives, Poly (p-xylenetrahythrophenium choride), Poly [(2-methoxy-5- (2'ethylhexyloxy))-1,4-phenylvinylene]], Poly [(2-methoxy-5- (3 ', 7'-dimethyloxy))-1,4-phenylenevine.
  • a particularly preferable conductive polymer is Poly (2,3-dihydrothieno- [3,4-b] -1,4-dioxin) / Poly (styrenesulfate). (PEDOT / PSS).
  • the catalyst layer can contain another binder from the viewpoint of improving the adhesion to the conductive layer.
  • the binder may be an organic resin or an inorganic material.
  • organic resins include polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, polyacrylic acid, acrylic resin, polyester resin, polyurethane resin, polyolefin resin, polystyrene resin, cellulose and derivatives, butyral resin, alkyd resin, and vinyl chloride resin.
  • Examples of the inorganic substance include silica sol, silicate such as M2O.nSiO2 (M: Li, Na, K), phosphate, silicon oxide, zirconium oxide, titanium oxide, aluminum oxide particle colloid, silicon, zirconium Further, metal alkoxides of titanium and aluminum, partial hydrolysis-condensation polymers thereof, molten frit, water glass, etc. can be used alone or in combination.
  • the catalyst layer for example, silicon, aluminum, zirconium, cerium, titanium, yttrium, zinc, magnesium, indium, Conductive oxide particles such as oxide or composite oxide particles such as tin, antimony, gallium, and ruthenium, tin oxide, fluorine-doped tin oxide, and tin-doped indium oxide can also be included.
  • the thickness of the catalyst layer is preferably 100 nm to 1 ⁇ m, more preferably 50 nm to 5 ⁇ m, and particularly preferably 30 nm to 5 ⁇ m.
  • a functional layer such as a protective layer or an antireflection layer may be provided on one or both of the photoelectrode layer and the counter electrode layer that act as other layer electrodes.
  • a simultaneous multilayer coating method or a sequential coating method can be used.
  • the film type photovoltaic cell of the present invention can be further provided with various layers as desired.
  • a dense semiconductor thin film layer can be provided as an undercoat layer between the conductive plastic support and the porous semiconductor layer.
  • a metal oxide is preferable as the undercoat layer, and examples thereof include TiO2, SnO2, Fe2O3, WO3, ZnO, and Nb2O5.
  • the undercoat layer is, for example, Electrochim. In addition to the spray pyrolysis method described in Acta 40, 643-652 (1995), it can be applied by sputtering.
  • the preferred thickness of the undercoat layer is 5 to 100 nm.
  • the sealing layer of the present invention is provided around the electrolyte layer and has a function of sealing the electrolyte layer.
  • the sealing layer is a spacer for forming an electrolyte layer by adjusting a necessary gap between the photoelectrode substrate and the counter electrode substrate, and a sealing material for bonding the photoelectrode substrate and the counter electrode substrate. It is comprised by.
  • the sealing material of the present invention is not particularly limited as long as it can adhere the photoelectrode substrate and the counter electrode substrate and seal the electrolyte layer. It is preferable that it is excellent in the adhesiveness between board
  • sealing material excellent in adhesiveness, chemical resistance, and wet heat resistance examples include thermoplastic resins, thermosetting resins, and active radiation (light, electron beam) curable resins.
  • examples of the material include an acrylic resin, a fluorine resin, a silicone resin, an olefin resin, and a polyamide resin. From the viewpoint of excellent handleability, a photocurable acrylic resin is preferable.
  • the spacer of the present invention is not particularly limited as long as a necessary gap can be adjusted within a desired range between the photoelectrode substrate and the counter electrode substrate.
  • spherical resin particles, inorganic particles, glass beads and the like can be appropriately selected.
  • the particle size is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and particularly preferably 1 ⁇ m to 20 ⁇ m. This is because the photoelectrode substrate and the counter electrode substrate are not in contact with each other, and the shorter gap is kept uniform, thereby reducing the electrolyte resistance and improving the photoelectric conversion efficiency.
  • the thickness of the sealing layer of the present invention is substantially the same as the thickness of the porous semiconductor fine particle layer. This is to maintain stable power generation efficiency by keeping the gap between the photoelectrode substrate and the counter electrode substrate uniform.
  • the width (thickness) of the sealing layer of the present invention is not particularly limited, but is preferably in the range of 0.5 mm to 5 mm, and more preferably in the range of 0.8 mm to 3 mm. If the width of the sealing layer is too small, sufficient durability against the electrolyte may not be exhibited. If the width of the sealing layer is too large, the element area contributing to power generation in the dye-sensitized solar cell element This is because the effective area with respect to the module area decreases and the effective power generation efficiency may decrease.
  • the surface resistivity of the transparent transmissive electrode made of a transparent conductive film is lowered by disposing a current collection line made of metal (good conductor) on the transparent conductive film.
  • the current collector is preferably provided outside the dye-sensitized photoelectric conversion element composed of a photoelectrode layer, an electrolytic solution layer, and a counter electrode layer separated by a sealing layer. This is to protect the collecting electrode from corrosion by the electrolytic solution.
  • the material of the current collector is not particularly limited as long as it has conductivity, but at least one selected from metal materials having a relatively low resistivity, for example, silver, copper, aluminum, tungsten, nickel, and chromium.
  • the current collector may be formed in a lattice shape on the transparent conductive layer.
  • a method for forming the current collector sputtering, vapor deposition, plating, screen printing, or the like is used.
  • the width of the current collector is 0.5 mm to 5 mm, more preferably 0.7 mm to 3 mm, and the thickness of the current collector is 5 ⁇ m to 50 ⁇ m, more preferably 6 ⁇ m to 20 ⁇ m. In addition to ensuring a sufficient electric conductivity per line cross-sectional area, and an appropriate width for securing a necessary gap between the photoelectrode substrate and the counter electrode substrate in combination with conductive fine particles described later. This is because a thickness is required.
  • the photoelectric conversion element includes a pair of extraction electrodes.
  • a lead material can be attached to the extraction electrode.
  • the material of the extraction electrode is not particularly limited as long as it has conductivity. It is preferably made of a metal material having a relatively low resistivity, for example, at least one metal selected from gold, platinum, silver, copper, aluminum, nickel, zinc, titanium, and chromium, or an alloy thereof.
  • the thickness of the extraction electrode is preferably 50 nm to 100 ⁇ m.
  • the shape of the extraction electrode is not particularly limited. For example, any of metal foil, a metal tape, plate shape, and string shape may be sufficient. A metal tape is preferable from the viewpoint of workability.
  • FIG. 3 is a sectional view of the dye-sensitized solar cell module 3 of the present invention in which six dye-sensitized photoelectric conversion elements of the present invention are connected in series at predetermined intervals, and the lower part of FIG. 3 is a plan view of the sensitive solar cell module 3.
  • FIG. 3 This is an example of the embodiment, and the present invention is not limited to this. As shown in the upper part of FIG.
  • the individual dye-sensitized photoelectric conversion elements 31 are connected in series by an electrode connection portion 34 including a current collecting line 32 and conductive fine particles 33. Further, the electrode connecting portion 34 is partitioned by a non-conductive sealing layer 35. The sealing layer 35 plays a role of sealing the electrolyte solution layer 16 of each dye-sensitized photoelectric conversion element 31.
  • extraction electrodes 36 are provided on the current collector 32 at both ends of the dye-sensitized solar cell module 3. A lead wire is joined to the extraction electrode and connected to a desired electrical device to be used as a power generation source.
  • FIG. 4 shows the series connection module 3 shown in the upper part of FIG. 3 connected in parallel by sharing the electrode 35.
  • the conductive fine particles 33 are conductive fine particles having elasticity obtained by performing gold plating on plastic fine particles having a sharp particle size distribution. Excellent elasticity with the current collector because of its elasticity. Further, the thickness of the electrolyte layer can be controlled by selecting conductive fine particles having a particle size 1 to 1.5 times, preferably 1.1 to 1.3 times the spacer.
  • the electrode connection portion is a combination of the current collector and the conductive fine particles. Specifically, after the current collector is formed, the conductive fine particles including the sealing material are laminated on the current collector, so that the transparent conductive This is to ensure the conductivity between the photoelectrode and the counter electrode due to the formation of the undercoat layer on the conductive layer.
  • FIG. 4 shows two dye-sensitized solar cell modules connected in parallel. By connecting in parallel, there is an advantage that the output current can be controlled sufficiently and sufficiently while maintaining the output voltage.
  • the substrate is designed to reduce its permeability to water vapor and gas, but there is a possibility that output degradation may be seen due to severe environmental conditions. In particular, it is important to provide durability under high temperature and high humidity environmental conditions.
  • These improvement methods can be achieved by making the substrate a substrate having a barrier property against gas or water vapor, or enclosing the dye-sensitized photoelectric conversion element of the present invention in a package having a barrier property.
  • the barrier film preferably used in the present invention, particularly the water vapor barrier property will be described below.
  • the dye-sensitized photoelectric conversion element of the invention preferably has a layer having a barrier property against gas and water vapor outside the substrate. Furthermore, it is preferable that it is packaged or wrapped with a packaging material having a water vapor barrier property. At that time, there may be a space between the dye-sensitized photoelectric conversion element of the present invention and the high barrier packaging material, or the dye-sensitized photoelectric conversion element may be bonded with an adhesive. Furthermore, the dye-sensitized photoelectric conversion element is packaged in a packaging material using a liquid or solid (eg, liquid or gel paraffin, silicon, phosphate ester, aliphatic ester, etc.) that is difficult to pass water vapor or gas. May be.
  • a liquid or solid eg, liquid or gel paraffin, silicon, phosphate ester, aliphatic ester, etc.
  • the preferable water vapor permeability of the substrate or packaging material having a barrier property preferably used in the present invention is 0.1 g / m 2 / day or less in an environment of 40 ° C. and a relative humidity of 90% (90% RH), more preferably. Is 0.01 g / m 2 / day or less, more preferably 0.0005 g / m 2 / day or less, and particularly preferably 0.00001 g / m 2 / day or less. Further, even when the environmental temperature is 60 ° C. and 90% RH, the water vapor permeability of the substrate or packaging material having a barrier property is more preferably 0.01 g / m 2 / day or less, and still more preferably.
  • the oxygen permeability of the substrate or packaging material having a barrier property is preferably about 0.001 g / m 2 / day or less, more preferably 0.00001 g / m 2 / day in an environment of 25 ° C. and 0% RH. preferable.
  • the substrate or packaging material having barrier properties for the dye-sensitized solar cell of the present invention is a substrate or packaging material that is permeable and has a barrier property, and its transmittance is preferably 50% or more, more preferably 70% or more, still more preferably 85% or more, and particularly preferably. 90% or more.
  • substrate or packaging material which has the said characteristic with a barrier property is not specifically limited in the structure and material, If it has this characteristic, it will not specifically limit.
  • a preferred substrate or packaging material having a barrier film of the present invention is preferably a film in which a barrier layer having low water vapor and gas permeability is provided on a plastic support.
  • the gas barrier film include those obtained by vapor-depositing silicon oxide and aluminum oxide (Japanese Patent Publication No. Sho 53-12953, Japanese Patent Laid-Open Publication No. 58-217344), and those having an organic-inorganic hybrid coating layer (Japanese Patent Laid-Open Publication No. 2000-323273, Japanese Patent Laid-Open Publication No. 2004). 25732), those having an inorganic layered compound (Japanese Patent Laid-Open No.
  • FIG. 5 shows the relationship between the area (S) of the porous oxide semiconductor layer containing a photosensitizing dye (having a rectangular shape) and the ratio of the length of the long side to the short side of the rectangle (L).
  • Example 1 Preparation of electrolytic solution [Electrolytic solution formulation 1] Add 2.6 g of N-methylbenzimidazole, 3.3 g of potassium iodide, and 6.6 g of 1,3-butylmethylimidazolium iodide into a 50 mL volumetric flask, and add ⁇ -butyrolactone to a total volume of 50 mL. It was. Electrolyte formulation containing no redox couple (I ⁇ / I 3 ⁇ ) consisting of a combination of iodine and iodide after stirring for 1 hour by vibration with an ultrasonic cleaner and then standing in the dark for at least 24 hours 1 was prepared.
  • I ⁇ / I 3 ⁇ no redox couple
  • Electrode formulation 2 By further adding 0.5 g of iodine to the composition of the electrolyte formulation 1, an electrolyte solution containing an oxidation-reduction pair (I ⁇ / I 3 ⁇ ) composed of a combination of iodine and iodide is prepared. 2.
  • the undercoat layer was set on a coating coater with the current collector forming surface of the transparent conductive substrate facing up, and an organic PC-600 solution (manufactured by Matsumoto Fine Chemical) diluted to 1.6% was swept with a wire bar (10 mm). / Second), dried at room temperature for 10 minutes, and further dried by heating at 150 ° C. for 10 minutes.
  • laser treatment was performed at intervals according to the photoelectrode cell width to form insulating lines.
  • a mask film (bottom: PC-542PA, manufactured by Fujimori Kogyo Co., Ltd., top: NBO-0424, manufactured by Fujimori Kogyo Co., Ltd.) with a protective film coated with an adhesive layer on a polyester film is used to form a porous semiconductor fine particle layer.
  • a part (length: 60 mm, width 5 mm) was punched out.
  • the processed mask film was bonded to the current collector forming surface of the transparent conductive substrate on which the undercoat layer was formed so that air bubbles would not enter.
  • a high-pressure mercury lamp (rated lamp power: 400 W) is placed at a distance of 10 cm from the mask bonding surface, and immediately after irradiation with electromagnetic waves for 1 minute, a binder-free titanium oxide paste that does not contain polymer components (PECC-C01-06, Pexel Technologies) Co., Ltd.) was applied with a Baker type applicator. After the paste is dried at room temperature for 10 minutes, the protective film on the upper side of the mask film (NBO-0424, manufactured by Fujimori Kogyo Co., Ltd.) is peeled off and dried in a hot air circulation oven at 150 ° C. for 5 minutes. A fine particle layer (length: 60 mm, width 5 mm) was formed.
  • the transparent conductive substrate on which the porous semiconductor fine particle layer (length: 60 mm, width 5 mm) was formed was immersed in the prepared dye solution (40 ° C.), and the dye was adsorbed while gently stirring. After 90 minutes, the dye-adsorbed titanium oxide film was taken out from the dye-adsorption container, washed with ethanol and dried, and the remaining mask film was peeled and removed to produce a photoelectrode.
  • the titanium oxide pattern (porous semiconductor fine particle layer forming portion) and the platinum pattern (catalyst layer forming portion) are Matched structure.
  • the bias voltage was measured by stepping in the reverse direction from 0.8 V to 0 V, and the conversion efficiency of each rectangular cell was obtained using the average value of the forward and reverse measurements as photocurrent data.
  • the conversion efficiency at 500 lux was obtained by the same measurement method as described above.
  • the conversion efficiency of the dye-sensitized photoelectric conversion element varies depending on the light amount (500 lux and 100,000 lux) and the shape of the porous semiconductor fine particle layer constituting the photoelectrode.
  • the conversion efficiency is low light amount (500 lux) and high light amount (100,000 LUX). It becomes high in any.
  • This is a dye-sensitized photoelectric conversion element that has a small dependency on the photoelectric conversion efficiency of the light amount change, in other words, the conversion efficiency is constant and the conversion efficiency is high even if the light amount change greatly changes.
  • the dye-sensitized photoelectric conversion element having a small dependency of the change in the light amount on the conversion efficiency has a redox pair (I ⁇ ) in which the electrolytic solution constituting the electrolytic solution layer is a combination of iodine and iodide. / I 3 ⁇ ) can be achieved (contrast between Examples 2 and 6 and Comparative Examples 26 and 27).

Abstract

[Problem] To provide a dye sensitization type solar cell module with high photoelectric conversion efficiency in a range spreading from low illumination (500 lux) to high illumination (100,000 lux), even when the photoelectric conversion element has a small power generation area (300 mm2 to 600 mm2). [Solution] A dye sensitization type photoelectric conversion element that has a transparent base material, a transparent electrode layer, a porous oxide semiconductor layer that includes a photosensitized dye, an electrolyte layer, an opposing electrode and a transparent base material laminated in this order and that is characterized in that the planar shape of the porous oxide semiconductor layer that includes a photosensitized dye is a rectangle, and the area (S) of the rectangle is 300 mm2 to 600 mm2, and the ratio (L) of the long side to the short side of the rectangle is included in a region that satisfies formulas (1) and (2).

Description

[規則37.2に基づきISAが決定した発明の名称] 色素増感型光電変換素子および色素増感型太陽電池モジュール[Name of invention determined by ISA based on Rule 37.2] Dye-sensitized photoelectric conversion element and dye-sensitized solar cell module
 本願発明は、低照度(500lux)から高照度(10万lux)に亘る広範囲で光電変換効率が高い色素増感型太陽電池モジュールおよびその製造方法に関する。 The present invention relates to a dye-sensitized solar cell module having high photoelectric conversion efficiency over a wide range from low illuminance (500 lux) to high illuminance (100,000 lux) and a method for producing the same.
近年、太陽エネルギーを電力に変換する光電変換素子として、固体のpn接合型の太陽電池が活発に研究されている。固体接合型太陽電池は、シリコン結晶やアモルファスシリコン薄膜、非シリコン系の化合物半導体の多層薄膜を用いる。
しかし、これらの太陽電池は、高温もしくは真空下で製造するために、プラントのコストが高く、エネルギーペイバックタイムが長いという欠点がある。
In recent years, solid pn junction solar cells have been actively studied as photoelectric conversion elements that convert solar energy into electric power. The solid junction solar cell uses a silicon crystal, an amorphous silicon thin film, or a multilayer thin film of a non-silicon compound semiconductor.
However, since these solar cells are manufactured at a high temperature or under vacuum, there are disadvantages that the cost of the plant is high and the energy payback time is long.
これらの従来の太陽電池を置き換える次世代太陽電池として、低温でより低コストで製造が可能な有機系太陽電池の開発が期待されている。
なかでも特に注目されるのは大気中で低コストの量産が可能な色素増感型太陽電池であり、色素増感された多孔質半導体膜を用いる高効率の光電変換方法が提案されている(特許文献1)。色素増感型太陽電池は、固体接合型太陽電池における固体(半導体)‐固体(半導体)接合の代りに、固体(半導体)‐液体(電解液)接合を採用する湿式太陽電池である。
As a next-generation solar cell that replaces these conventional solar cells, development of an organic solar cell that can be manufactured at a lower temperature and at a lower cost is expected.
Of particular interest is a dye-sensitized solar cell that can be mass-produced at low cost in the atmosphere, and a highly efficient photoelectric conversion method using a dye-sensitized porous semiconductor film has been proposed ( Patent Document 1). A dye-sensitized solar cell is a wet solar cell that employs a solid (semiconductor) -liquid (electrolyte) junction instead of a solid (semiconductor) -solid (semiconductor) junction in a solid junction solar cell.
色素増感型太陽電池は、透明導電性基板に形成された二酸化チタンナノ粒子を代表とする金属酸化物半導体ナノ粒子からなる多孔質半導体微粒子層に増感色素を担持させた光作用極基板(光電極)と、導電性基板上に白金またはカーボンの対極層を形成した対極基板(対極)とを、互いに対向させて配置し、この基板間に電解質溶液を満たし、この電解質溶液を封止した構造からなる。 A dye-sensitized solar cell is a photo-active electrode substrate (light-sensitive substrate) in which a sensitizing dye is supported on a porous semiconductor fine particle layer made of metal oxide semiconductor nanoparticles typified by titanium dioxide nanoparticles formed on a transparent conductive substrate. Electrode) and a counter electrode substrate (counter electrode) in which a platinum or carbon counter electrode layer is formed on a conductive substrate, are arranged to face each other, the electrolyte solution is filled between the substrates, and the electrolyte solution is sealed Consists of.
この色素増感型太陽電池に対して透明な電極側から光を照射すると、増感色素が光を吸収して電子を発生し、発生した電子が光電極から外部電気回路を通って対極に移動し、移動した電子が電解液中のイオンにより運ばれて光電極に戻る。このような一連の電子移動の繰り返しにより色素増感型太陽電池から継続的にエネルギーを取り出すことができる。 When this dye-sensitized solar cell is irradiated with light from the transparent electrode side, the sensitizing dye absorbs light and generates electrons, and the generated electrons move from the photoelectrode to the counter electrode through an external electric circuit. Then, the moved electrons are carried by the ions in the electrolytic solution and return to the photoelectrode. Energy can be continuously extracted from the dye-sensitized solar cell by repeating such a series of electron transfer.
ところで、1つの色素増感型太陽電池ユニット(以下、本願発明において、「色素増感型光電変換素子」という。)から得られる電流は、増感色素を担持させた多孔質半導体微粒子層の面積(以下、本願発明において、「発電面積」という。)に比例して増加する。一方で、発電面積を大きくすることで、透明電極の面内方向の抵抗が増大し、内部直列抵抗も比例して増大する。結果として、光電変換時の電流電圧特性における曲線因子(FF:フィルファクター)、さらには短絡電流が低下し、光電変換効率は低くなる。 By the way, the current obtained from one dye-sensitized solar cell unit (hereinafter referred to as “dye-sensitized photoelectric conversion element” in the present invention) is the area of the porous semiconductor fine particle layer carrying the sensitizing dye. (Hereinafter referred to as “power generation area” in the present invention). On the other hand, by increasing the power generation area, the in-plane resistance of the transparent electrode increases, and the internal series resistance also increases proportionally. As a result, the fill factor (FF: fill factor) in the current-voltage characteristics at the time of photoelectric conversion, and further the short-circuit current are reduced, and the photoelectric conversion efficiency is lowered.
 色素増感型光電変換素子の光電変換効率を高めるため手段として、入射する外部光を有効に活用するために、多孔質半導体微粒子層に散乱粒子を配合することが提案されている(特許文献2,3)。また、光電極における集電電極の電気抵抗をさげるために、多孔質半導体微粒子層に導電性多孔膜からなる集電体を設けること(特許文献4)、透明基材上に設けた細線メッシュからなる集電線上に多孔質半導体微粒子層を形成すること(特許文献5)が提案されている。 As a means for increasing the photoelectric conversion efficiency of the dye-sensitized photoelectric conversion element, it has been proposed to mix scattering particles with a porous semiconductor fine particle layer in order to effectively utilize incident external light (Patent Document 2). , 3). Further, in order to reduce the electrical resistance of the current collecting electrode in the photoelectrode, a current collector made of a conductive porous film is provided in the porous semiconductor fine particle layer (Patent Document 4), and from a fine wire mesh provided on the transparent substrate. It has been proposed to form a porous semiconductor fine particle layer on a current collector (Patent Document 5).
米国特許4927721号明細書US Pat. No. 4,927,721 特開2002-289274号公報JP 2002-289274 A 特開2005-322445号公報JP 2005-322445 A 特開2003-187883号公報JP 2003-187883 A 特開2010-73416号公報JP 2010-73416 A
しかしながら、上述した技術は、色素増感型太陽電池の大型化、大面積化を前提としたものである。色素増感型太陽電池、特に携帯を目的として軽量化されたフィルム型色素増感型太陽電池では、低照度(500lux)の屋内から高照度(10万lux)の屋外での使用を前提として光電変換効率を考える必要がある。この場合、小型化した色素増感型太陽電池において、発電面積の平面形状をどのように設計すれば、低照度から高照度まで光電変換効率が向上するかについては、明らかにされていない。したがって、低照度の屋内から高照度の屋外に亘る広範囲で安定した光電変換効率を維持する色素増感型太陽電池を開発する必要がある。また、複数の色素増感型光電変換素子を直列または並列に接続して集積化した太陽電池モジュール(以下、本発明において、「色素増感型太陽電池モジュール」という。)を提供することができれば、実用的な電圧と電池寿命が実現できる。本願発明はかかる課題を解決するためになされたものである。 However, the above-described technique is based on the premise of increasing the size and area of the dye-sensitized solar cell. Dye-sensitized solar cells, especially film-type dye-sensitized solar cells that have been reduced in weight for portable purposes, are expected to be used on the assumption that they are used indoors at low illuminance (500 lux) or outdoors at high illuminance (100,000 lux). It is necessary to consider the conversion efficiency. In this case, in a miniaturized dye-sensitized solar cell, it has not been clarified how the planar shape of the power generation area is designed to improve the photoelectric conversion efficiency from low illuminance to high illuminance. Therefore, it is necessary to develop a dye-sensitized solar cell that maintains stable photoelectric conversion efficiency over a wide range from indoors with low illuminance to outdoors with high illuminance. In addition, a solar cell module in which a plurality of dye-sensitized photoelectric conversion elements are integrated in series or in parallel (hereinafter referred to as “dye-sensitized solar cell module” in the present invention) can be provided. Practical voltage and battery life can be realized. The present invention has been made to solve such a problem.
本願発明は、下記(1)乃至(3)の態様で実施できる。 The present invention can be implemented in the following aspects (1) to (3).
(態様1) 透明基材と、前記透明基材上に形成された透明電極層と、前記透明電極層上に形成された下塗り層と、前記下塗り層上に形成された増感色素を担持させた多孔質半導体微粒子層と、前記多孔質半導体微粒子層に対向する基材と、前記対向基材の前記多孔質半導体微粒子層側の表面上に形成された電極層と、前記電極層上に形成された触媒層と、前記多孔質半導体微粒子層と前記触媒層の間に設けられた電解液層と、前記電解液層の周囲に設けられた封止層とを有する色素増感型光電変換素子において、
前記増感色素を担持させた多孔質半導体微粒子層の平面形状が矩形であって、
前記矩形の面積(S)が300mm2~600mm2で、かつ前記矩形の短辺に対する長辺の長さの比(L)が、下記式(1)および(2)を満足する領域に含まれることを特徴とする色素増感型光電変換素子である。
Figure JPOXMLDOC01-appb-M000002
式(1)および式(2)において、Sは、増感色素を含む多孔質酸化物半導体層の矩形面積(mm2)、Lは、増感色素を含む多孔質酸化物半導体層の矩形の短辺に対する長辺の長さの比である。
増感色素を担持させた多孔質半導体微粒子層の平面形状と発電面積をかかる範囲内とすることで、色素増感型光電変換素子の単位面積当たりの内部抵抗が最も小さくすることができ、光電変換効率を最大にできるからである。
(Aspect 1) A transparent substrate, a transparent electrode layer formed on the transparent substrate, an undercoat layer formed on the transparent electrode layer, and a sensitizing dye formed on the undercoat layer are supported. The porous semiconductor fine particle layer, the base material facing the porous semiconductor fine particle layer, the electrode layer formed on the surface of the opposing base material on the porous semiconductor fine particle layer side, and formed on the electrode layer A dye-sensitized photoelectric conversion element having a formed catalyst layer, an electrolyte layer provided between the porous semiconductor fine particle layer and the catalyst layer, and a sealing layer provided around the electrolyte layer In
The planar shape of the porous semiconductor fine particle layer carrying the sensitizing dye is rectangular,
The area (S) of the rectangle is 300 mm 2 to 600 mm 2 , and the ratio (L) of the length of the long side to the short side of the rectangle is included in the region satisfying the following expressions (1) and (2). This is a dye-sensitized photoelectric conversion element characterized by the above.
Figure JPOXMLDOC01-appb-M000002
In the formulas (1) and (2), S is a rectangular area (mm 2 ) of the porous oxide semiconductor layer containing the sensitizing dye, and L is a rectangular shape of the porous oxide semiconductor layer containing the sensitizing dye. The ratio of the length of the long side to the short side.
By setting the planar shape and the power generation area of the porous semiconductor fine particle layer carrying the sensitizing dye within this range, the internal resistance per unit area of the dye-sensitized photoelectric conversion element can be minimized, This is because the conversion efficiency can be maximized.
(態様2) 前記多孔質半導体微粒子層に対向する基材と、前記対向基材の前記多孔質半導体微粒子層側の表面上に形成された電極層と、前記電極層上に形成された触媒層のいずれもが透明材料から形成されることを特徴とする前記(態様1)に記載の色素増感型光電変換素子である。
受光面を光電極側と対極側の両面とすることで、光電変換効率が高くなるからである。
(Aspect 2) A base material facing the porous semiconductor fine particle layer, an electrode layer formed on the surface of the opposing base material on the porous semiconductor fine particle layer side, and a catalyst layer formed on the electrode layer Any of these are formed from a transparent material, The dye-sensitized photoelectric conversion device according to (Aspect 1).
This is because the photoelectric conversion efficiency is increased by setting the light receiving surfaces to both the photoelectrode side and the counter electrode side.
(態様3) 前記電解液層を構成する電解液が、ヨウ素とヨウ化物との組み合わせからなる酸化還元対(I-/I3 -)を含まないことを特徴とする前記(態様1)または(態様2)に記載の色素増感型光電変換素子である。
電解液中に電子をトラップする酸化還元対を含まないことで、低照度であっても、色素増感型光電変換素子に対して透明な電極側から光を照射すると、増感色素が光を吸収して電子を発生し、発生した電子が光電極から外部電気回路を通って対極に移動し、移動した電子が電解液中のイオンにより運ばれて光電極に戻るという一連の電子移動の繰り返しにより色素増感型光電変換素子から継続的にエネルギーを取り出すことができるからである。また、ヨウ素を使用すると、電解液が三ヨウ化物イオン(I3-)の形成により着色され、光エネルギー変換効率が低下すること、ヨウ素の酸化腐食反応によって、電池の劣化が進むからである。
(Aspect 3) The above (Aspect 1) or (Aspect 3), wherein the electrolytic solution constituting the electrolytic solution layer does not contain a redox pair (I / I 3 ) composed of a combination of iodine and iodide. It is a dye-sensitized photoelectric conversion element as described in aspect 2).
By not including an oxidation-reduction pair that traps electrons in the electrolyte, the sensitizing dye emits light when light is irradiated from the transparent electrode side to the dye-sensitized photoelectric conversion element even at low illumination. A series of repeated electron movements in which electrons are absorbed to generate electrons, the generated electrons move from the photoelectrode through the external electrical circuit to the counter electrode, and the moved electrons are transported by the ions in the electrolyte and return to the photoelectrode. This is because energy can be continuously extracted from the dye-sensitized photoelectric conversion element. In addition, when iodine is used, the electrolytic solution is colored by the formation of triiodide ions (I3 ), the light energy conversion efficiency is lowered, and the battery is further deteriorated by the oxidation corrosion reaction of iodine.
(態様4) 前記(態様1)乃至(態様3)に記載した色素増感型光電変換素子を並列または直列に接続したことを特徴とする色素増感型太陽電池モジュールである。
本願発明の色素増感型光電変換素子を用いた多様な集積モジュールを提供することで、実用的な電圧と電池寿命が実現できるからである。
(態様5) 前記色素増感型光電変換素子を直列に接続した色素増感型太陽電池モジュールが、集電線と導電微粒子からなる電極接続部を介して、前記色素増感型光電変化素子を直列に接続したものであることを特徴とする(態様4)に記載する色素増感型太陽電池モジュールである。
導電性微粒子を用いることで、色素増感型太陽電池モジュールの厚みを制御でき、集電線と重ねることで集電効果が高くなるからである。
(Aspect 4) A dye-sensitized solar cell module comprising the dye-sensitized photoelectric conversion elements described in (Aspect 1) to (Aspect 3) connected in parallel or in series.
This is because a practical voltage and battery life can be realized by providing various integrated modules using the dye-sensitized photoelectric conversion element of the present invention.
(Aspect 5) The dye-sensitized solar cell module in which the dye-sensitized photoelectric conversion elements are connected in series is connected in series with the dye-sensitized photoelectric change element through an electrode connection portion made of a current collector and conductive fine particles. The dye-sensitized solar cell module according to (Aspect 4), which is connected to
This is because the thickness of the dye-sensitized solar cell module can be controlled by using the conductive fine particles, and the current collection effect is enhanced by overlapping with the current collector.
本願発明によって、発電面積が小さい(300mm2~600mm2)光電変換素子であっても、低照度(500lux)から高照度(10万lux)に亘る広範囲で光電変換効率が高い色素増感型太陽電池モジュールが得られる。 According to the present invention, even in a photoelectric conversion element having a small power generation area (300 mm 2 to 600 mm 2 ), a dye-sensitized solar with high photoelectric conversion efficiency over a wide range from low illuminance (500 lux) to high illuminance (100,000 lux). A battery module is obtained.
本願発明の色素増感型光電変換素子の1例の構造を示す断面図である。It is sectional drawing which shows the structure of one example of the dye-sensitized photoelectric conversion element of this invention. 本願発明の色素増感型光電変換素子の半導体微粒子層を形成するため、透明導電性基板にマスクフィルムを貼合した1例を示す平面図(上段)及び断面図(下段)である。It is the top view (upper stage) and sectional drawing (lower stage) which show an example which bonded the mask film to the transparent conductive substrate in order to form the semiconductor fine particle layer of the dye-sensitized photoelectric conversion element of this invention. 本願発明の色素増感型太陽電池モジュールの1例を示す断面図(上段)及び平面図(下段)である。It is sectional drawing (upper stage) and top view (lower stage) which show an example of the dye-sensitized solar cell module of this invention. 本願発明の色素増感型太陽電池モジュールの他の1例を示す平面図である。It is a top view which shows another example of the dye-sensitized solar cell module of this invention. 光増感色素を含む多孔質酸化物半導体層の面積(S)と短辺に対する長辺の長さの比(L)との関係を示すグラフである。It is a graph which shows the relationship between the area (S) of the porous oxide semiconductor layer containing a photosensitizing dye, and ratio (L) of the length of the long side with respect to a short side.
以下、本願発明の色素増感型光電変換素子、色素増感型太陽電池モジュールについて説明する。 Hereinafter, the dye-sensitized photoelectric conversion element and the dye-sensitized solar cell module of the present invention will be described.
1.色素増感型光電変換素子の構造
図1は、本願発明の色素増感型光電変換素子の構造例を示す断面図である。色素増感型光電変換素子1は、透明基板11上に透明導電層12、下塗り層13、増感色素を担持させた多孔質半導体微粒子層14をこの順に積層した光電極層15と、透明基板11上に透明導電層12、触媒層17をこの順に積層した対向電極層18、および光電極層15と対向電極層18の間に設けられた電解液層16、および電解液層を囲む封止層19、集電線20、端子21から構成されている。
以下、光電極層15、電解液層16、対向電極層18、封止層19の順で説明する。
1. Structure of Dye-Sensitized Photoelectric Conversion Device FIG. 1 is a cross-sectional view showing a structural example of the dye-sensitized photoelectric conversion device of the present invention. The dye-sensitized photoelectric conversion element 1 includes a transparent electrode 11 having a transparent conductive layer 12, an undercoat layer 13, and a porous semiconductor fine particle layer 14 carrying a sensitizing dye laminated on a transparent substrate 11 in this order, and a transparent substrate. 11, a transparent conductive layer 12 and a catalyst layer 17 laminated in this order, a counter electrode layer 18, an electrolyte layer 16 provided between the photoelectrode layer 15 and the counter electrode layer 18, and a sealing surrounding the electrolyte layer It is composed of a layer 19, a collector line 20, and terminals 21.
Hereinafter, the photoelectrode layer 15, the electrolytic solution layer 16, the counter electrode layer 18, and the sealing layer 19 will be described in this order.
[1] 光電極層
(1) プラスチック基板
本願発明に用いるプラスチック基板材料としては、無着色で透明性が高く、耐熱性が高く、耐薬品性ならびにガス遮断性に優れ、かつ低コストの材料が好ましく選ばれる。この観点から、好ましい材料としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)などが用いられる。これらのなかでも化学的安定性とコストの点で特に好ましいものは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)であり、もっとも好ましいものはポリエチレンナフタレート(PEN)である。
[1] Photoelectrode layer (1) Plastic substrate The plastic substrate material used in the present invention is a material that is uncolored, highly transparent, highly heat resistant, excellent in chemical resistance and gas barrier properties, and low in cost. Preferably selected. From this viewpoint, preferable materials include, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), polysulfone ( PSF), polyester sulfone (PES), polyetherimide (PEI), transparent polyimide (PI) and the like are used. Among these, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable in terms of chemical stability and cost, and most preferable is polyethylene naphthalate (PEN).
(2) 透明導電層
本願発明に用いる透明導電層としては、金属(例、白金、金、銀、銅、アルミニウム、インジウム、チタン)、炭素、導電性金属酸化物(例、酸化スズ、酸化亜鉛)または複合金属酸化物(例、インジウム‐スズ酸化物、インジウム-亜鉛酸化物)から形成できる。この中で高い光学的透明性をもつ点で導電性金属酸化物が好ましく、インジウム‐スズ複合酸化物(ITO)、酸化亜鉛、インジウム‐亜鉛酸化物(IZO)が特に好ましい。最も好ましいものは、耐熱性と化学安定性に優れる、インジウム‐スズ複合酸化物(ITO)やインジウム‐亜鉛酸化物(IZO)である。
透明導電層の表面抵抗値は100Ω/□以下が好ましく、50Ω/□以下がより好ましく、30Ω/□以下がさらに好ましく、10Ω/□以下がさらにまた好ましく、5Ω/□以下が最も好ましい。透明基板上に透明電極層を設けた光電極基板の光透過率(測定波長:500nm)は、60%以上が好ましく、75%以上であることがさらに好ましく、80%以上が最も好ましい。
(2) Transparent conductive layer The transparent conductive layer used in the present invention includes metals (eg, platinum, gold, silver, copper, aluminum, indium, titanium), carbon, conductive metal oxides (eg, tin oxide, zinc oxide). ) Or composite metal oxides (eg, indium-tin oxide, indium-zinc oxide). Of these, conductive metal oxides are preferable in view of high optical transparency, and indium-tin composite oxide (ITO), zinc oxide, and indium-zinc oxide (IZO) are particularly preferable. Most preferred are indium-tin composite oxide (ITO) and indium-zinc oxide (IZO), which are excellent in heat resistance and chemical stability.
The surface resistance value of the transparent conductive layer is preferably 100Ω / □ or less, more preferably 50Ω / □ or less, further preferably 30Ω / □ or less, still more preferably 10Ω / □ or less, and most preferably 5Ω / □ or less. The light transmittance (measurement wavelength: 500 nm) of the photoelectrode substrate provided with a transparent electrode layer on the transparent substrate is preferably 60% or more, more preferably 75% or more, and most preferably 80% or more.
低い表面抵抗値を達成するためには、金属を用いることも好ましいが、透明でないという問題は金属メッシュ構造からなる透明導電性層を形成することにより解決できる。その際にはこの導電層には集電のための補助リードをパターニングなどにより配置させることができ、低抵抗の金属材料(例、銅、銀、アルミニウム、白金、金、チタン、ニッケル)によって形成される。補助リードを含めた表面の抵抗値は好ましくは1Ω/□以下に制御することが好ましい。このような補助リードのパターンは透明基板に蒸着、スパッタリングなどにより形成し、さらにその上に酸化スズ、ITO膜、IZO膜などからなる透明導電層を設けることも好ましい。 In order to achieve a low surface resistance value, it is preferable to use a metal, but the problem of being not transparent can be solved by forming a transparent conductive layer having a metal mesh structure. In this case, an auxiliary lead for current collection can be placed on this conductive layer by patterning, etc., and it is made of a low-resistance metal material (eg, copper, silver, aluminum, platinum, gold, titanium, nickel). Is done. The resistance value of the surface including the auxiliary lead is preferably controlled to 1Ω / □ or less. Such an auxiliary lead pattern is preferably formed on a transparent substrate by vapor deposition, sputtering or the like, and a transparent conductive layer made of tin oxide, ITO film, IZO film or the like is further provided thereon.
(3) 下塗り層
下塗り層は、電解液層が液体である場合には、電解液層が透明導電層と接触した構造となるため、透明導電層から電解液層へ電子が漏れ出す逆電子移動と呼ばれる内部短絡現象が発生して、光の照射と無関係な逆電流が発生して光電変換効率が低下することを防ぐ役割と、多孔質半導体微粒子層の導電性基板への密着性を向上させる役割を持つものである。
(3) Undercoat layer When the electrolyte layer is a liquid, the undercoat layer has a structure in which the electrolyte layer is in contact with the transparent conductive layer. Therefore, reverse electron transfer in which electrons leak from the transparent conductive layer to the electrolyte layer. The internal short-circuit phenomenon called the occurrence of reverse current unrelated to light irradiation and the prevention of the decrease in photoelectric conversion efficiency, and the adhesion of the porous semiconductor fine particle layer to the conductive substrate is improved It has a role.
下塗り層の素材としては、高抵抗な半導体および絶縁物質であれば、特に限定はされない。例えば、酸化チタン、酸化ニオブ、酸化タングステン等がある。また、下塗り層を形成する方法としては、上記素材を透明導電層に直接スパッタする方法、あるいは上記素材を溶媒に溶解した溶液、金属酸化物の前駆体である金属水酸化物を溶解した溶液、または有機金属化合物を、水を含む混合溶媒に溶解した金属水酸化物を含む溶液を、基板と導電層からなる導電性基板上に塗布、乾燥し、必要に応じて焼結する方法がある。 The material for the undercoat layer is not particularly limited as long as it is a high resistance semiconductor and insulating material. For example, there are titanium oxide, niobium oxide, tungsten oxide, and the like. In addition, as a method of forming the undercoat layer, a method of directly sputtering the material on the transparent conductive layer, a solution in which the material is dissolved in a solvent, a solution in which a metal hydroxide that is a precursor of a metal oxide is dissolved, Alternatively, there is a method in which a solution containing a metal hydroxide obtained by dissolving an organometallic compound in a mixed solvent containing water is applied onto a conductive substrate composed of a substrate and a conductive layer, dried, and sintered as necessary.
本願発明の下塗り層は、有機チタンオリゴマー及びその加水分解生成物により形成されることが好ましい。本願発明に使用する有機チタンオリゴマーは、チタンアルコキシド(Ti-OR)化合物やチタンキレート化合物を縮合させ、多量体構造(-Ti-O-Ti-)を分子内に有する化合物である。チタンをオリゴマー化することで、多量体構造(-Ti-O-Ti-)を分子内に有する面構造を持たせることで、隙間なく透明導電性基板表面を密に被膜化できる。
なお、本願発明は有機チタンオリゴマーに限定されるものではなく、多量体構造(-M-O-M-)を分子内に有する有機金属オリゴマー(Mは金属)であれば、同様の効果を得られる。
The undercoat layer of the present invention is preferably formed of an organic titanium oligomer and a hydrolysis product thereof. The organic titanium oligomer used in the present invention is a compound having a multimeric structure (—Ti—O—Ti—) in the molecule by condensing a titanium alkoxide (Ti—OR) compound or a titanium chelate compound. By oligomerizing titanium, a surface structure having a multimeric structure (—Ti—O—Ti—) in the molecule can be formed, so that the surface of the transparent conductive substrate can be densely formed without gaps.
The present invention is not limited to organic titanium oligomers, and the same effect can be obtained as long as it is an organometallic oligomer (M is a metal) having a multimeric structure (-MOMM) in the molecule. It is done.
下塗り層を導電性基板に形成した場合に、チタンモノマーによる製膜では亀裂が生じる条件下においても、良好な下塗り層を形成することができる。
また、従来下塗り層に用いられている金属アルコキシドは、反応性が高く容易に加水分解され塗膜表面の性状を制御することが難しい。しかし、本発明に使用した有機チタンオリゴマーは、加水分解速度が遅く、塗膜表面の性状が安定しており、金属酸化物からなる半導体多孔質層を重層する場合に下塗り層の塗膜表面性状が長時間に亘って安定であるという長所がある。
When the undercoat layer is formed on a conductive substrate, a good undercoat layer can be formed even under conditions in which cracking occurs in film formation with a titanium monomer.
Further, metal alkoxides conventionally used for undercoat layers are highly reactive and easily hydrolyzed, making it difficult to control the properties of the coating film surface. However, the organotitanium oligomer used in the present invention has a slow hydrolysis rate, a stable coating surface property, and a coating layer surface property of the undercoat layer when a semiconductor porous layer made of a metal oxide is overlaid. Has the advantage of being stable over a long period of time.
本願発明に使用する有機チタンオリゴマーは、テトラアルコキシチタンを実質的に溶媒で希釈することなく、水又は水と水溶性溶媒との混合液を添加して加水分解処理する方法で製造される(特開2008-156280)。
また、本願発明に使用する有機チタンオリゴマーは、塗膜形成性、塗膜密着性(接着性)を改良するために、チタン化合物オリゴマーに対し、分子中に1個以上のアルコキシ基を有するシリコン化合物を反応させた構造又は混合させた組成を有する複合化合物(特開2008-143990)であってもよい。
The organotitanium oligomer used in the present invention is produced by a method of hydrolysis by adding water or a mixture of water and a water-soluble solvent without substantially diluting tetraalkoxytitanium with a solvent (special feature). Open 2008-156280).
In addition, the organic titanium oligomer used in the present invention is a silicon compound having one or more alkoxy groups in the molecule with respect to the titanium compound oligomer in order to improve the coating film formability and coating film adhesion (adhesiveness). Alternatively, it may be a composite compound (Japanese Patent Laid-Open No. 2008-143990) having a structure obtained by reacting or a mixture.
導電性基板上に下塗り層を形成するためには、有機チタンオリゴマー溶液を導電性基板上に塗布し、加熱を行うことにより乾燥焼成して膜を形成するゾル-ゲル法を用いることが好ましい。溶媒としては、ブタノール等のアルコール類、ヘキサン、トルエン等の炭化水素類及びその混合物であって、乾燥速度の観点から沸点が100℃前後のものが好ましい。 In order to form the undercoat layer on the conductive substrate, it is preferable to use a sol-gel method in which an organic titanium oligomer solution is applied on the conductive substrate, dried and baked by heating to form a film. The solvent is preferably an alcohol such as butanol, a hydrocarbon such as hexane or toluene, or a mixture thereof having a boiling point of about 100 ° C. from the viewpoint of drying speed.
また、塗布方法としては、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等が挙げられる。 Examples of the coating method include a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, and a die coating method.
本発明の光電極製造方法では、下塗り層と後述する金属酸化物多孔質半導体層との密着性、特に、電解液中での剥離を防ぐため、下塗り層表面のぬれ張力が50mN/m未満で、金属酸化物半導体微粒子を重層する。本願発明のように、下塗り層を有機チタンオリゴマーから形成すると、金属アルコキシドモノマーから形成した場合に比べ、塗膜表面のぬれ張力の経時変化が緩慢であるため、下塗り層に金属酸化物多孔質半導体層を逐次または連続して重層することが容易となる。 In the photoelectrode manufacturing method of the present invention, in order to prevent adhesion between the undercoat layer and the metal oxide porous semiconductor layer, which will be described later, in particular, peeling in the electrolytic solution, the wetting tension on the surface of the undercoat layer is less than 50 mN / m. The metal oxide semiconductor fine particles are overlaid. When the undercoat layer is formed from an organotitanium oligomer as in the present invention, the change in the wetting tension of the coating surface over time is slower than when formed from a metal alkoxide monomer. It becomes easy to layer the layers sequentially or continuously.
(4) 金属酸化物半導体ナノ粒子
 本願発明の金属酸化物半導体ナノ粒子分散液に含まれる金属酸化物半導体ナノ粒子は、公知の方法を用いて製造することができる。製造方法としては、例えば「ゾル-ゲル法の科学」アグネ承風社(1998年)に記載されているゾル-ゲル法や、金属塩化物を無機酸水素塩中で高温加水分解により酸化物を作製する方法や、金属化合物を気相中、高温で熱分解して超微粒子とする気相噴霧熱分解法などにより調製できる。これらの方法によって作る二酸化チタン(TiO2)の超微粒子やナノ粒子については、「微粒子工学体系第2巻(応用技術)」柳田博明監修(2002年)に解説されている。金属酸化物半導体材料としては、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ストロンチウム、インジウム、セリウム、バナジウム、ニオブ、タンタル、カドミウム、鉛、アンチモン、ビスマスの酸化物がある。半導体材料としては、n型の無機半導体材料がある。具体的には、TiO2、ZnO、Nb2O3、SnO2、WO3、Si、CdS、CdSe、V2O5、ZnS、ZnSe、KTaO3、FeS2、PbSなどが好ましく、TiO2、ZnO、Nb2O3、SnO2、WO3がより好ましく、二酸化チタン(TiO2)が特に好ましい。
(4) Metal oxide semiconductor nanoparticles The metal oxide semiconductor nanoparticles contained in the metal oxide semiconductor nanoparticle dispersion of the present invention can be produced using a known method. As a production method, for example, the sol-gel method described in “Science of Sol-Gel Process”, Agne Jofu Co., Ltd. (1998), or metal chloride is converted to an oxide by high-temperature hydrolysis in an inorganic oxyhydrogen salt. It can be prepared by a production method, a vapor-phase spray pyrolysis method in which a metal compound is thermally decomposed at a high temperature in a gas phase to form ultrafine particles. The ultrafine particles and nanoparticles of titanium dioxide (TiO2) produced by these methods are explained in “Particle Engineering System Vol. 2 (Applied Technology)” supervised by Hiroaki Yanagida (2002). Examples of the metal oxide semiconductor material include oxides of titanium, tin, zinc, iron, tungsten, zirconium, strontium, indium, cerium, vanadium, niobium, tantalum, cadmium, lead, antimony, and bismuth. As the semiconductor material, there is an n-type inorganic semiconductor material. Specifically, TiO2, ZnO, Nb2O3, SnO2, WO3, Si, CdS, CdSe, V2O5, ZnS, ZnSe, KTaO3, FeS2, PbS, etc. are preferable, TiO2, ZnO, Nb2O3, SnO2, and WO3 are more preferable, and dioxide dioxide. Titanium (TiO2) is particularly preferred.
二酸化チタンの製造方法は、四塩化チタンや硫酸チタニルを加水分解する液相法と四塩化チタンと酸素または酸素含有ガスとを混合燃焼する気相法とがある。液相法はアナターゼを主相として得ることができるが、ゾルまたはスラリー状となり、粉末として使用するためには乾燥が必要であるが、乾燥により凝集(二次粒子化)が進むという問題がある。一方、気相法は、溶媒を使用しないため液相法に比べ分散性に優れ、合成時の温度が高く、結晶性に優れるという特徴がある。
ところで、二酸化チタンナノ粒子の結晶形には、アナターゼ型、ブルッカイト型、ルチル型がある。酸化チタンを気相法により製造するとき、最も低温で生成し安定な酸化チタンはアナターゼ型であり、熱処理を加えるに従い、ブルッカイト型、ルチル型へと変換する。結晶構造はX線回折法による回折パターンの測定や透過型電子顕微鏡観察による結晶格子像の検出により判断できる。また、二酸化チタンナノ粒子の平均粒子径は、レーザー光散乱法による光相関法や走査型電子顕微鏡観察法による粒径分布測定から算出できる。
As a method for producing titanium dioxide, there are a liquid phase method in which titanium tetrachloride and titanyl sulfate are hydrolyzed and a gas phase method in which titanium tetrachloride and oxygen or an oxygen-containing gas are mixed and burned. In the liquid phase method, anatase can be obtained as the main phase, but it becomes a sol or slurry, and drying is necessary to use it as a powder, but there is a problem that aggregation (secondary particle formation) proceeds by drying. . On the other hand, the vapor phase method is characterized by excellent dispersibility, high temperature during synthesis, and excellent crystallinity compared to the liquid phase method because no solvent is used.
By the way, there are anatase type, brookite type and rutile type in the crystal form of titanium dioxide nanoparticles. When titanium oxide is produced by a vapor phase method, titanium oxide that is stable at the lowest temperature is anatase type, and is converted into a brookite type or a rutile type as heat treatment is applied. The crystal structure can be determined by measuring a diffraction pattern by an X-ray diffraction method or detecting a crystal lattice image by observation with a transmission electron microscope. Moreover, the average particle diameter of the titanium dioxide nanoparticles can be calculated from a particle size distribution measurement by a light correlation method using a laser light scattering method or a scanning electron microscope observation method.
本願発明に用いる一次粒子の平均粒子径が40~70nmの結晶性二酸化チタンナノ粒子は、気相法により得られたものであり、ルチル型結晶とアナターゼ型結晶の混合物であり、ルチル化率は40%以下である。ルチル化率が40%を超えると光触媒としての機能が低下し、光起電力が低下するため色素増感型太陽電池として十分な性能を得られないからである。二酸化チタンナノ粒子の形態は、無定形、球形、多面体、繊維状、ナノチューブ状などの種々の形態であってもよいが、多面体またはナノチューブ状の形態が好ましく、多面体の形態がより好ましい。分散安定性の観点から金属酸化物半導体ナノ粒子分散液に含まれる固形分濃度は0.1~25wt%であり、0.5~20wt%が好ましく、0.5~15wt%がより好ましい。 The crystalline titanium dioxide nanoparticles having an average primary particle size of 40 to 70 nm used in the present invention are those obtained by a gas phase method, and are a mixture of rutile type crystals and anatase type crystals. % Or less. This is because when the rutile ratio exceeds 40%, the function as a photocatalyst is lowered and the photovoltaic power is lowered, so that sufficient performance as a dye-sensitized solar cell cannot be obtained. The form of the titanium dioxide nanoparticles may be various forms such as amorphous, spherical, polyhedral, fibrous, and nanotube-like, but a polyhedral or nanotube-like form is preferable, and a polyhedral form is more preferable. From the viewpoint of dispersion stability, the solid content concentration contained in the metal oxide semiconductor nanoparticle dispersion is 0.1 to 25 wt%, preferably 0.5 to 20 wt%, and more preferably 0.5 to 15 wt%.
一方、本願発明に用いる一次粒子の平均粒子径が10~30nmの金属酸化物半導体ナノ粒子は、液相法により得られたブルッカイト型結晶を含む二酸化チタンナノ粒子を分散した酸性ゾル水溶液として調製されている。ブルッカイト型の酸化チタンは、色素との結合性に優れ、ルチル型やアナターゼ型酸化チタンに比べて高い光電変換効率が得られるからである。液相法により製造したブルッカイト型酸化チタン、特に四塩化チタンまたは三塩化チタンの加水分解により製造されたブルッカイト型酸化チタンが好ましい。多孔質半導体微粒子層を形成する金属酸化物半導体ナノ粒子分散液として使用するため分散ゾルの状態で問題がなく、分散状態も安定しており塗膜性に優れるからである。分散性を高めるため水媒体は酸性に調製してあり、pHは1~6、好ましくは、pHは3~5である。分散安定性の観点から金属酸化物半導体ナノ粒子分散液に含まれる固形分濃度は1~15wt%であり、2~12wt%が好ましく、2~10wt%がより好ましい。 On the other hand, metal oxide semiconductor nanoparticles having an average primary particle size of 10 to 30 nm used in the present invention are prepared as an acidic sol aqueous solution in which titanium dioxide nanoparticles containing brookite crystals obtained by a liquid phase method are dispersed. Yes. This is because brookite-type titanium oxide is excellent in binding property to a dye and can provide higher photoelectric conversion efficiency than rutile or anatase-type titanium oxide. Brookite-type titanium oxide produced by a liquid phase method, particularly brookite-type titanium oxide produced by hydrolysis of titanium tetrachloride or titanium trichloride is preferred. This is because it is used as a metal oxide semiconductor nanoparticle dispersion for forming a porous semiconductor fine particle layer, so that there is no problem in the state of the dispersion sol, the dispersion state is stable, and the coating property is excellent. In order to enhance dispersibility, the aqueous medium is adjusted to be acidic, and the pH is 1 to 6, preferably 3 to 5. From the viewpoint of dispersion stability, the solid content concentration contained in the metal oxide semiconductor nanoparticle dispersion is 1 to 15 wt%, preferably 2 to 12 wt%, and more preferably 2 to 10 wt%.
(5) 金属酸化物半導体ナノ粒子分散液
本願発明は、金属酸化物半導体ナノ粒子分散液を導電性基板上に塗布し、加熱処理して多孔質半導体微粒子層を形成する色素増感型光電変換素子用光電極に関するものである。プラスチック基板を用いる本発明では、低温製膜法を採用するため、分散液の製膜性及びレべリング性を高める目的で添加される樹脂やラテックス等のバインダー材料を含まない分散液組成が好ましい。本願発明の金属酸化物半導体ナノ粒子分散液は、金属酸化物半導体ナノ粒子を水と炭素数5以下のアルコールの混合物からなる溶媒に分散させたものであり、粘性のある乳白色の液体である。
(5) Metal Oxide Semiconductor Nanoparticle Dispersion The present invention is a dye-sensitized photoelectric conversion in which a metal oxide semiconductor nanoparticle dispersion is applied on a conductive substrate and heat-treated to form a porous semiconductor fine particle layer. The present invention relates to a device photoelectrode. In the present invention using a plastic substrate, since a low-temperature film forming method is adopted, a dispersion composition not containing a binder material such as resin or latex added for the purpose of improving the film forming property and leveling property of the dispersion is preferable. . The metal oxide semiconductor nanoparticle dispersion of the present invention is a viscous milky white liquid in which metal oxide semiconductor nanoparticles are dispersed in a solvent composed of a mixture of water and an alcohol having 5 or less carbon atoms.
本願発明の金属酸化物半導体ナノ粒子分散液に使用する溶媒は、エタノールを主成分とする親水性有機溶媒と水との混合溶媒である。親水性溶媒として、他の炭素数3~5のアルコールを選択することができ、t-ブタノール、2-ブタノールなどを添加することができる。本願発明の金属酸化物半導体ナノ粒子分散液には、前記アルコールに加えて水が分散溶媒として用いられる。これは、金属酸化物半導体ナノ粒子の分散安定性を維持し、分散液の粘度を適性に維持する目的で添加するものである。 The solvent used for the metal oxide semiconductor nanoparticle dispersion of the present invention is a mixed solvent of water and a hydrophilic organic solvent mainly composed of ethanol. As the hydrophilic solvent, other alcohols having 3 to 5 carbon atoms can be selected, and t-butanol, 2-butanol and the like can be added. In the metal oxide semiconductor nanoparticle dispersion of the present invention, water is used as a dispersion solvent in addition to the alcohol. This is added for the purpose of maintaining the dispersion stability of the metal oxide semiconductor nanoparticles and maintaining the viscosity of the dispersion at an appropriate level.
本願発明は、分散液中に一次粒子の平均粒子径が10~30nmの金属酸化物半導体ナノ粒子と一次粒子の平均粒子径が40~70nmの金属酸化物半導体ナノ粒子の両方が含まれることが特徴である。一次粒子の平均粒径の範囲が重複しない金属酸化物半導体ナノ粒子を単純に混合することで、比表面積が大きく増感色素の担持量が多く、電解液層を構成する電解液が多孔質半導体微粒子層の細部にまで拡散できる、多孔質構造の多孔質半導体微粒子層を容易に製造できる。したがって、特開2002-324591号公報に提案されているような金属酸化物半導体ナノ粒子と溶媒を必須成分とする金属酸化物半導体ナノ粒子分散液を、分散液組成を連続または不連続に変化させつつ噴霧する必要はない。また、平均粒径が大きく異なる粒子の混合により、乾燥時の体積収縮歪を緩和できる。さらに、一次粒子の平均粒子径が10~30nmの金属酸化物半導体ナノ粒子の脱水縮合により、乾燥後形成される多孔質半導体微粒子層の構造がしっかりしたものになる。
本願発明の一次粒子の平均粒子径が40~70nmの金属酸化物半導体ナノ粒子を溶媒に分散させる方法には、ペイントコンディショナー、ホモジナイザー、超音波攪拌装置などが用いられ、自転/公転併用式のミキシングコンディショナーが好適に用いられる。一次粒子の平均粒子径が40~70nmの金属酸化物半導体ナノ粒子を溶媒に分散させた後、一次粒子の平均粒子径が10~30nmの金属酸化物半導体ナノ粒子を分散した酸性ゾル水溶液を添加して、金属酸化物半導体ナノ粒子分散液を調製する。分散安定性と塗膜形成性の観点から分散液に含まれる金属酸化物半導体ナノ粒子全体の固形分濃度は5~30wt%であり、8~25wt%が好ましく、8~20wt%がより好ましい。
According to the present invention, the dispersion includes both metal oxide semiconductor nanoparticles having an average primary particle diameter of 10 to 30 nm and metal oxide semiconductor nanoparticles having an average primary particle diameter of 40 to 70 nm. It is a feature. By simply mixing metal oxide semiconductor nanoparticles that do not overlap in the average particle size range of the primary particles, the specific surface area is large and the amount of sensitizing dye supported is large, and the electrolyte that forms the electrolyte layer is a porous semiconductor. A porous semiconductor fine particle layer having a porous structure capable of diffusing to details of the fine particle layer can be easily produced. Therefore, a metal oxide semiconductor nanoparticle dispersion containing metal oxide semiconductor nanoparticles and a solvent as essential components as proposed in Japanese Patent Application Laid-Open No. 2002-324591 is obtained by changing the composition of the dispersion continuously or discontinuously. There is no need to spray. Moreover, the volume shrinkage distortion at the time of drying can be relieve | moderated by mixing the particle | grains from which an average particle diameter differs greatly. Furthermore, the structure of the porous semiconductor fine particle layer formed after drying is solidified by dehydration condensation of the metal oxide semiconductor nanoparticles having an average primary particle size of 10 to 30 nm.
In the method of dispersing metal oxide semiconductor nanoparticles having an average primary particle size of 40 to 70 nm in the present invention in a solvent, a paint conditioner, a homogenizer, an ultrasonic stirring device, or the like is used. A conditioner is preferably used. After the metal oxide semiconductor nanoparticles having an average primary particle size of 40 to 70 nm are dispersed in a solvent, an aqueous acidic sol solution in which metal oxide semiconductor nanoparticles having an average primary particle size of 10 to 30 nm are dispersed is added. Then, a metal oxide semiconductor nanoparticle dispersion is prepared. From the viewpoint of dispersion stability and coating film formability, the solid content concentration of the entire metal oxide semiconductor nanoparticles contained in the dispersion is 5 to 30 wt%, preferably 8 to 25 wt%, more preferably 8 to 20 wt%.
(6) 多孔質半導体微粒子層
図2上段は本願発明のマスクフィルムを貼合した透明導電性基板2の平面図であり、図2下段は本願発明のマスクフィルムを貼合した透明導電性基板2の断面図である。なお、図2は、本願発明の色素増感型光電変換素子を6列並べて製造する場合の態様である。
図2に示すように、本願発明の多孔質半導体微粒子層は、下塗り層を形成した透明導電性基板21上に、マスクフィルム22を貼合し、前記貼合したマスクフィルムの開放部分23上に金属酸化物半導体ナノ粒子分散液を塗布することにより形成する。前記マスクフィルムの開放部分は、本願発明の半導体微粒子層のひな型としての役割を持つ。マスクフィルムの開放部分23の平面形状は4つの角が丸みを持つ矩形であり、そのサイズは形成する多孔質半導体微粒子層の平面形状により決まる。
(6) Porous semiconductor fine particle layer The upper part of FIG. 2 is a plan view of the transparent conductive substrate 2 to which the mask film of the present invention is bonded, and the lower part of FIG. 2 is the transparent conductive substrate 2 to which the mask film of the present invention is bonded. FIG. FIG. 2 shows an embodiment in which the dye-sensitized photoelectric conversion elements of the present invention are manufactured in 6 rows.
As shown in FIG. 2, the porous semiconductor fine particle layer of the present invention is obtained by laminating a mask film 22 on a transparent conductive substrate 21 on which an undercoat layer is formed, and on an open portion 23 of the bonded mask film. It forms by apply | coating a metal oxide semiconductor nanoparticle dispersion liquid. The open part of the mask film serves as a model of the semiconductor fine particle layer of the present invention. The planar shape of the open portion 23 of the mask film is a rectangle having four rounded corners, and its size is determined by the planar shape of the porous semiconductor fine particle layer to be formed.
本願発明のマスクフィルムは、その開放部分が本願発明の半導体微粒子層のひな型としての役割を持つと同時に、下塗り層を形成した透明導電性基板に容易に貼りつけることができ、金属酸化物半導体ナノ粒子分散液を塗布した後には、容易に剥がすことができる粘着層を有する粘着フィルムであれば、特に限定されるものではない。具体的には、基材フィルムの一方の面に微粘着剤層と剥離フィルム、もう一方の面に帯電防止層、防汚層を設けた積層フィルムであり、液晶表示装置に用いる偏光フィルムや位相差フィルムの表面保護フィルムに用いられている積層粘着フィルムである。使用時に剥離フィルムを剥離して、下塗り層を形成した透明導電性基板にマスクフィルムを貼合する。
ただし、半導体微粒子層を形成するために塗布した金属酸化物半導体ナノ粒子分散液を加熱・乾燥処理する必要があることから、基材フィルムは、下塗り層を形成した透明導電性基板と同程度の熱収縮率であることが必要である。具体的には、加熱条件(150℃、30min)下での熱収縮率(MD・TD)は、0.5%以下、より好ましくは、0.2%以下である。
The mask film of the present invention has an open portion serving as a template for the semiconductor fine particle layer of the present invention, and at the same time can be easily attached to a transparent conductive substrate on which an undercoat layer is formed. There is no particular limitation as long as it is an adhesive film having an adhesive layer that can be easily peeled off after the particle dispersion is applied. Specifically, it is a laminated film in which a slightly adhesive layer and a release film are provided on one side of a base film, and an antistatic layer and an antifouling layer are provided on the other side. It is a laminated adhesive film used for a surface protective film of a phase difference film. A peeling film is peeled at the time of use, and a mask film is bonded to the transparent conductive substrate in which the undercoat layer was formed.
However, since it is necessary to heat and dry the coated metal oxide semiconductor nanoparticle dispersion to form the semiconductor fine particle layer, the base film is of the same level as the transparent conductive substrate on which the undercoat layer is formed. It must be heat shrinkage. Specifically, the thermal contraction rate (MD · TD) under heating conditions (150 ° C., 30 min) is 0.5% or less, more preferably 0.2% or less.
本願発明のマスクフィルムは、粘着力の異なる複数のマスクフィルムを積層して用いることができる。多孔質半導体微粒子層を形成後に最上層を剥がし、色素吸着時に下塗り層を形成した透明導電性基板を保護した後、マスクフィルムを剥がし取ることができるからである。 The mask film of the present invention can be used by laminating a plurality of mask films having different adhesive forces. This is because, after the porous semiconductor fine particle layer is formed, the uppermost layer is peeled off, and the mask film can be peeled off after protecting the transparent conductive substrate on which the undercoat layer is formed at the time of dye adsorption.
多孔質半導体微粒子層の平面形状は、矩形であって、前記矩形の面積(S)が300mm2~600mm2で、かつ前記矩形の短辺に対する長辺の長さの比(L)が、下記式(1)および(2)を満足する領域に含まれる。多孔質半導体微粒子層の平面形状をかかる範囲内とすることで、色素増感型光電変換素子の単位面積当たりの内部抵抗が最も小さくすることができ、変換効率を最も高くすることができるからである。
Figure JPOXMLDOC01-appb-M000003
式(1)および式(2)において、Sは、増感色素を含む多孔質酸化物半導体層の矩形面積(mm2)、Lは、増感色素を含む多孔質酸化物半導体層の矩形の短辺に対する長辺の長さの比である。
The planar shape of the porous semiconductor fine particle layer is a rectangle, the area (S) of the rectangle is 300 mm 2 to 600 mm 2 , and the ratio (L) of the length of the long side to the short side of the rectangle is It is included in the region satisfying the expressions (1) and (2). By setting the planar shape of the porous semiconductor fine particle layer within this range, the internal resistance per unit area of the dye-sensitized photoelectric conversion element can be minimized, and the conversion efficiency can be maximized. is there.
Figure JPOXMLDOC01-appb-M000003
In the formulas (1) and (2), S is a rectangular area (mm 2 ) of the porous oxide semiconductor layer containing the sensitizing dye, and L is a rectangular shape of the porous oxide semiconductor layer containing the sensitizing dye. The ratio of the length of the long side to the short side.
金属酸化物半導体ナノ粒子分散液の塗布方法としては、公知の方法、例えば、スクリーン印刷法、ドロップキャスト法、スピンコート法、エアスプレイ法等を用いることができる。形成される多孔質半導体微粒子層の均一性の観点からは、噴霧装置を用いたエアスプレイ法が好ましい。 As a coating method of the metal oxide semiconductor nanoparticle dispersion liquid, a known method such as a screen printing method, a drop casting method, a spin coating method, an air spray method, or the like can be used. From the viewpoint of the uniformity of the formed porous semiconductor fine particle layer, an air spray method using a spray device is preferred.
本願発明の金属酸化物半導体ナノ粒子分散液の噴霧に用いる噴霧装置は、金属酸化物半導体ナノ粒子分散液を200μm以下、より好ましくは50μm以下、さらに好ましくは30μ以下の霧状にすることができる装置を用いる。例えば、エアスプレイ装置、インクジェット装置、超音波噴霧装置がある。
ここで、エアスプレイ装置とは、圧縮空気の膨張で生じる気圧差を利用して、液体を一定方向に飛散させる装置をいう。一定幅の塗膜を均一に形成する観点からは、二流体スリットノズルを用いることが好ましい。インクジェット装置とは、噴霧する液体を満たした微細ノズルを体積収縮または昇温することにより液体を微細な粒として放出する装置をいう。超音波噴霧装置とは、液体に超音波を照射することにより、液体を霧状に飛散させる装置をいう。これらの装置は、製造する多孔質構造の多孔質半導体微粒子層の大きさ、言い換えれば、光電極のサイズ、あるいは、分散液の固形分濃度により任意に選択できる。
The spraying apparatus used for spraying the metal oxide semiconductor nanoparticle dispersion of the present invention can form the metal oxide semiconductor nanoparticle dispersion in a mist of 200 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less. Use the device. For example, there are an air spray device, an inkjet device, and an ultrasonic spray device.
Here, the air spray device refers to a device that scatters liquid in a certain direction using a pressure difference generated by expansion of compressed air. From the viewpoint of uniformly forming a coating film having a certain width, it is preferable to use a two-fluid slit nozzle. An ink jet device refers to a device that discharges liquid as fine particles by volume shrinking or increasing the temperature of a fine nozzle filled with a liquid to be sprayed. The ultrasonic spray device refers to a device that scatters liquid in a mist form by irradiating the liquid with ultrasonic waves. These apparatuses can be arbitrarily selected depending on the size of the porous semiconductor fine particle layer to be produced, in other words, the size of the photoelectrode or the solid content concentration of the dispersion.
透明導電性基板上に金属酸化物半導体ナノ粒子分散液の噴霧により形成される多孔質半導体微粒子層の厚みは、透過光の吸収損失を考慮して、30μm未満が好ましく、20μ未満がより好ましい。多孔質半導体微粒子層の厚みが、かかる範囲より小さいと均一な厚みの層を形成できず、かかる範囲より大きいと多孔質半導体微粒子層の抵抗が高くなるからである。形成される多孔質半導体微粒子層の空孔率(膜内を空孔が占める体積の割合)は、50~85%であることが好ましく、65~85%でることがより好ましい。
加熱処理温度は、導電性基板の耐熱性の範囲内、例えば、透明導電性基板がプラスチック基板である場合は、低温製膜法(例、200℃以下、好ましくは150℃以下)で多孔質半導体微粒子層を形成することができる。
The thickness of the porous semiconductor fine particle layer formed by spraying the metal oxide semiconductor nanoparticle dispersion on the transparent conductive substrate is preferably less than 30 μm and more preferably less than 20 μm in consideration of absorption loss of transmitted light. This is because if the thickness of the porous semiconductor fine particle layer is smaller than the above range, a layer having a uniform thickness cannot be formed, and if it is larger than this range, the resistance of the porous semiconductor fine particle layer becomes high. The porosity of the formed porous semiconductor fine particle layer (ratio of the volume occupied by the pores in the film) is preferably 50 to 85%, more preferably 65 to 85%.
The heat treatment temperature is within the range of heat resistance of the conductive substrate. For example, when the transparent conductive substrate is a plastic substrate, the porous semiconductor is formed by a low temperature film formation method (eg, 200 ° C. or lower, preferably 150 ° C. or lower). A fine particle layer can be formed.
(7) 増感色素
多孔質半導体微粒子層の増感に用いる色素分子としては、電気化学の分野で色素分子を用いる半導体電極の分光増感にこれまで用いられてきた各種の有機系、金属錯体系の増感材料が用いられる。また、光電変換の波長領域をできるだけ広くし、かつ、変換効率を上げるために、二種類以上の色素を混合して用いてもよく、光源の波長域と強度分布に合わせて、混合する色素とその混合割合を選択してもよい。
増感色素は、有機色素(例、シアニン色素、メロシアニン色素、オキソノール色素、キサンテン色素、スクワリリウム色素、ポリメチン色素、クマリン色素、リボフラビン色素、ペリレン色素)および金属錯体色素(例、フタロシアニン錯体、ポルフィリン錯体)を含む。金属錯体色素を構成する金属の例は、ルテニウムおよびマグネシウムを含む。そのほか「機能材料」、2003年6月号、第5~18ページに記載されている合成色素と天然色素や、「ジャーナル・オブ・フィジカル・ケミストリー(J.Phys.Chem.)」、B.第107巻、第597ページ(2003年)に記載されるクマリンを中心とする有機色素を用いることもできる。
(7) As a dye molecule used for sensitization of the sensitizing dye porous semiconductor fine particle layer, various organic and metal complexes conventionally used for spectral sensitization of semiconductor electrodes using dye molecules in the field of electrochemistry are used. Systematic sensitizing materials are used. Also, in order to make the wavelength range of photoelectric conversion as wide as possible and increase the conversion efficiency, two or more kinds of dyes may be used in combination, and the dyes to be mixed in accordance with the wavelength range and intensity distribution of the light source The mixing ratio may be selected.
Sensitizing dyes include organic dyes (eg, cyanine dyes, merocyanine dyes, oxonol dyes, xanthene dyes, squarylium dyes, polymethine dyes, coumarin dyes, riboflavin dyes, perylene dyes) and metal complex dyes (eg, phthalocyanine complexes, porphyrin complexes) including. Examples of the metal constituting the metal complex dye include ruthenium and magnesium. In addition, synthetic dyes and natural dyes described in “Functional Materials”, June 2003, pages 5 to 18, “Journal of Physical Chemistry”, B.I. An organic dye mainly composed of coumarin described in Vol. 107, page 597 (2003) can also be used.
(8) 多孔質半導体微粒子層への色素の吸着
多孔質半導体微粒子層に色素を吸着させる方法としては、色素の溶液中によく乾燥した多孔質半導体微粒子層を有する導電性基板を浸漬する方法、あるいは色素の溶液を多孔質半導体微粒子層に塗布する方法を用いることができる。浸漬法の場合は、色素の吸着は室温で行ってもよいし、特開平7-249790号公報に記載されているように加熱還流して行ってもよい。塗布法としては、ワイヤーバー法、スライドホッパー法、エクストルージョン法、カーテン法、スピン法、スプレー法等の塗布方法や、凸版、オフセット、グラビア、スクリーン印刷等の印刷方法が利用できる。
(8) Adsorption of the dye to the porous semiconductor fine particle layer As a method of adsorbing the dye to the porous semiconductor fine particle layer, a method of immersing a conductive substrate having a well-dried porous semiconductor fine particle layer in a dye solution, Alternatively, a method of applying a dye solution to the porous semiconductor fine particle layer can be used. In the case of the immersion method, the dye may be adsorbed at room temperature, or may be carried out by heating and refluxing as described in JP-A-7-249790. As the coating method, a coating method such as a wire bar method, a slide hopper method, an extrusion method, a curtain method, a spin method, or a spray method, or a printing method such as letterpress, offset, gravure, or screen printing can be used.
色素溶液に用いる溶媒は色素の溶解性に応じて適宜選択できる。例えばアルコール類(メタノール、エタノール、t‐ブタノール、ベンジルアルコール等)、ニトリル類(アセトニトリル、プロピオニトリル、3‐メトキシプロピオニトリル等)、ニトロメタン、ハロゲン化炭化水素(ジクロロメタン、ジクロロエタン、クロロホルム、クロロベンゼン等)、エーテル類(ジエチルエーテル、テトラヒドロフラン等)、ジメチルスルホキシド、アミド類(N,N‐ジメチルホルムアミド、N,N‐ジメチルアセタミド等)、N‐メチルピロリドン、1,3‐ジメチルイミダゾリジノン、3‐メチルオキサゾリジノン、エステル類(酢酸エチル、酢酸ブチル等)、炭酸エステル類(炭酸ジエチル、炭酸エチレン、炭酸プロピレン等)、ケトン類(アセトン、2‐ブタノン、シクロヘキサノン等)、炭化水素(へキサン、石油エーテル、ベンゼン、トルエン等)、これらの混合溶媒等が使用できる。 The solvent used for the dye solution can be appropriately selected according to the solubility of the dye. For example, alcohols (methanol, ethanol, t-butanol, benzyl alcohol, etc.), nitriles (acetonitrile, propionitrile, 3-methoxypropionitrile, etc.), nitromethane, halogenated hydrocarbons (dichloromethane, dichloroethane, chloroform, chlorobenzene, etc.) ), Ethers (diethyl ether, tetrahydrofuran, etc.), dimethyl sulfoxide, amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), N-methylpyrrolidone, 1,3-dimethylimidazolidinone, 3-methyloxazolidinone, esters (ethyl acetate, butyl acetate, etc.), carbonates (diethyl carbonate, ethylene carbonate, propylene carbonate, etc.), ketones (acetone, 2-butanone, cyclohexanone, etc.), hydrocarbons ( Hexane, petroleum ether, benzene, toluene, etc.), a mixture of these solvents can be used.
色素の吸着方法では、色素溶液の粘度、塗布量、透明導電性基板の材質、塗布速度等に応じて適宜選択すればよい。量産化の観点からは、塗布後の色素吸着に要する時間をなるべく短くすることが好ましい。色素の全使用量は、透明導電性基板の単位表面積(1m)当たり0.01~100mmolとすることが好ましい。色素の吸着量が少なすぎると増感効果が不十分となり、また色素の吸着量が多すぎると多孔質半導体微粒子層に付着していない色素が浮遊し、増感効果を低減させる。色素の吸着量を増大させるために吸着前に多孔質半導体微粒子層を加熱処理するのが好ましい。また、加熱処理の後に多孔質半導体微粒子層表面に水が吸着するのを避けるため、加熱処理後には常温に戻さず多孔質半導体微粒子層の温度が40℃~80℃で素早く色素を吸着させるのが好ましい。未吸着の色素は、吸着後速やかに洗浄により除去することが好ましい。洗浄は、アセトニトリルやアルコール系溶剤等の有機溶媒を用いて行うのが好ましい。 The dye adsorption method may be appropriately selected according to the viscosity of the dye solution, the coating amount, the material of the transparent conductive substrate, the coating speed, and the like. From the viewpoint of mass production, it is preferable to shorten the time required for dye adsorption after coating as much as possible. The total amount of the dye used is preferably 0.01 to 100 mmol per unit surface area (1 m 2 ) of the transparent conductive substrate. If the amount of dye adsorbed is too small, the sensitizing effect will be insufficient, and if the amount of dye adsorbed is too large, the dye not adhering to the porous semiconductor fine particle layer will float, reducing the sensitizing effect. In order to increase the amount of dye adsorbed, the porous semiconductor fine particle layer is preferably heat-treated before adsorption. Also, in order to avoid water adsorption on the surface of the porous semiconductor fine particle layer after the heat treatment, the dye is quickly adsorbed at a temperature of 40 ° C. to 80 ° C. without returning to the normal temperature after the heat treatment. Is preferred. The unadsorbed dye is preferably removed by washing immediately after adsorption. The washing is preferably performed using an organic solvent such as acetonitrile or an alcohol solvent.
会合のような色素同士の相互作用を低減する目的で、界面活性剤としての性質を持つ無色の化合物を色素溶液に添加し、多孔質半導体微粒子層に共吸着させてもよい。共吸着させる化合物としてはカルボキシル基を有するステロイド化合物(例 コール酸、ケノデオキシコール酸)が挙げられる。また、紫外線吸収剤を併用してもよい。また、余分な色素の除去を促進する目的で、色素を吸着した後にアミン類を用いて多孔質半導体微粒子層の表面を処理してもよい。アミン類としてはピリジン、4-t-ブチルピリジン、ポリビニルピリジン等が挙げられる。これらが液体の場合はそのまま用いてもよく、有機溶媒に溶解して用いてもよい。 For the purpose of reducing the interaction between dyes such as association, a colorless compound having properties as a surfactant may be added to the dye solution and co-adsorbed on the porous semiconductor fine particle layer. Examples of the coadsorbing compound include steroid compounds having a carboxyl group (eg, cholic acid, chenodeoxycholic acid). Moreover, you may use a ultraviolet absorber together. Further, for the purpose of promoting the removal of excess dye, the surface of the porous semiconductor fine particle layer may be treated with amines after adsorbing the dye. Examples of amines include pyridine, 4-t-butylpyridine, and polyvinylpyridine. When these are liquids, they may be used as they are, or may be used after being dissolved in an organic solvent.
[2] 電解液層
本願発明の電解液層を構成する電解液は、ヨウ素とヨウ化物との組み合わせからなる酸化還元対(I-/I3 -)を含まないことを特徴とする。具体的には、基本的に、無機塩とイオン液体であるヨウ化物塩(例えば、イミダゾリウム塩、テトラアルキルアンモニウム塩、4級窒素原子をスピロ原子に持つ化合物の塩)の単一物または混合物を溶質とし、グリコールエーテルと5員環環状エーテルの一方または両方を溶媒とするものである。以下、代表的な電解液構成成分について説明する。
[2] Electrolytic Solution Layer The electrolytic solution constituting the electrolytic solution layer of the present invention is characterized by not containing an oxidation-reduction pair (I / I 3 ) composed of a combination of iodine and iodide. Specifically, basically, an inorganic salt and an iodide salt which is an ionic liquid (for example, an imidazolium salt, a tetraalkylammonium salt, a salt of a compound having a quaternary nitrogen atom as a spiro atom) or a mixture thereof. Is a solute, and one or both of glycol ether and 5-membered cyclic ether is used as a solvent. Hereinafter, typical electrolyte components will be described.
(1) 溶質
本願発明の電解液の溶質としては、前記一般式(1)に示す無機塩と前記一般式(2)に示すイミダゾリウム塩の混合物を用いることができる。
Figure JPOXMLDOC01-appb-C000004
 (1)
式(1)において、Mはアルカリ金属、アルカリ土類金属、アンモニウムであり、XはCl、Br、Iである。
Figure JPOXMLDOC01-appb-C000005
  (2)
式中、R21,R22,R23は水素または炭素原子数1~8のアルキル基であり、XはCl,Br,Iである。
(1) Solute As the solute of the electrolytic solution of the present invention, a mixture of an inorganic salt represented by the general formula (1) and an imidazolium salt represented by the general formula (2) can be used.
Figure JPOXMLDOC01-appb-C000004
(1)
In the formula (1), M is an alkali metal, an alkaline earth metal, or ammonium, and X is Cl, Br, or I.
Figure JPOXMLDOC01-appb-C000005
(2)
In the formula, R 21 , R 22 and R 23 are hydrogen or an alkyl group having 1 to 8 carbon atoms, and X is Cl, Br, or I.
本願発明に用いる無機塩は、前記一般式(1)に示すアルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アンモニウムハロゲン化物を用いることが好ましい。ハロゲン化物のハロゲンとしては、塩素、臭素、ヨウ素を用いることが好ましく、臭素、ヨウ素が特に好ましく、ヨウ素が最も好ましい。 As the inorganic salt used in the present invention, an alkali metal halide, alkaline earth metal halide, or ammonium halide represented by the general formula (1) is preferably used. As the halogen of the halide, chlorine, bromine and iodine are preferably used, bromine and iodine are particularly preferred, and iodine is most preferred.
本願発明で用いる無機塩の具体例としては、アルカリ金属ハロゲン化物(例、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、塩化リチウム、塩化ナトリウムなど)、アルカリ土類金属ハロゲン化物(例、ヨウ化マグネシウム、ヨウ化カルシウム、臭化マグネシウム、臭化カルシウム、塩化マグネシウム、塩化カルシウムなど)、アンモニウムハロゲン化物(例、ヨウ化アンモニウム、臭化アンモニウム、塩化アンモニウムなど)がある。 Specific examples of inorganic salts used in the present invention include alkali metal halides (eg, lithium iodide, sodium iodide, potassium iodide, lithium bromide, sodium bromide, potassium bromide, lithium chloride, sodium chloride, etc.). , Alkaline earth metal halides (eg, magnesium iodide, calcium iodide, magnesium bromide, calcium bromide, magnesium chloride, calcium chloride, etc.), ammonium halides (eg, ammonium iodide, ammonium bromide, ammonium chloride) and so on.
本願発明のハロゲン化物としては、水への溶解度が90~220g/100g水(25℃)のハロゲン化物が、下記一般式(3)及び(4)の溶媒への溶解性が優れることから好ましく、中でもヨウ素化合物(例、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化リチウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化アンモニウムなど)が、光電変換効率が高いことから特に好ましい。 As the halide of the present invention, a halide having a solubility in water of 90 to 220 g / 100 g water (25 ° C.) is preferable because of its excellent solubility in the solvents of the following general formulas (3) and (4), Among these, iodine compounds (eg, potassium iodide, sodium iodide, lithium iodide, magnesium iodide, calcium iodide, ammonium iodide, etc.) are particularly preferable because of high photoelectric conversion efficiency.
本願発明のハロゲン化物の添加濃度は、0.01~3.0mol/Lが好ましく、0.05~2.0mol/Lがさらに好ましい。 The addition concentration of the halide of the present invention is preferably 0.01 to 3.0 mol / L, more preferably 0.05 to 2.0 mol / L.
本願発明で用いるイオン液体には、室温(25℃)付近において液状となる、いわゆる室温溶融塩を用いることができる。本願発明では、前記一般式(2)アルキルイミダゾリウムのハロゲン化物塩を用いることが好ましく。アルキルイミダゾリウムのヨウ化物塩を用いることが、より好ましい。
本願発明のアルキルイミダゾリウムのヨウ化物塩の具体例は、ジメチルイミダゾリウム、メチルプロピルイミダゾリウム、メチルブチルイミダゾリウム、メチルヘキシルイミダゾリウムのヨウ化物塩が挙げられる。
本願発明に用いるイオン液体の濃度は、0.01~5.0mol/Lが好ましく、0.05~2.0mol/Lがエネルギー変換効率が高い点で好ましい。
As the ionic liquid used in the present invention, a so-called room temperature molten salt that becomes liquid near room temperature (25 ° C.) can be used. In the present invention, it is preferable to use the halide salt of alkyl imidazolium represented by the general formula (2). It is more preferable to use an iodide salt of an alkyl imidazolium.
Specific examples of the alkyl imidazolium iodide salt of the present invention include iodide salts of dimethyl imidazolium, methyl propyl imidazolium, methyl butyl imidazolium, and methyl hexyl imidazolium.
The concentration of the ionic liquid used in the present invention is preferably 0.01 to 5.0 mol / L, and preferably 0.05 to 2.0 mol / L in view of high energy conversion efficiency.
(2) 溶媒
本願発明の電解液の溶媒としては、低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、あるいはその両方であるために優れたイオン伝導性を発現できるものが好ましい。多孔質半導体微粒子層に色素を吸着して得られる色素増感半導体薄膜層を光電極とするため、多孔質半導体微粒子層への浸透性が光電変換効率を向上するために必要だからである。また、電解液量を保持するために高沸点であること、特に沸点が200℃以上であることが好ましい。さらに、溶質として用いる無機塩とイオン液体であるイミダゾリウム塩との混合物の溶解性の観点から、非プロトン性極性溶媒であることも好ましい。
(2) Solvent As the solvent of the electrolytic solution of the present invention, it has a low viscosity and a high ion mobility, a high dielectric constant and an effective carrier concentration can be increased, or both. What can express is preferable. This is because the dye-sensitized semiconductor thin film layer obtained by adsorbing the dye to the porous semiconductor fine particle layer is used as a photoelectrode, so that the permeability to the porous semiconductor fine particle layer is necessary for improving the photoelectric conversion efficiency. Moreover, it is preferable that it is a high boiling point, especially a boiling point is 200 degreeC or more in order to hold | maintain the amount of electrolyte solution. Furthermore, from the viewpoint of solubility of a mixture of an inorganic salt used as a solute and an imidazolium salt that is an ionic liquid, an aprotic polar solvent is also preferable.
本願発明の溶媒としては、下記一般式(3)に示すグリコールエーテルが好ましく、エネルギー変換効率が高い点で、ジアルキルグリコールエーテルがより好ましい。
Figure JPOXMLDOC01-appb-C000006
   (3)   
式(3)において、R31,R32は水素または炭素原子数1~8のアルキル基であり、nは1~10の整数である。
As the solvent of the present invention, glycol ethers represented by the following general formula (3) are preferable, and dialkyl glycol ethers are more preferable in terms of high energy conversion efficiency.
Figure JPOXMLDOC01-appb-C000006
(3)
In the formula (3), R 31 and R 32 are hydrogen or an alkyl group having 1 to 8 carbon atoms, and n is an integer of 1 to 10.
このような溶媒の具体例としては、グリコール類(例、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールなど)、モノアルキルグリコールエーテル類(例、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールモノヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノペンチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノオクチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノペンチルエーテルなど)、ジアルキルグリコールエーテル類(例、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル、ポリエチレングリコールジエチルエーテルなど)がある。これらのグリコールエーテル類は、2種以上併用してもよい。 Specific examples of such solvents include glycols (eg, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, etc.), monoalkyl glycol ethers (eg, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol). Monohexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monopentyl ether, diethylene glycol monohexyl ether, diethylene glycol monooctyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether Ter, triethylene glycol monopropyl ether, triethylene glycol monobutyl ether, triethylene glycol monopentyl ether, etc.), dialkyl glycol ethers (eg, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol) Diethyl ether, triethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol diethyl ether, etc.). Two or more of these glycol ethers may be used in combination.
本願発明の溶媒としては、前記一般式(4)に示す5員環環状エーテルを用いることが好ましい。5員環環状エステル(γ-ラクトン)の具体例としては、γ-ブチロラクトンが含まれる。
Figure JPOXMLDOC01-appb-C000007
     (4)   
式(4)において、R41,R42及びR43は、それぞれ独立に水素原子または炭素原子数が1~20のアルキル基である。
As the solvent of the present invention, it is preferable to use a 5-membered cyclic ether represented by the general formula (4). Specific examples of the 5-membered cyclic ester (γ-lactone) include γ-butyrolactone.
Figure JPOXMLDOC01-appb-C000007
(4)
In the formula (4), R 41 , R 42 and R 43 are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
(3) 酸化還元対
本願発明の電解液では、三ヨウ素化物イオン(I )濃度が0mol/L(イオン液体中の不純物として混入する場合を除き、含まれない。
(3) Redox versus electrolyte of the present invention is not included unless the triiodide ion (I 3 ) concentration is 0 mol / L (mixed as an impurity in the ionic liquid).
本願発明の電解液では、電解液中の微量ヨウ素化合物イオン(I )を除去するため、電解液中に還元剤を微量添加してもよい。還元剤としては、チオ硫酸ナトリウム、亜硫酸ナトリウム等の無機化合物、チオサリチル酸、アスコルビン酸、ハイドロキノン、フェニドン、硫酸パラメチルアミノフェノール等の有機化合物がある。 In the electrolytic solution of the present invention, a small amount of a reducing agent may be added to the electrolytic solution in order to remove a trace amount of iodine compound ions (I 3 ) in the electrolytic solution. Examples of the reducing agent include inorganic compounds such as sodium thiosulfate and sodium sulfite, and organic compounds such as thiosalicylic acid, ascorbic acid, hydroquinone, phenidone, and paramethylaminophenol sulfate.
(4) その他
 電解液は、さらに他の成分を含むことができる。他の成分の例には、下記一般式(5)で表わされるベンゾイミダゾール化合物のほか、(イソ)チオシアン酸イオン、後述する一般式(6)で表わされるグアニジウムイオンが含まれる。特にベンゾイミダゾール化合物は、変換効率がさらに向上するため、併用することが好ましい。
Figure JPOXMLDOC01-appb-C000008
  (5)
式(5)において、R51は炭素原子数1~20の脂肪族基であり、R52は水素原子または炭素原子数1~6の脂肪族基である。
(4) Others The electrolytic solution can further contain other components. Examples of other components include benzimidazole compounds represented by the following general formula (5), (iso) thiocyanate ions, and guanidinium ions represented by the general formula (6) described later. In particular, a benzimidazole compound is preferably used in combination because the conversion efficiency is further improved.
Figure JPOXMLDOC01-appb-C000008
(5)
In the formula (5), R 51 is an aliphatic group having 1 to 20 carbon atoms, and R 52 is a hydrogen atom or an aliphatic group having 1 to 6 carbon atoms.
電解液中に前記一般式(5)で表わされるベンゾイミダゾール化合物を添加する場合、電解液中のベンゾイミダゾール化合物の濃度は0.01~1Mが好ましく、0.02~0.8Mがさらに好ましく、0.05~0.6Mが最も好ましい。 When the benzimidazole compound represented by the general formula (5) is added to the electrolytic solution, the concentration of the benzimidazole compound in the electrolytic solution is preferably 0.01 to 1M, more preferably 0.02 to 0.8M. Most preferred is 0.05 to 0.6M.
ベンゾイミダゾール化合物の具体例としては、N-メチルベンゾイミダゾール、N-エチルベンゾイミダゾール、1,2-ジメチルベンゾイミダゾール、N-ブチルベンゾイミダゾール、N-ヘキシルベンゾイミダゾール、N-ペンチルベンゾイミダゾール、N-イソプロピルベンゾイミダゾール、N-イソブチルベンゾイミダゾール、N-ベンジルベンゾイミダゾール、N-(2-メトキシエチル)ベンゾイミダゾール、N-(3-メチルブチル)ベンゾイミダゾール、1-ブチル-2-メチルベンゾイミダゾール、N-(2-エトキシエチル)ベンゾイミダゾール、N-(2-イソプロポキシエチル)ベンゾイミダゾールなどがある。 Specific examples of the benzimidazole compound include N-methylbenzimidazole, N-ethylbenzimidazole, 1,2-dimethylbenzimidazole, N-butylbenzimidazole, N-hexylbenzimidazole, N-pentylbenzimidazole, N-isopropyl. Benzimidazole, N-isobutylbenzimidazole, N-benzylbenzimidazole, N- (2-methoxyethyl) benzimidazole, N- (3-methylbutyl) benzimidazole, 1-butyl-2-methylbenzimidazole, N- (2 -Ethoxyethyl) benzimidazole, N- (2-isopropoxyethyl) benzimidazole and the like.
電解液中にチオシアン酸イオン(S--C≡N)またはイソチオシアン酸イオン(N-=C=S)を添加する場合、電解液中のチオシアン酸イオンおよびイソチオシアン酸イオンの合計の濃度は0.01~1Mが好ましく、0.02~0.5Mがさらに好ましく、0.05~0.2Mが最も好ましい。
電解液の調製において、イソチオシアン酸イオンは塩として添加することが好ましい。塩の対イオンは、後述するグアニジウムイオンが好ましい。
When thiocyanate ions (S —C≡N) or isothiocyanate ions (N = C═S) are added to the electrolyte, the total concentration of thiocyanate ions and isothiocyanate ions in the electrolyte is 0.00. 01 to 1M is preferable, 0.02 to 0.5M is more preferable, and 0.05 to 0.2M is most preferable.
In preparing the electrolytic solution, it is preferable to add the isothiocyanate ion as a salt. The counter ion of the salt is preferably a guanidinium ion described later.
電解液中に下記一般式(6)で表わされるグアニジウムイオンを添加する場合、電解液中のグアニジウムイオンの濃度は0.01~1Mが好ましく、0.02~0.5Mがさらに好ましく、0.05~0.2Mが最も好ましい。
Figure JPOXMLDOC01-appb-C000009
(6)
式(6)において、R61、R62およびR63は、それぞれ独立に、水素原子または炭素原子数が1~20の脂肪族基である。
When guanidinium ions represented by the following general formula (6) are added to the electrolytic solution, the concentration of guanidinium ions in the electrolytic solution is preferably 0.01 to 1M, more preferably 0.02 to 0.5M. Preferably, 0.05 to 0.2M is most preferable.
Figure JPOXMLDOC01-appb-C000009
(6)
In the formula (6), R 61 , R 62 and R 63 are each independently a hydrogen atom or an aliphatic group having 1 to 20 carbon atoms.
脂肪族基の炭素原子数は、1~12が好ましく、1~6がさらに好ましく、1~3が最も好ましい。脂肪族基よりも水素原子の方が好ましい。すなわち、無置換のグアニジウムイオンが最も好ましい。
電解液の調製において、グアニジウムイオンは塩として添加することが好ましい。塩の対イオンは、ヨウ化物イオンまたはイソチオシアン酸イオンが好ましく、イソチオシアン酸イオンがさらに好ましい。
The number of carbon atoms in the aliphatic group is preferably 1 to 12, more preferably 1 to 6, and most preferably 1 to 3. A hydrogen atom is preferred over an aliphatic group. That is, unsubstituted guanidinium ions are most preferred.
In preparing the electrolytic solution, guanidinium ions are preferably added as a salt. The counter ion of the salt is preferably an iodide ion or an isothiocyanate ion, and more preferably an isothiocyanate ion.
電解液中には必要に応じて、アニオン界面活性剤、カチオン界面活性剤、非イオン界面活性剤、両性界面活性剤を添加してもよい。 If necessary, an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant may be added to the electrolytic solution.
電解液層は色素の酸化体に電子を補充する機能を有する電解液からなる層である。光電極層は、その多孔構造中の空孔が電解液により充填されていることが好ましい。具体的に、光電極層が有する空孔が電解液によって充填されている割合は、20体積%以上が好ましく、50体積%以上がさらに好ましい。電解液層の厚さは、例えば、光電極層と対向電極層との間に設けるスペーサーの大きさによって調整できる。電解液が光電極の外側で単独で存在する部分の厚さは、1μm~50μmが好ましく、1μm~30μmがより好ましく、1μm~20μmがさらに好ましく、1μm~15μmが最も好ましい。
電解液層の光透過率は、測定波長400nmにおいて、電解液層の厚さが30μmである場合に換算して(30μmの光路長において)70%以上であることが好ましく、80%以上であることがさらに好ましく、90%以上であることが最も好ましい。光透過率は、350nm~900nmの波長領域全体において、上記の透過率を有することが好ましい。本願発明の電解液層を形成するには、キャスト法、塗布法、浸漬法等により光電極層上に電解液を塗布する方法や、光電極と対向電極を有するセルを作製しその隙間に電解液を注入する方法などが挙げられる。
The electrolytic solution layer is a layer made of an electrolytic solution having a function of replenishing electrons to the oxidant of the dye. The photoelectrode layer preferably has pores in its porous structure filled with an electrolytic solution. Specifically, the ratio of the pores of the photoelectrode layer filled with the electrolyte is preferably 20% by volume or more, and more preferably 50% by volume or more. The thickness of the electrolytic solution layer can be adjusted by, for example, the size of the spacer provided between the photoelectrode layer and the counter electrode layer. The thickness of the portion where the electrolytic solution exists alone outside the photoelectrode is preferably 1 μm to 50 μm, more preferably 1 μm to 30 μm, still more preferably 1 μm to 20 μm, and most preferably 1 μm to 15 μm.
The light transmittance of the electrolyte layer is preferably 70% or more (in the optical path length of 30 μm) when the thickness of the electrolyte layer is 30 μm at a measurement wavelength of 400 nm, and preferably 80% or more. Is more preferable, and 90% or more is most preferable. The light transmittance preferably has the above-described transmittance in the entire wavelength region of 350 nm to 900 nm. In order to form the electrolytic solution layer of the present invention, a method of applying an electrolytic solution on the photoelectrode layer by a casting method, a coating method, a dipping method, etc. For example, a method of injecting a liquid may be used.
塗布法によって電解液層を形成する場合、溶融塩等を含む電解液に塗布性改良剤(レベリング剤等)等の添加剤を添加して、これをスピンコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ホッパーを使用するエクストルージョンコート法、多層同時塗布方法等の方法により塗布し、その後必要に応じて加熱すればよい。加熱する場合の加熱温度は色素の耐熱温度等により適当に選択すればよいが、通常10℃~150℃であるのが好ましく、10℃~100℃であるのが更に好ましい。加熱時間は加熱温度等にもよるが、5分~72時間程度が好ましい。
好ましい態様によれば、光電極層中の空隙を完全に埋める量より多い電解質液を塗布するので、図1に示すように得られる電解液層は光電極層の透明導電層との境界から対向電極層の透明導電層との境界までの間に存在する。ここで、電解液層の厚さ(半導体粒子層を含まない)は0.001μm~200μmであるのが好ましく、0.1μm~100μmであるのが更に好ましく、0.1~50μmであるのが特に好ましい。なお、電解液層の厚さ(実質的に電解液を含む層の厚さ)は0.1μm~300μmであるのが好ましく、1μm~130μmであるのが更に好ましく、2μm~75μmであるのが特に好ましい。
When an electrolyte layer is formed by a coating method, an additive such as a coating property improver (leveling agent, etc.) is added to the electrolyte containing a molten salt, and this is applied to a spin coating method, a dip coating method, an air knife coating. It may be applied by a method such as a coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, an extrusion coating method using a hopper, or a multilayer simultaneous coating method, and then heated as necessary. The heating temperature for heating may be appropriately selected depending on the heat resistant temperature of the dye, etc., but is usually preferably 10 ° C. to 150 ° C., more preferably 10 ° C. to 100 ° C. Although the heating time depends on the heating temperature and the like, it is preferably about 5 minutes to 72 hours.
According to a preferred embodiment, since the electrolyte solution is applied in an amount larger than the amount that completely fills the voids in the photoelectrode layer, the obtained electrolyte solution layer is opposed from the boundary of the photoelectrode layer with the transparent conductive layer. It exists between the boundary of the electrode layer and the transparent conductive layer. Here, the thickness of the electrolyte layer (excluding the semiconductor particle layer) is preferably 0.001 μm to 200 μm, more preferably 0.1 μm to 100 μm, and more preferably 0.1 to 50 μm. Particularly preferred. The thickness of the electrolyte layer (the thickness of the layer substantially containing the electrolyte) is preferably 0.1 μm to 300 μm, more preferably 1 μm to 130 μm, and 2 μm to 75 μm. Particularly preferred.
[3] 対向電極層
対向電極は光電変換素子を光化学電池としたときに正極として作用するものである。対向電極は、透明基板および透明導電層からなることが好ましい。透明基板および透明導電層の詳細は、光電極層の透明基板および透明導電層と同様である。
[3] The counter electrode layer The counter electrode functions as a positive electrode when the photoelectric conversion element is a photochemical battery. The counter electrode is preferably composed of a transparent substrate and a transparent conductive layer. The details of the transparent substrate and the transparent conductive layer are the same as those of the transparent substrate and the transparent conductive layer of the photoelectrode layer.
(1) 触媒層
対向電極の触媒層は、触媒作用を有する貴金属粒子が好ましい。対向電極の導電性膜上に触媒層を付与することで好ましい触媒層付きの対向電極が作製できる。貴金属粒子としては、触媒作用のあるものであれば特に限定されるものではないが、好ましくは比較的高い触媒作用を有する金属白金、金属パラジウム及び金属ルテニウムの少なくとも一種類から構成することが好ましい。触媒層の付与方法は特に限定されないが、例えばこれらの金属を蒸着法あるいはスパッタ法で付与してもよく、また該金属微粒子を溶媒に分散させて得られる分散液を、塗布あるいは噴霧などで対向電極も導電性層の上に設置してもよい。分散法で設置する場合は、その分散液に更にバインダーを含有させてもよく、導電性高分子が好ましく用いられる。該導電性高分子としては、導電性を有し、前記貴金属粒子を分散させることができるものであれば特に限定されないが、導電性の高い方が好ましい。
(1) Catalyst layer The catalyst layer of the counter electrode is preferably noble metal particles having a catalytic action. A preferred counter electrode with a catalyst layer can be produced by providing a catalyst layer on the conductive film of the counter electrode. The noble metal particles are not particularly limited as long as they have a catalytic action, but are preferably composed of at least one of metal platinum, metal palladium and metal ruthenium having a relatively high catalytic action. The method for applying the catalyst layer is not particularly limited. For example, these metals may be applied by a vapor deposition method or a sputtering method, and a dispersion obtained by dispersing the metal fine particles in a solvent may be coated or sprayed. The electrode may also be placed on the conductive layer. When installing by a dispersion method, the dispersion liquid may further contain a binder, and a conductive polymer is preferably used. The conductive polymer is not particularly limited as long as it has conductivity and can disperse the noble metal particles, but higher conductivity is preferable.
このような高導電性高分子としては、例えばPoly(thiophene-2,5-diyl)、Poly(3-butylthiophene-2,5-diyl),
Poly(3-hexylthiophene-2,5-diyl),poly(2,3-dihydrothieno-[3,4-b]-1,4-dioxin)等のポリチオフェン、ポリアセチレン及びその誘導体、ポリアニリン及びその誘導体、ポリピロール及びその誘導体、Poly(p-xylenetetrahydrothiophenium
choride),Poly[(2-methoxy-5-(2’ethylhexyloxy))-1,4-phenylenvinylene],Pory[(2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene)],Poly[2-2’,5’-bis(2’’-ethylhexyloxy)phenyl]-1,4-phenylenevinylene]等のポリフェニレンビニレン類等が使用出来る。これらの中でも特に好ましい導電性高分子は、Poly(2,3-dihydrothieno-[3,4-b]-1,4-dioxin)/Poly(styrenesulfonate)
(PEDOT/PSS)である。
Examples of such highly conductive polymers include Poly (thiophene-2,5-diyl), Poly (3-butylthiophene-2,5-diyl),
Polythiophene such as Poly (3-hexylthiophene-2,5-diyl), poly (2,3-dihydrothieno- [3,4-b] -1,4-dioxin), polyacetylene and its derivatives, polyaniline and its derivatives, polypyrrole And its derivatives, Poly (p-xylenetrahythrophenium
choride), Poly [(2-methoxy-5- (2'ethylhexyloxy))-1,4-phenylvinylene]], Poly [(2-methoxy-5- (3 ', 7'-dimethyloxy))-1,4-phenylenevine. )], Poly [2-2 ′, 5′-bis (2 ″ -ethylhexyloxy) phenyl] -1,4-phenylenevinylene] and the like can be used. Among these, a particularly preferable conductive polymer is Poly (2,3-dihydrothieno- [3,4-b] -1,4-dioxin) / Poly (styrenesulfate).
(PEDOT / PSS).
また、触媒層は、導電層への密着性を向上させる観点から、他のバインダーを含むことができる。前記バインダーは有機樹脂であっても良いし、無機物であっても良い。有機樹脂としては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリル酸、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、セルロースおよび誘導体、ブチラール樹脂、アルキド樹脂、塩ビ樹脂等の熱硬化性あるいは熱可塑性有機高分子化合物、紫外線(UV)硬化性有機高分子化合物、電子線(EB)硬化性有機高分子化合物、ポリシロキサン等の無機高分子化合物等を、単独もしくは複合して用いることができる。 Moreover, the catalyst layer can contain another binder from the viewpoint of improving the adhesion to the conductive layer. The binder may be an organic resin or an inorganic material. Examples of organic resins include polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, polyacrylic acid, acrylic resin, polyester resin, polyurethane resin, polyolefin resin, polystyrene resin, cellulose and derivatives, butyral resin, alkyd resin, and vinyl chloride resin. Thermosetting or thermoplastic organic polymer compounds, ultraviolet (UV) curable organic polymer compounds, electron beam (EB) curable organic polymer compounds, inorganic polymer compounds such as polysiloxane, etc., alone or in combination Can be used.
前記無機物としては、シリカゾル、M2O・nSiO2(M:Li、Na、K)等のケイ酸塩、リン酸塩、珪素酸化物やジルコニウム酸化物やチタン酸化物やアルミニウム酸化物粒子コロイド、珪素やジルコニウムやチタンやアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物、溶融フリット、水ガラス等を単独または複合して用いることが出来る。 Examples of the inorganic substance include silica sol, silicate such as M2O.nSiO2 (M: Li, Na, K), phosphate, silicon oxide, zirconium oxide, titanium oxide, aluminum oxide particle colloid, silicon, zirconium Further, metal alkoxides of titanium and aluminum, partial hydrolysis-condensation polymers thereof, molten frit, water glass, etc. can be used alone or in combination.
また、上述したバインダーの他に、触媒層の膜付着強度、導電性などの一層の向上を目的として、必要に応じ、例えばケイ素、アルミニウム、ジルコニウム、セリウム、チタン、イットリウム、亜鉛、マグネシウム、インジウム、錫、アンチモン、ガリウム、ルテニウムなどの酸化物または複合酸化物の粒子、酸化スズ、フッ素ドープ酸化スズ、及び錫ドープ酸化インジウム等の導電性酸化物粒子を含むこともできる。なお、触媒層の厚さは好ましくは100nm~1μm、より好ましくは50nm~5μmであり、特に好ましくは30nm~5μmである。 In addition to the binder described above, for the purpose of further improving the film adhesion strength, conductivity, etc. of the catalyst layer, for example, silicon, aluminum, zirconium, cerium, titanium, yttrium, zinc, magnesium, indium, Conductive oxide particles such as oxide or composite oxide particles such as tin, antimony, gallium, and ruthenium, tin oxide, fluorine-doped tin oxide, and tin-doped indium oxide can also be included. The thickness of the catalyst layer is preferably 100 nm to 1 μm, more preferably 50 nm to 5 μm, and particularly preferably 30 nm to 5 μm.
[4] その他の層
電極として作用する光電極層及び対向電極層の一方又は両方に、保護層、反射防止層等の機能性層を設けてもよい。このような機能性層を多層に形成する場合、同時多層塗布法や逐次塗布法が利用できる。本願発明のフィルム型光電池には、上記の基本的層構成に加えて所望に応じさらに各種の層を設けることができる。例えば導電性プラスチック支持体と多孔質半導体層の間に緻密な半導体の薄膜層を下塗り層として設けることができる。下塗り層として好ましいのは金属酸化物であり、たとえばTiO2、SnO2、Fe2O3、WO3、ZnO、Nb2O5などである。下塗り層は、例えばElectrochim.Acta 40、643‐652(1995)に記載されているスプレーパイロリシス法の他、スパッタ法などにより塗設することができる。下塗り層の好ましい膜厚は5~100nmである。
[4] A functional layer such as a protective layer or an antireflection layer may be provided on one or both of the photoelectrode layer and the counter electrode layer that act as other layer electrodes. When such a functional layer is formed in multiple layers, a simultaneous multilayer coating method or a sequential coating method can be used. In addition to the above basic layer configuration, the film type photovoltaic cell of the present invention can be further provided with various layers as desired. For example, a dense semiconductor thin film layer can be provided as an undercoat layer between the conductive plastic support and the porous semiconductor layer. A metal oxide is preferable as the undercoat layer, and examples thereof include TiO2, SnO2, Fe2O3, WO3, ZnO, and Nb2O5. The undercoat layer is, for example, Electrochim. In addition to the spray pyrolysis method described in Acta 40, 643-652 (1995), it can be applied by sputtering. The preferred thickness of the undercoat layer is 5 to 100 nm.
 [5] 封止層
本願発明の封止層は、電解液層の周囲に設けられ、電解液層を封止する機能を有する。前記封止層は、上記光電極基板と上記対向電極基板を接着するシール材と前記光電極基板と上記対向電極基板との間に必要な隙間を調整し、電解液層を形成するためのスペーサーにより構成されている。
[5] Sealing layer The sealing layer of the present invention is provided around the electrolyte layer and has a function of sealing the electrolyte layer. The sealing layer is a spacer for forming an electrolyte layer by adjusting a necessary gap between the photoelectrode substrate and the counter electrode substrate, and a sealing material for bonding the photoelectrode substrate and the counter electrode substrate. It is comprised by.
(1) シール材
本願発明のシール材は、上記光電極基板と上記対向電極基板を接着し、電解液層を封止することができるものであれば特に限定されるものではない。基板間の接着性、電解液に対する耐性(耐薬品性)、高温高湿耐久性(耐湿熱性)に優れていることが好ましい。電解液の漏洩を効果的かつ持続的に抑制するためには、接着性に加えて、耐薬品性と耐湿熱性に優れる必要があるからである。
(1) Sealing material The sealing material of the present invention is not particularly limited as long as it can adhere the photoelectrode substrate and the counter electrode substrate and seal the electrolyte layer. It is preferable that it is excellent in the adhesiveness between board | substrates, the tolerance (chemical resistance) with respect to electrolyte solution, and high temperature, high humidity durability (moisture heat resistance). This is because, in order to effectively and continuously suppress the leakage of the electrolytic solution, it is necessary to have excellent chemical resistance and wet heat resistance in addition to adhesiveness.
接着性、耐薬品性、耐湿熱性に優れたシール材としては、熱可塑性樹脂、熱硬化性樹脂、活性放射線(光、電子線)硬化性樹脂がある。素材としては、アクリル系樹脂、フッ素系樹脂、シリコーン系樹脂、オレフィン系樹脂、ポリアミド樹脂等がある。取扱い性に優れるという観点から、光硬化性アクリル系樹脂が好ましい。 Examples of the sealing material excellent in adhesiveness, chemical resistance, and wet heat resistance include thermoplastic resins, thermosetting resins, and active radiation (light, electron beam) curable resins. Examples of the material include an acrylic resin, a fluorine resin, a silicone resin, an olefin resin, and a polyamide resin. From the viewpoint of excellent handleability, a photocurable acrylic resin is preferable.
 (2) スペーサー
本願発明のスペーサーは、前記光電極基板と上記対向電極基板との間に必要な隙間を所望の範囲に調整できるものであれば特に限定されるものではない。通常、真円球樹脂粒子、無機粒子、ガラスビーズなどを適宜選択することができる。
本願発明では、真円樹脂粒子を用いることが好ましい。粒径としては、1μm~100μmが好ましく、1μm~50μmがより好ましく、1μm~20μmが特に好ましい。光電極基板と対向電極基板が接することがなく、かつ、より短い間隙を均一に保つことで、電解液抵抗を下げ光電変換効率が向上するからである。
(2) Spacer The spacer of the present invention is not particularly limited as long as a necessary gap can be adjusted within a desired range between the photoelectrode substrate and the counter electrode substrate. Usually, spherical resin particles, inorganic particles, glass beads and the like can be appropriately selected.
In the present invention, it is preferable to use perfect circle resin particles. The particle size is preferably 1 μm to 100 μm, more preferably 1 μm to 50 μm, and particularly preferably 1 μm to 20 μm. This is because the photoelectrode substrate and the counter electrode substrate are not in contact with each other, and the shorter gap is kept uniform, thereby reducing the electrolyte resistance and improving the photoelectric conversion efficiency.
本願発明の封止層の厚みは、前記多孔質半導体微粒子層の厚みと実質的に同一であることが好ましい。光電極基板と対向電極基板との間隙が均一に保つことで、安定した発電効率を示すためである。
また、本発明の封止層の幅(厚み)は、特に限定されるものではないが、例えば0.5mm~5mmの範囲内、中でも0.8mm~3mmの範囲内であることが好ましい。封止層の幅が小さすぎると、電解質に対して充分な耐久性を発揮できない可能性があり、封止層の幅が大きすぎると、色素増感型太陽電池素子において発電に寄与する素子面積が減少するため、モジュール面積に対して有効な面積が低下し、有効発電効率が減少してしまう可能性があるからである。
It is preferable that the thickness of the sealing layer of the present invention is substantially the same as the thickness of the porous semiconductor fine particle layer. This is to maintain stable power generation efficiency by keeping the gap between the photoelectrode substrate and the counter electrode substrate uniform.
Further, the width (thickness) of the sealing layer of the present invention is not particularly limited, but is preferably in the range of 0.5 mm to 5 mm, and more preferably in the range of 0.8 mm to 3 mm. If the width of the sealing layer is too small, sufficient durability against the electrolyte may not be exhibited. If the width of the sealing layer is too large, the element area contributing to power generation in the dye-sensitized solar cell element This is because the effective area with respect to the module area decreases and the effective power generation efficiency may decrease.
[6] 集電線
本願発明では、透明導電膜上に金属(良導体)からなる集電線を配設することにより、透明導電膜からなる透明透電極の表面抵抗率を下げている。集電線は、封止層により区分された光電極層、電解液層、対向電極層からなる色素増感型光電変換素子の外部に設けられることが好ましい。集電電極を電解液による腐蝕から保護するためである。
集電線の材料は、導電性を有していれば特に制限はないが、抵抗率が比較的低い金属材料、例えば、銀、銅、アルミニウム、タングステン、ニッケル、クロムのうちから選ばれる少なくとも1つ以上の金属あるいはこれらの合金からなることが好ましく、抵抗率が低く、線として形成し易いという観点からは、銀がより好ましい。集電線は、透明導電層上に格子状に形成することもできる。集電線の形成方法としては、スパッタ法、蒸着法、メッキ法あるいはスクリーン印刷法などが用いられる。
集電線の幅は、0.5mm~5mm、より好ましくは、0.7mm~3mmであり、集電線の厚さは、5μm~50μm、より好ましくは、6μm~20μmである。十分な線断面積当たりの電気伝導度を確保すると共に、後述する導電性微粒子と相俟って、上記光電極基板と対向電極基板との間に必要な間隙を確保するために適切な幅と厚みを必要とするからである。
[6] Current Collection In the present invention, the surface resistivity of the transparent transmissive electrode made of a transparent conductive film is lowered by disposing a current collection line made of metal (good conductor) on the transparent conductive film. The current collector is preferably provided outside the dye-sensitized photoelectric conversion element composed of a photoelectrode layer, an electrolytic solution layer, and a counter electrode layer separated by a sealing layer. This is to protect the collecting electrode from corrosion by the electrolytic solution.
The material of the current collector is not particularly limited as long as it has conductivity, but at least one selected from metal materials having a relatively low resistivity, for example, silver, copper, aluminum, tungsten, nickel, and chromium. It is preferably made of the above metals or alloys thereof, and silver is more preferable from the viewpoint of low resistivity and easy formation as a line. The current collector may be formed in a lattice shape on the transparent conductive layer. As a method for forming the current collector, sputtering, vapor deposition, plating, screen printing, or the like is used.
The width of the current collector is 0.5 mm to 5 mm, more preferably 0.7 mm to 3 mm, and the thickness of the current collector is 5 μm to 50 μm, more preferably 6 μm to 20 μm. In addition to ensuring a sufficient electric conductivity per line cross-sectional area, and an appropriate width for securing a necessary gap between the photoelectrode substrate and the counter electrode substrate in combination with conductive fine particles described later. This is because a thickness is required.
[7] 取出し電極
本願発明では、光電変換素子は一対の取出し電極を備えている。後述する外装、バリアー包装体で光電変換素子を被覆するときは、前記取出し電極にリード材を取り付けることができる。
取出し電極の材料としては、導電性を有していれば特に制限はない。抵抗率が比較的低い金属材料、例えば、金、白金、銀、銅、アルミニウム、ニッケル、亜鉛、チタン、クロムのうちから選ばれる少なくとも1つ以上の金属あるいはこれらの合金からなることが好ましい。
取出し電極の厚さは、50nm~100μmであることが好ましい。取出し電極の厚さは、断線により色素増感型光電変換素子の歩留まりが低下しない程度に薄すぎないことが必要であり、コスト面から過度に厚くする必要なないからである。また、取出し電極の形状は、特に制限はない。例えば、金属箔、金属テープ、板状、紐状のいずれであってもよい。加工性の観点から金属テープが好ましい。
[7] Extraction Electrode In the present invention, the photoelectric conversion element includes a pair of extraction electrodes. When the photoelectric conversion element is covered with an exterior or barrier package described later, a lead material can be attached to the extraction electrode.
The material of the extraction electrode is not particularly limited as long as it has conductivity. It is preferably made of a metal material having a relatively low resistivity, for example, at least one metal selected from gold, platinum, silver, copper, aluminum, nickel, zinc, titanium, and chromium, or an alloy thereof.
The thickness of the extraction electrode is preferably 50 nm to 100 μm. This is because it is necessary that the thickness of the extraction electrode is not too thin so that the yield of the dye-sensitized photoelectric conversion element does not decrease due to disconnection, and it is not necessary to increase the thickness excessively from the viewpoint of cost. The shape of the extraction electrode is not particularly limited. For example, any of metal foil, a metal tape, plate shape, and string shape may be sufficient. A metal tape is preferable from the viewpoint of workability.
[8] 色素増感型太陽電池モジュール
単一の色素増感型光電変換素子で得られる起電力は限られることから、実用的な電圧を取り出すために複数の色素増感型光電変換素子を直列または並列に接続する必要がある。図3上段は本願発明の色素増感型光電変換素子を所定の間隔を開けて6個直列接続した本願発明の色素増感型太陽電池モジュール3の断面図であり、図3下段は前記色素増感型太陽電池モジュール3の平面図である。これは、実施態様の1例であって、本願発明は、これに限定されるものではない。
図3上段に示すように、個々の色素増感型光電変換素子31は、集電線32と導電性微粒子33からなる電極接続部34により直列に接続されている。また、電極接続部34は、非導電性の封止層35で仕切られている。封止層35は、個々の色素増感型光電変換素子31の電解液層16を封止する役割を果たす。なお、色素増感型太陽電池モジュール3の両端には、集電線32上に取出し電極36が設けられている。取出し電極にリード線を接合して所望とする電気機器類に接続して、発電源として利用するものである。
また、図4は、図3上段に示す直列接続モジュール3を取出し電極35を共用することで並列に接続したものである。
[8] Dye-sensitized solar cell module Since the electromotive force obtained by a single dye-sensitized photoelectric conversion element is limited, a plurality of dye-sensitized photoelectric conversion elements are connected in series to extract a practical voltage. Or it is necessary to connect in parallel. The upper part of FIG. 3 is a sectional view of the dye-sensitized solar cell module 3 of the present invention in which six dye-sensitized photoelectric conversion elements of the present invention are connected in series at predetermined intervals, and the lower part of FIG. 3 is a plan view of the sensitive solar cell module 3. FIG. This is an example of the embodiment, and the present invention is not limited to this.
As shown in the upper part of FIG. 3, the individual dye-sensitized photoelectric conversion elements 31 are connected in series by an electrode connection portion 34 including a current collecting line 32 and conductive fine particles 33. Further, the electrode connecting portion 34 is partitioned by a non-conductive sealing layer 35. The sealing layer 35 plays a role of sealing the electrolyte solution layer 16 of each dye-sensitized photoelectric conversion element 31. In addition, extraction electrodes 36 are provided on the current collector 32 at both ends of the dye-sensitized solar cell module 3. A lead wire is joined to the extraction electrode and connected to a desired electrical device to be used as a power generation source.
FIG. 4 shows the series connection module 3 shown in the upper part of FIG. 3 connected in parallel by sharing the electrode 35.
ここで、導電性微粒子33は、シャープな粒子径分布を持つプラスチック微粒子に金メッキを施した弾力性を有する導電性微粒子である。弾力性を有するために集電線と密着性に優れる。また、前記スペーサーの1倍~1.5倍、好ましくは1.1倍~1.3倍の粒径の導電微粒子を選択することで、電解液層厚みを制御できる。
本願発明において、電極接続部を集電線と導電性微粒子の組み合わせとしたこと、具体的には、集電線形成後に、封止材を含む導電性微粒子を集電線上に積層したことにより、透明導電性層に下塗り層を形成したことによる光電極と対向電極との通電性を確実にするためである。
Here, the conductive fine particles 33 are conductive fine particles having elasticity obtained by performing gold plating on plastic fine particles having a sharp particle size distribution. Excellent elasticity with the current collector because of its elasticity. Further, the thickness of the electrolyte layer can be controlled by selecting conductive fine particles having a particle size 1 to 1.5 times, preferably 1.1 to 1.3 times the spacer.
In the present invention, the electrode connection portion is a combination of the current collector and the conductive fine particles. Specifically, after the current collector is formed, the conductive fine particles including the sealing material are laminated on the current collector, so that the transparent conductive This is to ensure the conductivity between the photoelectrode and the counter electrode due to the formation of the undercoat layer on the conductive layer.
図4は、上記色素増感型太陽電池モジュールを2つ並列に接続したものである。並列に接続することにより、出力電圧を維持しながら、出力電流を必要十分に制御できるという利点がある。 FIG. 4 shows two dye-sensitized solar cell modules connected in parallel. By connecting in parallel, there is an advantage that the output current can be controlled sufficiently and sufficiently while maintaining the output voltage.
[9] 外装、バリアー包装体
本願発明では、その基板が水蒸気やガスに対してその透過性を低減するように設計されているが、過酷な環境条件により出力の劣化が見られる可能性があり、特に高温度で高湿度での環境条件で耐久性付与が重要である。これらの改良方法としては、基板にガスや水蒸気に対するバリアー特性を有する基板にするか、あるいはバリアー性のある包装体で、本発明の色素増感型光電変換素子を包み込むことで達成できる。以下に、本願発明で好ましく用いられるバリアフィルム、特に水蒸気バリアー性について以下に記述する。
[9] Exterior, barrier package In the present invention, the substrate is designed to reduce its permeability to water vapor and gas, but there is a possibility that output degradation may be seen due to severe environmental conditions. In particular, it is important to provide durability under high temperature and high humidity environmental conditions. These improvement methods can be achieved by making the substrate a substrate having a barrier property against gas or water vapor, or enclosing the dye-sensitized photoelectric conversion element of the present invention in a package having a barrier property. Hereinafter, the barrier film preferably used in the present invention, particularly the water vapor barrier property will be described below.
前述したように、発明の色素増感型光電変換素子は、基板の外部にガスや水蒸気に対するバリアー性を有する層を有することも好ましい。さらに、水蒸気バリアー性のある包装材料で包装あるいは包み込まれていても好ましい。その際に、本発明の色素増感型光電変換素子とハイバリア包装材料に間に空間があってもよく、また接着剤で色素増感型光電変換素子を接着させてもよい。更には、水蒸気やガスを通しにくい液体や固体(例えば、液状またはゲル状のパラフィン、シリコン、リン酸エステル、脂肪族エステルなど)を用いて、色素増感型光電変換素子を包装材料に包装してもよい。 As described above, the dye-sensitized photoelectric conversion element of the invention preferably has a layer having a barrier property against gas and water vapor outside the substrate. Furthermore, it is preferable that it is packaged or wrapped with a packaging material having a water vapor barrier property. At that time, there may be a space between the dye-sensitized photoelectric conversion element of the present invention and the high barrier packaging material, or the dye-sensitized photoelectric conversion element may be bonded with an adhesive. Furthermore, the dye-sensitized photoelectric conversion element is packaged in a packaging material using a liquid or solid (eg, liquid or gel paraffin, silicon, phosphate ester, aliphatic ester, etc.) that is difficult to pass water vapor or gas. May be.
本願発明で好ましく用いられるバリアー性のある基板あるいは包装材料の好ましい水蒸気透過度は、40℃、相対湿度90%(90%RH)の環境下で0.1g/m2/日以下であり、より好ましくは0.01g/m2/日以下であり、更に好ましくは0.0005g/m2/日以下であり、特に好ましくは0.00001g/m2/日以下である。また、環境温度が60℃、90%RHでのより過酷な場合でも、バリアー性のある基板あるいは包装材料の水蒸気透過度は、より好ましくは0.01g/m2/日以下であり、更に好ましくは0.0005g/m2/日以下であり、特に好ましくは0.00001g/m2/日以下である。またバリアー性のある基板あるいは包装材料の酸素透過率は25℃、0%RHの環境下において、好ましくは約0.001g/m2/日以下であり、より好ましくは0.00001g/m2/日が好ましい。 The preferable water vapor permeability of the substrate or packaging material having a barrier property preferably used in the present invention is 0.1 g / m 2 / day or less in an environment of 40 ° C. and a relative humidity of 90% (90% RH), more preferably. Is 0.01 g / m 2 / day or less, more preferably 0.0005 g / m 2 / day or less, and particularly preferably 0.00001 g / m 2 / day or less. Further, even when the environmental temperature is 60 ° C. and 90% RH, the water vapor permeability of the substrate or packaging material having a barrier property is more preferably 0.01 g / m 2 / day or less, and still more preferably. 0.0005 g / m 2 / day or less, particularly preferably 0.00001 g / m 2 / day or less. The oxygen permeability of the substrate or packaging material having a barrier property is preferably about 0.001 g / m 2 / day or less, more preferably 0.00001 g / m 2 / day in an environment of 25 ° C. and 0% RH. preferable.
これらの本発明の色素増感型太陽電池用バリアー性のある基板あるいは包装材料に、水蒸気やガスに対するバイア性付与は、特に限定されないが、太陽電池に必要な光量を妨げないことが必要であるために透過性のあるバリアー性のある基板あるいは包装材料であり、その透過率は好ましくは50%以上であり、より好ましくは70%以上であり、更に好ましくは85%以上であり、特に好ましくは90%以上である。上記の特性を有するバリアー性のある基板あるいは包装材料は、その構成や材料において特に限定されることはなく、該特性を有するものであれば特に限定されない。 Although there is no particular limitation on imparting via properties to water vapor or gas to the substrate or packaging material having barrier properties for the dye-sensitized solar cell of the present invention, it is necessary not to interfere with the amount of light necessary for the solar cell. Therefore, it is a substrate or packaging material that is permeable and has a barrier property, and its transmittance is preferably 50% or more, more preferably 70% or more, still more preferably 85% or more, and particularly preferably. 90% or more. The board | substrate or packaging material which has the said characteristic with a barrier property is not specifically limited in the structure and material, If it has this characteristic, it will not specifically limit.
本願発明の好ましいバリアフィルムのある基板あるいは包装材料は、プラスチック支持体上に水蒸気やガスの透過性が低いバリアー層を設置したフィルムであることが好ましい。ガスバリアフィルムの例としては、酸化ケイ素や酸化アルミニウムを蒸着したもの(特公昭53-12953、特開昭58-217344)、有機無機ハイブリッドコーティング層を有するもの(特開2000-323273、特開2004-25732)、無機層状化合物を有するもの(特開2001-205743)、無機材料を積層したもの(特開2003-206361、特開2006-263989)、有機層と無機層を交互に積層したもの(特開2007-30387、米国特許6413645、Affinitoら著
Thin Solid Films 1996年 290-291頁)、有機層と無機層を連続的に積層したもの(米国特許2004-46497)などが挙げられる。
A preferred substrate or packaging material having a barrier film of the present invention is preferably a film in which a barrier layer having low water vapor and gas permeability is provided on a plastic support. Examples of the gas barrier film include those obtained by vapor-depositing silicon oxide and aluminum oxide (Japanese Patent Publication No. Sho 53-12953, Japanese Patent Laid-Open Publication No. 58-217344), and those having an organic-inorganic hybrid coating layer (Japanese Patent Laid-Open Publication No. 2000-323273, Japanese Patent Laid-Open Publication No. 2004). 25732), those having an inorganic layered compound (Japanese Patent Laid-Open No. 2001-205743), those obtained by laminating inorganic materials (Japanese Patent Laid-Open No. 2003-206361, Japanese Patent Laid-Open No. 2006-263389), those obtained by alternately laminating organic layers and inorganic layers (special features) No. 2007-30387, US Pat. No. 6413645, Affinito et al., Thin Solid Films 1996, pages 290-291), and organic layers and inorganic layers laminated continuously (US Pat. No. 2004-46497).
次に本願発明の効果を奏する実施態様を実施例として、本願発明の効果を奏しない実施態様を比較例として、それぞれ表1および表2に示す。また、光増感色素を含む多孔質酸化物半導体層(形状は矩形)の面積(S)と矩形の短辺に対する長辺の長さの比(L)の関係を図5に示す。 Next, Table 1 and Table 2 show the embodiments that achieve the effects of the present invention as examples and the embodiments that do not exhibit the effects of the present invention as comparative examples, respectively. Further, FIG. 5 shows the relationship between the area (S) of the porous oxide semiconductor layer containing a photosensitizing dye (having a rectangular shape) and the ratio of the length of the long side to the short side of the rectangle (L).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[1] 実施例1
(1) 電解液の調製
〔電解液処方1〕
N-メチルベンズイミダゾール2.6g、ヨウ化カリウム3.3g、1,3-ブチルメチルイミダゾリウムヨウ化物6.6gを、50mLのメスフラスコに入れ、γ―ブチロラクトンを全量で50mLになるように加えた。超音波洗浄機による振動により1時間撹拌したのち、24時間以上暗所に静置して、ヨウ素とヨウ化物との組み合わせからなる酸化還元対(I-/I3 -)を含まない電解液処方1を調製した。
〔電解液処方2〕
上記電解液処方1の組成に更にヨウ素0.5gを添加することにより、ヨウ素とヨウ化物との組み合わせからなる酸化還元対(I-/I3 -)を含む電解液を調整し、電解液処方2とした。
[1] Example 1
(1) Preparation of electrolytic solution [Electrolytic solution formulation 1]
Add 2.6 g of N-methylbenzimidazole, 3.3 g of potassium iodide, and 6.6 g of 1,3-butylmethylimidazolium iodide into a 50 mL volumetric flask, and add γ-butyrolactone to a total volume of 50 mL. It was. Electrolyte formulation containing no redox couple (I / I 3 ) consisting of a combination of iodine and iodide after stirring for 1 hour by vibration with an ultrasonic cleaner and then standing in the dark for at least 24 hours 1 was prepared.
[Electrolyte formulation 2]
By further adding 0.5 g of iodine to the composition of the electrolyte formulation 1, an electrolyte solution containing an oxidation-reduction pair (I / I 3 ) composed of a combination of iodine and iodide is prepared. 2.
(2) 色素溶液の調製
 ルテニウム錯体色素(N719、ソラロニクス社製)72mgを200mLのメスフラスコに入れた。脱水エタノール190mLを混合し、撹拌した。メスフラスコに栓をしたのち超音波洗浄器による振動により、60分間撹拌した。溶液を常温に保った後、脱水エタノールを加え、全量を200mLとすることで、色素溶液を調整した。
(2) Preparation of dye solution 72 mg of ruthenium complex dye (N719, manufactured by Solaronics) was placed in a 200 mL volumetric flask. 190 mL of dehydrated ethanol was mixed and stirred. After stoppering the volumetric flask, the mixture was stirred for 60 minutes by vibration with an ultrasonic cleaner. After keeping the solution at room temperature, dehydrated ethanol was added to adjust the total amount to 200 mL to prepare a dye solution.
(3) 光電極層の作製
透明基板(ポリエチレンナフタレートフィルム、厚み200μm)上に透明導電層(酸化インジウムスズ(ITO))をコートした透明導電性基板(シート抵抗13ohm/sq)上に、スクリーン印刷法により導電性銀ペースト(K3105、ペルノックス(株)製)を光電極セル幅に応じた間隔で印刷塗布し、150度の熱風循環型オーブン中で15分間加熱乾燥して集電線を作製した。
下塗り層は、上記透明導電性基板の集電線形成面を上にして塗布コーターにセットし、1.6%に希釈したオルガチックPC-600溶液(マツモトファインケミカル製)をワイヤーバーにより掃引速度(10mm/秒)で塗布し、10分間室温乾燥した後、さらに10分間150℃で加熱乾燥して作製した。
下塗り層を形成した透明導電性基板の下塗り層形成面に、光電極セル幅に応じた間隔でレーザー処理を行い、絶縁線を形成した。
ポリエステルフィルムに粘着層を塗工した保護フィルムを2段重ねしたマスクフィルム(下段:PC-542PA 藤森工業製、上段:NBO-0424 藤森工業製)を、多孔質半導体微粒子層を形成するための開口部(長さ:60mm、幅5mm)を打ち抜き加工した。加工済みマスクフィルムを、気泡が入らないように、下塗り層を形成した透明導電性基板の集電線形成面に貼合した。
高圧水銀ランプ(定格ランプ電力 400W)光源をマスク貼合面から10cmの距離に置き、電磁波を1分間照射後直ちに、ポリマー成分を含まないバインダーフリー酸化チタンペースト(PECC-C01-06、ペクセル・テクノロジーズ(株)製)をベーカー式アプリケータにより塗布した。ペーストを常温で10分間乾燥させた後、マスクフィルムの上側の保護フィルム(NBO-0424 藤森工業製)を剥離除去し、150度の熱風循環式オーブン中でさらに5分間加熱乾燥し、多孔質半導体微粒子層(長さ:60mm、幅5mm)を形成した。
その後、多孔質半導体微粒子層(長さ:60mm、幅5mm)を形成した透明導電性基板を、調製した色素溶液(40℃)に浸し、軽く攪拌しながら、色素を吸着させた。90分後、色素吸着済み酸化チタン膜を色素吸着容器から取り出し、エタノールにて洗浄して乾燥させ、残りのマスクフィルムを剥離除去して、光電極を作製した。
(3) Production of photoelectrode layer A screen on a transparent conductive substrate (sheet resistance 13 ohm / sq) coated with a transparent conductive layer (indium tin oxide (ITO)) on a transparent substrate (polyethylene naphthalate film, thickness 200 μm) A conductive silver paste (K3105, manufactured by Pernox Co., Ltd.) was printed and applied at intervals according to the photoelectrode cell width by a printing method, and heat-dried in a hot air circulation oven at 150 degrees for 15 minutes to produce a current collector. .
The undercoat layer was set on a coating coater with the current collector forming surface of the transparent conductive substrate facing up, and an organic PC-600 solution (manufactured by Matsumoto Fine Chemical) diluted to 1.6% was swept with a wire bar (10 mm). / Second), dried at room temperature for 10 minutes, and further dried by heating at 150 ° C. for 10 minutes.
On the undercoat layer forming surface of the transparent conductive substrate on which the undercoat layer was formed, laser treatment was performed at intervals according to the photoelectrode cell width to form insulating lines.
A mask film (bottom: PC-542PA, manufactured by Fujimori Kogyo Co., Ltd., top: NBO-0424, manufactured by Fujimori Kogyo Co., Ltd.) with a protective film coated with an adhesive layer on a polyester film is used to form a porous semiconductor fine particle layer. A part (length: 60 mm, width 5 mm) was punched out. The processed mask film was bonded to the current collector forming surface of the transparent conductive substrate on which the undercoat layer was formed so that air bubbles would not enter.
A high-pressure mercury lamp (rated lamp power: 400 W) is placed at a distance of 10 cm from the mask bonding surface, and immediately after irradiation with electromagnetic waves for 1 minute, a binder-free titanium oxide paste that does not contain polymer components (PECC-C01-06, Pexel Technologies) Co., Ltd.) was applied with a Baker type applicator. After the paste is dried at room temperature for 10 minutes, the protective film on the upper side of the mask film (NBO-0424, manufactured by Fujimori Kogyo Co., Ltd.) is peeled off and dried in a hot air circulation oven at 150 ° C. for 5 minutes. A fine particle layer (length: 60 mm, width 5 mm) was formed.
Thereafter, the transparent conductive substrate on which the porous semiconductor fine particle layer (length: 60 mm, width 5 mm) was formed was immersed in the prepared dye solution (40 ° C.), and the dye was adsorbed while gently stirring. After 90 minutes, the dye-adsorbed titanium oxide film was taken out from the dye-adsorption container, washed with ethanol and dried, and the remaining mask film was peeled and removed to produce a photoelectrode.
(4)対向電極層の作製
 透明基板(ポリエチレンナフタレートフィルム、厚み200μm)上に透明導電層(酸化インジウムスズ(ITO))をコートした透明導電性基板(シート抵抗13ohm/sq)の導電面に、開口部(長さ:60mm、幅5mm)を打ち抜き加工した金属製マスクを重ね合わせ、スパッタ法により白金膜パターン(触媒層)を形成し、触媒層形成部分が72%程度の光透過率を有する対向電極層を得た。このとき、上記光電極層と対向電極層とを、お互いの導電面を向かい合わせて重ね合せた時、酸化チタンパターン(多孔質半導体微粒子層形成部)と白金パターン(触媒層形成部分)とは一致する構造とした。
(4) Preparation of counter electrode layer On the conductive surface of a transparent conductive substrate (sheet resistance 13 ohm / sq) coated with a transparent conductive layer (indium tin oxide (ITO)) on a transparent substrate (polyethylene naphthalate film, thickness 200 μm) A metal mask with punched openings (length: 60 mm, width: 5 mm) is overlaid, and a platinum film pattern (catalyst layer) is formed by sputtering, and the catalyst layer forming portion has a light transmittance of about 72%. A counter electrode layer was obtained. At this time, when the photoelectrode layer and the counter electrode layer are overlapped with their conductive surfaces facing each other, the titanium oxide pattern (porous semiconductor fine particle layer forming portion) and the platinum pattern (catalyst layer forming portion) are Matched structure.
(5)色素増感光電変換素子の作製
 対向電極層の触媒層形成面を表面として、アルミ製吸着板上に真空ポンプを使って固定し、液状の光硬化型封止剤((株)スリーボンド製)を自動塗布ロボットにより白金膜パターンの外周部分に塗布した。その後、白金膜パターン部分に上記のように調整した電解液(電解液処方1)を所定量塗布し、自動貼り合せ装置を用いて長方形の白金パターンと同型の酸化チタンパターンが向かい合う構造となるように、減圧環境中で重ね合せ、光電極側からメタルハライドランプにより光照射を行ない、続いて白金電極側から光照射を行った。その後、貼り合せ後の基板内に配置された複数個の光電変換素子を各々切出し、取出し電極部分に導電性銅泊テープ(CU7636D、ソニーケミカル&インフォメーションデバイス(株)製)を貼ることで色素増感光電変換素子を作製した。
(5) Preparation of dye-sensitized photoelectric conversion element The surface of the counter electrode layer that is the catalyst layer forming surface is fixed on an aluminum adsorption plate using a vacuum pump, and a liquid photo-curing sealant (Three Bond Co., Ltd.) Was applied to the outer periphery of the platinum film pattern by an automatic application robot. Then, a predetermined amount of the electrolyte solution (electrolyte formulation 1) prepared as described above is applied to the platinum film pattern portion, and a rectangular platinum pattern and a titanium oxide pattern of the same type face each other using an automatic bonding apparatus. Then, they were superposed in a reduced pressure environment, irradiated with light from the photoelectrode side with a metal halide lamp, and then irradiated with light from the platinum electrode side. After that, a plurality of photoelectric conversion elements arranged in the substrate after bonding are cut out, and a dye is increased by sticking a conductive copper anchor tape (CU7636D, manufactured by Sony Chemical & Information Device Co., Ltd.) to the extraction electrode part. A photoelectric conversion element was produced.
(6)色素増感太陽電池素子の評価
 光源として、150Wキセノンランプ光源装置にAM1.5Gフィルタを装着した擬似太陽光源(PEC-L11型、ペクセル・テクノロジーズ(株)製)を用いた。光量は、1sun(約10万lux AM1.5G、100mWcm-2(JIS C 8912のクラスA))に調整した。作製した色素増感太陽電池素子をソースメータ(2400型ソースメータ、Keithley社製)に接続した。電流電圧特性は、1sunの光照射下、バイアス電圧を、0Vから0.8Vまで、0.01V単位で変化させながら出力電流を測定した。同様にバイアス電圧を、逆方向に0.8Vから0Vまでステップさせる測定も行い、順方向と逆方向の測定の平均値を光電流データとして、各長方形セルの変換効率を求めた。 次に、上記疑似太陽光源にNDフィルタを追加装着することで光量を500luxに調整した後、前記と同様な測定方法で500luxにおける変換効率を求めた。
(6) Evaluation of dye-sensitized solar cell element As a light source, a pseudo solar light source (PEC-L11 type, manufactured by Pexel Technologies Co., Ltd.) in which an AM1.5G filter was attached to a 150 W xenon lamp light source device was used. The amount of light was adjusted to 1 sun (approximately 100,000 lux AM1.5G, 100 mWcm-2 (JIS C 8912 class A)). The produced dye-sensitized solar cell element was connected to a source meter (type 2400 source meter, manufactured by Keithley). For the current-voltage characteristics, the output current was measured while changing the bias voltage from 0 V to 0.8 V in units of 0.01 V under 1 sun light irradiation. Similarly, the bias voltage was measured by stepping in the reverse direction from 0.8 V to 0 V, and the conversion efficiency of each rectangular cell was obtained using the average value of the forward and reverse measurements as photocurrent data. Next, after adding an ND filter to the pseudo solar light source to adjust the light amount to 500 lux, the conversion efficiency at 500 lux was obtained by the same measurement method as described above.
[2] 実施例2~10、比較例1~25
マスクフィルムの開口部のサイズを変えた他、実施例1と同様にした。
このようにして求めた10万luxと500luxにおける各長方形セルの変換効率を表1に示した。また、光電極を構成する増感色素を担持させた多孔質半導体微粒子層の平面形状、具体的には面積(mm2)と短辺(幅)に対する長辺(長さ)の関係を実施例と比較例について図5に示した。
[2] Examples 2 to 10, Comparative Examples 1 to 25
The same procedure as in Example 1 was performed except that the size of the opening of the mask film was changed.
Table 1 shows the conversion efficiencies of the rectangular cells obtained in 100,000 lux and 500 lux. Further, the planar shape of the porous semiconductor fine particle layer supporting the sensitizing dye constituting the photoelectrode, specifically, the relationship between the area (mm2) and the long side (length) with respect to the short side (width) is compared with the examples. A comparative example is shown in FIG.
[3] 比較例26、27
電解液を電解液処方2と変えた他、実施例2、6と同様にした。
このようにして求めた10万luxと500luxにおける各長方形セルの変換効率を表2に示した。
表1、表2及び図5の結果から、以下のことが明らかである。
[3] Comparative Examples 26 and 27
The same procedure as in Examples 2 and 6 was conducted except that the electrolyte solution was changed to the electrolyte solution formulation 2.
Table 2 shows the conversion efficiencies of the rectangular cells obtained in 100,000 lux and 500 lux.
From the results of Tables 1 and 2 and FIG. 5, the following is clear.
(1)色素増感型光電変換素子の変換効率は、光量(500luxと10万lux)と光電極を構成する多孔質半導体微粒子層の形状によって異なる。そして、光電極を構成する多孔質半導体微粒子層の形状が特定条件(面積と短辺に対する長辺比の関係)である場合に、変換効率は低光量(500lux)と高光量(10万LUX)のいずれにおいても高くなる。これは、光電変換効率に対する光量変化の依存性が小さい、換言すれば、光量変化が大幅に変化しても変換効率が一定で、かつ変換効率が高い色素増感型光電変換素子であることを示す(実施例と比較例との対比)。
(2)また上記の変換効率に対する光量変化の依存性が小さい色素増感型光電変換素子は、電解液層を構成する電解液が、ヨウ素とヨウ化物との組み合わせからなる酸化還元対(I-/I3 -)を含まない場合に達成できる(実施例2,6と比較例26、27との対比)。
(1) The conversion efficiency of the dye-sensitized photoelectric conversion element varies depending on the light amount (500 lux and 100,000 lux) and the shape of the porous semiconductor fine particle layer constituting the photoelectrode. When the shape of the porous semiconductor fine particle layer constituting the photoelectrode is a specific condition (relationship between the area and the long side ratio to the short side), the conversion efficiency is low light amount (500 lux) and high light amount (100,000 LUX). It becomes high in any. This is a dye-sensitized photoelectric conversion element that has a small dependency on the photoelectric conversion efficiency of the light amount change, in other words, the conversion efficiency is constant and the conversion efficiency is high even if the light amount change greatly changes. It shows (contrast with an Example and a comparative example).
(2) Further, the dye-sensitized photoelectric conversion element having a small dependency of the change in the light amount on the conversion efficiency has a redox pair (I −) in which the electrolytic solution constituting the electrolytic solution layer is a combination of iodine and iodide. / I 3 ) can be achieved (contrast between Examples 2 and 6 and Comparative Examples 26 and 27).
本願発明に従う色素増感型光電変換素子では、低照度(500lux)から高照度(10万lux)に亘る広範囲で高い光電変換効率が得られ、かつ光電変化効率の変化が小さくい。 In the dye-sensitized photoelectric conversion element according to the present invention, high photoelectric conversion efficiency is obtained in a wide range from low illuminance (500 lux) to high illuminance (100,000 lux), and the change in photoelectric change efficiency is small.
1   色素増感型光電変換素子
11     透明基板
12     透明導電層
13     下塗り層
14     増感色素を担持した多孔質半導体微粒子層
15  光電極層
16  電解液層
17  触媒層
18  対向電極層
19  封止層
20  集電線
21  取り出し電極
2   マスクフィルムを貼合した透明導電性基板
22  マスクフィルム
23  マスクフィルムの開放部分
3   直列接続色素増感型太陽電池モジュール
31  色素増感型光電変換素子
32  集電線
33  導電性微粒子
34  電極接続部
35  封止層
36  取出し電極 

 
DESCRIPTION OF SYMBOLS 1 Dye-sensitized photoelectric conversion element 11 Transparent substrate 12 Transparent conductive layer 13 Undercoat layer 14 Porous semiconductor fine particle layer 15 carrying sensitizing dye 15 Photoelectrode layer 16 Electrolyte layer 17 Catalyst layer 18 Counter electrode layer 19 Sealing layer 20 Current collector 21 Extraction electrode 2 Transparent conductive substrate 22 bonded with mask film Mask film 23 Open portion 3 of mask film Series-connected dye-sensitized solar cell module 31 Dye-sensitized photoelectric conversion element 32 Current collector 33 Conductive fine particles 34 Electrode connection portion 35 Sealing layer 36 Extraction electrode

Claims (4)

  1. 透明基材と、前記透明基材上に形成された透明電極層と、前記透明電極層上に形成され、光増感色素を含む多孔質酸化物半導体層と、前記酸化物半導体層に対向する基材と、前記対向基材の前記酸化物半導体側の表面上に形成された対向電極層と、前記透明電極層と前記対向電極層の間に設けられた電解液層と、前記電解液層の周囲に設けられ、前記電解液層を封止する素子シール部とを有する色素増感型光電変換素子において、
    前記光増感色素を含む多孔質酸化物半導体層の平面形状が矩形であって、
    前記矩形の面積(S)が300mm2~600mm2で、かつ前記矩形の短辺に対する長辺の長さの比(L)が、下記式(1)および(2)を満足する領域に含まれることを特徴とする色素増感型光電変換素子。
    Figure JPOXMLDOC01-appb-M000001
    式(1)および式(2)において、Sは、増感色素を含む多孔質酸化物半導体層の矩形面積(mm2)、Lは、増感色素を含む多孔質酸化物半導体層の矩形の短辺に対する長辺の長さの比である。
    A transparent substrate, a transparent electrode layer formed on the transparent substrate, a porous oxide semiconductor layer formed on the transparent electrode layer and containing a photosensitizing dye, and facing the oxide semiconductor layer A substrate, a counter electrode layer formed on the surface of the counter substrate on the oxide semiconductor side, an electrolyte layer provided between the transparent electrode layer and the counter electrode layer, and the electrolyte layer In the dye-sensitized photoelectric conversion element that is provided around the element and has an element seal portion that seals the electrolyte layer,
    The planar shape of the porous oxide semiconductor layer containing the photosensitizing dye is rectangular,
    The area (S) of the rectangle is 300 mm 2 to 600 mm 2 , and the ratio (L) of the length of the long side to the short side of the rectangle is included in the region satisfying the following expressions (1) and (2). The dye-sensitized photoelectric conversion element characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-M000001
    In the formulas (1) and (2), S is a rectangular area (mm 2 ) of the porous oxide semiconductor layer containing the sensitizing dye, and L is a rectangular shape of the porous oxide semiconductor layer containing the sensitizing dye. The ratio of the length of the long side to the short side.
  2. 前記電解液層を構成する電解液が、ヨウ素とヨウ化物との組み合わせからなる酸化還元対(I-/I3 -)を含まないことを特徴とする請求項1に記載の色素増感型光電変換素子。 2. The dye-sensitized photoelectric film according to claim 1, wherein the electrolyte solution constituting the electrolyte solution layer does not contain a redox pair (I / I 3 ) composed of a combination of iodine and iodide. Conversion element.
  3. 請求項1または2に記載した色素増感型光電変換素子を並列または直列に接続したことを特徴とする色素増感型太陽電池モジュール。 A dye-sensitized solar cell module, wherein the dye-sensitized photoelectric conversion elements according to claim 1 or 2 are connected in parallel or in series.
  4. 前記色素増感型光電変化素子を直列に接続した色素増感型太陽電池モジュールが、集電線と導電微粒子からなる電極接続部を介して、前記色素増感型光電変化素子を直列に接続したものであることを特徴とする請求項4に記載する色素増感型太陽電池モジュール。  A dye-sensitized solar cell module in which the dye-sensitized photoelectric change elements are connected in series, and the dye-sensitized photoelectric change elements are connected in series via an electrode connection portion made of a current collector and conductive fine particles. The dye-sensitized solar cell module according to claim 4, wherein
PCT/JP2012/067076 2011-07-06 2012-07-04 Dye sensitization type photoelectric conversion element and dye sensitization type solar cell module WO2013005770A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-150177 2011-07-06
JP2011150177A JP5292549B2 (en) 2011-07-06 2011-07-06 Dye-sensitized solar cell module and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2013005770A1 true WO2013005770A1 (en) 2013-01-10

Family

ID=47437117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067076 WO2013005770A1 (en) 2011-07-06 2012-07-04 Dye sensitization type photoelectric conversion element and dye sensitization type solar cell module

Country Status (2)

Country Link
JP (1) JP5292549B2 (en)
WO (1) WO2013005770A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157060A1 (en) * 2013-03-29 2014-10-02 新日鉄住金化学株式会社 Solar cell and manufacturing method for dye-sensitized solar cell
JP2014189883A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
JP2014189882A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
WO2019065265A1 (en) 2017-09-29 2019-04-04 日本ゼオン株式会社 Environmental power generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236637A (en) * 2005-02-23 2006-09-07 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
JP2006244830A (en) * 2005-03-02 2006-09-14 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006324090A (en) * 2005-05-18 2006-11-30 Kyocera Corp Photoelectric conversion module and photovoltaic generator using it
JP2007280906A (en) * 2006-04-12 2007-10-25 Sony Corp Functional device and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006236637A (en) * 2005-02-23 2006-09-07 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
JP2006244830A (en) * 2005-03-02 2006-09-14 Sharp Corp Dye-sensitized solar cell and dye-sensitized solar cell module
JP2006324090A (en) * 2005-05-18 2006-11-30 Kyocera Corp Photoelectric conversion module and photovoltaic generator using it
JP2007280906A (en) * 2006-04-12 2007-10-25 Sony Corp Functional device and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189883A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
JP2014189882A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
WO2014157060A1 (en) * 2013-03-29 2014-10-02 新日鉄住金化学株式会社 Solar cell and manufacturing method for dye-sensitized solar cell
WO2019065265A1 (en) 2017-09-29 2019-04-04 日本ゼオン株式会社 Environmental power generator
US11463039B2 (en) 2017-09-29 2022-10-04 Zeon Corporation Energy harvester

Also Published As

Publication number Publication date
JP2013016435A (en) 2013-01-24
JP5292549B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP6031657B2 (en) Photoelectric conversion device using perovskite compound and method for producing the same
JP6069991B2 (en) Method for producing photoelectric conversion element using perovskite compound
JP5358790B2 (en) Photoelectrode for dye-sensitized photoelectric conversion element and method for producing the same
JP2005235725A (en) Dye-sensitized solar cell module
JP2014049551A (en) Photoelectric conversion element using perovskite compound and method of manufacturing the same
JP2014229747A (en) Photoelectric conversion element using perovskite compound and method for manufacturing the same
JP5681716B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5292549B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP6753310B2 (en) Viscous dispersion and its manufacturing method, as well as porous semiconductor electrode substrates and dye-sensitized solar cells
JP4247820B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP2004161589A (en) Method of manufacturing titanium oxide sol and titanium oxide fine particle, and photoelectric conversion device
JP5725438B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2013201099A (en) Dye-sensitized solar cell for low illuminance
JP2012156096A (en) Photoelectric conversion element, and dye-sensitized solar cell comprising the same
JP6201317B2 (en) Dye-sensitized photoelectric conversion element and dye-sensitized solar cell
JP2004010403A (en) Titanium oxide fine particle with multiple structure, method of producing the same, photoelectric conversion element and photoelectric cell comprising the same
JP5467237B2 (en) Dye-sensitized photoelectric conversion device and method for producing dye-sensitized solar cell using the same
JP5343242B2 (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element and photovoltaic cell
JP2015028857A (en) Dye-sensitized photo-electric conversion element and method for manufacturing dye-sensitized solar battery using the same
JP5651887B2 (en) Dye-sensitized photoelectric conversion element and dye-sensitized solar cell
JP2012028298A (en) Photoelectric conversion element, and dye-sensitized solar cell using the same
JP2004238213A (en) Method of manufacturing titanium oxide particle and photoelectric conversion device using the same
WO2013015067A1 (en) Photoelectric-conversion device, electronic instrument and building
JP6655709B2 (en) Photoelectric conversion element and photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807949

Country of ref document: EP

Kind code of ref document: A1