WO2014156927A1 - Resin sheet for electronic device sealing and production method for electronic device package - Google Patents

Resin sheet for electronic device sealing and production method for electronic device package Download PDF

Info

Publication number
WO2014156927A1
WO2014156927A1 PCT/JP2014/057691 JP2014057691W WO2014156927A1 WO 2014156927 A1 WO2014156927 A1 WO 2014156927A1 JP 2014057691 W JP2014057691 W JP 2014057691W WO 2014156927 A1 WO2014156927 A1 WO 2014156927A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electronic device
resin sheet
resin
sealing
Prior art date
Application number
PCT/JP2014/057691
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 英志
祐作 清水
智絵 飯野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to SG11201507887YA priority Critical patent/SG11201507887YA/en
Priority to CN201480018974.0A priority patent/CN105102512A/en
Priority to KR1020157022302A priority patent/KR20150136472A/en
Publication of WO2014156927A1 publication Critical patent/WO2014156927A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS

Definitions

  • the present invention relates to an electronic device sealing resin sheet and an electronic device package manufacturing method.
  • an electronic device package typically, one or a plurality of electronic devices fixed to a substrate or the like are sealed with a sealing resin, and the sealing body is packaged in units of electronic devices as necessary. The procedure of dicing is adopted.
  • Moisture present in the sealing resin is vaporized by heating during thermosetting. If a large amount of moisture is present in the sealing resin, cracks may occur in the sealing resin due to this vapor pressure. For this reason, a low hygroscopic sealing resin is required.
  • a method for reducing hygroscopicity for example, there is a method of blending silica.
  • Patent Document 1 describes that a resin sheet is formed by applying a varnish containing a resin, silica, a silane coupling agent, and the like onto a film and then drying the coating film.
  • a varnish containing a resin, silica, a silane coupling agent, and the like onto a film and then drying the coating film.
  • sufficient consideration has not been given to hygroscopicity.
  • An object of the present invention is to solve the above-mentioned problems and provide a resin sheet for encapsulating electronic devices with low hygroscopicity.
  • the present invention includes a filler, has a water absorption of 0.3% by weight or less after being left in an atmosphere of 85 ° C. and 85% RH for 168 hours, and the filler is substantially dispersed in a primary particle state.
  • the present invention relates to an electronic device sealing resin sheet.
  • the resin sheet for encapsulating an electronic device of the present invention has a water absorption rate of 0.3% by weight or less and low hygroscopicity. Therefore, an electronic device package excellent in moisture resistance reliability can be manufactured.
  • the filler is preferably treated with a silane coupling agent. Thereby, it becomes easy to disperse the filler in a state of primary particles. Moreover, since such a filler has high hydrophobicity and such a filler can be disperse
  • the content of the filler in the electronic device sealing resin sheet is preferably 70 to 90% by volume. Thereby, hygroscopicity can be reduced.
  • the present invention also provides a sealing step in which the electronic device sealing resin sheet is laminated on the electronic device so as to cover one or more electronic devices, and the electronic device sealing resin sheet is cured.
  • the present invention relates to a method for manufacturing an electronic device package, which includes a sealing body forming step of forming.
  • FIG. 1 is a cross-sectional view schematically showing a resin sheet 11 according to an embodiment of the present invention.
  • the resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be performed on the support 11a in order to easily peel off the resin sheet 11.
  • PET polyethylene terephthalate
  • the resin sheet 11 has a water absorption of 0.3% by weight or less, preferably 0.25% by weight or less after being left for 168 hours in an atmosphere of 85 ° C. and 85% RH. Since it is 0.3% by weight or less, it has low hygroscopicity. Therefore, an electronic device package excellent in moisture resistance reliability can be manufactured.
  • the lower limit of the water absorption rate is not particularly limited and is, for example, 0.05% by weight or more.
  • the water absorption after standing for 168 hours in an atmosphere of 85 ° C. and 85% RH can be measured by the method described in Examples.
  • the filler is substantially dispersed in the form of primary particles. For this reason, the above-mentioned water absorption rate can be achieved easily.
  • the fact that the filler is substantially dispersed in the form of primary particles means that there is substantially no aggregate. Specifically, it can be measured by the method described in the examples, and the evaluation of filler dispersibility described in the examples is good.
  • filler processed with the silane coupling agent is preferable. Thereby, it becomes easy to disperse the filler in a state of primary particles.
  • fillers are highly hydrophobic (high hydrophobicity because the silane coupling agent is bonded to the hydrophilic group on the filler surface), and such fillers can be dispersed substantially in the form of primary particles. The hygroscopicity of the resin sheet 11 can be effectively reduced.
  • an inorganic filler is preferable.
  • the inorganic filler include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride, and boron nitride.
  • silica and alumina are preferable and silica is more preferable because of excellent reactivity with the silane coupling agent.
  • Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
  • the average primary particle diameter of the filler is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more. When it is 1 ⁇ m or more, it is easy to obtain flexibility and flexibility of the resin sheet.
  • the average primary particle diameter of the filler is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. When it is 40 ⁇ m or less, it is easy to increase the filling rate of the filler.
  • the average primary particle diameter can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
  • hydrolyzable group examples include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group.
  • a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
  • organic functional group examples include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group.
  • an epoxy group is preferable because it easily reacts with an epoxy resin or a phenol resin.
  • silane coupling agent examples include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc.
  • vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyl
  • Styryl group-containing silane coupling agent 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-a
  • the method for treating the filler with the silane coupling agent is not particularly limited, and examples include a wet method in which the filler and the silane coupling agent are mixed in a solvent, and a dry method in which the filler and the silane coupling agent are treated in a gas phase. It is done.
  • the treatment amount of the silane coupling agent is not particularly limited, but it is preferable to treat 0.1 to 1 part by weight of the silane coupling agent with respect to 100 parts by weight of the untreated filler.
  • the content of the filler in the resin sheet 11 is preferably 70% by volume or more, and more preferably 74% by volume or more. Hygroscopicity can be reduced as it is 70 volume% or more. On the other hand, the filler content is preferably 90% by volume or less, more preferably 85% by volume or less. A softness
  • the filler content can also be explained by using “% by weight” as a unit. Typically, the content of silica will be described in units of “% by weight”. Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows. That is, the content of silica in the resin sheet 11 is preferably 81% by weight or more, and more preferably 84% by weight or more. 94 weight% or less is preferable and, as for content of the silica in the resin sheet 11, 91 weight% or less is more preferable.
  • the preferred range of the alumina content is, for example, as follows. That is, the content of alumina in the resin sheet 11 is preferably 88% by weight or more, and more preferably 90% by weight or more. 97 weight% or less is preferable and, as for content of the alumina in the resin sheet 11, 95 weight% or less is more preferable.
  • Resin sheet 11 preferably contains an epoxy resin and a phenol resin. Thereby, favorable thermosetting is obtained.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy equivalent is 150 to 250 and the softening point or the melting point is 50 to 130 ° C., solid at room temperature. From the viewpoint, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • phenolic resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the total content of the epoxy resin and the phenol resin in the resin sheet 11 is preferably 2.0% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to an electronic device, a board
  • the total content of the epoxy resin and the phenol resin in the resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. If it is 20% by weight or less, the hygroscopicity can be kept low.
  • the resin sheet 11 preferably contains a thermoplastic resin. Thereby, the handling property in a non-hardened state and the low stress property of hardened
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity.
  • Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer Can be mentioned.
  • These thermoplastic resins can be used alone or in combination of two or more. Of these, a styrene-isobutylene-styrene block copolymer is preferred from the viewpoint of low stress and low water absorption.
  • the content of the thermoplastic resin in the resin sheet 11 is preferably 1.0% by weight or more, and more preferably 1.5% by weight or more.
  • flexibility and flexibility are acquired as it is 1.0 weight% or more.
  • the content of the thermoplastic resin in the resin sheet 11 is preferably 3.5% by weight or less, and more preferably 3% by weight or less. Adhesiveness with an electronic device or a board
  • substrate can be improved as it is 3.5 weight% or less.
  • the resin sheet 11 preferably contains a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate
  • 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • 2-phenyl-4,5-dihydroxymethylimidazole is preferable because the curing reaction does not rapidly proceed even when the temperature rises during kneading and the resin sheet 11 can be satisfactorily produced.
  • the content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • Resin sheet 11 preferably contains a flame retardant component. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation.
  • a flame retardant component for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do. Of these, phosphazene-based flame retardants are preferred, and compounds represented by formula (1) or formula (2) are preferred because they are excellent in flame retardancy and strength after curing.
  • R 1 and R 2 are the same or different and are monovalent having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group, an allyl group, or these groups
  • R 3 and R 5 are the same or different and are monovalent having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group, an allyl group, or these groups
  • R 4 represents an organic group
  • R 4 represents a divalent organic group having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group
  • y represents 3 to 25 Represents an integer
  • z represents an integer of 3 to 25.
  • alkoxy group for R 1 and R 2 examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, alkoxy groups having 4 to 10 carbon atoms are preferable.
  • Examples of the phenoxy group for R 1 and R 2 include a group represented by the formula (3).
  • R 11 represents hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, a glycidyl group, or a monovalent organic group having at least one group selected from the group consisting of these groups.
  • Examples of the alkyl group for R 11 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. And heptyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, octadecyl and the like.
  • Examples of the alkoxy group for R 11 include the same groups as the alkoxy groups for R 1 and R 2 .
  • a phenoxy group is preferable and a group represented by the formula (3) is more preferable because flame retardancy and strength after curing can be favorably obtained.
  • X represents an integer of 3 to 25, but 3 to 10 is preferable and 3 to 4 is more preferable because flame retardancy and strength after curing can be obtained satisfactorily.
  • examples of the alkoxy group of R 3 and R 5 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, alkoxy groups having 4 to 10 carbon atoms are preferable.
  • Examples of the phenoxy group for R 3 and R 5 include a group represented by the formula (3).
  • the monovalent organic group having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group in R 3 and R 5 is not particularly limited.
  • a phenoxy group is preferable and a group represented by the formula (3) is more preferable because flame retardancy and strength after curing can be favorably obtained.
  • Examples of the alkoxy group contained in the divalent organic group represented by R 4 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, alkoxy groups having 4 to 10 carbon atoms are preferable.
  • Examples of the phenoxy group contained in the divalent organic group represented by R 4 include a group represented by the formula (3).
  • Y represents an integer of 3 to 25, but 3 to 10 is preferable because flame retardancy and strength after curing can be obtained satisfactorily.
  • Z represents an integer of 3 to 25, but 3 to 10 is preferable because flame retardancy and strength after curing can be obtained satisfactorily.
  • the content of the phosphorus element contained in the phosphazene flame retardant is preferably 12% by weight or more.
  • the content of the flame retardant component is preferably 10% by weight or more, more preferably 15% by weight or more, in 100% by weight of the organic component (all components excluding the filler).
  • a flame retardance is favorably acquired as it is 10 weight% or more.
  • the content of the flame retardant component is preferably 30% by weight or less, and more preferably 25% by weight or less. When the content is 30% by weight or less, there is a tendency that there is little decrease in physical properties of the cured product (specifically, physical properties such as glass transition temperature and high-temperature resin strength).
  • the resin sheet 11 preferably contains a pigment.
  • the pigment is not particularly limited, and examples thereof include carbon black.
  • the content of the pigment in the resin sheet 11 is preferably 0.1 to 2% by weight. When the content is 0.1% by weight or more, good marking properties can be obtained. When the content is 2% by weight or less, a cured product strength is sufficiently obtained.
  • the resin sheet 11 may contain a release agent. Since the release agent is usually hydrophobic and water repellent, the hygroscopicity can be reduced by blending it. However, since the resin sheet 11 is a sheet shape, it is not necessary to mix
  • the method for producing the resin sheet 11 is not particularly limited, but a method of preparing a kneaded product of the above-described components and plastically processing the obtained kneaded product into a sheet shape is preferable. Thereby, a filler can be filled highly and hygroscopicity can be reduced. Moreover, it becomes easy to disperse the filler in the state of primary particles.
  • the above-described components are melt-kneaded with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • the kneaded material is prepared by the above, and the obtained kneaded material is plastically processed into a sheet shape.
  • the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 to 150 ° C., and preferably 40 to 140 ° C., more preferably 60 to 120 in consideration of the thermosetting property of the epoxy resin. ° C.
  • the time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes.
  • the kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere).
  • the pressure under reduced pressure is preferably 0.1 kg / cm 2 or less, more preferably 0.05 kg / cm 2 or less.
  • the lower limit of the pressure under reduced pressure is not particularly limited, but is, for example, 1 ⁇ 10 ⁇ 4 kg / cm 2 or more.
  • the kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling.
  • the plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method.
  • the plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
  • the thickness of the resin sheet 11 is not particularly limited, but is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more. Further, the thickness of the resin sheet 11 is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less. An electronic device can be favorably sealed as it is in the said range.
  • the resin sheet 11 may have a single-layer structure or a multilayer structure in which two or more resin sheets are laminated.
  • a single-layer structure is preferable because it has a small surface area and easily absorbs moisture.
  • the resin sheet 11 has a smaller surface area than a conventional tablet-shaped sealing resin, it is easy to reduce hygroscopicity.
  • the resin sheet 11 is a SAW (Surface Acoustic Wave) filter; a MEMS (Micro Electro Mechanical Systems) such as a pressure sensor and a vibration sensor; an IC (integrated circuit) such as an LSI; a semiconductor such as a transistor; a capacitor; an electronic device such as a resistor Used for sealing.
  • SAW Surface Acoustic Wave
  • MEMS Micro Electro Mechanical Systems
  • IC integrated circuit
  • semiconductor such as a transistor
  • a capacitor an electronic device such as a resistor Used for sealing.
  • it can use suitably for the sealing of the electronic device (specifically SAW filter, MEMS) which needs hollow sealing, and can use it especially suitably for sealing of a SAW filter.
  • the sealing method is not particularly limited, and examples thereof include a method in which an uncured resin sheet 11 is laminated on a substrate so as to cover an electronic device on the substrate, and then the resin sheet 11 is cured and sealed. . It does not specifically limit as a board
  • substrate For example, a printed wiring board, a ceramic substrate, a silicon substrate, a metal substrate etc. are mentioned.
  • FIGS. 2A to 2C are diagrams each schematically showing one step of a method for manufacturing an electronic device package according to an embodiment of the present invention.
  • the SAW filter 13 mounted on the printed wiring board 12 is hollow-sealed with the resin sheet 11 to produce the electronic device package 18.
  • a printed wiring board 12 on which a plurality of SAW filters 13 are mounted is prepared (see FIG. 2A).
  • the SAW filter 13 can be formed by dicing a piezoelectric crystal on which predetermined comb-shaped electrodes are formed by a known method.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • the SAW filter 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps.
  • a hollow portion 14 is maintained between the SAW filter 13 and the printed wiring board 12 so as not to inhibit the propagation of surface acoustic waves on the surface of the SAW filter.
  • the distance between the SAW filter 13 and the printed wiring board 12 can be set as appropriate, and is generally about 15 to 50 ⁇ m.
  • the resin sheet 11 is laminated on the printed wiring board 12 so as to cover the SAW filter 13, and the SAW filter 13 is resin-sealed with the resin sheet 11 (see FIG. 2B).
  • the resin sheet 11 functions as a sealing resin for protecting the SAW filter 13 and its accompanying elements from the external environment.
  • the method of laminating the resin sheet 11 on the printed wiring board 12 is not particularly limited, and can be performed by a known method such as hot press or laminator.
  • hot press conditions the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C.
  • the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa
  • the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions for example, 0.1 to 5 kPa).
  • sealing body forming process In the sealing body forming step, the resin sheet 11 is thermally cured to form the sealing body 15 (see FIG. 2B).
  • the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • you may pressurize as needed Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more.
  • the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
  • a substrate mounting step can be performed in which rewiring and bumps are formed on the electronic device package 18 and mounted on a separate substrate (not shown).
  • a known apparatus such as a flip chip bonder or a die bonder can be used.
  • Epoxy resin 1 YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
  • Epoxy resin 2 EPPN-501HY (triphenylmethane type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
  • Epoxy resin 3 YL980 (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation Phenol resin 1: MEH-7851-SS manufactured by Meiwa Kasei Co., Ltd.
  • Phenol resin 2 ND564 manufactured by Showa Polymer Co., Ltd.
  • Thermoplastic resin 1 SIBSTER 072T (styrene-isobutylene-styrene block copolymer) manufactured by Kaneka Corporation
  • Thermoplastic resin 2 SG-P3 manufactured by Nagase ChemteX Corporation
  • Silane coupling agent treated filler FB-9454FC (fused spherical silica, average primary particle size 20 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Carbon black # 20 manufactured by Mitsubishi Chemical Flame retardant: FP-100 manufactured by Fushimi Pharmaceutical (phosphazene flame retardant: compound represented by formula (4)) (In the formula, m represents an integer of 3 to 4.)
  • Curing accelerator 1 TPP-K (tetraphenylphosphonium tetraphenylborate) manufactured by Hokuko Chemical Co., Ltd.
  • Curing accelerator 2 TPP-MK (tetraphenylphosphonium tetra-p-tolylborate) manufactured by Hokuko Chemical Co., Ltd.
  • Examples 1-2 and Comparative Example 2 Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Subsequently, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a resin sheet having a thickness of 200 ⁇ m.
  • the cross section (cross section cut in the thickness direction) of the resin sheet was observed with an SEM, and the presence or absence of aggregates of 300 ⁇ m or more was confirmed. Further, a sample having a size of 20 mm ⁇ 20 mm ⁇ thickness of 200 ⁇ m was cut out from the resin sheet, and this was baked in an electric furnace at 700 ° C. for 1 hour to decompose organic components. About the remaining inorganic content, the presence or absence of the aggregate of 300 micrometers or more was confirmed by the particle size distribution measurement. In both the SEM observation and the particle size distribution measurement, a case where an aggregate of 300 ⁇ m or more was not confirmed was judged as ⁇ (good). The case where an aggregate was confirmed by any method was determined as x (bad).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Materials Engineering (AREA)

Abstract

Provided is a resin sheet for electronic device sealing which has low moisture absorption. The present invention pertains to a resin sheet for electronic device sealing which includes a filler, and in which the water absorption rate after allowing to stand for 168 hours in an atmosphere of 85°C and 85% RH is no higher than 0.3 wt% and the filler is dispersed in effectively the primary particle state.

Description

電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法Resin sheet for sealing electronic device and method for manufacturing electronic device package
 本発明は、電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法に関する。 The present invention relates to an electronic device sealing resin sheet and an electronic device package manufacturing method.
 電子デバイスパッケージの作製には、代表的に、基板などに固定された1又は複数の電子デバイスを封止樹脂にて封止し、必要に応じて封止体を電子デバイス単位のパッケージとなるようにダイシングするという手順が採用されている。 In producing an electronic device package, typically, one or a plurality of electronic devices fixed to a substrate or the like are sealed with a sealing resin, and the sealing body is packaged in units of electronic devices as necessary. The procedure of dicing is adopted.
 封止樹脂中に存在する水分は、熱硬化させる際の加熱によって水蒸気化する。封止樹脂に多くの水分が存在すると、この蒸気圧によって封止樹脂にクラックが発生する場合がある。このため、低吸湿性の封止樹脂が求められている。吸湿性を低減させる方法としては、例えば、シリカを配合する方法などがある。 Moisture present in the sealing resin is vaporized by heating during thermosetting. If a large amount of moisture is present in the sealing resin, cracks may occur in the sealing resin due to this vapor pressure. For this reason, a low hygroscopic sealing resin is required. As a method for reducing hygroscopicity, for example, there is a method of blending silica.
 特許文献1では、樹脂、シリカ及びシランカップリング剤などを含有するワニスをフィルム上に塗布し、次いで塗布膜を乾燥させることにより樹脂シートを形成することが記載されている。しかしながら、吸湿性について、充分に検討されていない。 Patent Document 1 describes that a resin sheet is formed by applying a varnish containing a resin, silica, a silane coupling agent, and the like onto a film and then drying the coating film. However, sufficient consideration has not been given to hygroscopicity.
特開2006-19714号公報JP 2006-19714 A
 特許文献1のような樹脂シートの作製方法(溶剤塗工)では、シリカを高充填できないため、吸湿性を低減することは難しい。 In the resin sheet manufacturing method (solvent coating) as in Patent Document 1, it is difficult to reduce the hygroscopicity because silica cannot be highly filled.
 本発明は前記課題を解決し、低吸湿性の電子デバイス封止用樹脂シートを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and provide a resin sheet for encapsulating electronic devices with low hygroscopicity.
 本発明は、フィラーを含み、85℃、85%RHの雰囲気下で168時間放置した後の吸水率が0.3重量%以下であり、前記フィラーが実質的に一次粒子の状態で分散している電子デバイス封止用樹脂シートに関する。本発明の電子デバイス封止用樹脂シートは、吸水率が0.3重量%以下であり、低吸湿性である。よって、耐湿信頼性に優れた電子デバイスパッケージを製造できる。 The present invention includes a filler, has a water absorption of 0.3% by weight or less after being left in an atmosphere of 85 ° C. and 85% RH for 168 hours, and the filler is substantially dispersed in a primary particle state. The present invention relates to an electronic device sealing resin sheet. The resin sheet for encapsulating an electronic device of the present invention has a water absorption rate of 0.3% by weight or less and low hygroscopicity. Therefore, an electronic device package excellent in moisture resistance reliability can be manufactured.
 前記フィラーが、シランカップリング剤により処理されたものであることが好ましい。これにより、フィラーを一次粒子の状態で分散させることが容易となる。また、このようなフィラーは疎水性が高く、このようなフィラーを実質的に一次粒子の状態で分散できるので、樹脂シートの吸湿性を効果的に低減できる。 The filler is preferably treated with a silane coupling agent. Thereby, it becomes easy to disperse the filler in a state of primary particles. Moreover, since such a filler has high hydrophobicity and such a filler can be disperse | distributed in the state of a primary particle substantially, the hygroscopic property of a resin sheet can be reduced effectively.
 前記電子デバイス封止用樹脂シート中の前記フィラーの含有量が70~90体積%であることが好ましい。これにより、吸湿性を低減できる。 The content of the filler in the electronic device sealing resin sheet is preferably 70 to 90% by volume. Thereby, hygroscopicity can be reduced.
 本発明はまた、1又は複数の電子デバイスを覆うように前記電子デバイス封止用樹脂シートを前記電子デバイス上に積層する積層工程、及び前記電子デバイス封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む電子デバイスパッケージの製造方法に関する。 The present invention also provides a sealing step in which the electronic device sealing resin sheet is laminated on the electronic device so as to cover one or more electronic devices, and the electronic device sealing resin sheet is cured. The present invention relates to a method for manufacturing an electronic device package, which includes a sealing body forming step of forming.
本発明の一実施形態に係る樹脂シートを模式的に示す断面図である。It is sectional drawing which shows typically the resin sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device package which concerns on one Embodiment of this invention.
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to these embodiments.
 [電子デバイス封止用樹脂シート] [Resin sheet for sealing electronic devices]
 図1は、本発明の一実施形態に係る樹脂シート11を模式的に示す断面図である。樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルムなどの支持体11a上に積層された状態で提供される。なお、支持体11aには樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。 FIG. 1 is a cross-sectional view schematically showing a resin sheet 11 according to an embodiment of the present invention. The resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be performed on the support 11a in order to easily peel off the resin sheet 11.
 樹脂シート11は、85℃、85%RHの雰囲気下で168時間放置した後の吸水率が0.3重量%以下であり、好ましくは0.25重量%以下である。0.3重量%以下であるので、低吸湿性である。よって、耐湿信頼性に優れた電子デバイスパッケージを製造できる。吸水率の下限は特に限定されず、例えば、0.05重量%以上である。
 85℃、85%RHの雰囲気下で168時間放置した後の吸水率は、実施例に記載の方法で測定できる。
The resin sheet 11 has a water absorption of 0.3% by weight or less, preferably 0.25% by weight or less after being left for 168 hours in an atmosphere of 85 ° C. and 85% RH. Since it is 0.3% by weight or less, it has low hygroscopicity. Therefore, an electronic device package excellent in moisture resistance reliability can be manufactured. The lower limit of the water absorption rate is not particularly limited and is, for example, 0.05% by weight or more.
The water absorption after standing for 168 hours in an atmosphere of 85 ° C. and 85% RH can be measured by the method described in Examples.
 樹脂シート11中に、フィラーが実質的に一次粒子の状態で分散している。このため、前述の吸水率を容易に達成できる。 In the resin sheet 11, the filler is substantially dispersed in the form of primary particles. For this reason, the above-mentioned water absorption rate can be achieved easily.
 なお、本明細書において、フィラーが実質的に一次粒子の状態で分散しているとは、実質的に凝集物が無いことをいう。具体的には、実施例に記載の方法で測定でき、実施例に記載のフィラー分散性の評価が良好であることをいう。 In the present specification, the fact that the filler is substantially dispersed in the form of primary particles means that there is substantially no aggregate. Specifically, it can be measured by the method described in the examples, and the evaluation of filler dispersibility described in the examples is good.
 フィラーとしては特に限定されないが、シランカップリング剤により処理(前処理)されたフィラーが好ましい。これにより、フィラーを一次粒子の状態で分散させることが容易となる。また、このようなフィラーは疎水性が高く(フィラー表面の親水基にシランカップリング剤が結合しているため疎水性が高い)、このようなフィラーを実質的に一次粒子の状態で分散できるので、樹脂シート11の吸湿性を効果的に低減できる。 Although it does not specifically limit as a filler, The filler processed with the silane coupling agent (pretreatment) is preferable. Thereby, it becomes easy to disperse the filler in a state of primary particles. In addition, such fillers are highly hydrophobic (high hydrophobicity because the silane coupling agent is bonded to the hydrophilic group on the filler surface), and such fillers can be dispersed substantially in the form of primary particles. The hygroscopicity of the resin sheet 11 can be effectively reduced.
 シランカップリング剤により処理されるフィラーとしては特に限定されないが、無機充填材が好ましい。無機充填材としては、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素などが挙げられる。なかでも、シランカップリング剤との反応性に優れるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。シリカとしては、流動性に優れるという理由から、溶融シリカが好ましく、球状溶融シリカがより好ましい。 Although it does not specifically limit as a filler processed with a silane coupling agent, An inorganic filler is preferable. Examples of the inorganic filler include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride, and boron nitride. Among these, silica and alumina are preferable and silica is more preferable because of excellent reactivity with the silane coupling agent. Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
 フィラーの平均一次粒子径は、好ましくは1μm以上、より好ましくは5μm以上である。1μm以上であると、樹脂シートの可撓性、柔軟性を得易い。フィラーの平均一次粒子径は、好ましくは40μm以下、より好ましくは30μm以下である。40μm以下であると、フィラーを高充填率化し易い。
 なお、平均一次粒子径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
The average primary particle diameter of the filler is preferably 1 μm or more, more preferably 5 μm or more. When it is 1 μm or more, it is easy to obtain flexibility and flexibility of the resin sheet. The average primary particle diameter of the filler is preferably 40 μm or less, more preferably 30 μm or less. When it is 40 μm or less, it is easy to increase the filling rate of the filler.
The average primary particle diameter can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 シランカップリング剤は、分子中に加水分解性基及び有機官能基を有する化合物である。 The silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
 加水分解性基としては、例えば、メトキシ基、エトキシ基などの炭素数1~6のアルコキシ基、アセトキシ基、2-メトキシエトキシ基等が挙げられる。なかでも、加水分解によって生じるアルコールなどの揮発成分を除去し易いという理由から、メトキシ基が好ましい。 Examples of the hydrolyzable group include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group. Among these, a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
 有機官能基としては、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。なかでも、エポキシ樹脂、フェノール樹脂と反応し易いという理由から、エポキシ基が好ましい。 Examples of the organic functional group include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group. Among these, an epoxy group is preferable because it easily reacts with an epoxy resin or a phenol resin.
 シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル基含有シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランなどのアミノ基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド基含有シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプト基含有シランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有シランカップリング剤などが挙げられる。 Examples of the silane coupling agent include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc. Styryl group-containing silane coupling agent: 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-aminopropyltrimethoxysilane and N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane; ureido such as 3-ureidopropyltriethoxysilane Group-containing silane cup A mercapto group-containing silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane; a sulfide group-containing silane coupling agent such as bis (triethoxysilylpropyl) tetrasulfide; 3-isocyanate Examples include isocyanate group-containing silane coupling agents such as propyltriethoxysilane.
 シランカップリング剤によりフィラーを処理する方法としては特に限定されず、溶媒中でフィラーとシランカップリング剤を混合する湿式法、気相中でフィラーとシランカップリング剤を処理させる乾式法などが挙げられる。 The method for treating the filler with the silane coupling agent is not particularly limited, and examples include a wet method in which the filler and the silane coupling agent are mixed in a solvent, and a dry method in which the filler and the silane coupling agent are treated in a gas phase. It is done.
 シランカップリング剤の処理量は特に限定されないが、未処理のフィラー100重量部に対して、シランカップリング剤を0.1~1重量部処理することが好ましい。 The treatment amount of the silane coupling agent is not particularly limited, but it is preferable to treat 0.1 to 1 part by weight of the silane coupling agent with respect to 100 parts by weight of the untreated filler.
 樹脂シート11中のフィラーの含有量は、好ましくは70体積%以上であり、より好ましくは74体積%以上である。70体積%以上であると、吸湿性を低減できる。一方、フィラーの含有量は、好ましくは90体積%以下であり、より好ましくは85体積%以下である。90体積%以下であると、柔軟性、流動性、接着性が良好に得られる。 The content of the filler in the resin sheet 11 is preferably 70% by volume or more, and more preferably 74% by volume or more. Hygroscopicity can be reduced as it is 70 volume% or more. On the other hand, the filler content is preferably 90% by volume or less, more preferably 85% by volume or less. A softness | flexibility, fluidity | liquidity, and adhesiveness are favorably obtained as it is 90 volume% or less.
 フィラーの含有量は、「重量%」を単位としても説明できる。代表的にシリカの含有量について、「重量%」を単位として説明する。
 シリカは通常、比重2.2g/cmであるので、シリカの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、樹脂シート11中のシリカの含有量は、81重量%以上が好ましく、84重量%以上がより好ましい。樹脂シート11中のシリカの含有量は、94重量%以下が好ましく、91重量%以下がより好ましい。
The filler content can also be explained by using “% by weight” as a unit. Typically, the content of silica will be described in units of “% by weight”.
Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows.
That is, the content of silica in the resin sheet 11 is preferably 81% by weight or more, and more preferably 84% by weight or more. 94 weight% or less is preferable and, as for content of the silica in the resin sheet 11, 91 weight% or less is more preferable.
 アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、樹脂シート11中のアルミナの含有量は、88重量%以上が好ましく、90重量%以上がより好ましい。樹脂シート11中のアルミナの含有量は、97重量%以下が好ましく、95重量%以下がより好ましい。
Since alumina usually has a specific gravity of 3.9 g / cm 3 , the preferred range of the alumina content (% by weight) is, for example, as follows.
That is, the content of alumina in the resin sheet 11 is preferably 88% by weight or more, and more preferably 90% by weight or more. 97 weight% or less is preferable and, as for content of the alumina in the resin sheet 11, 95 weight% or less is more preferable.
 樹脂シート11はエポキシ樹脂、及びフェノール樹脂を含むことが好ましい。これにより、良好な熱硬化性が得られる。 Resin sheet 11 preferably contains an epoxy resin and a phenol resin. Thereby, favorable thermosetting is obtained.
 エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましく、なかでも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。 From the viewpoint of ensuring the toughness of the epoxy resin after curing and the reactivity of the epoxy resin, it is preferable that the epoxy equivalent is 150 to 250 and the softening point or the melting point is 50 to 130 ° C., solid at room temperature. From the viewpoint, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable.
 フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenolic resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2.0重量%以上が好ましく、3.0重量%以上がより好ましい。2.0重量%以上であると、電子デバイス、基板などに対する接着力が良好に得られる。樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、吸湿性を低く抑えることができる。 The total content of the epoxy resin and the phenol resin in the resin sheet 11 is preferably 2.0% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to an electronic device, a board | substrate, etc. is acquired favorably as it is 2.0 weight% or more. The total content of the epoxy resin and the phenol resin in the resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. If it is 20% by weight or less, the hygroscopicity can be kept low.
 樹脂シート11は、熱可塑性樹脂を含むことが好ましい。これにより、未硬化状態でのハンドリング性、硬化物の低応力性を得ることができる。 The resin sheet 11 preferably contains a thermoplastic resin. Thereby, the handling property in a non-hardened state and the low stress property of hardened | cured material can be obtained.
 熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体などが挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。なかでも、低応力性、低吸水性という観点から、スチレン-イソブチレン-スチレンブロック共重合体が好ましい。 Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluororesin, styrene-isobutylene-styrene block copolymer Can be mentioned. These thermoplastic resins can be used alone or in combination of two or more. Of these, a styrene-isobutylene-styrene block copolymer is preferred from the viewpoint of low stress and low water absorption.
 樹脂シート11中の熱可塑性樹脂の含有量は、1.0重量%以上が好ましく、1.5重量%以上がより好ましい。1.0重量%以上であると、柔軟性、可撓性が得られる。樹脂シート11中の熱可塑性樹脂の含有量は、3.5重量%以下が好ましく、3重量%以下がより好ましい。3.5重量%以下であると、電子デバイスや基板との接着性を高められる。 The content of the thermoplastic resin in the resin sheet 11 is preferably 1.0% by weight or more, and more preferably 1.5% by weight or more. A softness | flexibility and flexibility are acquired as it is 1.0 weight% or more. The content of the thermoplastic resin in the resin sheet 11 is preferably 3.5% by weight or less, and more preferably 3% by weight or less. Adhesiveness with an electronic device or a board | substrate can be improved as it is 3.5 weight% or less.
 樹脂シート11は、硬化促進剤を含むことが好ましい。 The resin sheet 11 preferably contains a curing accelerator.
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、混練時の温度上昇によっても硬化反応が急激に進まず、樹脂シート11を良好に作製できるという理由から、2-フェニル-4,5-ジヒドロキシメチルイミダゾールが好ましい。 The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Among these, 2-phenyl-4,5-dihydroxymethylimidazole is preferable because the curing reaction does not rapidly proceed even when the temperature rises during kneading and the resin sheet 11 can be satisfactorily produced.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1~5重量部が好ましい。 The content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
 樹脂シート11は、難燃剤成分を含むことが好ましい。これにより、部品ショートや発熱などにより発火した際の、燃焼拡大を低減できる。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン系難燃剤などを用いることができる。なかでも、難燃性、硬化後の強度に優れるという理由から、ホスファゼン系難燃剤が好ましく、式(1)又は式(2)で表される化合物が好ましい。 Resin sheet 11 preferably contains a flame retardant component. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation. As the flame retardant composition, for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do. Of these, phosphazene-based flame retardants are preferred, and compounds represented by formula (1) or formula (2) are preferred because they are excellent in flame retardancy and strength after curing.
Figure JPOXMLDOC01-appb-C000001
 
 (式中、R及びRは、同一若しくは異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基、アリル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。xは3~25の整数を表す。)
Figure JPOXMLDOC01-appb-C000001

(Wherein R 1 and R 2 are the same or different and are monovalent having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group, an allyl group, or these groups) Represents an organic group, x represents an integer of 3 to 25)
Figure JPOXMLDOC01-appb-C000002
 
 (式中、R及びRは、同一若しくは異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基、アリル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される少なくとも1種の基を有する2価の有機基を表す。yは3~25の整数を表す。zは3~25の整数を表す。)
Figure JPOXMLDOC01-appb-C000002

(Wherein R 3 and R 5 are the same or different and are monovalent having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group, an allyl group, or these groups) R 4 represents an organic group, R 4 represents a divalent organic group having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group, and y represents 3 to 25 Represents an integer, and z represents an integer of 3 to 25.)
 R及びRのアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などが挙げられる。なかでも、炭素数4~10のアルコキシ基が好ましい。 Examples of the alkoxy group for R 1 and R 2 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, alkoxy groups having 4 to 10 carbon atoms are preferable.
 R及びRのフェノキシ基としては、例えば、式(3)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 
 (式中、R11は、水素、水酸基、アルキル基、アルコキシ基、グリシジル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。)
Examples of the phenoxy group for R 1 and R 2 include a group represented by the formula (3).
Figure JPOXMLDOC01-appb-C000003

(In the formula, R 11 represents hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, a glycidyl group, or a monovalent organic group having at least one group selected from the group consisting of these groups.)
 R11のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、へキシル基、へプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などが挙げられる。R11のアルコキシ基としては、R及びRのアルコキシ基と同様の基が挙げられる。 Examples of the alkyl group for R 11 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. And heptyl, 2-ethylhexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, octadecyl and the like. Examples of the alkoxy group for R 11 include the same groups as the alkoxy groups for R 1 and R 2 .
 R及びRとしては、難燃性、硬化後の強度が良好に得られるという理由から、フェノキシ基が好ましく、式(3)で表される基がより好ましい。 As R 1 and R 2 , a phenoxy group is preferable and a group represented by the formula (3) is more preferable because flame retardancy and strength after curing can be favorably obtained.
 xは3~25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3~10が好ましく、3~4がより好ましい。 X represents an integer of 3 to 25, but 3 to 10 is preferable and 3 to 4 is more preferable because flame retardancy and strength after curing can be obtained satisfactorily.
 式(2)において、R及びRのアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などが挙げられる。なかでも、炭素数4~10のアルコキシ基が好ましい。 In the formula (2), examples of the alkoxy group of R 3 and R 5 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, alkoxy groups having 4 to 10 carbon atoms are preferable.
 R及びRのフェノキシ基としては、例えば、前記式(3)で表される基が挙げられる。 Examples of the phenoxy group for R 3 and R 5 include a group represented by the formula (3).
 R及びRにおけるアルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される少なくとも1種の基を有する1価の有機基としては特に限定されない。 The monovalent organic group having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group in R 3 and R 5 is not particularly limited.
 R及びRとしては、難燃性、硬化後の強度が良好に得られるという理由から、フェノキシ基が好ましく、式(3)で表される基がより好ましい。 As R 3 and R 5 , a phenoxy group is preferable and a group represented by the formula (3) is more preferable because flame retardancy and strength after curing can be favorably obtained.
 Rの2価の有機基が有するアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などが挙げられる。なかでも、炭素数4~10のアルコキシ基が好ましい。 Examples of the alkoxy group contained in the divalent organic group represented by R 4 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Of these, alkoxy groups having 4 to 10 carbon atoms are preferable.
 Rの2価の有機基が有するフェノキシ基としては、例えば、前記式(3)で表される基が挙げられる。 Examples of the phenoxy group contained in the divalent organic group represented by R 4 include a group represented by the formula (3).
 yは3~25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3~10が好ましい。 Y represents an integer of 3 to 25, but 3 to 10 is preferable because flame retardancy and strength after curing can be obtained satisfactorily.
 zは3~25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3~10が好ましい。 Z represents an integer of 3 to 25, but 3 to 10 is preferable because flame retardancy and strength after curing can be obtained satisfactorily.
 少量でも難燃効果を発揮するという観点から、ホスファゼン系難燃剤に含まれるリン元素の含有率は、12重量%以上であることが好ましい。 From the viewpoint of exhibiting a flame retardant effect even in a small amount, the content of the phosphorus element contained in the phosphazene flame retardant is preferably 12% by weight or more.
 難燃剤成分の含有量は、有機成分(フィラーを除く全成分)100重量%中、10重量%以上が好ましく、15重量%以上がより好ましい。10重量%以上であると、難燃性が良好に得られる。難燃剤成分の含有量は、30重量%以下が好ましく、25重量%以下がより好ましい。30重量%以下であると、硬化物の物性低下(具体的には、ガラス転移温度や高温樹脂強度などの物性の低下)が少ない傾向がある。 The content of the flame retardant component is preferably 10% by weight or more, more preferably 15% by weight or more, in 100% by weight of the organic component (all components excluding the filler). A flame retardance is favorably acquired as it is 10 weight% or more. The content of the flame retardant component is preferably 30% by weight or less, and more preferably 25% by weight or less. When the content is 30% by weight or less, there is a tendency that there is little decrease in physical properties of the cured product (specifically, physical properties such as glass transition temperature and high-temperature resin strength).
 樹脂シート11は、顔料を含むことが好ましい。顔料としては特に限定されず、カーボンブラックなどが挙げられる。 The resin sheet 11 preferably contains a pigment. The pigment is not particularly limited, and examples thereof include carbon black.
 樹脂シート11中の顔料の含有量は、0.1~2重量%が好ましい。0.1重量%以上であると、良好なマーキング性が得られる。2重量%以下であると、硬化物強度が十分得られる。 The content of the pigment in the resin sheet 11 is preferably 0.1 to 2% by weight. When the content is 0.1% by weight or more, good marking properties can be obtained. When the content is 2% by weight or less, a cured product strength is sufficiently obtained.
 なお、樹脂組成物には、上記の各成分以外に必要に応じて、他の添加剤を適宜配合できる。 In addition to the above components, other additives can be appropriately added to the resin composition as necessary.
 樹脂シート11は離型剤を含んでいてもよい。離型剤は、通常、疎水性、撥水性であるので、これを配合することにより吸湿性を低減できる。
 しかし、樹脂シート11はシート状であるので、従来のタブレット状の封止樹脂のように、離型剤を配合する必要がない。また、配合せずとも、低吸湿性を達成できる。このため、樹脂シート11中の離型剤の含有量は、例えば1重量%以下が好ましく、離型剤を含まないことがより好ましい。
The resin sheet 11 may contain a release agent. Since the release agent is usually hydrophobic and water repellent, the hygroscopicity can be reduced by blending it.
However, since the resin sheet 11 is a sheet shape, it is not necessary to mix | blend a mold release agent like the conventional tablet-shaped sealing resin. Moreover, low moisture absorption can be achieved without blending. For this reason, the content of the release agent in the resin sheet 11 is preferably, for example, 1% by weight or less, and more preferably does not contain the release agent.
 樹脂シート11の製造方法は特に限定されないが、前述の各成分の混練物を調製し、得られた混練物をシート状に塑性加工する方法が好ましい。これにより、フィラーを高充填でき、吸湿性を低減できる。また、フィラーを一次粒子の状態で分散させることが容易となる。 The method for producing the resin sheet 11 is not particularly limited, but a method of preparing a kneaded product of the above-described components and plastically processing the obtained kneaded product into a sheet shape is preferable. Thereby, a filler can be filled highly and hygroscopicity can be reduced. Moreover, it becomes easy to disperse the filler in the state of primary particles.
 具体的には、前述の各成分(例えば、フィラー、エポキシ樹脂、フェノール樹脂、熱可塑性樹脂及び硬化促進剤など)をミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物をシート状に塑性加工する。混練条件として、温度は、上述の各成分の軟化点以上であることが好ましく、例えば30~150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは40~140℃、さらに好ましくは60~120℃である。時間は、例えば1~30分間、好ましくは5~
15分間である。
Specifically, the above-described components (for example, filler, epoxy resin, phenol resin, thermoplastic resin, and curing accelerator) are melt-kneaded with a known kneader such as a mixing roll, a pressure kneader, or an extruder. The kneaded material is prepared by the above, and the obtained kneaded material is plastically processed into a sheet shape. As the kneading conditions, the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 to 150 ° C., and preferably 40 to 140 ° C., more preferably 60 to 120 in consideration of the thermosetting property of the epoxy resin. ° C. The time is, for example, 1 to 30 minutes, preferably 5 to
15 minutes.
 混練は、減圧条件下(減圧雰囲気下)で行うことが好ましい。減圧条件下の圧力は、好ましくは0.1kg/cm以下、より好ましくは0.05kg/cm以下である。減圧下の圧力の下限は特に限定されないが、例えば、1×10-4kg/cm以上である。 The kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere). The pressure under reduced pressure is preferably 0.1 kg / cm 2 or less, more preferably 0.05 kg / cm 2 or less. The lower limit of the pressure under reduced pressure is not particularly limited, but is, for example, 1 × 10 −4 kg / cm 2 or more.
 溶融混練後の混練物は、冷却することなく高温状態のままで塑性加工することが好ましい。塑性加工方法としては特に制限されず、平板プレス法、Tダイ押出法、スクリューダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などが挙げられる。塑性加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは50~140℃、さらに好ましくは70~120℃である。 The kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling. The plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method. The plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
 樹脂シート11の厚さは特に限定されないが、好ましくは100μm以上、より好ましくは150μm以上である。また、樹脂シート11の厚さは、好ましくは2000μm以下、より好ましくは1000μm以下である。上記範囲内であると、良好に電子デバイスを封止できる。 The thickness of the resin sheet 11 is not particularly limited, but is preferably 100 μm or more, more preferably 150 μm or more. Further, the thickness of the resin sheet 11 is preferably 2000 μm or less, more preferably 1000 μm or less. An electronic device can be favorably sealed as it is in the said range.
 樹脂シート11は、単層構造であってもよいし、2以上の樹脂シートを積層した多層構造であってもよいが、表面積が小さく、低吸湿化し易いという理由から、単層構造が好ましい。 The resin sheet 11 may have a single-layer structure or a multilayer structure in which two or more resin sheets are laminated. However, a single-layer structure is preferable because it has a small surface area and easily absorbs moisture.
 樹脂シート11は、従来のタブレット状の封止樹脂に比べて表面積が小さいため、吸湿性を低減し易い。 Since the resin sheet 11 has a smaller surface area than a conventional tablet-shaped sealing resin, it is easy to reduce hygroscopicity.
 樹脂シート11は、SAW(Surface Acoustic Wave)フィルタ;圧力センサ、振動センサなどのMEMS(Micro Electro Mechanical Systems);LSIなどのIC(集積回路)、トランジスタなどの半導体;コンデンサ;抵抗などの電子デバイスの封止に使用される。なかでも、中空封止が必要な電子デバイス(具体的には、SAWフィルタ、MEMS)の封止に好適に使用でき、SAWフィルタの封止に特に好適に使用できる。 The resin sheet 11 is a SAW (Surface Acoustic Wave) filter; a MEMS (Micro Electro Mechanical Systems) such as a pressure sensor and a vibration sensor; an IC (integrated circuit) such as an LSI; a semiconductor such as a transistor; a capacitor; an electronic device such as a resistor Used for sealing. Especially, it can use suitably for the sealing of the electronic device (specifically SAW filter, MEMS) which needs hollow sealing, and can use it especially suitably for sealing of a SAW filter.
 封止方法としては特に限定されず、例えば、基板上の電子デバイスを覆うように未硬化の樹脂シート11を基板上に積層し、次いで樹脂シート11を硬化させて封止する方法などが挙げられる。基板としては特に限定されず、例えば、プリント配線基板、セラミック基板、シリコン基板、金属基板などが挙げられる。 The sealing method is not particularly limited, and examples thereof include a method in which an uncured resin sheet 11 is laminated on a substrate so as to cover an electronic device on the substrate, and then the resin sheet 11 is cured and sealed. . It does not specifically limit as a board | substrate, For example, a printed wiring board, a ceramic substrate, a silicon substrate, a metal substrate etc. are mentioned.
 [電子デバイスパッケージの製造方法]
 図2A~2Cはそれぞれ、本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。本実施形態では、プリント配線基板12上に搭載されたSAWフィルタ13を樹脂シート11により中空封止して電子デバイスパッケージ18を作製する。
[Method of manufacturing electronic device package]
2A to 2C are diagrams each schematically showing one step of a method for manufacturing an electronic device package according to an embodiment of the present invention. In the present embodiment, the SAW filter 13 mounted on the printed wiring board 12 is hollow-sealed with the resin sheet 11 to produce the electronic device package 18.
 (SAWフィルタ搭載基板準備工程)
 SAWフィルタ搭載基板準備工程では、複数のSAWフィルタ13が搭載されたプリント配線基板12を準備する(図2A参照)。SAWフィルタ13は、所定の櫛形電極が形成された圧電結晶を公知の方法でダイシングして個片化することにより形成できる。SAWフィルタ13のプリント配線基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。SAWフィルタ13とプリント配線基板12とはバンプなどの突起電極13aを介して電気的に接続されている。また、SAWフィルタ13とプリント配線基板12との間は、SAWフィルタ表面での表面弾性波の伝播を阻害しないように中空部分14を維持するようになっている。SAWフィルタ13とプリント配線基板12との間の距離は適宜設定でき、一般的には15~50μm程度である。
(SAW filter mounting substrate preparation process)
In the SAW filter mounting board preparing step, a printed wiring board 12 on which a plurality of SAW filters 13 are mounted is prepared (see FIG. 2A). The SAW filter 13 can be formed by dicing a piezoelectric crystal on which predetermined comb-shaped electrodes are formed by a known method. For mounting the SAW filter 13 on the printed wiring board 12, a known device such as a flip chip bonder or a die bonder can be used. The SAW filter 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps. Further, a hollow portion 14 is maintained between the SAW filter 13 and the printed wiring board 12 so as not to inhibit the propagation of surface acoustic waves on the surface of the SAW filter. The distance between the SAW filter 13 and the printed wiring board 12 can be set as appropriate, and is generally about 15 to 50 μm.
 (封止工程)
 封止工程では、SAWフィルタ13を覆うようにプリント配線基板12へ樹脂シート11を積層し、SAWフィルタ13を樹脂シート11で樹脂封止する(図2B参照)。樹脂シート11は、SAWフィルタ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
(Sealing process)
In the sealing step, the resin sheet 11 is laminated on the printed wiring board 12 so as to cover the SAW filter 13, and the SAW filter 13 is resin-sealed with the resin sheet 11 (see FIG. 2B). The resin sheet 11 functions as a sealing resin for protecting the SAW filter 13 and its accompanying elements from the external environment.
 樹脂シート11をプリント配線基板12上に積層する方法は特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。熱プレス条件としては、温度が、例えば、40~100℃、好ましくは50~90℃であり、圧力が、例えば、0.1~10MPa、好ましくは0.5~8MPaであり、時間が、例えば0.3~10分間、好ましくは0.5~5分間である。また、樹脂シート11のSAWフィルタ13及びプリント配線基板12への密着性および追従性の向上を考慮すると、減圧条件下(例えば0.1~5kPa)においてプレスすることが好ましい。 The method of laminating the resin sheet 11 on the printed wiring board 12 is not particularly limited, and can be performed by a known method such as hot press or laminator. As hot press conditions, the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes. In consideration of improvement in the adhesion and followability of the resin sheet 11 to the SAW filter 13 and the printed wiring board 12, it is preferable to press under reduced pressure conditions (for example, 0.1 to 5 kPa).
 (封止体形成工程)
 封止体形成工程では、樹脂シート11を熱硬化処理して封止体15を形成する(図2B参照)。
(Sealing body forming process)
In the sealing body forming step, the resin sheet 11 is thermally cured to form the sealing body 15 (see FIG. 2B).
 熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。 As the conditions for the thermosetting treatment, the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more. On the other hand, the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
 (ダイシング工程)
 続いて、封止体15のダイシングを行ってもよい(図2C参照)。これにより、SAWフィルタ13単位での電子デバイスパッケージ18を得ることができる。
(Dicing process)
Subsequently, dicing of the sealing body 15 may be performed (see FIG. 2C). Thereby, the electronic device package 18 in the SAW filter 13 unit can be obtained.
 (基板実装工程)
 必要に応じて、電子デバイスパッケージ18に対して再配線及びバンプを形成し、これを別途の基板(図示せず)に実装する基板実装工程を行うことができる。電子デバイスパッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a substrate mounting step can be performed in which rewiring and bumps are formed on the electronic device package 18 and mounted on a separate substrate (not shown). For mounting the electronic device package 18 on the substrate, a known apparatus such as a flip chip bonder or a die bonder can be used.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.
 実施例で使用した成分について説明する。
 エポキシ樹脂1:新日鐵化学(株)製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
 エポキシ樹脂2:日本化薬(株)製のEPPN-501HY(トリフェニルメタン型エポキシ樹脂)
 エポキシ樹脂3:三菱化学(株)製のYL980(ビスフェノールA型エポキシ樹脂)
 フェノール樹脂1:明和化成社製のMEH-7851-SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.、軟化点67℃)
 フェノール樹脂2:昭和高分子(株)製のND564
 熱可塑性樹脂1:カネカ社製のSIBSTER 072T(スチレン-イソブチレン-スチレンブロック共重合体)
 熱可塑性樹脂2:ナガセケムテックス(株)製のSG-P3
 シランカップリング剤処理フィラー:電気化学工業社製のFB-9454FC(溶融球状シリカ、平均一次粒子径20μm)を信越化学社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)で処理したもの(FB-9454FC 88.0重量部に対して、KBM-403 0.3重量部の割合で処理)
 未処理フィラー:電気化学工業社製のFB-9454FC(溶融球状シリカ、平均一次粒子径20μm)
 シランカップリング剤:信越化学社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)
 カーボンブラック:三菱化学社製の#20
 難燃剤:伏見製薬所製のFP-100(ホスファゼン系難燃剤:式(4)で表される化
合物)
Figure JPOXMLDOC01-appb-C000004
 
  (式中、mは3~4の整数を表す。)
 硬化促進剤1:北興化学工業社製のTPP-K(テトラフェニルホスホニウム・テトラフェニルボレート)
 硬化促進剤2:北興化学工業社製のTPP-MK(テトラフェニルホスホニウムテトラ-p-トリルボレート)
The components used in the examples will be described.
Epoxy resin 1: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Epoxy resin 2: EPPN-501HY (triphenylmethane type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
Epoxy resin 3: YL980 (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation
Phenol resin 1: MEH-7851-SS manufactured by Meiwa Kasei Co., Ltd. (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq., Softening point 67 ° C.)
Phenol resin 2: ND564 manufactured by Showa Polymer Co., Ltd.
Thermoplastic resin 1: SIBSTER 072T (styrene-isobutylene-styrene block copolymer) manufactured by Kaneka Corporation
Thermoplastic resin 2: SG-P3 manufactured by Nagase ChemteX Corporation
Silane coupling agent treated filler: FB-9454FC (fused spherical silica, average primary particle size 20 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. was treated with KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. Material (treated at a ratio of 0.3 part by weight of KBM-403 to 88.0 parts by weight of FB-9454FC)
Untreated filler: FB-9454FC manufactured by Denki Kagaku Kogyo Co., Ltd. (fused spherical silica, average primary particle size 20 μm)
Silane coupling agent: KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
Carbon black: # 20 manufactured by Mitsubishi Chemical
Flame retardant: FP-100 manufactured by Fushimi Pharmaceutical (phosphazene flame retardant: compound represented by formula (4))
Figure JPOXMLDOC01-appb-C000004

(In the formula, m represents an integer of 3 to 4.)
Curing accelerator 1: TPP-K (tetraphenylphosphonium tetraphenylborate) manufactured by Hokuko Chemical Co., Ltd.
Curing accelerator 2: TPP-MK (tetraphenylphosphonium tetra-p-tolylborate) manufactured by Hokuko Chemical Co., Ltd.
 実施例1~2及び比較例2
 表1に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、厚さ200μmの樹脂シートを作製した。
Examples 1-2 and Comparative Example 2
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Subsequently, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a resin sheet having a thickness of 200 μm.
 得られた樹脂シート用いて下記の評価を行った。結果を表1に示す。 The following evaluation was performed using the obtained resin sheet. The results are shown in Table 1.
 [吸水率]
 樹脂シートからサイズ20mm×20mm×厚さ200μmのサンプルを切り出し、これを120℃の真空乾燥機中で、3時間放置して乾燥させた。その後、デシケータ中で放冷し、サンプルの乾燥重量M1を測定した。次に、85℃、85%RHの雰囲気下にある恒温恒湿槽中に168時間放置し、サンプルを吸湿させてから取り出し秤量した。秤量値が一定になったときの重量をM2とした。測定したM1及びM2から、下記式に基づき吸水率を算出した。
   吸水率(重量%)=[(M2-M1)/M1]×100
[Water absorption rate]
A sample of size 20 mm × 20 mm × thickness 200 μm was cut out from the resin sheet, and this was left to dry in a vacuum dryer at 120 ° C. for 3 hours. Then, it stood to cool in a desiccator and measured the dry weight M1 of the sample. Next, the sample was left in a constant temperature and humidity chamber under an atmosphere of 85 ° C. and 85% RH for 168 hours, and the sample was taken out and weighed. The weight when the weighing value became constant was defined as M2. The water absorption was calculated from the measured M1 and M2 based on the following formula.
Water absorption rate (% by weight) = [(M2-M1) / M1] × 100
 [フィラー分散性]
 樹脂シートの断面(厚さ方向に切断した断面)をSEM観察し、300μm以上の凝集物の有無を確認した。
また、樹脂シートからサイズ20mm×20mm×厚さ200μmのサンプルを切り出し、これを電気炉にて700℃で1時間焼いて有機分を分解した。残った無機分について、粒度分布測定により300μm以上の凝集物の有無を確認した。
SEM観察及び粒度分布測定の両方において、300μm以上の凝集物が確認されなかった場合を○(良好)と判定した。いずれかの方法で凝集物が確認された場合を×(不良)と判定した。
[Filler dispersibility]
The cross section (cross section cut in the thickness direction) of the resin sheet was observed with an SEM, and the presence or absence of aggregates of 300 μm or more was confirmed.
Further, a sample having a size of 20 mm × 20 mm × thickness of 200 μm was cut out from the resin sheet, and this was baked in an electric furnace at 700 ° C. for 1 hour to decompose organic components. About the remaining inorganic content, the presence or absence of the aggregate of 300 micrometers or more was confirmed by the particle size distribution measurement.
In both the SEM observation and the particle size distribution measurement, a case where an aggregate of 300 μm or more was not confirmed was judged as ◯ (good). The case where an aggregate was confirmed by any method was determined as x (bad).
 比較例1
 表1に記載の配合比に従い、各成分を配合し、これに各成分の総量と同量のメチルエチルケトンを添加して、ワニスを調製した。得られたワニスを、コンマコ―タ-により、厚み50μmのポリエステルフィルムA(三菱化学ポリエステル社製、MRF-50)の剥離処理面上に、乾燥後の厚みが50μmとなるように塗工し、乾燥させた。次いで、厚み38μmのポリエステルフィルムB(三菱化学ポリエステル社製、MRF-38)の剥離処理面を、乾燥後のワニス上に張り合わせて、薄膜樹脂シートを調製した。
 その後、ポリエステルフィルムAおよびポリエステルフィルムBを適宜剥離しながら、ロールラミネ―タ―により、薄膜樹脂シートを4枚積層することにより、厚み200μmの樹脂シートを調製した。
Comparative Example 1
Each component was blended according to the blending ratio shown in Table 1, and the same amount of methyl ethyl ketone as the total amount of each component was added thereto to prepare a varnish. The obtained varnish was coated on a release-treated surface of a 50 μm thick polyester film A (MRF-50, manufactured by Mitsubishi Chemical Polyester Co., Ltd.) with a comma coater so that the thickness after drying was 50 μm. Dried. Next, the peel-treated surface of a 38 μm thick polyester film B (MRF-38, manufactured by Mitsubishi Chemical Polyester) was laminated on the varnish after drying to prepare a thin film resin sheet.
Then, while peeling the polyester film A and the polyester film B as appropriate, four thin film resin sheets were laminated by a roll laminator to prepare a resin sheet having a thickness of 200 μm.
 得られた樹脂シート用いて上記の評価を行った。結果を表1に示す。 The above evaluation was performed using the obtained resin sheet. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
    11  樹脂シート
    11a  支持体
    13  SAWフィルタ
    14  中空部分
    15  封止体
    18  電子デバイスパッケージ
DESCRIPTION OF SYMBOLS 11 Resin sheet 11a Support body 13 SAW filter 14 Hollow part 15 Sealing body 18 Electronic device package

Claims (4)

  1. フィラーを含み、
    85℃、85%RHの雰囲気下で168時間放置した後の吸水率が0.3重量%以下であり、
    前記フィラーが実質的に一次粒子の状態で分散している電子デバイス封止用樹脂シート。
    Including fillers,
    The water absorption after standing for 168 hours in an atmosphere of 85 ° C. and 85% RH is 0.3% by weight or less,
    An electronic device sealing resin sheet in which the filler is substantially dispersed in a primary particle state.
  2. 前記フィラーが、シランカップリング剤により処理されたものである請求項1に記載の電子デバイス封止用樹脂シート。 The resin sheet for sealing an electronic device according to claim 1, wherein the filler is treated with a silane coupling agent.
  3. 前記電子デバイス封止用樹脂シート中の前記フィラーの含有量が70~90体積%である請求項1又は2に記載の電子デバイス封止用樹脂シート。 The resin sheet for sealing an electronic device according to claim 1 or 2, wherein the content of the filler in the resin sheet for sealing an electronic device is 70 to 90% by volume.
  4. 1又は複数の電子デバイスを覆うように請求項1~3のいずれかに記載の電子デバイス封止用樹脂シートを前記電子デバイス上に積層する積層工程、及び
    前記電子デバイス封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む電子デバイスパッケージの製造方法。
     
    A lamination step of laminating the electronic device sealing resin sheet according to any one of claims 1 to 3 on the electronic device so as to cover one or a plurality of electronic devices, and curing the electronic device sealing resin sheet An electronic device package manufacturing method including a sealing body forming step of forming a sealing body.
PCT/JP2014/057691 2013-03-28 2014-03-20 Resin sheet for electronic device sealing and production method for electronic device package WO2014156927A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201507887YA SG11201507887YA (en) 2013-03-28 2014-03-20 Resin sheet for sealing electronic device and method of manufacturing electronic device package
CN201480018974.0A CN105102512A (en) 2013-03-28 2014-03-20 Resin sheet for electronic device sealing and production method for electronic device package
KR1020157022302A KR20150136472A (en) 2013-03-28 2014-03-20 Resin sheet for electronic device sealing and production method for electronic device package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069876 2013-03-28
JP2013069876A JP5793160B2 (en) 2013-03-28 2013-03-28 Resin sheet for sealing electronic device and method for manufacturing electronic device package

Publications (1)

Publication Number Publication Date
WO2014156927A1 true WO2014156927A1 (en) 2014-10-02

Family

ID=51623906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057691 WO2014156927A1 (en) 2013-03-28 2014-03-20 Resin sheet for electronic device sealing and production method for electronic device package

Country Status (6)

Country Link
JP (1) JP5793160B2 (en)
KR (1) KR20150136472A (en)
CN (1) CN105102512A (en)
SG (1) SG11201507887YA (en)
TW (1) TWI614292B (en)
WO (1) WO2014156927A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976073B2 (en) * 2014-11-07 2016-08-23 日東電工株式会社 Manufacturing method of semiconductor device
JP6568367B2 (en) * 2015-02-25 2019-08-28 アイカ工業株式会社 Thermosetting sheet composition
CN107408540B (en) * 2015-03-31 2019-06-21 东丽株式会社 Electronic component-use resin sheet, the electronic component-use resin sheet with protective film and semiconductor devices and its manufacturing method
WO2018029744A1 (en) * 2016-08-08 2018-02-15 東レ株式会社 Resin sheet for electronic component, film-protected resin sheet for electronic component, and semiconductor device and production process therefor
CN110289218B (en) * 2019-06-18 2021-09-28 北京猎户星空科技有限公司 Integrated circuit board production method and integrated circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336250A (en) * 1999-05-28 2000-12-05 Toray Ind Inc Epoxy-based resin composition
JP2001114994A (en) * 1999-08-06 2001-04-24 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2002053737A (en) * 2000-08-09 2002-02-19 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device made by using it
JP2008285593A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Sealing thermosetting type adhesion sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143320A (en) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd Production of silica filler, composition for filler and its production
WO2010150487A1 (en) * 2009-06-22 2010-12-29 住友ベークライト株式会社 Resin composition for sealing semiconductors, and semiconductor device
JP2013007028A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Sealing sheet and electronic component device
JP5882040B2 (en) * 2011-05-20 2016-03-09 日東電工株式会社 Resin kneaded product, resin sheet, and method for producing resin kneaded product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336250A (en) * 1999-05-28 2000-12-05 Toray Ind Inc Epoxy-based resin composition
JP2001114994A (en) * 1999-08-06 2001-04-24 Toray Ind Inc Epoxy resin composition and semiconductor device
JP2002053737A (en) * 2000-08-09 2002-02-19 Nitto Denko Corp Epoxy resin composition for sealing semiconductor and semiconductor device made by using it
JP2008285593A (en) * 2007-05-17 2008-11-27 Nitto Denko Corp Sealing thermosetting type adhesion sheet

Also Published As

Publication number Publication date
TW201508018A (en) 2015-03-01
JP5793160B2 (en) 2015-10-14
CN105102512A (en) 2015-11-25
SG11201507887YA (en) 2015-11-27
TWI614292B (en) 2018-02-11
JP2014189791A (en) 2014-10-06
KR20150136472A (en) 2015-12-07

Similar Documents

Publication Publication Date Title
JP6393092B2 (en) Hollow type electronic device sealing resin sheet and method for producing hollow type electronic device package
JP6259608B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP6643791B2 (en) Hollow sealing resin sheet and hollow package manufacturing method
JP5735029B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP5793160B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015098833A1 (en) Production method for semiconductor package
TWI664076B (en) Sealing sheet, manufacturing method of sealing sheet, and manufacturing method of electronic component package
JP6302693B2 (en) Hollow sealing resin sheet and method for producing hollow package
JP2015065368A (en) Resin sheet, and method for manufacturing electronic device package
JP2018198337A (en) Hollow sealing resin sheet and production method for hollow package
WO2014156777A1 (en) Hollow electronic device sealing sheet and production method for hollow electronic device package
WO2015064304A1 (en) Resin sheet for sealing electronic device and method for manufacturing electronic-device package
JP5735030B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP2015076444A (en) Resin sheet and method for manufacturing electronic device package
JP6434181B2 (en) Hollow type electronic device sealing sheet and method for manufacturing hollow type electronic device package
JP6302692B2 (en) Hollow sealing resin sheet and method for producing hollow package
JP6234410B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015045850A1 (en) Resin sheet and electronic device package production method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018974.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157022302

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775962

Country of ref document: EP

Kind code of ref document: A1