WO2014156539A1 - Opposed swashplate-type hydraulic rotary machine - Google Patents

Opposed swashplate-type hydraulic rotary machine Download PDF

Info

Publication number
WO2014156539A1
WO2014156539A1 PCT/JP2014/055782 JP2014055782W WO2014156539A1 WO 2014156539 A1 WO2014156539 A1 WO 2014156539A1 JP 2014055782 W JP2014055782 W JP 2014055782W WO 2014156539 A1 WO2014156539 A1 WO 2014156539A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
piston
tilt
pressure chamber
tilting
Prior art date
Application number
PCT/JP2014/055782
Other languages
French (fr)
Japanese (ja)
Inventor
弘毅 加藤
細川 尊
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to DE112014000201.1T priority Critical patent/DE112014000201T5/en
Priority to KR1020157006825A priority patent/KR101743848B1/en
Priority to CN201480002590.XA priority patent/CN104685208A/en
Priority to US14/431,350 priority patent/US20150240636A1/en
Publication of WO2014156539A1 publication Critical patent/WO2014156539A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B3/00Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0032Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F01B3/0035Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • F01B3/0038Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons inclined to main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0032Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F01B3/0044Component parts, details, e.g. valves, sealings, lubrication
    • F01B3/0052Cylinder barrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0032Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F01B3/0044Component parts, details, e.g. valves, sealings, lubrication
    • F01B3/007Swash plate
    • F01B3/0073Swash plate swash plate bearing means or driving or driven axis bearing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0636Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F03C1/0639Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • F03C1/0686Control by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/22Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate

Definitions

  • the present invention relates to an opposing type swash plate type hydraulic rotating machine in which a first swash plate and a second swash plate are inclined to face both ends of a cylinder block.
  • JP2008-231924A a cylinder block having a plurality of cylinders, a first piston and a second piston protruding from both ends of the cylinder, and a first swash plate and a second swash plate in which the protruding ends of the first and second pistons are in sliding contact with each other.
  • An opposed type swash plate type hydraulic rotating machine comprising: a swash plate.
  • the first piston follows the first swash plate to reciprocate in the cylinder as the cylinder block rotates, and the second piston follows the second swash plate to reciprocate in the cylinder. Then, the working fluid is supplied to and discharged from the volume chamber in the cylinder.
  • a tilt drive piston for tilting the first swash plate is connected to one side of the first swash plate, and the other side of the first swash plate transmits the tilt of the first swash plate to the second swash plate
  • the tilting interlocking mechanism is connected.
  • the tilting shaft portion of the first swash plate causes the floating phenomenon to separate from the tilting bearing provided on the casing when the first swash plate is driven to tilt.
  • the floating phenomenon includes the force of the tilting drive piston received on one side of the first swash plate when the first swash plate tilts, the reaction force of the tilting interlocking mechanism received on the other side of the first swash plate, Is a phenomenon in which the first swash plate rotates about the rotation axis of the cylinder block by acting as a torque in the same rotational direction, and the tilting shaft portion of the first swash plate separates from the tilt bearing.
  • An object of the present invention is to prevent the floating phenomenon in an opposed type swash plate type hydraulic rotating machine.
  • the opposite type swash plate in which the first piston and the second piston protruding from both ends of the rotating cylinder block reciprocate in the cylinder following the first swash plate and the second swash plate, respectively.
  • Type hydraulic rotary machine a first tilt bearing for tiltably supporting a first swash plate, and a first tilt drive for causing the first swash plate to tilt in a direction intersecting the rotation axis of the cylinder block
  • a facing comprising a piston, a second tilt bearing which tiltably supports a second swash plate, and a second tilt drive piston which tilts the second swash plate in a direction intersecting with the rotation axis of the cylinder block.
  • a swash plate type hydraulic rotating machine is provided.
  • FIG. 1 is a cross-sectional view of an opposed type swash plate type piston motor according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram which shows the structure which tilts a 1st swash plate and a 2nd swash plate.
  • FIG. 3 is a schematic diagram which shows the structure which tilts a 1st swash plate and a 2nd swash plate.
  • FIG. 4 is a hydraulic circuit diagram for tilting the first swash plate and the second swash plate.
  • the opposing type swash plate type piston motor 1 shown in FIG. 1 is applied to a hydrostatic transmission 90 (see FIG. 4; hereinafter simply referred to as “HST 90”) mounted as a continuously variable transmission on a work vehicle or the like.
  • HST 90 hydrostatic transmission 90
  • the opposed type swash plate type piston motor 1 is inclined to face both ends of the shaft 2 rotating around the rotation axis O 4, the cylinder block 4 supported by the shaft 2, and the cylinder block 4.
  • the first swash plate 30 and the second swash plate 40 are provided.
  • the cylinder block 4 is formed in a cylindrical shape having a hollow portion, and the shaft 2 is inserted therein.
  • a plurality of cylinders 3 are formed in the cylinder block 4 side by side in the circumferential direction.
  • the cylinder 3 is formed to extend in the axial direction, and opens at both end faces 4C and 4D of the cylinder block 4.
  • the first piston 8 and the second piston 9 are respectively inserted into the cylinder 3 from both open ends.
  • the first piston 8 and the second piston 9 have tip portions projecting from the open end of the cylinder 3, and the first shoe 21 and the second shoe 22 are pivotally connected to the respective tip portions.
  • the first piston 8 reciprocates following the end face 30A of the first swash plate 30 via the first shoe 21 and the port plate 16, and the second piston 9 reciprocates the second shoe 22. It reciprocates following the end face 40A of the second swash plate 40 via the same.
  • a volume chamber 7 is defined between the first piston 8 and the second piston 9.
  • the volume chamber 7 is expanded and contracted, and hydraulic oil is supplied and discharged to the volume chamber 7 through the pair of supply and discharge passages 5, 6 (see FIG. 4). Ru.
  • the piston motor 1 uses hydraulic fluid (oil) as the hydraulic fluid, but may use a hydraulic fluid such as a water-soluble substitute fluid instead of the hydraulic fluid.
  • the cylindrical shaft 2 is rotatably supported at both ends by a casing (not shown) via a bearing (not shown).
  • the casing is provided with a cylindrical case (not shown) and lid-like first and second covers (not shown) that close both open ends of the case.
  • the cylinder block 4 is accommodated in the case, the first swash plate 30 is accommodated in the first cover, and the second swash plate 40 is accommodated in the second cover.
  • Splines 2A are formed on the outer periphery of the shaft 2.
  • Splines 4 H are formed on the inner periphery of the cylinder block 4.
  • the spline 4H of the cylinder block 4 is slidably fitted to the spline 2A of the shaft 2, whereby the rotation of the cylinder block 4 with respect to the shaft 2 is restricted, and axial movement with respect to the shaft 2 becomes possible.
  • a first retainer plate 23 and a first retainer holder 25 are interposed between the first swash plate 30 and the cylinder block 4 in the axial direction.
  • a disc-shaped port plate 16 that rotates with the cylinder block 4 is provided between the first shoe 21 and the first swash plate 30, a disc-shaped port plate 16 that rotates with the cylinder block 4 is provided.
  • the port plate 16 is connected to the first retainer plate 23 via a plurality of pins 18.
  • a plurality of center springs 19 are interposed between the first retainer holder 25 and the cylinder block 4 in the circumferential direction.
  • the cylinder block 4 is urged rightward in FIG. 1 by the center spring 19 and pressed against the end face 40A of the second swash plate 40 via the second retainer holder 26, the second retainer plate 24 and the second shoe 22. .
  • the axial position of the cylinder block 4 with respect to the second swash plate 40 is determined.
  • the first swash plate 30 has a pair of tilting and rotating shaft portions (half log portions) 30B that project to the back side.
  • the tilting shaft portion 30B is tiltably supported by a first tilting bearing 33 formed in a casing (not shown).
  • the first swash plate 30 pivots about the first tilting axis O1.
  • the second swash plate 40 has a pair of tilting and rotating shaft portions (half log portions) 40B projecting to the back side.
  • the tilt shaft portion 40B is tiltably supported by a second tilt bearing 43 formed in the casing.
  • the second swash plate 40 pivots about the second tilting axis O2.
  • the first tilt axis O1 and the second tilt axis O2 are orthogonal to the rotation axis O4 of the cylinder block 4.
  • the piston motor 1 includes a first tilting drive mechanism 50 for tilting the first swash plate 30 and a second tilting drive mechanism 60 for tilting the second swash plate 40.
  • first tilting drive mechanism 50 for tilting the first swash plate 30
  • second tilting drive mechanism 60 for tilting the second swash plate 40.
  • the stroke length at which the first piston 8 reciprocates in the cylinder 3 changes.
  • the stroke length at which the second piston 9 reciprocates in the cylinder 3 changes.
  • the stroke length changes, the displacement per revolution of the cylinder block 4 changes, and the output rotational speed of the piston motor 1 changes.
  • the first tilt drive piston 31 moved by hydraulic pressure and the movement of the first tilt drive piston 31 are centered on the first tilt axis O1.
  • a conversion mechanism 38 for converting into a rotational movement is included in the first tilt drive mechanism 50.
  • the line G1 is orthogonal to the rotation axis O4 and to the first tilt axis O1.
  • the first tilting drive piston 31 is arranged to move in a direction parallel to the line G1. Not limited to this, the first tilt drive piston 31 may be arranged to move in a direction intersecting with the line G1 at a slight angle.
  • the conversion mechanism 38 includes a slide metal 36 slidably engaged with the guide groove 35 of the first tilt drive piston 31, and a slide metal projecting from an end of the first swash plate 30 in the direction of the first tilt axis O1. And a pin 37 slidably inserted into the hole 36.
  • a first push side piston pressure chamber 53 and a first pull side piston pressure chamber 54 are respectively defined at both ends of the first tilt drive piston 31.
  • a first tilt control valve 70 is provided to switch the hydraulic pressure introduced to the piston pressure chambers 53, 54. The first tilt drive piston 31 moves due to the hydraulic pressure difference between the piston pressure chambers 53 and 54.
  • the second tilt drive piston 41 moved by hydraulic pressure and the movement in which the second tilt drive piston 41 moves are centered on the second tilt axis O2.
  • a conversion mechanism 48 for converting into a rotational movement.
  • the line G2 is orthogonal to the rotation axis O4 and orthogonal to the second tilting axis O2.
  • the second tilting drive piston 41 is arranged to move in a direction parallel to the line G2. Not limited to this, the second tilt drive piston 41 may be arranged to move in a direction intersecting with the line G2 at a slight angle.
  • the conversion mechanism 48 includes a slide metal 46 slidably engaged with the guide groove 45 of the second tilt drive piston 41, and a slide metal projecting from an end of the second swash plate 40 in the direction of the second tilt axis O2. And a pin 47 slidably inserted into the hole 46.
  • a second push side piston pressure chamber 63 and a second pull side piston pressure chamber 64 are respectively defined at both ends of the second tilting drive piston 41.
  • a second tilt control valve 80 is provided to switch the hydraulic pressure introduced to the piston pressure chambers 63, 64.
  • the second tilt drive piston 41 is moved by the hydraulic pressure difference between the piston pressure chambers 63 and 64.
  • FIG. 4 is a diagram showing the configuration of the hydraulic circuit and control system provided in the HST 90. As shown in FIG.
  • the HST 90 includes a piston motor 1, a piston pump 99, and a closed circuit 100 through which hydraulic fluid circulates.
  • the closed circuit 100 includes a first circulation passage 101 and a second circulation passage 102 that connect the piston motor 1 and the piston pump 99.
  • One end of the first circulation passage 101 is connected to the supply and discharge passage 5 of the piston motor 1, and the other end is connected to the supply and discharge passage 105 of the piston pump 99.
  • One end of the second circulation passage 102 is connected to the supply and discharge passage 6 of the piston motor 1, and the other end is connected to the supply and discharge passage 106 of the piston pump 99.
  • the hydraulic fluid discharged from the piston pump 99 is fed to the piston motor 1 through the closed circuit 100, whereby the piston motor 1 rotates.
  • the output rotation of the piston motor 1 is transmitted to the left and right wheels via a transmission (gear type transmission), a differential gear, etc. (not shown).
  • the piston pump 99 is rotationally driven by an engine (not shown).
  • the piston pump 99 has two supply and discharge passages 105 and 106 for supplying and discharging the hydraulic oil to the volume chamber, and the discharge direction of the hydraulic oil to the supply and discharge passages 105 and 106 by switching the tilt direction of the swash plate 107. Will change.
  • the traveling direction (forward or reverse) of the vehicle is switched.
  • the fluid pressure source 110 is provided with a fixed displacement charge pump 111 which is rotationally driven by the engine, and a charge passage 113 which leads hydraulic oil discharged from the charge pump 111.
  • An oil filter 114, an oil filter 116, and a relief valve 119 are interposed in the charge passage 113.
  • the hydraulic oil that has passed through the relief valve 119 returns to the tank 109.
  • Charge passage 113 is connected to first circulation passage 101 and second circulation passage 102 via check valves 117 and 118.
  • the check valve 117 opens to fill the first circulation passage 101 with the hydraulic oil from the charge passage 113.
  • the check valve 118 opens to fill the second circulation passage 102 with the hydraulic oil from the charge passage 113. For this reason, the pressures of the first circulation passage 101 and the second circulation passage 102 are maintained at or above a predetermined value.
  • Relief valves 121 and 122 are interposed in the charge passage 113 in parallel with the check valves 117 and 118.
  • the relief valve 121 opens and the hydraulic pressure in the first circulation passage 101 is released to the charge passage 113.
  • the relief valve 122 opens and the hydraulic pressure in the second circulation passage 102 is released to the charge passage 113. For this reason, it is suppressed that the pressure of the 1st circulation passage 101 and the 2nd circulation passage 102 exceeds predetermined value.
  • a high pressure selection valve 149 is provided between the first circulation passage 101 and the second circulation passage 102.
  • the hydraulic pressure extracted through the high pressure selection valve 149 is led to the first tilt control valve 70 and the second tilt control valve 80.
  • the first tilt control valve 70 includes an inlet port 71 communicating with the high pressure selection valve 149, an outlet port 72 communicating with the tank 109, and a first push side port 73 communicating with the first push side piston pressure chamber 53; And a first pull side port 74 in communication with the first pull side piston pressure chamber 54.
  • the first tilt control valve 70 includes a valve housing 76 inserted in the casing, a spool valve 79 slidably accommodated in the valve housing 76, and a spool valve 79. In one axial direction, and a solenoid 77 which moves the spool valve 79 in the axial direction against the spring 78.
  • the first tilt control valve 70 is switched to three positions 70A, 70B, 70C.
  • the hydraulic oil from the high pressure selection valve 149 is supplied to the first push side piston pressure chamber 53 through the ports 71, 73, and the hydraulic oil of the first pull side piston pressure chamber 54 is the hydraulic pressure port 74, 72. Is returned to the tank 109.
  • the first tilting drive piston 31 moves in the direction (downward direction) indicated by arrow A in FIG. 2 and the first swash plate 30 is indicated by arrow B As such, it pivots in the direction in which the tilt angle increases. As a result, the displacement volume of the piston motor 1 increases, and the traveling speed of the vehicle decreases.
  • the hydraulic oil from the high pressure selection valve 149 is supplied to the first pull side piston pressure chamber 54 through the ports 71 and 74, and the hydraulic oil of the first push side piston pressure chamber 53 is tanked through the ports 73 and 72. It is returned to 109.
  • the first tilting drive piston 31 moves in the direction (upward direction) indicated by the arrow C in FIG. 3 and the first swash plate 30 is indicated by the arrow D As such, it pivots in the direction in which the tilt angle decreases. As a result, the displacement of the piston motor 1 is reduced, and the traveling speed of the vehicle is increased.
  • the controller 170 adjusts the flow rate of the hydraulic oil supplied to and discharged from the first tilt drive mechanism 50 by switching the positions 70A, 70B, 70C of the first tilt control valve 70, and continuously changes the transmission ratio of the HST 90. Control.
  • the second tilt control valve 80 has an inlet port 81 communicating with the high pressure selection valve 149, an outlet port 82 communicating with the tank 109, and a second push side port 83 communicating with the second push side piston pressure chamber 63; And a second pull-side port 84 communicating with the second pull-side piston pressure chamber 64.
  • the second tilt control valve 80 includes a valve housing 86 installed in the casing, a spool valve 89 slidably accommodated in the valve housing 86, and a spool valve 89. And the solenoid 87 which moves the spool valve 89 in the axial direction against the spring 88.
  • the second tilt control valve 80 switches to three positions 80A, 80B, 80C.
  • the hydraulic oil from the high pressure selection valve 149 is supplied to the second pull side piston pressure chamber 64 through the ports 81 and 84, and the hydraulic oil of the second push side piston pressure chamber 63 is the hydraulic pressure ports 83 and 82. Is returned to the tank 109.
  • the second tilting drive piston 41 moves in the direction (upward direction) indicated by arrow E in FIG. 2, and the second swash plate 40 is indicated by arrow F. As such, it pivots in the direction in which the tilt angle decreases. As a result, the displacement of the piston motor 1 is reduced, and the traveling speed of the vehicle is increased.
  • the hydraulic oil from the high pressure selection valve 149 is supplied to the second push side piston pressure chamber 63 through the ports 81 and 83, and the hydraulic oil of the second pulling side piston pressure chamber 64 is tanked through the ports 84 and 82. It is returned to 109.
  • the second tilting drive piston 41 moves in the direction shown by the arrow H in FIG. 3 (downward), and the second swash plate 40 is shown by the arrow I As such, it pivots in the direction in which the tilt angle increases. As a result, the displacement volume of the piston motor 1 increases and the speed of the vehicle decreases.
  • the controller 170 adjusts the flow rate of the hydraulic oil supplied to and discharged from the second tilt drive mechanism 60 by switching the positions 80A, 80B, 80C of the second tilt control valve 80 to continuously change the transmission ratio of the HST 90. Control.
  • Numerals 171 and 172 are potentiometers for reading the tilt angles of the first swash plate 30 and the second swash plate 40, respectively.
  • the controller 170 performs feedback control of the open / close timing of the first tilt control valve 70 and the second tilt control valve 80 in accordance with the detection values of the potentiometers 171 and 172.
  • the first tilt drive piston 31 pushes the end of the first swash plate 30 in the direction orthogonal to the tilt axis O1 to tilt the first swash plate 30, and the second tilt drive piston
  • the tilting of the second swash plate 40 by pressing the end of the second swash plate 40 in the direction orthogonal to the tilting axis O2 is performed independently of each other.
  • the flow rate of the working fluid supplied to and discharged from the first tilt drive mechanism 50 is adjusted by the first tilt control valve 70, and the flow rate of the working fluid supplied to and discharged from the second tilt drive mechanism 60 is It is adjusted by a second tilt control valve 80 different from the single tilt control valve 70.
  • the first swash plate 30 and the second swash plate 40 are tilted by being pushed by the first tilt drive piston 31 and the second tilt drive piston 41 in the direction intersecting the tilt axes O1 and O2, respectively. Therefore, since the torque for rotating around the central axis O4 does not act on the first swash plate 30 and the second swash plate 40, the tilt shaft portion 30B and the tilt shaft portion 40B are the first tilt bearing 33 and the first tilt bearing 33 and The floating phenomenon away from the second tilting bearing 43 can be prevented.
  • the actuation strokes of the first tilt drive mechanism 50 and the second tilt drive mechanism 60 are continuously adjusted by the operation of the first tilt control valve 70 and the second tilt control valve 80, respectively.
  • the tilt angles of the first swash plate 30 and the second swash plate 40 can be controlled to any level.
  • the flow rate of the working fluid supplied to and discharged from the first tilt drive mechanism 50 and the flow rate of the working fluid supplied to and discharged from the second tilt drive mechanism 60 correspond to the first tilt control valve 70 and the second tilt control valve.
  • the first tilt drive mechanism 50 can adjust the tilt angle of the first swash plate 30 in a responsive manner because the control valve 80 respectively adjusts the tilt angle of the first swash plate 30.
  • the tilt angle can be adjusted responsively.
  • the present embodiment is the piston motor 1 in which the cylinder block is rotated by supplying and discharging the hydraulic oil
  • the piston pump 111 to which the hydraulic oil is supplied and discharged by rotating the cylinder block is used.
  • the invention may be applied.
  • the piston motor constitutes the hydrostatic transmission (HST), but it may constitute another machine or facility.
  • HST hydrostatic transmission

Abstract

An opposed swashplate-type piston motor in which a first piston and a second piston protruding from both ends of a cylinder block reciprocate in conjunction with a first swashplate and a second swashplate, respectively, said piston motor being equipped with: a first tilting bearing for tiltably supporting the first swashplate; a first tilting drive piston for tilting the first swashplate in a direction which intersects the rotational axis of the cylinder block; a second tilting bearing for tiltably supporting the second swashplate; and a second tilting drive piston for tilting the second swashplate in a direction which intersects the rotational axis of the cylinder block.

Description

対向式斜板型液圧回転機Opposite type swash plate type hydraulic rotating machine
 本発明は、第一斜板及び第二斜板がシリンダブロックの両端に対向して傾転する対向式斜板型液圧回転機に関するものである。 The present invention relates to an opposing type swash plate type hydraulic rotating machine in which a first swash plate and a second swash plate are inclined to face both ends of a cylinder block.
 JP2008-231924Aには、複数のシリンダを有するシリンダブロックと、シリンダの両端から突出する第一ピストン及び第二ピストンと、第一ピストン及び第二ピストンの突出端がそれぞれ摺接する第一斜板及び第二斜板と、を備える対向式斜板型液圧回転機が開示されている。 In JP2008-231924A, a cylinder block having a plurality of cylinders, a first piston and a second piston protruding from both ends of the cylinder, and a first swash plate and a second swash plate in which the protruding ends of the first and second pistons are in sliding contact with each other. An opposed type swash plate type hydraulic rotating machine is disclosed, comprising: a swash plate.
 液圧回転機では、シリンダブロックの回転に伴って第一ピストンが第一斜板に追従してシリンダ内を往復動するとともに、第二ピストンが第二斜板に追従してシリンダ内を往復動して、シリンダ内の容積室に作動流体が給排される。 In a hydraulic rotary machine, the first piston follows the first swash plate to reciprocate in the cylinder as the cylinder block rotates, and the second piston follows the second swash plate to reciprocate in the cylinder. Then, the working fluid is supplied to and discharged from the volume chamber in the cylinder.
 第一斜板の一側には、第一斜板を傾転させる傾転駆動ピストンが連結され、第一斜板の他側には、第一斜板の傾きを第二斜板に伝達する傾転連動機構が連結される。傾転駆動ピストンによって第一斜板が傾転すると、傾転連動機構を介して第二斜板も傾転する。 A tilt drive piston for tilting the first swash plate is connected to one side of the first swash plate, and the other side of the first swash plate transmits the tilt of the first swash plate to the second swash plate The tilting interlocking mechanism is connected. When the first swash plate is tilted by the tilting drive piston, the second swash plate is also tilted via the tilting interlocking mechanism.
 JP2008-231924Aに開示された対向式斜板型液圧回転機では、第一斜板の傾転駆動時に第一斜板の傾転軸部がケーシングに設けられる傾転軸受から離れる浮き上がり現象を起こすことがある。 In the opposing type swash plate type hydraulic rotating machine disclosed in JP2008-231924A, the tilting shaft portion of the first swash plate causes the floating phenomenon to separate from the tilting bearing provided on the casing when the first swash plate is driven to tilt. Sometimes.
 浮き上がり現象とは、第一斜板が傾転する時に、第一斜板の一側で受ける傾転駆動ピストンの力と、第一斜板の他側で受ける傾転連動機構の反力と、が同一回転方向のトルクとして働くことによって、第一斜板がシリンダブロックの回転軸を中心として回動し、第一斜板の傾転軸部が傾転軸受から離れる現象である。 The floating phenomenon includes the force of the tilting drive piston received on one side of the first swash plate when the first swash plate tilts, the reaction force of the tilting interlocking mechanism received on the other side of the first swash plate, Is a phenomenon in which the first swash plate rotates about the rotation axis of the cylinder block by acting as a torque in the same rotational direction, and the tilting shaft portion of the first swash plate separates from the tilt bearing.
 本発明は、対向式斜板型液圧回転機において浮き上がり現象を防止することを目的とする。 An object of the present invention is to prevent the floating phenomenon in an opposed type swash plate type hydraulic rotating machine.
 本発明のある態様によれば、回転するシリンダブロックの両端から突出する第一ピストン及び第二ピストンが第一斜板及び第二斜板にそれぞれ追従してシリンダ内を往復動する対向式斜板型液圧回転機であって、第一斜板を傾転自在に支持する第一傾転軸受と、第一斜板をシリンダブロックの回転軸と交差する方向に傾転させる第一傾転駆動ピストンと、第二斜板を傾転自在に支持する第二傾転軸受と、第二斜板をシリンダブロックの回転軸と交差する方向に傾転させる第二傾転駆動ピストンと、を備える対向式斜板型液圧回転機が提供される。 According to an aspect of the present invention, the opposite type swash plate in which the first piston and the second piston protruding from both ends of the rotating cylinder block reciprocate in the cylinder following the first swash plate and the second swash plate, respectively. Type hydraulic rotary machine, a first tilt bearing for tiltably supporting a first swash plate, and a first tilt drive for causing the first swash plate to tilt in a direction intersecting the rotation axis of the cylinder block A facing comprising a piston, a second tilt bearing which tiltably supports a second swash plate, and a second tilt drive piston which tilts the second swash plate in a direction intersecting with the rotation axis of the cylinder block. A swash plate type hydraulic rotating machine is provided.
図1は、本発明の実施形態に係る対向式斜板型ピストンモータの断面図である。FIG. 1 is a cross-sectional view of an opposed type swash plate type piston motor according to an embodiment of the present invention. 図2は、第一斜板、第二斜板を傾転させる構成を示す模式図である。FIG. 2: is a schematic diagram which shows the structure which tilts a 1st swash plate and a 2nd swash plate. 図3は、第一斜板、第二斜板を傾転させる構成を示す模式図である。FIG. 3: is a schematic diagram which shows the structure which tilts a 1st swash plate and a 2nd swash plate. 図4は、第一斜板、第二斜板を傾転させるための油圧回路図である。FIG. 4 is a hydraulic circuit diagram for tilting the first swash plate and the second swash plate.
 図面を参照して、本発明の実施形態に係る対向式斜板型ピストンモータ1について説明する。 An opposing swash plate type piston motor 1 according to an embodiment of the present invention will be described with reference to the drawings.
 図1に示す対向式斜板型ピストンモータ1は、作業車両等に無段変速機として搭載されるハイドロスタティックトランスミッション90(図4参照。以下、単に「HST90」と称する。)に適用される。 The opposing type swash plate type piston motor 1 shown in FIG. 1 is applied to a hydrostatic transmission 90 (see FIG. 4; hereinafter simply referred to as “HST 90”) mounted as a continuously variable transmission on a work vehicle or the like.
 図1に示すように、対向式斜板型ピストンモータ1は、回転軸O4を中心として回転するシャフト2と、シャフト2に支持されるシリンダブロック4と、シリンダブロック4の両端に対向して傾転する第一斜板30及び第二斜板40と、を備える。 As shown in FIG. 1, the opposed type swash plate type piston motor 1 is inclined to face both ends of the shaft 2 rotating around the rotation axis O 4, the cylinder block 4 supported by the shaft 2, and the cylinder block 4. The first swash plate 30 and the second swash plate 40 are provided.
 シリンダブロック4は、中空部を有する円筒状に形成され、その内側にシャフト2が挿入される。シリンダブロック4には、複数のシリンダ3が周方向に並んで形成される。シリンダ3は、軸方向に延びるように形成され、シリンダブロック4の両端面4C,4Dに開口する。 The cylinder block 4 is formed in a cylindrical shape having a hollow portion, and the shaft 2 is inserted therein. A plurality of cylinders 3 are formed in the cylinder block 4 side by side in the circumferential direction. The cylinder 3 is formed to extend in the axial direction, and opens at both end faces 4C and 4D of the cylinder block 4.
 シリンダ3には、両開口端から第一ピストン8及び第二ピストン9がそれぞれ挿入される。第一ピストン8及び第二ピストン9はシリンダ3の開口端から突出する先端部を有し、それぞれの先端部には第一シュー21及び第二シュー22が揺動自在に連結される。 The first piston 8 and the second piston 9 are respectively inserted into the cylinder 3 from both open ends. The first piston 8 and the second piston 9 have tip portions projecting from the open end of the cylinder 3, and the first shoe 21 and the second shoe 22 are pivotally connected to the respective tip portions.
 シリンダブロック4が回転すると、第一ピストン8が第一シュー21及びポートプレート16を介して第一斜板30の端面30Aに追従して往復動するとともに、第二ピストン9が第二シュー22を介して第二斜板40の端面40Aに追従して往復動する。 When the cylinder block 4 rotates, the first piston 8 reciprocates following the end face 30A of the first swash plate 30 via the first shoe 21 and the port plate 16, and the second piston 9 reciprocates the second shoe 22. It reciprocates following the end face 40A of the second swash plate 40 via the same.
 シリンダ3には、第一ピストン8と第二ピストン9の間に容積室7が画成される。第一ピストン8及び第二ピストン9がシリンダ3内を往復動することによって容積室7が拡縮され、作動油が対の給排通路5,6(図4参照)を通じて容積室7に給排される。 In the cylinder 3, a volume chamber 7 is defined between the first piston 8 and the second piston 9. By reciprocating the first piston 8 and the second piston 9 in the cylinder 3, the volume chamber 7 is expanded and contracted, and hydraulic oil is supplied and discharged to the volume chamber 7 through the pair of supply and discharge passages 5, 6 (see FIG. 4). Ru.
 ピストンモータ1は、作動流体として、作動油(オイル)を用いるが、作動油の代わりに例えば水溶性代替液等の作動流体を用いてもよい。 The piston motor 1 uses hydraulic fluid (oil) as the hydraulic fluid, but may use a hydraulic fluid such as a water-soluble substitute fluid instead of the hydraulic fluid.
 円柱状のシャフト2は、両端部がケーシング(図示省略)にベアリング(図示省略)を介して回転自在に支持される。 The cylindrical shaft 2 is rotatably supported at both ends by a casing (not shown) via a bearing (not shown).
 ケーシングは、筒状のケース(図示省略)と、ケースの両開口端を塞ぐ蓋状の第一カバー及び第二カバー(図示省略)とを備える。ケース内にシリンダブロック4が収容され、第一カバー内に第一斜板30が収容され、第二カバー内に第二斜板40が収容される。 The casing is provided with a cylindrical case (not shown) and lid-like first and second covers (not shown) that close both open ends of the case. The cylinder block 4 is accommodated in the case, the first swash plate 30 is accommodated in the first cover, and the second swash plate 40 is accommodated in the second cover.
 シャフト2の外周には、スプライン2Aが形成される。シリンダブロック4の内周にはスプライン4Hが形成される。シリンダブロック4のスプライン4Hがシャフト2のスプライン2Aに摺動自在に嵌合することにより、シリンダブロック4は、シャフト2に対する回転が規制され、シャフト2に対する軸方向の移動が可能となる。 Splines 2A are formed on the outer periphery of the shaft 2. Splines 4 H are formed on the inner periphery of the cylinder block 4. The spline 4H of the cylinder block 4 is slidably fitted to the spline 2A of the shaft 2, whereby the rotation of the cylinder block 4 with respect to the shaft 2 is restricted, and axial movement with respect to the shaft 2 becomes possible.
 第一斜板30とシリンダブロック4の間には、第一リテーナプレート23と第一リテーナホルダ25が軸方向に並んで介装される。 A first retainer plate 23 and a first retainer holder 25 are interposed between the first swash plate 30 and the cylinder block 4 in the axial direction.
 第一シュー21と第一斜板30の間には、シリンダブロック4と共に回転する円盤状のポートプレート16が設けられる。ポートプレート16は複数のピン18を介して第一リテーナプレート23に連結される。 Between the first shoe 21 and the first swash plate 30, a disc-shaped port plate 16 that rotates with the cylinder block 4 is provided. The port plate 16 is connected to the first retainer plate 23 via a plurality of pins 18.
 第一リテーナホルダ25とシリンダブロック4の間には複数のセンタスプリング19が周方向に並んで介装される。シリンダブロック4は、センタスプリング19によって図1において右方向に付勢され、第二リテーナホルダ26,第二リテーナプレート24,及び第二シュー22を介して第二斜板40の端面40Aに押し付けられる。この結果、シリンダブロック4の第二斜板40に対する軸方向の位置が決まる。 A plurality of center springs 19 are interposed between the first retainer holder 25 and the cylinder block 4 in the circumferential direction. The cylinder block 4 is urged rightward in FIG. 1 by the center spring 19 and pressed against the end face 40A of the second swash plate 40 via the second retainer holder 26, the second retainer plate 24 and the second shoe 22. . As a result, the axial position of the cylinder block 4 with respect to the second swash plate 40 is determined.
 次に、図2,図3に基づいて、第一斜板30及び第二斜板40をそれぞれ傾転させる構成について説明する。 Next, a configuration in which the first swash plate 30 and the second swash plate 40 are respectively tilted will be described based on FIGS. 2 and 3.
 第一斜板30は、背面側に突出する一対の傾転軸部(ハーフログ部)30Bを有する。傾転軸部30Bは、ケーシング(図示省略)に形成された第一傾転軸受33によって傾転自在に支持される。第一斜板30は、第一傾転軸O1を中心として回動する。第二斜板40は、背面側に突出する一対の傾転軸部(ハーフログ部)40Bを有する。傾転軸部40Bは、ケーシングに形成された第二傾転軸受43によって傾転自在に支持される。第二斜板40は、第二傾転軸O2を中心として回動する。第一傾転軸O1及び第二傾転軸O2は、シリンダブロック4の回転軸O4と直交している。 The first swash plate 30 has a pair of tilting and rotating shaft portions (half log portions) 30B that project to the back side. The tilting shaft portion 30B is tiltably supported by a first tilting bearing 33 formed in a casing (not shown). The first swash plate 30 pivots about the first tilting axis O1. The second swash plate 40 has a pair of tilting and rotating shaft portions (half log portions) 40B projecting to the back side. The tilt shaft portion 40B is tiltably supported by a second tilt bearing 43 formed in the casing. The second swash plate 40 pivots about the second tilting axis O2. The first tilt axis O1 and the second tilt axis O2 are orthogonal to the rotation axis O4 of the cylinder block 4.
 ピストンモータ1は、第一斜板30を傾転させる第一傾転駆動機構50と、第二斜板40を傾転させる第二傾転駆動機構60と、を備える。第一斜板30が傾転することにより、第一ピストン8がシリンダ3内を往復動するストローク長さが変わる。第二斜板40が傾転することにより、第二ピストン9がシリンダ3内を往復動するストローク長さが変わる。ストローク長さが変わることにより、シリンダブロック4の1回転当たりの押しのけ容積が変わり、ピストンモータ1の出力回転速度が変わる。 The piston motor 1 includes a first tilting drive mechanism 50 for tilting the first swash plate 30 and a second tilting drive mechanism 60 for tilting the second swash plate 40. As the first swash plate 30 tilts, the stroke length at which the first piston 8 reciprocates in the cylinder 3 changes. By tilting the second swash plate 40, the stroke length at which the second piston 9 reciprocates in the cylinder 3 changes. As the stroke length changes, the displacement per revolution of the cylinder block 4 changes, and the output rotational speed of the piston motor 1 changes.
 第一傾転駆動機構50は、作動油圧によって移動する第一傾転駆動ピストン31と、第一傾転駆動ピストン31が移動する動きを第一斜板30が第一傾転軸O1を中心として回動する動きに変換する変換機構38と、を備える。 In the first tilt drive mechanism 50, the first tilt drive piston 31 moved by hydraulic pressure and the movement of the first tilt drive piston 31 are centered on the first tilt axis O1. And a conversion mechanism 38 for converting into a rotational movement.
 図2,図3において、線G1は、回転軸O4に直交するととともに、第一傾転軸O1に直交する。第一傾転駆動ピストン31は、線G1と平行な方向に移動するように配置される。これに限らず、第一傾転駆動ピストン31は、線G1と若干の角度をもって交差する方向に移動するように配置されてもよい。 In FIG. 2 and FIG. 3, the line G1 is orthogonal to the rotation axis O4 and to the first tilt axis O1. The first tilting drive piston 31 is arranged to move in a direction parallel to the line G1. Not limited to this, the first tilt drive piston 31 may be arranged to move in a direction intersecting with the line G1 at a slight angle.
 変換機構38は、第一傾転駆動ピストン31のガイド溝35に摺動自在に係合するスライドメタル36と、第一斜板30の第一傾転軸O1方向の端部から突出してスライドメタル36の穴に摺動自在に挿入されるピン37と、によって構成される。第一傾転駆動ピストン31が軸方向(線G1と平行な方向)に移動すると、スライドメタル36及びピン37がガイド溝35に沿って摺動しながら第一傾転軸O1を中心とする円弧に沿って移動する。この結果、第一斜板30は、第一傾転軸O1を中心として回動する。 The conversion mechanism 38 includes a slide metal 36 slidably engaged with the guide groove 35 of the first tilt drive piston 31, and a slide metal projecting from an end of the first swash plate 30 in the direction of the first tilt axis O1. And a pin 37 slidably inserted into the hole 36. When the first tilt drive piston 31 moves in the axial direction (a direction parallel to the line G1), the slide metal 36 and the pin 37 slide along the guide groove 35 and an arc centered on the first tilt axis O1 Move along. As a result, the first swash plate 30 pivots about the first tilting axis O1.
 第一傾転駆動ピストン31の両端には第一押し側ピストン圧力室53と、第一引き側ピストン圧力室54と、がそれぞれ画成される。これらピストン圧力室53,54に導かれる作動油圧を切り換える第一傾転制御弁70が設けられる。第一傾転駆動ピストン31は、ピストン圧力室53,54の作動油圧差によって移動する。 A first push side piston pressure chamber 53 and a first pull side piston pressure chamber 54 are respectively defined at both ends of the first tilt drive piston 31. A first tilt control valve 70 is provided to switch the hydraulic pressure introduced to the piston pressure chambers 53, 54. The first tilt drive piston 31 moves due to the hydraulic pressure difference between the piston pressure chambers 53 and 54.
 第二傾転駆動機構60は、作動油圧によって移動する第二傾転駆動ピストン41と、第二傾転駆動ピストン41が移動する動きを第二斜板40が第二傾転軸O2を中心として回動する動きに変換する変換機構48と、を備える。 In the second tilt drive mechanism 60, the second tilt drive piston 41 moved by hydraulic pressure and the movement in which the second tilt drive piston 41 moves are centered on the second tilt axis O2. And a conversion mechanism 48 for converting into a rotational movement.
 図2,図3において、線G2は、回転軸O4に直交するととともに、第二傾転軸O2に直交する。第二傾転駆動ピストン41は、線G2と平行な方向に移動するように配置される。これに限らず、第二傾転駆動ピストン41は、線G2と若干の角度をもって交差する方向に移動するように配置されてもよい。 In FIG. 2 and FIG. 3, the line G2 is orthogonal to the rotation axis O4 and orthogonal to the second tilting axis O2. The second tilting drive piston 41 is arranged to move in a direction parallel to the line G2. Not limited to this, the second tilt drive piston 41 may be arranged to move in a direction intersecting with the line G2 at a slight angle.
 変換機構48は、第二傾転駆動ピストン41のガイド溝45に摺動自在に係合するスライドメタル46と、第二斜板40の第二傾転軸O2方向の端部から突出してスライドメタル46の穴に摺動自在に挿入されるピン47と、によって構成される。第二傾転駆動ピストン41が軸方向(線G2と平行な方向)に移動すると、スライドメタル46及びピン47がガイド溝45に沿って摺動しながら第二傾転軸O2を中心とする円弧に沿って移動する。この結果、第二斜板40は、第二傾転軸O2を中心として回動する。 The conversion mechanism 48 includes a slide metal 46 slidably engaged with the guide groove 45 of the second tilt drive piston 41, and a slide metal projecting from an end of the second swash plate 40 in the direction of the second tilt axis O2. And a pin 47 slidably inserted into the hole 46. When the second tilt drive piston 41 moves in the axial direction (a direction parallel to the line G2), the slide metal 46 and the pin 47 slide along the guide groove 45 and an arc centered on the second tilt axis O2 Move along. As a result, the second swash plate 40 pivots about the second tilting axis O2.
 第二傾転駆動ピストン41の両端には第二押し側ピストン圧力室63と、第二引き側ピストン圧力室64と、がそれぞれ画成される。これらピストン圧力室63,64に導かれる作動油圧を切り換える第二傾転制御弁80が設けられる。第二傾転駆動ピストン41は、ピストン圧力室63,64の作動油圧差によって移動する。 A second push side piston pressure chamber 63 and a second pull side piston pressure chamber 64 are respectively defined at both ends of the second tilting drive piston 41. A second tilt control valve 80 is provided to switch the hydraulic pressure introduced to the piston pressure chambers 63, 64. The second tilt drive piston 41 is moved by the hydraulic pressure difference between the piston pressure chambers 63 and 64.
 図4はHST90に設けられる油圧回路及び制御系の構成を示す図である。 FIG. 4 is a diagram showing the configuration of the hydraulic circuit and control system provided in the HST 90. As shown in FIG.
 HST90は、ピストンモータ1と、ピストンポンプ99と、これらの間で作動油が循環する閉回路100と、を備える。 The HST 90 includes a piston motor 1, a piston pump 99, and a closed circuit 100 through which hydraulic fluid circulates.
 閉回路100は、ピストンモータ1とピストンポンプ99を結ぶ第一循環通路101及び第二循環通路102を備える。第一循環通路101は、一端がピストンモータ1の給排通路5に接続され、他端がピストンポンプ99の給排通路105に接続される。第二循環通路102は、一端がピストンモータ1の給排通路6に接続され、他端がピストンポンプ99の給排通路106に接続される。 The closed circuit 100 includes a first circulation passage 101 and a second circulation passage 102 that connect the piston motor 1 and the piston pump 99. One end of the first circulation passage 101 is connected to the supply and discharge passage 5 of the piston motor 1, and the other end is connected to the supply and discharge passage 105 of the piston pump 99. One end of the second circulation passage 102 is connected to the supply and discharge passage 6 of the piston motor 1, and the other end is connected to the supply and discharge passage 106 of the piston pump 99.
 ピストンポンプ99から吐出される作動油が閉回路100を通じてピストンモータ1に送られることにより、ピストンモータ1が回転作動する。ピストンモータ1の出力回転が図示しないミッション(ギヤ式変速機)、ディファレンシャルギヤ等を介して左右の車輪に伝えられる。 The hydraulic fluid discharged from the piston pump 99 is fed to the piston motor 1 through the closed circuit 100, whereby the piston motor 1 rotates. The output rotation of the piston motor 1 is transmitted to the left and right wheels via a transmission (gear type transmission), a differential gear, etc. (not shown).
 ピストンポンプ99は、エンジン(図示省略)によって回転駆動される。ピストンポンプ99は、容積室に作動油を給排する二つの給排通路105,106を有し、斜板107の傾転方向が切り換えられることで給排通路105,106に対する作動油の吐出方向が変わる。ピストンポンプ99の吐出方向が変わることにより、車両の進行方向(前進又は後進)が切り換わる。 The piston pump 99 is rotationally driven by an engine (not shown). The piston pump 99 has two supply and discharge passages 105 and 106 for supplying and discharging the hydraulic oil to the volume chamber, and the discharge direction of the hydraulic oil to the supply and discharge passages 105 and 106 by switching the tilt direction of the swash plate 107. Will change. By changing the discharge direction of the piston pump 99, the traveling direction (forward or reverse) of the vehicle is switched.
 流体圧源110には、エンジンに回転駆動される固定容量形チャージポンプ111と、チャージポンプ111から吐出される作動油を導くチャージ通路113と、が設けられる。チャージ通路113には、オイルフィルタ114と、オイルフィルタ116と、リリーフ弁119と、が介装される。リリーフ弁119を通過した作動油はタンク109に戻る。 The fluid pressure source 110 is provided with a fixed displacement charge pump 111 which is rotationally driven by the engine, and a charge passage 113 which leads hydraulic oil discharged from the charge pump 111. An oil filter 114, an oil filter 116, and a relief valve 119 are interposed in the charge passage 113. The hydraulic oil that has passed through the relief valve 119 returns to the tank 109.
 チャージ通路113は、チェック弁117,118を介して第一循環通路101及び第二循環通路102に接続される。第一循環通路101の圧力がチャージ通路113の圧力より低下すると、チェック弁117が開弁して、チャージ通路113から第一循環通路101に作動油が充填される。一方、第二循環通路102の圧力がチャージ通路113の圧力より低下すると、チェック弁118が開弁して、チャージ通路113から第二循環通路102に作動油が充填される。このため、第一循環通路101及び第二循環通路102の圧力は所定値以上に保たれる。 Charge passage 113 is connected to first circulation passage 101 and second circulation passage 102 via check valves 117 and 118. When the pressure in the first circulation passage 101 drops below the pressure in the charge passage 113, the check valve 117 opens to fill the first circulation passage 101 with the hydraulic oil from the charge passage 113. On the other hand, when the pressure in the second circulation passage 102 is lower than the pressure in the charge passage 113, the check valve 118 opens to fill the second circulation passage 102 with the hydraulic oil from the charge passage 113. For this reason, the pressures of the first circulation passage 101 and the second circulation passage 102 are maintained at or above a predetermined value.
 チャージ通路113には、リリーフ弁121,122がチェック弁117,118と並列に介装される。第一循環通路101の圧力がチャージ通路113の圧力に対して所定値を超えて上昇すると、リリーフ弁121が開弁し、第一循環通路101の作動油圧がチャージ通路113に逃がされる。一方、第二循環通路102の圧力がチャージ通路113の圧力に対して所定値を超えて上昇すると、リリーフ弁122が開弁し、第二循環通路102の作動油圧がチャージ通路113に逃がされる。このため、第一循環通路101及び第二循環通路102の圧力が所定値を越えて上昇することが抑えられる。 Relief valves 121 and 122 are interposed in the charge passage 113 in parallel with the check valves 117 and 118. When the pressure in the first circulation passage 101 rises above the predetermined value with respect to the pressure in the charge passage 113, the relief valve 121 opens and the hydraulic pressure in the first circulation passage 101 is released to the charge passage 113. On the other hand, when the pressure in the second circulation passage 102 rises above the predetermined value with respect to the pressure in the charge passage 113, the relief valve 122 opens and the hydraulic pressure in the second circulation passage 102 is released to the charge passage 113. For this reason, it is suppressed that the pressure of the 1st circulation passage 101 and the 2nd circulation passage 102 exceeds predetermined value.
 第一循環通路101と第二循環通路102の間には高圧選択弁149が設けられる。高圧選択弁149を介して取り出される作動油圧は第一傾転制御弁70及び第二傾転制御弁80に導かれる。 A high pressure selection valve 149 is provided between the first circulation passage 101 and the second circulation passage 102. The hydraulic pressure extracted through the high pressure selection valve 149 is led to the first tilt control valve 70 and the second tilt control valve 80.
 第一傾転制御弁70は、高圧選択弁149に連通する入口ポート71と、タンク109に連通する出口ポート72と、第一押し側ピストン圧力室53に連通する第一押し側ポート73と、第一引き側ピストン圧力室54に連通する第一引き側ポート74と、を備える。 The first tilt control valve 70 includes an inlet port 71 communicating with the high pressure selection valve 149, an outlet port 72 communicating with the tank 109, and a first push side port 73 communicating with the first push side piston pressure chamber 53; And a first pull side port 74 in communication with the first pull side piston pressure chamber 54.
 第一傾転制御弁70は、図2,図3に示すように、ケーシングに介装されるバルブハウジング76と、バルブハウジング76内に摺動自在に収容されるスプールバルブ79と、スプールバルブ79をその軸方向について一方に付勢するスプリング78と、スプリング78に抗してスプールバルブ79をその軸方向に移動させるソレノイド77と、を備える。 As shown in FIGS. 2 and 3, the first tilt control valve 70 includes a valve housing 76 inserted in the casing, a spool valve 79 slidably accommodated in the valve housing 76, and a spool valve 79. In one axial direction, and a solenoid 77 which moves the spool valve 79 in the axial direction against the spring 78.
 ソレノイド77の推力とスプリング78の付勢力が釣り合う位置にスプールバルブ79が移動することにより、第一傾転制御弁70は、3つのポジション70A,70B,70Cに切り換わる。 As the spool valve 79 moves to a position where the thrust of the solenoid 77 and the biasing force of the spring 78 are balanced, the first tilt control valve 70 is switched to three positions 70A, 70B, 70C.
 コントローラ170から送られる励磁電流によってソレノイド77に所定の推力が発生すると、推力によってスプールバルブ79がスプリング78の付勢力に抗して図2にて上方向に移動して、第一傾転制御弁70は、押し側ポジション70Aに切り換えられる。 When a predetermined thrust is generated in the solenoid 77 by the excitation current sent from the controller 170, the spool valve 79 is moved upward in FIG. 2 against the biasing force of the spring 78 by the thrust and the first tilt control valve 70 is switched to the push side position 70A.
 押し側ポジション70Aでは、高圧選択弁149からの作動油がポート71,73を通じて第一押し側ピストン圧力室53に供給され、第一引き側ピストン圧力室54の作動油が作動油圧ポート74,72を通じてタンク109に戻される。第一押し側ピストン圧力室53の圧力が高くなることにより、第一傾転駆動ピストン31は図2に矢印Aで示す方向(下方向)に移動し、第一斜板30は矢印Bで示すように傾転角度が大きくなる方向に回動する。この結果、ピストンモータ1の押しのけ容積が大きくなり、車両の走行速度は低下する。 In the push side position 70A, the hydraulic oil from the high pressure selection valve 149 is supplied to the first push side piston pressure chamber 53 through the ports 71, 73, and the hydraulic oil of the first pull side piston pressure chamber 54 is the hydraulic pressure port 74, 72. Is returned to the tank 109. As the pressure in the first push side piston pressure chamber 53 becomes higher, the first tilting drive piston 31 moves in the direction (downward direction) indicated by arrow A in FIG. 2 and the first swash plate 30 is indicated by arrow B As such, it pivots in the direction in which the tilt angle increases. As a result, the displacement volume of the piston motor 1 increases, and the traveling speed of the vehicle decreases.
 コントローラ170から送られる励磁電流が止められると、ソレノイド77の推力が無くなり、スプールバルブ79がスプリング78の付勢力によって図3に示す方向(下方向)に移動して、第一傾転制御弁70は、引き側ポジション70Bに切り換えられる。 When the excitation current sent from the controller 170 is stopped, the thrust of the solenoid 77 disappears, and the spool valve 79 moves in the direction (downward) shown in FIG. Is switched to the pull side position 70B.
 引き側ポジション70Bでは、高圧選択弁149からの作動油がポート71,74を通じて第一引き側ピストン圧力室54に供給され、第一押し側ピストン圧力室53の作動油がポート73,72を通じてタンク109に戻される。第一引き側ピストン圧力室54の圧力が高くなることにより、第一傾転駆動ピストン31は図3に矢印Cで示す方向(上方向)に移動し、第一斜板30は矢印Dで示すように傾転角度が小さくなる方向に回動する。この結果、ピストンモータ1の押しのけ容積が小さくなり、車両の走行速度は上昇する。 In the pull side position 70B, the hydraulic oil from the high pressure selection valve 149 is supplied to the first pull side piston pressure chamber 54 through the ports 71 and 74, and the hydraulic oil of the first push side piston pressure chamber 53 is tanked through the ports 73 and 72. It is returned to 109. As the pressure in the first pulling side piston pressure chamber 54 becomes higher, the first tilting drive piston 31 moves in the direction (upward direction) indicated by the arrow C in FIG. 3 and the first swash plate 30 is indicated by the arrow D As such, it pivots in the direction in which the tilt angle decreases. As a result, the displacement of the piston motor 1 is reduced, and the traveling speed of the vehicle is increased.
 中立ポジション70Cでは、各ポート71~74が閉じられ、第一傾転駆動ピストン31の移動が停止する。このため、第一斜板30は、その時点の傾転角度に保持される。 In the neutral position 70C, the ports 71 to 74 are closed, and the movement of the first tilting drive piston 31 is stopped. Therefore, the first swash plate 30 is held at the tilt angle at that time.
 コントローラ170は、第一傾転制御弁70のポジション70A,70B,70Cを切り換えることによって、第一傾転駆動機構50に給排される作動油の流量を調節し、HST90の変速比を連続的に制御する。 The controller 170 adjusts the flow rate of the hydraulic oil supplied to and discharged from the first tilt drive mechanism 50 by switching the positions 70A, 70B, 70C of the first tilt control valve 70, and continuously changes the transmission ratio of the HST 90. Control.
 第二傾転制御弁80は、高圧選択弁149に連通する入口ポート81と、タンク109に連通する出口ポート82と、第二押し側ピストン圧力室63に連通する第二押し側ポート83と、第二引き側ピストン圧力室64に連通する第二引き側ポート84と、を備える。 The second tilt control valve 80 has an inlet port 81 communicating with the high pressure selection valve 149, an outlet port 82 communicating with the tank 109, and a second push side port 83 communicating with the second push side piston pressure chamber 63; And a second pull-side port 84 communicating with the second pull-side piston pressure chamber 64.
 第二傾転制御弁80は、図2,図3に示すように、ケーシングに介装されるバルブハウジング86と、バルブハウジング86内に摺動自在に収容されるスプールバルブ89と、スプールバルブ89をその軸方向について一方に付勢するスプリング88と、スプリング88に抗してスプールバルブ89をその軸方向に移動させるソレノイド87と、を備える。 As shown in FIGS. 2 and 3, the second tilt control valve 80 includes a valve housing 86 installed in the casing, a spool valve 89 slidably accommodated in the valve housing 86, and a spool valve 89. And the solenoid 87 which moves the spool valve 89 in the axial direction against the spring 88.
 ソレノイド87の推力とスプリング88の付勢力が釣り合う位置にスプールバルブ89が移動することにより、第二傾転制御弁80は、3つのポジション80A,80B,80Cに切り換わる。 As the spool valve 89 moves to a position where the thrust of the solenoid 87 and the biasing force of the spring 88 balance, the second tilt control valve 80 switches to three positions 80A, 80B, 80C.
 コントローラ170から送られる励磁電流によってソレノイド87に所定の磁力が発生すると、磁力によってスプールバルブ89がスプリング88の付勢力に抗して図2にて上方向に移動して、第二傾転制御弁80は、引き側ポジション80Bに切り換えられる。 When a predetermined magnetic force is generated in the solenoid 87 by the excitation current sent from the controller 170, the spool valve 89 moves upward in FIG. 2 against the biasing force of the spring 88 by the magnetic force, and the second tilt control valve The position 80 is switched to the pulling position 80B.
 引き側ポジション80Bでは、高圧選択弁149からの作動油がポート81,84を通じて第二引き側ピストン圧力室64に供給され、第二押し側ピストン圧力室63の作動油が作動油圧ポート83,82を通じてタンク109に戻される。第二引き側ピストン圧力室64の圧力が高くなることにより、第二傾転駆動ピストン41は図2に矢印Eで示す方向(上方向)に移動し、第二斜板40は矢印Fで示すように傾転角度が小さくなる方向に回動する。この結果、ピストンモータ1の押しのけ容積が小さくなり、車両の走行速度は上昇する。 In the pull side position 80B, the hydraulic oil from the high pressure selection valve 149 is supplied to the second pull side piston pressure chamber 64 through the ports 81 and 84, and the hydraulic oil of the second push side piston pressure chamber 63 is the hydraulic pressure ports 83 and 82. Is returned to the tank 109. As the pressure in the second pulling piston pressure chamber 64 increases, the second tilting drive piston 41 moves in the direction (upward direction) indicated by arrow E in FIG. 2, and the second swash plate 40 is indicated by arrow F. As such, it pivots in the direction in which the tilt angle decreases. As a result, the displacement of the piston motor 1 is reduced, and the traveling speed of the vehicle is increased.
 コントローラ170から送られる励磁電流が止められると、ソレノイド87の磁力が無くなり、スプールバルブ89がスプリング88の付勢力によって図3に示す方向(下方向)に移動して、第二傾転制御弁80は、押し側ポジション80Aに切り換えられる。 When the excitation current sent from the controller 170 is stopped, the magnetic force of the solenoid 87 disappears, and the spool valve 89 moves in the direction (downward) shown in FIG. Is switched to the push side position 80A.
 押し側ポジション80Aでは、高圧選択弁149からの作動油がポート81,83を通じて第二押し側ピストン圧力室63に供給され、第二引き側ピストン圧力室64の作動油がポート84,82を通じてタンク109に戻される。第二押し側ピストン圧力室63の圧力が高くなることにより、第二傾転駆動ピストン41は図3に矢印Hで示す方向(下方向)に移動し、第二斜板40は矢印Iで示すように傾転角度が大きくなる方向に回動する。この結果、ピストンモータ1の押しのけ容積が大きくなり、車両の速度は低下する。 In the push side position 80A, the hydraulic oil from the high pressure selection valve 149 is supplied to the second push side piston pressure chamber 63 through the ports 81 and 83, and the hydraulic oil of the second pulling side piston pressure chamber 64 is tanked through the ports 84 and 82. It is returned to 109. When the pressure of the second push side piston pressure chamber 63 becomes high, the second tilting drive piston 41 moves in the direction shown by the arrow H in FIG. 3 (downward), and the second swash plate 40 is shown by the arrow I As such, it pivots in the direction in which the tilt angle increases. As a result, the displacement volume of the piston motor 1 increases and the speed of the vehicle decreases.
 中立ポジション80Cでは、各ポート81~84が閉じられ、第二傾転駆動ピストン41の移動が停止する。このため、第二斜板40は、その時点の傾転角度に保持される。 In the neutral position 80C, the ports 81 to 84 are closed, and the movement of the second tilting drive piston 41 is stopped. Therefore, the second swash plate 40 is held at the tilt angle at that time.
 コントローラ170は、第二傾転制御弁80のポジション80A,80B,80Cを切り換えることによって、第二傾転駆動機構60に給排される作動油の流量を調節し、HST90の変速比を連続的に制御する。 The controller 170 adjusts the flow rate of the hydraulic oil supplied to and discharged from the second tilt drive mechanism 60 by switching the positions 80A, 80B, 80C of the second tilt control valve 80 to continuously change the transmission ratio of the HST 90. Control.
 171と172は、第一斜板30と第二斜板40の傾転角をそれぞれ読み取るポテンショメータである。コントローラ170は、ポテンショメータ171,172の検出値に応じて第一傾転制御弁70及び第二傾転制御弁80の開閉タイミングをフィードバック制御する。 Numerals 171 and 172 are potentiometers for reading the tilt angles of the first swash plate 30 and the second swash plate 40, respectively. The controller 170 performs feedback control of the open / close timing of the first tilt control valve 70 and the second tilt control valve 80 in accordance with the detection values of the potentiometers 171 and 172.
 図3に示すように、第一傾転制御弁70のソレノイド77の通電が止められるとともに、第二傾転制御弁80のソレノイド87の通電が止められると、第一斜板30の傾転角は最小になり、第二斜板40の傾転角は最大になる。このとき、ピストンモータ1の変速比は中間値になる。 As shown in FIG. 3, when energization of the solenoid 77 of the first tilt control valve 70 is stopped and energization of the solenoid 87 of the second tilt control valve 80 is stopped, the tilt angle of the first swash plate 30 is obtained. Is minimized and the tilt angle of the second swash plate 40 is maximized. At this time, the gear ratio of the piston motor 1 becomes an intermediate value.
 図2に示すように第一傾転制御弁70のソレノイド77が通電されるとともに、図3に示すように第二傾転制御弁80のソレノイド87の通電が止められると、第一斜板30及び第二斜板40の傾転角は共に最大になる。このとき、ピストンモータ1の押しのけ容積は最大になり、ピストンモータ1の変速比は最小になる。 When the solenoid 77 of the first tilt control valve 70 is energized as shown in FIG. 2 and the energization of the solenoid 87 of the second tilt control valve 80 is stopped as shown in FIG. The tilt angle of the second swash plate 40 is maximized. At this time, the displacement of the piston motor 1 is maximized, and the gear ratio of the piston motor 1 is minimized.
 図3に示すように第一傾転制御弁70のソレノイド77の通電が止められるとともに、図2に示すように第二傾転制御弁80のソレノイド87が通電されると、第一斜板30及び第二斜板40の傾転角は共に最小になる。このとき、ピストンモータ1の押しのけ容積は最小になり、ピストンモータ1の変速比は最大になる。 When the solenoid 77 of the first tilt control valve 70 is deenergized as shown in FIG. 3 and the solenoid 87 of the second tilt control valve 80 is energized as shown in FIG. The tilt angle of the second swash plate 40 is both minimized. At this time, the displacement of the piston motor 1 is minimized, and the gear ratio of the piston motor 1 is maximized.
 以上のように、第一傾転駆動ピストン31が第一斜板30の端部を傾転軸O1と直交する方向に押して第一斜板30を傾転させることと、第二傾転駆動ピストン41が第二斜板40の端部を傾転軸O2と直交する方向に押して第二斜板40を傾転させることとは、それぞれ独立して行われる。 As described above, the first tilt drive piston 31 pushes the end of the first swash plate 30 in the direction orthogonal to the tilt axis O1 to tilt the first swash plate 30, and the second tilt drive piston The tilting of the second swash plate 40 by pressing the end of the second swash plate 40 in the direction orthogonal to the tilting axis O2 is performed independently of each other.
 また、第一傾転駆動機構50に給排される作動流体の流量は、第一傾転制御弁70によって調節され、第二傾転駆動機構60に給排される作動流体の流量は、第一傾転制御弁70とは別の第二傾転制御弁80によって調節される。 Further, the flow rate of the working fluid supplied to and discharged from the first tilt drive mechanism 50 is adjusted by the first tilt control valve 70, and the flow rate of the working fluid supplied to and discharged from the second tilt drive mechanism 60 is It is adjusted by a second tilt control valve 80 different from the single tilt control valve 70.
 以上の実施形態によれば、以下に示す作用効果を奏する。 According to the above embodiment, the following effects are obtained.
 第一斜板30及び第二斜板40は、それぞれ、第一傾転駆動ピストン31及び第二傾転駆動ピストン41によって傾転軸O1,O2と交差する方向に押されることにより傾転する。このため、第一斜板30及び第二斜板40には、中心軸O4を中心に回転させるトルクが作用しないので、傾転軸部30B及び傾転軸部40Bが第一傾転軸受33及び第二傾転軸受43から離れる浮き上がり現象を防止することができる。 The first swash plate 30 and the second swash plate 40 are tilted by being pushed by the first tilt drive piston 31 and the second tilt drive piston 41 in the direction intersecting the tilt axes O1 and O2, respectively. Therefore, since the torque for rotating around the central axis O4 does not act on the first swash plate 30 and the second swash plate 40, the tilt shaft portion 30B and the tilt shaft portion 40B are the first tilt bearing 33 and the first tilt bearing 33 and The floating phenomenon away from the second tilting bearing 43 can be prevented.
 また、第一傾転制御弁70及び第二傾転制御弁80の作動により、第一傾転駆動機構50及び第二傾転駆動機構60の作動ストロークはそれぞれ連続的に調節されるので、第一斜板30及び第二斜板40の傾転角を無断階に制御することができる。 In addition, the actuation strokes of the first tilt drive mechanism 50 and the second tilt drive mechanism 60 are continuously adjusted by the operation of the first tilt control valve 70 and the second tilt control valve 80, respectively. The tilt angles of the first swash plate 30 and the second swash plate 40 can be controlled to any level.
 また、第一傾転駆動機構50に給排される作動流体の流量と第二傾転駆動機構60に給排される作動流体の流量とは、第一傾転制御弁70及び第二傾転制御弁80によってそれぞれ調節されるので、第一傾転駆動機構50は第一斜板30の傾転角を応答よく調節することができ、第二傾転駆動機構60は第二斜板40の傾転角を応答よく調節することができる。 Further, the flow rate of the working fluid supplied to and discharged from the first tilt drive mechanism 50 and the flow rate of the working fluid supplied to and discharged from the second tilt drive mechanism 60 correspond to the first tilt control valve 70 and the second tilt control valve. The first tilt drive mechanism 50 can adjust the tilt angle of the first swash plate 30 in a responsive manner because the control valve 80 respectively adjusts the tilt angle of the first swash plate 30. The tilt angle can be adjusted responsively.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.
 例えば、本実施形態は、作動油が給排されることによってシリンダブロックが回転するピストンモータ1であったが、シリンダブロックが回転駆動されることによって作動油が給排されるピストンポンプ111に本発明を適用してもよい。 For example, although the present embodiment is the piston motor 1 in which the cylinder block is rotated by supplying and discharging the hydraulic oil, the piston pump 111 to which the hydraulic oil is supplied and discharged by rotating the cylinder block is used. The invention may be applied.
 さらに、本実施形態は、ピストンモータがハイドロスタティックトランスミッション(HST)を構成するものであったが、他の機械や設備を構成するものであってもよい。 Furthermore, in the present embodiment, the piston motor constitutes the hydrostatic transmission (HST), but it may constitute another machine or facility.
 本願は2013年3月29日に日本国特許庁に出願された特願2013-73454に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2013-73454 filed on March 29, 2013, to the Japan Patent Office, and the entire contents of this application are incorporated herein by reference.

Claims (2)

  1.  回転するシリンダブロックの両端から突出する第一ピストン及び第二ピストンが第一斜板及び第二斜板にそれぞれ追従してシリンダ内を往復動する対向式斜板型液圧回転機であって、
     前記第一斜板を傾転自在に支持する第一傾転軸受と、
     前記第一斜板を前記シリンダブロックの回転軸と交差する方向に傾転させる第一傾転駆動ピストンと、
     前記第二斜板を傾転自在に支持する第二傾転軸受と、
     前記第二斜板を前記シリンダブロックの回転軸と交差する方向に傾転させる第二傾転駆動ピストンと、を備える対向式斜板型液圧回転機。
    A facing type swash plate type hydraulic rotary machine in which a first piston and a second piston protruding from both ends of a rotating cylinder block follow a first swash plate and a second swash plate to reciprocate in the cylinder,
    A first tilt bearing that tiltably supports the first swash plate;
    A first tilting drive piston that tilts the first swash plate in a direction intersecting the rotation axis of the cylinder block;
    A second tilt bearing that tiltably supports the second swash plate;
    An opposite type swash plate type hydraulic rotating machine comprising: a second tilt drive piston which tilts the second swash plate in a direction intersecting with the rotation axis of the cylinder block.
  2.  請求項1に記載の対向式斜板型液圧回転機であって、
     前記第一傾転駆動ピストンの両端に画成される第一押し側ピストン圧力室及び第一引き側ピストン圧力室と、
     高圧選択弁から前記第一押し側ピストン圧力室及び前記第一引き側ピストン圧力室に給排される作動流体の流れを切り換える第一傾転制御弁と、
     前記第二傾転駆動ピストンの両端に画成される第二押し側ピストン圧力室及び第二引き側ピストン圧力室と、
     高圧選択弁から前記第二押し側ピストン圧力室及び前記第一引き側ピストン圧力室に給排される作動流体の流れを切り換える第二傾転制御弁と、を備える対向式斜板型液圧回転機。
     
     
    The counter-type swash plate type hydraulic rotating machine according to claim 1, wherein
    A first push side piston pressure chamber and a first pull side piston pressure chamber defined at both ends of the first tilt drive piston;
    A first tilt control valve that switches the flow of working fluid supplied and discharged from the high pressure selection valve to the first push side piston pressure chamber and the first pull side piston pressure chamber;
    A second pushing piston pressure chamber and a second pulling piston pressure chamber defined at both ends of the second tilting drive piston;
    A second tilt control valve for switching the flow of the working fluid supplied to / discharged from the high pressure selection valve to the second push side piston pressure chamber and the first pulling side piston pressure chamber; Machine.

PCT/JP2014/055782 2013-03-29 2014-03-06 Opposed swashplate-type hydraulic rotary machine WO2014156539A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014000201.1T DE112014000201T5 (en) 2013-03-29 2014-03-06 Hydraulic rotary machine of the type of opposite swash plates
KR1020157006825A KR101743848B1 (en) 2013-03-29 2014-03-06 Opposed swash plate type fluid pressure rotating machine
CN201480002590.XA CN104685208A (en) 2013-03-29 2014-03-06 Opposed swashplate-type hydraulic rotary machine
US14/431,350 US20150240636A1 (en) 2013-03-29 2014-03-06 Opposed swash plate type fluid pressure rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073454 2013-03-29
JP2013073454A JP6114089B2 (en) 2013-03-29 2013-03-29 Opposite swash plate type piston pump / motor

Publications (1)

Publication Number Publication Date
WO2014156539A1 true WO2014156539A1 (en) 2014-10-02

Family

ID=51623527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055782 WO2014156539A1 (en) 2013-03-29 2014-03-06 Opposed swashplate-type hydraulic rotary machine

Country Status (6)

Country Link
US (1) US20150240636A1 (en)
JP (1) JP6114089B2 (en)
KR (1) KR101743848B1 (en)
CN (1) CN104685208A (en)
DE (1) DE112014000201T5 (en)
WO (1) WO2014156539A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593535B (en) * 2015-10-14 2021-06-22 熵零控股股份有限公司 Actively driven fluid mechanism
ITUB20155999A1 (en) * 2015-11-30 2017-05-30 Merlo Group Innovation Lab S R L HYDRAULIC FLOATING CYLINDER MACHINE
CN108869223A (en) * 2018-08-06 2018-11-23 华中科技大学 A kind of two inclined plate plunger pump
US10968741B2 (en) 2019-02-08 2021-04-06 Volvo Car Corporation Variable pre and de-compression control mechanism and method for hydraulic displacement pump
JP7408836B2 (en) 2020-04-10 2024-01-05 ムーグ インコーポレーテッド Auxiliary torque electrohydraulic piston pump system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318803A (en) * 1976-08-06 1978-02-21 Daikin Ind Ltd Duplex pump
JPS6248971A (en) * 1986-07-30 1987-03-03 Honda Motor Co Ltd Swash plate type hydraulic device
JP2005105900A (en) * 2003-09-29 2005-04-21 Kayaba Ind Co Ltd Swash plate type hydraulic pump motor
JP2008231924A (en) * 2007-03-16 2008-10-02 Kayaba Ind Co Ltd Opposed swash plate piston pump-motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898917A (en) * 1974-01-31 1975-08-12 Abex Corp Variable displacement fluid translating device
CN87207320U (en) * 1987-07-21 1988-03-09 启东高压油泵厂 Axial plunger fuel pump with a sloping cam plate
JPH09324749A (en) * 1996-06-04 1997-12-16 Mitsubishi Heavy Ind Ltd Axial piston type hydraulic machine
JP3976471B2 (en) * 2000-04-26 2007-09-19 Ntn株式会社 Swash plate guide device
DE602004001946T2 (en) * 2003-09-29 2006-12-14 Kayaba Industry Co., Ltd. Swash plate pump or motor
JP2005320912A (en) * 2004-05-10 2005-11-17 Shin Caterpillar Mitsubishi Ltd Variable displacement hydraulic pump
JP4528238B2 (en) * 2005-09-30 2010-08-18 株式会社クボタ Speed control structure of work vehicle
US7954316B2 (en) * 2006-12-28 2011-06-07 Yanmar Co., Ltd. Hydrostatic stepless transmission
CN202833000U (en) * 2012-08-20 2013-03-27 东莞市神煜机械有限公司 Variable plunger pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318803A (en) * 1976-08-06 1978-02-21 Daikin Ind Ltd Duplex pump
JPS6248971A (en) * 1986-07-30 1987-03-03 Honda Motor Co Ltd Swash plate type hydraulic device
JP2005105900A (en) * 2003-09-29 2005-04-21 Kayaba Ind Co Ltd Swash plate type hydraulic pump motor
JP2008231924A (en) * 2007-03-16 2008-10-02 Kayaba Ind Co Ltd Opposed swash plate piston pump-motor

Also Published As

Publication number Publication date
KR101743848B1 (en) 2017-06-05
JP2014196726A (en) 2014-10-16
KR20150044940A (en) 2015-04-27
US20150240636A1 (en) 2015-08-27
DE112014000201T5 (en) 2015-06-25
CN104685208A (en) 2015-06-03
JP6114089B2 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2014156539A1 (en) Opposed swashplate-type hydraulic rotary machine
JP5225597B2 (en) Opposite swash plate type piston pump / motor
US8790091B2 (en) Pump having port plate pressure control
JP4997163B2 (en) Servo regulator
KR102298471B1 (en) Hydraulic pump
EP3569860B1 (en) Hydraulic pump
JP4124716B2 (en) Swash plate type hydraulic pump / motor
US6068451A (en) Hydraulic pump and wide band neutral arrangement therefor
WO2014156548A1 (en) Liquid-pressure rotary machine
JP2009243430A (en) Servo-regulator
JP5204531B2 (en) Servo regulator
JP4124715B2 (en) Swash plate type hydraulic pump / motor
KR101596560B1 (en) Servo regulator
CN110778562B (en) Servo-free motor, hydraulic piston unit and control method thereof
JP4076935B2 (en) Swash plate type hydraulic pump / motor
US10316867B2 (en) Hydraulic rotary actuator with built-in mechanical position feedback
JP2009243409A (en) Servo regulator
WO2019058711A1 (en) Hydraulic motor control device
WO2023189944A1 (en) Rotating swashplate hydraulic pump
JP2012255375A (en) Variable displacement swash plate hydraulic pump
JP6756685B2 (en) Tilt actuator of variable capacitance type swash plate type hydraulic rotary machine
JP2017020415A (en) Tilting actuator of variable displacement liquid pressure rotary machine
WO2023187476A1 (en) Hydraulic axial piston unit and method for controlling of a hydraulic axial piston unit
JP2022045201A (en) Liquid pressure rotating machine
JP2022045200A (en) Liquid pressure rotating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006825

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431350

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140002011

Country of ref document: DE

Ref document number: 112014000201

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772924

Country of ref document: EP

Kind code of ref document: A1