WO2014156300A1 - Precious metal recovery method using copper halide-containing organic solvent system - Google Patents

Precious metal recovery method using copper halide-containing organic solvent system Download PDF

Info

Publication number
WO2014156300A1
WO2014156300A1 PCT/JP2014/052415 JP2014052415W WO2014156300A1 WO 2014156300 A1 WO2014156300 A1 WO 2014156300A1 JP 2014052415 W JP2014052415 W JP 2014052415W WO 2014156300 A1 WO2014156300 A1 WO 2014156300A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent system
copper
gold
noble metal
halide
Prior art date
Application number
PCT/JP2014/052415
Other languages
French (fr)
Japanese (ja)
Inventor
泰也 松野
まどか 高井
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to KR1020157022470A priority Critical patent/KR102156227B1/en
Priority to CN201480012943.4A priority patent/CN105026583A/en
Priority to JP2015508138A priority patent/JP6196662B2/en
Publication of WO2014156300A1 publication Critical patent/WO2014156300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for dissolving and recovering a noble metal, and a solvent system for use in the method.
  • metal recycling from used products consists of separation and purification by smelting after collecting, dismantling, crushing, and physically selecting objects.
  • smelting includes a dry method using melting and volatilization at high temperature and a wet method in which metal is dissolved in an aqueous solution system.
  • the dry method is used for large-scale operations, and the wet method is said to be suitable for small-scale operations because it allows precise separation.
  • noble metals such as gold
  • powerful substances such as strong acid, chlorine gas, and cyanide aqueous solution are used, so a certain amount of capital investment is required, and the environmental burden due to waste liquid etc. large.
  • the present inventors can dissolve and precipitate the target noble metal in a relatively short time by using an organic solvent system containing copper halide. As a result, the present invention has been completed. Furthermore, it has also been found that the noble metal can be precipitated by simply adding a small amount of water to the solution in which the noble metal is dissolved, thereby achieving a system that can reuse the solvent from which the water has been separated.
  • a method for recovering a noble metal comprising the step (B) of (2) The method according to (1) above, wherein the copper halide is selected from copper (I) bromide or copper (II) bromide; (3) The method according to (1) or (2) above, wherein the aprotic polar organic solvent is selected from dimethyl sulfoxide, dimethylformamide, acetone, acetonitrile, tetrahydrofuran, propylene carbonate, or a mixture thereof; (4) The method according to any one of (1) to (3) above, wherein the solvent system further comprises a succinimide compound; (5) The method according to any one of (1) to (3) above, wherein the solvent system further comprises sodium halide or potassium halide; (6) The
  • the method according to (6) further comprising the step (C) of obtaining a system; (8) The method according to (6) or (7), wherein the pH of the reducing agent water is 4 or less; (9) The method according to any one of (1) to (8), wherein the noble metal is selected from gold, palladium, silver, or platinum.
  • the invention further provides: (10) A solvent system containing copper halide and an aprotic polar organic solvent used for dissolving and recovering noble metals; (11) The solvent system according to (10) above, wherein the copper halide is selected from copper (I) bromide or copper (II) bromide; (12) The solvent system according to (10) or (11) above, wherein the aprotic polar organic solvent is selected from dimethyl sulfoxide, dimethylformamide, acetone, acetonitrile, tetrahydrofuran, propylene carbonate or a mixture thereof; (13) The solvent system according to any one of (10) to (12), further comprising a succinimide compound; (14) The solvent system according to any one of the above (10) to (12), further comprising sodium halide or potassium halide; (15) The solvent system according to any one of (10) to (14), wherein the noble metal is selected from gold, palladium, silver, or platinum.
  • the present invention it is possible to recover the noble metal in a short time and with very high efficiency by a simple procedure.
  • the noble metal can be precipitated simply by adding water to the solution in which the noble metal is dissolved, it is revolutionary in that it is not necessary to use an organic compound for reducing and precipitating the noble metal.
  • it can be reused again as a solvent system for precious metal dissolution, which is not only economical, but also minimizes wastewater treatment. It has the advantage that an environmentally conscious process that can be retained is achievable.
  • the progress of the oxidation-reduction reaction can be visually recognized by the change in the color of the solution due to the coloration of the copper ions used, etc., and the mild low temperature of around 70 degrees without using a deleterious substance in the solvent system. Since the treatment can be performed under the conditions, it is more practical than the conventional technology in that it can be easily operated.
  • FIG. 1 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr 2 .
  • FIG. 2 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr (0.5 mmol) and succinimide (0 to 20 mmol).
  • FIG. 3 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr (2.5 mmol) and succinimide (0 to 20 mmol).
  • FIG. 4 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr (0.5 to 2.0 mmol) and succinimide (10 mmol).
  • FIG. 5 is a graph showing the time dependency of the amount of palladium dissolved in a DMSO solution containing CuBr (0.5 to 2.5 mmol) and succinimide (10 mmol).
  • Preferred examples of the noble metal to be collected include gold, palladium, silver, and platinum, but other transition metals or so-called rare metals can also be collected.
  • the recovery method of the present invention includes performing an arbitrary pretreatment step known in the technical field such as removing a polymer member on an electronic component containing a noble metal before performing the step A). Can be. Similarly, after performing the above-mentioned step B), it may be included to collect the precious metal deposited and further purify the precious metal by any method known in the art.
  • the solvent system used in the above step A) is for dissolving a noble metal, and is typically an organic solvent containing copper halide.
  • the configuration of the solvent system will be described below.
  • the organic solvent is not particularly limited as long as it can dissolve a noble metal ion (gold ion or the like) generated by the oxidation-reduction reaction with copper halide, but a hydrophilic organic solvent is preferable and has a polarity.
  • a protic organic solvent is preferred.
  • examples of such aprotic polar organic solvents include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, acetonitrile, tetrahydrofuran (THF), dimethylacetamide, methyl acetate, ethyl acetate, butyl acetate, propyl acetate. And propylene carbonate. It can also be set as the mixed solvent containing these 2 or more types. Of these, DMSO is particularly preferred.
  • the copper halide used in the present invention is copper fluoride, copper chloride, copper bromide, or copper iodide, and can be a monovalent or divalent salt, respectively.
  • Preferred is copper (I) bromide (CuBr) or copper (II) bromide (CuBr 2 ).
  • the noble metal to be collected is gold and palladium
  • these copper bromides are suitable.
  • other metal salts iron chloride
  • FeCl 3 FeCl 3
  • the amount of the copper halide contained in the solvent system increases as the amount of the noble metal dissolved increases. Typically, it is 50 mmol / L or more, preferably 100 mmol / L or more, more preferably 200 mmol / L or more. It is.
  • the solvent system used in the present invention can contain a succinimide compound or an alkali metal halide as an auxiliary component for the purpose of further increasing the dissolution rate and amount of the noble metal.
  • the succinimide compound may also include a succinimide (succinimide) having an arbitrary substituent and a succinimide derivative known in the art.
  • the alkali metal halide is preferably sodium halide or potassium halide.
  • the type of halogen is preferably one that dissociates in a solvent to produce the same halogen anion as the copper halide (that is, sodium bromide or potassium bromide in the case of copper bromide).
  • the content of these additional components in the solvent system is not particularly limited, but it is used in the range of 0.5 to 10 times, preferably 2 to 5 times the concentration in the copper bromide solution. be able to.
  • the reducing agent added in step B) in the recovery method of the present invention is a reagent for selectively precipitating and recovering noble metal ions dissolved in the solution in step A).
  • a reagent for selectively precipitating and recovering noble metal ions dissolved in the solution in step A Preferably, water, ascorbic acid (L-ascorbic acid), sodium citrate or sodium borohydride (NaBH 4 ), but not limited thereto, among the reducing agents well known in the art. An appropriate one can be used instead.
  • water is preferable to use water as the reducing agent in step B). Even if water is mixed with the above organic solvent, it can be easily removed by separation means such as separation of water after precipitation of the noble metal or volatilization of water by heating the solution. Therefore, it is possible to reuse the solvent system.
  • separation means well known in the art for removing water from the organic solvent (for example, distillation and the like) can be used.
  • the amount of water added is preferably in the range of 2 to 40 mL with respect to 10 mL of the solvent system from the viewpoint of the amount required for precipitating the precious metal and the efficiency of water removal for reusing the solvent system. ⁇ 20 mL is more preferred.
  • the pH of the water is preferably 4 or less, more preferably 3 or less, and most preferably about 1.
  • the pH can be appropriately adjusted by adding an acid such as sulfuric acid or hydrochloric acid. By setting it as this pH range, when using water as a reducing agent, the amount of undesirable precipitation of copper, other metals, etc. can be suppressed, and only the target gold can be efficiently precipitated.
  • the recovery method of the present invention removes the water contained in the solvent system after depositing and recovering the noble metal in the above step (B), and again in the above step ( It further comprises a step (C) of obtaining a solvent system that can be used in A). Then, by repeating the steps (A) to (C), a recovery cycle in which solvent-based waste liquid is suppressed can be carried out.
  • the experimental conditions are as follows. In 10ml of DMSO, and using copper bromide (II) (CuBr 2) a 223 mg (1 mmol) and a solvent system having dissolved therein 446 mg (2 mmol). A solvent system containing 2 mmol each of potassium bromide or sodium bromide was prepared. About 235 mg (1.2 mmol) of a gold fine wire ( ⁇ 0.2 mm) was used. The solution temperature was 70 ° C.
  • FIG. 1 shows the time dependency of the dissolved amount of pure gold obtained in each solvent composition.
  • CuBr 2 used here is easily soluble in water, noble metals such as gold were not dissolved at all in a system using water as a solvent. Therefore, the above result is It shows that it is possible to effectively dissolve noble metals such as gold by using a combination of CuBr 2 and DMSO which is an aprotic polar organic solvent.
  • FIG. 2 shows the time dependence of the dissolved amount of pure gold when CuBr is kept constant at 0.5 mmol with respect to 10 ml of DMSO and succinimide is changed from 0 to 20 mmol.
  • FIG. 3 shows the time dependence of the dissolved amount of pure gold when CuBr is kept constant at 2.5 mmol and succinimide is changed from 0 to 20 mmol.
  • the dissolution amount was saturated at around 0.3 mmol, whereas when the succinimide was added, it was confirmed that the dissolution amount increased about twice.
  • FIG. 4 shows the time dependency of the dissolved amount of pure gold when succinimide is kept constant at 10 mmol and CuBr is changed from 0 to 2.0 mmol.
  • FIG. 5 shows the time dependency of the amount of dissolved palladium when succinimide is kept constant at 10 mmol and CuBr is changed from 0.5 to 2.5 mmol.
  • the experimental conditions used are as follows. In 10ml of DMSO, and using copper bromide (II) (CuBr 2) a solvent system having dissolved therein 446 mg (2 mmol). A solvent system containing 1 mmol of potassium bromide was prepared. About 235 mg (1.2 mmol) of a gold fine wire ( ⁇ 0.2 mm) was added to the solution and dissolved at 70 ° C. for 24 hours. Thereafter, water was added to the solvent system in which gold was dissolved, and the gold deposited was filtered. The weight of the resulting precipitate was weighed, and the weight of gold and other components in the precipitate was quantitatively analyzed by ICP-AES method to determine the amount of gold deposited and the recovery rate. The results are shown in Table 2. The obtained results are shown in Table 3.
  • the amount of gold dissolved was approximately 200 mg for all samples.
  • the amount of precipitated gold was about 100 mg and the recovery rate was about 50%.
  • the gold recovery rate was close to 90%. Even if the amount of water added was increased, the gold recovery rate was maintained at about 80%.
  • SEM scanning electron microscope

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)

Abstract

[Problem] To provide a simple, economic, and environment-friendly precious metal recovery method for recovering a precious metal from a used electronic device or the like. [Solution] A precious metal recovery method characterized in including: a step for dissolving a precious metal in a solvent system containing copper halide and an aprotic polar organic solvent; and a step for adding a reduction agent to the solvent system in which the precious metal is dissolved, and causing the precious metal to precipitate.

Description

ハロゲン化銅含有有機溶媒系を用いた貴金属の回収方法Method for recovering noble metals using organic solvent system containing copper halide
 本発明は、貴金属の溶解及び回収を行う方法、並びに当該方法に用いるための溶媒系に関する。 The present invention relates to a method for dissolving and recovering a noble metal, and a solvent system for use in the method.
 携帯電話、パソコンなどの電子機器における電子部材には、貴金属やレアメタル等の種々の金属が使用されている。しかしながら、使用済みとなったこれら電子部材は、国内では経済的或いは技術的な理由から積極的に回収やリサイクルが十分に行われず、その一部は海外にミックスメタルとして輸出もしくは産業廃棄物として処理されているのが現状である。従って、これらの金属資源を回収・リサイクルして有効活用することが重要な社会的課題となっている。 Various metals such as precious metals and rare metals are used for electronic members in electronic devices such as mobile phones and personal computers. However, these electronic components that have been used are not actively collected or recycled actively for economic or technical reasons in Japan, and some of them are exported overseas as mixed metals or treated as industrial waste. This is the current situation. Therefore, it is an important social issue to recover and recycle these metal resources effectively.
 一般に、使用済み製品からの金属リサイクルは、対象物の収集、解体、粉砕、物理選別を経て、製錬による分離精製からなる。製錬には高温での溶融や揮発を利用する乾式法と、水溶液系に金属を溶解させる湿式法があることが知られている。乾式法は大規模操業に用いられ、湿式法は精密分離が可能で小規模操業にも適するといわれている。しかしながら、湿式法において金などの貴金属を溶解するために、強酸や塩素ガス、シアン化合物水溶液などの劇物が用いられるので、ある程度の設備投資が必要であり、また廃液等による環境的な負荷も大きい。 Generally, metal recycling from used products consists of separation and purification by smelting after collecting, dismantling, crushing, and physically selecting objects. It is known that smelting includes a dry method using melting and volatilization at high temperature and a wet method in which metal is dissolved in an aqueous solution system. The dry method is used for large-scale operations, and the wet method is said to be suitable for small-scale operations because it allows precise separation. However, in order to dissolve noble metals such as gold in the wet method, powerful substances such as strong acid, chlorine gas, and cyanide aqueous solution are used, so a certain amount of capital investment is required, and the environmental burden due to waste liquid etc. large.
 従って、操作が簡便でありながら、廃液の量が少なく環境負荷の少なく、使用済み電子機器等から効率的に貴金属を回収することが可能なリサイクルシステムの構築が望まれている。 Therefore, it is desired to construct a recycling system that can easily recover precious metals from used electronic devices and the like with a small amount of waste liquid and a low environmental load while being easy to operate.
 以上のような背景の下に、本発明は、使用済み電子機器等から貴金属を回収するための簡便かつ経済的な環境調和型の貴金属の回収方法を提供することを課題とするものである。 Under the background as described above, it is an object of the present invention to provide a simple and economical environment-friendly method for recovering precious metals for recovering precious metals from used electronic devices and the like.
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、ハロゲン化銅を含有する有機溶媒系を用いることで、目的とする貴金属を比較的短時間で溶解及び析出させることができることを見出し、本発明を完成するに至った。さらに、当該貴金属を溶解させた溶液中に少量の水を添加するのみで当該貴金属を析出させることができ、それにより、当該水を分離した溶媒を再利用可能なシステムが達成できることも見出した。 As a result of intensive studies to solve the above problems, the present inventors can dissolve and precipitate the target noble metal in a relatively short time by using an organic solvent system containing copper halide. As a result, the present invention has been completed. Furthermore, it has also been found that the noble metal can be precipitated by simply adding a small amount of water to the solution in which the noble metal is dissolved, thereby achieving a system that can reuse the solvent from which the water has been separated.
 すなわち、本発明は、一つの態様において、
(1)ハロゲン化銅及び非プロトン性の極性有機溶媒を含む溶媒系に貴金属を溶解させる工程(A)、及び、前記貴金属を溶解させた溶媒系に還元剤を添加して、当該貴金属を析出させる工程(B)を含むことを特徴とする、貴金属の回収方法;
(2)前記ハロゲン化銅が、臭化銅(I)又は臭化銅(II)から選択される、上記(1)に記載の方法;
(3)前記非プロトン性の極性有機溶媒が、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、アセトニトリル、テトラヒドロフラン、炭酸プロピレン又はそれらの混合物から選択される、上記(1)又は(2)に記載の方法;
(4)前記溶媒系が、コハク酸イミド化合物をさらに含む、上記(1)~(3)のいずれか1に記載の方法;
(5)前記溶媒系が、ハロゲン化ナトリウム又はハロゲン化カリウムをさらに含む、上記(1)~(3)のいずれか1に記載の方法;
(6)前記還元剤が、水、アスコルビン酸、クエン酸ナトリウム又は水素化ホウ素ナトリウムである、上記(1)~(5)のいずれか1に記載の方法;
(7)前記還元剤が水であって;前記工程(B)によって前記貴金属を析出させて回収した後に、前記溶媒系に含まれる水を除去し、再び前記工程(A)において使用可能な溶媒系を得る工程(C)を更に含む、(6)に記載の方法;
(8)前記還元剤である水のpHが4以下である、(6)又は(7)に記載の方法;
(9)前記貴金属が、金、パラジウム、銀、又は白金から選択される、上記(1)~(8)のいずれか1に記載の方法
に関する。
That is, the present invention, in one embodiment,
(1) Step (A) of dissolving a noble metal in a solvent system containing copper halide and an aprotic polar organic solvent, and adding a reducing agent to the solvent system in which the noble metal is dissolved to precipitate the noble metal A method for recovering a noble metal, comprising the step (B) of
(2) The method according to (1) above, wherein the copper halide is selected from copper (I) bromide or copper (II) bromide;
(3) The method according to (1) or (2) above, wherein the aprotic polar organic solvent is selected from dimethyl sulfoxide, dimethylformamide, acetone, acetonitrile, tetrahydrofuran, propylene carbonate, or a mixture thereof;
(4) The method according to any one of (1) to (3) above, wherein the solvent system further comprises a succinimide compound;
(5) The method according to any one of (1) to (3) above, wherein the solvent system further comprises sodium halide or potassium halide;
(6) The method according to any one of (1) to (5) above, wherein the reducing agent is water, ascorbic acid, sodium citrate or sodium borohydride;
(7) The reducing agent is water; after the noble metal is deposited and recovered in the step (B), the water contained in the solvent system is removed, and the solvent can be used again in the step (A). The method according to (6), further comprising the step (C) of obtaining a system;
(8) The method according to (6) or (7), wherein the pH of the reducing agent water is 4 or less;
(9) The method according to any one of (1) to (8), wherein the noble metal is selected from gold, palladium, silver, or platinum.
 別の態様において、本発明は、さらに、
(10)貴金属を溶解させて回収するために用いられる、ハロゲン化銅及び非プロトン性の極性有機溶媒を含む溶媒系;
(11)前記ハロゲン化銅が、臭化銅(I)又は臭化銅(II)から選択される、上記(10)に記載の溶媒系;
(12)前記非プロトン性の極性有機溶媒が、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、アセトニトリル、テトラヒドロフラン、炭酸プロピレン又はそれらの混合物から選択される、上記(10)又(11)に記載の溶媒系;
(13)コハク酸イミド化合物をさらに含む、上記(10)~(12)のいずれか1に記載の溶媒系;
(14)ハロゲン化ナトリウム又はハロゲン化カリウムをさらに含む、上記(10)~(12)のいずれか1に記載の溶媒系;
(15)前記貴金属が、金、パラジウム、銀、又は白金から選択される、上記(10)~(14)のいずれか1に記載の溶媒系
に関する。
In another aspect, the invention further provides:
(10) A solvent system containing copper halide and an aprotic polar organic solvent used for dissolving and recovering noble metals;
(11) The solvent system according to (10) above, wherein the copper halide is selected from copper (I) bromide or copper (II) bromide;
(12) The solvent system according to (10) or (11) above, wherein the aprotic polar organic solvent is selected from dimethyl sulfoxide, dimethylformamide, acetone, acetonitrile, tetrahydrofuran, propylene carbonate or a mixture thereof;
(13) The solvent system according to any one of (10) to (12), further comprising a succinimide compound;
(14) The solvent system according to any one of the above (10) to (12), further comprising sodium halide or potassium halide;
(15) The solvent system according to any one of (10) to (14), wherein the noble metal is selected from gold, palladium, silver, or platinum.
 本発明によれば、簡便な手順によって、短時間でかつ非常に高い効率によって貴金属を回収することができるという効果を奏する。特に、貴金属を溶解させた溶液中に水を添加するだけで貴金属を析出させることができるため、貴金属を還元して析出させるための有機化合物を用いる必要がない点で画期的なものある。それにより、当該貴金属を析出・回収した後の溶液から水を除去することにより、再度、貴金属溶解のための溶媒系として繰り返し利用できるため、経済的であるのみならず、排水処理を最小限に留めることができる環境調和型のプロセスが達成可能であるという利点を有する。さらに、用いる銅イオン等の呈色により酸化還元反応の進行が溶液の色の変化で視認することができることに加え、溶媒系に劇物を用いることなく、比較的低温の70度付近というマイルドな条件下で処理を行うことができるため、容易な操業が可能であるという点でも従来の技術より実用性に優れている。 According to the present invention, it is possible to recover the noble metal in a short time and with very high efficiency by a simple procedure. In particular, since the noble metal can be precipitated simply by adding water to the solution in which the noble metal is dissolved, it is revolutionary in that it is not necessary to use an organic compound for reducing and precipitating the noble metal. As a result, by removing water from the solution after precipitating and collecting the precious metal, it can be reused again as a solvent system for precious metal dissolution, which is not only economical, but also minimizes wastewater treatment. It has the advantage that an environmentally conscious process that can be retained is achievable. Furthermore, the progress of the oxidation-reduction reaction can be visually recognized by the change in the color of the solution due to the coloration of the copper ions used, etc., and the mild low temperature of around 70 degrees without using a deleterious substance in the solvent system. Since the treatment can be performed under the conditions, it is more practical than the conventional technology in that it can be easily operated.
図1は、CuBrを含むDMSO溶液における純金溶解量の時間依存性を示すグラフである。FIG. 1 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr 2 . 図2は、CuBr(0.5mmol)とコハク酸イミド(0~20mmol)を含むDMSO溶液における純金溶解量の時間依存性を示すグラフである。FIG. 2 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr (0.5 mmol) and succinimide (0 to 20 mmol). 図3は、CuBr(2.5mmol)とコハク酸イミド(0~20mmol)を含むDMSO溶液における純金溶解量の時間依存性を示すグラフである。FIG. 3 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr (2.5 mmol) and succinimide (0 to 20 mmol). 図4は、CuBr(0.5~2.0mmol)とコハク酸イミド(10mmol)を含むDMSO溶液における純金溶解量の時間依存性を示すグラフである。FIG. 4 is a graph showing the time dependence of the amount of pure gold dissolved in a DMSO solution containing CuBr (0.5 to 2.0 mmol) and succinimide (10 mmol). 図5は、CuBr(0.5~2.5mmol)とコハク酸イミド(10mmol)を含むDMSO溶液におけるパラジウム溶解量の時間依存性を示すグラフである。FIG. 5 is a graph showing the time dependency of the amount of palladium dissolved in a DMSO solution containing CuBr (0.5 to 2.5 mmol) and succinimide (10 mmol).
以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
 本発明における貴金属の回収方法は、A)ハロゲン化銅及び非プロトン性の極性有機溶媒等の有機溶媒を含む溶媒系に目的とする貴金属を溶解させる工程、及び、B)前記貴金属を溶解させた溶媒系に還元剤を添加して、当該貴金属を析出させる工程を含む。当該回収方法の対象となる貴金属としては、好ましくは、金、パラジウム、銀、及び白金が挙げられるが、それら以外の遷移金属、或いは、いわゆるレアメタルを回収対象とすることも可能である。 In the method of recovering a noble metal in the present invention, A) a step of dissolving a target noble metal in a solvent system containing an organic solvent such as a copper halide and an aprotic polar organic solvent, and B) dissolving the noble metal. A step of adding a reducing agent to the solvent system to precipitate the noble metal. Preferred examples of the noble metal to be collected include gold, palladium, silver, and platinum, but other transition metals or so-called rare metals can also be collected.
 本発明の回収方法には、上記A)の工程を行う前に、貴金属を含む電子部品等に対して高分子部材を除く等の当該技術分野において周知の任意の前処理工程を行うことも含まれ得る。同様に、上記工程B)を行った後に、析出した貴金属を回収し当該技術分野において周知の任意の手法により、当該貴金属をさらに精製等を行うことも含まれ得る。 The recovery method of the present invention includes performing an arbitrary pretreatment step known in the technical field such as removing a polymer member on an electronic component containing a noble metal before performing the step A). Can be. Similarly, after performing the above-mentioned step B), it may be included to collect the precious metal deposited and further purify the precious metal by any method known in the art.
 上記工程A)において用いられる溶媒系は、貴金属を溶解させるためのものであり、代表的には、ハロゲン化銅を含有する有機溶媒である。以下当該溶媒系の構成について説明する。 The solvent system used in the above step A) is for dissolving a noble metal, and is typically an organic solvent containing copper halide. The configuration of the solvent system will be described below.
 当該有機溶媒としては、ハロゲン化銅との酸化還元反応により生じる貴金属イオン(金イオン等)が溶解し得るものであれば特に限定されないが、親水性の有機溶媒が好適であり、極性を有する非プロトン性の有機溶媒であることが好ましい。そのような非プロトン性の極性有機溶媒の例としては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、アセトン、アセトニトリル、テトラヒドロフラン(THF)、ジメチルアセトアミド、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、炭酸プロピレンなどが挙げられる。これらの2種類以上を含む混合溶媒とすることもできる。これらのなかでも、DMSOが特に好ましい。 The organic solvent is not particularly limited as long as it can dissolve a noble metal ion (gold ion or the like) generated by the oxidation-reduction reaction with copper halide, but a hydrophilic organic solvent is preferable and has a polarity. A protic organic solvent is preferred. Examples of such aprotic polar organic solvents include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, acetonitrile, tetrahydrofuran (THF), dimethylacetamide, methyl acetate, ethyl acetate, butyl acetate, propyl acetate. And propylene carbonate. It can also be set as the mixed solvent containing these 2 or more types. Of these, DMSO is particularly preferred.
 本発明において用いられるハロゲン化銅は、フッ化銅、塩化銅、臭化銅、又はヨウ化銅であり、それぞれ1価又は2価の塩であることができる。好ましくは、臭化銅(I)(CuBr)又は臭化銅(II)(CuBr)である。回収目的とする貴金属が金及びパラジウムである場合には、これら臭化銅が好適であるが、当該貴金属との酸化還元反応により貴金属イオンを生じさせ得るものであれば他の金属塩(塩化鉄(FeCl)等)を用いることができ、また、金及びパラジウム以外の貴金属を回収の目的とする場合には、より溶解に適切な銅以外の金属塩を用いることも許容される。 The copper halide used in the present invention is copper fluoride, copper chloride, copper bromide, or copper iodide, and can be a monovalent or divalent salt, respectively. Preferred is copper (I) bromide (CuBr) or copper (II) bromide (CuBr 2 ). When the noble metal to be collected is gold and palladium, these copper bromides are suitable. However, other metal salts (iron chloride) can be used as long as they can generate noble metal ions by oxidation-reduction reaction with the noble metal. (FeCl 3 )) can be used, and when a precious metal other than gold and palladium is used for the purpose of recovery, it is allowed to use a metal salt other than copper that is more suitable for dissolution.
 当該ハロゲン化銅の溶媒系における含有量は、多いほど貴金属の溶解量が増大すると考えられるが、典型的には、50mmol/L以上、好ましくは、100mmol/L以上、より好ましくは200mmol/L以上である。 It is considered that the amount of the copper halide contained in the solvent system increases as the amount of the noble metal dissolved increases. Typically, it is 50 mmol / L or more, preferably 100 mmol / L or more, more preferably 200 mmol / L or more. It is.
 本発明において用いられる溶媒系は、さらに貴金属の溶解速度及び溶解量を増大させる目的で、コハク酸イミド化合物、又はアルカリ金属のハロゲン化物を補助的な成分として含むことができる。コハク酸イミド化合物には、任意の置換基を有するコハク酸イミド(スクシンイミド)、及び当該技術分野において公知のコハク酸イミド誘導体も含まれ得る。また、アルカリ金属のハロゲン化物は、好ましくは、ハロゲン化ナトリウム又はハロゲン化カリウムである。ハロゲンの種類としては、溶媒中で解離して上記ハロゲン化銅と同じハロゲンアニオンを生じさせるもの(すなわち、臭化銅の場合は、臭化ナトリウム又は臭化カリウム)であることが望ましい。 The solvent system used in the present invention can contain a succinimide compound or an alkali metal halide as an auxiliary component for the purpose of further increasing the dissolution rate and amount of the noble metal. The succinimide compound may also include a succinimide (succinimide) having an arbitrary substituent and a succinimide derivative known in the art. The alkali metal halide is preferably sodium halide or potassium halide. The type of halogen is preferably one that dissociates in a solvent to produce the same halogen anion as the copper halide (that is, sodium bromide or potassium bromide in the case of copper bromide).
 より具体的には、ハロゲン化銅との組み合わせの観点からは、上記ハロゲン化銅がCuBrの場合には、コハク酸イミド化合物を用いることが好ましく、ハロゲン化銅がCuBrの場合には、臭化ナトリウム又は臭化カリウムを用いることが好ましい。これらの組み合わせによって、溶媒系に対する貴金属の溶解が促進される。 More specifically, in view of the combination of copper halide, when the copper halide is CuBr, it is preferable to use succinic acid imide compound, when copper halide is CuBr 2 are odor Sodium chloride or potassium bromide is preferably used. These combinations promote the dissolution of noble metals in the solvent system.
 また、これら更なる成分の溶媒系における含有量は、特に限定されるものではないが、上記臭化銅の溶液中の濃度の0.5~10倍、好ましくは2~5倍の範囲で用いることができる。 Further, the content of these additional components in the solvent system is not particularly limited, but it is used in the range of 0.5 to 10 times, preferably 2 to 5 times the concentration in the copper bromide solution. be able to.
 本発明の回収方法における上記工程B)において添加される還元剤は、工程A)において溶液中に溶解した貴金属イオンを選択的に析出させて回収するための試薬である。好ましくは、水、アスコルビン酸(L-アスコルビン酸)、クエン酸ナトリウム又は水素化ホウ素ナトリウム(NaBH)であるが、これに限定されるものではなく、当該技術分野において周知の還元剤のなから適切なものをこれに換えて用いることもできる。 The reducing agent added in step B) in the recovery method of the present invention is a reagent for selectively precipitating and recovering noble metal ions dissolved in the solution in step A). Preferably, water, ascorbic acid (L-ascorbic acid), sodium citrate or sodium borohydride (NaBH 4 ), but not limited thereto, among the reducing agents well known in the art. An appropriate one can be used instead.
 上記工程B)における還元剤としては、水を用いることが好ましい。水は、上記溶媒系の有機溶媒と混合されても、貴金属の析出後に水の分離を行い、或いは当該溶液を加熱して水を揮発させる等の分離手段によって容易に除去することが可能であるため、溶媒系を再利用することが可能となる。分離には、有機溶媒から水を除去するための当該技術分野において周知の手段(例えば、蒸留等)を用いることができる。当該水の添加量は、貴金属を析出するために要する量及び溶媒系の再利用のための水除去の効率の観点から、溶媒系10mLに対して2~40mLの範囲であることが好ましく、5~20mLがより好ましい。また、当該水のpHは、好ましくは4以下、より好ましくは3以下、最も好ましくは1程度である。当該pHは、硫酸や塩酸等の酸を添加することによって適宜調整することができる。かかるpHの範囲とすることによって、還元剤として水を用いる場合に、銅やその他の金属等の望ましくない析出量を抑制し、目的物である金のみを効率的に析出することができる。 It is preferable to use water as the reducing agent in step B). Even if water is mixed with the above organic solvent, it can be easily removed by separation means such as separation of water after precipitation of the noble metal or volatilization of water by heating the solution. Therefore, it is possible to reuse the solvent system. For the separation, means well known in the art for removing water from the organic solvent (for example, distillation and the like) can be used. The amount of water added is preferably in the range of 2 to 40 mL with respect to 10 mL of the solvent system from the viewpoint of the amount required for precipitating the precious metal and the efficiency of water removal for reusing the solvent system. ~ 20 mL is more preferred. The pH of the water is preferably 4 or less, more preferably 3 or less, and most preferably about 1. The pH can be appropriately adjusted by adding an acid such as sulfuric acid or hydrochloric acid. By setting it as this pH range, when using water as a reducing agent, the amount of undesirable precipitation of copper, other metals, etc. can be suppressed, and only the target gold can be efficiently precipitated.
 従って、還元剤として水を用いる場合には、本発明の回収方法は、上記の工程(B)によって前記貴金属を析出させて回収した後に、溶媒系に含まれる水を除去し、再び前記工程(A)において使用可能な溶媒系を得る工程(C)を更に含む。そして、当該工程(A)~(C)を繰り返すことによって、溶媒系の廃液を抑制した回収サイクルを実施することができる。 Therefore, when water is used as the reducing agent, the recovery method of the present invention removes the water contained in the solvent system after depositing and recovering the noble metal in the above step (B), and again in the above step ( It further comprises a step (C) of obtaining a solvent system that can be used in A). Then, by repeating the steps (A) to (C), a recovery cycle in which solvent-based waste liquid is suppressed can be carried out.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.
1. 臭化銅(II)を含む溶媒系による純金の溶解
 臭化銅(II)を含むDMSO溶液を用いて純金の溶解挙動を測定した。また、これに臭化カリウム又は臭化ナトリウムを追加した場合の効果についても比較検討を行った。
1. Dissolution of pure gold by a solvent system containing copper (II) bromide The dissolution behavior of pure gold was measured using a DMSO solution containing copper (II) bromide. In addition, a comparative study was also conducted on the effect of adding potassium bromide or sodium bromide thereto.
 実験条件は、以下のとおりである。10mlのDMSOに、臭化銅(II)(CuBr)を223mg(1mmol)及び446mg(2mmol)を溶解させた溶媒系を用いた。これに、臭化カリウム又は臭化ナトリウムをそれぞれ2mmol含む溶媒系を作成した。金の細線(φ0.2mm)約235mg(1.2mmol)を用いた。溶液温度は70℃とした。 The experimental conditions are as follows. In 10ml of DMSO, and using copper bromide (II) (CuBr 2) a 223 mg (1 mmol) and a solvent system having dissolved therein 446 mg (2 mmol). A solvent system containing 2 mmol each of potassium bromide or sodium bromide was prepared. About 235 mg (1.2 mmol) of a gold fine wire (φ0.2 mm) was used. The solution temperature was 70 ° C.
 各溶媒組成において得られた、純金の溶解量の時間依存性を図1に示す。その結果、本発明の溶媒系によって金を溶解させることができ、いずれの溶媒組成においても6時間で金の溶解量が飽和することが実証された。金の最大溶解量は、用いるCuBrの濃度に比例して増加し、ほぼCuBr3モルに対して1モルの金を溶解し得ることが分かった。また、臭化カリウム及び臭化ナトリウムの添加によって、金の最大溶解量が、CuBr1モルに対して1モルの金まで増加することが観測された。これは、臭化カリウム及び臭化ナトリウムの添加によって溶液中の臭化物イオンが増大し、酸化還元反応において金イオンが生成し易くなったためと考えられる。 FIG. 1 shows the time dependency of the dissolved amount of pure gold obtained in each solvent composition. As a result, it was demonstrated that gold can be dissolved by the solvent system of the present invention, and that the dissolved amount of gold is saturated in 6 hours in any solvent composition. It has been found that the maximum amount of gold dissolved increases in proportion to the concentration of CuBr 2 used, and 1 mol of gold can be dissolved with respect to 3 mol of CuBr 2 . It was also observed that the addition of potassium bromide and sodium bromide increased the maximum amount of gold dissolved to 1 mole of gold relative to 1 mole of CuBr 2 . This is considered to be because bromide ions in the solution increased by the addition of potassium bromide and sodium bromide, and gold ions were easily generated in the oxidation-reduction reaction.
 ここで用いたCuBrは、それ自体は水に溶解し易いものの、水を溶媒として用いた系では金等の貴金属は全く溶解しなかった。従って、上記の結果は、
CuBrと非プロトン性極性有機溶媒であるDMSOを組み合わせて用いることによって、金等の貴金属を効果的に溶解させることが達成できることを示すものである。
Although CuBr 2 used here is easily soluble in water, noble metals such as gold were not dissolved at all in a system using water as a solvent. Therefore, the above result is
It shows that it is possible to effectively dissolve noble metals such as gold by using a combination of CuBr 2 and DMSO which is an aprotic polar organic solvent.
2. 臭化銅(I)を含む溶媒系による純金の溶解
 臭化銅(I)を含むDMSO溶液を用いて純金の溶解挙動を測定した。また、これにコハク酸イミド0~20mmolを追加した場合の効果についても比較検討を行った。それ以外は、実施例1と同条件である。
2. Dissolution of pure gold by a solvent system containing copper (I) bromide The dissolution behavior of pure gold was measured using a DMSO solution containing copper (I) bromide. A comparative study was also conducted on the effect of adding 0-20 mmol of succinimide. The other conditions are the same as in Example 1.
 10mlのDMSOに対してCuBrを0.5mmolと一定にし、コハク酸イミドを0~20mmolと変化させた場合の純金溶解量の時間依存性を図2に示す。この結果、CuBrのみの溶液の場合には、0.034mmol付近で溶解量が飽和するのに対し、コハク酸イミドを添加した場合には溶解量が約4倍に増加することが確認された。 FIG. 2 shows the time dependence of the dissolved amount of pure gold when CuBr is kept constant at 0.5 mmol with respect to 10 ml of DMSO and succinimide is changed from 0 to 20 mmol. As a result, in the case of a solution containing only CuBr, it was confirmed that the amount of dissolution was saturated at around 0.034 mmol, whereas when succinimide was added, the amount of dissolution increased about four times.
 同様に、CuBrを2.5mmolと一定にし、コハク酸イミドを0~20mmolと変化させた場合の純金溶解量の時間依存性を図3に示す。CuBrのみの溶液の場合には、0.3mmol付近で溶解量が飽和するのに対し、コハク酸イミドを添加した場合には溶解量が約2倍に増加することが確認された。 Similarly, FIG. 3 shows the time dependence of the dissolved amount of pure gold when CuBr is kept constant at 2.5 mmol and succinimide is changed from 0 to 20 mmol. In the case of the CuBr-only solution, the dissolution amount was saturated at around 0.3 mmol, whereas when the succinimide was added, it was confirmed that the dissolution amount increased about twice.
 また、コハク酸イミドを10mmolで一定とし、CuBrを0~2.0mmolに変化させた場合の純金溶解量の時間依存性を図4に示す。この結果、金の溶解量は、CuBrの濃度にも依存して増加することが分かった。コハク酸イミドの存在下では、CuBrが4モルに対してほぼ1モルの金の溶解量となる関係性が得られた。 Also, FIG. 4 shows the time dependency of the dissolved amount of pure gold when succinimide is kept constant at 10 mmol and CuBr is changed from 0 to 2.0 mmol. As a result, it was found that the dissolved amount of gold increases depending on the concentration of CuBr. In the presence of succinimide, a relationship was obtained in which the amount of dissolved gold was approximately 1 mol per 4 mol of CuBr.
3. 臭化銅(I)を含む溶媒系によるパラジウムの溶解
 臭化銅(I)を含むDMSO溶液を用いて純金の溶解挙動を測定した。パラジウムの細線(φ0.2mm)約235mg(2.2mmol)を用いた。溶液温度は70℃とした。
3. Dissolution of palladium by a solvent system containing copper (I) bromide The dissolution behavior of pure gold was measured using a DMSO solution containing copper (I) bromide. About 235 mg (2.2 mmol) of palladium fine wire (φ0.2 mm) was used. The solution temperature was 70 ° C.
 コハク酸イミドを10mmolで一定とし、CuBrを0.5~2.5mmolに変化させた場合のパラジウム溶解量の時間依存性を図5に示す。この結果、本発明の溶媒系によってパラジウムを溶解させることが実証され、CuBrの濃度にほぼ比例して、パラジウムの溶解量が増大することが分かった。CuBrが2.5mmolでは、投入したパラジウムの約90%が溶解する結果が得られた。 FIG. 5 shows the time dependency of the amount of dissolved palladium when succinimide is kept constant at 10 mmol and CuBr is changed from 0.5 to 2.5 mmol. As a result, it was demonstrated that palladium was dissolved by the solvent system of the present invention, and it was found that the amount of palladium dissolved increased in proportion to the concentration of CuBr. When CuBr was 2.5 mmol, about 90% of the charged palladium was dissolved.
4. 溶解金属の析出・回収
 臭化銅(I)及びコハク酸イミドを含有するDMSO溶液に金を溶解させて、当該溶液に還元剤であるアスコルビン酸を添加して、金を析出させ、回収率を算出した。
4). Precipitation / recovery of dissolved metal Gold is dissolved in a DMSO solution containing copper (I) bromide and succinimide, and ascorbic acid as a reducing agent is added to the solution to precipitate gold, and the recovery rate is increased. Calculated.
 まず、実施例2と同様に、種々のDMSO溶液を調製した。溶液条件は、DMSO10mmolに対して、CuBrを0.5~20mmol、コハク酸イミドを10及び20mmolとした試料1~試料4の4種類を用いた。当該溶液に、金の細線(φ0.2mm)約235mg(1.2mmol)を加え、70℃で24時間後の溶解度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
First, various DMSO solutions were prepared in the same manner as in Example 2. As the solution conditions, four types of samples 1 to 4 were used in which CuBr was 0.5 to 20 mmol and succinimide was 10 and 20 mmol with respect to 10 mmol of DMSO. About 235 mg (1.2 mmol) of gold fine wire (φ0.2 mm) was added to the solution, and the solubility after 24 hours at 70 ° C. is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 上記の金が溶解されている溶媒に、L-アスコルビン酸(ビタミンC)を加え、金を析出させたものをろ過した。得られた析出物の重量を秤量すると共に、析出物中の金及びその他の成分の重量をICP-AES法により定量分析を行い、金の析出量と回収率を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
L-ascorbic acid (vitamin C) was added to the above-mentioned solvent in which gold was dissolved, and the gold precipitated was filtered. The weight of the resulting precipitate was weighed, and the weight of gold and other components in the precipitate was quantitatively analyzed by ICP-AES method to determine the amount of gold deposited and the recovery rate. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表2より、還元剤であるL-アスコルビン酸を用いることによって、ほぼ100%の回収率が得られた。この結果は、本発明によって、簡便な操作で、かつ非常に高い効率で貴金属の析出・回収が可能であることを実証するものである。 From Table 2, a recovery rate of almost 100% was obtained by using L-ascorbic acid as a reducing agent. This result demonstrates that the present invention enables the precipitation and recovery of noble metals with a simple operation and very high efficiency.
5. 水を用いた溶解金属の析出・回収
 次に、臭化銅(II)及び臭化カリウムを含有するDMSO溶液に金を溶解させて、当該溶液に水を添加して、金を析出させ、その回収率を算出した。
5. Precipitation / collection of dissolved metal using water Next, gold is dissolved in a DMSO solution containing copper (II) bromide and potassium bromide, and water is added to the solution to precipitate gold. The recovery rate was calculated.
 用いた実験条件は、以下のとおりである。10mlのDMSOに、臭化銅(II)(CuBr)を446mg(2mmol)を溶解させた溶媒系を用いた。これに、臭化カリウムを1mmol含む溶媒系を作成した。当該溶液に、金の細線(φ0.2mm)約235mg(1.2mmol)を加え、70℃で24時間溶解させた。その後、金を溶解させた溶媒系に、水を添加し、金を析出させたものをろ過した。得られた析出物の重量を秤量すると共に、析出物中の金及びその他の成分の重量をICP-AES法により定量分析を行い、金の析出量と回収率を求めた。結果を表2に示す。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
The experimental conditions used are as follows. In 10ml of DMSO, and using copper bromide (II) (CuBr 2) a solvent system having dissolved therein 446 mg (2 mmol). A solvent system containing 1 mmol of potassium bromide was prepared. About 235 mg (1.2 mmol) of a gold fine wire (φ0.2 mm) was added to the solution and dissolved at 70 ° C. for 24 hours. Thereafter, water was added to the solvent system in which gold was dissolved, and the gold deposited was filtered. The weight of the resulting precipitate was weighed, and the weight of gold and other components in the precipitate was quantitatively analyzed by ICP-AES method to determine the amount of gold deposited and the recovery rate. The results are shown in Table 2. The obtained results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、金の溶解量は、全てのサンプルとも概ね200mgであった。水を、2ml添加しただけでは金の析出量は100mg程度で回収率は50%程度であるが、5ml添加すると約180mgの金が析出し、回収率は90%近くなった。それ以上添加する水の量を増やしても、金の回収率は80%程度に維持された。なお、SEM(走査型電子顕微鏡)により析出した金粒子を観察した結果、水の添加量を多くするに従って、析出する金粒子の粒径が小さくなる傾向があることが判明した。従って、水を添加することで金は全て析出してはいるものの、目の粗いろ紙によるろ過では回収されない粒子が存在したために回数率が100%とはならなかったものと推測される。 As shown in Table 3, the amount of gold dissolved was approximately 200 mg for all samples. When only 2 ml of water was added, the amount of precipitated gold was about 100 mg and the recovery rate was about 50%. However, when 5 ml was added, about 180 mg of gold was precipitated and the recovery rate was close to 90%. Even if the amount of water added was increased, the gold recovery rate was maintained at about 80%. In addition, as a result of observing the gold particles deposited by SEM (scanning electron microscope), it was found that the particle size of the gold particles deposited tends to decrease as the amount of water added increases. Therefore, it is presumed that although the gold was precipitated by adding water, the number of times did not reach 100% due to the presence of particles that were not recovered by filtration with coarse filter paper.
 表3の結果から、水を添加することによって、他の還元剤を用いることなく、高効率で貴金属の析出・回収が可能であることが実証された。 From the results shown in Table 3, it was demonstrated that by adding water, noble metal can be deposited and recovered with high efficiency without using any other reducing agent.

Claims (15)

  1. ハロゲン化銅及び非プロトン性の極性有機溶媒を含む溶媒系に貴金属を溶解させる工程(A)、及び、前記貴金属を溶解させた溶媒系に還元剤を添加して、当該貴金属を析出させる工程(B)を含むことを特徴とする、貴金属の回収方法。 A step (A) of dissolving a noble metal in a solvent system containing copper halide and an aprotic polar organic solvent, and a step of depositing the noble metal by adding a reducing agent to the solvent system in which the noble metal is dissolved ( A method for recovering a noble metal, comprising B).
  2. 前記ハロゲン化銅が、臭化銅(I)又は臭化銅(II)から選択される、請求項1に記載の方法。 The method of claim 1, wherein the copper halide is selected from copper (I) bromide or copper (II) bromide.
  3. 前記非プロトン性の極性有機溶媒が、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、アセトニトリル、テトラヒドロフラン、炭酸プロピレン又はそれらの混合物から選択される、請求項1又2に記載の方法。 The process according to claim 1 or 2, wherein the aprotic polar organic solvent is selected from dimethyl sulfoxide, dimethylformamide, acetone, acetonitrile, tetrahydrofuran, propylene carbonate or mixtures thereof.
  4. 前記溶媒系が、コハク酸イミド化合物をさらに含む、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the solvent system further comprises a succinimide compound.
  5. 前記溶媒系が、ハロゲン化ナトリウム又はハロゲン化カリウムをさらに含む、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the solvent system further comprises sodium halide or potassium halide.
  6. 前記還元剤が、水、アスコルビン酸、クエン酸ナトリウム又は水素化ホウ素ナトリウムである、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the reducing agent is water, ascorbic acid, sodium citrate or sodium borohydride.
  7. 前記還元剤が水であって;前記工程(B)によって前記貴金属を析出させて回収した後に、前記溶媒系に含まれる水を除去し、再び前記工程(A)において使用可能な溶媒系を得る工程(C)を更に含む、請求項6に記載の方法。 The reducing agent is water; after the precious metal is deposited and recovered in the step (B), the water contained in the solvent system is removed to obtain a solvent system that can be used again in the step (A). The method of claim 6, further comprising step (C).
  8. 前記還元剤である水のpHが4以下である、請求項6又は7に記載の方法。 The method according to claim 6 or 7, wherein the pH of the reducing agent water is 4 or less.
  9. 前記貴金属が、金、パラジウム、銀、又は白金から選択される、請求項1~8のいずれか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the noble metal is selected from gold, palladium, silver or platinum.
  10. 貴金属を溶解させて回収するために用いられる、ハロゲン化銅及び非プロトン性の極性有機溶媒を含む溶媒系。 A solvent system comprising copper halide and an aprotic polar organic solvent used for dissolving and recovering noble metals.
  11. 前記ハロゲン化銅が、臭化銅(I)又は臭化銅(II)から選択される、請求項10に記載の溶媒系。 11. A solvent system according to claim 10, wherein the copper halide is selected from copper (I) bromide or copper (II) bromide.
  12. 前記非プロトン性の極性有機溶媒が、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、アセトニトリル、テトラヒドロフラン、炭酸プロピレン又はそれらの混合物から選択される、請求項10又11に記載の溶媒系。 12. A solvent system according to claim 10 or 11, wherein the aprotic polar organic solvent is selected from dimethyl sulfoxide, dimethylformamide, acetone, acetonitrile, tetrahydrofuran, propylene carbonate or mixtures thereof.
  13. コハク酸イミド化合物をさらに含む、請求項10~12のいずれか1項に記載の溶媒系。 The solvent system according to any one of claims 10 to 12, further comprising a succinimide compound.
  14. ハロゲン化ナトリウム又はハロゲン化カリウムをさらに含む、請求項10~12のいずれか1項に記載の溶媒系。 The solvent system according to any one of claims 10 to 12, further comprising sodium halide or potassium halide.
  15. 前記貴金属が、金、パラジウム、銀、又は白金から選択される、請求項10~14のいずれか1項に記載の溶媒系。 The solvent system according to any one of claims 10 to 14, wherein the noble metal is selected from gold, palladium, silver or platinum.
PCT/JP2014/052415 2013-03-27 2014-02-03 Precious metal recovery method using copper halide-containing organic solvent system WO2014156300A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157022470A KR102156227B1 (en) 2013-03-27 2014-02-03 Precious metal recovery method using copper halide-containing organic solvent system
CN201480012943.4A CN105026583A (en) 2013-03-27 2014-02-03 Precious metal recovery method using copper halide-containing organic solvent system
JP2015508138A JP6196662B2 (en) 2013-03-27 2014-02-03 Method for recovering noble metals using organic solvent system containing copper halide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013066833 2013-03-27
JP2013-066833 2013-03-27
JP2013127085 2013-06-18
JP2013-127085 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014156300A1 true WO2014156300A1 (en) 2014-10-02

Family

ID=51623301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052415 WO2014156300A1 (en) 2013-03-27 2014-02-03 Precious metal recovery method using copper halide-containing organic solvent system

Country Status (4)

Country Link
JP (1) JP6196662B2 (en)
KR (1) KR102156227B1 (en)
CN (1) CN105026583A (en)
WO (1) WO2014156300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154678A (en) * 2015-09-21 2015-12-16 华南理工大学 Efficient environmental-friendly gold extracting method for electronic components of waste mobile phones
JP2020045543A (en) * 2018-09-21 2020-03-26 国立大学法人千葉大学 Recovery method of copper from chalcopyrite and solvent system for recovery method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108179278B (en) * 2017-12-21 2019-09-20 浙江理工大学 A kind of noble metal extracting solution, preparation method and applications
CN114807611A (en) * 2022-04-18 2022-07-29 上海第二工业大学 Method for gently stripping circuit board metal coating and separating and recovering metal/nonmetal components in substrate
CN114807612A (en) * 2022-04-18 2022-07-29 上海第二工业大学 Method for selectively recovering noble metal palladium in solid waste by utilizing acetonitrile-anhydrous chloride salt system
CN114807613A (en) * 2022-04-18 2022-07-29 上海第二工业大学 Method for selectively recovering precious metal gold in solid waste by polar aprotic solvent reaction system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249143A (en) * 1990-02-28 1991-11-07 Tanaka Kikinzoku Kogyo Kk Method for separating and recovering rhodium
JPH04107230A (en) * 1990-08-28 1992-04-08 Agency Of Ind Science & Technol Method for extracting gold and silver from ore
JPH073351A (en) * 1993-06-18 1995-01-06 Agency Of Ind Science & Technol Gold refining method
JP2005008922A (en) * 2003-06-17 2005-01-13 Japan Science & Technology Agency Production method of metal hydroxide carrying gold or platinum and recovery method of gold or platinum using the same
JP2005154892A (en) * 2003-10-27 2005-06-16 Mitsubishi Chemicals Corp Solution for dissolving noble metal, and method for dissolving/recovering noble metal with the use of the solution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0145346B1 (en) * 1994-06-10 1998-08-17 케네스 앤. 한 Extraction of precious metals from and other precious metals containing materials using halogen salts
CN101812591B (en) * 2009-02-20 2012-04-04 国立云林科技大学 Method for recovering gold, copper, copper sulfate and copper chloride waste liquid of waste circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249143A (en) * 1990-02-28 1991-11-07 Tanaka Kikinzoku Kogyo Kk Method for separating and recovering rhodium
JPH04107230A (en) * 1990-08-28 1992-04-08 Agency Of Ind Science & Technol Method for extracting gold and silver from ore
JPH073351A (en) * 1993-06-18 1995-01-06 Agency Of Ind Science & Technol Gold refining method
JP2005008922A (en) * 2003-06-17 2005-01-13 Japan Science & Technology Agency Production method of metal hydroxide carrying gold or platinum and recovery method of gold or platinum using the same
JP2005154892A (en) * 2003-10-27 2005-06-16 Mitsubishi Chemicals Corp Solution for dissolving noble metal, and method for dissolving/recovering noble metal with the use of the solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154678A (en) * 2015-09-21 2015-12-16 华南理工大学 Efficient environmental-friendly gold extracting method for electronic components of waste mobile phones
JP2020045543A (en) * 2018-09-21 2020-03-26 国立大学法人千葉大学 Recovery method of copper from chalcopyrite and solvent system for recovery method
JP7194975B2 (en) 2018-09-21 2022-12-23 国立大学法人千葉大学 Method for recovering copper from chalcopyrite and solvent system used for the method

Also Published As

Publication number Publication date
KR20150136056A (en) 2015-12-04
JP6196662B2 (en) 2017-09-13
CN105026583A (en) 2015-11-04
KR102156227B1 (en) 2020-09-15
JPWO2014156300A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6196662B2 (en) Method for recovering noble metals using organic solvent system containing copper halide
JP5766305B2 (en) Method for non-incineration and non-cyanation treatment of waste printed circuit boards
JP5791917B2 (en) Lithium recovery method
WO2022213678A1 (en) Method for recycling aluminum in waste positive electrode sheet by using selective leaching and application thereof
CN104264184A (en) Method for extracting metallic copper from waste circuit board
JP2007009274A (en) Method for recovering indium
JP5351747B2 (en) Gold reduction recovery method
JP2012246198A (en) Method for purifying selenium by wet process
KR20110075406A (en) Method for recycling pb-free solder waste
JP6744981B2 (en) How to concentrate and recover precious metals
KR20150142040A (en) Method for concentrating metals from scrap containing metal
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
KR101431532B1 (en) Method for separating valuable metals from pb-free waste solder
KR101364521B1 (en) Method for separating tin from intermetallic
CN103834811A (en) Method for selectively extracting gold from complex gold-containing waste
JP6187768B2 (en) Recovery method of rare earth elements
JP5777150B2 (en) Method for recovering platinum and palladium
JP2012246197A (en) Method for purifying selenium by wet process
JP2007039798A (en) Method for recovering indium, and its use
KR20180063474A (en) How to select and recover valuable metals from OLED waste
JP2018044200A (en) Method of treating metal-containing hydrochloric acidic liquid
CA2957875A1 (en) Nickel recovery process
JP6457039B2 (en) Silver recovery method
JP2005272887A (en) Method for recovering platinum group element
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480012943.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508138

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157022470

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776173

Country of ref document: EP

Kind code of ref document: A1