WO2014156518A1 - Solar cell module production method - Google Patents

Solar cell module production method Download PDF

Info

Publication number
WO2014156518A1
WO2014156518A1 PCT/JP2014/055572 JP2014055572W WO2014156518A1 WO 2014156518 A1 WO2014156518 A1 WO 2014156518A1 JP 2014055572 W JP2014055572 W JP 2014055572W WO 2014156518 A1 WO2014156518 A1 WO 2014156518A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
film
solar cell
heat
cell module
Prior art date
Application number
PCT/JP2014/055572
Other languages
French (fr)
Japanese (ja)
Inventor
直史 三宅
ゆう佳 芦田
的場 健
崇太 能浦
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to JP2014517920A priority Critical patent/JPWO2014156518A1/en
Publication of WO2014156518A1 publication Critical patent/WO2014156518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a solar cell module.
  • a solar cell module uses a solar cell element such as a crystalline silicon solar cell, a polycrystalline silicon solar cell, or an amorphous silicon solar cell, and is sealed with a surface protective sheet or glass, ethylene / vinyl acetate copolymer resin, etc. It is manufactured by a method in which a material sheet, a solar cell element, a sealing material sheet, and a back surface protection sheet are laminated in that order, and vacuum suction is performed and thermocompression bonding is performed for integration.
  • a back surface protection sheet constituting the solar cell module a plastic base material that is light in weight and excellent in electrical characteristics and strength has been generally used.
  • the back protection sheet Since solar cell modules are required to maintain their performance over a long period of 20 years or longer, the back protection sheet has strength, weather resistance, heat resistance, water resistance, light resistance, chemical resistance, moisture resistance, design, etc. It is excellent that they are not significantly degraded over time.
  • the back surface protection sheet used in the solar cell module is a sheet obtained by laminating a plurality of functional films in advance with an adhesive, a pressure sensitive adhesive or the like in order to satisfy the above various required characteristics (Patent Document 1). Furthermore, it is common to laminate functional layers by coating or the like before or after lamination, and after aging for several days after processing, but there have been problems of cost reduction and shortening of the manufacturing process. That is, there is a problem that the loss increases according to the number of the above steps, and the yield of the final product decreases.
  • the present invention reduces a loss in a manufacturing process of a back surface protection sheet for a solar cell module, and can improve yield by fundamentally solving the problem of warping of the back surface protection sheet in a manufacturing method of a solar cell module. It aims at providing the manufacturing method of.
  • the present inventors manufacture a solar cell module in which a surface protective sheet, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protective sheet member films are integrally formed by heating and pressure-bonding treatment.
  • the adhesion strength between the sealing material sheet 2 laminated according to the heating temperature and pressure bonding conditions at the time of molding and the back surface protective sheet member film facing the sealing material sheet is 40 N / cm or more, and the two or more sheets
  • the method for manufacturing a solar cell module according to the present invention can integrally mold a plurality of back surface protection sheet member films, and can manufacture a solar cell module with higher yield by solving the problem of warpage of the back surface protection sheet. It is possible to reduce the loss of the back surface protective sheet member film.
  • FIG. 1 It is a schematic diagram which shows one manufacturing method of the solar cell module of this invention. It is an example of the back surface protection sheet member film for solar cell modules in this invention. It is an example of the back surface protection sheet member film for solar cell modules in this invention. It is an example of the back surface protection sheet member film for solar cell modules in this invention. It is an example of the back surface protection sheet member film for solar cell modules in this invention. It is an example of the back surface protection sheet member film for solar cell modules in this invention.
  • the manufacturing method of the solar cell module of the present invention includes a surface protection sheet, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protection sheet member films in this order by heating and pressure bonding treatment.
  • the surface protection sheet for this purpose is generally a surface protection glass, and it is a resin sheet that ensures transparency, strength, weather resistance, heat resistance, gas barrier performance, etc. that can replace glass. There may be.
  • the encapsulant sheet in the present invention (referred to collectively as encapsulant sheets 1 and 2) is used for the purpose of covering the unevenness of the solar battery cell and protecting the solar battery cell from temperature change, humidity, impact, and the like. .
  • a known heat-adhesive film can be used as a sealing material sheet of a solar cell module.
  • ethylene / vinyl acetate copolymer resin hereinafter sometimes abbreviated as EVA
  • ethylene / acrylic examples include methyl acid copolymer resin, ethylene / ethyl acrylate copolymer resin, polyurethane resin, polyvinyl butyral, ethylene / vinyl acetate partially saponified product, silicone resin, polyester resin, and the like.
  • EVA is particularly preferably used from the viewpoint of light resistance, transparency, moisture resistance, and economy, and a vinyl acetate content of 15 to 40% by weight is particularly preferable.
  • the vinyl acetate content is 15 to 40% by weight, the transparency is not lowered, the resin is not sticky, and the processability and handleability are good.
  • additives such as a crosslinking agent such as an organic peroxide, an ultraviolet absorber, and an antioxidant can be used as necessary.
  • a sheet that has been embossed in advance may be used.
  • the back surface protective sheet member film in the present invention is composed of two or more sheets, and these are laminated to exhibit comprehensively strength, weather resistance, heat resistance, water resistance, light resistance, chemical resistance, moisture resistance, design, etc. It can be arbitrarily combined depending on the function required for the back surface protection sheet. Especially, it is preferable to arrange
  • the heat-adhesive resin film in the present invention is a film having heat-adhesiveness with the above-mentioned sealing material sheet, and polyolefin is preferably used as the resin of the heat-adhesive resin film.
  • Polyolefins are olefin monomers such as ethylene, propylene, 1-butene, and 1-pentene, which are singly or copolymerized. From the viewpoint of heat resistance, polyethylene resins and polypropylene resins are preferable, and polypropylene is mainly used rather than polyethylene.
  • the resin (polypropylene-based resin) is more excellent in heat resistance, is less susceptible to deformation under high temperatures and pressures when molding a solar cell module, and is more preferably used when the processing temperature is high.
  • the melting point of the polypropylene resin is preferably in the range of 140 ° C. to 170 ° C. from the viewpoints of heat resistance, slipperiness, film handling properties, curl resistance, and thermal adhesiveness with the adhesive resin layer.
  • the melting point is 140 ° C. or higher, it has excellent heat resistance, and when it is heat-sealed with a sealing material sheet as a back surface protection sheet member film for a solar cell module, the thickness is reduced or the insulation resistance is lowered. Such a problem can be suppressed, which is preferable.
  • By setting the melting point to 170 ° C. or lower it is possible to ensure excellent adhesion with the sealing material sheet.
  • the thermal adhesive resin film in the present invention may be a nylon film.
  • nylon resin nylon-6, nylon-66, nylon-11, nylon-12 or the like having excellent mechanical strength, dimensional stability, and heat resistance is desirable.
  • the thermal adhesive resin film in the present invention may be a fluororesin film.
  • a fluororesin film for example, a resin mainly composed of polyvinyl fluoride (PVF), ethylene / chlorotrifluoroethylene copolymer (ECTFE), or ethylene / tetrafluoroethylene copolymer (ETFE) is used. desirable.
  • PVF polyvinyl fluoride
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • the heat adhesive resin film in the present invention may be an ethylene / vinyl acetate copolymer resin film having a vinyl acetate content of 2 to 20% by weight.
  • the vinyl acetate content is 2% by weight or more, the adhesiveness with the sealing material sheet can be made good, and when it is 20% by weight or less, the handling property is good without blocking.
  • a resin to which white fine particles are added or a resin to which black fine particles are added is preferably used for the heat-adhesive resin film in the present invention according to customer requirements.
  • white fine particles include calcium carbonate, silica, alumina, magnesium hydroxide, zinc oxide, talc, titanium oxide, and barium sulfate.
  • the addition of white fine particles is expected to improve power generation efficiency due to the effect of improving reflectivity. it can.
  • carbon black, a carbon nanotube, aniline black, black iron oxide, etc. can be added as black fine particles. By adding these black fine particles, the design is improved.
  • the back surface protective sheet member film is composed of two or more sheets, and when one sheet is the above heat-adhesive resin film, one or more resin films are further configured as a set. Usually, it is preferable that there are two sheets of a heat adhesive resin film and a resin film.
  • the resin film is preferably a hydrolysis-resistant polyester film or a fluororesin film.
  • the hydrolysis resistant polyester film in the present invention is a polyester film in which the tensile elongation after storage for 10 hours at 140 ° C. high pressure steam maintains 60% or more in both the longitudinal and transverse directions of the film.
  • the polyester film having hydrolysis resistance has performances excellent in heat resistance, moisture resistance and hydrolysis resistance, and can reliably protect the solar cell module.
  • the hydrolysis-resistant polyester film is preferably biaxially stretched by a conventional method from the viewpoint of strength, heat resistance, and flatness.
  • the hydrolysis-resistant polyester film is a polyethylene terephthalate having an intrinsic viscosity [ ⁇ ] of 0.70 to 1.20, more preferably 0.75 to 1.00, using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the diol component.
  • Biaxially stretched films of polyethylene-2,6-naphthalate using 2,6-naphthalenedicarboxylic acid as the dicarboxylic acid component and ethylene glycol as the diol component are heat resistance, hydrolysis resistance, and weather resistance. Particularly preferred in terms of mechanical strength.
  • the intrinsic viscosity [ ⁇ ] is a value measured by dissolving a polyester film using o-chlorophenol as a solvent and measuring at a temperature of 25 ° C., and the viscosity is proportional to the degree of polymerization of the polyester.
  • the intrinsic viscosity is 0.70 or more, it is easy to impart hydrolysis resistance and heat resistance, and this is preferable because the hydrolysis resistance of the back surface protection sheet and further the solar cell module is improved.
  • this numerical value is 1.20 or less, melt viscosity becomes low, melt extrusion molding becomes easy, and the film-forming property of the film is improved, which is preferable.
  • an appropriate additive in an amount that does not impair the effects of the present invention, for example, a heat resistance stabilizer, an oxidation resistance stabilizer, an ultraviolet absorber, a weather resistance stabilizer, an organic easy stabilizer.
  • a lubricant, organic fine particles, a filler, an antistatic agent, a nucleating agent, a dye, a dispersant, a coupling agent and the like may be blended.
  • the hydrolysis-resistant polyester film has a structure in which white fine particles are added to the surface layer opposite to the sealing material sheet side to improve the ultraviolet resistance of the hydrolysis-resistant polyester, that is, hydrolysis-resistant polyethylene terephthalate and white water-resistant
  • a structure in which a decomposable polyethylene terephthalate film is formed by coextrusion may be used.
  • the ratio of the thickness of the hydrolysis-resistant polyethylene terephthalate layer to the white hydrolysis-resistant polyethylene terephthalate layer is such that the hydrolysis-resistant polyethylene terephthalate is 2 to 8 times the white hydrolysis-resistant polyethylene terephthalate. It is desirable to be.
  • an ultraviolet absorbing layer is laminated on the surface of the resin film of the back surface protective sheet member film in the present invention which is disposed on the back surface of the solar cell module.
  • the UV absorbing layer is provided to prevent UV degradation of the back surface protection sheet.
  • the back surface protection sheet for solar cell modules in the present invention is laminated on the back surface side of the solar cell module as the name suggests, and the ultraviolet absorption layer is disposed on the back surface side of the solar cell module, so that it can be ground even for long-term outdoor exposure.
  • the ultraviolet absorbing layer in the present invention refers to a layer having a function of setting the light transmittance at a wavelength of 380 nm to 10% or less, and the light transmittance at the wavelength is more preferably 7% or less, and 5% or less. Most preferred. This characteristic is determined by the concentration of the ultraviolet absorber in the ultraviolet absorbing layer and the thickness of the ultraviolet absorbing layer, and is designed according to the required performance.
  • UV absorbing layers are preferably formed by coating the resin film of the back protective sheet member film.
  • organic UV absorbers, inorganic UV absorbers, and additions in combination thereof can be preferably used without any particular limitation, but they are excellent in moist heat resistance and can be uniformly dispersed. desired.
  • organic UV absorbers include salicylic acid, benzophenone, benzotriazole, and cyanoacrylate UV absorbers, which are low extractable and low volatile.
  • a hindered amine-based UV absorber that is excellent in compatibility is also preferable.
  • these UV absorbers include salicylic acid-based pt-butylphenyl salicylate, p-octylphenyl salicylate, benzophenone-based 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy -4-methoxy-5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane, benzotriazole 2- (2' -Hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl ) -6- (2Hbenzotriazol-2-yl) phenol Cyanoacrylate-based ethyl-2-cyano-3,3′-diphenyl acrylate), 2- (4,6
  • examples of inorganic ultraviolet absorbers include metal oxides such as titanium oxide, zinc oxide, and cerium oxide, and carbon-based components such as carbon, fullerene, carbon fiber, and carbon nanotube.
  • these UV absorbers may be added to the binder resin and applied together with the binder resin, or an organic UV absorber may be used.
  • an organic UV absorber may be used.
  • the binder resin for this purpose can be selected from known resin systems such as polyester, acrylic and urethane.
  • an inorganic UV absorber In consideration of long-term outdoor use, it is desirable to use an inorganic UV absorber.
  • an organic UV absorber is used as the binder resin. It is preferable to use a binder resin added in combination or copolymerized with a monomer having an ultraviolet absorber ability.
  • Fluorine-based resin film may be selected as the resin film of the back protective sheet member film in the present invention.
  • the fluorine-based resin include polyvinyl fluoride (PVF), hexafluoropropylene / tetrafluoroethylene copolymer (FEP), ethylene / chlorotrifluoroethylene copolymer (ECTFE), or ethylene / tetrafluoroethylene as described above. It is desirable to use a resin mainly composed of a copolymer (ETFE).
  • the resin film preferably has an easy-adhesion layer formed thereon, and the sealing material sheet 2, the heat-adhesive resin film, and the resin film on which the easy-adhesion layer is formed are in this order. It is preferable in order to stabilize the adhesive force between a heat-adhesive resin film and a resin film by laminating so that the easily bonding layer of an adhesive film and a resin film may oppose.
  • an easily adhesive layer may be formed on the thermal adhesive film, and the sealing material sheet 2, the thermal adhesive resin film on which the easy adhesive layer is formed, and the resin film are in this order. Even if the easy-adhesion layer of the heat-adhesive resin film and the resin film are laminated so as to face each other, it is also preferable in order to stabilize the adhesion between the heat-adhesive resin film and the resin film.
  • the easily bonding layer may be formed in the heat bondable film and the easily bonding layer may be formed in the resin film, and the sealing material sheet 2 and the heat bonding in which the easily bonding layer was formed
  • the resin film in which the adhesive resin film and the easy-adhesion layer are formed are in this order, and even if the easy-adhesion layer of the heat-adhesive resin film and the easy-adhesion layer of the resin film are laminated to face each other, This is preferable in order to further increase the adhesion between the resin films.
  • Examples of the material for the easy-adhesion layer formed on the heat-adhesive resin film or resin film of the back surface protection sheet member film for solar cell modules in the present invention include acrylic resin, polyurethane resin, epoxy resin, polyester resin, polyamide, phenol, and polyolefin. , Ionomers, ethylene / vinyl acetate copolymer resins, polyvinyl acetals, and the like, and copolymers or mixtures thereof may be used.
  • the material for the easy adhesion layer is most preferably a combination of an acrylic resin and an isocyanate curing agent.
  • These easy-adhesion layer materials may be any of a one-component curable type, a two-component curable type, a three-component curable type, and the like, but a two-component curable adhesive is preferable in terms of adhesion and prevention of bubble generation.
  • the thickness of the easy adhesion layer is preferably from 0.1 to 15 ⁇ m, more preferably from 0.5 to 10 ⁇ m.
  • the method for forming the heat-adhesive resin film or the easy-adhesion layer on the resin film is not particularly limited.
  • the material is diluted with an appropriate solvent and dried. In that case, you may apply
  • a biaxially stretched film of polyethylene terephthalate or polyethylene-2,6-naphthalate is used as the resin film, in addition to the cost merit that coating and drying can be carried out in the same process, it is coated after stretching in the longitudinal direction and then stretched laterally. By setting it as a process, a uniform easy-adhesion layer can be suitably obtained with high productivity.
  • a coating method for example, a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, or the like can be used. Since the film thickness of the easy-adhesion layer to be formed is proportional to the concentration of the coating liquid and the coating amount, it is preferable to adjust these in order to obtain a predetermined film thickness of the easy-adhesion layer. Moreover, the said material is heat-melted with the heat-adhesive resin film or the material of a resin film, and the heat-adhesive resin film or resin film in which the easy-adhesion resin layer was laminated
  • a heat adhesive resin film, an easily adhesive resin film, and a resin film in this order a heat adhesive resin film and a resin film
  • an easy-adhesion layer may be formed on at least one of the heat-adhesive resin film or the resin film.
  • the heat-adhesive resin film or resin film or the easy-adhesive resin film obtained by laminating the easy-adhesive resin layer thus obtained may be embossed to improve film transportability and handling properties.
  • ethylene, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, acrylic are used as the easy-adhesive resin for easy-adhesion layer lamination or single film molding by coextrusion.
  • a copolymer with at least one selected from the group consisting of glycidyl acrylate, glycidyl methacrylate, vinyl acetate and maleic anhydride is preferably used, and in particular, ethylene / glycidyl methacrylate copolymer (EGMA) is a heat-adhesive resin. It is preferable for increasing the adhesion between the film and the resin film.
  • the thickness of the heat-adhesive resin film by coextrusion or the easy-adhesion resin layer in the resin film, or the thickness of the single easy-adhesion resin film is preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the two back protection sheet member films may be plasma-treated at low pressure or normal pressure on at least one of the opposing surfaces regardless of the presence or absence of an easy-adhesion layer. This is preferable in order to develop the desired adhesion strength.
  • the two back protective sheet member films are an adhesive resin film in which an easy adhesion layer is not formed and a resin film in which an easy adhesion layer is not formed, these treatments are applied to at least one of the opposing surfaces. Is preferably applied to both surfaces.
  • the low-pressure plasma treatment mentioned here means that the surface is activated by glow discharge generated by applying a high-voltage voltage at a direct current, commercial frequency, high-frequency, or microwave frequency in a low-pressure specific gas atmosphere of about 1.3 to 133 Pa.
  • atmospheric pressure plasma treatment refers to performing discharge treatment in a specific gas atmosphere at atmospheric pressure. In order to maintain the purity of the gas atmosphere, the atmospheric pressure plasma treatment may be used when the pressure is reduced to about 0.05 to 0.15 MPa or the positive pressure due to the structure of the apparatus.
  • the gas used for these plasma treatments is selected according to the material to be plasma treated, such as oxygen, nitrogen, argon, helium, neon, carbon dioxide, laughing gas, hydrogen, hydrocarbon gases such as methane, ammonia, and mixed gases thereof. Is done.
  • the treatment intensity of these plasma treatments can be determined from the relationship between the input power and the treatment speed, and treatment at a treatment intensity of 50 to 5000 W ⁇ min / m 2 is preferable from the balance of treatment effect and economy.
  • the total thickness of the back protective sheet member film in the present invention is preferably in the range of 100 to 400 ⁇ m.
  • the thickness is 100 ⁇ m or more, the insulation resistance can be satisfied, and the problem that the wiring connecting the solar cells can be easily seen through can be easily solved.
  • the thickness is 400 ⁇ m or less, the cutting property can be kept good.
  • a surface protective sheet of a predetermined size, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protective sheet member films are superposed. It is characterized by integrally molding by heating and pressure-bonding treatment.
  • the plurality of films are simultaneously unwound from each unwinding section, and simultaneously cut in a single state with a plurality of sheets stacked. Is preferred.
  • a single easy-adhesive resin film is used, a thin, non-rigid easy-adhesive resin film is likely to be wrinkled and difficult to handle.
  • the surface protection sheet, the encapsulant sheet 1, the solar cell, the encapsulant sheet 2, and two or more back surface protection sheet member films are integrally formed by heating and pressure-bonding treatment.
  • the adhesion strength between the sealing material sheet 2 laminated according to the heating temperature and pressure bonding conditions at the time of molding and the back surface protection sheet member film facing the sealing material sheet is 40 N / cm or more. If the adhesion strength between the sealing material sheet 2 and the back surface protective sheet member film facing the sealing material sheet is less than 40 N / cm, peeling occurs at the time of installation or after installation of the solar cell module, so that it cannot be used.
  • the adhesion strength between two or more back surface protection sheet member films laminated depending on the heating temperature and pressure bonding conditions during molding is 1 N / cm or more, preferably 5 N / cm. It is above, More preferably, it is 10 N / cm or more.
  • adhesion strengths can be measured by cutting out a sample from the completed solar cell module, but the surface protection sheet, the sealing material sheets 1 and 2, the thermoadhesive resin film, and the resin film are heated at the time of molding. In addition, by checking and laminating according to the pressure bonding conditions, it is possible to determine the suitability of these materials prior to the actual molding of the solar cell module.
  • Adhesion strength with the sealing material sheet (N / cm) After producing the pseudo solar cell module by the method described in (1), after cutting to 1 cm width from the back surface protective sheet member side for the solar cell module, after peeling between the EVA sheet and the back surface protective sheet member film, ORIENTEC Using Tensilon PTM-50 manufactured by the company, the peel strength was measured at a peel angle of 180 ° and a peel speed of 100 mm / min, and this value was taken as the adhesion strength.
  • Example 1 Hydrolysis resistant polyester film 125 ⁇ m “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used, and heat treatment was performed for 44 seconds at a drying temperature of 180 ° C. using a film coater manufactured by Okazaki Machinery Co., Ltd. Thereafter, 5.8 parts by weight of urethane curing agent G-18N manufactured by DIC Corporation is added to 100 parts by weight of acrylic easy-adhesion coat DICSEAL HS EXP120228 manufactured by DIC Corporation. After adding 4.8 parts by weight of epoxy compound ADDITIVE EP-10 manufactured by Co., Ltd., it was diluted with a diluent solvent and dried at a drying temperature of 120 ° C.
  • the vacuum time is 5 minutes
  • the control time is 1 minute
  • the press time is 15 minutes
  • the temperature is 145 ° C.
  • Thermocompression bonding was performed under the conditions. After the pressure bonding, it was cooled to room temperature to produce a pseudo solar cell module.
  • Example 2 The same procedure as in Example 1 was performed except that the heat-adhesive resin film described in Example 1 was changed to a white polyethylene film 4807W having a thickness of 150 ⁇ m manufactured by Toray Film Processing Co., Ltd.
  • Example 3 Instead of the hydrolysis-resistant polyester film described in Example 1, a fluororesin film (50 ⁇ m “Toyoflon” (registered trademark) EL2 manufactured by Toray Film Processing Co., Ltd.) with double-sided easy adhesion treatment was used, and a heat-adhesive resin The same procedure as in Example 1 was performed except that the film was changed to 50 ⁇ m white polyethylene 4807W manufactured by Toray Film Processing Co., Ltd.
  • a fluororesin film 50 ⁇ m “Toyoflon” (registered trademark) EL2 manufactured by Toray Film Processing Co., Ltd.
  • Example 4 The same procedure as in Example 1 was performed except that the heat-adhesive resin film described in Example 1 was changed to an unstretched nylon film (100 ⁇ m “Rayfan” (registered trademark) NO manufactured by Toray Film Processing Co., Ltd.).
  • unstretched nylon film 100 ⁇ m “Rayfan” (registered trademark) NO manufactured by Toray Film Processing Co., Ltd.
  • Example 5 In place of the heat-adhesive resin film described in Example 1, a double-sided easy-adhesive fluororesin film (50 ⁇ m “Toyoflon” (registered trademark) EL2 manufactured by Toray Film Processing Co., Ltd.) was used. It carried out similarly.
  • a double-sided easy-adhesive fluororesin film 50 ⁇ m “Toyoflon” (registered trademark) EL2 manufactured by Toray Film Processing Co., Ltd.
  • Example 6 Hydrolysis-resistant polyester film Toray Co., Ltd. 125 ⁇ m “Lumirror” (registered trademark) X10S was used as the resin film, and a film coater manufactured by Okazaki Kikai Kogyo Co., Ltd. was used for 44 seconds at a drying temperature of 180 ° C. did.
  • a heat-adhesive resin film having an easy-adhesion resin layer it has a three-layer structure of the following A layer / B layer / C layer, and each layer resin described below is used at 220 ° C. using a uniaxial melt extruder.
  • a white polypropylene film having a thickness of 150 ⁇ m obtained by melt coextrusion and cooling and solidifying on a casting drum maintained at 30 ° C. was used.
  • Resin used for layer A melting point 127 ° C., density 0.940 g / cm 3 , melt flow rate (MFR) 5.0 g / 10 min linear low density polyethylene 40 parts by weight, melting point 112 ° C., density 0. 912 g / cm 3 , 10 parts by weight of low density polyethylene of MFR 4.0 g / 10 min, and ethylene / propylene random copolymer having a melting point of 150 ° C., a density of 0.900 g / cm 3 , and an MFR of 7 mol / 10 min.
  • Resin used for layer B resin obtained by mixing 12 parts by weight of titanium oxide with 88 parts by weight of homopolypropylene having a melting point of 162 ° C.
  • Easy-adhesion resin used for layer C “Bond First” (registered trademark) grade E manufactured by Sumitomo Chemical Co., Ltd. (ethylene / glycidyl methacrylate copolymer having a glycidyl methacrylate content of 12% by weight and an MFR of 3.0 g / 10 min) ).
  • the pseudo-solar cell module was produced by the method similar to Example 1 by making C layer which is an easily bonding resin layer correspond to a hydrolysis-resistant polyester film.
  • Example 7 In the same manner as in Example 6, except that the hydrolysis resistant polyester film 125 ⁇ m “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used as the resin film, and the easy adhesion coat described in Example 1 was applied thereto. A pseudo solar cell module was produced.
  • the hydrolysis resistant polyester film 125 ⁇ m “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used as the resin film, and the easy adhesion coat described in Example 1 was applied thereto.
  • a pseudo solar cell module was produced.
  • Example 8 The resin film described in Example 1 is a white hydrolysis-resistant polyester film 75 ⁇ m manufactured by Toray Industries, Inc., in which the ratio of the thickness of the hydrolysis-resistant polyethylene terephthalate layer to the white hydrolysis-resistant polyethylene terephthalate layer is 1: 5. Changed to "Lumirror” (registered trademark) MX11, and changed the heat-adhesive resin film to an unstretched polyethylene film (50m "LL film” 4801 manufactured by Toray Film Processing Co., Ltd.). The same operation as in Example 1 was performed except that a terephthalate layer was laminated so as to face 4801.
  • Example 9 Hydrolysis resistant polyester film 125 ⁇ m “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used, and heat treatment was performed for 44 seconds at a drying temperature of 180 ° C. using a film coater manufactured by Okazaki Machinery Co., Ltd.
  • “bond first” (registered trademark) grade 7M manufactured by Sumitomo Chemical Co., Ltd. ethylene glycidyl content 6 wt%, methyl acrylate content 27 wt%, MFR 7.0 g / 10 min ethylene) -Glycidyl methacrylate-methyl acrylate copolymer), which is melt-extruded at 200 ° C.
  • Example 10 A solar cell module was produced.
  • Example 10 a hydrolysis-resistant polyester film 125 ⁇ m “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc.
  • Processing width 0.1m
  • Treatment speed 3 m / min
  • Introduction gas Nitrogen pressure: 40 Pa
  • Power supply frequency 50 kHz
  • Input power 60 W (the input power was determined as the product of the plate voltage and plate current of the vacuum tube of the high-frequency power source)
  • Processing intensity 200 W ⁇ min / m 2
  • a 150 ⁇ m white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd. was also subjected to low-pressure plasma treatment under the same conditions.
  • Example 11 The surfaces subjected to low-pressure plasma treatment were made to face each other, and a pseudo solar cell module was produced under the same conditions as in Example 1.
  • Example 11 low-pressure plasma treatment was performed only on 150 ⁇ m white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd. under the same conditions as in Example 8.
  • the surface on which the easy adhesion layer was formed and the surface subjected to the low-pressure plasma treatment of B011W were made to face each other under the same conditions as in Example 1.
  • a pseudo solar cell module was produced.
  • Example 12 the low-pressure plasma treatment was performed under the same conditions as in Example 10 after heat-treating 125 ⁇ m ⁇ 10S produced by hydrolysis resistant polyester film Toray Industries, Inc.
  • a pseudo solar cell module was manufactured by making the C layer, which is an easily adhesive resin layer of a white polypropylene film, face the low-pressure plasma treated surface of the hydrolysis-resistant polyester film.
  • Example 13 In Example 10, in the low-pressure plasma treatment of the hydrolysis-resistant polyester film 125 ⁇ m “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. and the 150 ⁇ m white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd., the input power was 30 W.
  • a pseudo solar cell module was manufactured using a processing speed of 4 m / min and a processing intensity of 100 W ⁇ min / m 2 .
  • Example 14 In Example 10, the introduced gas was changed to argon, and atmospheric pressure plasma treatment was performed under atmospheric pressure.
  • 125 ⁇ m “Lumirror” (registered trademark) X10S made by hydrolysis-resistant polyester film Toray Co., Ltd. and Toray Film Processing Co., Ltd. with an input voltage of 100 W, a treatment speed of 10 m / min and a treatment strength of 100 W ⁇ min / m 2
  • a manufactured 150 ⁇ m white polypropylene film B011W was processed.
  • a pseudo solar cell module was produced by making these atmospheric pressure plasma treated surfaces face each other.
  • Example 1 The acrylic easy-adhesion coat to be applied to the hydrolysis-resistant polyester film described in Example 1 is 100 parts by weight of DIC Corporation acrylic easy-adhesion coat DICSEAL HS WHITE EXP120820, DIC Corporation hardener DF HARDNER A pseudo solar cell module was produced in the same manner as in Example 1, except that 12 parts by weight of HA-100 and EP-103 parts by weight of epoxy additive EP-103 manufactured by DIC Corporation were added and diluted with a diluent solvent.
  • Example 3 (Comparative Example 3) In Example 1, by the method of (1) above, thermocompression treatment was performed under the conditions of a vacuum time of 5 minutes, a control time of 1 minute, a press time of 15 minutes, and a temperature of 100 ° C. A battery module was produced.
  • the method for manufacturing a solar cell module according to the present invention can integrally mold a plurality of back surface protection sheet member films, and can manufacture a solar cell module with higher yield by solving the problem of warpage of the back surface protection sheet. It is possible to reduce the loss of the back surface protection sheet member film, which can contribute to resource saving.

Abstract

A production method for solar cell modules, whereby a surface protective sheet, a sealing material sheet (1), a solar cell, a sealing material sheet (2), and at least two rear surface protective sheet member films are integrally molded by heating and crimping same. The solar cell module production method is characterized by the adhesion strength between the sealing material sheet (2) laminated by the heating temperature and crimping conditions during molding and a rear surface protective sheet member film facing same being at least 40 N/cm and the adhesion strength between the at least two rear surface protective sheet member films being at least 1 N/cm. Provided is a rear surface protective sheet member for solar cell modules, that: increases solar cell module yield by reducing loss in the production process for the rear surface protective sheets for solar cell modules; and is capable of fundamentally solving the issue of warping in rear surface protective sheet members in the solar cell module production method.

Description

太陽電池モジュールの製造方法Manufacturing method of solar cell module
 本発明は、太陽電池モジュールを製造する方法に関するものである。 The present invention relates to a method for manufacturing a solar cell module.
 近年、環境問題への意識の高まりから、太陽光エネルギーは無尽蔵で無公害の新たなエネルギー源として注目されており、太陽光発電はクリーンで環境に優しい発電システムとして急速に開発が進んでいる。 In recent years, solar energy has been attracting attention as a new energy source that is inexhaustible and non-polluting due to growing awareness of environmental issues, and solar power generation is rapidly developing as a clean and environmentally friendly power generation system.
 一般に、太陽電池モジュールは、結晶シリコン太陽電池、多結晶シリコン太陽電池、あるいはアモルファスシリコン太陽電池等の太陽電池素子を使用し、表面保護シートまたはガラス、エチレン・酢酸ビニル共重合体樹脂等の封止材シート、太陽電池素子、封止材シート、および裏面保護シートをその順に積層し、真空吸引して加熱圧着して一体化する方法により製造されている。太陽電池モジュールを構成する裏面保護シートとしては、軽量であり電気特性・強度に優れたプラスチック基材が一般的に使用されてきている。太陽電池モジュールは20年以上の長期にわたり性能を維持することが求められるため、裏面保護シートは、強度・耐候性・耐熱性・耐水性・耐光性・耐薬品性・防湿性・意匠性等に優れ、これらが経時的に大きく劣化しないことが必要とされる。 Generally, a solar cell module uses a solar cell element such as a crystalline silicon solar cell, a polycrystalline silicon solar cell, or an amorphous silicon solar cell, and is sealed with a surface protective sheet or glass, ethylene / vinyl acetate copolymer resin, etc. It is manufactured by a method in which a material sheet, a solar cell element, a sealing material sheet, and a back surface protection sheet are laminated in that order, and vacuum suction is performed and thermocompression bonding is performed for integration. As a back surface protection sheet constituting the solar cell module, a plastic base material that is light in weight and excellent in electrical characteristics and strength has been generally used. Since solar cell modules are required to maintain their performance over a long period of 20 years or longer, the back protection sheet has strength, weather resistance, heat resistance, water resistance, light resistance, chemical resistance, moisture resistance, design, etc. It is excellent that they are not significantly degraded over time.
 太陽電池モジュールに使用する裏面保護シートは、上記の様々な要求特性を満たすため、複数の機能性フィルムを接着剤、粘着剤などであらかじめラミネートしたシートである(特許文献1)。さらにラミネートの前または後に必要に応じてコーティングなどで機能層を積層し、加工後に数日間エージングするのが一般的であるが、コスト削減や製造工程の短縮が課題となっていた。すなわち上記工程の数に応じてロスが増加し、最終製品の収率が低下するという問題があった。 The back surface protection sheet used in the solar cell module is a sheet obtained by laminating a plurality of functional films in advance with an adhesive, a pressure sensitive adhesive or the like in order to satisfy the above various required characteristics (Patent Document 1). Furthermore, it is common to laminate functional layers by coating or the like before or after lamination, and after aging for several days after processing, but there have been problems of cost reduction and shortening of the manufacturing process. That is, there is a problem that the loss increases according to the number of the above steps, and the yield of the final product decreases.
 更には、ラミネートしたそれぞれのフィルムの線膨張係数の違いにより、裏面保護シートには反りが発生し、太陽電池モジュールの部材を各々積層し太陽電池モジュールを作製する工程において、反りによる工程通過性の低さにより不良品の発生が頻発するという問題も指摘されている。 Furthermore, due to the difference in the coefficient of linear expansion of each laminated film, warpage occurs in the back surface protection sheet, and in the process of manufacturing the solar cell module by laminating each member of the solar cell module, the process passability due to warpage is reduced. There is also a problem that defective products frequently occur due to lowness.
国際公開第2012/029733号公報International Publication No. 2012/029733
 本発明は、太陽電池モジュール用裏面保護シートの製造工程におけるロスを低減するとともに、太陽電池モジュールの製造方法において裏面保護シートの反りの問題を根本的に解決することにより歩留まりを向上できる太陽電池モジュールの製造方法を提供することを目的としている。 The present invention reduces a loss in a manufacturing process of a back surface protection sheet for a solar cell module, and can improve yield by fundamentally solving the problem of warping of the back surface protection sheet in a manufacturing method of a solar cell module. It aims at providing the manufacturing method of.
 本発明者らは、表面保護シート、封止材シート1、太陽電池セル、封止材シート2、および2枚以上の裏面保護シート部材フィルムを加熱および圧着処理により一体成型する太陽電池モジュールの製造方法であって、該成型時の加熱温度および圧着条件によって積層した該封止材シート2と、これに対向する裏面保護シート部材フィルムの密着強度が40N/cm以上であり、かつ該2枚以上の裏面保護シート部材フィルム間の密着強度がいずれも1N/cm以上であることを特徴とする太陽電池モジュールの製造方法により上記課題を解決できることを見出した。 The present inventors manufacture a solar cell module in which a surface protective sheet, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protective sheet member films are integrally formed by heating and pressure-bonding treatment. In this method, the adhesion strength between the sealing material sheet 2 laminated according to the heating temperature and pressure bonding conditions at the time of molding and the back surface protective sheet member film facing the sealing material sheet is 40 N / cm or more, and the two or more sheets It has been found that the above-mentioned problems can be solved by a method for manufacturing a solar cell module, wherein the adhesion strength between the backside protective sheet member films is 1 N / cm or more.
 本発明による太陽電池モジュールの製造方法は、複数の裏面保護シート部材フィルムを一体成型することができ、裏面保護シートの反りの問題を解決することでより高い収率で太陽電池モジュ-ル製造することができ、裏面保護シート部材フィルムのロスも低減することができる。 The method for manufacturing a solar cell module according to the present invention can integrally mold a plurality of back surface protection sheet member films, and can manufacture a solar cell module with higher yield by solving the problem of warpage of the back surface protection sheet. It is possible to reduce the loss of the back surface protective sheet member film.
本発明の太陽電池モジュールの一製造方法を示す模式図である。It is a schematic diagram which shows one manufacturing method of the solar cell module of this invention. 本発明における太陽電池モジュール用裏面保護シート部材フィルムの例である。It is an example of the back surface protection sheet member film for solar cell modules in this invention. 本発明における太陽電池モジュール用裏面保護シート部材フィルムの例である。It is an example of the back surface protection sheet member film for solar cell modules in this invention. 本発明における太陽電池モジュール用裏面保護シート部材フィルムの例である。It is an example of the back surface protection sheet member film for solar cell modules in this invention. 本発明における太陽電池モジュール用裏面保護シート部材フィルムの例である。It is an example of the back surface protection sheet member film for solar cell modules in this invention.
 本発明の太陽電池モジュールの製造方法は、表面保護シート、封止材シート1、太陽電池セル、封止材シート2、および2枚以上の裏面保護シート部材フィルムをこの順に加熱および圧着処理により一体成型するものであるが、このための表面保護シートは、一般的には表面保護ガラスであり、ガラスに代替できる透明性・強度・耐候性・耐熱性・ガスバリア性能などが確保された樹脂シートであっても良い。 The manufacturing method of the solar cell module of the present invention includes a surface protection sheet, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protection sheet member films in this order by heating and pressure bonding treatment. The surface protection sheet for this purpose is generally a surface protection glass, and it is a resin sheet that ensures transparency, strength, weather resistance, heat resistance, gas barrier performance, etc. that can replace glass. There may be.
 本発明における封止材シート(封止材シート1および2をあわせていう。)は、太陽電池セルの凹凸を被覆し、太陽電池セルを温度変化、湿度、衝撃などから保護する目的で使用される。 The encapsulant sheet in the present invention (referred to collectively as encapsulant sheets 1 and 2) is used for the purpose of covering the unevenness of the solar battery cell and protecting the solar battery cell from temperature change, humidity, impact, and the like. .
 太陽電池モジュールの封止材シートとしては、公知の熱接着性フィルムを使用することができ、例えば、エチレン・酢酸ビニル共重合体樹脂(以下、EVAと略称することがある。)、エチレン・アクリル酸メチル共重合樹脂、エチレン・アクリル酸エチル共重合樹脂、ポリウレタン樹脂、ポリビニルブチラール、エチレン・酢酸ビニル部分鹸化物、シリコーン樹脂、ポリエステル樹脂等を挙げることができる。太陽電池モジュールの封止部材層は、耐光性、透過性、耐湿性、経済性の点からEVAが特に好ましく用いられ、酢酸ビニル含有量が15~40重量%のものが特に好ましい。酢酸ビニル含有量が15~40重量%であると透明性が低下せず、樹脂のべたつきがなく、加工性や取り扱い性がよい。 As a sealing material sheet of a solar cell module, a known heat-adhesive film can be used. For example, ethylene / vinyl acetate copolymer resin (hereinafter sometimes abbreviated as EVA), ethylene / acrylic. Examples include methyl acid copolymer resin, ethylene / ethyl acrylate copolymer resin, polyurethane resin, polyvinyl butyral, ethylene / vinyl acetate partially saponified product, silicone resin, polyester resin, and the like. For the sealing member layer of the solar cell module, EVA is particularly preferably used from the viewpoint of light resistance, transparency, moisture resistance, and economy, and a vinyl acetate content of 15 to 40% by weight is particularly preferable. When the vinyl acetate content is 15 to 40% by weight, the transparency is not lowered, the resin is not sticky, and the processability and handleability are good.
 太陽電池モジュールの封止材シートには、必要に応じて、有機過酸化物などの架橋剤、紫外線吸収剤、酸化防止剤等添加剤を使用することができる。また、加熱溶融時のシワの発生を軽減し、加工性を向上させるため、予めエンボス加工を施したシートを使用してもよい。 In the encapsulant sheet of the solar cell module, additives such as a crosslinking agent such as an organic peroxide, an ultraviolet absorber, and an antioxidant can be used as necessary. Moreover, in order to reduce the generation of wrinkles during heating and melting and to improve workability, a sheet that has been embossed in advance may be used.
 本発明における裏面保護シート部材フィルムは2枚以上からなり、これらが積層されて強度・耐候性・耐熱性・耐水性・耐光性・耐薬品性・防湿性・意匠性などが総合的に発揮されるものであり、裏面保護シートに要求される機能により任意に組み合わせを行うことができる。なかでも、封止材シート2側には熱接着性樹脂フィルムを配設することが好ましい。 The back surface protective sheet member film in the present invention is composed of two or more sheets, and these are laminated to exhibit comprehensively strength, weather resistance, heat resistance, water resistance, light resistance, chemical resistance, moisture resistance, design, etc. It can be arbitrarily combined depending on the function required for the back surface protection sheet. Especially, it is preferable to arrange | position a thermoadhesive resin film in the sealing material sheet 2 side.
 本発明における熱接着性樹脂フィルムは、上記の封止材シートとの熱接着性を有するフィルムであり、熱接着性樹脂フィルムの樹脂として好ましく用いられるものはポリオレフィンである。ポリオレフィンとは、エチレン、プロピレン、1-ブテン、1-ペンテンなどのオレフィンモノマーを単独あるいは共重合したものであり、耐熱性の点でポリエチレン系樹脂とポリプロピレン系樹脂が好ましく、ポリエチレンよりもポリプロピレンを主体とした樹脂(ポリポロピレン系樹脂)の方がさらに耐熱性に優れ、太陽電池モジュールを成型する際の高温・高圧下での変形を受けにくく、該加工温度が高い場合にはより好ましく用いられる。 The heat-adhesive resin film in the present invention is a film having heat-adhesiveness with the above-mentioned sealing material sheet, and polyolefin is preferably used as the resin of the heat-adhesive resin film. Polyolefins are olefin monomers such as ethylene, propylene, 1-butene, and 1-pentene, which are singly or copolymerized. From the viewpoint of heat resistance, polyethylene resins and polypropylene resins are preferable, and polypropylene is mainly used rather than polyethylene. The resin (polypropylene-based resin) is more excellent in heat resistance, is less susceptible to deformation under high temperatures and pressures when molding a solar cell module, and is more preferably used when the processing temperature is high.
 ポリプロピレン系樹脂の融点は、140℃~170℃の範囲であることが、耐熱性をはじめ、滑り性やフィルムのハンドリング性、耐カール性、接着性樹脂層との熱接着性の点から好ましい。融点を140℃以上とすることで耐熱性に優れ、太陽電池モジュール用裏面保護シート部材フィルムとして封止材シートと熱融着させたときに、厚さが低減したり、耐絶縁性が低下するといった不具合を抑えることができるため好ましい。融点を170℃以下とすることで、封止材シートとの優れた密着力を確保することができ好ましい。 The melting point of the polypropylene resin is preferably in the range of 140 ° C. to 170 ° C. from the viewpoints of heat resistance, slipperiness, film handling properties, curl resistance, and thermal adhesiveness with the adhesive resin layer. When the melting point is 140 ° C. or higher, it has excellent heat resistance, and when it is heat-sealed with a sealing material sheet as a back surface protection sheet member film for a solar cell module, the thickness is reduced or the insulation resistance is lowered. Such a problem can be suppressed, which is preferable. By setting the melting point to 170 ° C. or lower, it is possible to ensure excellent adhesion with the sealing material sheet.
 本発明における熱接着性樹脂フィルムはナイロンフィルムとすることもできる。ナイロン樹脂としては、ナイロン-6、ナイロン-66、ナイロン-11、ナイロン-12など機械強度や寸法安定性、耐熱性に優れるものが望ましい。 The thermal adhesive resin film in the present invention may be a nylon film. As the nylon resin, nylon-6, nylon-66, nylon-11, nylon-12 or the like having excellent mechanical strength, dimensional stability, and heat resistance is desirable.
 本発明における熱接着性樹脂フィルムは、フッ素系樹脂フィルムとすることもできる。フッ素系樹脂としては、例えばポリフッ化ビニル(PVF)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、またはエチレン・テトラフルオロエチレン共重合体(ETFE)を主成分とする樹脂を使用するのが望ましい。 The thermal adhesive resin film in the present invention may be a fluororesin film. As the fluororesin, for example, a resin mainly composed of polyvinyl fluoride (PVF), ethylene / chlorotrifluoroethylene copolymer (ECTFE), or ethylene / tetrafluoroethylene copolymer (ETFE) is used. desirable.
 本発明における熱接着性樹脂フィルムは、酢酸ビニル含有率が2~20重量%であるエチレン・酢酸ビニル共重合樹脂フィルムとしても良い。酢酸ビニル含有率が2重量%以上で封止材シートとの密着性を良好とすることができ、20重量%以下でブロッキングなく取り扱い性の良いものとできる。 The heat adhesive resin film in the present invention may be an ethylene / vinyl acetate copolymer resin film having a vinyl acetate content of 2 to 20% by weight. When the vinyl acetate content is 2% by weight or more, the adhesiveness with the sealing material sheet can be made good, and when it is 20% by weight or less, the handling property is good without blocking.
 更には、本発明における熱接着性樹脂フィルムには、顧客要求により白色微粒子が添加された樹脂や黒色微粒子が添加された樹脂が好ましく用いられる。白色微粒子としては、炭酸カルシウム、シリカ、アルミナ、水酸化マグネシウム、酸化亜鉛、タルク、酸化チタン、硫酸バリウム等であり、白色微粒子を添加することによって、反射率向上の効果により発電効率の向上が期待できる。また、黒色微粒子としては、カーボンブラックやカーボンナノチューブ、アニリンブラック、黒色酸化鉄などを添加することができる。これらの黒色微粒子を添加することによっては、意匠性が向上する。 Furthermore, a resin to which white fine particles are added or a resin to which black fine particles are added is preferably used for the heat-adhesive resin film in the present invention according to customer requirements. Examples of white fine particles include calcium carbonate, silica, alumina, magnesium hydroxide, zinc oxide, talc, titanium oxide, and barium sulfate. The addition of white fine particles is expected to improve power generation efficiency due to the effect of improving reflectivity. it can. Moreover, carbon black, a carbon nanotube, aniline black, black iron oxide, etc. can be added as black fine particles. By adding these black fine particles, the design is improved.
 本発明における裏面保護シート部材フィルムは2枚以上からなり、1枚が上記の熱接着性樹脂フィルムとした場合は、さらに1枚以上の樹脂フィルムがセットで構成される。通常は熱接着性樹脂フィルムと樹脂フィルムの2枚であることが好ましい。 In the present invention, the back surface protective sheet member film is composed of two or more sheets, and when one sheet is the above heat-adhesive resin film, one or more resin films are further configured as a set. Usually, it is preferable that there are two sheets of a heat adhesive resin film and a resin film.
 このための樹脂フィルムは、耐加水分解性ポリエステルフィルムまたはフッ素系樹脂フィルムが好ましい。本発明における耐加水分解性ポリエステルフィルムとは、140℃高圧スチームで10時間保管後の引張伸度がフィルムの縦方向、横方向共に60%以上を保持するポリエステルフィルムのことである。耐加水分解性を有するポリエステルフィルムは、耐熱性、防湿性、耐加水分解に優れる性能を有し、太陽電池モジュールの保護を確実に行うことができる。耐加水分解性ポリエステルフィルムは、強度、耐熱性、平面性の点から常法により二軸延伸されたものが好ましい。 For this purpose, the resin film is preferably a hydrolysis-resistant polyester film or a fluororesin film. The hydrolysis resistant polyester film in the present invention is a polyester film in which the tensile elongation after storage for 10 hours at 140 ° C. high pressure steam maintains 60% or more in both the longitudinal and transverse directions of the film. The polyester film having hydrolysis resistance has performances excellent in heat resistance, moisture resistance and hydrolysis resistance, and can reliably protect the solar cell module. The hydrolysis-resistant polyester film is preferably biaxially stretched by a conventional method from the viewpoint of strength, heat resistance, and flatness.
 耐加水分解性ポリエステルフィルムは、ジカルボン酸成分にテレフタル酸、ジオール成分にエチレングリコールを用いた固有粘度[η]が0.70~1.20、より好ましくは0.75~1.00のポリエチレンテレフタレートの二軸延伸フィルムや、ジカルボン酸成分に2,6-ナフタレンジカルボン酸、ジオール成分にエチレングリコールを用いたポリエチレン-2,6-ナフタレートの二軸延伸フィルムが耐熱性、耐加水分解性、耐候性、機械強度等の面で特に好ましい。ここで、固有粘度[η]は、o-クロロフェノールを溶媒としてポリエステルフィルムを溶解し、25℃の温度で測定した値であり、該粘度はポリエステルの重合度に比例する。この固有粘度が0.70以上である場合には、耐加水分解性、耐熱性を付与することが容易となり、裏面保護シート、さらには太陽電池モジュールの耐加水分解性能を向上させるため好ましい。また、該数値が1.20以下の場合には、溶融粘度が低くなり溶融押出成形が容易となり、フィルムの製膜性が向上するため好ましい。 The hydrolysis-resistant polyester film is a polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 to 1.20, more preferably 0.75 to 1.00, using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the diol component. Biaxially stretched films of polyethylene-2,6-naphthalate using 2,6-naphthalenedicarboxylic acid as the dicarboxylic acid component and ethylene glycol as the diol component are heat resistance, hydrolysis resistance, and weather resistance. Particularly preferred in terms of mechanical strength. Here, the intrinsic viscosity [η] is a value measured by dissolving a polyester film using o-chlorophenol as a solvent and measuring at a temperature of 25 ° C., and the viscosity is proportional to the degree of polymerization of the polyester. When the intrinsic viscosity is 0.70 or more, it is easy to impart hydrolysis resistance and heat resistance, and this is preferable because the hydrolysis resistance of the back surface protection sheet and further the solar cell module is improved. Moreover, when this numerical value is 1.20 or less, melt viscosity becomes low, melt extrusion molding becomes easy, and the film-forming property of the film is improved, which is preferable.
 また、このポリエステルの中には、必要に応じて、本発明の効果が損なわれない量で適宜な添加剤、例えば耐熱安定剤、耐酸化安定剤、紫外線吸収剤、耐侯安定剤、有機の易滑剤、有機系微粒子、充填剤、帯電防止剤、核剤、染料、分散剤、カップリング剤等が配合されていてもよい。  Further, in this polyester, if necessary, an appropriate additive in an amount that does not impair the effects of the present invention, for example, a heat resistance stabilizer, an oxidation resistance stabilizer, an ultraviolet absorber, a weather resistance stabilizer, an organic easy stabilizer. A lubricant, organic fine particles, a filler, an antistatic agent, a nucleating agent, a dye, a dispersant, a coupling agent and the like may be blended. *
 耐加水分解性ポリエステルフィルムは、封止材シート側とは反対側の表層に白色微粒子を添加し耐加水分解性ポリエステルの耐紫外線性を向上させる構成、すなわち耐加水分解性ポリエチレンテレフタレートと白色耐加水分解性ポリエチレンテレフタレートが共押し出し製膜された構成であっても良い。この場合、耐加水分解性ポリエチレンテレフタレート層と白色耐加水分解性ポリエチレンテレフタレート層の厚さの比が、白色耐加水分解性ポリエチレンテレフタレートに対して耐加水分解性ポリエチレンテレフタレートが2から8倍の範囲であることが望ましい。該共押し出しポリエステルフィルムを使用することによって、従来のポリエステルフィルムでは得られなかった高い反射率と耐紫外線性、耐湿熱性を得ることができる。 The hydrolysis-resistant polyester film has a structure in which white fine particles are added to the surface layer opposite to the sealing material sheet side to improve the ultraviolet resistance of the hydrolysis-resistant polyester, that is, hydrolysis-resistant polyethylene terephthalate and white water-resistant A structure in which a decomposable polyethylene terephthalate film is formed by coextrusion may be used. In this case, the ratio of the thickness of the hydrolysis-resistant polyethylene terephthalate layer to the white hydrolysis-resistant polyethylene terephthalate layer is such that the hydrolysis-resistant polyethylene terephthalate is 2 to 8 times the white hydrolysis-resistant polyethylene terephthalate. It is desirable to be. By using the coextruded polyester film, it is possible to obtain high reflectivity, ultraviolet resistance and wet heat resistance, which are not obtained with conventional polyester films.
 また、本発明における裏面保護シート部材フィルムの樹脂フィルムの太陽電池モジュールの最裏面に配設される面には紫外線吸収層が積層されていることが望ましい。 In addition, it is desirable that an ultraviolet absorbing layer is laminated on the surface of the resin film of the back surface protective sheet member film in the present invention which is disposed on the back surface of the solar cell module.
 紫外線吸収層は、裏面保護シートの紫外線劣化を防ぐために設けられる。本発明における太陽電池モジュール用裏面保護シートは、その名の示す通り太陽電池モジュールの裏面側に積層され、さらに紫外線吸収層は太陽電池モジュールの裏面側に配設され、長期の屋外暴露においても地面や屋根からの照り返しによる樹脂の色調変化、強度劣化などの紫外線劣化を防止する機能を担う。本発明における紫外線吸収層とは、波長380nmにおける光線透過率を10%以下とする機能を有する層をいい、該波長における光線透過率は7%以下であることがさらに好ましく、5%以下であることが最も好ましい。この特性は、紫外線吸収層における紫外線吸収剤の濃度と紫外線吸収層の厚さにより決定され、要求される性能に応じて設計が行われる。 The UV absorbing layer is provided to prevent UV degradation of the back surface protection sheet. The back surface protection sheet for solar cell modules in the present invention is laminated on the back surface side of the solar cell module as the name suggests, and the ultraviolet absorption layer is disposed on the back surface side of the solar cell module, so that it can be ground even for long-term outdoor exposure. Responsible for preventing UV deterioration such as resin color change and strength deterioration due to reflection from the roof. The ultraviolet absorbing layer in the present invention refers to a layer having a function of setting the light transmittance at a wavelength of 380 nm to 10% or less, and the light transmittance at the wavelength is more preferably 7% or less, and 5% or less. Most preferred. This characteristic is determined by the concentration of the ultraviolet absorber in the ultraviolet absorbing layer and the thickness of the ultraviolet absorbing layer, and is designed according to the required performance.
 これら紫外線吸収層は、裏面保護シート部材フィルムの樹脂フィルムにコーティングにより形成することが好ましい。紫外線吸収層には、有機系紫外線吸収剤、無機系紫外線吸収剤、およびこれらの併用による添加が、いずれにも特に限定されずに好ましく用いることができるが、耐湿熱性に優れ、均一分散できることが望まれる。このような紫外線吸収剤としては有機系の紫外線吸収剤の場合は、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤があり、低抽出性、低揮発性でありポリマーへの相溶性にも優れたヒンダードアミン系等の紫外線吸収剤が好ましい。 These ultraviolet absorbing layers are preferably formed by coating the resin film of the back protective sheet member film. In the UV absorbing layer, organic UV absorbers, inorganic UV absorbers, and additions in combination thereof can be preferably used without any particular limitation, but they are excellent in moist heat resistance and can be uniformly dispersed. desired. In the case of organic UV absorbers, such UV absorbers include salicylic acid, benzophenone, benzotriazole, and cyanoacrylate UV absorbers, which are low extractable and low volatile. A hindered amine-based UV absorber that is excellent in compatibility is also preferable.
 これらの紫外線吸収剤は、具体的にはサリチル酸系のp-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート、ベンゾフェノン系の2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン、ベンゾトリアゾール系の2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2Hベンゾトリアゾール-2-イル)フェノール]、シアノアクリレート系のエチル-2-シアノ-3,3’-ジフェニルアクリレート)、その他として、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、ヒンダードアミン系のビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ニッケルビス(オクチルフェニル)サルファイド、および2,4-ジ-t-ブチルフェニル-3’,5’-ジ-t-ブチル-4’-ヒドロキシベンゾエートなどが挙げられる。 Specifically, these UV absorbers include salicylic acid-based pt-butylphenyl salicylate, p-octylphenyl salicylate, benzophenone-based 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy -4-methoxy-5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane, benzotriazole 2- (2' -Hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl ) -6- (2Hbenzotriazol-2-yl) phenol Cyanoacrylate-based ethyl-2-cyano-3,3′-diphenyl acrylate), 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) ) Oxy] -phenol, hindered amine bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6 succinate , 6-tetramethylpiperidine polycondensate, nickel bis (octylphenyl) sulfide, and 2,4-di-t-butylphenyl-3 ′, 5′-di-t-butyl-4′-hydroxybenzoate It is done.
 また、無機系の紫外線吸収剤としては、酸化チタン、酸化亜鉛、酸化セリウムなどの金属酸化物や、カーボン、フラーレン、カーボンファイバー、カーボンナノチューブなどの炭素系成分等が挙げられる。 In addition, examples of inorganic ultraviolet absorbers include metal oxides such as titanium oxide, zinc oxide, and cerium oxide, and carbon-based components such as carbon, fullerene, carbon fiber, and carbon nanotube.
 上記紫外線吸収剤を裏面保護シート部材フィルムの樹脂フィルム上に紫外線吸収層として固定するには、これら紫外線吸収剤をバインダー樹脂に添加してバインダー樹脂とともに塗布するか、有機系の紫外線吸収剤であればバインダー樹脂に紫外線吸収剤能を有するモノマーを共重合させたものを塗布するなどして紫外線吸収層を形成することが好ましい。このためのバインダー樹脂としては、ポリエステル系、アクリル系、ウレタン系など公知の樹脂系から選択できる。長期の屋外使用下で考慮した場合、無機系の紫外線吸収剤使用が望ましく、無機系紫外線吸収剤をコーティング層として固定するバインダー樹脂の紫外線による劣化を防ぐために、有機系紫外線吸収剤をバインダー樹脂に併用添加するか、紫外線吸収剤能を有するモノマーを共重合させたバインダー樹脂を使用することが好ましい。 In order to fix the UV absorber as a UV absorbing layer on the resin film of the back surface protective sheet member film, these UV absorbers may be added to the binder resin and applied together with the binder resin, or an organic UV absorber may be used. For example, it is preferable to form the ultraviolet absorbing layer by coating a binder resin obtained by copolymerizing a monomer having an ultraviolet absorbing ability. The binder resin for this purpose can be selected from known resin systems such as polyester, acrylic and urethane. In consideration of long-term outdoor use, it is desirable to use an inorganic UV absorber. To prevent deterioration of the binder resin that fixes the inorganic UV absorber as a coating layer due to UV rays, an organic UV absorber is used as the binder resin. It is preferable to use a binder resin added in combination or copolymerized with a monomer having an ultraviolet absorber ability.
 本発明における裏面保護シート部材フィルムの樹脂フィルムとしてフッ素系樹脂フィルムを選択しても良い。フッ素系樹脂としては、前述した様に例えばポリフッ化ビニル(PVF)、ヘキサフロロプロピレン・テトラフロロエチレン共重合体(FEP)エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、またはエチレン・テトラフルオロエチレン共重合体(ETFE)を主成分とする樹脂を使用するのが望ましい。 Fluorine-based resin film may be selected as the resin film of the back protective sheet member film in the present invention. Examples of the fluorine-based resin include polyvinyl fluoride (PVF), hexafluoropropylene / tetrafluoroethylene copolymer (FEP), ethylene / chlorotrifluoroethylene copolymer (ECTFE), or ethylene / tetrafluoroethylene as described above. It is desirable to use a resin mainly composed of a copolymer (ETFE).
 本発明において、樹脂フィルムには易接着層が形成されたものであることが好ましく、封止材シート2、熱接着性樹脂フィルム、易接着層が形成された樹脂フィルムがこの順にあり、熱接着性フィルムと樹脂フィルムの易接着層が対向するように積層されることで、熱接着性樹脂フィルムと樹脂フィルム間の密着力を安定させるために好ましい。 In the present invention, the resin film preferably has an easy-adhesion layer formed thereon, and the sealing material sheet 2, the heat-adhesive resin film, and the resin film on which the easy-adhesion layer is formed are in this order. It is preferable in order to stabilize the adhesive force between a heat-adhesive resin film and a resin film by laminating so that the easily bonding layer of an adhesive film and a resin film may oppose.
 また、本発明において、熱接着性フィルムに易接着層が形成されたものであっても良く、封止材シート2、易接着層が形成された熱接着性樹脂フィルム、樹脂フィルムがこの順にあり、熱接着性樹脂フィルムの易接着層と樹脂フィルムが対向するように積層されても同様に熱接着性樹脂フィルムと樹脂フィルム間の密着力を安定させるために好ましい。 Further, in the present invention, an easily adhesive layer may be formed on the thermal adhesive film, and the sealing material sheet 2, the thermal adhesive resin film on which the easy adhesive layer is formed, and the resin film are in this order. Even if the easy-adhesion layer of the heat-adhesive resin film and the resin film are laminated so as to face each other, it is also preferable in order to stabilize the adhesion between the heat-adhesive resin film and the resin film.
 さらに、本発明において、熱接着性フィルムに易接着層が形成され、樹脂フィルムに易接着層が形成されたものであっても良く、封止材シート2、易接着層が形成された熱接着性樹脂フィルム、易接着層が形成された樹脂フィルムがこの順にあり、熱接着性樹脂フィルムの易接着層と樹脂フィルムの易接着層が対向するように積層されても、熱接着性樹脂フィルムと樹脂フィルム間の密着力をさらに高めるために好ましい。 Furthermore, in this invention, the easily bonding layer may be formed in the heat bondable film and the easily bonding layer may be formed in the resin film, and the sealing material sheet 2 and the heat bonding in which the easily bonding layer was formed The resin film in which the adhesive resin film and the easy-adhesion layer are formed are in this order, and even if the easy-adhesion layer of the heat-adhesive resin film and the easy-adhesion layer of the resin film are laminated to face each other, This is preferable in order to further increase the adhesion between the resin films.
 本発明における太陽電池モジュール用裏面保護シート部材フィルムの熱接着性樹脂フィルムまたは樹脂フィルムに形成される易接着層の材料としては、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂,ポリアミド、フェノール、ポリオレフィン、アイオノマー、エチレン・酢酸ビニル共重合樹脂、ポリビニルアセタールなど、およびこれらの共重合体や混合物などのいずれでも良い。易接着層の材料は、アクリル樹脂とイソシアネート硬化剤の組み合わせが最も好ましい。これら易接着層材料としては、一液硬化型、二液硬化型、三液硬化型等のいずれでも良いが接着性及び気泡発生防止の点で二液硬化型接着剤が好ましい。易接着層の厚さは0.1~15μmが好ましく、より好ましくは0.5~10μmである。 Examples of the material for the easy-adhesion layer formed on the heat-adhesive resin film or resin film of the back surface protection sheet member film for solar cell modules in the present invention include acrylic resin, polyurethane resin, epoxy resin, polyester resin, polyamide, phenol, and polyolefin. , Ionomers, ethylene / vinyl acetate copolymer resins, polyvinyl acetals, and the like, and copolymers or mixtures thereof may be used. The material for the easy adhesion layer is most preferably a combination of an acrylic resin and an isocyanate curing agent. These easy-adhesion layer materials may be any of a one-component curable type, a two-component curable type, a three-component curable type, and the like, but a two-component curable adhesive is preferable in terms of adhesion and prevention of bubble generation. The thickness of the easy adhesion layer is preferably from 0.1 to 15 μm, more preferably from 0.5 to 10 μm.
 本発明において、熱接着性樹脂フィルムまたは樹脂フィルムに易接着層を形成する方法は特に限定はされないが、通常は上記材料を適当な溶媒で希釈したものを塗布、乾燥し形成する。その際、熱接着性樹脂フィルムまたは樹脂フィルムの成形時に塗布してもよい。とくに樹脂フィルムとしてポリエチレンテレフタレートやポリエチレン-2,6-ナフタレートの二軸延伸フィルムを用いる場合、塗布・乾燥を同一工程内で実施できるコストメリットに加え、縦方向に延伸後に塗布し引き続き横延伸を行うプロセスとすることで、均一な易接着層を生産性よく好適に得ることができる。塗布の方法は、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法などを用いることができる。形成される易接着層の膜厚は、塗液の濃度や塗布量に比例するため、所定の易接着層の膜厚を得るためにこれらを調整することが好ましい。
また上記材料を熱接着性樹脂フィルムまたは樹脂フィルムの材料と共に加熱溶融し共押出により易接着樹脂層が積層された熱接着性樹脂フィルムまたは樹脂フィルムを得ることもできる。
また、上記材料による単独の易接着樹脂フィルムを作成し、封止材シート2、熱接着性樹脂フィルム、易接着樹脂フィルム、樹脂フィルムをこの順に積層しても、熱接着性樹脂フィルムと樹脂フィルム間の目的とする密着力を得ることができ、さらにこの場合、熱接着性樹脂フィルムまたは樹脂フィルムの少なくとも一方の易接着樹脂フィルム側に易接着層が形成されたものであってもよい。
このようにして得られた易接着樹脂層が積層された熱接着性樹脂フィルムまたは樹脂フィルム、あるいは易接着樹脂フィルムについて、フィルム搬送性やハンドリング性向上のために、エンボス加工を行ってもよい。
In the present invention, the method for forming the heat-adhesive resin film or the easy-adhesion layer on the resin film is not particularly limited. Usually, the material is diluted with an appropriate solvent and dried. In that case, you may apply | coat at the time of shaping | molding of a heat bondable resin film or a resin film. In particular, when a biaxially stretched film of polyethylene terephthalate or polyethylene-2,6-naphthalate is used as the resin film, in addition to the cost merit that coating and drying can be carried out in the same process, it is coated after stretching in the longitudinal direction and then stretched laterally. By setting it as a process, a uniform easy-adhesion layer can be suitably obtained with high productivity. As a coating method, for example, a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, a die coating method, or the like can be used. Since the film thickness of the easy-adhesion layer to be formed is proportional to the concentration of the coating liquid and the coating amount, it is preferable to adjust these in order to obtain a predetermined film thickness of the easy-adhesion layer.
Moreover, the said material is heat-melted with the heat-adhesive resin film or the material of a resin film, and the heat-adhesive resin film or resin film in which the easy-adhesion resin layer was laminated | stacked by coextrusion can also be obtained.
Moreover, even if it makes the single highly adhesive resin film by the said material and laminates the sealing material sheet 2, a heat adhesive resin film, an easily adhesive resin film, and a resin film in this order, a heat adhesive resin film and a resin film In this case, an easy-adhesion layer may be formed on at least one of the heat-adhesive resin film or the resin film.
The heat-adhesive resin film or resin film or the easy-adhesive resin film obtained by laminating the easy-adhesive resin layer thus obtained may be embossed to improve film transportability and handling properties.
 これらの共押出による易接着層積層または単独フィルム成形のための易接着樹脂としては、上述の易接着層の材料以外に、エチレンと、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリル酸グリシジル、メタクリル酸グリシジル、酢酸ビニルおよび無水マレイン酸からなる群から選ばれる少なくとも1種との共重合体が好適に用いられ、とくにエチレン・メタクリル酸グリシジル共重合体(EGMA)が熱接着性樹脂フィルムと樹脂フィルムの密着力を高めるために好ましい。共押出による熱接着性樹脂フィルムまたは樹脂フィルム中の易接着樹脂層の厚さ、あるいは単独易接着樹脂フィルムの厚さは5~100μmが好ましく、より好ましくは10~50μmである。 In addition to the materials for the above-mentioned easy-adhesion layer, ethylene, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, acrylic are used as the easy-adhesive resin for easy-adhesion layer lamination or single film molding by coextrusion. A copolymer with at least one selected from the group consisting of glycidyl acrylate, glycidyl methacrylate, vinyl acetate and maleic anhydride is preferably used, and in particular, ethylene / glycidyl methacrylate copolymer (EGMA) is a heat-adhesive resin. It is preferable for increasing the adhesion between the film and the resin film. The thickness of the heat-adhesive resin film by coextrusion or the easy-adhesion resin layer in the resin film, or the thickness of the single easy-adhesion resin film is preferably 5 to 100 μm, more preferably 10 to 50 μm.
 本発明において、上記2枚の裏面保護シート部材フィルムが、それぞれに易接着層のありなしに係らず対向する面の少なくとも一方の面が低圧、または常圧でプラズマ処理されたものであることが目的とする密着強度を発現するために好ましい。上記2枚の裏面保護シート部材フィルムが、易接着層が形成されていない接着性樹脂フィルムおよび易接着層が形成されていない樹脂フィルムである場合には、対向する面の少なくとも一方にこれらの処理が施されることが好ましく、両方の面に処理されることがさらに好ましい。
ここで言う低圧のプラズマ処理とは、1.3から133Pa程度の低圧の特定ガス雰囲気下で、直流、商用周波数・高周波・マイクロ波周波数での高圧電圧印加により発生させたグロー放電により表面を活性化する方法を指す。マグネトロン方式のグロー放電を採用した場合には、0.013から1.3Paでの放電も可能であるが、グロー放電により活性化されたガス種の量を多くし、処理効果を高めるためには0.1から100Paの範囲の圧力で処理することが好ましい。また、常圧プラズマ処理とは、大気圧の特定のガス雰囲気下で放電処理を行うことを指す。ガス雰囲気の純度を保つために装置の構造上0.05から0.15MPa程度の減圧または正圧となる場合も常圧プラズマ処理としてよい。これらプラズマ処理に用いられるガスは、酸素、窒素、アルゴン、ヘリウム、ネオン、二酸化炭素、笑気ガス、水素、メタンなどの炭化水素ガス、アンモニア、およびこれらの混合ガスなどがプラズマ処理する材料によって選択される。これらプラズマ処理の処理強度は投入電力と処理速度の関係で求めることができ、50から5000W・分/mの処理強度で処理することが処理効果と経済性のバランスから好ましい。
In the present invention, the two back protection sheet member films may be plasma-treated at low pressure or normal pressure on at least one of the opposing surfaces regardless of the presence or absence of an easy-adhesion layer. This is preferable in order to develop the desired adhesion strength. When the two back protective sheet member films are an adhesive resin film in which an easy adhesion layer is not formed and a resin film in which an easy adhesion layer is not formed, these treatments are applied to at least one of the opposing surfaces. Is preferably applied to both surfaces.
The low-pressure plasma treatment mentioned here means that the surface is activated by glow discharge generated by applying a high-voltage voltage at a direct current, commercial frequency, high-frequency, or microwave frequency in a low-pressure specific gas atmosphere of about 1.3 to 133 Pa. Refers to the way When magnetron glow discharge is used, discharge at 0.013 to 1.3 Pa is possible, but in order to increase the amount of gas species activated by glow discharge and enhance the treatment effect The treatment is preferably performed at a pressure in the range of 0.1 to 100 Pa. Moreover, atmospheric pressure plasma treatment refers to performing discharge treatment in a specific gas atmosphere at atmospheric pressure. In order to maintain the purity of the gas atmosphere, the atmospheric pressure plasma treatment may be used when the pressure is reduced to about 0.05 to 0.15 MPa or the positive pressure due to the structure of the apparatus. The gas used for these plasma treatments is selected according to the material to be plasma treated, such as oxygen, nitrogen, argon, helium, neon, carbon dioxide, laughing gas, hydrogen, hydrocarbon gases such as methane, ammonia, and mixed gases thereof. Is done. The treatment intensity of these plasma treatments can be determined from the relationship between the input power and the treatment speed, and treatment at a treatment intensity of 50 to 5000 W · min / m 2 is preferable from the balance of treatment effect and economy.
 本発明における裏面保護シート部材フィルムの総厚さは100~400μmの範囲にあることが望ましい。 The total thickness of the back protective sheet member film in the present invention is preferably in the range of 100 to 400 μm.
 100μm以上とすれば、耐絶縁性を満足させることができると共に、太陽電池セルをつなぐ配線が透けて見えやすくなるという問題を解消しやすくなる。400μm以下とすると、断裁性を良好に保つことができる。 When the thickness is 100 μm or more, the insulation resistance can be satisfied, and the problem that the wiring connecting the solar cells can be easily seen through can be easily solved. When the thickness is 400 μm or less, the cutting property can be kept good.
 本発明の太陽電池モジュールの製造方法においては、所定サイズの表面保護シート、封止材シート1、太陽電池セル、封止材シート2、および2枚以上の裏面保護シート部材フィルムを重ね合わせ、それらを加熱および圧着処理により一体成型することが特徴である。封止材シートおよび2枚以上の裏面保護シート部材フィルムを所定サイズに断裁する際、これら複数のフィルムを各巻き出し部から同時に巻き出し、複数枚を重ねた状態で同時に1回で断裁することが好ましい。特に単独の易接着樹脂フィルムを用いる場合は、薄く、剛性のない易接着樹脂フィルムがシワになりやすく、ハンドリングが困難であるが、上述のように複数枚を重ねた状態で同時に1回で断裁することにより、シワが入りにくく、フィルムを重ね合わせる際のハンドリングが容易になる。
本発明の太陽電池モジュールの製造方法において、表面保護シート、封止材シート1、太陽電池セル、封止材シート2、および2枚以上の裏面保護シート部材フィルムを加熱および圧着処理により一体成型する際、成型時の加熱温度および圧着条件によって積層した封止材シート2と、これに対向する裏面保護シート部材フィルム間の密着強度が40N/cm以上であることが重要である。封止材シート2と、これに対向する裏面保護シート部材フィルム間の密着強度が40N/cmに満たないと、太陽電池モジュールの設置時や設置後に剥離が生じるために使用に耐えない。
In the method for manufacturing a solar cell module of the present invention, a surface protective sheet of a predetermined size, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protective sheet member films are superposed. It is characterized by integrally molding by heating and pressure-bonding treatment. When cutting a sealing material sheet and two or more back surface protection sheet member films into a predetermined size, the plurality of films are simultaneously unwound from each unwinding section, and simultaneously cut in a single state with a plurality of sheets stacked. Is preferred. In particular, when a single easy-adhesive resin film is used, a thin, non-rigid easy-adhesive resin film is likely to be wrinkled and difficult to handle. By doing so, wrinkles are difficult to enter, and handling when the films are overlaid becomes easy.
In the method for producing a solar cell module of the present invention, the surface protection sheet, the encapsulant sheet 1, the solar cell, the encapsulant sheet 2, and two or more back surface protection sheet member films are integrally formed by heating and pressure-bonding treatment. At this time, it is important that the adhesion strength between the sealing material sheet 2 laminated according to the heating temperature and pressure bonding conditions at the time of molding and the back surface protection sheet member film facing the sealing material sheet is 40 N / cm or more. If the adhesion strength between the sealing material sheet 2 and the back surface protective sheet member film facing the sealing material sheet is less than 40 N / cm, peeling occurs at the time of installation or after installation of the solar cell module, so that it cannot be used.
 また同様の理由で、成型時の加熱温度および圧着条件によって積層した2枚以上の裏面保護シート部材フィルム間の密着強度がいずれも1N/cm以上であることが重要であり、好ましくは5N/cm以上であり、さらに好ましくは10N/cm以上である。 For the same reason, it is important that the adhesion strength between two or more back surface protection sheet member films laminated depending on the heating temperature and pressure bonding conditions during molding is 1 N / cm or more, preferably 5 N / cm. It is above, More preferably, it is 10 N / cm or more.
 これら密着強度は、完成した太陽電池モジュールからサンプルを切り出して測定することもできるが、予め表面保護シート、封止材シート1、2、熱接着性樹脂フィルム、および樹脂フィルムを成型時の加熱温度および圧着条件により積層し確認することで、実際の太陽電池モジュールの成型に先立ち、これら材料の適性を判断することができる。 These adhesion strengths can be measured by cutting out a sample from the completed solar cell module, but the surface protection sheet, the sealing material sheets 1 and 2, the thermoadhesive resin film, and the resin film are heated at the time of molding. In addition, by checking and laminating according to the pressure bonding conditions, it is possible to determine the suitability of these materials prior to the actual molding of the solar cell module.
 以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例に限定されない。本発明の特性値は、以下に示す測定方法ならびに評価基準によるものである。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The characteristic values of the present invention are based on the following measurement methods and evaluation criteria.
 (評価方法)
 下記の実施例及び比較例における、疑似太陽電池モジュール作製方法、各種評価項目の評価方法を下記する。
(1)擬似太陽電池モジュール作製方法
 厚さ3.2mm、200mm×200mmのガラス(AGCファブリテック(株)製)の上に厚さ0.45mmのEVAシート(サンビック(株)製「PV-45FR000」)2枚を重ね、更に2枚以上の裏面保護シート部材フィルムを重ねた後に、(株)エヌ・ピー・シー製太陽電池モジュールラミネータ(LM50×50-S)を用いて真空ラミネートし、擬似太陽電池モジュールを作製した。
(2)裏面保護シート部材フィルム間密着強度(N/cm)
 (1)に記載の方法にて擬似太陽電池モジュールを作製した後に、裏面保護シート側から1cm幅にカットし、太陽電池モジュール用裏面保護シート部材フィルム間にて剥離した後に、ORIENTEC社製テンシロンPTM-50を用いて、剥離角度180°、剥離スピード100mm/minで剥離強さを測定し、この数値を密着強度とした。
(3)封止材シートとの密着強度(N/cm)
 (1)に記載の方法にて擬似太陽電池モジュールを作製した後に、太陽電池モジュール用裏面保護シート部材側から1cm幅にカットした後に、EVAシートと裏面保護シート部材フィルム間で剥離した後に、ORIENTEC社製テンシロンPTM-50を用いて、剥離角度180°、剥離スピード100mm/minで剥離強さを測定し、この数値を密着強度とした。
(Evaluation methods)
The pseudo solar cell module manufacturing method and the evaluation methods of various evaluation items in the following examples and comparative examples are described below.
(1) Pseudo solar cell module manufacturing method On a glass of 3.2 mm thickness and 200 mm × 200 mm (manufactured by AGC Fabricec Co., Ltd.), an EVA sheet (PV-45FR000 manufactured by Sanvic Co., Ltd.) having a thickness of 0.45 mm ]) After stacking two sheets, and further stacking two or more back surface protection sheet member films, they were vacuum laminated using a solar cell module laminator (LM50 × 50-S) manufactured by NPC Corporation, and simulated. A solar cell module was produced.
(2) Adhesion strength between back surface protection sheet member films (N / cm)
After producing a pseudo solar cell module by the method described in (1), it was cut into a 1 cm width from the back surface protective sheet side, peeled between the back surface protective sheet member films for solar cell modules, and then Tensilon PTM manufactured by ORIENTEC Using −50, the peel strength was measured at a peel angle of 180 ° and a peel speed of 100 mm / min, and this value was taken as the adhesion strength.
(3) Adhesion strength with the sealing material sheet (N / cm)
After producing the pseudo solar cell module by the method described in (1), after cutting to 1 cm width from the back surface protective sheet member side for the solar cell module, after peeling between the EVA sheet and the back surface protective sheet member film, ORIENTEC Using Tensilon PTM-50 manufactured by the company, the peel strength was measured at a peel angle of 180 ° and a peel speed of 100 mm / min, and this value was taken as the adhesion strength.
 (実施例1)
 耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sを用い、岡崎機械工業(株)製のフィルムコーターを用いて、180℃の乾燥温度にて44秒間熱処理した。しかる後にDIC(株)製アクリル系易接着コートDICSEAL HS EXP120228の100重量部に対し、DIC(株)製ウレタン硬化剤G-18Nの5.8重量部を添加し、更には添加剤としてDIC(株)製エポキシ系化合物ADDITIVE EP-10の4.8重量部を添加した後に希釈溶剤にて希釈し、岡崎機械工業(株)製のフィルムコーターを用いて120℃の乾燥温度にて乾燥後の塗工層厚さ3.0g/mとなるように易接着層を形成した。
その後に、上記(1)の方法で熱接着性樹脂フィルムとして東レフィルム加工(株)製の150μm白色ポリプロピレンフィルムB011Wを用い、易接着層を白色ポリプロピレンフィルム側に向けた上記耐加水分解性ポリエステルフィルムの順に積層し、(株)エヌ・ピー・シー製太陽電池モジュールラミネータ(LM-50×50-S)に設置後、真空時間5分、制御時間1分、プレス時間15分、温度145℃の条件で加熱圧着した。圧着後、室温冷却し、疑似太陽電池モジュールを作製した。
(Example 1)
Hydrolysis resistant polyester film 125 μm “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used, and heat treatment was performed for 44 seconds at a drying temperature of 180 ° C. using a film coater manufactured by Okazaki Machinery Co., Ltd. Thereafter, 5.8 parts by weight of urethane curing agent G-18N manufactured by DIC Corporation is added to 100 parts by weight of acrylic easy-adhesion coat DICSEAL HS EXP120228 manufactured by DIC Corporation. After adding 4.8 parts by weight of epoxy compound ADDITIVE EP-10 manufactured by Co., Ltd., it was diluted with a diluent solvent and dried at a drying temperature of 120 ° C. using a film coater manufactured by Okazaki Machinery Co., Ltd. An easy-adhesion layer was formed so that the coating layer thickness was 3.0 g / m 2 .
After that, the above-mentioned hydrolysis-resistant polyester film with a 150 μm white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd. as the heat-adhesive resin film by the method (1) above, with the easy-adhesion layer facing the white polypropylene film side. After being installed in the solar cell module laminator (LM-50 × 50-S) manufactured by NPC Corporation, the vacuum time is 5 minutes, the control time is 1 minute, the press time is 15 minutes, and the temperature is 145 ° C. Thermocompression bonding was performed under the conditions. After the pressure bonding, it was cooled to room temperature to produce a pseudo solar cell module.
 (実施例2)
 実施例1に記載の熱接着性樹脂フィルムを東レフィルム加工(株)製白色ポリエチレンフィルム4807Wの厚さ150μmのものに変更した以外は実施例1と同様に実施した。
(Example 2)
The same procedure as in Example 1 was performed except that the heat-adhesive resin film described in Example 1 was changed to a white polyethylene film 4807W having a thickness of 150 μm manufactured by Toray Film Processing Co., Ltd.
 (実施例3)
 実施例1に記載の耐加水分解性ポリエステルフィルムの代わりに、両面易接着処理のフッ素樹脂フィルム(東レフィルム加工(株)製50μm“トヨフロン”(登録商標)EL2)を使用し、熱接着性樹脂フィルムを東レフィルム加工(株)製50μm白色ポリエチレン4807Wに変更した以外は実施例1と同様に実施した。
(Example 3)
Instead of the hydrolysis-resistant polyester film described in Example 1, a fluororesin film (50 μm “Toyoflon” (registered trademark) EL2 manufactured by Toray Film Processing Co., Ltd.) with double-sided easy adhesion treatment was used, and a heat-adhesive resin The same procedure as in Example 1 was performed except that the film was changed to 50 μm white polyethylene 4807W manufactured by Toray Film Processing Co., Ltd.
 (実施例4)
 実施例1に記載の熱接着性樹脂フィルムを未延伸のナイロンフィルム(東レフィルム加工(株)製100μm“レイファン”(登録商標)NO)に変更した以外は実施例1と同様に実施した。
Example 4
The same procedure as in Example 1 was performed except that the heat-adhesive resin film described in Example 1 was changed to an unstretched nylon film (100 μm “Rayfan” (registered trademark) NO manufactured by Toray Film Processing Co., Ltd.).
 (実施例5)
 実施例1に記載の熱接着性樹脂フィルムの代わりに、両面易接着処理のフッ素樹脂フィルム(東レフィルム加工(株)製50μm“トヨフロン”(登録商標)EL2)を使用した以外は実施例1と同様に実施した。
(Example 5)
In place of the heat-adhesive resin film described in Example 1, a double-sided easy-adhesive fluororesin film (50 μm “Toyoflon” (registered trademark) EL2 manufactured by Toray Film Processing Co., Ltd.) was used. It carried out similarly.
 (実施例6)
 樹脂フィルムとして耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sを用い、岡崎機械工業(株)製のフィルムコーターを用いて、180℃の乾燥温度にて44秒間熱処理した。また易接着樹脂層を有する熱接着性樹脂フィルムとして、次のA層/B層/C層の3層構成からなり、以下に記載の各層樹脂を単軸の溶融押出機を用いて220℃で溶融共押出しし、30℃に保たれたキャスティングドラム上で冷却固化して得られた厚さ150μmの白色ポリプロピレンフィルムを使用した。各層の厚さ構成比率は、A層/B層/C層=20%/70%/10%であった。
(Example 6)
Hydrolysis-resistant polyester film Toray Co., Ltd. 125 μm “Lumirror” (registered trademark) X10S was used as the resin film, and a film coater manufactured by Okazaki Kikai Kogyo Co., Ltd. was used for 44 seconds at a drying temperature of 180 ° C. did. In addition, as a heat-adhesive resin film having an easy-adhesion resin layer, it has a three-layer structure of the following A layer / B layer / C layer, and each layer resin described below is used at 220 ° C. using a uniaxial melt extruder. A white polypropylene film having a thickness of 150 μm obtained by melt coextrusion and cooling and solidifying on a casting drum maintained at 30 ° C. was used. The thickness constitution ratio of each layer was A layer / B layer / C layer = 20% / 70% / 10%.
 A層に使用する樹脂:融点127℃、密度0.940g/cm、メルトフローレート(MFR)5.0g/10分の直鎖状低密度ポリエチレンを40重量部、融点112℃、密度0.912g/cm、MFR4.0g/10分の低密度ポリエチレンを10重量部、および融点150℃、密度0.900g/cm、MFR7g/10分のエチレン含有量4モル%のエチレン・プロピレンランダム共重合体を50重量部混合した樹脂。 Resin used for layer A: melting point 127 ° C., density 0.940 g / cm 3 , melt flow rate (MFR) 5.0 g / 10 min linear low density polyethylene 40 parts by weight, melting point 112 ° C., density 0. 912 g / cm 3 , 10 parts by weight of low density polyethylene of MFR 4.0 g / 10 min, and ethylene / propylene random copolymer having a melting point of 150 ° C., a density of 0.900 g / cm 3 , and an MFR of 7 mol / 10 min. A resin mixed with 50 parts by weight of a polymer.
 B層に使用する樹脂:融点162℃のホモポリプロピレン88重量部に対して、酸化チタン12重量部を混合した樹脂。 Resin used for layer B: resin obtained by mixing 12 parts by weight of titanium oxide with 88 parts by weight of homopolypropylene having a melting point of 162 ° C.
 C層に使用する易接着樹脂:住友化学(株)製“ボンドファースト”(登録商標)グレードE(メタクリル酸グリシジル含有量12重量%、MFR3.0g/10分のエチレン・メタクリル酸グリシジル共重合体)。
易接着樹脂層であるC層を耐加水分解性ポリエステルフィルムに対応させ、実施例1と同様の方法で疑似太陽電池モジュールを作製した。
Easy-adhesion resin used for layer C: “Bond First” (registered trademark) grade E manufactured by Sumitomo Chemical Co., Ltd. (ethylene / glycidyl methacrylate copolymer having a glycidyl methacrylate content of 12% by weight and an MFR of 3.0 g / 10 min) ).
The pseudo-solar cell module was produced by the method similar to Example 1 by making C layer which is an easily bonding resin layer correspond to a hydrolysis-resistant polyester film.
 (実施例7)
樹脂フィルムとして耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sを用い、それに実施例1に記載の易接着コートを施した以外は、実施例6と同様の方法で疑似太陽電池モジュールを作製した。
(Example 7)
In the same manner as in Example 6, except that the hydrolysis resistant polyester film 125 μm “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used as the resin film, and the easy adhesion coat described in Example 1 was applied thereto. A pseudo solar cell module was produced.
 (実施例8)
 実施例1に記載の樹脂フィルムを、耐加水分解性ポリエチレンテレフタレート層と白色耐加水分解性ポリエチレンテレフタレート層の厚さの比が1:5である白色耐加水分解性ポリエステルフィルム東レ(株)製75μm“ルミラー”(登録商標)MX11に変更し、また熱接着性樹脂フィルムを未延伸のポリエチレンフィルム(東レフィルム加工(株)製50m“LLフィルム”4801)に変更し、MX11の耐加水分解性ポリエチレンテレフタレート層を4801に対向するように積層した以外は実施例1と同様に実施した。
(Example 8)
The resin film described in Example 1 is a white hydrolysis-resistant polyester film 75 μm manufactured by Toray Industries, Inc., in which the ratio of the thickness of the hydrolysis-resistant polyethylene terephthalate layer to the white hydrolysis-resistant polyethylene terephthalate layer is 1: 5. Changed to "Lumirror" (registered trademark) MX11, and changed the heat-adhesive resin film to an unstretched polyethylene film (50m "LL film" 4801 manufactured by Toray Film Processing Co., Ltd.). The same operation as in Example 1 was performed except that a terephthalate layer was laminated so as to face 4801.
 (実施例9)
 耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sを用い、岡崎機械工業(株)製のフィルムコーターを用いて、180℃の乾燥温度にて44秒間熱処理した。
また易接着樹脂フィルムとして、住友化学(株)製“ボンドファースト”(登録商標)グレード7M(メタクリル酸グリシジル含有量6重量%、アクリル酸メチル含有量27重量%、MFR7.0g/10分のエチレン・グリシジルメタクリレート・アクリル酸メチル共重合体)を用い、これを溶融押出機を用いて200℃で溶融押出しし、30℃に保たれたキャスティングドラム上で冷却固化して厚さ20μmの易接着樹脂フィルムを作成した。
熱接着性樹脂フィルムとして東レフィルム加工(株)製の150μm白色ポリプロピレンフィルムB011W、上記の易接着樹脂フィルム、さらに上記の耐加水分解性ポリエステルフィルムの順に積層し、実施例1と同様の方法で疑似太陽電池モジュールを作製した。
(実施例10)
実施例1において、耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sを熱処理後、易接着コート加工に替えて、以下の条件でプラズマ処理を行った。
処理幅:0.1m
処理速度:3m/分
導入ガス:窒素
圧力:40Pa
電源周波数:50kHz
投入電力:60W(投入電力は高周波電源の真空管のプレート電圧とプレート電流の積として求めた。)
処理強度:200W・分/m
 同様に、東レフィルム加工(株)製の150μm白色ポリプロピレンフィルムB011Wにも同条件で低圧プラズマ処理を施した。
Example 9
Hydrolysis resistant polyester film 125 μm “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was used, and heat treatment was performed for 44 seconds at a drying temperature of 180 ° C. using a film coater manufactured by Okazaki Machinery Co., Ltd.
In addition, as an easily adhesive resin film, “bond first” (registered trademark) grade 7M manufactured by Sumitomo Chemical Co., Ltd. (ethylene glycidyl content 6 wt%, methyl acrylate content 27 wt%, MFR 7.0 g / 10 min ethylene) -Glycidyl methacrylate-methyl acrylate copolymer), which is melt-extruded at 200 ° C. using a melt extruder, cooled and solidified on a casting drum maintained at 30 ° C., and an easily adhesive resin having a thickness of 20 μm A film was created.
A 150 μm white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd., the above easy-adhesive resin film, and the above hydrolysis-resistant polyester film are laminated in this order as a heat-adhesive resin film, and simulated in the same manner as in Example 1. A solar cell module was produced.
(Example 10)
In Example 1, a hydrolysis-resistant polyester film 125 μm “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. was subjected to a heat treatment, and then plasma treatment was performed under the following conditions in place of the easy adhesion coating.
Processing width: 0.1m
Treatment speed: 3 m / min Introduction gas: Nitrogen pressure: 40 Pa
Power supply frequency: 50 kHz
Input power: 60 W (the input power was determined as the product of the plate voltage and plate current of the vacuum tube of the high-frequency power source)
Processing intensity: 200 W · min / m 2
Similarly, a 150 μm white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd. was also subjected to low-pressure plasma treatment under the same conditions.
 低圧プラズマ処理を施した面どうしを対向させ、実施例1と同様の条件で擬似太陽電池モジュールを作製した。
(実施例11)
 実施例1において、東レフィルム加工(株)製の150μm白色ポリプロピレンフィルムB011Wにのみ実施例8と同条件で低圧プラズマ処理を施した。耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)の易接着層を形成した面と、B011Wの低圧プラズマ処理を施した面を対向させ、実施例1と同様の条件で擬似太陽電池モジュールを作製した。
(実施例12)
 実施例6において、耐加水分解性ポリエステルフィルム東レ(株)製125μmX10Sを熱処理後、実施例10と同じ条件で低圧プラズマ処理を行った。白色ポリプロピレンフィルムの易接着樹脂層であるC層と耐加水分解性ポリエステルフィルムの低圧プラズマ処理面を対向させ、擬似太陽電池モジュールを作製した。
(実施例13)
 実施例10において、耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sおよび東レフィルム加工(株)製の150μm白色ポリプロピレンフィルムB011Wの低圧プラズマ処理において、投入電力を30Wとし、処理速度を4m/分として処理強度を100W・分/mとしたものを用いて擬似太陽電池モジュールを作製した。
(実施例14)
 実施例10において、導入ガスをアルゴンに変更し、大気圧下で常圧プラズマ処理を行った。投入電圧を100Wとし、処理速度を10m/分として処理強度を100W・分/mとして耐加水分解性ポリエステルフィルム東レ(株)製125μm“ルミラー”(登録商標)X10Sおよび東レフィルム加工(株)製の150μm白色ポリプロピレンフィルムB011Wを処理した。これらをの常圧プラズマ処理面どうしを対向させ、擬似太陽電池モジュールを作製した。
(比較例1)
 実施例1に記載の耐加水分解性ポリエステルフィルムへ塗工するアクリル系易接着コートをDIC(株)製アクリル系易接着コートDICSEAL HS WHITE EXP120820の100重量部、DIC(株)製硬化剤DF HARDENER HA-100の12重量部、DIC(株)製エポキシ系添加剤EP-103重量部を添加し希釈溶剤にて希釈し塗工した以外は実施例1と同様に擬似太陽電池モジュールを作製した。
The surfaces subjected to low-pressure plasma treatment were made to face each other, and a pseudo solar cell module was produced under the same conditions as in Example 1.
(Example 11)
In Example 1, low-pressure plasma treatment was performed only on 150 μm white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd. under the same conditions as in Example 8. Hydrolyzable polyester film 125 μm “Lumirror” (registered trademark) manufactured by Toray Industries, Inc. The surface on which the easy adhesion layer was formed and the surface subjected to the low-pressure plasma treatment of B011W were made to face each other under the same conditions as in Example 1. A pseudo solar cell module was produced.
Example 12
In Example 6, the low-pressure plasma treatment was performed under the same conditions as in Example 10 after heat-treating 125 μm × 10S produced by hydrolysis resistant polyester film Toray Industries, Inc. A pseudo solar cell module was manufactured by making the C layer, which is an easily adhesive resin layer of a white polypropylene film, face the low-pressure plasma treated surface of the hydrolysis-resistant polyester film.
(Example 13)
In Example 10, in the low-pressure plasma treatment of the hydrolysis-resistant polyester film 125 μm “Lumirror” (registered trademark) X10S manufactured by Toray Industries, Inc. and the 150 μm white polypropylene film B011W manufactured by Toray Film Processing Co., Ltd., the input power was 30 W. A pseudo solar cell module was manufactured using a processing speed of 4 m / min and a processing intensity of 100 W · min / m 2 .
(Example 14)
In Example 10, the introduced gas was changed to argon, and atmospheric pressure plasma treatment was performed under atmospheric pressure. 125 μm “Lumirror” (registered trademark) X10S made by hydrolysis-resistant polyester film Toray Co., Ltd. and Toray Film Processing Co., Ltd. with an input voltage of 100 W, a treatment speed of 10 m / min and a treatment strength of 100 W · min / m 2 A manufactured 150 μm white polypropylene film B011W was processed. A pseudo solar cell module was produced by making these atmospheric pressure plasma treated surfaces face each other.
(Comparative Example 1)
The acrylic easy-adhesion coat to be applied to the hydrolysis-resistant polyester film described in Example 1 is 100 parts by weight of DIC Corporation acrylic easy-adhesion coat DICSEAL HS WHITE EXP120820, DIC Corporation hardener DF HARDNER A pseudo solar cell module was produced in the same manner as in Example 1, except that 12 parts by weight of HA-100 and EP-103 parts by weight of epoxy additive EP-103 manufactured by DIC Corporation were added and diluted with a diluent solvent.
 (比較例2)
 実施例1に記載の熱接着性樹脂フィルムB011Wと易接着コート層を設けない耐加水分解性ポリエステルフィルム“ルミラー”(登録商標)X10Sを用い、上記(1)の方法で、真空時間5分、制御時間1分、プレス時間15分、温度145℃の条件で加熱圧着処理を実施し、圧着後、室温冷却し、疑似太陽電池モジュールを作製した。
(Comparative Example 2)
Using the heat-adhesive resin film B011W described in Example 1 and a hydrolysis-resistant polyester film “Lumirror” (registered trademark) X10S not provided with an easy-adhesion coat layer, the method of (1) above, a vacuum time of 5 minutes, A thermocompression bonding process was performed under the conditions of a control time of 1 minute, a press time of 15 minutes, and a temperature of 145 ° C. After the pressure bonding, room temperature cooling was performed to produce a pseudo solar cell module.
 (比較例3)
 実施例1において、上記(1)の方法で、真空時間5分、制御時間1分、プレス時間15分、温度100℃の条件で加熱圧着処理を実施し、圧着後、室温冷却し、疑似太陽電池モジュールを作製した。
(Comparative Example 3)
In Example 1, by the method of (1) above, thermocompression treatment was performed under the conditions of a vacuum time of 5 minutes, a control time of 1 minute, a press time of 15 minutes, and a temperature of 100 ° C. A battery module was produced.
 実施例1~13、比較例1~3の評価結果を表1、表2に示した。 The evaluation results of Examples 1 to 13 and Comparative Examples 1 to 3 are shown in Tables 1 and 2.
 比較例1は、易接着層の材料の選択が適当でなかったために、熱接着性樹脂フィルムと樹脂フィルムとの接着が十分ではなかった。 In Comparative Example 1, since the material for the easy-adhesion layer was not properly selected, adhesion between the heat-adhesive resin film and the resin film was not sufficient.
 比較例2は、易接着層を設けなかったために熱接着性樹脂フィルムと樹脂フィルム間の接着が得られなかった。 In Comparative Example 2, since no easy-adhesion layer was provided, adhesion between the heat-adhesive resin film and the resin film could not be obtained.
 比較例3は加熱圧着処理のための温度が100℃と低いために封止材シート2と熱接着性樹脂フィルム間の接着が得られなかった。 In Comparative Example 3, since the temperature for the thermocompression bonding treatment was as low as 100 ° C., adhesion between the sealing material sheet 2 and the thermoadhesive resin film could not be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明による太陽電池モジュールの製造方法は、複数の裏面保護シート部材フィルムを一体成型することができ、裏面保護シートの反りの問題を解決することでより高い収率で太陽電池モジュ-ル製造することができ、裏面保護シート部材フィルムのロスも低減することができるため、省資源化にも寄与することができる。 The method for manufacturing a solar cell module according to the present invention can integrally mold a plurality of back surface protection sheet member films, and can manufacture a solar cell module with higher yield by solving the problem of warpage of the back surface protection sheet. It is possible to reduce the loss of the back surface protection sheet member film, which can contribute to resource saving.
1.                             表面保護シート
2.                             封止材シート1
3.                             太陽電池セル
4.11.21.31.41.         封止材シート2
5.15.27.36.45.    裏面保護シート部材フィルム
6.12.22.32.42.    熱接着性樹脂フィルム
7.14.23.34.43.          樹脂フィルム
8.13.24.26.33.35. 易接着層
9.                             太陽電池パネル
25.                            もう一枚の樹脂フィルム
44.                             易接着樹脂フィルム
 
1. 1. Surface protective sheet Sealant sheet 1
3. Solar cell 4.11.21.31.41. Sealant sheet 2
5.15.27.36.45. Back surface protection sheet member film 6.12.22.32.42. Thermal adhesive resin film 7.14.23.34.43. Resin film 8.13.24.26.33.35. 8. Easy adhesion layer Solar cell panel 25. Another sheet of resin film 44. Easy adhesive resin film

Claims (12)

  1. 表面保護シート、封止材シート1、太陽電池セル、封止材シート2、および2枚以上の裏面保護シート部材フィルムをこの順に加熱および圧着処理により一体成型する太陽電池モジュールの製造方法であって、該成型時の加熱温度および圧着条件によって積層した該封止材シート2と、これに対向する裏面保護シート部材フィルム間の密着強度が40N/cm以上であり、かつ該2枚以上の裏面保護シート部材フィルム間の密着強度がいずれも1N/cm以上であることを特徴とする太陽電池モジュールの製造方法。 A method for manufacturing a solar cell module, in which a surface protective sheet, a sealing material sheet 1, a solar battery cell, a sealing material sheet 2, and two or more back surface protective sheet member films are integrally formed by heating and pressing in this order. The adhesion strength between the sealing material sheet 2 laminated according to the heating temperature and pressure bonding conditions at the time of molding and the back surface protective sheet member film facing the sealing material sheet is 40 N / cm or more, and the back surface protection of the two or more sheets The method for producing a solar cell module, wherein the adhesion strength between the sheet member films is 1 N / cm or more.
  2. 裏面保護シート部材フィルムが、熱接着性樹脂フィルム、樹脂フィルムの2枚からなり、封止材シート2、熱接着性樹脂フィルム、樹脂フィルムがこの順にあり、熱接着性フィルムと樹脂フィルムの対向する面の少なくとも一方の面が低圧、または常圧でプラズマ処理されたものである請求項1に記載の太陽電池モジュールの製造方法。 The back surface protection sheet member film is composed of two sheets of a heat-adhesive resin film and a resin film. The sealing material sheet 2, the heat-adhesive resin film, and the resin film are in this order, and the heat-adhesive film and the resin film face each other. The method for manufacturing a solar cell module according to claim 1, wherein at least one of the surfaces is plasma-treated at a low pressure or a normal pressure.
  3. 裏面保護シート部材フィルムが、熱接着性樹脂フィルム、および易接着層が形成された樹脂フィルムの2枚からなり、封止材シート2、熱接着性樹脂フィルム、易接着層が形成された樹脂フィルムがこの順にあり、熱接着性フィルムと樹脂フィルムの易接着層が対向するように積層されることを特徴とする請求項1に記載の太陽電池モジュールの製造方法。 The back protective sheet member film is composed of two sheets of a heat-adhesive resin film and a resin film on which an easy-adhesion layer is formed, and a sealing material sheet 2, a heat-adhesive resin film, and a resin film on which an easy-adhesion layer is formed The solar cell module manufacturing method according to claim 1, wherein the layers are laminated so that the heat-adhesive film and the easy-adhesion layer of the resin film face each other.
  4. 裏面保護シート部材フィルムが、易接着層が形成された熱接着性樹脂フィルム、および樹脂フィルムの2枚からなり、封止材シート2、易接着層が形成された熱接着性樹脂フィルム、樹脂フィルムがこの順にあり、熱接着性樹脂フィルムの易接着層と樹脂フィルムが対向するように積層されることを特徴とする請求項1に記載の太陽電池モジュールの製造方法。 The back surface protection sheet member film is composed of a heat adhesive resin film on which an easy adhesion layer is formed, and a resin film, and includes a sealing material sheet 2, a heat adhesive resin film on which an easy adhesion layer is formed, and a resin film. The solar cell module manufacturing method according to claim 1, wherein the layers are laminated so that the easy-adhesion layer of the heat-adhesive resin film and the resin film face each other.
  5. 裏面保護シート部材フィルムが、易接着層が形成された熱接着性樹脂フィルム、および易接着層が形成された樹脂フィルムの2枚からなり、封止材シート2、易接着層が形成された熱接着性樹脂フィルム、易接着層が形成された樹脂フィルムがこの順にあり、熱接着性樹脂フィルムの易接着層と樹脂フィルムの易接着層が対向するように積層されることを特徴とする請求項1に記載の太陽電池モジュールの製造方法。 The back surface protection sheet member film is composed of two sheets of a heat-adhesive resin film with an easy-adhesion layer and a resin film with an easy-adhesion layer formed thereon, and heat with an encapsulant sheet 2 and an easy-adhesion layer formed The adhesive resin film and the resin film on which the easy adhesion layer is formed are in this order, and the easy adhesion layer of the heat adhesive resin film and the easy adhesion layer of the resin film are laminated so as to face each other. A method for producing the solar cell module according to 1.
  6. 上記2枚の裏面保護シート部材フィルムが、対向する面の少なくとも一方の面が低圧、または常圧でプラズマ処理されたものである請求項3から5のいずれかに記載の太陽電池モジュールの製造方法。 The method for producing a solar cell module according to any one of claims 3 to 5, wherein the two back surface protection sheet member films are plasma-treated at low pressure or normal pressure on at least one of the opposing surfaces. .
  7. 裏面保護シート部材フィルムが、熱接着性樹脂フィルム、易接着樹脂フィルム、および樹脂フィルムの3枚からなり、封止材シート2、熱接着性樹脂フィルム、易接着樹脂フィルム、樹脂フィルムがこの順に積層されることを特徴とする請求項1に記載の太陽電池モジュールの製造方法。 The back surface protection sheet member film is composed of a heat adhesive resin film, an easily adhesive resin film, and a resin film, and a sealing material sheet 2, a heat adhesive resin film, an easily adhesive resin film, and a resin film are laminated in this order. The method for producing a solar cell module according to claim 1, wherein:
  8. 熱接着性樹脂フィルムがポリオレフィン、エチレン・酢酸ビニル共重合体樹脂、ナイロン、フッ素系樹脂から選ばれるいずれかの樹脂からなるフィルムであって、樹脂フィルムが耐加水分解性ポリエステルまたはフッ素系樹脂からなるフィルムであることを特徴とする請求項2から7のいずれかに記載の太陽電池モジュールの製造方法。 The heat-adhesive resin film is a film made of any resin selected from polyolefin, ethylene / vinyl acetate copolymer resin, nylon, and fluorine-based resin, and the resin film is made of hydrolysis-resistant polyester or fluorine-based resin. It is a film, The manufacturing method of the solar cell module in any one of Claim 2 to 7 characterized by the above-mentioned.
  9. 樹脂フィルムに形成された易接着層がアクリル系樹脂からなることを特徴とする請求項3、5、6のいずれかに記載の太陽電池モジュールの製造方法。 The method for manufacturing a solar cell module according to claim 3, wherein the easy adhesion layer formed on the resin film is made of an acrylic resin.
  10. 易接着層がアクリル系樹脂とイソシアネート硬化剤からなる二液硬化型接着剤であって、該易接着層の厚さが0.5~10μmであることを特徴とする請求項9に記載の太陽電池モジュールの製造方法。 10. The solar adhesive according to claim 9, wherein the easy-adhesion layer is a two-part curable adhesive comprising an acrylic resin and an isocyanate curing agent, and the thickness of the easy-adhesion layer is 0.5 to 10 μm. Manufacturing method of battery module.
  11. 熱接着性樹脂フィルムの易接着層が、エチレンと、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリル酸グリシジル、メタクリル酸グリシジル、酢酸ビニルおよび無水マレイン酸からなる群から選ばれる少なくとも1種との共重合体を主成分とする樹脂からなることを特徴とする請求項4から6のいずれかに記載の太陽電池モジュールの製造方法。 The easily adhesive layer of the heat-adhesive resin film is at least one selected from the group consisting of ethylene and acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, glycidyl acrylate, glycidyl methacrylate, vinyl acetate and maleic anhydride. It consists of resin which has a copolymer with a seed | species as a main component, The manufacturing method of the solar cell module in any one of Claim 4 to 6 characterized by the above-mentioned.
  12. 易接着樹脂フィルムがエチレンと、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリル酸グリシジル、メタクリル酸グリシジル、酢酸ビニルおよび無水マレイン酸からなる群から選ばれる少なくとも1種との共重合体を主成分とする樹脂からなることを特徴とする請求項7または8に記載の太陽電池モジュールの製造方法。
     
    Copolymer of ethylene and at least one selected from the group consisting of ethylene, acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, glycidyl acrylate, glycidyl methacrylate, vinyl acetate and maleic anhydride The method for producing a solar cell module according to claim 7 or 8, comprising a resin mainly composed of
PCT/JP2014/055572 2013-03-26 2014-03-05 Solar cell module production method WO2014156518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014517920A JPWO2014156518A1 (en) 2013-03-26 2014-03-05 Manufacturing method of solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-063337 2013-03-26
JP2013063337 2013-03-26
JP2013132299 2013-06-25
JP2013-132299 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014156518A1 true WO2014156518A1 (en) 2014-10-02

Family

ID=51623507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055572 WO2014156518A1 (en) 2013-03-26 2014-03-05 Solar cell module production method

Country Status (3)

Country Link
JP (1) JPWO2014156518A1 (en)
TW (1) TW201445763A (en)
WO (1) WO2014156518A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108329586A (en) * 2018-01-30 2018-07-27 苏州赛伍应用技术股份有限公司 A kind of three-decker water vapor rejection film and preparation method thereof
CN108456351A (en) * 2018-01-30 2018-08-28 苏州赛伍应用技术股份有限公司 A kind of water vapor rejection film and preparation method thereof
CN109964320A (en) * 2016-11-11 2019-07-02 帝斯曼知识产权资产管理有限公司 Backboard comprising the functional layer based on polyolefin towards back side encapsulant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029733A1 (en) * 2010-08-31 2012-03-08 東レフィルム加工株式会社 Back-face protection sheet for solar cell module, and solar cell module using same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029733A1 (en) * 2010-08-31 2012-03-08 東レフィルム加工株式会社 Back-face protection sheet for solar cell module, and solar cell module using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109964320A (en) * 2016-11-11 2019-07-02 帝斯曼知识产权资产管理有限公司 Backboard comprising the functional layer based on polyolefin towards back side encapsulant
JP2019536271A (en) * 2016-11-11 2019-12-12 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Back sheet comprising a functional layer based on polyolefin facing the back sealant
CN109964320B (en) * 2016-11-11 2024-03-05 赢润太阳能解决方案有限公司 Back sheet comprising a polyolefin-based functional layer facing a back encapsulant
CN108329586A (en) * 2018-01-30 2018-07-27 苏州赛伍应用技术股份有限公司 A kind of three-decker water vapor rejection film and preparation method thereof
CN108456351A (en) * 2018-01-30 2018-08-28 苏州赛伍应用技术股份有限公司 A kind of water vapor rejection film and preparation method thereof
CN108456351B (en) * 2018-01-30 2021-09-28 苏州赛伍应用技术股份有限公司 Water vapor barrier film and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014156518A1 (en) 2017-02-16
TW201445763A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
EP1898470B1 (en) Use of a back sheet for photovoltaic modules and resulting photovoltaic module
EP2800148B1 (en) Protective sheet
JP6051868B2 (en) Laminated sheet and method for producing the same
JP2008085294A (en) Back sheet for photovoltaic cell module and photovoltaic cell module employing the same
JP2014075508A (en) Sheet for solar cell back protection
JP4896558B2 (en) Polyester film for solar cell back surface protective film and solar cell back surface protective film using the same
JP5156172B2 (en) Back sheet for solar cell module and solar cell module using the same
WO2014156518A1 (en) Solar cell module production method
JP2008270685A (en) Rear surface protective sheet for solar cell
WO2016052133A1 (en) Layered product
WO2013100108A1 (en) Protective material for solar cells
JP2001044481A (en) Potecion sheet for solar battery module and the solar battery module using the same
JP6305082B2 (en) Protective sheet for solar cell, back sheet for solar cell, solar cell module and method for reworking solar cell module
JP2014194981A (en) Backside protective sheet for solar battery module
JP6398265B2 (en) Solar cell module back surface protection sheet
JP2015191944A (en) Back protective sheet and solar cell module using the same
TW201511310A (en) Rearside protective sheet for solar cell module
JP2012253203A (en) Rear surface protective sheet for solar cell module and solar cell module using the same
JP5995769B2 (en) Laminated film, back sheet for solar cell module, and solar cell module
JP2012158154A (en) Transparent laminated moisture-proof film
ES2369521T3 (en) USE OF A REAR SHEET FOR PHOTOVOLTAIC MODULES AND RESULTING PHOTOVOLTAIC MODULE.
WO2014208758A1 (en) Protective material for solar cell
WO2014208759A1 (en) Solar cell protective material
JP5449312B2 (en) Protective material for solar cells
JP2018174187A (en) Rear surface protective sheet for solar cell module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014517920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775161

Country of ref document: EP

Kind code of ref document: A1