WO2014156655A1 - Contactless power transmission device - Google Patents

Contactless power transmission device Download PDF

Info

Publication number
WO2014156655A1
WO2014156655A1 PCT/JP2014/056515 JP2014056515W WO2014156655A1 WO 2014156655 A1 WO2014156655 A1 WO 2014156655A1 JP 2014056515 W JP2014056515 W JP 2014056515W WO 2014156655 A1 WO2014156655 A1 WO 2014156655A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
voltage
power transmission
ground
vehicle
Prior art date
Application number
PCT/JP2014/056515
Other languages
French (fr)
Japanese (ja)
Inventor
木下 拓哉
研吾 毎川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015508269A priority Critical patent/JPWO2014156655A1/en
Publication of WO2014156655A1 publication Critical patent/WO2014156655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present invention relates to a non-contact power transmission device that transmits or receives power in a non-contact manner via a power transmission coil.
  • Patent Document 1 a power supply system described in International Publication No. 2011/142419 (Patent Document 1) is known as a non-contact power transmission device that charges a battery of an electric vehicle in a non-contact manner without requiring a plug connection. ing.
  • a coil provided on the vehicle and a coil provided on the power supply device side are arranged to face each other, and in this state, a current is passed through the coil on the power supply side, thereby Electric power is transmitted to the coil.
  • the electric power feeding system described in patent document 1 can charge electric power to the battery of a vehicle easily, without requiring operation, such as plug connection.
  • Patent Document 1 has a problem that, when a metal foreign object exists in the vicinity of the power transmission coil, the foreign object generates heat and becomes a high temperature state. It was.
  • the present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a non-contact power transmission device capable of detecting a foreign object existing in the vicinity of a power transmission coil. It is to provide.
  • a non-contact power transmission device includes a search coil in which a plurality of sensor coils are arranged in a plane so as to cover a power transmission coil, and the plurality of sensor coils. Detects the voltage generated at.
  • the non-contact power transmission device stores, as a reference voltage table, voltages generated in the plurality of sensor coils when there is no foreign object in the vicinity of the search coil. Then, the non-contact power transmission apparatus compares the voltage generated in the plurality of sensor coils with the reference voltage table, and determines whether there is a foreign object near the search coil based on the comparison result.
  • FIG. 1 is a block diagram illustrating a configuration of a contactless charging system in which a contactless power transmission apparatus according to an embodiment of the present invention is employed.
  • FIG. 2 is an explanatory diagram showing a detailed configuration of a search coil used in the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing the positional relationship between the ground coil and the vehicle-side coil used in the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing directions of magnetic fluxes generated in the ground coil and the vehicle side coil used in the contactless power transmission device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of a contactless charging system in which a contactless power transmission apparatus according to an embodiment of the present invention is employed.
  • FIG. 2 is an explanatory diagram showing a detailed configuration of a search coil used in the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 3
  • FIG. 5 is a block diagram illustrating a detailed configuration of the voltage detection control unit provided in the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a configuration of a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing magnetic flux generated in a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing a magnetic flux distribution generated in a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a configuration of a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 7
  • FIG. 9 is an explanatory diagram showing a configuration of a disk-type coil used as a ground coil and a vehicle-side coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing magnetic flux generated in a disk-type coil used as a ground coil and a vehicle-side coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 11 is a characteristic diagram showing a voltage distribution of a reference voltage table used in the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 12 is a characteristic diagram showing a comparison between a reference voltage table used in the non-contact power transmission apparatus according to one embodiment of the present invention and an actually measured voltage.
  • FIG. 13 is an explanatory diagram showing a change in voltage distribution when iron is placed on the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 14 is an explanatory diagram showing a change in voltage distribution when aluminum is placed on the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 15 is an explanatory diagram showing a magnetic flux when a rod-shaped iron is placed in the center portion of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 16 is an explanatory diagram showing the magnetic flux when iron is placed at the end of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 17 is a diagram illustrating a change in voltage generated in each sensor coil when iron is placed in the vicinity of the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 18 is an explanatory diagram showing magnetic flux when sheet-like aluminum is placed at the center of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 19 is an explanatory diagram showing magnetic flux when sheet-like aluminum is placed at the end of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a change in voltage generated in each sensor coil when aluminum is placed in the vicinity of the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 21 is a diagram for explaining a temperature increase due to the direction of the bar-shaped iron and the direction of the magnetic flux in the non-contact power transmission apparatus according to one embodiment of the present invention.
  • FIG. 22 is a flowchart showing a processing procedure of reference voltage table creation processing by the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 23 is a flowchart showing a foreign matter detection processing procedure performed by the non-contact power transmission apparatus according to the embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of a contactless charging system in which a contactless power transmission apparatus according to an embodiment of the present invention is employed.
  • this non-contact charging system 100 includes a vehicle side device 101 mounted on an electric vehicle (hereinafter referred to as “vehicle”) and a power supply device 102 that is installed on the ground side and supplies power to the vehicle. It consists of and. And electric power is transmitted from the electric power feeder 102, the vehicle side apparatus 101 receives this electric power non-contactingly, and the received electric power is charged to the battery mounted in the electric vehicle.
  • vehicle electric vehicle
  • the vehicle side apparatus 101 receives this electric power non-contactingly, and the received electric power is charged to the battery mounted in the electric vehicle.
  • the “non-contact power transmission device” indicates both the vehicle-side device 101 and the power feeding device 102. That is, the power supply apparatus 102 is a non-contact power transmission apparatus that transmits power in a non-contact manner via a power transmission coil (a ground coil 14 described later).
  • the vehicle-side device 101 is a non-contact power transmission device that receives power in a non-contact manner via a power transmission coil (a vehicle coil 35 described later).
  • the configuration of the non-contact charging system 100 will be described.
  • a power supply apparatus 102 shown in FIG. 1 rectifies AC power from a commercial power supply 10 (for example, 100 V, 50 Hz) and outputs DC power, and DC power output from the DC power supply 11 is desired.
  • An inverter 12 that converts AC power of a frequency, a ground coil 14 for power supply provided on a road surface of a parking space where the vehicle is parked, and a resonance capacitor 13 that resonates power between the ground coil 14.
  • the power supply apparatus 102 includes a voltage / current / temperature sensor 16 that detects the voltage, current, and temperature of the DC power supply 11 and the inverter 12, a ground side control unit 15, and reference voltage data (described later) used for foreign object determination.
  • a calibration switch 18 that is operated when acquiring, a reference voltage storage unit 21 (reference voltage table storage unit) that stores a reference voltage table, a wireless LAN 17 that performs short-range communication with the vehicle-side device 101, and various types And a display unit 22 for displaying information (particularly, information related to the presence of foreign matter).
  • a reference voltage storage unit 21 reference voltage table storage unit
  • a wireless LAN 17 that performs short-range communication with the vehicle-side device 101
  • various types a display unit 22 for displaying information (particularly, information related to the presence of foreign matter).
  • the power feeding device 102 is installed on the upper surface side (power transmission side) of the ground coil 14, and has a planar search coil 19 disposed substantially parallel to the ground coil 14, and a voltage generated in the search coil 19.
  • a voltage detection control unit 20 (voltage detection unit) for measurement.
  • the search coil 19 includes a plurality of sensor coils 19 ⁇ / b> L (54 ⁇ 9 ⁇ 6 are shown as an example) on the upper surface side of the ground coil 14 (power transmission side). Is arranged in a plane so as to cover. A voltage due to the magnetic flux output from the ground coil 14 is generated in each sensor coil 19L.
  • the voltage detection controller 20 shown in FIG. 1 measures the voltage generated in the search coil 19. More specifically, the voltage detection control unit 20 individually detects the voltage generated in each sensor coil 19 ⁇ / b> L constituting the search coil 19, and transmits each detected voltage data to the ground side control unit 15. Details will be described later.
  • the ground side control unit 15 comprehensively controls the power supply apparatus 102.
  • the ground side control unit 15 performs various controls including operations of the inverter 12 and the DC power supply 11.
  • the ground-side control unit 15 supplies AC power output from the inverter 12 to the ground coil 14 and performs control for exciting the ground coil 14.
  • the ground side control unit 15 excites the ground coil 14.
  • the voltage generated in each sensor coil 19L is measured as a reference voltage, and the reference voltage is stored in the reference voltage storage unit 21 as a reference voltage table.
  • the ground-side control unit 15 compares the voltage data detected by the voltage detection control unit 20 with the reference voltage table described above, and determines whether there is a foreign object near the ground coil 14. In addition, when there is a foreign object, the ground-side control unit 15 determines the position where the foreign object exists and the material of the foreign object, and notifies the operator of the power supply apparatus 102 and the driver of the vehicle, Alarm output, control to forcibly cut off power, etc. are performed.
  • the ground side control unit 15 compares the voltage detected by the voltage detection control unit 20 (voltage detection unit) with the reference voltage table, and based on the comparison result, there is a foreign object in the vicinity of the search coil 19. It has a function as a foreign matter detection unit that determines whether or not to do so.
  • the vehicle-side device 101 includes a vehicle coil 35 provided on the bottom surface of the vehicle, a resonance capacitor 34 that resonates power between the vehicle coil 35, and AC power received via the vehicle coil 35.
  • a vehicle coil 35 provided on the bottom surface of the vehicle
  • a resonance capacitor 34 that resonates power between the vehicle coil 35, and AC power received via the vehicle coil 35.
  • DC power a battery 31 that charges DC power
  • a relay box 32 that switches between charging and discharging of the battery 31.
  • the vehicle-side device 101 also includes a voltage / current / temperature sensor 38 for detecting the input / output voltage and current of the battery 31 and the temperature of the relay box 32, a vehicle-side control unit 39, and a reference voltage table used for foreign object determination.
  • a calibration switch 44 that is operated when acquiring the reference voltage, a reference voltage storage unit 43 (reference voltage table storage unit) that stores a reference voltage table, a wireless LAN 41 that performs short-range communication with the power supply apparatus 102, And a display unit 42 for displaying information (particularly information relating to the presence of foreign matter).
  • the vehicle-side control unit 39 is connected to the vehicle network 40, and can transmit and receive data to and from in-vehicle devices such as an ECU in the vehicle.
  • the vehicle-side device 101 is installed so as to cover the lower surface side (electric power receiving side) of the vehicle coil 35, the planar search coil 36 disposed substantially parallel to the vehicle coil 35, and the search And a voltage detection control unit 37 that measures a voltage generated in the coil 36.
  • the vehicle coil 35 may be a solenoid type coil or a disk type coil, similar to the ground coil 14 described above. Similar to the search coil 19 on the power supply apparatus 102 side, the search coil 36 has a configuration in which a plurality of sensor coils are arranged in a plane so as to cover the lower surface side (power reception side) of the vehicle coil 35. is doing.
  • the voltage detection control unit 37 measures the voltage generated in the search coil 36. More specifically, the voltage detection control unit 37 individually detects the voltage generated in each sensor coil constituting the search coil 36 and transmits each detected voltage data to the vehicle side control unit 39.
  • the vehicle-side control unit 39 controls the vehicle-side device 101 as a whole.
  • the vehicle-side controller 39 excites the vehicle coil 35 after confirming that no foreign matter exists around the search coil 36, measures the voltage generated in each sensor coil at this time, and uses this voltage.
  • the reference voltage is stored in the reference voltage storage unit 43 as a reference voltage table.
  • the vehicle-side control unit 39 determines whether there is a foreign object near the search coil 36 based on the detection signal from the voltage detection control unit 37. Further, when the vehicle-side control unit 39 determines that there is a foreign object, the vehicle-side control unit 39 determines the position where the foreign object exists and the material of the foreign object, and notifies the operator of the power supply apparatus 102 and the driver of the vehicle.
  • the vehicle side control unit 39 compares the voltage detected by the voltage detection control unit 37 (voltage detection unit) with the reference voltage table, and based on the comparison result, there is a foreign object near the search coil 36. It has a function as a foreign matter detection unit for determining whether or not.
  • the vehicle-side control unit 39 and the above-described ground-side control unit 15 can be configured as, for example, an integrated computer including a central processing unit (CPU) and storage means such as a RAM, a ROM, and a hard disk. .
  • CPU central processing unit
  • storage means such as a RAM, a ROM, and a hard disk.
  • FIG. 3 is a side view schematically showing a state when the ground coil 14 and the vehicle coil 35 face each other.
  • the search coil 19 is provided so as to cover the upper surface side of the ground coil 14 provided on the road surface of the parking space, and the lower surface side of the vehicle coil 35 provided on the vehicle bottom surface is covered.
  • a search coil 36 is provided.
  • FIG. 4 is an explanatory diagram showing the direction of magnetic flux generated around the ground coil 14, FIG. 4 (a) is a plan view, and FIG. 4 (b) is a side view.
  • FIG. 4 when electric power is supplied to the ground coil 14, a magnetic flux is generated in a direction from one end side to the other end side of the ground coil 14, and this magnetic flux passes through the vehicle coil 35 shown in FIG. Therefore, electric power is generated in the vehicle coil 35. Accordingly, non-contact power transmission is possible.
  • the search coil 19 includes a plurality of sensor coils 19L. That is, the search coil 19 is formed by arranging a plurality of sensor coils 19L in a planar shape. Moreover, the voltage detection control part 20 is provided in the side part of each sensor coil 19L. Each sensor coil 19 ⁇ / b> L is connected to a voltage detection control unit 20.
  • FIG. 5 is a block diagram showing a detailed configuration of the voltage detection control unit 20.
  • the voltage detection control unit 20 is connected to each sensor coil 19 ⁇ / b> L (in FIG. 5, each sensor coil 19 ⁇ / b> L is expressed as channel 1, channel 2,..., Channel n).
  • a multiplexer 51 that sequentially switches and outputs the voltage signal detected by 19L
  • a differential amplifier 52 that amplifies the voltage signal output from the multiplexer 51
  • a rectifier that rectifies the voltage signal output from the differential amplifier 52 53
  • a filter 54 for removing AC components
  • a CPU 55 for A / D converting the voltage signal.
  • the CPU 55 has a function of transmitting a channel designation signal to the multiplexer 51. Therefore, the voltage signal detected by each sensor coil 19L is input to the CPU 55 as an analog signal, further digitized by the CPU 55, and transmitted to the ground side control unit 15 shown in FIG. Note that the voltage detection control unit 37 provided in the vehicle-side device 101 also has the same configuration as in FIG.
  • FIGS. 6A and 6B are explanatory views showing the configuration of the solenoid type coil 61, wherein FIG. 6A is a plan view and FIG. 6B is a side view.
  • the solenoid type coil 61 is configured by covering the periphery of a planar ferrite 62 with an insulating material 63 and winding an electric wire 64 around the periphery.
  • a terminal 65 for connection is provided at each end of the electric wire 64.
  • a magnetic flux can be generated around the solenoid coil 61 by connecting the terminal 65 to the inverter 12 (see FIG. 1) and passing an alternating current through the electric wire 64. Since this magnetic flux is transmitted to the vehicle coil 35 side, electric power can be transmitted to the vehicle coil 35.
  • FIG. 7 is an explanatory view showing the magnetic flux generated around the solenoid type coil 61, and the magnetic flux when the solenoid type coil 61 is viewed from the side surface direction is indicated by arrows. As shown in a region R1 in FIG. 7, a magnetic flux is generated from one end of the solenoid coil 61 to the other end (from the right side to the left side in the drawing).
  • FIG. 8 is an explanatory diagram schematically showing the relationship between the plurality of sensor coils 19L1 to 19L9 provided on the upper surface side of the ground coil 14 (in this case, the solenoid type coil 61) and the magnetic flux.
  • the sensor coils 19L arranged in a line in order to distinguish the sensor coils 19L arranged in a line, a numerical value is added to the end. That is, the sensor coils 19L arranged in a line are indicated as 19L1 to 19L9.
  • the magnetic flux passing through each sensor coil 19L1 to 19Ln (n is the number of sensor coils) is determined to be a substantially constant value, so that the voltage generated in each sensor coil 19L1 to 19Ln is determined.
  • the voltage generated in each of the sensor coils 19L1 to 19Ln is acquired in advance when the reference voltage (the foreign object is not present).
  • the reference voltage the foreign object is not present.
  • FIG. 9A and 9B are explanatory views showing the configuration of the disk-type coil 71, wherein FIG. 9A is a plan view and FIG. 9B is a side view.
  • the disk-shaped coil 71 is provided with an insulating material 73 so as to cover the upper surface of the flat plate-shaped ferrite 72, and further, the electric wire 74 is spirally formed on the upper surface side of the insulating material 73 and has a donut shape. It is wound around (a shape with a hole in the center). Furthermore, a terminal 75 is provided at each end of the electric wire 74. Then, by connecting the terminal 75 to the inverter 12 (see FIG. 1) and passing an alternating current through the electric wire 74, a magnetic flux can be generated around the disk type coil 71. Since this magnetic flux is transmitted to the vehicle coil 35 side, electric power can be transmitted to the vehicle coil 35.
  • FIG. 10 is an explanatory diagram showing the magnetic flux generated around the disk-type coil 71, and the magnetic flux when the disk-type coil 71 is viewed from the side is indicated by arrows.
  • a region R2 right half region
  • a magnetic flux is generated from one end of the disk-type coil 71 toward the other end. Therefore, also in this region R2, as shown in FIG. 8 described above, the magnetic flux is detected by each sensor coil 19L (19L1 to 19L9).
  • this shows the right half region a magnetic flux having a symmetrical shape with the magnetic flux shown in FIG. 10 is also generated in the left half region.
  • the ground side control unit 15 supplies power to the ground coil 14 to excite the ground coil 14, and the search coil A voltage generated in each of the 19 sensor coils 19L is detected.
  • the detected voltage data is stored in the reference voltage storage unit 21 as a reference voltage table.
  • FIG. 11 is a characteristic diagram showing an example of a reference voltage table set for each output power.
  • a curve s1 indicates a reference voltage detected by each sensor coil 19L when the output power of the ground coil 14 is 1 KW.
  • the horizontal axis in FIG. 11 arranges “channels” in ascending order of generated voltage. That is, the left end of the curve s1 indicates the channel with the lowest generated voltage, and the right end indicates the channel with the highest generated voltage.
  • the curve s2 indicates the reference voltage when the output power is 2 KW
  • the curve s3 indicates the reference voltage when the output power is 3 KW.
  • the difference between the voltage of each sensor coil 19L detected by the voltage detection control unit 20 and the reference voltage table is calculated.
  • the difference between the measured voltage data (curve s12) and the reference voltage (curve s11) stored in the reference voltage table is obtained, and based on this difference, the foreign object Detect presence.
  • the ground-side control unit 15 compares the voltage detected by each sensor coil 19L with the reference voltage, and if there is a large difference, the ground-side control unit 15 places a metal near the search coil 19, that is, near the ground coil 14. It is determined that there is a manufactured foreign object.
  • the search coil 36 provided on the lower surface side of the vehicle coil 35 shown in FIG. 1, the presence of a foreign object can be detected by the same method as described above. Detailed description is omitted. Thereby, even when a foreign object exists in the vicinity of the vehicle coil 35 due to a metal foreign object tangled in the vehicle coil 35, the foreign object can be detected by using the search coil 36.
  • the search coil need not be provided in both the vehicle side device 101 and the power feeding device 102, and may be provided in either one. That is, when detecting only the foreign matter existing in the vicinity of the ground coil 14, the search coil 36 and the voltage detection control unit 37 shown in FIG. 1 are not necessary. Further, in the case of detecting only foreign matter existing in the vicinity of the vehicle coil 35, the search coil 19 and the voltage detection control unit 20 shown in FIG.
  • FIG. 13A shows a case where a rod-like foreign matter (for example, iron) having a high magnetic permeability is placed in the substantially central portion of the search coil 19, and FIG. 13B is slightly shifted from the center of the search coil 19.
  • FIG. 13B shows a voltage change when the foreign material (for example, iron) with the block shape and high magnetic permeability is put in the position.
  • FIG. 14A shows a case where a rod-like foreign material (for example, aluminum) having a low magnetic permeability is placed at the substantially central portion of the search coil 19, and FIG. 14B is slightly shifted from the center of the search coil 19. It is explanatory drawing which shows a voltage change when the block-shaped foreign material with low magnetic permeability is put in the position.
  • a rod-like foreign material for example, aluminum
  • FIG. 15 is an explanatory diagram showing changes in magnetic flux when a rod-shaped iron 81 (for example, an iron nail or bolt) is placed in the lateral direction at the approximate center of the upper surface of the search coil 19. Since the iron 81 has a high magnetic permeability, when iron is placed in the center of the search coil 19, the magnetic flux changes so as to pass through the iron 81. As a result, the magnetic flux passing through each sensor coil 19L changes, thereby changing the voltage generated in each sensor coil 19L. As a specific example, for example, the voltage changes as shown in FIG. The “channel number” shown in FIG.
  • FIG. 21 (a) when a rod-shaped iron is placed in parallel with the direction of the magnetic flux, the magnetic flux concentrates on the iron, so heat is generated and the temperature rises. And since the voltage detected by each sensor coil 19L changes, presence of a foreign material can be detected.
  • FIG. 21B when the rod-shaped iron is placed so as to be orthogonal to the direction of the magnetic flux, the magnetic flux does not concentrate on this iron (or the degree of concentration is low). This iron does not generate heat and the temperature does not increase (or the heat generation is very small). At this time, the voltage detected by each sensor coil 19L does not change greatly, and the presence of foreign matter cannot be detected.
  • the foreign matter that does not affect the magnetic flux does not cause the problem of heat generation in the first place, so it is not necessary to detect this foreign matter. In other words, since foreign matter that does not cause heat generation is not detected, generation of an unnecessary alarm signal or circuit interruption can be avoided.
  • FIG. 18 is an explanatory diagram showing a change in magnetic flux when a sheet-like aluminum 83 is placed in the upper central portion of the search coil 19. Since aluminum has a low magnetic permeability, magnetic flux passes through it to avoid it. However, in the example shown in FIG. 18, the sheet-like aluminum 83 is placed substantially at the center of the search coil 19 and is substantially parallel to the surface of the search coil 19, so that the magnetic flux is not affected. Therefore, as shown in FIG. 20A, the voltages generated in the sensor coils 19L1 to 19L9 do not change. Further, since the magnetic flux does not change, the problem that the sheet-like aluminum 83 generates heat does not occur.
  • a metal foreign matter for example, copper or aluminum
  • the contactless charging system 100 acquires in advance voltage data detected by each sensor coil 19L when no foreign matter exists in the vicinity of the search coils 19 and 36.
  • the non-contact charging system 100 stores and saves the voltage data in the reference voltage storage units 21 and 43 (see FIG. 1) as a reference voltage table.
  • step S31 the ground-side control unit 15 shown in FIG. 1 supplies power to the ground coil 14 so that the output becomes 0.5 KW.
  • step S32 the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a reference voltage table for 0.5 kW.
  • step S33 the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 1 KW.
  • step S34 the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores it in the reference voltage storage unit 21 as a reference voltage table for 1 kW.
  • step S35 the ground side control part 15 supplies electric power to the ground coil 14 so that an output may be set to 1.5 kW.
  • the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a 1.5 kW reference voltage table.
  • step S37 the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 2 KW.
  • step S38 the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a reference voltage table for 2 kW.
  • step S39 the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 2.5 KW.
  • step S40 the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a 2.5 kW reference voltage table.
  • step S41 the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 3 KW.
  • step S42 the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a reference voltage table for 3 kW.
  • the non-contact charging system 100 can acquire the reference voltage table indicating the voltage distribution of the search coil 19 at each output.
  • the reference voltage table is acquired for the search coil 19 is shown, but the search coil 36 provided in the vehicle-side device 101 is also processed for each output power by the same process.
  • the reference voltage table can be created.
  • step S11 when the ground side control unit 15 performs an initial diagnosis and starts foreign object detection processing, in step S12, the ground side control unit 15 determines whether or not to perform calibration processing of the reference voltage table. This process can be determined by whether or not the operator has pressed the calibration switch 18. When the calibration switch 18 is pressed (ON in step S12), in step S13, the ground side control unit 15 executes the process shown in FIG. 22 and creates a new reference voltage table. .
  • the ground side control unit 15 acquires voltage data detected by each sensor coil 19L included in the search coil 19 in step S14. That is, voltage data for each sensor coil 19L detected by the voltage detection control unit 20 shown in FIG. 1 is acquired.
  • step S ⁇ b> 15 the ground-side control unit 15 reads a reference voltage table stored and saved in advance in the reference voltage storage unit 21. At this time, a reference voltage table corresponding to the output power of the ground coil 14 is used. For example, when the output power of the ground coil 14 is 2 KW, the reference voltage table corresponding to 2 KW is read.
  • step S16 the ground control unit 15 compares the reference voltage table read in step S15 with the voltage data acquired in step S14, and obtains a differential voltage.
  • step S17 the ground-side control unit 15 determines a voltage change pattern in an area where the differential voltage is equal to or higher than a preset threshold voltage (an installation position of the sensor coil 19L). Then, based on the voltage change pattern, the ground side control unit 15 specifies the position where the foreign matter exists on the search coil 19. Further, it is determined whether the foreign material is a foreign matter having a high magnetic permeability such as iron or a foreign matter having a low magnetic permeability such as copper or aluminum.
  • the ground-side control unit 15 determines that a foreign material made of a material having a high magnetic permeability such as iron exists at a position that is an end of the search coil 19.
  • the ground side control unit 15 performs the search. It is determined that a foreign material having a low magnetic permeability such as aluminum or copper is present at the end of the coil 19. That is, as shown in FIG. 19, when a foreign object (sheet-like aluminum 84) is placed at the end of the search coil 19, magnetic flux passes so as to avoid the aluminum 84. In this case, the voltage of the sensor coil 19L9) is decreased, and the voltage of the surrounding portion (in this case, the sensor coil 19L8) is increased. Therefore, it can be estimated that the aluminum 84 with low magnetic permeability exists at the end.
  • a foreign material having a low magnetic permeability such as aluminum or copper
  • the ground-side control unit 15 determines that there is a foreign material made of a material having a high magnetic permeability such as iron at the center of the search coil 19.
  • the ground side control unit 15 places the aluminum or the like at the center of the search coil 19. It is determined that foreign matter having a low magnetic permeability such as copper is present in a standing state.
  • the ground side control unit 15 can notify the operator of the power supply apparatus 102 that there is a foreign object in the vicinity of the search coil 19. Further, foreign object detection information can be notified to the vehicle-side device 101 by communication between the wireless LAN 17 of the power supply device 102 and the wireless LAN 41 of the vehicle-side device 101. Therefore, by displaying this detection information on the display unit 42 of the vehicle-side device 101, it is possible to notify the driver of the vehicle that there is a foreign object. As a result, when a foreign object exists in the vicinity of the search coil 19, an operator or the like who has recognized the presence of the foreign object can remove the foreign object in advance, so that the metal made in the vicinity of the search coil 19 can be removed. It is possible to avoid the occurrence of a problem that the foreign matter generates heat.
  • the search coil 19 including the plurality of sensor coils 19L is provided on the upper surface side of the ground coil 14, and the voltage generated in each sensor coil 19L is detected. Furthermore, the detected voltage data is compared with the reference voltage set in the reference voltage table acquired in advance, and the presence position of the foreign matter and the material of the foreign matter are detected based on the voltage increase / decrease pattern.
  • the search coil 19 of the present embodiment it is possible to surely confirm the presence and position of the foreign matter and the material, and the foreign matter can be removed immediately.
  • the search coil 36 on the lower surface side of the vehicle coil 35, the position and material of the metallic foreign object existing in the vicinity of the vehicle coil 35 are detected, and the vehicle driver And the operator of the power supply apparatus 102 can be notified.
  • the presence position and material of the foreign matter can be detected based on the voltage change pattern in the plurality of sensor coils 19L. That is, based on the voltage change pattern in the sensor coil 19L shown in FIG. 17 and FIG. 20, it is possible to recognize where the foreign substance exists on the search coil 19 and to recognize the material of the foreign substance. Accordingly, the driver or operator of the vehicle can recognize the position and material where the foreign matter exists in the vicinity of the search coil 19 and can immediately perform the work of removing the foreign matter. The same effect as described above can be achieved for the search coil 36 of the vehicle-side device 101.
  • the search coil 36 is provided on the lower surface side of the vehicle coil 35 and the search coil 19 is provided on the upper surface side of the ground coil 14 has been described, but the present invention is not limited to this.
  • the search coil may be provided on at least one side.
  • the search coil 19 is provided only on the upper surface side of the ground coil 14, it is possible to detect foreign matter existing in the vicinity of the ground coil 14.
  • the search coil 36 is provided only on the lower surface of the vehicle coil 35, foreign matter existing in the vicinity of the vehicle coil 35 can be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A contactless power transmission device according to the present invention and equipped with a search coil (19) in which a sensor coil is positioned so as to be flat and cover a ground coil (14), wherein the voltage generated by the sensor coil is stored as a reference voltage table when foreign matter is not present near the search coil (19). Furthermore, the contactless power transmission device determines whether or not foreign matter is present near the search coil (19) by comparing the voltage generated by the sensor coil and the reference voltage table.

Description

非接触電力伝送装置Non-contact power transmission device
 本発明は、電力伝送用コイルを介して非接触で電力を送信、或いは受信する非接触電力伝送装置に関する。 The present invention relates to a non-contact power transmission device that transmits or receives power in a non-contact manner via a power transmission coil.
 従来では、プラグ接続を必要とせずに非接触で電気自動車のバッテリに電力を充電する非接触電力伝送装置として、国際公開2011/142419号公報(特許文献1)に記載された給電システムが知られている。該特許文献1に記載された給電システムでは、車両に設けられたコイルと、給電装置側に設けられたコイルとを対向配置し、この状態で給電側のコイルに電流を流すことによって充電側のコイルに電力を伝達している。そして、このような構成により、特許文献1に記載された給電システムは、プラグ接続等の操作を必要とせずに簡易に車両のバッテリへ電力を充電することができる。 Conventionally, a power supply system described in International Publication No. 2011/142419 (Patent Document 1) is known as a non-contact power transmission device that charges a battery of an electric vehicle in a non-contact manner without requiring a plug connection. ing. In the power supply system described in Patent Document 1, a coil provided on the vehicle and a coil provided on the power supply device side are arranged to face each other, and in this state, a current is passed through the coil on the power supply side, thereby Electric power is transmitted to the coil. And by such a structure, the electric power feeding system described in patent document 1 can charge electric power to the battery of a vehicle easily, without requiring operation, such as plug connection.
 このような従来の給電システムでは、給電装置側の電力伝送用コイルと充電側の電力伝送用コイルとの間に強い磁界が発生するので、コイルの近傍に鉄、アルミニウム、ステンレス等の金属性の異物が置かれると、この異物によって磁界が乱されることがある。その結果、異物が発熱して高温となる場合がある。例えば、給電装置側の電力伝送用コイル上に鉄製の異物(ボルトや釘)が落ちている場合には、この異物が渦電流によって加熱して温度が上昇するという不具合が発生する。 In such a conventional power feeding system, since a strong magnetic field is generated between the power transmission coil on the power feeding device side and the power transmission coil on the charging side, a metallic material such as iron, aluminum, and stainless steel is formed in the vicinity of the coil. When a foreign object is placed, the magnetic field may be disturbed by the foreign object. As a result, the foreign matter may generate heat and become high temperature. For example, when an iron foreign object (bolt or nail) has fallen on the power transmission coil on the power feeding device side, a problem arises in that the temperature of the foreign object increases due to the eddy current heating.
国際公開2011/142419号公報International Publication 2011/142419
 上述したように、特許文献1に開示された従来例では、電力伝送用コイルの近傍に金属製の異物が存在する場合には、この異物が発熱して高温状態になってしまうという問題があった。 As described above, the conventional example disclosed in Patent Document 1 has a problem that, when a metal foreign object exists in the vicinity of the power transmission coil, the foreign object generates heat and becomes a high temperature state. It was.
 本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、電力伝送用コイルの近傍に存在する異物を検出することのできる非接触電力伝送装置を提供することにある。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a non-contact power transmission device capable of detecting a foreign object existing in the vicinity of a power transmission coil. It is to provide.
 上記目的を達成するために、本発明の一態様に係る非接触電力伝送装置は、電力伝送用コイルを覆うように複数のセンサコイルが平面的に配置されたサーチコイルを備え、複数のセンサコイルに生じた電圧を検出する。また、非接触電力伝送装置は、サーチコイルの近傍に異物が存在しないときに複数のセンサコイルに生じる電圧を基準電圧テーブルとして記憶する。そして、非接触電力伝送装置は、複数のセンサコイルに生じた電圧と基準電圧テーブルとを比較し、この比較結果に基づいてサーチコイルの近傍に異物が存在するか否かを判断する。 In order to achieve the above object, a non-contact power transmission device according to an aspect of the present invention includes a search coil in which a plurality of sensor coils are arranged in a plane so as to cover a power transmission coil, and the plurality of sensor coils. Detects the voltage generated at. In addition, the non-contact power transmission device stores, as a reference voltage table, voltages generated in the plurality of sensor coils when there is no foreign object in the vicinity of the search coil. Then, the non-contact power transmission apparatus compares the voltage generated in the plurality of sensor coils with the reference voltage table, and determines whether there is a foreign object near the search coil based on the comparison result.
図1は、本発明の一実施形態に係る非接触電力伝送装置が採用された非接触充電システムの構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of a contactless charging system in which a contactless power transmission apparatus according to an embodiment of the present invention is employed. 図2は、本発明の一実施形態に係る非接触電力伝送装置に用いられるサーチコイルの詳細な構成を示す説明図である。FIG. 2 is an explanatory diagram showing a detailed configuration of a search coil used in the non-contact power transmission apparatus according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る非接触電力伝送装置に用いられる地上コイルと車両側コイルの位置関係を示す説明図である。FIG. 3 is an explanatory diagram showing the positional relationship between the ground coil and the vehicle-side coil used in the non-contact power transmission apparatus according to one embodiment of the present invention. 図4は、本発明の一実施形態に係る非接触電力伝送装置に用いられる地上コイルと車両側コイルに生じる磁束の方向を示す説明図である。FIG. 4 is an explanatory diagram showing directions of magnetic fluxes generated in the ground coil and the vehicle side coil used in the contactless power transmission device according to the embodiment of the present invention. 図5は、本発明の一実施形態に係る非接触電力伝送装置に設けられた電圧検出制御部の詳細な構成を示すブロック図である。FIG. 5 is a block diagram illustrating a detailed configuration of the voltage detection control unit provided in the non-contact power transmission apparatus according to the embodiment of the present invention. 図6は、本発明の一実施形態に係る非接触電力伝送装置の地上コイル及び車両側コイルとして用いられるソレノイド型コイルの構成を示す説明図である。FIG. 6 is an explanatory diagram showing a configuration of a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図7は、本発明の一実施形態に係る非接触電力伝送装置の地上コイル及び車両側コイルとして用いられるソレノイド型コイルに生じる磁束を示す説明図である。FIG. 7 is an explanatory diagram showing magnetic flux generated in a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図8は、本発明の一実施形態に係る非接触電力伝送装置の地上コイル及び車両側コイルとして用いられるソレノイド型コイルに生じる磁束分布を示す説明図である。FIG. 8 is an explanatory diagram showing a magnetic flux distribution generated in a solenoid type coil used as a ground coil and a vehicle side coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図9は、本発明の一実施形態に係る非接触電力伝送装置の地上コイル及び車両側コイルとして用いられるディスク型コイルの構成を示す説明図である。FIG. 9 is an explanatory diagram showing a configuration of a disk-type coil used as a ground coil and a vehicle-side coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図10は、本発明の一実施形態に係る非接触電力伝送装置の地上コイル及び車両側コイルとして用いられるディスク型コイルに生じる磁束を示す説明図である。FIG. 10 is an explanatory diagram showing magnetic flux generated in a disk-type coil used as a ground coil and a vehicle-side coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図11は、本発明の一実施形態に係る非接触電力伝送装置で用いられる基準電圧テーブルの電圧分布を示す特性図である。FIG. 11 is a characteristic diagram showing a voltage distribution of a reference voltage table used in the non-contact power transmission apparatus according to one embodiment of the present invention. 図12は、本発明の一実施形態に係る非接触電力伝送装置で用いられる基準電圧テーブルと実際に測定された電圧との対比を示す特性図である。FIG. 12 is a characteristic diagram showing a comparison between a reference voltage table used in the non-contact power transmission apparatus according to one embodiment of the present invention and an actually measured voltage. 図13は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル上に鉄が置かれている場合の電圧分布の変化を示す説明図である。FIG. 13 is an explanatory diagram showing a change in voltage distribution when iron is placed on the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention. 図14は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル上にアルミニウムが置かれている場合の電圧分布の変化を示す説明図である。FIG. 14 is an explanatory diagram showing a change in voltage distribution when aluminum is placed on the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention. 図15は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル中央部に棒状の鉄が置かれている場合の磁束を示す説明図である。FIG. 15 is an explanatory diagram showing a magnetic flux when a rod-shaped iron is placed in the center portion of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図16は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル端部に鉄が置かれている場合の磁束を示す説明図である。FIG. 16 is an explanatory diagram showing the magnetic flux when iron is placed at the end of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図17は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル近傍に鉄が置かれた場合の各センサコイルに生じる電圧の変化を示す図である。FIG. 17 is a diagram illustrating a change in voltage generated in each sensor coil when iron is placed in the vicinity of the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention. 図18は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル中央部にシート状のアルミニウムが置かれている場合の磁束を示す説明図である。FIG. 18 is an explanatory diagram showing magnetic flux when sheet-like aluminum is placed at the center of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図19は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル端部にシート状のアルミニウムが置かれている場合の磁束を示す説明図である。FIG. 19 is an explanatory diagram showing magnetic flux when sheet-like aluminum is placed at the end of the search coil of the non-contact power transmission apparatus according to one embodiment of the present invention. 図20は、本発明の一実施形態に係る非接触電力伝送装置のサーチコイル近傍にアルミニウムが置かれた場合の各センサコイルに生じる電圧の変化を示す図である。FIG. 20 is a diagram illustrating a change in voltage generated in each sensor coil when aluminum is placed in the vicinity of the search coil of the non-contact power transmission apparatus according to the embodiment of the present invention. 図21は、本発明の一実施形態に係る非接触電力伝送装置における棒状の鉄の向きと磁束の方向による温度上昇を説明するための図である。FIG. 21 is a diagram for explaining a temperature increase due to the direction of the bar-shaped iron and the direction of the magnetic flux in the non-contact power transmission apparatus according to one embodiment of the present invention. 図22は、本発明の一実施形態に係る非接触電力伝送装置による基準電圧テーブル作成処理の処理手順を示すフローチャートである。FIG. 22 is a flowchart showing a processing procedure of reference voltage table creation processing by the non-contact power transmission apparatus according to the embodiment of the present invention. 図23は、本発明の一実施形態に係る非接触電力伝送装置による異物検出処理の処理手順を示すフローチャートである。FIG. 23 is a flowchart showing a foreign matter detection processing procedure performed by the non-contact power transmission apparatus according to the embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る非接触電力伝送装置が採用された非接触充電システムの構成を示すブロック図である。図1に示すように、この非接触充電システム100は、電気自動車(以下、「車両」という)に搭載される車両側装置101と、地上側に設置されて車両に電力を供給する給電装置102とから構成されている。そして、給電装置102から電力を送信し、この電力を車両側装置101が非接触で受信し、受信した電力を電気自動車に搭載されたバッテリに充電する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a contactless charging system in which a contactless power transmission apparatus according to an embodiment of the present invention is employed. As shown in FIG. 1, this non-contact charging system 100 includes a vehicle side device 101 mounted on an electric vehicle (hereinafter referred to as “vehicle”) and a power supply device 102 that is installed on the ground side and supplies power to the vehicle. It consists of and. And electric power is transmitted from the electric power feeder 102, the vehicle side apparatus 101 receives this electric power non-contactingly, and the received electric power is charged to the battery mounted in the electric vehicle.
 ここで、本実施形態に係る「非接触電力伝送装置」は車両側装置101、及び給電装置102の双方のことを示している。つまり、給電装置102は、電力伝送用コイル(後述する地上コイル14)を介して非接触で電力を送信する非接触電力伝送装置である。また、車両側装置101は、電力伝送用コイル(後述する車両用コイル35)を介して非接触で電力を受信する非接触電力伝送装置である。以下、非接触充電システム100の構成について説明する。 Here, the “non-contact power transmission device” according to the present embodiment indicates both the vehicle-side device 101 and the power feeding device 102. That is, the power supply apparatus 102 is a non-contact power transmission apparatus that transmits power in a non-contact manner via a power transmission coil (a ground coil 14 described later). The vehicle-side device 101 is a non-contact power transmission device that receives power in a non-contact manner via a power transmission coil (a vehicle coil 35 described later). Hereinafter, the configuration of the non-contact charging system 100 will be described.
 図1に示す給電装置102は、商用電源10(例えば、100V、50Hz)からの交流電力を整流して直流電力を出力する直流電源11と、該直流電源11から出力される直流電力を所望の周波数の交流電力に変換するインバータ12と、車両を駐車する駐車スペースの路面に設けられた給電用の地上コイル14と、該地上コイル14との間で電力を共振させる共振コンデンサ13と、を備えている。また、給電装置102は、直流電源11及びインバータ12の電圧、電流、温度を検出する電圧・電流・温度センサ16と、地上側制御部15と、異物の判定に用いる基準電圧データ(後述)を取得する際に操作する校正スイッチ18と、基準電圧テーブルを記憶する基準電圧記憶部21(基準電圧テーブル記憶部)と、車両側装置101との間で近距離通信を行う無線LAN17と、各種の情報(特に、異物の存在に関する情報)を表示する表示部22と、を備えている。 A power supply apparatus 102 shown in FIG. 1 rectifies AC power from a commercial power supply 10 (for example, 100 V, 50 Hz) and outputs DC power, and DC power output from the DC power supply 11 is desired. An inverter 12 that converts AC power of a frequency, a ground coil 14 for power supply provided on a road surface of a parking space where the vehicle is parked, and a resonance capacitor 13 that resonates power between the ground coil 14. ing. In addition, the power supply apparatus 102 includes a voltage / current / temperature sensor 16 that detects the voltage, current, and temperature of the DC power supply 11 and the inverter 12, a ground side control unit 15, and reference voltage data (described later) used for foreign object determination. A calibration switch 18 that is operated when acquiring, a reference voltage storage unit 21 (reference voltage table storage unit) that stores a reference voltage table, a wireless LAN 17 that performs short-range communication with the vehicle-side device 101, and various types And a display unit 22 for displaying information (particularly, information related to the presence of foreign matter).
 更に、給電装置102は、地上コイル14の上面側(電力の送信側)に設置され、該地上コイル14と略平行に配置された平面形状のサーチコイル19と、該サーチコイル19に生じる電圧を測定する電圧検出制御部20(電圧検出部)と、を備えている。 Furthermore, the power feeding device 102 is installed on the upper surface side (power transmission side) of the ground coil 14, and has a planar search coil 19 disposed substantially parallel to the ground coil 14, and a voltage generated in the search coil 19. A voltage detection control unit 20 (voltage detection unit) for measurement.
 地上コイル14は、例えばソレノイド型コイルやディスク型コイルを用いることができる。これらのコイルの詳細については、後述する。サーチコイル19は、図2の平面図に示すように、複数のセンサコイル19L(図では、一例として9×6の54個を示している)が地上コイル14の上面側(電力の送信側)を覆うように平面的に配置されて構成されている。そして、各センサコイル19Lには、地上コイル14から出力される磁束に起因した電圧が発生する。 For example, a solenoid type coil or a disk type coil can be used as the ground coil 14. Details of these coils will be described later. As shown in the plan view of FIG. 2, the search coil 19 includes a plurality of sensor coils 19 </ b> L (54 × 9 × 6 are shown as an example) on the upper surface side of the ground coil 14 (power transmission side). Is arranged in a plane so as to cover. A voltage due to the magnetic flux output from the ground coil 14 is generated in each sensor coil 19L.
 図1に示す電圧検出制御部20は、サーチコイル19で発生した電圧を測定する。より詳細には、電圧検出制御部20は、サーチコイル19を構成する各センサコイル19Lに生じた電圧を個別に検出し、検出した各電圧データを地上側制御部15に送信する。詳細については後述する。 The voltage detection controller 20 shown in FIG. 1 measures the voltage generated in the search coil 19. More specifically, the voltage detection control unit 20 individually detects the voltage generated in each sensor coil 19 </ b> L constituting the search coil 19, and transmits each detected voltage data to the ground side control unit 15. Details will be described later.
 地上側制御部15は、給電装置102を総括的に制御する。特に、地上側制御部15は、インバータ12、及び直流電源11の動作を含む各種の制御を行う。具体的に、地上側制御部15は、車両側装置101に対して電力を送信する際に、インバータ12から出力される交流電力を地上コイル14に供給して、地上コイル14を励磁する制御を行う。また、操作者がサーチコイル19の周囲に異物(釘、ボルト、空き缶等)が存在しないことを確認して校正スイッチ18を操作した際には、地上側制御部15は、地上コイル14を励磁し、このときに各センサコイル19Lで発生した電圧を基準電圧として測定し、この基準電圧を基準電圧テーブルとして、基準電圧記憶部21に記憶する処理を行う。更に、地上側制御部15は、電圧検出制御部20で検出された電圧データと上記の基準電圧テーブルとを対比して、地上コイル14の近傍に異物が存在するか否かを判断する。加えて、異物が存在する場合には、地上側制御部15は、異物が存在する位置、及び異物の材質を判断して、給電装置102の操作者や車両の運転者に報知することや、警報の出力、強制的に電力を遮断する制御等を行う。 The ground side control unit 15 comprehensively controls the power supply apparatus 102. In particular, the ground side control unit 15 performs various controls including operations of the inverter 12 and the DC power supply 11. Specifically, when transmitting power to the vehicle-side device 101, the ground-side control unit 15 supplies AC power output from the inverter 12 to the ground coil 14 and performs control for exciting the ground coil 14. Do. When the operator operates the calibration switch 18 after confirming that no foreign matter (eg, nails, bolts, empty cans, etc.) exists around the search coil 19, the ground side control unit 15 excites the ground coil 14. At this time, the voltage generated in each sensor coil 19L is measured as a reference voltage, and the reference voltage is stored in the reference voltage storage unit 21 as a reference voltage table. Further, the ground-side control unit 15 compares the voltage data detected by the voltage detection control unit 20 with the reference voltage table described above, and determines whether there is a foreign object near the ground coil 14. In addition, when there is a foreign object, the ground-side control unit 15 determines the position where the foreign object exists and the material of the foreign object, and notifies the operator of the power supply apparatus 102 and the driver of the vehicle, Alarm output, control to forcibly cut off power, etc. are performed.
 即ち、地上側制御部15は、電圧検出制御部20(電圧検出部)で検出された電圧と、基準電圧テーブルとを比較し、この比較結果に基づいて、サーチコイル19の近傍に異物が存在するか否かを判断する異物検出部としての機能を備えている。 That is, the ground side control unit 15 compares the voltage detected by the voltage detection control unit 20 (voltage detection unit) with the reference voltage table, and based on the comparison result, there is a foreign object in the vicinity of the search coil 19. It has a function as a foreign matter detection unit that determines whether or not to do so.
 一方、車両側装置101は、車両の底面に設けられた車両用コイル35と、該車両用コイル35との間で電力を共振させる共振コンデンサ34と、車両用コイル35を介して受信した交流電力を整流して直流電力に変換する整流回路33と、直流電力を充電するバッテリ31と、該バッテリ31の充電、放電を切り替えるリレーボックス32と、を備えている。 On the other hand, the vehicle-side device 101 includes a vehicle coil 35 provided on the bottom surface of the vehicle, a resonance capacitor 34 that resonates power between the vehicle coil 35, and AC power received via the vehicle coil 35. Are rectified and converted to DC power, a battery 31 that charges DC power, and a relay box 32 that switches between charging and discharging of the battery 31.
 また、車両側装置101は、バッテリ31の入出力電圧、電流、及びリレーボックス32の温度を検出する電圧・電流・温度センサ38と、車両側制御部39と、異物の判定に用いる基準電圧テーブルを取得する際に操作する校正スイッチ44と、基準電圧テーブルを記憶する基準電圧記憶部43(基準電圧テーブル記憶部)と、給電装置102との間で近距離通信を行う無線LAN41と、各種の情報(特に、異物の存在に関する情報)を表示する表示部42と、を備えている。 The vehicle-side device 101 also includes a voltage / current / temperature sensor 38 for detecting the input / output voltage and current of the battery 31 and the temperature of the relay box 32, a vehicle-side control unit 39, and a reference voltage table used for foreign object determination. A calibration switch 44 that is operated when acquiring the reference voltage, a reference voltage storage unit 43 (reference voltage table storage unit) that stores a reference voltage table, a wireless LAN 41 that performs short-range communication with the power supply apparatus 102, And a display unit 42 for displaying information (particularly information relating to the presence of foreign matter).
 また、車両側制御部39は、車両ネットワーク40に接続されており、車両内のECU等の車載機器との間でデータの送受信を行うことが可能となっている。 The vehicle-side control unit 39 is connected to the vehicle network 40, and can transmit and receive data to and from in-vehicle devices such as an ECU in the vehicle.
 更に、車両側装置101は、車両用コイル35の下面側(電力の受信側)を覆うように設置され、該車両用コイル35と略平行に配置された平面形状のサーチコイル36と、該サーチコイル36に生じる電圧を測定する電圧検出制御部37と、を備えている。 Further, the vehicle-side device 101 is installed so as to cover the lower surface side (electric power receiving side) of the vehicle coil 35, the planar search coil 36 disposed substantially parallel to the vehicle coil 35, and the search And a voltage detection control unit 37 that measures a voltage generated in the coil 36.
 車両用コイル35は、前述した地上コイル14と同様に、ソレノイド型コイル、或いはディスク型コイルを用いることができる。サーチコイル36は、前述した給電装置102側のサーチコイル19と同様に、複数のセンサコイルが車両用コイル35の下面側(電力の受信側)を覆うように平面的に配置された構成を有している。 The vehicle coil 35 may be a solenoid type coil or a disk type coil, similar to the ground coil 14 described above. Similar to the search coil 19 on the power supply apparatus 102 side, the search coil 36 has a configuration in which a plurality of sensor coils are arranged in a plane so as to cover the lower surface side (power reception side) of the vehicle coil 35. is doing.
 電圧検出制御部37は、サーチコイル36で発生した電圧を測定する。より詳細には、電圧検出制御部37は、サーチコイル36を構成する各センサコイルに生じた電圧を個別に検出し、検出した各電圧データを車両側制御部39に送信する。 The voltage detection control unit 37 measures the voltage generated in the search coil 36. More specifically, the voltage detection control unit 37 individually detects the voltage generated in each sensor coil constituting the search coil 36 and transmits each detected voltage data to the vehicle side control unit 39.
 車両側制御部39は、車両側装置101を総括的に制御する。特に、車両側制御部39は、サーチコイル36の周囲に異物が存在しないことを確認した上で車両用コイル35を励磁し、このときに各センサコイルで発生した電圧を測定し、この電圧を基準電圧テーブルとして基準電圧記憶部43に記憶する。また、車両側制御部39は、電圧検出制御部37による検出信号に基づいて、サーチコイル36の近傍に異物が存在するか否かを判断する。更に、車両側制御部39は、異物が存在すると判断した場合には、この異物が存在する位置、及び異物の材質を判断して、給電装置102の操作者や車両の運転者に報知することや、警報の出力、強制的にバッテリ31への充電を遮断する制御等を行う。即ち、車両側制御部39は、電圧検出制御部37(電圧検出部)で検出された電圧と基準電圧テーブルとを比較し、この比較結果に基づいて、サーチコイル36の近傍に異物が存在するか否かを判断する異物検出部としての機能を備えている。 The vehicle-side control unit 39 controls the vehicle-side device 101 as a whole. In particular, the vehicle-side controller 39 excites the vehicle coil 35 after confirming that no foreign matter exists around the search coil 36, measures the voltage generated in each sensor coil at this time, and uses this voltage. The reference voltage is stored in the reference voltage storage unit 43 as a reference voltage table. Further, the vehicle-side control unit 39 determines whether there is a foreign object near the search coil 36 based on the detection signal from the voltage detection control unit 37. Further, when the vehicle-side control unit 39 determines that there is a foreign object, the vehicle-side control unit 39 determines the position where the foreign object exists and the material of the foreign object, and notifies the operator of the power supply apparatus 102 and the driver of the vehicle. In addition, an alarm is output, and control for forcibly cutting off the charging of the battery 31 is performed. That is, the vehicle side control unit 39 compares the voltage detected by the voltage detection control unit 37 (voltage detection unit) with the reference voltage table, and based on the comparison result, there is a foreign object near the search coil 36. It has a function as a foreign matter detection unit for determining whether or not.
 ここで、車両側制御部39、及び前述した地上側制御部15は、例えば、中央演算ユニット(CPU)や、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピュータとして構成することができる。 Here, the vehicle-side control unit 39 and the above-described ground-side control unit 15 can be configured as, for example, an integrated computer including a central processing unit (CPU) and storage means such as a RAM, a ROM, and a hard disk. .
 次に、図3を参照して、非接触充電が行われる際の、地上コイル14と車両用コイル35との位置関係について説明する。図3は、地上コイル14と車両用コイル35が対向したときの状態を模式的に示す側面図である。 Next, the positional relationship between the ground coil 14 and the vehicle coil 35 when non-contact charging is performed will be described with reference to FIG. FIG. 3 is a side view schematically showing a state when the ground coil 14 and the vehicle coil 35 face each other.
 図3に示すように、駐車スペースの路面に設けられた地上コイル14の上面側を覆うようにサーチコイル19が設けられ、且つ、車両底面に設けられた車両用コイル35の下面側を覆うようにサーチコイル36が設けられている。そして、車両が駐車スペースの所定の位置に停車すると、地上コイル14と車両用コイル35が互いに対向した状態となる。そして、地上コイル14に電力が供給されると、この電力が車両用コイル35に伝送され、図1に示したバッテリ31を充電することができる。 As shown in FIG. 3, the search coil 19 is provided so as to cover the upper surface side of the ground coil 14 provided on the road surface of the parking space, and the lower surface side of the vehicle coil 35 provided on the vehicle bottom surface is covered. A search coil 36 is provided. When the vehicle stops at a predetermined position in the parking space, the ground coil 14 and the vehicle coil 35 face each other. And if electric power is supplied to the ground coil 14, this electric power will be transmitted to the coil 35 for vehicles, and the battery 31 shown in FIG. 1 can be charged.
 図4は、地上コイル14の周囲に生じる磁束の方向を示す説明図であり、図4(a)は平面図、(b)は側面図を示している。図4から理解できるように、地上コイル14に電力を供給すると、地上コイル14の一端側から他端側に向く方向に磁束が発生し、この磁束が図3に示した車両用コイル35を通過するので、該車両用コイル35に電力が発生する。従って、非接触での電力伝送が可能となる。 FIG. 4 is an explanatory diagram showing the direction of magnetic flux generated around the ground coil 14, FIG. 4 (a) is a plan view, and FIG. 4 (b) is a side view. As can be understood from FIG. 4, when electric power is supplied to the ground coil 14, a magnetic flux is generated in a direction from one end side to the other end side of the ground coil 14, and this magnetic flux passes through the vehicle coil 35 shown in FIG. Therefore, electric power is generated in the vehicle coil 35. Accordingly, non-contact power transmission is possible.
 また、前述の図2に示したように、サーチコイル19は、複数のセンサコイル19Lを備えている。即ち、複数のセンサコイル19Lが平面状に並べられてサーチコイル19が形成されている。また、各センサコイル19Lの側部には、電圧検出制御部20が設けられている。そして、各センサコイル19Lは、それぞれ電圧検出制御部20と接続されている。 Further, as shown in FIG. 2 described above, the search coil 19 includes a plurality of sensor coils 19L. That is, the search coil 19 is formed by arranging a plurality of sensor coils 19L in a planar shape. Moreover, the voltage detection control part 20 is provided in the side part of each sensor coil 19L. Each sensor coil 19 </ b> L is connected to a voltage detection control unit 20.
 図5は、電圧検出制御部20の詳細な構成を示すブロック図である。図5に示すように、電圧検出制御部20は、各センサコイル19L(図5では、各センサコイル19Lを、チャンネル1,チャンネル2,・・・チャンネルnと表記)と接続され、各センサコイル19Lで検出された電圧信号を順次切り替えて出力するマルチプレクサ51と、該マルチプレクサ51から出力される電圧信号を増幅する差動増幅器52と、該差動増幅器52から出力される電圧信号を整流する整流器53と、交流成分を除去するフィルタ54と、電圧信号をA/D変換するCPU55と、を備えている。 FIG. 5 is a block diagram showing a detailed configuration of the voltage detection control unit 20. As shown in FIG. 5, the voltage detection control unit 20 is connected to each sensor coil 19 </ b> L (in FIG. 5, each sensor coil 19 </ b> L is expressed as channel 1, channel 2,..., Channel n). A multiplexer 51 that sequentially switches and outputs the voltage signal detected by 19L, a differential amplifier 52 that amplifies the voltage signal output from the multiplexer 51, and a rectifier that rectifies the voltage signal output from the differential amplifier 52 53, a filter 54 for removing AC components, and a CPU 55 for A / D converting the voltage signal.
 CPU55は、マルチプレクサ51にチャンネル指定信号を送信する機能を備えている。従って、各センサコイル19Lで検出された電圧信号は、アナログ信号としてCPU55に入力され、更に該CPU55でディジタル化されて、図1に示した地上側制御部15に送信される。なお、車両側装置101に設けられた電圧検出制御部37についても、図5と同様の構成を備えている。 The CPU 55 has a function of transmitting a channel designation signal to the multiplexer 51. Therefore, the voltage signal detected by each sensor coil 19L is input to the CPU 55 as an analog signal, further digitized by the CPU 55, and transmitted to the ground side control unit 15 shown in FIG. Note that the voltage detection control unit 37 provided in the vehicle-side device 101 also has the same configuration as in FIG.
 次に、図6~10を参照して、地上コイル14及び車両用コイル35として用いるソレノイド型コイル、及びディスク型コイルについて説明する。図6は、ソレノイド型コイル61の構成を示す説明図であり、(a)は平面図、(b)は側面図を示している。図示のように、該ソレノイド型コイル61は、平面形状のフェライト62の周囲を絶縁材63で覆い、更に、その周囲に電線64を巻回して構成されている。また、電線64の端部にはそれぞれ接続用の端子65が設けられている。そして、端子65をインバータ12(図1参照)に接続し、電線64に交流電流を流すことにより、ソレノイド型コイル61の周囲に磁束を発生させることができる。この磁束は、車両用コイル35側に伝達されるので、車両用コイル35に電力を伝送することができる。 Next, a solenoid type coil and a disk type coil used as the ground coil 14 and the vehicle coil 35 will be described with reference to FIGS. 6A and 6B are explanatory views showing the configuration of the solenoid type coil 61, wherein FIG. 6A is a plan view and FIG. 6B is a side view. As shown in the figure, the solenoid type coil 61 is configured by covering the periphery of a planar ferrite 62 with an insulating material 63 and winding an electric wire 64 around the periphery. In addition, a terminal 65 for connection is provided at each end of the electric wire 64. A magnetic flux can be generated around the solenoid coil 61 by connecting the terminal 65 to the inverter 12 (see FIG. 1) and passing an alternating current through the electric wire 64. Since this magnetic flux is transmitted to the vehicle coil 35 side, electric power can be transmitted to the vehicle coil 35.
 図7は、ソレノイド型コイル61の周囲に発生する磁束を示す説明図であり、ソレノイド型コイル61を側面方向から見たときの磁束を矢印で示している。図7の領域R1に示すように、ソレノイド型コイル61の一方の端部から他方の端部(図中、右側から左側)に向かう磁束が発生している。 FIG. 7 is an explanatory view showing the magnetic flux generated around the solenoid type coil 61, and the magnetic flux when the solenoid type coil 61 is viewed from the side surface direction is indicated by arrows. As shown in a region R1 in FIG. 7, a magnetic flux is generated from one end of the solenoid coil 61 to the other end (from the right side to the left side in the drawing).
 図8は、地上コイル14(この場合は、ソレノイド型コイル61)の上面側に設けられた複数のセンサコイル19L1~19L9と、磁束との関係を模式的に示す説明図である。なお、図8では、一列に配置された各センサコイル19Lを区別するために、末尾に数値を付して示している。即ち、一列に配置された各センサコイル19Lを、19L1~19L9として示している。 FIG. 8 is an explanatory diagram schematically showing the relationship between the plurality of sensor coils 19L1 to 19L9 provided on the upper surface side of the ground coil 14 (in this case, the solenoid type coil 61) and the magnetic flux. In FIG. 8, in order to distinguish the sensor coils 19L arranged in a line, a numerical value is added to the end. That is, the sensor coils 19L arranged in a line are indicated as 19L1 to 19L9.
 そして、図8に示すように、ソレノイド型コイル61に生じる磁束は、端部側となるセンサコイル19L1,19L2,19L8,19L9を集中して通過することが分かる。また、地上コイル14から出力される電力に応じて、磁束の大きさが変化する。 And as shown in FIG. 8, it turns out that the magnetic flux which arises in the solenoid type | mold coil 61 concentrates and passes the sensor coils 19L1, 19L2, 19L8, and 19L9 which become an edge part side. Moreover, the magnitude | size of magnetic flux changes according to the electric power output from the ground coil 14. FIG.
 従って、出力電力が決定すれば、各センサコイル19L1~19Ln(nは、センサコイルの個数)を通過する磁束がほぼ一定値に決定するので、各センサコイル19L1~19Lnに生じる電圧が決定する。このため、地上コイル14の近傍に磁束を乱すような異物(例えば、金属)が存在する場合には、各センサコイル19L1~19Lnに生じる電圧が、基準電圧(異物が存在しないときに予め取得した各センサコイル19L1~19Lnに生じる電圧)に対して変化する。したがって、この電圧変化を検出することにより、地上コイル14の近傍に異物が存在するか否かを検出することができる。更に、異物の存在する位置も検出することができる。 Therefore, if the output power is determined, the magnetic flux passing through each sensor coil 19L1 to 19Ln (n is the number of sensor coils) is determined to be a substantially constant value, so that the voltage generated in each sensor coil 19L1 to 19Ln is determined. For this reason, when there is a foreign object (for example, metal) that disturbs the magnetic flux in the vicinity of the ground coil 14, the voltage generated in each of the sensor coils 19L1 to 19Ln is acquired in advance when the reference voltage (the foreign object is not present). For each sensor coil 19L1 to 19Ln). Therefore, by detecting this voltage change, it is possible to detect whether there is a foreign object in the vicinity of the ground coil 14. Furthermore, it is possible to detect a position where a foreign substance exists.
 なお、図8では、煩雑さを避けるため図中に4本の磁束のみを記載しているが、実際にはより複雑に磁束が発生している。 In FIG. 8, only four magnetic fluxes are shown in the figure to avoid complexity, but in reality, magnetic fluxes are generated more complicatedly.
 次に、ディスク型コイルについて説明する。図9は、ディスク型コイル71の構成を示す説明図であり、(a)は平面図、(b)は側面図を示している。図示のように、ディスク型コイル71は、平板円形状のフェライト72の上面を覆うように絶縁材73が設けられ、更に、該絶縁材73の上面側には電線74が渦巻き状、且つドーナツ状(中央に穴のあいた形状)に巻回されている。更に、電線74の端部にはそれぞれ端子75が設けられている。そして、端子75をインバータ12(図1参照)に接続し、電線74に交流電流を流すことにより、ディスク型コイル71の周囲に磁束を発生させることができる。この磁束は、車両用コイル35側に伝達されるので、車両用コイル35に電力を伝送することができる。 Next, the disk type coil will be described. 9A and 9B are explanatory views showing the configuration of the disk-type coil 71, wherein FIG. 9A is a plan view and FIG. 9B is a side view. As shown in the figure, the disk-shaped coil 71 is provided with an insulating material 73 so as to cover the upper surface of the flat plate-shaped ferrite 72, and further, the electric wire 74 is spirally formed on the upper surface side of the insulating material 73 and has a donut shape. It is wound around (a shape with a hole in the center). Furthermore, a terminal 75 is provided at each end of the electric wire 74. Then, by connecting the terminal 75 to the inverter 12 (see FIG. 1) and passing an alternating current through the electric wire 74, a magnetic flux can be generated around the disk type coil 71. Since this magnetic flux is transmitted to the vehicle coil 35 side, electric power can be transmitted to the vehicle coil 35.
 図10は、ディスク型コイル71の周囲に発生する磁束を示す説明図であり、ディスク型コイル71を側面方向から見たときの磁束を矢印で示している。図10の領域R2(右半分の領域)に示すように、ディスク型コイル71の一方の端部から他方の端部に向かう磁束が発生している。従って、この領域R2についても前述した図8に示したように、各センサコイル19L(19L1~19L9)で磁束が検出される。但し、これは右側の半分の領域を示しているので、図10に示す磁束と対称的な形状となる磁束が左側の半分の領域にも発生している。 FIG. 10 is an explanatory diagram showing the magnetic flux generated around the disk-type coil 71, and the magnetic flux when the disk-type coil 71 is viewed from the side is indicated by arrows. As shown in a region R2 (right half region) in FIG. 10, a magnetic flux is generated from one end of the disk-type coil 71 toward the other end. Therefore, also in this region R2, as shown in FIG. 8 described above, the magnetic flux is detected by each sensor coil 19L (19L1 to 19L9). However, since this shows the right half region, a magnetic flux having a symmetrical shape with the magnetic flux shown in FIG. 10 is also generated in the left half region.
 従って、各センサコイル19Lに生じる電圧は予め判るので、この電圧を基準電圧とすれば、異物の存在を検出することができる。 Therefore, since the voltage generated in each sensor coil 19L is known in advance, the presence of a foreign object can be detected by using this voltage as a reference voltage.
 次に、地上側制御部15で実行される異物の検出手法について説明する。本実施形態では、初期的な操作として、サーチコイル19の近傍に異物が存在しないときに、地上側制御部15は、地上コイル14に電力を供給して該地上コイル14を励磁し、サーチコイル19の各センサコイル19Lに生じる電圧を検出する。そして、検出された電圧データは基準電圧テーブルとして基準電圧記憶部21に記憶される。 Next, a foreign object detection method executed by the ground control unit 15 will be described. In the present embodiment, as an initial operation, when there is no foreign object in the vicinity of the search coil 19, the ground side control unit 15 supplies power to the ground coil 14 to excite the ground coil 14, and the search coil A voltage generated in each of the 19 sensor coils 19L is detected. The detected voltage data is stored in the reference voltage storage unit 21 as a reference voltage table.
 図11は、各出力電力毎に設定された基準電圧テーブルの例を示す特性図である。図11において、曲線s1は、地上コイル14の出力電力が1KWである場合における各センサコイル19Lで検出される基準電圧を示している。なお、図11の横軸は、発生電圧が小さい順に「チャンネル」を並べている。即ち、曲線s1の左端は発生電圧が最も小さいチャンネルを示し、右端は発生電圧が最も大きいチャンネルを示している。同様に、曲線s2は出力電力が2KWの場合、曲線s3は出力電力が3KWの場合の基準電圧を示している。 FIG. 11 is a characteristic diagram showing an example of a reference voltage table set for each output power. In FIG. 11, a curve s1 indicates a reference voltage detected by each sensor coil 19L when the output power of the ground coil 14 is 1 KW. The horizontal axis in FIG. 11 arranges “channels” in ascending order of generated voltage. That is, the left end of the curve s1 indicates the channel with the lowest generated voltage, and the right end indicates the channel with the highest generated voltage. Similarly, the curve s2 indicates the reference voltage when the output power is 2 KW, and the curve s3 indicates the reference voltage when the output power is 3 KW.
 そして、実際の電力送信時に、サーチコイル19の近傍に存在する異物を検出する際には、電圧検出制御部20で検出された各センサコイル19Lの電圧と基準電圧テーブルとの差分を演算する。その結果、例えば図12に示すように、測定された電圧データ(曲線s12)と、基準電圧テーブルに記憶されている基準電圧(曲線s11)との差分が求められ、この差分に基づいて異物の存在を検出する。 Then, when detecting foreign matter existing in the vicinity of the search coil 19 during actual power transmission, the difference between the voltage of each sensor coil 19L detected by the voltage detection control unit 20 and the reference voltage table is calculated. As a result, for example, as shown in FIG. 12, the difference between the measured voltage data (curve s12) and the reference voltage (curve s11) stored in the reference voltage table is obtained, and based on this difference, the foreign object Detect presence.
 つまり、地上側制御部15は、各センサコイル19Lで検出された電圧と基準電圧とを対比し、大きな相違が生じている場合には、サーチコイル19の近傍、すなわち地上コイル14の近傍に金属製の異物が存在するものと判断する。 That is, the ground-side control unit 15 compares the voltage detected by each sensor coil 19L with the reference voltage, and if there is a large difference, the ground-side control unit 15 places a metal near the search coil 19, that is, near the ground coil 14. It is determined that there is a manufactured foreign object.
 ここで、図1に示した車両用コイル35の下面側に設けられたサーチコイル36についても、上記と同様の手法によって異物の存在を検出することができる。詳細な説明は省略する。これにより、車両用コイル35に金属製の異物が絡まる等の理由によって車両用コイル35の近傍に異物が存在する場合でも、サーチコイル36を用いることによって異物を検出することができる。 Here, with respect to the search coil 36 provided on the lower surface side of the vehicle coil 35 shown in FIG. 1, the presence of a foreign object can be detected by the same method as described above. Detailed description is omitted. Thereby, even when a foreign object exists in the vicinity of the vehicle coil 35 due to a metal foreign object tangled in the vehicle coil 35, the foreign object can be detected by using the search coil 36.
 なお、サーチコイルは、車両側装置101及び給電装置102の双方に設ける必要はなく、いずれか一方に設ける構成としても良い。即ち、地上コイル14の近傍に存在する異物のみを検出する場合には、図1に示すサーチコイル36、及び電圧検出制御部37は不要となる。また、車両用コイル35の近傍に存在する異物のみを検出する場合には、図1に示すサーチコイル19、及び電圧検出制御部20は不要となる。 Note that the search coil need not be provided in both the vehicle side device 101 and the power feeding device 102, and may be provided in either one. That is, when detecting only the foreign matter existing in the vicinity of the ground coil 14, the search coil 36 and the voltage detection control unit 37 shown in FIG. 1 are not necessary. Further, in the case of detecting only foreign matter existing in the vicinity of the vehicle coil 35, the search coil 19 and the voltage detection control unit 20 shown in FIG.
 次に、地上コイル14の近傍に実際に異物が存在する場合の磁束の乱れについて説明する。初めに、サーチコイル19の近傍に、鉄等の透磁率の高い異物が置かれている場合について、図13を参照して説明する。図13(a)は、サーチコイル19のほぼ中央部に棒状で透磁率の高い異物(例えば、鉄)が置かれている場合、図13(b)は、サーチコイル19の中央から若干ずれた位置に塊状で透磁率の高い異物(例えば、鉄)が置かれている場合の電圧変化を示す説明図である。 Next, the magnetic flux disturbance when a foreign substance actually exists in the vicinity of the ground coil 14 will be described. First, the case where a foreign matter having a high magnetic permeability such as iron is placed in the vicinity of the search coil 19 will be described with reference to FIG. FIG. 13A shows a case where a rod-like foreign matter (for example, iron) having a high magnetic permeability is placed in the substantially central portion of the search coil 19, and FIG. 13B is slightly shifted from the center of the search coil 19. It is explanatory drawing which shows a voltage change when the foreign material (for example, iron) with the block shape and high magnetic permeability is put in the position.
 図13(a)に示すように、棒状の異物x1が置かれている場合には、この異物x1の中央部の領域r1に生じる電圧は基準電圧に対して低下し、両端部の領域r2,r3に生じる電圧は上昇する。一方、図13(b)に示すように、塊状の異物x2が置かれている場合には、この異物x2が存在する領域r4に生じる電圧は基準電圧に対して上昇し、両端の領域r5,r6に生じる電圧は低下する。従って、このような電圧変化のパターンに基づいて、異物が存在する位置、及び材質を認識することができる。 As shown in FIG. 13A, when a rod-like foreign material x1 is placed, the voltage generated in the central region r1 of the foreign material x1 decreases with respect to the reference voltage, and both end regions r2, The voltage generated at r3 increases. On the other hand, as shown in FIG. 13B, when a lump-like foreign material x2 is placed, the voltage generated in the region r4 where the foreign material x2 is present rises with respect to the reference voltage, and the regions r5 and r5 at both ends are located. The voltage generated at r6 decreases. Therefore, based on such a voltage change pattern, it is possible to recognize the position and material where the foreign matter exists.
 次に、サーチコイル19の近傍にアルミニウムや銅等の透磁率の低い異物が置かれている場合について説明する。図14(a)は、サーチコイル19のほぼ中央部に透磁率の低い棒状の異物(例えば、アルミニウム)が置かれている場合、図14(b)は、サーチコイル19の中央から若干ずれた位置に透磁率の低い塊状の異物が置かれている場合の電圧変化を示す説明図である。 Next, a case where a foreign matter having a low magnetic permeability such as aluminum or copper is placed in the vicinity of the search coil 19 will be described. FIG. 14A shows a case where a rod-like foreign material (for example, aluminum) having a low magnetic permeability is placed at the substantially central portion of the search coil 19, and FIG. 14B is slightly shifted from the center of the search coil 19. It is explanatory drawing which shows a voltage change when the block-shaped foreign material with low magnetic permeability is put in the position.
 図14(a)に示すように、サーチコイル19上の磁束の方向に棒状の異物x3が置かれている場合には、この異物x3は、磁束の変化にほとんど影響しない。従って、サーチコイル19で検出される電圧に変化は生じない。また、図14(b)に示すように、塊状の異物x4が置かれている場合には、この異物x4が存在する領域r7に生じる電圧が低下する。従って、このような電圧変化のパターンに基づいて、異物が存在する位置、及び材質を認識することができる。 As shown in FIG. 14A, when a rod-shaped foreign material x3 is placed in the direction of the magnetic flux on the search coil 19, the foreign material x3 hardly affects the change of the magnetic flux. Accordingly, the voltage detected by the search coil 19 does not change. Further, as shown in FIG. 14B, when a lump-like foreign matter x4 is placed, the voltage generated in the region r7 where the foreign matter x4 is present decreases. Therefore, based on such a voltage change pattern, it is possible to recognize the position and material where the foreign matter exists.
 次に、各センサコイル19Lに生じる電圧の変化について、より詳細に説明する。図15は、サーチコイル19の上面の略中央に棒状の鉄81(例えば、鉄製の釘やボルト)が横方向を向いて置かれている場合における磁束の変化を示す説明図である。鉄81は透磁率が高いので、サーチコイル19の中央に鉄が置かれていると、磁束はこの鉄81を通過するように変化する。その結果、各センサコイル19Lを通過する磁束が変化し、これによって各センサコイル19Lに発生する電圧が変化する。具体例として、例えば、図17(a)に示すように電圧が変化する。図17に示す「チャンネル番号」は、センサコイル19Lの番号を示しており、上向きの矢印「↑」は基準電圧に対して電圧が上昇することを示し、下向きの矢印「↓」は基準電圧に対して電圧が下降することを示している。また、「-」は変化しないことを示している。 Next, a change in voltage generated in each sensor coil 19L will be described in more detail. FIG. 15 is an explanatory diagram showing changes in magnetic flux when a rod-shaped iron 81 (for example, an iron nail or bolt) is placed in the lateral direction at the approximate center of the upper surface of the search coil 19. Since the iron 81 has a high magnetic permeability, when iron is placed in the center of the search coil 19, the magnetic flux changes so as to pass through the iron 81. As a result, the magnetic flux passing through each sensor coil 19L changes, thereby changing the voltage generated in each sensor coil 19L. As a specific example, for example, the voltage changes as shown in FIG. The “channel number” shown in FIG. 17 indicates the number of the sensor coil 19L, the upward arrow “↑” indicates that the voltage rises with respect to the reference voltage, and the downward arrow “↓” indicates the reference voltage. On the other hand, the voltage decreases. In addition, “−” indicates that there is no change.
 図15に示したように、サーチコイル19の中央部に棒状の鉄81が置かれている場合には、図17(a)に示すように、両端部のセンサコイル19L1~19L3,19L7~19L9に生じる電圧が上昇し、中央部のセンサコイル19L4~19L6に生じる電圧が低下する。従って、このような電圧変化が検出された場合には、サーチコイル19(地上コイル14)の略中央部に鉄等の透磁率の高い金属製の異物が存在するものと判断できる。 As shown in FIG. 15, when the rod-shaped iron 81 is placed at the center of the search coil 19, as shown in FIG. 17A, the sensor coils 19L1 to 19L3 and 19L7 to 19L9 at both ends are provided. Is increased, and the voltage generated in the central sensor coils 19L4 to 19L6 is decreased. Therefore, when such a voltage change is detected, it can be determined that a metal foreign matter having a high magnetic permeability such as iron exists in the approximate center of the search coil 19 (ground coil 14).
 更に、図16に示すように、サーチコイル19の端部に鉄82が縦方向を向いて置かれている場合には、磁束がこの鉄82を通過するように変化するので、端部から2番目のセンサコイル19L2に磁束が集中する。したがって、図17(b)に示すように、センサコイル19L1,19L3~19L5に生じる電圧が低下し、センサコイル19L2に生じる電圧が上昇する。そこで、このような電圧変化が検出された場合には、サーチコイル19の端部に鉄等の透磁率の高い金属性の異物が存在するものと判断することができる。即ち、図17に示す電圧の変化パターンを参照することにより、サーチコイル19の上側に存在する異物の位置、及び材質(透磁率が高い材質か、或いは、低い材質か)を判断することができる。 Furthermore, as shown in FIG. 16, when the iron 82 is placed at the end of the search coil 19 in the vertical direction, the magnetic flux changes so as to pass through the iron 82. Magnetic flux concentrates on the second sensor coil 19L2. Accordingly, as shown in FIG. 17B, the voltage generated in the sensor coils 19L1, 19L3 to 19L5 decreases, and the voltage generated in the sensor coil 19L2 increases. Therefore, when such a voltage change is detected, it can be determined that a metallic foreign matter having a high magnetic permeability such as iron exists at the end of the search coil 19. That is, by referring to the voltage change pattern shown in FIG. 17, it is possible to determine the position and material (whether the material has a high magnetic permeability or a low material) of the foreign matter existing above the search coil 19. .
 また、図21(a)に示すように、磁束の方向と平行に棒状の鉄が置かれている場合には、この鉄に磁束が集中するので、発熱して温度が上昇する。そして、各センサコイル19Lで検出される電圧が変化するので、異物の存在を検出できる。これに対して、図21(b)に示すように、磁束の方向と直交するように棒状の鉄が置かれている場合には、この鉄に磁束が集中しないので(或いは、集中の度合いが小さいので)、この鉄は発熱せず温度は上昇しない(或いは、発熱量が極めて小さい)。この際、各センサコイル19Lで検出される電圧は大きく変化せず、異物の存在を検出できない。 Also, as shown in FIG. 21 (a), when a rod-shaped iron is placed in parallel with the direction of the magnetic flux, the magnetic flux concentrates on the iron, so heat is generated and the temperature rises. And since the voltage detected by each sensor coil 19L changes, presence of a foreign material can be detected. On the other hand, as shown in FIG. 21B, when the rod-shaped iron is placed so as to be orthogonal to the direction of the magnetic flux, the magnetic flux does not concentrate on this iron (or the degree of concentration is low). This iron does not generate heat and the temperature does not increase (or the heat generation is very small). At this time, the voltage detected by each sensor coil 19L does not change greatly, and the presence of foreign matter cannot be detected.
 つまり、磁束に影響を与えない異物は、そもそも発熱するという問題が発生しないので、この異物を検出する必要はない。換言すれば、発熱の要因とならない異物については、これを検出しないので、不要な警報信号の発生や回路の遮断を回避できる。 That is, the foreign matter that does not affect the magnetic flux does not cause the problem of heat generation in the first place, so it is not necessary to detect this foreign matter. In other words, since foreign matter that does not cause heat generation is not detected, generation of an unnecessary alarm signal or circuit interruption can be avoided.
 次に、サーチコイル19の近傍に透磁率の低い金属製の異物(例えば、銅やアルミニウム)が存在する場合について説明する。図18は、サーチコイル19の上側の中央部にシート状のアルミニウム83が置かれている場合における磁束の変化を示す説明図である。アルミニウムは透磁率が低いので、磁束はアルミニウムを避けるようにして通過する。しかし、図18に示す例では、シート状のアルミニウム83がサーチコイル19の略中央に置かれ、且つ、サーチコイル19の面と略平行となっているので、磁束に影響を与えない。従って、図20(a)に示すように、各センサコイル19L1~19L9に生じる電圧は変化しない。また、磁束が変化しないので、シート状のアルミニウム83が発熱するという問題も発生しない。 Next, a case where a metal foreign matter (for example, copper or aluminum) having low permeability exists in the vicinity of the search coil 19 will be described. FIG. 18 is an explanatory diagram showing a change in magnetic flux when a sheet-like aluminum 83 is placed in the upper central portion of the search coil 19. Since aluminum has a low magnetic permeability, magnetic flux passes through it to avoid it. However, in the example shown in FIG. 18, the sheet-like aluminum 83 is placed substantially at the center of the search coil 19 and is substantially parallel to the surface of the search coil 19, so that the magnetic flux is not affected. Therefore, as shown in FIG. 20A, the voltages generated in the sensor coils 19L1 to 19L9 do not change. Further, since the magnetic flux does not change, the problem that the sheet-like aluminum 83 generates heat does not occur.
 一方、図19に示すように、サーチコイル19上面の端部にシート状のアルミニウム84が置かれた場合には、磁束がこのアルミニウム84を避けて通過するように変化する。従って、図20(b)に示すように、センサコイル19L8に生じる電圧が上昇し、センサコイル19L9に生じる電圧は低下する。従って、このような電圧変化が検出された場合には、サーチコイル19の端部近傍にアルミニウム等の透磁率の低い金属性の異物が存在するものと判断できる。即ち、図20に示す電圧の変化に基づいて、サーチコイル19上に存在する異物の位置、及び材質(透磁率が高い材質か、或いは、低い材質か)を判断することができる。 On the other hand, as shown in FIG. 19, when a sheet-like aluminum 84 is placed on the end of the upper surface of the search coil 19, the magnetic flux changes so as to pass through the aluminum 84. Therefore, as shown in FIG. 20B, the voltage generated in the sensor coil 19L8 increases and the voltage generated in the sensor coil 19L9 decreases. Accordingly, when such a voltage change is detected, it can be determined that there is a metallic foreign matter having a low magnetic permeability such as aluminum near the end of the search coil 19. That is, based on the voltage change shown in FIG. 20, it is possible to determine the position and material of the foreign matter existing on the search coil 19 (whether the material has a high magnetic permeability or a low material).
 次に、上述のように構成された本実施形態に係る非接触充電システム100で、異物の存在を検出する際の作用について、図22,図23に示すフローチャートを参照して説明する。本実施形態に係る非接触充電システム100は、サーチコイル19,36の近傍に異物が存在しないときに、各センサコイル19Lで検出された電圧データを予め取得する。そして、非接触充電システム100は、この電圧データを基準電圧テーブルとして基準電圧記憶部21,43(図1参照)に記憶保存する。 Next, the operation when detecting the presence of a foreign object in the non-contact charging system 100 according to the present embodiment configured as described above will be described with reference to the flowcharts shown in FIGS. The contactless charging system 100 according to the present embodiment acquires in advance voltage data detected by each sensor coil 19L when no foreign matter exists in the vicinity of the search coils 19 and 36. The non-contact charging system 100 stores and saves the voltage data in the reference voltage storage units 21 and 43 (see FIG. 1) as a reference voltage table.
 以下、基準電圧記憶部21に記憶される基準電圧テーブルを作成する際の処理手順について、図22に示すフローチャートを参照して説明する。初めに、ステップS31において、図1に示す地上側制御部15は、出力が0.5KWとなるように、地上コイル14に電力を給電する。そして、ステップS32において、地上側制御部15は、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、0.5KW用の基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 Hereinafter, a processing procedure for creating a reference voltage table stored in the reference voltage storage unit 21 will be described with reference to a flowchart shown in FIG. First, in step S31, the ground-side control unit 15 shown in FIG. 1 supplies power to the ground coil 14 so that the output becomes 0.5 KW. In step S32, the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a reference voltage table for 0.5 kW.
 ステップS33において、地上側制御部15は、出力が1KWとなるように、地上コイル14に電力を給電する。そして、ステップS34において、地上側制御部15は、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、1KW用の基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 In step S33, the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 1 KW. In step S34, the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores it in the reference voltage storage unit 21 as a reference voltage table for 1 kW.
 更に、ステップS35において、地上側制御部15は、出力が1.5KWとなるように、地上コイル14に電力を給電する。そして、ステップS36において、地上側制御部15は、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、1.5KW用の基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 Furthermore, in step S35, the ground side control part 15 supplies electric power to the ground coil 14 so that an output may be set to 1.5 kW. In step S36, the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a 1.5 kW reference voltage table.
 ステップS37において、地上側制御部15は、出力が2KWとなるように、地上コイル14に電力を給電する。そして、ステップS38において、地上側制御部15は、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、2KW用の基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 In step S37, the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 2 KW. In step S38, the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a reference voltage table for 2 kW.
 ステップS39において、地上側制御部15は、出力が2.5KWとなるように、地上コイル14に電力を給電する。そして、ステップS40において、地上側制御部15は、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、2.5KW用の基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 In step S39, the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 2.5 KW. In step S40, the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a 2.5 kW reference voltage table.
 ステップS41において、地上側制御部15は、出力が3KWとなるように、地上コイル14に電力を給電する。そして、ステップS42において、地上側制御部15は、このときのサーチコイル19の各センサコイル19Lにおける電圧分布を取得し、3KW用の基準電圧テーブルとして基準電圧記憶部21に記憶保存する。 In step S41, the ground-side control unit 15 supplies power to the ground coil 14 so that the output becomes 3 KW. In step S42, the ground-side control unit 15 acquires the voltage distribution in each sensor coil 19L of the search coil 19 at this time, and stores and stores it in the reference voltage storage unit 21 as a reference voltage table for 3 kW.
 このようにして、本実施形態に係る非接触充電システム100は、各出力でのサーチコイル19の電圧分布を示す基準電圧テーブルを取得することができる。なお、図22のフローチャートでは、サーチコイル19に対して基準電圧テーブルを取得する場合について示したが、車両側装置101に設けられたサーチコイル36に対しても同様の処理により、各出力電力毎の基準電圧テーブルを作成することができる。 Thus, the non-contact charging system 100 according to the present embodiment can acquire the reference voltage table indicating the voltage distribution of the search coil 19 at each output. In the flowchart of FIG. 22, the case where the reference voltage table is acquired for the search coil 19 is shown, but the search coil 36 provided in the vehicle-side device 101 is also processed for each output power by the same process. The reference voltage table can be created.
 次に、図23に示すフローチャートを参照して、サーチコイル19の近傍に存在する異物を検出する際の具体的な処理手順について説明する。この処理は、図1に示した地上側制御部15の制御によって実行される。 Next, with reference to the flowchart shown in FIG. 23, a specific processing procedure for detecting a foreign object existing in the vicinity of the search coil 19 will be described. This process is executed under the control of the ground side control unit 15 shown in FIG.
 初めにステップS11において、地上側制御部15は、初期診断を行って、異物の検知処理を開始すると、ステップS12において、基準電圧テーブルの校正処理を行うか否かを判断する。この処理は、操作者が校正スイッチ18を押したか否かにより判断することができる。そして、校正スイッチ18が押された場合には(ステップS12でオン)、ステップS13において、地上側制御部15は、前述の図22に示した処理を実行し、新たな基準電圧テーブルを作成する。 First, in step S11, when the ground side control unit 15 performs an initial diagnosis and starts foreign object detection processing, in step S12, the ground side control unit 15 determines whether or not to perform calibration processing of the reference voltage table. This process can be determined by whether or not the operator has pressed the calibration switch 18. When the calibration switch 18 is pressed (ON in step S12), in step S13, the ground side control unit 15 executes the process shown in FIG. 22 and creates a new reference voltage table. .
 一方、校正スイッチ18が押されていない場合には(ステップS12でオフ)、ステップS14において、地上側制御部15は、サーチコイル19に含まれる各センサコイル19Lで検出された電圧データを取得する。即ち、図1に示した電圧検出制御部20で検出された各センサコイル19L毎の電圧データを取得する。 On the other hand, when the calibration switch 18 is not pressed (OFF in step S12), the ground side control unit 15 acquires voltage data detected by each sensor coil 19L included in the search coil 19 in step S14. . That is, voltage data for each sensor coil 19L detected by the voltage detection control unit 20 shown in FIG. 1 is acquired.
 次いで、ステップS15において、地上側制御部15は、基準電圧記憶部21に予め記憶保存されている基準電圧テーブルを読み込む。この際、地上コイル14の出力電力に対応する基準電圧テーブルを用いる。例えば、地上コイル14の出力電力が2KWである場合には、この2KWに対応する基準電圧テーブルを読み込む。 Next, in step S <b> 15, the ground-side control unit 15 reads a reference voltage table stored and saved in advance in the reference voltage storage unit 21. At this time, a reference voltage table corresponding to the output power of the ground coil 14 is used. For example, when the output power of the ground coil 14 is 2 KW, the reference voltage table corresponding to 2 KW is read.
 ステップS16において、地上側制御部15は、ステップS15で読み込んだ基準電圧テーブルと、ステップS14で取得した電圧データを対比し、差分電圧を求める。 In step S16, the ground control unit 15 compares the reference voltage table read in step S15 with the voltage data acquired in step S14, and obtains a differential voltage.
 ステップS17において、地上側制御部15は、差分電圧が予め設定された閾値電圧以上となる領域(センサコイル19Lの設置位置)の電圧変化のパターンを判断する。そして、この電圧変化のパターンに基づいて、地上側制御部15は、サーチコイル19上の異物が存在する位置を特定する。更に、異物の材質、即ち、鉄等の透磁率の高い異物であるか、或いは、銅やアルミニウム等の透磁率の低い異物であるかを判断する。 In step S17, the ground-side control unit 15 determines a voltage change pattern in an area where the differential voltage is equal to or higher than a preset threshold voltage (an installation position of the sensor coil 19L). Then, based on the voltage change pattern, the ground side control unit 15 specifies the position where the foreign matter exists on the search coil 19. Further, it is determined whether the foreign material is a foreign matter having a high magnetic permeability such as iron or a foreign matter having a low magnetic permeability such as copper or aluminum.
 具体的には、前述した図17,図20に記載したデータを参照して、異物の位置、及び材質を特定する。 Specifically, the position and material of the foreign matter are specified with reference to the data described in FIGS.
 例えば、磁束が垂直方向に発生する領域(サーチコイル19と直交する方向に磁束が発生する領域)において、中央の電圧が高く、その周囲電圧が低くなる場合(図16、図17(b)に示した例)には、地上側制御部15は、サーチコイル19の端部となる位置に、鉄等の透磁率の高い材質の異物が存在するものと判断する。 For example, in the region where the magnetic flux is generated in the vertical direction (the region where the magnetic flux is generated in the direction orthogonal to the search coil 19), the central voltage is high and the surrounding voltage is low (FIGS. 16 and 17B). In the example shown, the ground-side control unit 15 determines that a foreign material made of a material having a high magnetic permeability such as iron exists at a position that is an end of the search coil 19.
 また、磁束が垂直方向に発生する領域において、中央の電圧が低く、その周囲電圧が高くなる場合(図19、図20(b)に示した例)には、地上側制御部15は、サーチコイル19の端部となる位置に、アルミニウムや銅等の透磁率の低い材質の異物が存在するものと判断する。即ち、図19に示すように、サーチコイル19の端部に異物(シート状のアルミニウム84)が置かれている場合には、このアルミニウム84を避けるように磁束が通過するので、中央(この場合は、センサコイル19L9)の電圧が低下し、その周囲部(この場合は、センサコイル19L8)の電圧が高くなっている。よって、端部に透磁率の低いアルミニウム84が存在すると推定できる。 Further, in the region where the magnetic flux is generated in the vertical direction, when the central voltage is low and the surrounding voltage is high (examples shown in FIGS. 19 and 20B), the ground side control unit 15 performs the search. It is determined that a foreign material having a low magnetic permeability such as aluminum or copper is present at the end of the coil 19. That is, as shown in FIG. 19, when a foreign object (sheet-like aluminum 84) is placed at the end of the search coil 19, magnetic flux passes so as to avoid the aluminum 84. In this case, the voltage of the sensor coil 19L9) is decreased, and the voltage of the surrounding portion (in this case, the sensor coil 19L8) is increased. Therefore, it can be estimated that the aluminum 84 with low magnetic permeability exists at the end.
 更に、磁束が水平方向に発生する領域(サーチコイル19と平行な方向に磁束が発生する領域)において、中央の電圧が低く、その周囲電圧が高くなる場合(図15、図17(a)に示した例)には、地上側制御部15は、サーチコイル19の中央となる位置に、鉄等の透磁率の高い材質の異物が存在するものと判断する。 Further, in the region where the magnetic flux is generated in the horizontal direction (the region where the magnetic flux is generated in the direction parallel to the search coil 19), the central voltage is low and the surrounding voltage is high (see FIGS. 15 and 17A). In the example shown), the ground-side control unit 15 determines that there is a foreign material made of a material having a high magnetic permeability such as iron at the center of the search coil 19.
 一方、磁束が水平方向に発生する領域において、中央の電圧が高く、その周囲電圧に変化が生じていない場合には、地上側制御部15は、サーチコイル19の中央となる位置に、アルミニウムや銅等の透磁率の低い異物が立った状態で存在するものと判断する。 On the other hand, in the region where the magnetic flux is generated in the horizontal direction, when the central voltage is high and the surrounding voltage is not changed, the ground side control unit 15 places the aluminum or the like at the center of the search coil 19. It is determined that foreign matter having a low magnetic permeability such as copper is present in a standing state.
 そして、これらの情報を、表示部22に表示することにより、地上側制御部15は、給電装置102の操作者に対してサーチコイル19の近傍に異物が存在することを報知することができる。また、給電装置102の無線LAN17と、車両側装置101の無線LAN41との間の通信により、異物の検出情報を車両側装置101に通知することができる。したがって、この検出情報を車両側装置101の表示部42に表示することによって、異物が存在することを車両の運転者に報知することができる。その結果、サーチコイル19の近傍に異物が存在する場合には、異物の存在を認識した作業者等が事前に異物を除去することができるので、サーチコイル19の近傍に置かれた金属製の異物が発熱するといった問題の発生を回避することができる。 Then, by displaying these pieces of information on the display unit 22, the ground side control unit 15 can notify the operator of the power supply apparatus 102 that there is a foreign object in the vicinity of the search coil 19. Further, foreign object detection information can be notified to the vehicle-side device 101 by communication between the wireless LAN 17 of the power supply device 102 and the wireless LAN 41 of the vehicle-side device 101. Therefore, by displaying this detection information on the display unit 42 of the vehicle-side device 101, it is possible to notify the driver of the vehicle that there is a foreign object. As a result, when a foreign object exists in the vicinity of the search coil 19, an operator or the like who has recognized the presence of the foreign object can remove the foreign object in advance, so that the metal made in the vicinity of the search coil 19 can be removed. It is possible to avoid the occurrence of a problem that the foreign matter generates heat.
 なお、図23に示すフローチャートは、地上コイル14の上面側に設置したサーチコイル19による異物の検出手順について説明したが、車両用コイル35の下面側に設置したサーチコイル36についても同様の手順で異物を検出することができる。 In the flowchart shown in FIG. 23, the foreign object detection procedure by the search coil 19 installed on the upper surface side of the ground coil 14 has been described. However, the search coil 36 installed on the lower surface side of the vehicle coil 35 is similar in procedure. Foreign matter can be detected.
 このようにして、本実施形態に係る非接触電力伝送装置では、地上コイル14の上面側に複数のセンサコイル19Lから成るサーチコイル19を設け、各センサコイル19Lに生じた電圧を検出する。更に、検出した電圧データと予め取得した基準電圧テーブルに設定された基準電圧とを対比し、電圧の増減のパターンに基づいて、異物の存在位置、及び異物の材質を検出する。 Thus, in the non-contact power transmission apparatus according to the present embodiment, the search coil 19 including the plurality of sensor coils 19L is provided on the upper surface side of the ground coil 14, and the voltage generated in each sensor coil 19L is detected. Furthermore, the detected voltage data is compared with the reference voltage set in the reference voltage table acquired in advance, and the presence position of the foreign matter and the material of the foreign matter are detected based on the voltage increase / decrease pattern.
 従って、サーチコイル19の近傍に存在する金属製の異物の位置、及び材質を確実に検出して給電装置102の操作者、及び車両の運転者に報知することができる。 Therefore, it is possible to reliably detect the position and material of the metallic foreign object existing in the vicinity of the search coil 19 and notify the operator of the power supply apparatus 102 and the driver of the vehicle.
 即ち、車両を充電用の駐車スペースに停車させている場合には、路面に設けられたサーチコイル19上の状況を周囲から視認することは難しい。そこで、本実施形態のサーチコイル19を用いることにより、確実に異物の存在、及び位置確認、及び材質の確認が可能となり、即時に異物の除去作業を行うことができる。 That is, when the vehicle is stopped in the charging parking space, it is difficult to visually recognize the situation on the search coil 19 provided on the road surface from the surroundings. Therefore, by using the search coil 19 of the present embodiment, it is possible to surely confirm the presence and position of the foreign matter and the material, and the foreign matter can be removed immediately.
 これと同様に、車両用コイル35の下面側にサーチコイル36を設けたことにより、該車両用コイル35の近傍に存在する金属製の異物の位置、及び材質を検出して、車両の運転者、及び給電装置102の操作者に報知することができる。 Similarly, by providing the search coil 36 on the lower surface side of the vehicle coil 35, the position and material of the metallic foreign object existing in the vicinity of the vehicle coil 35 are detected, and the vehicle driver And the operator of the power supply apparatus 102 can be notified.
 また、複数のセンサコイル19Lにおける電圧変化のパターンに基づいて、異物の存在位置、及び材質を検出できる。即ち、図17、図20に示したセンサコイル19Lにおける電圧変化のパターンに基づき、サーチコイル19上のどの位置に異物が存在するかを認識でき、且つ、この異物の材質を認識できる。従って、車両の運転者、或いは操作者は、サーチコイル19近傍の異物が存在する位置、及び材質を認識できるので、この異物を取り除く作業を即時に行うことができる。なお、車両側装置101のサーチコイル36についても上記と同様の効果を達成できる。 Further, the presence position and material of the foreign matter can be detected based on the voltage change pattern in the plurality of sensor coils 19L. That is, based on the voltage change pattern in the sensor coil 19L shown in FIG. 17 and FIG. 20, it is possible to recognize where the foreign substance exists on the search coil 19 and to recognize the material of the foreign substance. Accordingly, the driver or operator of the vehicle can recognize the position and material where the foreign matter exists in the vicinity of the search coil 19 and can immediately perform the work of removing the foreign matter. The same effect as described above can be achieved for the search coil 36 of the vehicle-side device 101.
 以上、本発明の非接触電力伝送装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 As mentioned above, although the non-contact electric power transmission apparatus of this invention was demonstrated based on embodiment of illustration, this invention is not limited to this, The structure of each part is set to the thing of the arbitrary structures which have the same function. Can be replaced.
 例えば、上述した実施形態では、地上コイル14としてソレノイド型コイルを用いる例について説明したが、ディスク型コイルについても同様に異物の存在を検出できる。つまり、前述の図10に示したように、ディスク型コイル71では、右半分の磁束の発生パターンが図7に示したソレノイド型コイル61の場合とほぼ一致するので、これと対称な形状となる左半分についても同様の手法を採用すれば、上記の実施形態と同様の手法により異物の存在位置、及び材質を検出することが可能となる。 For example, in the above-described embodiment, an example in which a solenoid type coil is used as the ground coil 14 has been described. That is, as shown in FIG. 10 described above, in the disk-type coil 71, the right half magnetic flux generation pattern substantially coincides with that of the solenoid-type coil 61 shown in FIG. If the same method is adopted for the left half, the presence position and material of the foreign substance can be detected by the same method as in the above embodiment.
 また、上述した実施形態では、車両用コイル35の下面側にサーチコイル36を設け、地上コイル14の上面側にサーチコイル19を設ける例について説明したが、本発明はこれに限定されるものではなく、少なくとも一方にサーチコイルを設ける構成としてもよい。例えば、地上コイル14の上面側にのみサーチコイル19を設ける構成とすれば、地上コイル14の近傍に存在する異物を検出することができる。また、車両用コイル35の下面にのみサーチコイル36を設ける構成とすれば、車両用コイル35の近傍に存在する異物を検出することができる。 In the above-described embodiment, the example in which the search coil 36 is provided on the lower surface side of the vehicle coil 35 and the search coil 19 is provided on the upper surface side of the ground coil 14 has been described, but the present invention is not limited to this. Alternatively, the search coil may be provided on at least one side. For example, if the search coil 19 is provided only on the upper surface side of the ground coil 14, it is possible to detect foreign matter existing in the vicinity of the ground coil 14. Further, if the search coil 36 is provided only on the lower surface of the vehicle coil 35, foreign matter existing in the vicinity of the vehicle coil 35 can be detected.
 本出願は、2013年3月29日に出願された日本国特許願第2013-071268号に基づく優先権を主張しており、この出願の内容が参照により本発明の明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-071268 filed on Mar. 29, 2013, and the contents of this application are incorporated into the specification of the present invention by reference.
 10 商用電源
 11 直流電源
 12 インバータ
 13、34 共振コンデンサ
 14 地上コイル
 15 地上側制御部
 16、38 電圧・電流・温度センサ
 17、41 無線LAN
 18、44 校正スイッチ
 19、36 サーチコイル
 19L センサコイル
 20、37 電圧検出制御部
 21、43 基準電圧記憶部
 22、42 表示部
 31 バッテリ
 32 リレーボックス
 33 整流回路
 35 車両用コイル
 39 車両側制御部
 40 車両ネットワーク
 51 マルチプレクサ
 52 差動増幅部
 53 整流器
 54 フィルタ
 55 CPU
 61 ソレノイド型コイル
 62、72 フェライト
 63、73 絶縁材
 64、74 電線
 65、75 端子
 71 ディスク型コイル
 81、82 鉄
 83、84 アルミニウム
 100 非接触充電システム
 101 車両側装置
 102 給電装置
DESCRIPTION OF SYMBOLS 10 Commercial power supply 11 DC power supply 12 Inverter 13, 34 Resonance capacitor 14 Ground coil 15 Ground side control part 16, 38 Voltage / current / temperature sensor 17, 41 Wireless LAN
18, 44 Calibration switch 19, 36 Search coil 19L Sensor coil 20, 37 Voltage detection control unit 21, 43 Reference voltage storage unit 22, 42 Display unit 31 Battery 32 Relay box 33 Rectifier circuit 35 Vehicle coil 39 Vehicle side control unit 40 Vehicle network 51 Multiplexer 52 Differential amplifier 53 Rectifier 54 Filter 55 CPU
61 Solenoid type coil 62, 72 Ferrite 63, 73 Insulating material 64, 74 Electric wire 65, 75 Terminal 71 Disc type coil 81, 82 Iron 83, 84 Aluminum 100 Non-contact charging system 101 Vehicle side device 102 Power feeding device

Claims (3)

  1.  電力伝送用コイルを介して非接触で電力を送信または受信する非接触電力伝送装置であって、
     前記電力伝送用コイルの送信側または受信側となる面を覆うように複数のセンサコイルが平面的に配置されたサーチコイルと、
     前記電力伝送用コイルで電力を送信または受信しているときに、前記複数のセンサコイルに生じた電圧を検出する電圧検出部と、
     前記サーチコイルの近傍に異物が存在しないときに前記複数のセンサコイルに生じる電圧を基準電圧テーブルとして記憶する基準電圧テーブル記憶部と、
     前記電圧検出部で検出された電圧と前記基準電圧テーブルとを比較し、この比較結果に基づいて前記サーチコイルの近傍に異物が存在するか否かを判断する異物検出部と、
     を備えたことを特徴とする非接触電力伝送装置。
    A non-contact power transmission device that transmits or receives power in a non-contact manner via a power transmission coil,
    A search coil in which a plurality of sensor coils are arranged in a plane so as to cover a surface to be a transmission side or a reception side of the power transmission coil;
    A voltage detection unit that detects voltages generated in the plurality of sensor coils when power is transmitted or received by the power transmission coil; and
    A reference voltage table storage unit that stores, as a reference voltage table, voltages generated in the plurality of sensor coils when there is no foreign object in the vicinity of the search coil;
    A foreign object detection unit that compares the voltage detected by the voltage detection unit with the reference voltage table and determines whether there is a foreign object in the vicinity of the search coil based on the comparison result;
    A non-contact power transmission device comprising:
  2.  前記異物検出部は、前記複数のセンサコイルのうち2以上のセンサコイルで検出された電圧と前記基準電圧テーブルに記憶されている各センサコイルに生じる電圧との差分電圧を求め、前記差分電圧の上昇、下降のパターンに基づいて前記異物の存在位置を判断することを特徴とする請求項1に記載の非接触電力伝送装置。 The foreign matter detection unit obtains a differential voltage between a voltage detected by two or more sensor coils among the plurality of sensor coils and a voltage generated in each sensor coil stored in the reference voltage table, and The non-contact power transmission apparatus according to claim 1, wherein the presence position of the foreign object is determined based on an ascending / descending pattern.
  3.  前記異物検出部は、前記複数のセンサコイルのうち2以上のセンサコイルで検出された電圧と前記基準電圧テーブルに記憶されている各センサコイルに生じる電圧との差分電圧を求め、前記差分電圧の上昇、下降のパターンに基づいて前記異物の材質を判断することを特徴とする請求項1または2に記載の非接触電力伝送装置。 The foreign matter detection unit obtains a differential voltage between a voltage detected by two or more sensor coils among the plurality of sensor coils and a voltage generated in each sensor coil stored in the reference voltage table, and The non-contact power transmission apparatus according to claim 1, wherein the material of the foreign matter is determined based on an ascending / descending pattern.
PCT/JP2014/056515 2013-03-29 2014-03-12 Contactless power transmission device WO2014156655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508269A JPWO2014156655A1 (en) 2013-03-29 2014-03-12 Non-contact power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-071268 2013-03-29
JP2013071268 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014156655A1 true WO2014156655A1 (en) 2014-10-02

Family

ID=51623638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056515 WO2014156655A1 (en) 2013-03-29 2014-03-12 Contactless power transmission device

Country Status (2)

Country Link
JP (1) JPWO2014156655A1 (en)
WO (1) WO2014156655A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226236A (en) * 2015-06-03 2016-12-28 有限会社日本テクモ Non-contact power supply device and non-contact power reception device
KR20170110436A (en) * 2016-03-23 2017-10-11 주식회사 아모텍 Wireless power transmission module and deteting method for foreign object using the same
JP2018093560A (en) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 Power transmission device and power transmission system
JP2018207656A (en) * 2017-06-02 2018-12-27 日産自動車株式会社 Foreign matter detection method by non-contact power supply system and non-contact power supply system
WO2021192552A1 (en) * 2020-03-26 2021-09-30 オムロン株式会社 Foreign matter detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3096190B1 (en) * 2019-05-17 2021-04-16 Continental Automotive Method of inductive charging control of user equipment and associated charging device for motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016125A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Non-contact power supply system, and metal foreign substance detector of non-contact power supply system
JP2012249401A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027076A (en) * 2011-07-15 2013-02-04 Panasonic Corp Non-contact power supply device
JP2016103865A (en) * 2013-03-06 2016-06-02 アルプス電気株式会社 Wireless power transmission system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
JP2012016125A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Non-contact power supply system, and metal foreign substance detector of non-contact power supply system
JP2012249401A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226236A (en) * 2015-06-03 2016-12-28 有限会社日本テクモ Non-contact power supply device and non-contact power reception device
KR20170110436A (en) * 2016-03-23 2017-10-11 주식회사 아모텍 Wireless power transmission module and deteting method for foreign object using the same
KR102491448B1 (en) * 2016-03-23 2023-01-26 주식회사 아모텍 Wireless power transmission module and deteting method for foreign object using the same
JP2018093560A (en) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 Power transmission device and power transmission system
JP2018207656A (en) * 2017-06-02 2018-12-27 日産自動車株式会社 Foreign matter detection method by non-contact power supply system and non-contact power supply system
WO2021192552A1 (en) * 2020-03-26 2021-09-30 オムロン株式会社 Foreign matter detection device
JP7452173B2 (en) 2020-03-26 2024-03-19 オムロン株式会社 Foreign object detection device
US11982784B2 (en) 2020-03-26 2024-05-14 Omron Corporation Foreign object detector

Also Published As

Publication number Publication date
JPWO2014156655A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014156655A1 (en) Contactless power transmission device
US9840152B2 (en) Apparatus for inductive power transmission
EP3249783B1 (en) Power transmission system, foreign matter detection device, and coil device
US9950636B2 (en) Foreign matter detection device and method for wireless power supply device
US10559978B2 (en) System, apparatus and method for supplying electric power, apparatus and method for receiving electric power
US10112496B2 (en) Vehicular wireless power transfer system with performance monitoring
WO2015037291A1 (en) Contactless power supply device capable of detecting metallic foreign objects and metallic foreign object detection method therefor
US8248027B2 (en) Non-contact power transmission apparatus
EP2773012B1 (en) Contactless electrical power transmission device, and electricity supply device and electricity reception device using same
RU2501144C2 (en) Device for inductive power transmission
US9035790B2 (en) Wireless power transfer electric vehicle supply equipment installation and validation tool
EP2717431A1 (en) Contactless electricity supply device
KR20120097480A (en) Device for the inductive transfer of electric energy
JP2010154625A (en) Resonance type contactless charging system
CN104781700A (en) Metal foreign body-identification system for inductive energy transmission systems
WO2014136396A1 (en) Wireless power transmission system
JP6399482B2 (en) Metal foreign object detection device
US20150145530A1 (en) Coil unit and apparatus for detecting foreign matter
TW201729511A (en) Method for operating a monitoring apparatus for monitoring an inductive energy transmission apparatus
KR20160129040A (en) Contactless electricity supply system and contactless electricity reception device
US20160023558A1 (en) Noncontact charging system
KR20190077526A (en) Apparatus for induction charging an electric vehicle and method for detecting electrically conductive foreign matter in such apparatus
WO2013061611A1 (en) Contactless power transmission device
CN107078562B (en) Operation of inductive power transfer system
WO2018151096A1 (en) Foreign matter detection device for non-contact power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773409

Country of ref document: EP

Kind code of ref document: A1