WO2014155982A1 - Touch panel - Google Patents

Touch panel Download PDF

Info

Publication number
WO2014155982A1
WO2014155982A1 PCT/JP2014/001193 JP2014001193W WO2014155982A1 WO 2014155982 A1 WO2014155982 A1 WO 2014155982A1 JP 2014001193 W JP2014001193 W JP 2014001193W WO 2014155982 A1 WO2014155982 A1 WO 2014155982A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
touch panel
transparent
pattern
Prior art date
Application number
PCT/JP2014/001193
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 大
隆憲 大原
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2015508002A priority Critical patent/JP6308211B2/en
Publication of WO2014155982A1 publication Critical patent/WO2014155982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer

Definitions

  • the present invention relates to a transparent touch panel composed of a patterned transparent conductive film.
  • touch panel system examples include a resistance film type and a capacitance type.
  • the touch position is detected by contacting the upper and lower electrodes.
  • the capacitance type the touch position is detected by a change in the surface capacitance when a fingertip or the like touches.
  • Capacitive touch panels can be broadly divided into surface capacitive and projection types.
  • the projection type as the electrode for detecting a change in capacitance, a transparent conductive film with and without a conductive film is formed (patterned) by etching or the like. At this time, since the optical characteristics are different between the portion where the conductive film is present and the portion where the conductive film is not present, the pattern of the conductive layer is conspicuous and visibility is deteriorated.
  • a dummy pattern is formed so as to leave a conductive film having a discontinuous small area, isolated from the conductive film used for detecting the touch position of the conductive film so that the conductive film pattern does not stand out. Therefore, a method for making the pattern difficult to see has also been proposed (see Patent Document 1).
  • the conductive film remains on almost the entire surface, and the yellowishness increase and haze increase due to the presence of the conductive film are problematic. That is, when a dummy pattern is formed in the non-conductive portion, the pattern of the conductive layer stands out and the visibility deteriorates due to the different shapes of the conductive film layer pattern of the electrode and the dummy pattern of the non-conductive layer portion.
  • the present invention seeks to solve the above-described problems of the prior art, minimizes the use of dummy patterns, reduces yellowness and haze, and makes the patterns less visible.
  • a touch panel capable of improving the performance is provided.
  • One aspect of the present invention for solving the above problems includes at least a first transparent substrate, a first transparent conductive film patterned on one surface of the first transparent substrate, and a first transparent conductive material.
  • the touch panel has a rectangular pattern with slits inside the rectangle, and the hole of the first transparent conductive film is disposed at a position overlapping the second transparent conductive film.
  • Another aspect of the present invention includes at least a transparent substrate, a first transparent conductive film patterned on one surface of the transparent substrate, and a first metal wiring connected to the first transparent conductive film. And a second transparent conductive film patterned on the other surface of the transparent substrate, and a second metal wiring connected to the second transparent conductive film, wherein the first transparent conductive film
  • the film is a rectangular pattern having holes substantially inside the rectangle
  • the second transparent conductive film is a rectangular pattern having slits substantially inside the rectangle
  • the hole of the first transparent conductive film is formed by arranging a dummy pattern in a slit formed in the first transparent conductive film, and the dummy pattern is opposed to the second transparent conductive film in plan view with respect to the panel surface. It is not necessary to have an overlapping part.
  • the area of the overlapping portion of the first transparent conductive film pattern and the second transparent conductive film in a plan view may be in the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one location on the touch panel surface .
  • the hole of the first transparent conductive film has a width along the side crossing the pattern of the second transparent conductive film that is 0.020 mm or more greater than the width of the pattern of the second transparent conductive film with which the side overlaps. It may be as wide as 15 mm or less.
  • At least the width of the narrowest portion of the non-slit portion of the second transparent conductive film pattern may be in the range of 0.050 mm or more and 0.35 mm or less.
  • At least the narrowest part width of the slit part of the pattern of the second transparent conductive film may be the same as the narrowest part width of the non-slit part or wider than the narrowest part width of the non-slit part.
  • the transparent conductive film may include at least metal nanowires.
  • the metal nanowire may be covered with the resin layer.
  • the shortest distance between the first transparent conductive film and the second transparent conductive film may be in the range of 20 ⁇ m to 150 ⁇ m.
  • the thickness of the transparent substrate may be in the range of 20 ⁇ m to 150 ⁇ m.
  • the haze ratio representing scattering of transmitted light from the touch panel may be 1.5% or less.
  • the electrode pattern of the transparent conductive film is made into a rectangle with slits and holes, and the hole of one transparent conductive film is arranged at a position overlapping the other transparent conductive film, thereby suppressing yellowness and haze ratio. It is possible to effectively suppress the pattern appearance as it is. In particular, it is very effective when metal nanowires such as silver nanowires are used for the transparent conductive film.
  • the present invention it is possible to provide a touch panel that minimizes the use of dummy patterns, reduces yellowness and haze, and makes the patterns difficult to see and improves visibility.
  • FIG. 1 is a cross-sectional view showing a configuration of a first touch panel according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the second touch panel according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the configuration of the third touch panel according to the embodiment of the present invention.
  • FIG. 4 is a plan view showing the configuration of the transparent conductive film pattern according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing a repeating unit pattern constituting the transparent conductive film pattern according to the first embodiment of the present invention.
  • FIG. 6 is a plan view showing a pattern of the first transparent conductive film according to the first embodiment of the present invention.
  • FIG. 7 is a plan view showing a pattern of the second transparent conductive film according to the embodiment of the present invention.
  • FIG. 8 is a plan view showing a configuration of a transparent conductive film pattern according to the second embodiment of the present invention.
  • FIG. 9 is a plan view showing a repeating unit pattern constituting the transparent conductive film pattern according to the second embodiment of the present invention.
  • FIG. 10 is a plan view showing a pattern of the first transparent conductive film according to the second embodiment of the present invention.
  • FIG. 11 is a plan view showing the configuration of the transparent conductive film pattern of the first comparative example.
  • FIG. 12 is a plan view showing the configuration of the transparent conductive film pattern of the second comparative example.
  • the touch panel 20 shown in FIG. 2 includes a transparent conductive film 5 and a cured film 3 on each of one surface and the other surface of the transparent substrate 1 in order, and further transparent adhesive on one cured film 3 side.
  • a touch panel 30 shown in FIG. 3 includes an optical adjustment layer 4 and a transparent conductive film 5 sequentially on either one surface and the other surface of the transparent substrate 1, and further on one transparent conductive film 5 side.
  • a cover glass 7 is bonded through a transparent adhesive layer 6 and a cured film 3 is provided on the other transparent conductive film 5.
  • the transparent substrate 1 used in the present invention is made of a plastic film made of resin in addition to glass.
  • the plastic film is not particularly limited as long as it has sufficient strength in the film-forming process and the subsequent process and has good surface smoothness.
  • polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polycarbonate Examples include films, polyethersulfone films, polysulfone films, polyarylate films, cyclic polyolefin films, polyimide films, and the like.
  • the thickness is about 10 ⁇ m or more and 200 ⁇ m or less, considering the thinness of the member and the flexibility of the laminated body, and in particular, the thickness within the range of 20 ⁇ m or more and 150 ⁇ m or less is used. Moreover, when arrange
  • various known additives and stabilizers such as antistatic agents, plasticizers, lubricants, and easy adhesives may be used.
  • corona treatment, low temperature plasma treatment, ion bombardment treatment, chemical treatment, etc. may be performed as pretreatment.
  • the resin layer 2 may be formed on the transparent substrate 1 of the present invention.
  • the resin layer 2 used in the present invention is provided in order to give the transparent conductive film 6 mechanical strength.
  • resin used Resin which has transparency, moderate hardness, and mechanical strength is preferable.
  • a photocurable resin such as a monomer or a crosslinkable oligomer having a tri- or higher functional acrylate that can be expected to be three-dimensionally crosslinked as a main component is preferable.
  • the resin layer 2 is formed on the other surface of the transparent substrate 1 in the touch panel 10 in FIG. 1 and on one surface and the other surface of the transparent substrate 1 in the touch panel 20 in FIG. 2 and the touch panel 30 in FIG. Is provided.
  • Trifunctional or higher acrylate monomers include trimethylolpropane triacrylate, isocyanuric acid EO-modified triacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate Ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, polyester acrylate and the like are preferable.
  • Particularly preferred are isocyanuric acid EO-modified triacrylates and polyester acrylates. These may be used alone or in combination of two or more.
  • so-called acrylic resins such as epoxy acrylate, urethane acrylate, and polyol acrylate can be used in combination.
  • acrylic oligomers such as polyester (meth) acrylate, polyether (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, and silicone (meth) acrylate are preferable.
  • Specific examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, bisphenol A type epoxy acrylate, polyurethane diacrylate, and cresol novolac type epoxy (meth) acrylate.
  • Resin layer 2 may further contain additives such as particles and a photopolymerization initiator.
  • the particles to be added include organic or inorganic particles, but it is preferable to use organic particles in consideration of transparency.
  • organic particles include particles made of acrylic resin, polystyrene resin, polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, polyurethane resin, silicone resin, and fluorine resin.
  • the average particle diameter of the particles varies depending on the thickness of the resin layer 2, but for reasons of appearance such as haze, the lower limit is 2 ⁇ m or more, more preferably 5 ⁇ m or more, and the upper limit is 30 ⁇ m or less, preferably 15 ⁇ m or less. To do. Further, for the same reason, the particle content is preferably 0.5% by weight or more and 5% by weight or less based on the resin.
  • radical generating photopolymerization initiators include benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyl methyl ketal, acetophenone, 2, 2 , -Dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, and other acetophenones, methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and other anthraquinones, thioxanthone, 2,4-diethylthioxanthone, 2, 4 -Thioxanthones such as diisopropylthioxanthone, ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal, benzophenone, 4, 4-
  • tertiary amines such as triethanolamine and methyldiethanolamine
  • benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid, ethyl 4-dimethylaminobenzoate, etc. It can be used in combination with a photoinitiator aid or the like.
  • the addition amount of the photopolymerization initiator is 0.1% by weight or more and 5% by weight or less, preferably 0.5% by weight or more and 3% by weight or less with respect to the main component resin. Less than the lower limit is not preferable because the hard coat layer is insufficiently cured. Moreover, when exceeding an upper limit, since yellowing of a hard-coat layer will be produced or a weather resistance will fall, it is unpreferable.
  • the light used for curing the photocurable resin is ultraviolet rays, electron beams, or gamma rays, and in the case of electron beams or gamma rays, it is not always necessary to contain a photopolymerization initiator or a photoinitiating aid. As these radiation sources, high pressure mercury lamps, xenon lamps, metal halide lamps, accelerated electrons, and the like can be used.
  • the thickness of the resin layer 2 is not particularly limited, but is preferably in the range of 0.5 ⁇ m to 15 ⁇ m. Further, it is more preferable that the refractive index is the same as or close to that of the transparent substrate 1, and it is preferably about 1.45 or more and 1.75 or less.
  • the resin layer 2 is formed by dissolving a resin as a main component in a solvent, a die coater, curtain flow coater, roll coater, reverse roll coater, gravure coater, knife coater, bar coater, spin coater, micro gravure coater, etc.
  • a solvent a die coater, curtain flow coater, roll coater, reverse roll coater, gravure coater, knife coater, bar coater, spin coater, micro gravure coater, etc.
  • the well-known coating method is used.
  • the solvent is not particularly limited as long as it dissolves the main component resin and the like. Specifically, ethanol, isopropyl alcohol, isobutyl alcohol, benzene, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, n-butyl acetate, isoamyl acetate, ethyl lactate, methyl cellosolve, ethyl cellosolve, Examples include butyl cellosolve, methyl cellosolve acetate, and propylene glycol monomethyl ether acetate. These solvents may be used alone or in combination of two or more.
  • the optical adjustment layer 4 has a function of adjusting the transmittance and hue of the transparent conductive film, and is a layer for improving visibility.
  • an inorganic compound used as the optical adjustment layer 4
  • materials such as oxides, sulfides, fluorides, and nitrides can be used.
  • the thin film made of the inorganic compound has a different refractive index depending on the material, and the optical characteristics can be adjusted by forming a thin film having a different refractive index with a specific film thickness.
  • an organic compound is used as the optical adjustment layer 4
  • an inorganic compound corresponding to the target refractive index is added to the crosslinkable resin similar to the resin layer 2, and the film is formed with a specific film thickness.
  • the number of optical adjustment layers may be a plurality of layers depending on the target optical characteristics.
  • Low refractive index materials include magnesium oxide (1.6), silicon dioxide (1.5), magnesium fluoride (1.4), calcium fluoride (1.3 to 1.4), cerium fluoride ( 1.6), aluminum fluoride (1.3), and the like.
  • titanium oxide (2.4), zirconium oxide (2.4), zinc sulfide (2.3), tantalum oxide (2.1), zinc oxide (2.1) examples include indium oxide (2.0), niobium oxide (2.3), and tantalum oxide (2.2).
  • the numerical value in the parenthesis represents the refractive index.
  • the transparent conductive film 5 may be any one of indium oxide, zinc oxide, and tin oxide as an inorganic compound, or two or three kinds of mixed oxides thereof, and those added with other additives.
  • various materials can be used depending on the purpose and application, and are not particularly limited. At present, the most reliable and proven material is indium tin oxide (ITO).
  • the content ratio of tin oxide doped in indium oxide is selected according to the specifications required for the device.
  • the transparent substrate is a plastic film
  • the sputtering target material used for crystallizing the thin film for the purpose of increasing the mechanical strength preferably has a tin oxide content of less than 10% by weight.
  • the content ratio of tin oxide is preferably 10% by weight or more.
  • the content rate of a tin oxide has the preferable range of 2 to 20 weight%.
  • any film forming method can be used as the manufacturing method as long as the film thickness can be controlled, and the thin film forming dry method is particularly excellent.
  • a vacuum vapor deposition method a physical vapor deposition method such as sputtering, or a chemical vapor deposition method such as a CVD method can be used.
  • a sputtering method in which the process is stable and the thin film becomes dense is preferable.
  • the optical adjustment layer 4 is formed from an organic compound, a coating liquid, a solution, or the like, the same method as the method for forming the resin layer 2 can be used.
  • the transparent conductive film 5 can be made of materials such as metal nanoparticles, metal nanowires, carbon nanotubes, graphene, and conductive polymers, and can be applied by dissolving or dispersing in an organic solvent, alcohol, water, or the like. It can be formed by drying.
  • metal nanowires are more preferably used. Metal nanowires are mixed with resin, etc., prepared by dispersing in water, alcohol, organic solvent, etc. to prepare, and after coating, the metal nanowires are entangled with each other to form a net-like shape. Even if the amount of the conductive material is large, a good electric conduction path can be formed, and the resistance value of the conductive layer can be further reduced.
  • the opening of the gap portion of the mesh is large, even if the fibrous conductive material itself is not transparent, it achieves good transparency as a coating film.
  • the metal of the metal nanowire include iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, cadmium, osmium, iridium, platinum, and gold. From the viewpoint of conductivity, gold, silver, Copper, platinum and gold are preferred.
  • a known coating method such as spray coating, bar coating, roll coating, die coating, ink jet coating, screen coating, or dip coating can be used. If the film thickness of the transparent conductive layer is too thin, sufficient conductivity as a conductor tends not to be achieved, and if it is too thick, transparency tends to be impaired due to an increase in haze value, a decrease in total light transmittance, and the like. Normally, the adjustment is made appropriately between 10 nm and 10 ⁇ m, but when the conductive material itself is not transparent like metal nanowires, the transparency can easily be lost by increasing the film thickness, and the conductive film with a thinner film thickness can be lost.
  • the conductive layer has an extremely large number of openings, but when measured with a contact-type film thickness meter, the average film thickness is preferably 10 nm to 500 nm, more preferably 30 nm to 300 nm, and more preferably 50 nm. More preferably, it is 150 nm or less.
  • the cured film 3 can be provided to protect the transparent conductive film 5 and to give the transparent conductive film mechanical strength.
  • resin used Resin which has transparency, moderate hardness, and mechanical strength is preferable.
  • a photocurable resin such as a monomer or a crosslinkable oligomer having a trifunctional or higher functional acrylate that can be expected to be three-dimensionally cross-linked is preferable, and can be formed using the same material as the resin layer 2. .
  • the formation method can be the same as that of the resin layer 2.
  • the optical adjustment layer 4 or the transparent conductive film 5 of the present invention may form an adhesion layer before forming them.
  • materials used as the adhesion layer include metals such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium, or compounds composed of two or more of these elements, Alternatively, oxides, fluorides, sulfides, nitrides of these elements, or mixtures of these oxides, fluorides, sulfides, nitrides, and the like can be given.
  • the chemical composition of oxides, fluorides, sulfides, and nitrides may not match the stoichiometric composition as long as adhesion is improved.
  • a crosslinkable resin such as an acrylic resin similar to the resin layer 2 can also be used.
  • a pattern as shown in FIG. 4 or 5 is applied to the transparent conductive film 5 of the first embodiment.
  • the pattern to be formed is a conductive pattern region (the first transparent conductive film 51 in FIG. 6 is composed of the conductive portion 511, and the second transparent conductive film 52 in FIG. 521) and a non-conductive pattern region (the first transparent conductive film 51 of FIG. 6 is made of a hole 512, and the second transparent conductive film 52 of FIG. 7 is made of a slit 522).
  • the conductive pattern region is in contact with a metal wiring (not shown), and is connected to a circuit that can detect a voltage change.
  • Two-dimensional positional information can be obtained by pasting the patterns shown in FIGS. 6 and 7 and connecting to the voltage change detection circuit.
  • a pattern formation method for the transparent conductive film 5 As a pattern formation method for the transparent conductive film 5, a resist is applied or bonded onto the transparent conductive film 5, a pattern is formed by exposure and development, and then the transparent conductive film 5 is chemically dissolved, or in vacuum And a method of vaporizing by a chemical reaction, a method of sublimating a transparent conductive film with a laser, and the like.
  • the pattern forming method can be appropriately selected depending on the shape, accuracy, etc. of the pattern, but in consideration of pattern accuracy and thinning, a photolithography method is preferable.
  • the pattern formed on the transparent conductive film 5 of the present embodiment is a first transparent conductive film 51 (FIG. 6) having a rectangular pattern with holes substantially inside the rectangle.
  • 7 shows a first transparent conductive film 51 including a conductive portion 511 and a hole 512), and a second transparent conductive film 52 having a rectangular pattern with a slit substantially inside the rectangle (see FIG. 7).
  • 2 shows a second transparent conductive film 52 comprising a conductive portion 521 and a slit 522), and the hole portion 512 of the first transparent conductive film 51 is a conductive portion of the second transparent conductive film 52.
  • the transparent conductive film 5 may be patterned on both surfaces of a single transparent base material, or a transparent conductive film patterned on each transparent base material is provided and bonded via the transparent adhesive layer 6 and arranged vertically. You may do it.
  • Each electrode constituted by the transparent conductive film 5 is connected to a metal wiring (not shown), and a capacitance change between the electrode formed by the first transparent conductive film 51 and the electrode formed by the second transparent conductive film 52 is detected. When connected to a circuit, it operates as a capacitive touch sensor. The touch sensor is finally bonded to the cover glass 7 through the transparent adhesive layer 6 to produce a touch panel.
  • Area of the overlapping portion between the pattern of the first transparent conductive film 51 pattern of the second transparent conductive film 52 may be, for example, in the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one place.
  • the hole 512 of the first transparent conductive film 51 has a width along the side crossing the pattern of the second transparent conductive film 52 that is less than the width of the second transparent conductive film 52 that overlaps the side. It can be widened by 020 mm or more and 0.15 mm or less.
  • the narrowest part width of the non-slit part (conductive part 521) of the pattern of the second transparent conductive film 52 can be within a range of 0.050 mm or more and 0.35 mm or less.
  • the narrowest part width of the slit part (slit 522) of the pattern of the second transparent conductive film 52 is the same as the narrowest part width of the non-slit part (conductive part 521) or more than the narrowest part width of the non-slit part. Can also be widened.
  • the transparent conductive film may include, for example, at least metal nanowires, and the metal nanowires may be covered with, for example, the resin layer 2.
  • the shortest distance between the 1st transparent conductive film 51 and the 2nd transparent conductive film 52 can be in the range of 20 micrometers or more and 150 micrometers or less, for example.
  • the haze ratio representing scattering of transmitted light through the touch panel can be 1.5% or less.
  • the transparent conductive film 5 of the second embodiment has a pattern as shown in the plan view of FIG. 8 or FIG.
  • the transparent conductive film pattern 81 in FIG. 9 is an extracted unit pattern that forms the transparent conductive film pattern 80 in FIG.
  • a first transparent conductive film 91 and a second transparent conductive film 52 having a rectangular pattern with slits substantially inside the rectangle are formed.
  • the pattern to be formed is composed of a conductive pattern region (the first transparent conductive film 91 in FIG. 10 includes a conductive portion 911 and a dummy portion 913 which is a dummy pattern.
  • the transparent conductive film 52 includes a conductive portion 521) and a non-conductive pattern region (the first transparent conductive film 91 in FIG. 10 includes a slit portion 912 including a dummy portion 913 therein.
  • the transparent conductive film 52 includes a slit portion 522.
  • the conductive pattern region is in contact with a metal wiring (not shown), and is connected to a circuit that can detect a voltage change.
  • a human finger or the like approaches the conductive pattern region that is the detection electrode, the overall capacitance changes, so that the voltage of the circuit fluctuates and the contact position can be determined.
  • the two-dimensional position information can be obtained by pasting the patterns of FIGS. 10 and 7 and connecting to the voltage change detection circuit.
  • a pattern formation method for the transparent conductive film 5 As a pattern formation method for the transparent conductive film 5, a resist is applied or bonded onto the transparent conductive film 5, a pattern is formed by exposure and development, and then the transparent conductive film 5 is chemically dissolved, or in vacuum And a method of vaporizing by a chemical reaction, a method of sublimating a transparent conductive film with a laser, and the like.
  • the pattern forming method can be appropriately selected depending on the shape, accuracy, etc. of the pattern, but in consideration of pattern accuracy and thinning, a photolithography method is preferable.
  • a dummy portion 913 which is a dummy pattern, is patterned inside the slit portion 912.
  • a hole 914 is formed between adjacent dummy portions 913 arranged inside each slit portion 912 of the first transparent conductive film 91.
  • the first transparent conductive film 91 and the second transparent conductive film 52 are vertically combined with the hole 914 disposed at a position where it overlaps the conductive portion 521 of the second transparent conductive film 52.
  • the first transparent conductive film dummy portion 913 does not have an overlapping portion with the opposing second transparent conductive film 52 in a plan view with respect to the touch panel surface.
  • the patterned transparent conductive film 5 can be used as a capacitance detection sensor of a capacitive touch panel.
  • the transparent conductive film 5 may be disposed on both surfaces of a single transparent substrate, or the transparent conductive film 5 that is patterned on each transparent substrate is provided and bonded via the transparent adhesive layer 6 up and down. It may be arranged.
  • Each electrode constituted by the transparent conductive film 5 is connected to a metal wiring (not shown), and a capacitance change between the electrode formed by the first transparent conductive film 91 and the electrode formed by the second transparent conductive film 52 is detected.
  • By connecting to a circuit that operates it operates as a capacitive touch sensor.
  • the touch sensor is finally bonded to the cover glass 7 through the transparent adhesive layer 6 to produce a touch panel.
  • Area of the overlapping portion between the pattern of the first transparent conductive film 91 pattern of the second transparent conductive film 52 may be, for example, in the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one place.
  • the hole 914 of the first transparent conductive film 91 has a width along the side crossing the pattern of the second transparent conductive film 52 that is less than the width of the second transparent conductive film 52 that overlaps the side. It can be widened by 020 mm or more and 0.15 mm or less.
  • the most of the non-slit portions (the first transparent conductive film conductive portion 911 and the second transparent conductive film conductive portion 521) of the pattern of the first transparent conductive film 91 and the pattern of the second transparent conductive film 52.
  • the narrow portion width can be in the range of 0.050 mm or more and 0.35 mm or less.
  • the narrowest of the slit portions (the first transparent conductive film slit portion 912 and the second transparent conductive film slit portion 522) of the pattern of the first transparent conductive film 91 and the pattern of the second transparent conductive film 52.
  • the part width can be the same as the narrowest part width of each non-slit part or wider than the narrowest part width of the non-slit part.
  • the transparent conductive film may include, for example, at least metal nanowires, and the metal nanowires may be covered with, for example, the resin layer 2.
  • the shortest distance between the 1st transparent conductive film 51 and the 2nd transparent conductive film can be in the range of 20 micrometers or more and 150 micrometers or less, for example.
  • the haze ratio representing scattering of transmitted light through the touch panel can be 1.5% or less.
  • Example 1 A touch panel 10 having the same layer configuration as that of FIG. 1 was produced.
  • PET 50 ⁇ m
  • a UV curable transparent acrylic resin was microgravure coated as a resin layer 2 on one side, followed by drying and UV curing to form a thickness of 3 ⁇ m.
  • silver nanowires are coated as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 ⁇ / ⁇ , and similarly a UV curable transparent acrylic resin is 130 nm as the cured film 3. The coating was made with a thickness of.
  • the obtained base material with a transparent conductive film is divided into two, exposed and developed with a photoresist by photolithography, and then etched and resist stripped so that one of the first transparent patterns in the pattern indicated by 51 in FIG. It formed as a electrically conductive film, and the other was formed as a 2nd transparent electrically conductive film in the pattern shown by 52 of FIG.
  • the second transparent conductive film 52 has a plurality of slit portions 522 in the conductive portion 521, the width D of the conductive portion is 200 ⁇ m, and the width E of the slit portion is 500 ⁇ m.
  • development of the photoresist was performed with an aqueous sodium carbonate solution, the silver nanowires were etched with a ferric chloride solution, and the resist was peeled off with an aqueous sodium hydroxide solution.
  • Each of the first and second transparent conductive films isolated from each other is connected to a silver wiring.
  • the silver wiring was formed by printing a silver paste by screen printing.
  • the wiring width was 100 ⁇ m.
  • the two substrates, the substrate with the first transparent conductive film 51 and the substrate with the second transparent conductive film 52 patterned, obtained as described above, are used.
  • the touch panel 10 was obtained by pasting together and similarly pasting the cover glass 7 having a thickness of 0.55 mm on the outermost surface.
  • the first transparent conductive film 51 and the second transparent conductive film 52 are conductive in the second transparent conductive film 52 over the plurality of holes 512 of the first transparent conductive film 51. Bonding was performed with high positional accuracy so that the portion 521 was arranged.
  • the operation of the touch panel 10 can be satisfactorily detected by touching the finger and detecting the coordinate position by confirming the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze ratio measured through the cover glass 7 were 89.8% and 1.0%, respectively, and when observed under a fluorescent lamp, the pattern shape was inconspicuous and almost invisible.
  • Example 2 A touch panel 20 having the same layer configuration as that of FIG. 2 was produced. After using PET (50 ⁇ m) as the transparent substrate 1 and microgravure coating a UV curable transparent acrylic resin to which 20 wt% of UV absorber is added as the resin layer 2 on both sides, the thickness is 5 ⁇ m by drying and UV curing. Formed. Further, silver nanowires were coated on both sides as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 ⁇ / ⁇ , and similarly a UV curable transparent acrylic resin was applied as a cured film 3 with a thickness of 130 nm.
  • the obtained double-sided transparent conductive film-coated substrate was exposed and developed with a photoresist by photolithography in the same manner as in Example 1, and then etched and stripped of the resist.
  • the pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG.
  • the pattern shapes of the first transparent conductive film 51 and the second transparent conductive film 52 were the same as those in Example 1.
  • the first transparent conductive film 51 and the second transparent conductive film 52 are formed on the plurality of holes 512 of the first transparent conductive film 51.
  • the conductive portion 521 is disposed. Silver wiring was also formed in the same manner as in Example 1.
  • the touch panel 20 was obtained by pasting the cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the base material obtained as described above by using the transparent adhesive layer 6 having a thickness of 75 ⁇ m.
  • the operation of the touch panel 20 can be satisfactorily detected by touching the finger and detecting the coordinate position by confirming the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze ratio measured through the cover glass 7 were 91.0% and 0.9%, respectively, and the pattern shape was not noticeable and hardly visible when observed under a fluorescent lamp.
  • Example 3 A touch panel 30 having the same layer configuration as that of FIG. 3 was produced. After using PET (50 ⁇ m) as the transparent substrate 1 and microgravure coating a UV curable transparent acrylic resin to which 20 wt% of UV absorber is added as the resin layer 2 on both sides, the thickness is 5 ⁇ m by drying and UV curing. Formed. Further, a UV curable acrylic resin containing zirconia particles was formed to a thickness of 90 nm as the optical adjustment layer 4 on both sides. At this time, the refractive index of the optical adjustment layer 4 was 1.70.
  • the obtained base material is further formed by forming a transparent conductive film 5 on both sides with ITO (tin content 5 wt%) in a thickness of 22 nm by DC magnetron sputtering in vacuum, and annealing this at 150 ° C. for 60 minutes, The sheet resistance on one side was obtained at 150 ⁇ / ⁇ .
  • the obtained double-sided transparent conductive film-coated substrate was exposed and developed with a photoresist by photolithography in the same manner as in Example 1, and then etched and stripped of the resist.
  • the pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG.
  • the pattern shapes of the first transparent conductive film 51 and the second transparent conductive film 52 were the same as those in Example 1.
  • the first transparent conductive film 51 and the second transparent conductive film 52 are conductive in the second transparent conductive film 52 over the plurality of holes 512 of the first transparent conductive film 51.
  • the part 521 was formed so as to be arranged.
  • Silver wiring was also formed in the same manner as in Example 1. Further, a transparent resin was applied as a cured film 3 on the first transparent conductive film 51 side of the obtained substrate by screen printing, and then UV cured and formed to a thickness of 10 ⁇ m.
  • the touch panel 30 was obtained by pasting the cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the base material obtained from the above using the transparent adhesive layer 6 having a thickness of 75 ⁇ m.
  • the operation of the touch panel 30 can be satisfactorily detected by touching the finger and detecting the coordinate position by confirming the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze ratio measured through the cover glass 7 were 90.5% and 0.7%, respectively, and the pattern shape was not noticeable and almost invisible when observed under a fluorescent lamp.
  • Example 4 A touch panel 10 having the same layer configuration as that of FIG. 1 was produced.
  • PET 50 ⁇ m
  • UV curable transparent acrylic resin was microgravure coated as a resin layer 2 on one side, and then dried and UV cured to form a thickness of 3 ⁇ m.
  • silver nanowires are coated as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 ⁇ / ⁇ , and similarly a UV curable transparent acrylic resin as a cured film 3 is 130 nm thick. I applied.
  • the obtained base material with a transparent conductive film is divided into two parts, exposed and developed with a photoresist by photolithography, and then etched and resist stripped so that one of the first transparent patterns shown in 91 of FIG.
  • the other conductive film was formed as a second transparent conductive film in the pattern indicated by 52 in FIG.
  • the first transparent conductive film 91 has a plurality of slit portions 912 in the conductive portion 911, and a dummy disposed inside the slit so as not to overlap the second transparent conductive film 52 in a plan view with respect to the panel surface.
  • There is a dummy portion 913 which is a pattern.
  • the width A of the conductive portion of the first transparent conductive film 91 was 200 ⁇ m, and the width B of the slit portion 912 was 300 ⁇ m.
  • the second transparent conductive film 52 has a plurality of slit portions 522 in the conductive portion 521, the width D of the conductive portion is 200 ⁇ m, and the width E of the slit portion is 500 ⁇ m.
  • development of the photoresist was performed with an aqueous sodium carbonate solution, the silver nanowires were etched with a ferric chloride solution, and the resist was peeled off with an aqueous sodium hydroxide solution.
  • Each of the first and second transparent conductive films 91 and 52 is isolated from each other and connected to a silver wiring.
  • the silver wiring was formed by printing a silver paste by screen printing.
  • the wiring width was 100 ⁇ m.
  • the two substrates with the first and second transparent conductive films 91 and 52 obtained as described above are bonded together using the 75 ⁇ m-thick transparent adhesive layer 6, and a 0.55 mm-thick cover glass 7 is formed on the outermost surface.
  • a touch panel was obtained.
  • the first and second transparent conductive films 91 and 52 are the dummy part 913 of the slit part 912 of the first transparent conductive film 91 and the conductive part 521 of the second transparent conductive film 52.
  • the overlapping area of the patterns of the first transparent conductive film 91 and the second transparent conductive film 52 was 0.04 mm 2 per place.
  • the operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze rate measured through the cover glass 7 were 89.9% and 1.0%, respectively, and the pattern shape was not noticeable and hardly visible when observed under a fluorescent lamp.
  • Example 5 A touch panel 20 having the same layer configuration as that of FIG. 2 was produced. Using PET (50 ⁇ m) as a transparent substrate, a UV curable transparent acrylic resin with 20 wt% of UV absorber added as a resin layer 2 on both sides, microgravure coated, then dried and UV cured to form a thickness of 5 ⁇ m did. Further, silver nanowires were coated on both sides as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 ⁇ / ⁇ , and similarly a UV curable transparent acrylic resin was applied as a cured film 3 with a thickness of 130 nm.
  • the obtained double-sided transparent conductive film-attached base material was exposed and developed with a photoresist by photolithography in the same manner as in Example 4, and then etching and resist stripping were performed.
  • the pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG.
  • the pattern shapes of the first transparent conductive film 91 and the second transparent conductive film 52 were the same as those in Example 4.
  • the first and second transparent conductive films 91 and 52 are provided with the dummy portion 913 and the second transparent portion of the slit portion 912 of the first transparent conductive film 91 in plan view with respect to the panel surface.
  • the conductive portions 521 of the conductive film 52 were bonded with high positional accuracy so as not to have overlapping portions. At this time, the overlapping area of the patterns of the first transparent conductive film 91 and the second transparent conductive film 51 was 0.04 mm 2 per place. Silver wiring was also formed in the same manner as in Example 4.
  • a touch panel was obtained by laminating a cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the substrate obtained as described above by using a transparent adhesive layer 6 having a thickness of 75 ⁇ m.
  • the operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze ratio measured through the cover glass 7 were 91.1% and 0.9%, respectively, and the pattern shape was not noticeable and almost invisible when observed under a fluorescent lamp.
  • a touch panel 30 having the same layer configuration as that of FIG. 3 was produced.
  • PET 50 ⁇ m
  • a UV curable acrylic resin containing zirconia particles was formed to a thickness of 90 nm as the optical adjustment layer 4 on both sides. At this time, the refractive index of the optical adjustment layer 4 was 1.70.
  • the obtained base material is further formed by forming a transparent conductive film 5 on both sides with ITO (tin content 5 wt%) in a thickness of 22 nm by DC magnetron sputtering in vacuum, and annealing this at 150 ° C. for 60 minutes, The sheet resistance on one side was obtained at 150 ⁇ / ⁇ .
  • the obtained double-sided transparent conductive film-attached base material was exposed and developed with a photoresist by photolithography in the same manner as in Example 4, and then etching and resist stripping were performed.
  • the pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG.
  • the pattern shapes of the first transparent conductive film 91 and the second transparent conductive film 52 were the same as those in Example 4.
  • the first and second transparent conductive films 91 and 52 are provided with the dummy portion 813 and the second transparent portion of the slit portion 812 of the first transparent conductive film 91 in a plan view with respect to the panel surface.
  • the conductive portions 521 of the conductive film 52 were bonded with high positional accuracy so as not to have overlapping portions. At this time, the overlapping area of the patterns of the first transparent conductive film 91 and the second transparent conductive film 52 was 0.04 mm 2 per place. Silver wiring was also formed in the same manner as in Example 4. Further, a transparent resin was applied as a cured film 3 on the first transparent conductive film 91 side of the obtained substrate by screen printing, and then UV cured and formed to a thickness of 10 ⁇ m.
  • a touch panel was obtained by laminating a cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the substrate obtained as described above by using a transparent adhesive layer 6 having a thickness of 75 ⁇ m.
  • the operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze ratio measured through the cover glass 7 were 90.5% and 0.7%, respectively, and the pattern shape was not noticeable and almost invisible when observed under a fluorescent lamp.
  • a touch panel 10 having the same layer configuration as that of FIG. 1 was produced.
  • PET 50 ⁇ m
  • UV curable transparent acrylic resin was microgravure coated as a resin layer 2 on one side, and then dried and UV cured to form a thickness of 3 ⁇ m.
  • silver nanowires are coated as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 ⁇ / ⁇ , and similarly a UV curable transparent acrylic resin as a cured film 3 is 130 nm thick. I applied.
  • the obtained substrate with a transparent conductive film is divided into two, exposed and developed with a photoresist by photolithography, and then etched and stripped of the resist so that the transparent conductive film pattern 60 shown in the plan view of FIG. 11 is obtained.
  • One was formed as a first transparent conductive film in a pattern indicated by 61, and the other was formed as a second transparent conductive film in a pattern indicated by 62.
  • development of the photoresist was performed with an aqueous sodium carbonate solution, the silver nanowires were etched with a ferric chloride solution, and the resist was peeled off with an aqueous sodium hydroxide solution.
  • the first and second transparent conductive films 61 and 62 are separated from each other, and each transparent conductive film electrode is connected to a silver wiring.
  • the silver wiring was formed by printing a silver paste by screen printing.
  • the wiring width was 100 ⁇ m.
  • the two substrates with the first and second transparent conductive films 61 and 62 obtained as described above are bonded together using the 75 ⁇ m-thick transparent adhesive layer 6, and a 0.55 mm-thick cover glass 7 is formed on the outermost surface.
  • a touch panel was obtained.
  • the first and second transparent conductive films 61 and 62 were bonded so that the long sides of the transparent conductive film pattern intersected each other at 90 °.
  • the operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
  • the total light transmittance and haze ratio measured through the cover glass 7 were 89.5% and 1.0%, respectively, but the pattern of the second transparent conductive film 52 was clearly observed under a fluorescent lamp, and the appearance The touch panel was inferior in quality.
  • the touch panel having the structure shown in FIG. 1 is the same as in Comparative Example 1 except that the pattern of the second transparent conductive film 62 in Comparative Example 1 is the transparent conductive film pattern 72 shown in the plan view of FIG. Produced. Small squares between the electrodes of the second transparent conductive film 72 are electrically insulated dummy patterns.
  • the touch panel of the present invention is particularly used as a capacitive touch panel, and can be used as a user interface arranged on the front surface of a smartphone, tablet, notebook PC or the like.

Abstract

Provided is a touch panel having high visibility, wherein the use of dummy patterns is minimized and yellowing and haze are reduced, while having patterns less visible. This touch panel is provided at least with: a first transparent substrate; a first transparent conductive film which is formed by patterning on one surface of the first transparent substrate; a first metal wiring line which is connected to the first transparent conductive film; a second transparent substrate; a second transparent conductive film which is formed by patterning on one surface of the second transparent substrate; a second metal wiring line which is connected to the second transparent conductive film; and a transparent adhesive layer. The first transparent conductive film is a rectangular pattern which substantially has a hole inside, and the second transparent conductive film is a rectangular pattern which substantially has a slit inside. The hole of the first transparent conductive film is arranged at a position where the first transparent conductive film overlaps the second transparent conductive film.

Description

タッチパネルTouch panel
 本発明は、パターニングされた透明導電膜により構成される透明なタッチパネルに関する。 The present invention relates to a transparent touch panel composed of a patterned transparent conductive film.
 近年、様々な電子機器のディスプレイ上に入力デバイスとして、透明なタッチパネルが用いられている。タッチパネルの方式としては、抵抗膜式、静電容量式などが挙げられる。抵抗膜式では上下の電極が接触することでタッチ位置を検出する。また静電容量式では指先などが触れた際の表面の静電容量の変化でタッチ位置を検出する。 In recent years, transparent touch panels have been used as input devices on the displays of various electronic devices. Examples of the touch panel system include a resistance film type and a capacitance type. In the resistive film type, the touch position is detected by contacting the upper and lower electrodes. In the capacitance type, the touch position is detected by a change in the surface capacitance when a fingertip or the like touches.
 静電容量式のタッチパネルは大きく表面容量型と投影型に分けられる。投影型では、静電容量の変化を検出する電極として、透明導電膜に導電膜の有る部分と無い部分をエッチング処理などにより形成(パターニング)して用いる。この際導電膜の有る部分と無い部分で光学特性が違うことで、導電層のパターンが目立ち、視認性が悪くなる。 静電 Capacitive touch panels can be broadly divided into surface capacitive and projection types. In the projection type, as the electrode for detecting a change in capacitance, a transparent conductive film with and without a conductive film is formed (patterned) by etching or the like. At this time, since the optical characteristics are different between the portion where the conductive film is present and the portion where the conductive film is not present, the pattern of the conductive layer is conspicuous and visibility is deteriorated.
 この導電膜のパターンが目立たなくなるように導電膜のタッチ位置検出に用いる導電膜の有る部分から隔絶して、不連続な小面積の形状の導電膜を残すようにパターニングするダミーパターンを形成することで、パターンを見えづらくする方法も提案されている(特許文献1参照)。 A dummy pattern is formed so as to leave a conductive film having a discontinuous small area, isolated from the conductive film used for detecting the touch position of the conductive film so that the conductive film pattern does not stand out. Therefore, a method for making the pattern difficult to see has also been proposed (see Patent Document 1).
国際公開第2011/033907号International Publication No. 2011/033907
 しかしながら、導電膜にダミーパターンを用いるとほぼ全面に導電膜が残ることになり、導電膜が存在することによる黄色味増加やヘイズ上昇が問題となっていた。すなわち、非導電部にダミーパターンを形成すると、電極の導電膜層のパターンと、非導電層部分のダミーパターンとで互いに形状が異なることで、導電層のパターンが際立ち視認性が悪くなる。 However, when a dummy pattern is used for the conductive film, the conductive film remains on almost the entire surface, and the yellowishness increase and haze increase due to the presence of the conductive film are problematic. That is, when a dummy pattern is formed in the non-conductive portion, the pattern of the conductive layer stands out and the visibility deteriorates due to the different shapes of the conductive film layer pattern of the electrode and the dummy pattern of the non-conductive layer portion.
 本発明は上記のような従来技術の課題を解決しようとするものであり、ダミーパターンの利用を最小限に抑え、黄色味やヘイズの低減を図り、かつパターンを見えにくくすることが可能で視認性を向上することのできるタッチパネルを提供するものである。 The present invention seeks to solve the above-described problems of the prior art, minimizes the use of dummy patterns, reduces yellowness and haze, and makes the patterns less visible. A touch panel capable of improving the performance is provided.
 上記課題を解決するための本発明の一局面は、少なくとも、第1の透明基板と、第1の透明基板の一方の面にパターン形成された第1の透明導電膜と、第1の透明導電膜に接続された第1の金属配線と、第2の透明基板と、第2の透明基板の一方の面にパターン形成された第2の透明導電膜と、第2の透明導電膜に接続された第2の金属配線と、透明粘着層とを備えたタッチパネルであって、第1の透明導電膜は実質的に矩形内部に穴が開いた矩形パターンであり、第2の透明導電膜は実質的に矩形内部にスリットが入った矩形パターンであり、第1の透明導電膜の穴は第2の透明導電膜と重なる位置に配置されている、タッチパネルである。 One aspect of the present invention for solving the above problems includes at least a first transparent substrate, a first transparent conductive film patterned on one surface of the first transparent substrate, and a first transparent conductive material. A first metal wiring connected to the film, a second transparent substrate, a second transparent conductive film patterned on one surface of the second transparent substrate, and a second transparent conductive film connected to the second transparent conductive film A touch panel having a second metal wiring and a transparent adhesive layer, wherein the first transparent conductive film is substantially a rectangular pattern having a hole in the rectangle, and the second transparent conductive film is substantially In particular, the touch panel has a rectangular pattern with slits inside the rectangle, and the hole of the first transparent conductive film is disposed at a position overlapping the second transparent conductive film.
 また、本発明の他の局面は、少なくとも、透明基板と、透明基板の一方の面にパターン形成された第1の透明導電膜と、第1の透明導電膜に接続された第1の金属配線と、透明基板の他方の面にパターン形成された第2の透明導電膜と、第2の透明導電膜に接続された第2の金属配線とを備えたタッチパネルであって、第1の透明導電膜は実質的に矩形内部に穴が開いた矩形パターンであり、第2の透明導電膜は実質的に矩形内部にスリットが入った矩形パターンであり、第1の透明導電膜の穴は第2の透明導電膜と重なる位置に配置されている、タッチパネルである。 Another aspect of the present invention includes at least a transparent substrate, a first transparent conductive film patterned on one surface of the transparent substrate, and a first metal wiring connected to the first transparent conductive film. And a second transparent conductive film patterned on the other surface of the transparent substrate, and a second metal wiring connected to the second transparent conductive film, wherein the first transparent conductive film The film is a rectangular pattern having holes substantially inside the rectangle, the second transparent conductive film is a rectangular pattern having slits substantially inside the rectangle, and the holes of the first transparent conductive film are second. It is a touch panel arrange | positioned in the position which overlaps with the transparent conductive film of this.
 また、第1の透明導電膜の穴は、第1の透明導電膜に形成されたスリットにダミーパターンを配置して形成され、パネル面に対する平面視においてダミーパターンは対向する第2の透明導電膜との重なり部を有しなくてもよい。 The hole of the first transparent conductive film is formed by arranging a dummy pattern in a slit formed in the first transparent conductive film, and the dummy pattern is opposed to the second transparent conductive film in plan view with respect to the panel surface. It is not necessary to have an overlapping part.
 また、タッチパネル面に対する平面視において第1の透明導電膜のパターンと第2の透明導電膜の重なり部の面積が1ヶ所あたり0.0025mm以上0.10mm以下の範囲内にあってもよい。 Also, the area of the overlapping portion of the first transparent conductive film pattern and the second transparent conductive film in a plan view may be in the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one location on the touch panel surface .
 また、第1の透明導電膜の穴は、第2の透明導電膜のパターンを横断する辺に沿った幅が、当該辺が重なり合う第2の透明導電膜のパターンの幅より0.020mm以上0.15mm以下だけ広くてもよい。 In addition, the hole of the first transparent conductive film has a width along the side crossing the pattern of the second transparent conductive film that is 0.020 mm or more greater than the width of the pattern of the second transparent conductive film with which the side overlaps. It may be as wide as 15 mm or less.
 また、少なくとも第2の透明導電膜のパターンの非スリット部の最狭部幅が0.050mm以上0.35mm以下の範囲内にあってもよい。 Further, at least the width of the narrowest portion of the non-slit portion of the second transparent conductive film pattern may be in the range of 0.050 mm or more and 0.35 mm or less.
 また、少なくとも第2の透明導電膜のパターンのスリット部の最狭部幅が非スリット部の最狭部幅と同じか非スリット部の最狭部幅よりも広くてもよい。 Further, at least the narrowest part width of the slit part of the pattern of the second transparent conductive film may be the same as the narrowest part width of the non-slit part or wider than the narrowest part width of the non-slit part.
 また、透明導電膜が金属ナノワイヤを少なくとも含んでもよい。 Further, the transparent conductive film may include at least metal nanowires.
 また、金属ナノワイヤが樹脂層に覆われていてもよい。 Moreover, the metal nanowire may be covered with the resin layer.
 また、第1の透明導電膜と第2の透明導電膜との間の最短の距離が20μm以上150μm以下の範囲内にあってもよい。 Further, the shortest distance between the first transparent conductive film and the second transparent conductive film may be in the range of 20 μm to 150 μm.
 また、透明基板の厚さが20μm以上150μm以下の範囲内にあってもよい。 Further, the thickness of the transparent substrate may be in the range of 20 μm to 150 μm.
 また、タッチパネルの透過光の散乱を表すヘイズ率が1.5%以下であってもよい。 Further, the haze ratio representing scattering of transmitted light from the touch panel may be 1.5% or less.
 一般的にパターン形成された透明導電膜のパターン見えを回避するために、透明導電膜の電極部以外の部分を電極と短絡しないようにダミーの透明導電膜で覆う手法が取られる。この状態で上下2層の電極を重ね合わせた場合、実質的に2層分の透明導電膜が黄色味やヘイズ率に影響を与える。本発明では、透明導電膜の電極パターンをスリット入り及び穴開きの矩形にして、一方の透明導電膜の穴を他方の透明導電膜と重なる位置に配置することで、黄色味やヘイズ率を抑えたままパターン見えを効果的に抑えることができる。特に、銀ナノワイヤなどの金属ナノワイヤを透明導電膜に用いた場合、非常に有効である。 Generally, in order to avoid the pattern appearance of the patterned transparent conductive film, a method is adopted in which a portion other than the electrode portion of the transparent conductive film is covered with a dummy transparent conductive film so as not to be short-circuited with the electrode. When the upper and lower two layers of electrodes are overlapped in this state, the two layers of transparent conductive films substantially affect the yellowness and haze rate. In the present invention, the electrode pattern of the transparent conductive film is made into a rectangle with slits and holes, and the hole of one transparent conductive film is arranged at a position overlapping the other transparent conductive film, thereby suppressing yellowness and haze ratio. It is possible to effectively suppress the pattern appearance as it is. In particular, it is very effective when metal nanowires such as silver nanowires are used for the transparent conductive film.
 以上のように、本発明によれば、ダミーパターンの利用を最小限に抑え、黄色味やヘイズの低減を図り、かつパターンを見えづらくして視認性を向上するタッチパネルを提供することができる。 As described above, according to the present invention, it is possible to provide a touch panel that minimizes the use of dummy patterns, reduces yellowness and haze, and makes the patterns difficult to see and improves visibility.
図1は、本発明の実施形態に係る第1のタッチパネルの構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a first touch panel according to an embodiment of the present invention. 図2は、本発明の実施形態に係る第2のタッチパネルの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the second touch panel according to the embodiment of the present invention. 図3は、本発明の実施形態に係る第3のタッチパネルの構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of the third touch panel according to the embodiment of the present invention. 図4は、本発明の第1の実施形態に係る透明導電膜パターンの構成を示す平面図である。FIG. 4 is a plan view showing the configuration of the transparent conductive film pattern according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態に係る透明導電膜パターンを構成する繰り返し単位パターンを示す平面図である。FIG. 5 is a plan view showing a repeating unit pattern constituting the transparent conductive film pattern according to the first embodiment of the present invention. 図6は、本発明の第1実施形態に係る第1の透明導電膜のパターンを示す平面図である。FIG. 6 is a plan view showing a pattern of the first transparent conductive film according to the first embodiment of the present invention. 図7は、本発明の実施形態に係る第2の透明導電膜のパターンを示す平面図である。FIG. 7 is a plan view showing a pattern of the second transparent conductive film according to the embodiment of the present invention. 図8は、本発明の第2の実施形態に係る透明導電膜パターンの構成を示す平面図である。FIG. 8 is a plan view showing a configuration of a transparent conductive film pattern according to the second embodiment of the present invention. 図9は、本発明の第2の実施形態に係る透明導電膜パターンを構成する繰り返し単位パターンを示す平面図である。FIG. 9 is a plan view showing a repeating unit pattern constituting the transparent conductive film pattern according to the second embodiment of the present invention. 図10は、本発明の第2実施形態に係る第1の透明導電膜のパターンを示す平面図である。FIG. 10 is a plan view showing a pattern of the first transparent conductive film according to the second embodiment of the present invention. 図11は、第1の比較例の透明導電膜パターンの構成を示す平面図である。FIG. 11 is a plan view showing the configuration of the transparent conductive film pattern of the first comparative example. 図12は、第2の比較例の透明導電膜パターンの構成を示す平面図である。FIG. 12 is a plan view showing the configuration of the transparent conductive film pattern of the second comparative example.
 以下、本発明を実施するための形態を、図面を用いながら説明する。なお、本発明は、以下に記載する実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更などを加えることも可能であり、そのような変更が加えられた実施の形態も本発明の範囲に含まれるものである。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it is possible to make design changes based on the knowledge of those skilled in the art. The form is also included in the scope of the present invention.
 図1~図3は、本発明のタッチパネルの断面構成の一例である。
 図1に示すタッチパネル10は、透明基板1のいずれか一方の面上に透明導電膜5と硬化膜3とを順次備えた2枚の基材同士が、一方の基材の透明基板1の他方の面側ともう一方の基材の硬化膜3側とが透明粘着層6で貼り合わされ、さらに一方の基材の硬化膜3側に透明粘着層6を介してカバーガラス7が貼り合わされた構成である。
 図2に示すタッチパネル20は、透明基板1のいずれか一方の面上と他方の面上とのそれぞれに透明導電膜5と硬化膜3とを順次備え、さらに一方の硬化膜3側に透明粘着層6を介してカバーガラス7が貼り合わされた構成である。
 図3に示すタッチパネル30は、透明基板1のいずれか一方の面上と他方の面上とのそれぞれに光学調整層4と透明導電膜5とを順次備え、さらに一方の透明導電膜5側に透明粘着層6を介してカバーガラス7が貼り合わされるとともに他方の透明導電膜5上に硬化膜3を備えた構成である。
1 to 3 are examples of a cross-sectional configuration of the touch panel of the present invention.
In the touch panel 10 shown in FIG. 1, two substrates each having a transparent conductive film 5 and a cured film 3 sequentially on one surface of a transparent substrate 1 are the other of the transparent substrates 1 as one substrate. The surface side of the substrate and the cured film 3 side of the other substrate are bonded together by the transparent adhesive layer 6, and the cover glass 7 is bonded to the cured film 3 side of the other substrate via the transparent adhesive layer 6. It is.
The touch panel 20 shown in FIG. 2 includes a transparent conductive film 5 and a cured film 3 on each of one surface and the other surface of the transparent substrate 1 in order, and further transparent adhesive on one cured film 3 side. The cover glass 7 is bonded through the layer 6.
A touch panel 30 shown in FIG. 3 includes an optical adjustment layer 4 and a transparent conductive film 5 sequentially on either one surface and the other surface of the transparent substrate 1, and further on one transparent conductive film 5 side. A cover glass 7 is bonded through a transparent adhesive layer 6 and a cured film 3 is provided on the other transparent conductive film 5.
 本発明で用いる透明基板1は、ガラスの他に、樹脂からなるプラスチックフィルムが用いられる。プラスチックフィルムとしては、成膜工程および後工程において十分な強度があり、表面の平滑性が良好であれば、特に限定されないが、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリエーテルスルホンフィルム、ポリスルホンフィルム、ポリアリレートフィルム、環状ポリオレフィンフィルム、ポリイミドフィルムなどが挙げられる。その厚さは部材の薄型化と積層体の可撓性とを考慮し、10μm以上200μm以下程度のものが用いられ、特に、20μm以上150μm以下の範囲内の厚さのものが用いられる。また、本発明のタッチパネルをディスプレイの前面に配置して用いる場合に、透明基板は高い透明性を有することが必要とされ、全光透過率が85%以上のものが好適に使用される。 The transparent substrate 1 used in the present invention is made of a plastic film made of resin in addition to glass. The plastic film is not particularly limited as long as it has sufficient strength in the film-forming process and the subsequent process and has good surface smoothness. For example, polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polycarbonate Examples include films, polyethersulfone films, polysulfone films, polyarylate films, cyclic polyolefin films, polyimide films, and the like. The thickness is about 10 μm or more and 200 μm or less, considering the thinness of the member and the flexibility of the laminated body, and in particular, the thickness within the range of 20 μm or more and 150 μm or less is used. Moreover, when arrange | positioning and using the touchscreen of this invention in the front surface of a display, it is required for a transparent substrate to have high transparency, and a thing with a total light transmittance of 85% or more is used suitably.
 透明基板1に含有される材料としては、周知の種々の添加剤や安定剤、例えば帯電防止剤、可塑剤、滑剤、易接着剤などが使用されてもよい。各層との密着性を改善するため、前処理としてコロナ処理、低温プラズマ処理、イオンボンバード処理、薬品処理などを施してもよい。 As the material contained in the transparent substrate 1, various known additives and stabilizers such as antistatic agents, plasticizers, lubricants, and easy adhesives may be used. In order to improve adhesion with each layer, corona treatment, low temperature plasma treatment, ion bombardment treatment, chemical treatment, etc. may be performed as pretreatment.
 本発明の透明基板1には樹脂層2が形成されていてもよい。本発明で用いる樹脂層2は、透明導電膜6に機械的強度を持たせるために設けられる。用いられる樹脂としては、特に限定はしないが、透明性と適度な硬度と機械的強度を持つ樹脂が好ましい。具体的には3次元架橋の期待できる3官能以上のアクリレートを主成分とするモノマー又は架橋性オリゴマーのような光硬化性樹脂が好ましい。樹脂層2は、図1のタッチパネル10では透明基板1の他方の面上に、図2のタッチパネル20および図3のタッチパネル30では透明基板1の一方の面上と他方の面上とのそれぞれに設けられている。 The resin layer 2 may be formed on the transparent substrate 1 of the present invention. The resin layer 2 used in the present invention is provided in order to give the transparent conductive film 6 mechanical strength. Although it does not specifically limit as resin used, Resin which has transparency, moderate hardness, and mechanical strength is preferable. Specifically, a photocurable resin such as a monomer or a crosslinkable oligomer having a tri- or higher functional acrylate that can be expected to be three-dimensionally crosslinked as a main component is preferable. The resin layer 2 is formed on the other surface of the transparent substrate 1 in the touch panel 10 in FIG. 1 and on one surface and the other surface of the transparent substrate 1 in the touch panel 20 in FIG. 2 and the touch panel 30 in FIG. Is provided.
 3官能以上のアクリレートモノマーとしては、トリメチロールプロパントリアクリレート、イソシアヌル酸EO変性トリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート、ポリエステルアクリレートなどが好ましい。特に好ましいのは、イソシアヌル酸EO変性トリアクリレートおよびポリエステルアクリレートである。これらは単独で用いても良いし、2種以上併用しても構わない。また、これら3官能以上のアクリレートの他にエポキシアクリレート、ウレタンアクリレート、ポリオールアクリレートなどのいわゆるアクリル系樹脂を併用することが可能である。 Trifunctional or higher acrylate monomers include trimethylolpropane triacrylate, isocyanuric acid EO-modified triacrylate, pentaerythritol triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate Ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, polyester acrylate and the like are preferable. Particularly preferred are isocyanuric acid EO-modified triacrylates and polyester acrylates. These may be used alone or in combination of two or more. In addition to these tri- or higher functional acrylates, so-called acrylic resins such as epoxy acrylate, urethane acrylate, and polyol acrylate can be used in combination.
 架橋性オリゴマーとしては、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、シリコーン(メタ)アクリレートなどのアクリルオリゴマーが好ましい。具体的にはポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ビスフェノールA型エポキシアクリレート、ポリウレタンのジアクリレート、クレゾールノボラック型エポキシ(メタ)アクリレートなどがある。 As the crosslinkable oligomer, acrylic oligomers such as polyester (meth) acrylate, polyether (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, and silicone (meth) acrylate are preferable. Specific examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, bisphenol A type epoxy acrylate, polyurethane diacrylate, and cresol novolac type epoxy (meth) acrylate.
 樹脂層2は、その他に粒子、光重合開始剤などの添加剤を含有してもよい。 Resin layer 2 may further contain additives such as particles and a photopolymerization initiator.
 添加する粒子としては、有機又は無機の粒子が挙げられるが、透明性を考慮すれば、有機粒子を用いることが好ましい。有機粒子としては、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、シリコーン樹脂及びフッ素樹脂などからなる粒子が挙げられる。 The particles to be added include organic or inorganic particles, but it is preferable to use organic particles in consideration of transparency. Examples of the organic particles include particles made of acrylic resin, polystyrene resin, polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, polyurethane resin, silicone resin, and fluorine resin.
 粒子の平均粒径は、樹脂層2の厚みによって異なるが、ヘイズ等の外観上の理由により、下限として2μm以上、より好ましくは5μm以上、上限としては30μm以下、好ましくは15μm以下のものを使用する。また、粒子の含有量も同様の理由で、樹脂に対し、0.5重量%以上5重量%以下であることが好ましい。 The average particle diameter of the particles varies depending on the thickness of the resin layer 2, but for reasons of appearance such as haze, the lower limit is 2 μm or more, more preferably 5 μm or more, and the upper limit is 30 μm or less, preferably 15 μm or less. To do. Further, for the same reason, the particle content is preferably 0.5% by weight or more and 5% by weight or less based on the resin.
 光重合開始剤を添加する場合、ラジカル発生型の光重合開始剤として、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルメチルケタールなどのベンゾインとそのアルキルエーテル類、アセトフェノン、2、2、-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、などのアセトフェノン類、メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノンなどのアントラキノン類、チオキサントン、2、4-ジエチルチオキサントン、2、4-ジイソプロピルチオキサントンなどのチオキサントン類、アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類、ベンゾフェノン、4、4-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類及びアゾ化合物などがある。これらは単独または2種以上の混合物として使用でき、さらにはトリエタノールアミン、メチルジエタノールアミンなどの第3級アミン、2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体などの光開始助剤などと組み合わせて使用することができる。 When a photopolymerization initiator is added, radical generating photopolymerization initiators include benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyl methyl ketal, acetophenone, 2, 2 , -Dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, and other acetophenones, methylanthraquinone, 2-ethylanthraquinone, 2-amylanthraquinone and other anthraquinones, thioxanthone, 2,4-diethylthioxanthone, 2, 4 -Thioxanthones such as diisopropylthioxanthone, ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal, benzophenone, 4, 4-bis Benzophenones such as chill aminobenzophenone and azo compounds, and the like. These can be used alone or as a mixture of two or more thereof, and further, tertiary amines such as triethanolamine and methyldiethanolamine, benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid, ethyl 4-dimethylaminobenzoate, etc. It can be used in combination with a photoinitiator aid or the like.
 上記光重合開始剤の添加量は、主成分の樹脂に対して0.1重量%以上5重量%以下であり好ましくは0.5重量%以上3重量%以下である。下限値未満ではハードコート層の硬化が不十分となり好ましくない。また、上限値を超える場合は、ハードコート層の黄変を生じたり、耐候性が低下したりするため好ましくない。光硬化型樹脂を硬化させるのに用いる光は紫外線、電子線、あるいはガンマ線などであり、電子線あるいはガンマ線の場合、必ずしも光重合開始剤や光開始助剤を含有する必要はない。これらの線源としては高圧水銀灯、キセノンランプ、メタルハライドランプや加速電子などが使用できる。 The addition amount of the photopolymerization initiator is 0.1% by weight or more and 5% by weight or less, preferably 0.5% by weight or more and 3% by weight or less with respect to the main component resin. Less than the lower limit is not preferable because the hard coat layer is insufficiently cured. Moreover, when exceeding an upper limit, since yellowing of a hard-coat layer will be produced or a weather resistance will fall, it is unpreferable. The light used for curing the photocurable resin is ultraviolet rays, electron beams, or gamma rays, and in the case of electron beams or gamma rays, it is not always necessary to contain a photopolymerization initiator or a photoinitiating aid. As these radiation sources, high pressure mercury lamps, xenon lamps, metal halide lamps, accelerated electrons, and the like can be used.
 また、樹脂層2の厚みは、特に限定されないが、0.5μm以上15μm以下の範囲が好ましい。また、透明基板1と屈折率が同じかもしくは近似していることがより好ましく、1.45以上1.75以下程度が好ましい。 The thickness of the resin layer 2 is not particularly limited, but is preferably in the range of 0.5 μm to 15 μm. Further, it is more preferable that the refractive index is the same as or close to that of the transparent substrate 1, and it is preferably about 1.45 or more and 1.75 or less.
 樹脂層2の形成方法は、主成分である樹脂等を溶剤に溶解させ、ダイコーター、カーテンフローコーター、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター、スピンコーター、マイクログラビアコーターなどの公知の塗布方法で形成する。 The resin layer 2 is formed by dissolving a resin as a main component in a solvent, a die coater, curtain flow coater, roll coater, reverse roll coater, gravure coater, knife coater, bar coater, spin coater, micro gravure coater, etc. The well-known coating method is used.
 溶剤については、上記の主成分の樹脂等を溶解するものであれば特に限定しない。具体的には、溶剤として、エタノール、イソプロピルアルコール、イソブチルアルコール、ベンゼン、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、などが挙げられる。これらの溶剤は1種を単独で用いても良いし、2種以上を併用しても良い。 The solvent is not particularly limited as long as it dissolves the main component resin and the like. Specifically, ethanol, isopropyl alcohol, isobutyl alcohol, benzene, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, n-butyl acetate, isoamyl acetate, ethyl lactate, methyl cellosolve, ethyl cellosolve, Examples include butyl cellosolve, methyl cellosolve acetate, and propylene glycol monomethyl ether acetate. These solvents may be used alone or in combination of two or more.
 光学調整層4は、透明導電膜の透過率や色相を調整する機能を有し、視認性を向上させるための層である。光学調整層4として無機化合物を用いる場合、酸化物、硫化物、フッ化物、窒化物などの材料が使用可能である。上記無機化合物からなる薄膜は、その材料により屈折率が異なり、その屈折率の異なる薄膜を特定の膜厚で形成することにより、光学特性を調整することが可能となる。光学調整層4として有機化合物を用いる場合、樹脂層2と同様の架橋性樹脂に目的の屈折率に応じた無機化合物を添加し、特定の膜厚で形成することにより用いる。なお、光学調整層の層数としては、目的とする光学特性に応じて、複数層あってもよい。 The optical adjustment layer 4 has a function of adjusting the transmittance and hue of the transparent conductive film, and is a layer for improving visibility. When an inorganic compound is used as the optical adjustment layer 4, materials such as oxides, sulfides, fluorides, and nitrides can be used. The thin film made of the inorganic compound has a different refractive index depending on the material, and the optical characteristics can be adjusted by forming a thin film having a different refractive index with a specific film thickness. When an organic compound is used as the optical adjustment layer 4, an inorganic compound corresponding to the target refractive index is added to the crosslinkable resin similar to the resin layer 2, and the film is formed with a specific film thickness. The number of optical adjustment layers may be a plurality of layers depending on the target optical characteristics.
 屈折率の低い材料としては、酸化マグネシウム(1.6)、二酸化珪素(1.5)、フッ化マグネシウム(1.4)、フッ化カルシウム(1.3~1.4)、フッ化セリウム(1.6)、フッ化アルミニウム(1.3)などが挙げられる。また、屈折率の高い材料としては、酸化チタン(2.4)、酸化ジルコニウム(2.4)、硫化亜鉛(2.3)、酸化タンタル(2.1)、酸化亜鉛(2.1)、酸化インジウム(2.0)、酸化ニオブ(2.3)、酸化タンタル(2.2)が挙げられる。但し、上記括弧内の数値は屈折率を表す。 Low refractive index materials include magnesium oxide (1.6), silicon dioxide (1.5), magnesium fluoride (1.4), calcium fluoride (1.3 to 1.4), cerium fluoride ( 1.6), aluminum fluoride (1.3), and the like. Moreover, as a material with a high refractive index, titanium oxide (2.4), zirconium oxide (2.4), zinc sulfide (2.3), tantalum oxide (2.1), zinc oxide (2.1), Examples include indium oxide (2.0), niobium oxide (2.3), and tantalum oxide (2.2). However, the numerical value in the parenthesis represents the refractive index.
 透明導電膜5は、無機化合物としては酸化インジウム、酸化亜鉛、酸化スズのいずれか、または、それらの2種類もしくは3種類の混合酸化物、さらには、その他添加物が加えられた物などが挙げられるが、目的・用途により種々の材料が使用でき、特に限定されるものではない。現在のところ、最も信頼性が高く、多くの実績のある材料は酸化インジウムスズ(ITO)である。 The transparent conductive film 5 may be any one of indium oxide, zinc oxide, and tin oxide as an inorganic compound, or two or three kinds of mixed oxides thereof, and those added with other additives. However, various materials can be used depending on the purpose and application, and are not particularly limited. At present, the most reliable and proven material is indium tin oxide (ITO).
 最も一般的な透明導電膜である酸化インジウムスズ(ITO)を透明導電層5として用いる場合、酸化インジウムにドープされる酸化スズの含有比はデバイスに求められる仕様に応じて、任意の割合を選択する。例えば、透明基板がプラスチックフィルムの場合、機械強度を高める目的で薄膜を結晶化させるために用いるスパッタリングターゲット材料は、酸化スズの含有比が10重量%未満であることが好ましく、薄膜をアモルファス化しフレキシブル性を持たせるためには、酸化スズの含有比は10重量%以上が好ましい。また、薄膜に低抵抗が求められる場合は、酸化スズの含有比は2重量%から20重量%の範囲が好ましい。 When indium tin oxide (ITO), which is the most common transparent conductive film, is used as the transparent conductive layer 5, the content ratio of tin oxide doped in indium oxide is selected according to the specifications required for the device. To do. For example, when the transparent substrate is a plastic film, the sputtering target material used for crystallizing the thin film for the purpose of increasing the mechanical strength preferably has a tin oxide content of less than 10% by weight. In order to impart the properties, the content ratio of tin oxide is preferably 10% by weight or more. Moreover, when low resistance is calculated | required by a thin film, the content rate of a tin oxide has the preferable range of 2 to 20 weight%.
 光学調整層4および透明導電膜5が無機化合物の場合、その製造方法としては、膜厚の制御が可能であればいかなる成膜方法でも良く、なかでも薄膜の形成乾式法が優れている。これには真空蒸着法、スパッタリングなどの物理的気相析出法やCVD法のような化学的気相析出法を用いることができる。特に大面積に均一な膜質の薄膜を形成するために、プロセスが安定し、薄膜が緻密化するスパッタリング法が好ましい。また、光学調整層4が有機化合物や塗液や溶液などから形成される場合には、樹脂層2の形成方法と同様の手法を用いることができる。 In the case where the optical adjustment layer 4 and the transparent conductive film 5 are inorganic compounds, any film forming method can be used as the manufacturing method as long as the film thickness can be controlled, and the thin film forming dry method is particularly excellent. For this, a vacuum vapor deposition method, a physical vapor deposition method such as sputtering, or a chemical vapor deposition method such as a CVD method can be used. In particular, in order to form a thin film having a uniform film quality over a large area, a sputtering method in which the process is stable and the thin film becomes dense is preferable. In addition, when the optical adjustment layer 4 is formed from an organic compound, a coating liquid, a solution, or the like, the same method as the method for forming the resin layer 2 can be used.
 また、透明導電膜5は金属ナノ粒子や金属ナノワイヤ、カーボンナノチューブ、グラフェン、導電性高分子などの材料を用いることができ、有機溶剤やアルコール、水などに溶解あるいは分散させることで、塗工、乾燥により形成することができる。さらに透明導電膜としてのシート抵抗や透明性を鑑みて、より好適には金属ナノワイヤが用いられる。
 金属ナノワイヤは樹脂等と混合し、水やアルコール、有機溶剤などに分散することで調液し、塗工後、乾燥することで、金属ナノワイヤが互いに絡み合って網の目状となることで、少ない量の導電性物質であっても良好な電気伝導経路を形成することができ、導電性層の抵抗値をより低下させることができる。さらにこのような網の目状を形成した場合、網の目の隙間部分の開口が大きいので、たとえ繊維状の導電性物質そのものが透明でなかったとしても、塗膜として良好な透明性を達成することが可能である。
 金属ナノワイヤの金属として、具体的には鉄、コバルト、ニッケル、銅、亜鉛、ルテニウム、ロジウム、パラジウム、銀、カドミウム、オスミウム、イリジウム、白金、金が挙げられ、導電性の観点から金、銀、銅、白金、金が好ましい。
The transparent conductive film 5 can be made of materials such as metal nanoparticles, metal nanowires, carbon nanotubes, graphene, and conductive polymers, and can be applied by dissolving or dispersing in an organic solvent, alcohol, water, or the like. It can be formed by drying. In view of sheet resistance and transparency as a transparent conductive film, metal nanowires are more preferably used.
Metal nanowires are mixed with resin, etc., prepared by dispersing in water, alcohol, organic solvent, etc. to prepare, and after coating, the metal nanowires are entangled with each other to form a net-like shape. Even if the amount of the conductive material is large, a good electric conduction path can be formed, and the resistance value of the conductive layer can be further reduced. Furthermore, when such a mesh-like shape is formed, since the opening of the gap portion of the mesh is large, even if the fibrous conductive material itself is not transparent, it achieves good transparency as a coating film. Is possible.
Specific examples of the metal of the metal nanowire include iron, cobalt, nickel, copper, zinc, ruthenium, rhodium, palladium, silver, cadmium, osmium, iridium, platinum, and gold. From the viewpoint of conductivity, gold, silver, Copper, platinum and gold are preferred.
 金属ナノワイヤ等を用いて透明基板上に透明導電膜を形成する方法としては、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコートなど公知の塗布方法を用いることができる。
 透明導電層の膜厚は薄すぎると導体としての十分な導電性が達成出来なくなる傾向にあり、厚すぎるとヘイズ値の上昇、全光線透過率の低下等で透明性が損なわれる傾向にある。通常は10nm以上10μm以下の間で適宜調整を行うが、金属ナノワイヤのように導電性物質そのものが透明でない場合には、膜厚の増加によって透明性が失われ得やすく、より薄い膜厚の導電層が形成されることが多い。この場合きわめて開口部の多い導電層であるが、接触式の膜厚計で測定したときに平均膜厚として10nm以上500nm以下の膜厚範囲がこのましく、30nm以上300nm以下がより好ましく、50nm以上150nm以下が最も好ましい。
As a method for forming a transparent conductive film on a transparent substrate using a metal nanowire or the like, a known coating method such as spray coating, bar coating, roll coating, die coating, ink jet coating, screen coating, or dip coating can be used.
If the film thickness of the transparent conductive layer is too thin, sufficient conductivity as a conductor tends not to be achieved, and if it is too thick, transparency tends to be impaired due to an increase in haze value, a decrease in total light transmittance, and the like. Normally, the adjustment is made appropriately between 10 nm and 10 μm, but when the conductive material itself is not transparent like metal nanowires, the transparency can easily be lost by increasing the film thickness, and the conductive film with a thinner film thickness can be lost. Often layers are formed. In this case, the conductive layer has an extremely large number of openings, but when measured with a contact-type film thickness meter, the average film thickness is preferably 10 nm to 500 nm, more preferably 30 nm to 300 nm, and more preferably 50 nm. More preferably, it is 150 nm or less.
 硬化膜3は、透明導電膜5を保護し、また透明導電性フィルムに機械的強度を持たせるために設けることができる。用いられる樹脂としては、特に限定はしないが、透明性と適度な硬度と機械的強度を持つ樹脂が好ましい。具体的には3次元架橋の期待できる3官能以上のアクリレートを主成分とするモノマー又は架橋性オリゴマーのような光硬化性樹脂が好ましく、樹脂層2と同様の材料を用いて形成することができる。形成法も樹脂層2と同様にできる。 The cured film 3 can be provided to protect the transparent conductive film 5 and to give the transparent conductive film mechanical strength. Although it does not specifically limit as resin used, Resin which has transparency, moderate hardness, and mechanical strength is preferable. Specifically, a photocurable resin such as a monomer or a crosslinkable oligomer having a trifunctional or higher functional acrylate that can be expected to be three-dimensionally cross-linked is preferable, and can be formed using the same material as the resin layer 2. . The formation method can be the same as that of the resin layer 2.
 本発明の光学調整層4あるいは透明導電膜5は、それらを形成する前に密着層を形成しても良い。密着層として用いられる材料としては、例えば、珪素、ニッケル、クロム、錫、金、銀、白金、亜鉛、チタン、タングステン、ジルコニウム、パラジウム等の金属、または、これら元素の2種類以上からなる化合物、または、これら元素の酸化物、弗化物、硫化物、窒化物、または、これら酸化物、弗化物、硫化物、窒化物の混合物等が挙げられる。上記の材料のうち、酸化物、弗化物、硫化物、窒化物の化学組成は、密着性が向上するならば、化学量論的な組成と一致しなくてもよい。また、樹脂層2と同様のアクリル樹脂などの架橋性樹脂を用いることもできる。 The optical adjustment layer 4 or the transparent conductive film 5 of the present invention may form an adhesion layer before forming them. Examples of materials used as the adhesion layer include metals such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium, or compounds composed of two or more of these elements, Alternatively, oxides, fluorides, sulfides, nitrides of these elements, or mixtures of these oxides, fluorides, sulfides, nitrides, and the like can be given. Of the above materials, the chemical composition of oxides, fluorides, sulfides, and nitrides may not match the stoichiometric composition as long as adhesion is improved. Further, a crosslinkable resin such as an acrylic resin similar to the resin layer 2 can also be used.
(第1の実施形態)
 第1の実施形態の透明導電膜5には、図4又は図5のようなパターンを施す。図6および図7のように、形成されるパターンは、導電性パターン領域(図6の第1の透明導電膜51では導電部511からなり、図7の第2の透明導電膜52では導電部521からなる)と、非導電性パターン領域(図6の第1の透明導電膜51では穴部512からなり、図7の第2の透明導電膜52ではスリット部522からなる)とからなる。導電性パターン領域は、金属配線(図示せず)と接しており、電圧変化を検知できる回路に接続されている。人の指等が、検出電極である導電性パターン領域に接近すると、全体の静電容量が変化することから回路の電圧が変動し、接触位置の判定ができる。図6および図7のパターンを貼り合せ、電圧変化検知回路と接続することにより、2次元の位置情報が得られる。
(First embodiment)
A pattern as shown in FIG. 4 or 5 is applied to the transparent conductive film 5 of the first embodiment. As shown in FIGS. 6 and 7, the pattern to be formed is a conductive pattern region (the first transparent conductive film 51 in FIG. 6 is composed of the conductive portion 511, and the second transparent conductive film 52 in FIG. 521) and a non-conductive pattern region (the first transparent conductive film 51 of FIG. 6 is made of a hole 512, and the second transparent conductive film 52 of FIG. 7 is made of a slit 522). The conductive pattern region is in contact with a metal wiring (not shown), and is connected to a circuit that can detect a voltage change. When a human finger or the like approaches the conductive pattern region that is the detection electrode, the overall capacitance changes, so the voltage of the circuit fluctuates and the contact position can be determined. Two-dimensional positional information can be obtained by pasting the patterns shown in FIGS. 6 and 7 and connecting to the voltage change detection circuit.
 透明導電膜5のパターン形成方法としては、透明導電膜5上にレジストを塗布または貼り合わせ、パターンを露光・現像により形成した後に透明導電膜5を化学的に溶解させるフォトリソグラフィによる方法、真空中で化学反応により気化させる方法、レーザーにより透明導電膜を昇華させる方法、などが挙げられる。パターン形成方法は、パターンの形状、精度等により適宜選択できるが、パターン精度、細線化を考慮し、フォトリソグラフィによる方法が好ましい。 As a pattern formation method for the transparent conductive film 5, a resist is applied or bonded onto the transparent conductive film 5, a pattern is formed by exposure and development, and then the transparent conductive film 5 is chemically dissolved, or in vacuum And a method of vaporizing by a chemical reaction, a method of sublimating a transparent conductive film with a laser, and the like. The pattern forming method can be appropriately selected depending on the shape, accuracy, etc. of the pattern, but in consideration of pattern accuracy and thinning, a photolithography method is preferable.
 本実施形態の透明導電膜5に形成されるパターンは、図4~図7に示したように、実質的に矩形内部に穴が開いた矩形パターンを有する第1の透明導電膜51(図6には導電部511と穴部512とからなる第1の透明導電膜51を示す)と、実質的に矩形内部にスリットが入った矩形パターンを有する第2の透明導電膜52(図7には導電部521とスリット522とからなる第2の透明導電膜52を示す)との2種類であり、これらを第1の透明導電膜51の穴部512が第2の透明導電膜52の導電部521と重なる位置に配置して、上下に組み合わせることで静電容量式タッチパネルの容量検知センサーとして用いる。透明導電膜5は1枚の透明基材の両面にパターニングしても良いし、別々の透明基材にそれぞれパターニングした透明導電膜を設けて、透明粘着層6を介して貼り合わせて上下に配置しても良い。透明導電膜5により構成された各電極はそれぞれ金属配線(図示せず)と接続され、第1の透明導電膜51による電極と第2の透明導電膜52による電極の間の容量変化を検出する回路に接続されることで、静電容量式のタッチセンサーとして動作する。タッチセンサーは最終的に透明粘着層6を介してカバーガラス7と貼り合わされることでタッチパネルを作製することができる。 As shown in FIGS. 4 to 7, the pattern formed on the transparent conductive film 5 of the present embodiment is a first transparent conductive film 51 (FIG. 6) having a rectangular pattern with holes substantially inside the rectangle. 7 shows a first transparent conductive film 51 including a conductive portion 511 and a hole 512), and a second transparent conductive film 52 having a rectangular pattern with a slit substantially inside the rectangle (see FIG. 7). 2 shows a second transparent conductive film 52 comprising a conductive portion 521 and a slit 522), and the hole portion 512 of the first transparent conductive film 51 is a conductive portion of the second transparent conductive film 52. It arrange | positions in the position which overlaps with 521, and uses it as a capacity | capacitance detection sensor of an electrostatic capacitance type touch panel by combining up and down. The transparent conductive film 5 may be patterned on both surfaces of a single transparent base material, or a transparent conductive film patterned on each transparent base material is provided and bonded via the transparent adhesive layer 6 and arranged vertically. You may do it. Each electrode constituted by the transparent conductive film 5 is connected to a metal wiring (not shown), and a capacitance change between the electrode formed by the first transparent conductive film 51 and the electrode formed by the second transparent conductive film 52 is detected. When connected to a circuit, it operates as a capacitive touch sensor. The touch sensor is finally bonded to the cover glass 7 through the transparent adhesive layer 6 to produce a touch panel.
 第1の透明導電膜51のパターンと第2の透明導電膜52のパターンとの重なり部の面積は、例えば1ヶ所あたり0.0025mm以上0.10mm以下の範囲内とすることができる。また例えば、第1の透明導電膜51の穴512は、第2の透明導電膜52のパターンを横断する辺に沿った幅を、当該辺が重なり合う第2の透明導電膜52の幅より0.020mm以上0.15mm以下だけ広くすることができる。また例えば、第2の透明導電膜52のパターンの非スリット部(導電部521)の最狭部幅は0.050mm以上0.35mm以下の範囲内にすることができる。また例えば、第2の透明導電膜52のパターンのスリット部(スリット522)の最狭部幅は非スリット部(導電部521)の最狭部幅と同じか非スリット部の最狭部幅よりも広くすることができる。透明導電膜は例えば金属ナノワイヤを少なくとも含んでもよく、当該金属ナノワイヤは例えば樹脂層2に覆われていてもよい。第1の透明導電膜51と第2の透明導電膜52との間の最短の距離は例えば20μm以上150μm以下の範囲内とすることができる。 Area of the overlapping portion between the pattern of the first transparent conductive film 51 pattern of the second transparent conductive film 52 may be, for example, in the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one place. Further, for example, the hole 512 of the first transparent conductive film 51 has a width along the side crossing the pattern of the second transparent conductive film 52 that is less than the width of the second transparent conductive film 52 that overlaps the side. It can be widened by 020 mm or more and 0.15 mm or less. For example, the narrowest part width of the non-slit part (conductive part 521) of the pattern of the second transparent conductive film 52 can be within a range of 0.050 mm or more and 0.35 mm or less. For example, the narrowest part width of the slit part (slit 522) of the pattern of the second transparent conductive film 52 is the same as the narrowest part width of the non-slit part (conductive part 521) or more than the narrowest part width of the non-slit part. Can also be widened. The transparent conductive film may include, for example, at least metal nanowires, and the metal nanowires may be covered with, for example, the resin layer 2. The shortest distance between the 1st transparent conductive film 51 and the 2nd transparent conductive film 52 can be in the range of 20 micrometers or more and 150 micrometers or less, for example.
 上記の各構成のタッチパネルによれば、タッチパネルの透過光の散乱を表すヘイズ率を1.5%以下にすることができる。 According to the touch panel having each configuration described above, the haze ratio representing scattering of transmitted light through the touch panel can be 1.5% or less.
(第2の実施形態)
 第2の実施形態の透明導電膜5には、図8又は図9に平面図で示したようなパターンを施す。図9の透明導電膜パターン81は、図8の透明導電膜パターン80を構成する繰り返しの単位パターンを抜き出して示したものである。パターンが施された透明導電膜5として、実質的に矩形内部にスリットが入った矩形パターンを有する、第1の透明導電膜91と第2の透明導電膜52とが形成される。図10および図7のように、形成されるパターンは、導電性パターン領域(図10の第1の透明導電膜91では導電部911およびダミーパターンであるダミー部913からなり、図7の第2の透明導電膜52では導電部521からなる)と、非導電性パターン領域(図10の第1の透明導電膜91ではダミー部913を内部に含むスリット部912からなり、図7の第2の透明導電膜52ではスリット部522からなる)とからなる。導電性パターン領域は、金属配線(図示せず)と接しており、電圧変化を検知できる回路に接続されている。人の指等が検出電極である導電性パターン領域に接近すると、全体の静電容量が変化することから回路の電圧が変動し、接触位置の判定ができる。図10および図7のパターンを貼り合せ、電圧変化検知回路と接続することにより、2次元の位置情報が得られる。
(Second Embodiment)
The transparent conductive film 5 of the second embodiment has a pattern as shown in the plan view of FIG. 8 or FIG. The transparent conductive film pattern 81 in FIG. 9 is an extracted unit pattern that forms the transparent conductive film pattern 80 in FIG. As the transparent conductive film 5 provided with the pattern, a first transparent conductive film 91 and a second transparent conductive film 52 having a rectangular pattern with slits substantially inside the rectangle are formed. As shown in FIGS. 10 and 7, the pattern to be formed is composed of a conductive pattern region (the first transparent conductive film 91 in FIG. 10 includes a conductive portion 911 and a dummy portion 913 which is a dummy pattern. The transparent conductive film 52 includes a conductive portion 521) and a non-conductive pattern region (the first transparent conductive film 91 in FIG. 10 includes a slit portion 912 including a dummy portion 913 therein. The transparent conductive film 52 includes a slit portion 522. The conductive pattern region is in contact with a metal wiring (not shown), and is connected to a circuit that can detect a voltage change. When a human finger or the like approaches the conductive pattern region that is the detection electrode, the overall capacitance changes, so that the voltage of the circuit fluctuates and the contact position can be determined. The two-dimensional position information can be obtained by pasting the patterns of FIGS. 10 and 7 and connecting to the voltage change detection circuit.
 透明導電膜5のパターン形成方法としては、透明導電膜5上にレジストを塗布または貼り合わせ、パターンを露光・現像により形成した後に透明導電膜5を化学的に溶解させるフォトリソグラフィによる方法、真空中で化学反応により気化させる方法、レーザーにより透明導電膜を昇華させる方法、などが挙げられる。パターン形成方法は、パターンの形状、精度等により適宜選択できるが、パターン精度、細線化を考慮し、フォトリソグラフィによる方法が好ましい。 As a pattern formation method for the transparent conductive film 5, a resist is applied or bonded onto the transparent conductive film 5, a pattern is formed by exposure and development, and then the transparent conductive film 5 is chemically dissolved, or in vacuum And a method of vaporizing by a chemical reaction, a method of sublimating a transparent conductive film with a laser, and the like. The pattern forming method can be appropriately selected depending on the shape, accuracy, etc. of the pattern, but in consideration of pattern accuracy and thinning, a photolithography method is preferable.
 図10に示すように、第1の透明導電膜91には、スリット部912の内部にダミーパターンであるダミー部913がパターン形成される。これにより、第1の透明導電膜91の各スリット部912の内部に配置された、隣接するダミー部913の間に穴914が形成される。第1の透明導電膜91と第2の透明導電膜52とは、穴914が第2の透明導電膜52の導電部521と重なる位置に配置して、上下に組み合わせられる。このとき、タッチパネル面に対する平面視において、第1の透明導電膜ダミー部913は対向する第2の透明導電膜52との重なり部を有しない。パターン形成された透明導電膜5は、静電容量式タッチパネルの容量検知センサーとして用いることができる。透明導電膜5は1枚の透明基材の両面に配置しても良いし、別々の透明基材にそれぞれパターニングした透明導電膜5を設けて、透明粘着層6を介して貼り合わせて上下に配置しても良い。透明導電膜5により構成された各電極はそれぞれ金属配線(図示せず)と接続され、第1の透明導電膜91による電極と第2の透明導電膜52による電極との間の容量変化を検出する回路に接続されることで、静電容量式のタッチセンサーとして動作する。タッチセンサーは最終的に透明粘着層6を介してカバーガラス7と貼り合わされることでタッチパネルを作製することができる。 As shown in FIG. 10, in the first transparent conductive film 91, a dummy portion 913, which is a dummy pattern, is patterned inside the slit portion 912. As a result, a hole 914 is formed between adjacent dummy portions 913 arranged inside each slit portion 912 of the first transparent conductive film 91. The first transparent conductive film 91 and the second transparent conductive film 52 are vertically combined with the hole 914 disposed at a position where it overlaps the conductive portion 521 of the second transparent conductive film 52. At this time, the first transparent conductive film dummy portion 913 does not have an overlapping portion with the opposing second transparent conductive film 52 in a plan view with respect to the touch panel surface. The patterned transparent conductive film 5 can be used as a capacitance detection sensor of a capacitive touch panel. The transparent conductive film 5 may be disposed on both surfaces of a single transparent substrate, or the transparent conductive film 5 that is patterned on each transparent substrate is provided and bonded via the transparent adhesive layer 6 up and down. It may be arranged. Each electrode constituted by the transparent conductive film 5 is connected to a metal wiring (not shown), and a capacitance change between the electrode formed by the first transparent conductive film 91 and the electrode formed by the second transparent conductive film 52 is detected. By connecting to a circuit that operates, it operates as a capacitive touch sensor. The touch sensor is finally bonded to the cover glass 7 through the transparent adhesive layer 6 to produce a touch panel.
 第1の透明導電膜91のパターンと第2の透明導電膜52のパターンとの重なり部の面積は、例えば1ヶ所あたり0.0025mm以上0.10mm以下の範囲内とすることができる。また例えば、第1の透明導電膜91の穴914は、第2の透明導電膜52のパターンを横断する辺に沿った幅を、当該辺が重なり合う第2の透明導電膜52の幅より0.020mm以上0.15mm以下だけ広くすることができる。また例えば、第1の透明導電膜91のパターン及び第2の透明導電膜52のパターンの各非スリット部(第1の透明導電膜導電部911、第2の透明導電膜導電部521)の最狭部幅は0.050mm以上0.35mm以下の範囲内とすることができる。また例えば、第1の透明導電膜91のパターン及び第2の透明導電膜52のパターンのスリット部(第1の透明導電膜スリット部912、第2の透明導電膜スリット部522)の各最狭部幅はそれぞれの上記非スリット部の最狭部幅と同じか上記非スリット部の最狭部幅よりも広くすることができる。透明導電膜は例えば金属ナノワイヤを少なくとも含んでもよく、当該金属ナノワイヤは例えば樹脂層2に覆われていてもよい。第1の透明導電膜51と第2の透明導電膜との間の最短の距離は例えば20μm以上150μm以下の範囲内とすることができる。 Area of the overlapping portion between the pattern of the first transparent conductive film 91 pattern of the second transparent conductive film 52 may be, for example, in the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one place. Further, for example, the hole 914 of the first transparent conductive film 91 has a width along the side crossing the pattern of the second transparent conductive film 52 that is less than the width of the second transparent conductive film 52 that overlaps the side. It can be widened by 020 mm or more and 0.15 mm or less. Further, for example, the most of the non-slit portions (the first transparent conductive film conductive portion 911 and the second transparent conductive film conductive portion 521) of the pattern of the first transparent conductive film 91 and the pattern of the second transparent conductive film 52. The narrow portion width can be in the range of 0.050 mm or more and 0.35 mm or less. Further, for example, the narrowest of the slit portions (the first transparent conductive film slit portion 912 and the second transparent conductive film slit portion 522) of the pattern of the first transparent conductive film 91 and the pattern of the second transparent conductive film 52. The part width can be the same as the narrowest part width of each non-slit part or wider than the narrowest part width of the non-slit part. The transparent conductive film may include, for example, at least metal nanowires, and the metal nanowires may be covered with, for example, the resin layer 2. The shortest distance between the 1st transparent conductive film 51 and the 2nd transparent conductive film can be in the range of 20 micrometers or more and 150 micrometers or less, for example.
 上記の各構成のタッチパネルによれば、タッチパネルの透過光の散乱を表すヘイズ率を1.5%以下にすることができる。 According to the touch panel having each configuration described above, the haze ratio representing scattering of transmitted light through the touch panel can be 1.5% or less.
 以下、具体的な実施例によって本発明を詳細に説明するが、これらの実施例は説明を目的としたもので、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of specific examples. However, these examples are for the purpose of explanation, and the present invention is not limited thereto.
<実施例1>
 図1と同様の層構成を持つタッチパネル10を作製した。透明基板1としてPET(50μm)を用い、片面に樹脂層2としてUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで3μmの厚さで形成した。透明基板1の樹脂層2とは反対面に透明導電膜5として銀ナノワイヤをシート抵抗100Ω/□となるようにスロットダイコートで塗工し、同様に硬化膜3としてUV硬化性透明アクリル樹脂を130nmの厚さで塗工した。
<Example 1>
A touch panel 10 having the same layer configuration as that of FIG. 1 was produced. PET (50 μm) was used as the transparent substrate 1, and a UV curable transparent acrylic resin was microgravure coated as a resin layer 2 on one side, followed by drying and UV curing to form a thickness of 3 μm. On the opposite surface of the transparent substrate 1 from the resin layer 2, silver nanowires are coated as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 Ω / □, and similarly a UV curable transparent acrylic resin is 130 nm as the cured film 3. The coating was made with a thickness of.
 得られた透明導電膜付き基材を2分割し、フォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、一方を図4の51で示したパターンに第1の透明導電膜として形成し、もう一方を図4の52で示したパターンに第2の透明導電膜として形成した。第1の透明導電膜51は導電部511に複数の穴部512が有り、穴部の面積はB×Cであり、B=500μm、C=300μmとし、一方向に隣り合う穴部512同士はA=280μmを隔てて配置した。第2の透明導電膜52は導電部521に複数のスリット部522が有り、導電部の幅Dは200μm、スリット部の幅Eは500μmとした。フォトリソグラフィに際し、フォトレジストの現像は炭酸ナトリウム水溶液で行い、塩化第二鉄溶液で銀ナノワイヤをエッチングし、水酸化ナトリウム水溶液でレジストを剥離した。第1及び第2の透明導電膜は隔絶された1つ1つの透明導電膜電極がそれぞれ銀配線に接続されている。銀配線はスクリーン印刷で銀ペーストを印刷することで形成した。配線幅は100μmであった。 The obtained base material with a transparent conductive film is divided into two, exposed and developed with a photoresist by photolithography, and then etched and resist stripped so that one of the first transparent patterns in the pattern indicated by 51 in FIG. It formed as a electrically conductive film, and the other was formed as a 2nd transparent electrically conductive film in the pattern shown by 52 of FIG. The first transparent conductive film 51 has a plurality of holes 512 in the conductive part 511, the area of the hole is B × C, B = 500 μm, C = 300 μm, and the adjacent holes 512 in one direction are A = 280 μm was spaced apart. The second transparent conductive film 52 has a plurality of slit portions 522 in the conductive portion 521, the width D of the conductive portion is 200 μm, and the width E of the slit portion is 500 μm. At the time of photolithography, development of the photoresist was performed with an aqueous sodium carbonate solution, the silver nanowires were etched with a ferric chloride solution, and the resist was peeled off with an aqueous sodium hydroxide solution. Each of the first and second transparent conductive films isolated from each other is connected to a silver wiring. The silver wiring was formed by printing a silver paste by screen printing. The wiring width was 100 μm.
 以上より得られた第1の透明導電膜51がついた基材と第2の透明導電膜52がパターン形成された基材との2枚の基材を75μm厚の透明粘着層6を用いて貼り合わせ、最表面に0.55mm厚のカバーガラス7を同様に貼り合わせることで、タッチパネル10を得た。第1の透明導電膜51及び第2の透明導電膜52は図4や図5に示したように第1の透明導電膜51の複数の穴部512上に第2の透明導電膜52の導電部521が配置されるように位置精度良く貼り合わせた。タッチパネル10の動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ89.8%及び1.0%で、蛍光灯下で観察した時パターン形状は目立たずほとんど見えなかった。 Using the 75 μm-thick transparent adhesive layer 6, the two substrates, the substrate with the first transparent conductive film 51 and the substrate with the second transparent conductive film 52 patterned, obtained as described above, are used. The touch panel 10 was obtained by pasting together and similarly pasting the cover glass 7 having a thickness of 0.55 mm on the outermost surface. As shown in FIGS. 4 and 5, the first transparent conductive film 51 and the second transparent conductive film 52 are conductive in the second transparent conductive film 52 over the plurality of holes 512 of the first transparent conductive film 51. Bonding was performed with high positional accuracy so that the portion 521 was arranged. The operation of the touch panel 10 can be satisfactorily detected by touching the finger and detecting the coordinate position by confirming the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board. The total light transmittance and haze ratio measured through the cover glass 7 were 89.8% and 1.0%, respectively, and when observed under a fluorescent lamp, the pattern shape was inconspicuous and almost invisible.
<実施例2>
 図2と同様の層構成を持つタッチパネル20を作製した。透明基板1としてPET(50μm)を用い、両面に樹脂層2としてUV吸収剤を20wt%添加したUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで5μmの厚さで形成した。更に両面に透明導電膜5として銀ナノワイヤをシート抵抗100Ω/□となるようにスロットダイコートで塗工し、同様に硬化膜3としてUV硬化性透明アクリル樹脂を130nmの厚さで塗工した。
<Example 2>
A touch panel 20 having the same layer configuration as that of FIG. 2 was produced. After using PET (50 μm) as the transparent substrate 1 and microgravure coating a UV curable transparent acrylic resin to which 20 wt% of UV absorber is added as the resin layer 2 on both sides, the thickness is 5 μm by drying and UV curing. Formed. Further, silver nanowires were coated on both sides as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 Ω / □, and similarly a UV curable transparent acrylic resin was applied as a cured film 3 with a thickness of 130 nm.
 得られた両面透明導電膜付き基材を、実施例1と同様にフォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、一方の面を図4の51で示したパターンに第1の透明導電膜として形成し、もう一方の面を図4の52で示したパターンに第2の透明導電膜として形成した。第1の透明導電膜51及び第2の透明導電膜52のパターン形状は実施例1と同様にした。第1の透明導電膜51及び第2の透明導電膜52は、図4や図5に示したように、第1の透明導電膜51の複数の穴部512上に第2の透明導電膜52の導電部521が配置されるように形成した。また、銀配線も実施例1と同様に形成した。 The obtained double-sided transparent conductive film-coated substrate was exposed and developed with a photoresist by photolithography in the same manner as in Example 1, and then etched and stripped of the resist. The pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG. The pattern shapes of the first transparent conductive film 51 and the second transparent conductive film 52 were the same as those in Example 1. As shown in FIGS. 4 and 5, the first transparent conductive film 51 and the second transparent conductive film 52 are formed on the plurality of holes 512 of the first transparent conductive film 51. The conductive portion 521 is disposed. Silver wiring was also formed in the same manner as in Example 1.
 以上より得られた基材の第2の透明導電膜52側に、75μm厚の透明粘着層6を用いて0.55mm厚のカバーガラス7を貼り合わせることで、タッチパネル20を得た。タッチパネル20の動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ91.0%及び0.9%で、蛍光灯下で観察した時パターン形状は目立たずほとんど見えなかった。 The touch panel 20 was obtained by pasting the cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the base material obtained as described above by using the transparent adhesive layer 6 having a thickness of 75 μm. The operation of the touch panel 20 can be satisfactorily detected by touching the finger and detecting the coordinate position by confirming the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board. The total light transmittance and haze ratio measured through the cover glass 7 were 91.0% and 0.9%, respectively, and the pattern shape was not noticeable and hardly visible when observed under a fluorescent lamp.
<実施例3>
 図3と同様の層構成を持つタッチパネル30を作製した。透明基板1としてPET(50μm)を用い、両面に樹脂層2としてUV吸収剤を20wt%添加したUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで5μmの厚さで形成した。更に両面に光学調整層4として、ジルコニア粒子入りのUV硬化性アクリル樹脂を90nmの厚さで形成した。この時、光学調整層4の屈折率は1.70であった。得られた基材は更に両面に透明導電膜5としてITO(錫含有率5wt%)を真空でDCマグネトロンスパッタリングにより22nmの厚さで形成し、これを150℃、60分でアニールすることにより、片面のシート抵抗を150Ω/□で得た。
<Example 3>
A touch panel 30 having the same layer configuration as that of FIG. 3 was produced. After using PET (50 μm) as the transparent substrate 1 and microgravure coating a UV curable transparent acrylic resin to which 20 wt% of UV absorber is added as the resin layer 2 on both sides, the thickness is 5 μm by drying and UV curing. Formed. Further, a UV curable acrylic resin containing zirconia particles was formed to a thickness of 90 nm as the optical adjustment layer 4 on both sides. At this time, the refractive index of the optical adjustment layer 4 was 1.70. The obtained base material is further formed by forming a transparent conductive film 5 on both sides with ITO (tin content 5 wt%) in a thickness of 22 nm by DC magnetron sputtering in vacuum, and annealing this at 150 ° C. for 60 minutes, The sheet resistance on one side was obtained at 150Ω / □.
 得られた両面透明導電膜付き基材を、実施例1と同様にフォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、一方の面を図4の51で示したパターンに第1の透明導電膜として形成し、もう一方の面を図4の52で示したパターンに第2の透明導電膜として形成した。第1の透明導電膜51及び第2の透明導電膜52のパターン形状は実施例1と同様にした。第1の透明導電膜51及び第2の透明導電膜52は図4や図5に示したように第1の透明導電膜51の複数の穴部512上に第2の透明導電膜52の導電部521が配置されるように形成した。また、銀配線も実施例1と同様に形成した。更に得られた基材の第1の透明導電膜51側には硬化膜3として透明樹脂をスクリーン印刷で塗工した後、UV硬化することにより10μm厚で形成した。 The obtained double-sided transparent conductive film-coated substrate was exposed and developed with a photoresist by photolithography in the same manner as in Example 1, and then etched and stripped of the resist. The pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG. The pattern shapes of the first transparent conductive film 51 and the second transparent conductive film 52 were the same as those in Example 1. As shown in FIGS. 4 and 5, the first transparent conductive film 51 and the second transparent conductive film 52 are conductive in the second transparent conductive film 52 over the plurality of holes 512 of the first transparent conductive film 51. The part 521 was formed so as to be arranged. Silver wiring was also formed in the same manner as in Example 1. Further, a transparent resin was applied as a cured film 3 on the first transparent conductive film 51 side of the obtained substrate by screen printing, and then UV cured and formed to a thickness of 10 μm.
 以上より得られた基材の第2の透明導電膜52側に、75μm厚の透明粘着層6を用いて0.55mm厚のカバーガラス7を貼り合わせることで、タッチパネル30を得た。タッチパネル30の動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ90.5%及び0.7%で、蛍光灯下で観察した時パターン形状は目立たずほとんど見えなかった。 The touch panel 30 was obtained by pasting the cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the base material obtained from the above using the transparent adhesive layer 6 having a thickness of 75 μm. The operation of the touch panel 30 can be satisfactorily detected by touching the finger and detecting the coordinate position by confirming the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board. The total light transmittance and haze ratio measured through the cover glass 7 were 90.5% and 0.7%, respectively, and the pattern shape was not noticeable and almost invisible when observed under a fluorescent lamp.
<実施例4>
 図1と同様の層構成を持つタッチパネル10を作製した。透明基板としてPET(50μm)を用い、片面に樹脂層2としてUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで3μmの厚さで形成した。基板の樹脂層2とは反対面に透明導電膜5として銀ナノワイヤをシート抵抗100Ω/□となるようにスロットダイコートで塗工し、同様に硬化膜3としてUV硬化性透明アクリル樹脂を130nmの厚さで塗工した。
<Example 4>
A touch panel 10 having the same layer configuration as that of FIG. 1 was produced. PET (50 μm) was used as a transparent substrate, and UV curable transparent acrylic resin was microgravure coated as a resin layer 2 on one side, and then dried and UV cured to form a thickness of 3 μm. On the surface opposite to the resin layer 2 of the substrate, silver nanowires are coated as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 Ω / □, and similarly a UV curable transparent acrylic resin as a cured film 3 is 130 nm thick. I applied.
 得られた透明導電膜付き基材を2分割し、フォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、一方を図8の91で示したパターンに第一の透明導電膜として形成し、もう一方を図8の52で示したパターンに第二の透明導電膜として形成した。第1の透明導電膜91は導電部911に複数のスリット部912が有り、スリット内部には、パネル面に対する平面視において第2の透明導電膜52と重なり部を有しないように配置されたダミーパターンであるダミー部913がある。第1の透明導電膜91の導電部の幅Aは200μm、スリット部912の幅Bは300μmとした。第2の透明導電膜52は導電部521に複数のスリット部522が有り、導電部の幅Dは200μm、スリット部の幅Eは500μmとした。フォトリソグラフィに際し、フォトレジストの現像は炭酸ナトリウム水溶液で行い、塩化第二鉄溶液で銀ナノワイヤをエッチングし、水酸化ナトリウム水溶液でレジストを剥離した。 The obtained base material with a transparent conductive film is divided into two parts, exposed and developed with a photoresist by photolithography, and then etched and resist stripped so that one of the first transparent patterns shown in 91 of FIG. The other conductive film was formed as a second transparent conductive film in the pattern indicated by 52 in FIG. The first transparent conductive film 91 has a plurality of slit portions 912 in the conductive portion 911, and a dummy disposed inside the slit so as not to overlap the second transparent conductive film 52 in a plan view with respect to the panel surface. There is a dummy portion 913 which is a pattern. The width A of the conductive portion of the first transparent conductive film 91 was 200 μm, and the width B of the slit portion 912 was 300 μm. The second transparent conductive film 52 has a plurality of slit portions 522 in the conductive portion 521, the width D of the conductive portion is 200 μm, and the width E of the slit portion is 500 μm. At the time of photolithography, development of the photoresist was performed with an aqueous sodium carbonate solution, the silver nanowires were etched with a ferric chloride solution, and the resist was peeled off with an aqueous sodium hydroxide solution.
 第1及び第2の透明導電膜91,52は隔絶された1つ1つの透明導電膜電極がそれぞれ銀配線に接続されている。銀配線はスクリーン印刷で銀ペーストを印刷することで形成した。配線幅は100μmであった。 Each of the first and second transparent conductive films 91 and 52 is isolated from each other and connected to a silver wiring. The silver wiring was formed by printing a silver paste by screen printing. The wiring width was 100 μm.
 以上より得られた第1及び第2の透明導電膜91,52がついた2枚の基材を75μm厚の透明粘着層6を用いて貼り合わせ、最表面に0.55mm厚のカバーガラス7を同様に貼り合わせることで、タッチパネルを得た。第1及び第2の透明導電膜91,52は図8や図9に示したように第1の透明導電膜91のスリット部912のダミー部913と第2の透明導電膜52の導電部521が重ならないように位置精度良く貼り合わせた。この時、第1の透明導電膜91と第2の透明導電膜52とのパターンの重なり部面積は1ヶ所あたり0.04mmであった。タッチパネルの動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。 The two substrates with the first and second transparent conductive films 91 and 52 obtained as described above are bonded together using the 75 μm-thick transparent adhesive layer 6, and a 0.55 mm-thick cover glass 7 is formed on the outermost surface. In the same manner, a touch panel was obtained. As shown in FIGS. 8 and 9, the first and second transparent conductive films 91 and 52 are the dummy part 913 of the slit part 912 of the first transparent conductive film 91 and the conductive part 521 of the second transparent conductive film 52. We stuck together with good position accuracy so as not to overlap. At this time, the overlapping area of the patterns of the first transparent conductive film 91 and the second transparent conductive film 52 was 0.04 mm 2 per place. The operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
 カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ89.9%及び1.0%で、蛍光灯下で観察した時パターン形状は目立たずほとんど見えなかった。 The total light transmittance and haze rate measured through the cover glass 7 were 89.9% and 1.0%, respectively, and the pattern shape was not noticeable and hardly visible when observed under a fluorescent lamp.
<実施例5>
 図2と同様の層構成を持つタッチパネル20を作製した。透明基板としてPET(50μm)を用い、両面に樹脂層2としてUV吸収剤を20wt%添加したUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで5μmの厚さで形成した。更に両面に透明導電膜5として銀ナノワイヤをシート抵抗100Ω/□となるようにスロットダイコートで塗工し、同様に硬化膜3としてUV硬化性透明アクリル樹脂を130nmの厚さで塗工した。
<Example 5>
A touch panel 20 having the same layer configuration as that of FIG. 2 was produced. Using PET (50 μm) as a transparent substrate, a UV curable transparent acrylic resin with 20 wt% of UV absorber added as a resin layer 2 on both sides, microgravure coated, then dried and UV cured to form a thickness of 5 μm did. Further, silver nanowires were coated on both sides as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 Ω / □, and similarly a UV curable transparent acrylic resin was applied as a cured film 3 with a thickness of 130 nm.
 得られた両面透明導電膜付き基材を、実施例4と同様にフォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、一方の面を図8の91で示したパターンに第1の透明導電膜として形成し、もう一方の面を図8の52で示したパターンに第2の透明導電膜として形成した。第1の透明導電膜91及び第2の透明導電膜52のパターン形状は実施例4と同様にした。第1及び第2の透明導電膜91,52は図8や図9に示したように、パネル面に対する平面視において第1の透明導電膜91のスリット部912のダミー部913と第2の透明導電膜52の導電部521が重なり部を有しないように位置精度良く貼り合わせた。この時、第1の透明導電膜91と第2の透明導電膜51とのパターンの重なり部面積は1ヶ所あたり0.04mmであった。また、銀配線も実施例4と同様に形成した。 The obtained double-sided transparent conductive film-attached base material was exposed and developed with a photoresist by photolithography in the same manner as in Example 4, and then etching and resist stripping were performed. The pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG. The pattern shapes of the first transparent conductive film 91 and the second transparent conductive film 52 were the same as those in Example 4. As shown in FIGS. 8 and 9, the first and second transparent conductive films 91 and 52 are provided with the dummy portion 913 and the second transparent portion of the slit portion 912 of the first transparent conductive film 91 in plan view with respect to the panel surface. The conductive portions 521 of the conductive film 52 were bonded with high positional accuracy so as not to have overlapping portions. At this time, the overlapping area of the patterns of the first transparent conductive film 91 and the second transparent conductive film 51 was 0.04 mm 2 per place. Silver wiring was also formed in the same manner as in Example 4.
 以上より得られた基材の第2の透明導電膜52側に、75μm厚の透明粘着層6を用いて0.55mm厚のカバーガラス7を貼り合わせることで、タッチパネルを得た。タッチパネルの動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。 A touch panel was obtained by laminating a cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the substrate obtained as described above by using a transparent adhesive layer 6 having a thickness of 75 μm. The operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
 カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ91.1%及び0.9%で、蛍光灯下で観察した時パターン形状は目立たずほとんど見えなかった。 The total light transmittance and haze ratio measured through the cover glass 7 were 91.1% and 0.9%, respectively, and the pattern shape was not noticeable and almost invisible when observed under a fluorescent lamp.
<実施例6>
 図3と同様の層構成を持つタッチパネル30を作製した。透明基板としてPET(50μm)を用い、両面に樹脂層2としてUV吸収剤を20wt%添加したUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで5μmの厚さで形成した。更に両面に光学調整層4として、ジルコニア粒子入りのUV硬化性アクリル樹脂を90nmの厚さで形成した。この時、光学調整層4の屈折率は1.70であった。得られた基材は更に両面に透明導電膜5としてITO(錫含有率5wt%)を真空でDCマグネトロンスパッタリングにより22nmの厚さで形成し、これを150℃、60分でアニールすることにより、片面のシート抵抗を150Ω/□で得た。
<Example 6>
A touch panel 30 having the same layer configuration as that of FIG. 3 was produced. Using PET (50 μm) as a transparent substrate, a UV curable transparent acrylic resin with 20 wt% of UV absorber added as a resin layer 2 on both sides, microgravure coated, then dried and UV cured to form a thickness of 5 μm did. Further, a UV curable acrylic resin containing zirconia particles was formed to a thickness of 90 nm as the optical adjustment layer 4 on both sides. At this time, the refractive index of the optical adjustment layer 4 was 1.70. The obtained base material is further formed by forming a transparent conductive film 5 on both sides with ITO (tin content 5 wt%) in a thickness of 22 nm by DC magnetron sputtering in vacuum, and annealing this at 150 ° C. for 60 minutes, The sheet resistance on one side was obtained at 150Ω / □.
 得られた両面透明導電膜付き基材を、実施例4と同様にフォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、一方の面を図8の91で示したパターンに第1の透明導電膜として形成し、もう一方の面を図8の52で示したパターンに第2の透明導電膜として形成した。第1の透明導電膜91及び第2の透明導電膜52のパターン形状は実施例4と同様にした。第1及び第2の透明導電膜91,52は図8や図9に示したように、パネル面に対する平面視において第1の透明導電膜91のスリット部812のダミー部813と第2の透明導電膜52の導電部521が重なり部を有しないように位置精度良く貼り合わせた。この時、第1の透明導電膜91と第2の透明導電膜52とのパターンの重なり部面積は1ヶ所あたり0.04mmであった。また、銀配線も実施例4と同様に形成した。更に得られた基材の第1の透明導電膜91側には硬化膜3として透明樹脂をスクリーン印刷で塗工した後、UV硬化することにより10μm厚で形成した。 The obtained double-sided transparent conductive film-attached base material was exposed and developed with a photoresist by photolithography in the same manner as in Example 4, and then etching and resist stripping were performed. The pattern was formed as a first transparent conductive film, and the other surface was formed as a second transparent conductive film in the pattern indicated by 52 in FIG. The pattern shapes of the first transparent conductive film 91 and the second transparent conductive film 52 were the same as those in Example 4. As shown in FIGS. 8 and 9, the first and second transparent conductive films 91 and 52 are provided with the dummy portion 813 and the second transparent portion of the slit portion 812 of the first transparent conductive film 91 in a plan view with respect to the panel surface. The conductive portions 521 of the conductive film 52 were bonded with high positional accuracy so as not to have overlapping portions. At this time, the overlapping area of the patterns of the first transparent conductive film 91 and the second transparent conductive film 52 was 0.04 mm 2 per place. Silver wiring was also formed in the same manner as in Example 4. Further, a transparent resin was applied as a cured film 3 on the first transparent conductive film 91 side of the obtained substrate by screen printing, and then UV cured and formed to a thickness of 10 μm.
 以上より得られた基材の第2の透明導電膜52側に、75μm厚の透明粘着層6を用いて0.55mm厚のカバーガラス7を貼り合わせることで、タッチパネルを得た。タッチパネルの動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。 A touch panel was obtained by laminating a cover glass 7 having a thickness of 0.55 mm to the second transparent conductive film 52 side of the substrate obtained as described above by using a transparent adhesive layer 6 having a thickness of 75 μm. The operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
 カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ90.5%及び0.7%で、蛍光灯下で観察した時パターン形状は目立たずほとんど見えなかった。 The total light transmittance and haze ratio measured through the cover glass 7 were 90.5% and 0.7%, respectively, and the pattern shape was not noticeable and almost invisible when observed under a fluorescent lamp.
<比較例1>
 図1と同様の層構成を持つタッチパネル10を作製した。透明基板としてPET(50μm)を用い、片面に樹脂層2としてUV硬化性透明アクリル樹脂をマイクログラビアコーティングした後、乾燥、UV硬化することで3μmの厚さで形成した。基板の樹脂層2とは反対面に透明導電膜5として銀ナノワイヤをシート抵抗100Ω/□となるようにスロットダイコートで塗工し、同様に硬化膜3としてUV硬化性透明アクリル樹脂を130nmの厚さで塗工した。
<Comparative Example 1>
A touch panel 10 having the same layer configuration as that of FIG. 1 was produced. PET (50 μm) was used as a transparent substrate, and UV curable transparent acrylic resin was microgravure coated as a resin layer 2 on one side, and then dried and UV cured to form a thickness of 3 μm. On the surface opposite to the resin layer 2 of the substrate, silver nanowires are coated as a transparent conductive film 5 by slot die coating so as to have a sheet resistance of 100 Ω / □, and similarly a UV curable transparent acrylic resin as a cured film 3 is 130 nm thick. I applied.
 得られた透明導電膜付き基材を2分割し、フォトリソグラフィにより、フォトレジストで露光・現像した後、エッチング及びレジスト剥離することで、図11の平面図で示す透明導電膜パターン60のように、一方を61で示したパターンに第1の透明導電膜として形成し、もう一方を62で示したパターンに第2の透明導電膜として形成した。フォトリソグラフィに際し、フォトレジストの現像は炭酸ナトリウム水溶液で行い、塩化第二鉄溶液で銀ナノワイヤをエッチングし、水酸化ナトリウム水溶液でレジストを剥離した。 The obtained substrate with a transparent conductive film is divided into two, exposed and developed with a photoresist by photolithography, and then etched and stripped of the resist so that the transparent conductive film pattern 60 shown in the plan view of FIG. 11 is obtained. One was formed as a first transparent conductive film in a pattern indicated by 61, and the other was formed as a second transparent conductive film in a pattern indicated by 62. At the time of photolithography, development of the photoresist was performed with an aqueous sodium carbonate solution, the silver nanowires were etched with a ferric chloride solution, and the resist was peeled off with an aqueous sodium hydroxide solution.
 第1及び第2の透明導電膜61,62は隔絶された1つ1つの透明導電膜電極がそれぞれ銀配線に接続されている。銀配線はスクリーン印刷で銀ペーストを印刷することで形成した。配線幅は100μmであった。 The first and second transparent conductive films 61 and 62 are separated from each other, and each transparent conductive film electrode is connected to a silver wiring. The silver wiring was formed by printing a silver paste by screen printing. The wiring width was 100 μm.
 以上より得られた第1及び第2の透明導電膜61,62がついた2枚の基材を75μm厚の透明粘着層6を用いて貼り合わせ、最表面に0.55mm厚のカバーガラス7を同様に貼り合わせることで、タッチパネルを得た。第1及び第2の透明導電膜61,62は図11に示したように透明導電膜パターンの長辺が互いに90°で交差するように貼り合わせた。タッチパネルの動作は銀配線をフレキシブルプリント基板経由で駆動LSIを接続して動作確認することで、良好に指の接触の検知と座標位置の検出ができた。 The two substrates with the first and second transparent conductive films 61 and 62 obtained as described above are bonded together using the 75 μm-thick transparent adhesive layer 6, and a 0.55 mm-thick cover glass 7 is formed on the outermost surface. In the same manner, a touch panel was obtained. As shown in FIG. 11, the first and second transparent conductive films 61 and 62 were bonded so that the long sides of the transparent conductive film pattern intersected each other at 90 °. The operation of the touch panel was confirmed by detecting the contact of the finger and the coordinate position by checking the operation by connecting the driving LSI to the silver wiring via the flexible printed circuit board.
 カバーガラス7越しに測定した全光線透過率及びヘイズ率はそれぞれ89.5%及び1.0%であったが、第2の透明導電膜52のパターンが蛍光灯下で明瞭に観察され、外観品質の劣るタッチパネルとなった。 The total light transmittance and haze ratio measured through the cover glass 7 were 89.5% and 1.0%, respectively, but the pattern of the second transparent conductive film 52 was clearly observed under a fluorescent lamp, and the appearance The touch panel was inferior in quality.
<比較例2>
 比較例1の第2の透明導電膜62のパターンが図12に平面図で示した透明導電膜パターン72であることを除いて、全て比較例1と同様に図1に示した構造のタッチパネルを作製した。第2の透明導電膜72の電極間の小正方形は電気的に絶縁されたダミーパターンである。
<Comparative example 2>
The touch panel having the structure shown in FIG. 1 is the same as in Comparative Example 1 except that the pattern of the second transparent conductive film 62 in Comparative Example 1 is the transparent conductive film pattern 72 shown in the plan view of FIG. Produced. Small squares between the electrodes of the second transparent conductive film 72 are electrically insulated dummy patterns.
 タッチパネルの動作確認を行ったところ良好に指の接触の検知と座標位置の検出ができ、蛍光灯下で観察した透明導電膜のパターンが目立たなかった、全光線透過率及びヘイズが88.7%及び1.9%であり、外観品質として透明感の劣るタッチパネルとなった。 When the operation of the touch panel was checked, finger contact detection and coordinate position detection were successful, the transparent conductive film pattern observed under a fluorescent lamp was inconspicuous, and the total light transmittance and haze were 88.7%. And 1.9%, resulting in a touch panel with inferior transparency as appearance quality.
 本発明のタッチパネルは、特に静電容量式タッチパネルとして用いられ、スマートフォンやタブレット、ノートPCなどの前面に配置されるユーザーインターフェースとして利用可能である。 The touch panel of the present invention is particularly used as a capacitive touch panel, and can be used as a user interface arranged on the front surface of a smartphone, tablet, notebook PC or the like.
 1           透明基板
 2           樹脂層
 3           硬化膜
 4           光学調整層
 5           透明導電膜
 6           透明粘着層
 7           カバーガラス
 10、20、30    タッチパネル
 40、41、80、81 タッチパネルの透明導電膜パターン
 51、91       第1の透明導電膜
 52          第2の透明導電膜
 511、911     第1の透明導電膜導電部
 512、914     第1の透明導電膜穴部
 912         第1の透明導電膜スリット部
 913         第1の透明導電膜ダミー部
 521         第2の透明導電膜導電部
 522         第2の透明導電膜スリット部
 60、70       比較例のタッチパネルの透明導電膜パターン
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Resin layer 3 Cured film 4 Optical adjustment layer 5 Transparent conductive film 6 Transparent adhesion layer 7 Cover glass 10, 20, 30 Touch panel 40, 41, 80, 81 Transparent conductive film pattern 51, 91 of 1st transparency Conductive film 52 Second transparent conductive film 511, 911 First transparent conductive film conductive part 512, 914 First transparent conductive film hole part 912 First transparent conductive film slit part 913 First transparent conductive film dummy part 521 Second transparent conductive film conductive part 522 Second transparent conductive film slit part 60, 70 Transparent conductive film pattern of touch panel of comparative example

Claims (12)

  1.  少なくとも、第1の透明基板と、前記第1の透明基板の一方の面にパターン形成された第1の透明導電膜と、前記第1の透明導電膜に接続された第1の金属配線と、第2の透明基板と、前記第2の透明基板の一方の面にパターン形成された第2の透明導電膜と、前記第2の透明導電膜に接続された第2の金属配線と、透明粘着層とを備えたタッチパネルであって、
     前記第1の透明導電膜は実質的に矩形内部に穴が開いた矩形パターンであり、
     前記第2の透明導電膜は実質的に矩形内部にスリットが入った矩形パターンであり、
     前記第1の透明導電膜の穴は前記第2の透明導電膜と重なる位置に配置されている、タッチパネル。
    At least a first transparent substrate, a first transparent conductive film patterned on one surface of the first transparent substrate, a first metal wiring connected to the first transparent conductive film, A second transparent substrate, a second transparent conductive film patterned on one surface of the second transparent substrate, a second metal wiring connected to the second transparent conductive film, and a transparent adhesive A touch panel comprising a layer,
    The first transparent conductive film is a rectangular pattern having holes substantially inside the rectangle,
    The second transparent conductive film is a rectangular pattern having slits substantially inside the rectangle,
    The touch panel, wherein the hole of the first transparent conductive film is disposed at a position overlapping the second transparent conductive film.
  2.  少なくとも、透明基板と、前記透明基板の一方の面にパターン形成された第1の透明導電膜と、前記第1の透明導電膜に接続された第1の金属配線と、前記透明基板の他方の面にパターン形成された第2の透明導電膜と、前記第2の透明導電膜に接続された第2の金属配線とを備えたタッチパネルであって、
     前記第1の透明導電膜は実質的に矩形内部に穴が開いた矩形パターンであり、
     前記第2の透明導電膜は実質的に矩形内部にスリットが入った矩形パターンであり、
     前記第1の透明導電膜の穴は前記第2の透明導電膜と重なる位置に配置されている、タッチパネル。
    At least a transparent substrate, a first transparent conductive film patterned on one surface of the transparent substrate, a first metal wiring connected to the first transparent conductive film, and the other of the transparent substrate A touch panel comprising a second transparent conductive film patterned on a surface and a second metal wiring connected to the second transparent conductive film,
    The first transparent conductive film is a rectangular pattern having holes substantially inside the rectangle,
    The second transparent conductive film is a rectangular pattern having slits substantially inside the rectangle,
    The touch panel, wherein the hole of the first transparent conductive film is disposed at a position overlapping the second transparent conductive film.
  3.  前記第1の透明導電膜の穴は、前記第1の透明導電膜に形成されたスリットにダミーパターンを配置して形成され、
     タッチパネル面に対する平面視において、前記ダミーパターンは対向する前記第2の透明導電膜との重なり部を有しない、請求項1または2に記載のタッチパネル。
    The hole of the first transparent conductive film is formed by arranging a dummy pattern in a slit formed in the first transparent conductive film,
    3. The touch panel according to claim 1, wherein the dummy pattern does not have an overlapping portion with the opposing second transparent conductive film in a plan view with respect to the touch panel surface.
  4.  タッチパネル面に対する平面視において前記第1の透明導電膜のパターンと前記第2の透明導電膜のパターンの重なり部の面積が1ヶ所あたり0.0025mm以上0.10mm以下の範囲内にある、請求項1から3のいずれかに記載のタッチパネル。 Area of the overlapping portion of the pattern of the first of said pattern of the transparent conductive film second transparent conductive film in a plan view with respect to the touch panel surface is within the range of 0.0025 mm 2 or more 0.10 mm 2 or less per one place, The touch panel according to claim 1.
  5.  前記第1の透明導電膜の穴は、前記第2の透明導電膜のパターンを横断する辺に沿った幅が、当該辺が重なり合う前記第2の透明導電膜のパターンの幅より0.020mm以上0.15mm以下だけ広い、請求項1から4のいずれかに記載のタッチパネル。 The hole of the first transparent conductive film has a width along the side crossing the pattern of the second transparent conductive film that is 0.020 mm or more than the width of the pattern of the second transparent conductive film with which the side overlaps. The touch panel according to claim 1, which is wide by 0.15 mm or less.
  6.  少なくとも前記第2の透明導電膜のパターンの非スリット部の最狭部幅が0.050mm以上0.35mm以下の範囲内にある、請求項1から5のいずれかに記載のタッチパネル。 6. The touch panel according to claim 1, wherein at least a narrowest width of the non-slit portion of the second transparent conductive film pattern is in a range of 0.050 mm to 0.35 mm.
  7.  少なくとも前記第2の透明導電膜のパターンのスリット部の最狭部幅が非スリット部の最狭部幅と同じか前記非スリット部の最狭部幅よりも広い、請求項1から6のいずれかに記載のタッチパネル。 The narrowest part width of the slit part of at least the pattern of the second transparent conductive film is the same as the narrowest part width of the non-slit part or wider than the narrowest part width of the non-slit part. The touch panel as described in Crab.
  8.  前記透明導電膜が金属ナノワイヤを少なくとも含む、請求項1から7のいずれかに記載のタッチパネル。 The touch panel according to any one of claims 1 to 7, wherein the transparent conductive film includes at least metal nanowires.
  9.  前記金属ナノワイヤが樹脂層に覆われている、請求項8に記載のタッチパネル。 The touch panel according to claim 8, wherein the metal nanowire is covered with a resin layer.
  10.  前記第1の透明導電膜と前記第2の透明導電膜との間の最短の距離が20μm以上150μm以下の範囲内にある、請求項1から9のいずれかに記載のタッチパネル。 10. The touch panel according to claim 1, wherein a shortest distance between the first transparent conductive film and the second transparent conductive film is in a range of 20 μm to 150 μm.
  11.  前記透明基板の厚さが20μm以上150μm以下の範囲内にある、請求項1から10のいずれかに記載のタッチパネル。 The touch panel according to any one of claims 1 to 10, wherein a thickness of the transparent substrate is in a range of 20 µm to 150 µm.
  12.  前記タッチパネルの透過光の散乱を表すヘイズ率が1.5%以下である、請求項1から11のいずれかに記載のタッチパネル。 The touch panel according to any one of claims 1 to 11, wherein a haze ratio representing scattering of transmitted light of the touch panel is 1.5% or less.
PCT/JP2014/001193 2013-03-27 2014-03-04 Touch panel WO2014155982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508002A JP6308211B2 (en) 2013-03-27 2014-03-04 Touch panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-066592 2013-03-27
JP2013066592 2013-03-27
JP2013097563 2013-05-07
JP2013-097563 2013-05-07

Publications (1)

Publication Number Publication Date
WO2014155982A1 true WO2014155982A1 (en) 2014-10-02

Family

ID=51623003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001193 WO2014155982A1 (en) 2013-03-27 2014-03-04 Touch panel

Country Status (3)

Country Link
JP (1) JP6308211B2 (en)
TW (1) TWI595615B (en)
WO (1) WO2014155982A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149012A (en) * 2018-02-27 2019-09-05 日東電工株式会社 Transparent conductive film laminate and method for producing transparent conductive film
JP7442283B2 (en) 2019-09-02 2024-03-04 日東電工株式会社 Transparent conductive film, transparent conductive film manufacturing method and intermediate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632503B (en) * 2017-12-15 2018-08-11 友達光電股份有限公司 Touch panel
CN110262693B (en) * 2019-06-21 2022-07-15 友达光电(昆山)有限公司 Touch control display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079734A (en) * 2008-09-26 2010-04-08 Casio Computer Co Ltd Electrostatic capacitance type touch panel
JP2010122951A (en) * 2008-11-20 2010-06-03 Rohm Co Ltd Input device
WO2012147917A1 (en) * 2011-04-28 2012-11-01 日本写真印刷株式会社 Mutual capacitance touch panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448250B1 (en) * 2010-08-19 2014-10-08 삼성디스플레이 주식회사 Touch Screen Panel
TW201234243A (en) * 2011-02-01 2012-08-16 Ind Tech Res Inst Projective capacitive touch sensor structure and fabricating method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079734A (en) * 2008-09-26 2010-04-08 Casio Computer Co Ltd Electrostatic capacitance type touch panel
JP2010122951A (en) * 2008-11-20 2010-06-03 Rohm Co Ltd Input device
WO2012147917A1 (en) * 2011-04-28 2012-11-01 日本写真印刷株式会社 Mutual capacitance touch panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019149012A (en) * 2018-02-27 2019-09-05 日東電工株式会社 Transparent conductive film laminate and method for producing transparent conductive film
JP7219006B2 (en) 2018-02-27 2023-02-07 日東電工株式会社 Transparent conductive film laminate and method for producing transparent conductive film
JP7442283B2 (en) 2019-09-02 2024-03-04 日東電工株式会社 Transparent conductive film, transparent conductive film manufacturing method and intermediate

Also Published As

Publication number Publication date
TW201448148A (en) 2014-12-16
TWI595615B (en) 2017-08-11
JPWO2014155982A1 (en) 2017-02-16
JP6308211B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
US9983708B2 (en) Transparent conductive laminates and touch panels having transparent conductive laminates
JP4888608B2 (en) Conductive substrate, manufacturing method thereof, and touch panel
KR101340026B1 (en) Electrostatic capacity type touch screen panel and method for fabricating the same
KR101743335B1 (en) Touch panel member and manufacturing method therefor
WO2015045408A1 (en) Touch panel
TWI722159B (en) Touch sensor and method for preparing the same
US20150370377A1 (en) Touch panel and manufacturing method of touch panel
TWI569289B (en) Conductive structure body and method for manufacturing the same, and display device
JP2012203701A (en) Touch panel member, substrate with transparent electrode layer, substrate laminate type touch panel member, and coordinate detection device using touch panel member or substrate laminate type touch panel member
US20130161178A1 (en) Touch panel and method for manufacturing the same
KR20150075908A (en) Touch sensor and method of manufacturing the same
TW201530385A (en) Touch sensor
JP6308211B2 (en) Touch panel
JP2013191069A (en) Transparent conductive laminate and touch panel
JP6476578B2 (en) Touch panel
JP2015184994A (en) Transparent conductive laminate and touch panel having transparent conductive laminate
JP2013200994A (en) Transparent conductive film, touch panel, and method for manufacturing transparent conductive film
JP6375603B2 (en) Transparent conductive laminate
JP2015129992A (en) Touch panel sensor and method for manufacturing touch panel sensor
JP2014174857A (en) Transparent conductive laminate and manufacturing method thereof
JP2016021138A (en) Transparent conductive film and capacitive touch sensor prepared therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775851

Country of ref document: EP

Kind code of ref document: A1