WO2014155970A1 - Electric razor - Google Patents

Electric razor Download PDF

Info

Publication number
WO2014155970A1
WO2014155970A1 PCT/JP2014/001058 JP2014001058W WO2014155970A1 WO 2014155970 A1 WO2014155970 A1 WO 2014155970A1 JP 2014001058 W JP2014001058 W JP 2014001058W WO 2014155970 A1 WO2014155970 A1 WO 2014155970A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
unit
force
iron core
outer blade
Prior art date
Application number
PCT/JP2014/001058
Other languages
French (fr)
Japanese (ja)
Inventor
憲二 成田
新太郎 松尾
佐近 茂俊
茂 立田
中山 敏
Original Assignee
パナソニック 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック 株式会社 filed Critical パナソニック 株式会社
Publication of WO2014155970A1 publication Critical patent/WO2014155970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B19/00Clippers or shavers operating with a plurality of cutting edges, e.g. hair clippers, dry shavers
    • B26B19/28Drive layout for hair clippers or dry shavers, e.g. providing for electromotive drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/04Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the frequency of operation is determined by the frequency of uninterrupted AC energisation

Definitions

  • the present invention relates to an electric razor.
  • Patent Document 1 discloses an example of a conventional electric razor.
  • FIG. 5 shows an electric razor 900 of Patent Document 1.
  • the electric razor 900 has a grip portion 910, a blade head 920, a solenoid 930, and a rod 940.
  • the blade head 920 includes a head housing 921, an outer blade 922, and a head base 923.
  • the solenoid 930 is disposed inside the grip portion 910.
  • the solenoid 930 has a frame 931, a bobbin 932, a coil 933, a fixed iron core 934, and a movable iron core 935.
  • the fixed iron core 934 and the movable iron core 935 are opposed to each other with a gap 936 interposed therebetween.
  • the coil 933 is wound around the bobbin 932.
  • the rod 940 is coupled to the movable iron core 935.
  • the tip of the rod 940 is coupled to the head base 923.
  • the solenoid 930 reciprocates the movable iron core 935 and the rod 940 by repeatedly energizing and de-energizing the coil 933.
  • the solenoid 930 vibrates the blade head 920 by reciprocating the rod 940. For this reason, the force which presses the blade head 920 against skin becomes large.
  • the movable iron core 935 is separated from the fixed iron core 934 as the load on the blade head 920 increases. For this reason, the gap 936 becomes large. For this reason, the movable iron core 935 receives a small suction force from the fixed iron core 934. For this reason, the force which presses the blade head 920 against skin becomes small.
  • the electric razor 900 has a structure that reduces the vibration force of the blade head 920 as the load of the blade head 920 increases.
  • This structure is intended to maintain the pressing force by which the user presses the blade head 920 against the skin and the resultant force of the vibration force transmitted from the solenoid 930 to the blade head 920 at a constant magnitude.
  • the inventors of the present application have found that the electric razor 900 has the following problems.
  • the vibration force of the solenoid 930 when the pressing force generated by the user exceeds a certain value, the vibration force of the solenoid 930 is not generated or the vibration force of the solenoid 930 has a minute magnitude.
  • the vibration force of the solenoid 930 does not change even if the pressing force by the user increases when the pressing force by the user has a magnitude greater than a certain value. That is, the resultant force of the pressing force by the user and the vibration force of the solenoid 930 increases substantially depending only on the pressing force when the pressing force by the user has a magnitude greater than a certain value.
  • the blade head 920 increases the amount of skin to be introduced as the pressing force by the user increases. For this reason, in the electric shaver 900, when the pressing force by the user increases to a certain value or more, there is a possibility that the skin is excessively introduced into the blade head 920. When the skin is excessively introduced into the blade head 920, the skin may be damaged by the reciprocating motion of the inner blade of the blade head 920.
  • An object of the present invention is to provide an electric razor that contributes to making it difficult to damage the skin.
  • the electric razor includes a hair removal part, a main body part that supports the hair removal part, and a vibration generation part including a magnetic force generation part and an output movable part
  • the magnetic force generation part includes a coil and an input side iron core
  • the magnetic force generating unit forms a magnetic field by the coil, and causes the attractive force of the input side iron core to act on the output movable unit
  • the output movable unit is configured to generate the magnetic force generating unit based on the attractive force of the input side iron core.
  • An output-side iron core that moves relative to the output-side iron core, and a vibration component that is coupled to the output-side iron core and transmits vibration to the hair removal unit based on the relative movement of the output-side iron core.
  • the output side iron core is configured to approach the input side iron core as the load on the hair removal portion increases.
  • the vibration generating unit is configured to reduce the gap formed between the hair removal unit and the vibration component as the load on the hair removal unit increases, and the vibration component includes the gap. It is preferable that vibration is not transmitted to the hair removal part when it exists, and vibration is transmitted to the hair removal part when the gap is not present.
  • the electric razor includes a position adjusting unit, and the position adjusting unit is configured to change an initial position of the hair removal unit with respect to the vibrating component.
  • This electric razor contributes to making it hard to damage the skin.
  • a form of electric shaver subordinate to an independent form has the following matters.
  • the electric razor is configured to reduce a gap formed between the hair removal portion and the vibration component as the load on the hair removal portion increases.
  • the vibration component does not transmit vibration to the hair removal part when a gap exists, and transmits vibration to the hair removal part when no gap exists.
  • a form of electric shaver subordinate to an independent form has the following matters.
  • the electric razor has a position adjustment unit, and the position adjustment unit is configured to change the initial position of the hair removal unit with respect to the vibration component.
  • FIG. 1 shows an embodiment of an electric razor 1.
  • the electric razor 1 includes a main body unit 10, a hair removal unit 20, an inner blade drive unit 50, a power switch 60, a control unit 70, a power supply unit 80, a vibration generation unit 100, and a vibration input unit 130.
  • the longitudinal direction of the electric razor 1 indicates both directions in the longitudinal direction when the electric razor 1 is viewed from the front.
  • the width direction of the electric razor 1 indicates a bidirectional direction orthogonal to the longitudinal direction when the electric razor 1 is viewed from the front.
  • the depth direction of the electric razor 1 indicates both directions orthogonal to the longitudinal direction and the width direction in the front view of the electric razor 1.
  • the main body 10 has a shape that can be gripped by the user.
  • the main body 10 supports the hair removal unit 20.
  • the main body unit 10 accommodates a part of the inner blade driving unit 50, the control unit 70, the power supply unit 80, and the vibration generating unit 100 inside the main body unit 10.
  • the hair removal unit 20 includes an outer blade block 30 and an inner blade block 40.
  • the hair removal unit 20 reciprocates the inner blade block 40 relative to the outer blade block 30 in the width direction of the electric razor 1.
  • the hair removal unit 20 shave the hair introduced into the outer blade block 30 by the reciprocating motion of the inner blade block 40.
  • the outer blade block 30 includes an outer blade case 31, an outer blade 32, and an outer blade inner space 33.
  • the outer blade block 30 has a structure in which an outer blade case 31 and an outer blade 32 formed as individual parts are coupled to each other.
  • the outer blade block 30 accommodates the inner blade block 40 in the outer blade inner space 33 (see FIG. 2).
  • the outer blade block 30 is pressed against the skin 200 by the pressing force FF of the user when the electric razor 1 is used for hair removal.
  • the pressing force FF indicates a force applied by the user to the skin 200 via the outer blade block 30 when the outer blade block 30 is pressed against the skin 200.
  • the outer blade block 30 receives a reaction force from the skin 200 when pressed against the skin 200.
  • the reaction force that the outer blade block 30 receives from the skin 200 (hereinafter, “skin reaction force FR”) changes according to the pressing force FF.
  • the outer blade case 31 is coupled to the main body 10 via a floating structure.
  • the floating structure changes the posture of the outer cutter case 31 with respect to the main body 10.
  • the outer cutter case 31 can be displaced in the width direction, the height direction, and the depth direction with respect to the main body 10.
  • the outer cutter case 31 can be displaced in the rotational direction with respect to the main body 10 around an axis parallel to the width direction and an axis parallel to the depth direction.
  • the outer blade 32 has a plurality of outer blade holes (not shown).
  • the outer blade 32 introduces bristles into the outer blade inner space 33 through the outer blade hole.
  • the outer blade 32 introduces the skin 200 into the outer blade inner space 33 through the outer blade hole.
  • the amount of skin 200 introduced into the outer blade inner space 33 (hereinafter referred to as “skin introduction amount S”) is defined as the volume of the skin 200 existing on the outer blade inner space 33 side with respect to the outer blade hole as an example. Can do.
  • the inner blade block 40 includes a joint component 41 and an inner blade 42.
  • the inner blade block 40 has a structure in which a joint part 41 and an inner blade 42 formed as individual parts are coupled to each other.
  • the inner blade block 40 shaves hair in cooperation with the outer blade block 30.
  • the joint component 41 is coupled to the inner blade 42 at a portion close to the outer blade case 31.
  • the joint component 41 is coupled to the inner blade drive unit 50 at a portion close to the main body 10.
  • the joint component 41 has a structure capable of displacement in the width direction with respect to the main body 10 and the outer blade block 30.
  • the inner blade drive unit 50 includes a linear actuator as an example.
  • the inner blade drive unit 50 is driven based on a drive signal supplied from the control unit 70.
  • the inner blade drive unit 50 reciprocates the joint component 41 in the width direction of the electric razor 1.
  • the vibration generating unit 100 transmits the vibration force FV to the outer blade block 30 via the vibration input unit 130.
  • the vibration force FV of the vibration generating unit 100 acts in the height direction of the outer blade block 30.
  • the vibration generating unit 100 suppresses the skin introduction amount S from being larger than the appropriate range by supplying the vibration force FV to the outer blade block 30.
  • the power switch 60 is formed on the case of the main body 10.
  • the power switch 60 has the form of a human machine interface.
  • the power switch 60 is operated to turn on and off the power of the electric shaver 1.
  • the power switch 60 supplies an operation signal to the control unit 70 every time it is pushed.
  • the control unit 70 controls at least the inner blade driving unit 50 and the vibration generating unit 100.
  • the control unit 70 starts driving the inner blade driving unit 50 and the vibration generating unit 100 when the power switch 60 is turned on.
  • the control unit 70 stops driving the inner blade driving unit 50 and the vibration generating unit 100 when the power switch 60 of the main body unit 10 is turned off.
  • the power supply unit 80 is disposed inside the main body unit 10.
  • the power supply unit 80 supplies the power of the primary battery or the secondary battery to the power block of the electric shaver 1.
  • the power block of the electric razor 1 includes an inner blade driving unit 50, a vibration generating unit 100, and a control unit 70.
  • FIG. 2 shows a model configuration of the vibration generating unit 100 and the vibration input unit 130.
  • the vibration input unit 130 receives the vibration force FV generated by the vibration generation unit 100.
  • the vibration input unit 130 is integrally formed of the same material as that of the outer blade case 31.
  • the vibration input unit 130 includes an input unit space 131 and an input unit facing surface 132.
  • the input part space 131 is open toward the main body part 10.
  • the input unit facing surface 132 is in contact with the vibration component 121 of the vibration generating unit 100.
  • the vibration generating unit 100 includes a case 101, a magnetic force generating unit 110, and an output movable unit 120.
  • the vibration generating unit 100 forms a solenoid.
  • the vibration generating unit 100 transmits the vibration force FV to the skin 200 by vibrating the vibration input unit 130 and the outer blade block 30.
  • the vibration force FV indicates the force that the vibration component 121 transmits to the vibration input unit 130 due to the vibration of the vibration component 121 of the output movable unit 120 based on the suction force of the input side iron core 113 of the magnetic force generation unit 110.
  • the vibration generating unit 100 defines the driving direction D.
  • the driving direction D indicates the bidirectional direction of the displacement direction of the vibration component 121.
  • the driving direction D includes a pressing direction DU and a pulling direction DD.
  • the pressing direction DU indicates a direction from the main body unit 10 toward the hair removal unit 20.
  • the pull-in direction DD indicates a direction from the hair removal unit 20 toward the main body unit 10.
  • the magnetic force generator 110 is disposed inside the case 101.
  • the magnetic force generation unit 110 includes a bobbin 111, a coil 112, and an input side iron core 113.
  • the magnetic force generation unit 110 causes the attractive force of the input side iron core 113 to act on the output movable unit 120.
  • the bobbin 111 is made of a resin material.
  • the bobbin 111 is coupled to the case 101.
  • the coil 112 is wound around the bobbin 111.
  • a current flows through the coil 112 based on the control of the control unit 70.
  • the input side iron core 113 is made of a magnetic material.
  • the input side iron core 113 is coupled to the case 101.
  • the output movable unit 120 is disposed inside the case 101.
  • the output movable unit 120 includes a vibration part 121, an output side iron core 125, and a load input part 126.
  • the output movable unit 120 reciprocates in the driving direction D based on the suction force of the input side iron core 113.
  • the vibration component 121 is made of a resin material.
  • the vibration component 121 includes a coupling part 122 and a contact part 123.
  • the vibration component 121 has a structure in which the coupling portion 122 and the contact portion 123 are integrally formed of the same material.
  • a part of the coupling part 122 and the contact part 123 are arranged in the input part space 131 of the vibration input part 130.
  • the contact portion 123 has a contact portion facing surface 124 that contacts the input portion facing surface 132.
  • the output iron core 125 is made of a magnetic material.
  • the output side iron core 125 is coupled to the coupling portion 122 of the vibration component 121.
  • the output side iron core 125 moves integrally with the vibration component 121 by the suction force of the input side iron core 113.
  • the load input component 126 has a form of a coil spring as an example.
  • the load input component 126 supplies a force acting in the pressing direction DU to the vibration component 121.
  • the load input component 126 is compressed and deformed when a force in the pull-in direction DD acts on the vibration component 121.
  • the input side iron core 113 and the output side iron core 125 are opposed to each other in the driving direction D via a gap (hereinafter, “internal gap 102”).
  • the size of the internal gap 102 (hereinafter, “internal gap distance LA”) varies depending on at least one of the skin reaction force FR acting on the outer blade block 30 and the energized state of the coil 112.
  • the internal gap distance LA can be defined as the distance between the facing surface of the input-side iron core 113 and the facing surface of the output-side iron core 125.
  • the skin reaction force FR acting on the outer blade block 30 corresponds to one of the main components of the load acting on the hair removal unit 20.
  • the contact portion facing surface 124 and the input portion facing surface 132 are opposed to each other in the driving direction D via a gap (hereinafter, “external gap 103”).
  • the size of the external gap 103 (hereinafter, “external gap distance LB”) varies depending on at least one of the skin reaction force FR acting on the outer blade block 30 and the energized state of the coil 112.
  • the vibration generating unit 100 has at least two driving states.
  • the two driving states indicate an “energized state” and a “non-energized state”.
  • the energized state indicates a state in which a current is flowing through the coil 112 under the control of the control unit 70.
  • the non-energized state indicates a state where energization of the coil 112 by the control unit 70 is stopped.
  • the vibration generating unit 100 forms the following operation under the control of the control unit 70.
  • the control unit 70 starts energizing the coil 112 at regular intervals.
  • the coil 112 forms a magnetic field when a current flows.
  • the magnetic flux generated from the coil 112 passes through the input side iron core 113.
  • the input-side iron core 113 applies an attractive force to the output-side iron core 125 when magnetic flux passes through.
  • the output side iron core 125 and the vibration component 121 are displaced in the drawing direction DD by the suction force of the input side iron core 113.
  • the vibration component 121 increases the amount of deformation in the compression direction of the load input component 126 (hereinafter referred to as “compression deformation amount V”) by being displaced in the pull-in direction DD.
  • compression deformation amount V in the energized state is larger than the compression deformation amount V in the non-energized state.
  • the suction displacement amount W of the vibration component 121 and the output side iron core 125 changes according to the length of the internal gap distance LA in the non-energized state.
  • the suction displacement amount W indicates an amount by which the output side iron core 125 and the vibration component 121 are displaced in the pull-in direction DD based on the suction force of the input side iron core 113.
  • the attractive force of the input side iron core 113 acting on the output side iron core 125 increases as the internal gap distance LA in the non-energized state becomes shorter. For this reason, the suction displacement amount W increases as the internal gap distance LA in the non-energized state becomes shorter.
  • the internal gap distance LA and the external gap distance LB change when the vibration component 121 is displaced in the pull-in direction DD. That is, the internal gap distance LA and the external gap distance LB change when the driving state of the vibration generating unit 100 changes from the non-energized state to the energized state.
  • the internal gap distance LA is shortened with a change from the non-energized state to the energized state.
  • the external gap distance LB increases with a change from the non-energized state to the energized state.
  • the difference between the internal gap distance LA in the energized state and the internal gap distance LA in the non-energized state corresponds to the suction displacement amount W.
  • the difference between the external gap distance LB in the energized state and the external gap distance LB in the non-energized state corresponds to the suction displacement amount W.
  • the control unit 70 stops energization of the coil 112 after a predetermined time has elapsed after starting energization of the coil 112.
  • the coil 112 does not form a magnetic field due to no current flowing.
  • the input side iron core 113 does not apply an attractive force to the output side iron core 125 when the coil 112 does not form a magnetic field.
  • the output side iron core 125 and the vibration component 121 are displaced in the pressing direction DU by the restoring force of the load input component 126 when the drive state of the vibration generating unit 100 changes from the energized state to the non-energized state.
  • the amount of compressive deformation V of the load input component 126 becomes smaller than the amount of compressive deformation V in the energized state when the output side iron core 125 and the vibration component 121 are displaced in the pressing direction DU.
  • the internal gap distance LA and the external gap distance LB change when the vibration component 121 is displaced in the pressing direction DU. That is, the internal gap distance LA and the external gap distance LB change when the driving state of the vibration generating unit 100 changes from the energized state to the non-energized state.
  • the internal gap distance LA increases with a change from the energized state to the non-energized state.
  • the external gap distance LB is shortened with a change from the energized state to the non-energized state.
  • the vibration component 121 and the output side iron core 125 vibrate with respect to the magnetic force generation unit 110 and the vibration input unit 130 by alternately forming an energized state and a non-energized state.
  • the vibration component 121 changes the transmission form of vibration to the vibration input unit 130 according to the relationship with the vibration input unit 130 in a non-energized state.
  • FIG. 3 shows a state in which the vibration component 121 and the vibration input unit 130 are in contact with each other.
  • the vibration component 121 does not transmit vibration to the vibration input unit 130 when not in contact with the vibration input unit 130 in a non-energized state. That is, the vibration component 121 does not transmit vibration to the vibration input unit 130 when the external gap distance LB in the non-energized state is greater than “0”. For this reason, the vibration generating unit 100 does not supply the vibration force FV to the outer blade block 30.
  • the vibration component 121 transmits vibration to the vibration input unit 130 when in contact with the vibration input unit 130 in a non-energized state. That is, the vibration component 121 transmits vibration to the vibration input unit 130 when the external gap distance LB in the non-energized state is “0”.
  • the vibration component 121 supplies vibration force FV to the vibration input unit 130 and the outer blade block 30 by transmitting vibration to the vibration input unit 130.
  • the external gap distance LB in the non-energized state changes according to the position of the vibration input unit 130 in the drive direction D with respect to the vibration component 121.
  • the vibration input unit 130 is displaced integrally with the outer blade block 30.
  • the external gap distance LB in the non-energized state changes in accordance with the position in the driving direction D of the outer cutter block 30 relative to the main body 10 (hereinafter, “outer cutter position C”).
  • the outer blade block 30 is displaced in the pull-in direction DD according to the skin reaction force FR. For this reason, the outer blade position C changes according to the skin reaction force FR.
  • the skin reaction force FR changes according to the pressing force FF.
  • the outer cutter position C changes according to the pressing force FF.
  • the outer cutter position C changes in the range from the maximum separation position CU to the maximum approach position CD.
  • the outer cutter position C has a component contact position CM between the maximum separation position CU and the maximum approach position CD.
  • the maximum separation position CU indicates a position where the outer blade block 30 is most separated from the main body 10 in the driving direction D.
  • the maximum approach position CD indicates a position where the outer blade block 30 is closest to the main body 10 in the driving direction D.
  • the component contact position CM indicates a position where the vibration input unit 130 starts to contact the vibration component 121 in accordance with the displacement of the outer blade block 30 in the retracting direction DD.
  • outer blade block 30 When the skin reaction force FR is not acting on the outer blade block 30, the outer blade block 30 is located at the maximum separation position CU. When the skin reaction force FR is acting on the outer blade block 30, the outer blade block 30 is displaced to the limit with respect to the main body portion 10 in the retracting direction DD and is positioned at the maximum approach position CD.
  • the outer blade position C corresponds to a displacement amount of the outer blade block 30 in the drawing direction DD with respect to the main body portion 10 (hereinafter, “outer blade displacement amount XB”).
  • the outer cutter displacement amount XB is the minimum displacement amount XBL.
  • the outer cutter displacement amount XB changes according to the outer cutter position C.
  • the outer cutter displacement amount XB is the reference displacement amount XBM.
  • the outer cutter displacement amount XB changes according to the outer cutter position C.
  • the outer cutter displacement amount XB is the maximum displacement amount XBH.
  • the external gap distance LB in the non-energized state is the longest in the change range of the external gap distance LB. That is, when the outer blade displacement amount XB is the minimum displacement amount XBL, the external gap distance LB in the non-energized state is the longest in the change range of the external gap distance LB.
  • the external gap distance LB in the non-energized state becomes shorter as the outer blade position C approaches the component contact position CM. That is, when the outer blade displacement amount XB is included in the range between the minimum displacement amount XBL and the reference displacement amount XBM, the external gap distance LB in the non-energized state becomes shorter as the outer blade displacement amount XB increases.
  • the external gap distance LB in the non-energized state is “0”. That is, when the outer blade displacement amount XB is the reference displacement amount XBM, the external gap distance LB in the non-energized state is “0”.
  • the external gap distance LB in the non-energized state is “0”. That is, when the outer blade displacement amount XB is included in the range from the reference displacement amount XBM to the maximum displacement amount XBH, the external gap distance LB in the non-energized state is “0”.
  • the outer cutter block 30 pulls the vibrating component 121 into the magnetic force generator 110 as the outer cutter displacement amount XB increases. Displace in the direction DD.
  • the outer blade block 30 changes the reference part position PX of the vibration part 121 by displacing the vibration part 121 in the pull-in direction DD.
  • the reference component position PX indicates the position of the vibration component 121 with respect to the magnetic force generation unit 110 in a non-energized state.
  • the reference component position PX changes in the range from the minimum suction position PXU to the maximum suction position PXD according to the change in the outer blade position C.
  • the reference part position PX is at the minimum suction position PXU. That is, when the outer blade displacement amount XB is the minimum displacement amount XBL, the reference component position PX is at the minimum suction position PXU.
  • the reference component position PX When the outer blade position C is included in the range between the maximum separation position CU and the component contact position CM, the reference component position PX is at the minimum suction position PXU without reacting to the change in the outer blade position C. That is, when the outer blade displacement amount XB is included in the range between the minimum displacement amount XBL and the reference displacement amount XBM, the reference component position PX does not react to the change in the outer blade displacement amount XB and is set to the minimum suction position PXU. is there.
  • the reference component position PX approaches the maximum suction position PXD as the outer cutter position C approaches the maximum approach position CD. That is, when the outer blade displacement amount XB is included in the range from the reference displacement amount XBM to the maximum displacement amount XBH, the reference part position PX approaches the maximum suction position PXD as the outer blade displacement amount XB approaches the maximum displacement amount XBH. .
  • the reference part position PX is the maximum suction position PXD. That is, when the outer blade displacement amount XB is the maximum displacement amount XBH, the reference component position PX is at the maximum suction position PXD.
  • the internal gap distance LA in the non-energized state changes according to the reference part position PX.
  • the suction displacement amount W changes according to the internal gap distance LA in the non-energized state. Therefore, the suction displacement amount W changes according to the reference part position PX.
  • the internal gap distance LA in the non-energized state is the longest within the change range corresponding to the reference part position PX. For this reason, when the reference part position PX is at the minimum suction position PXU, the suction displacement amount W is the smallest within the change range corresponding to the reference part position PX.
  • the internal gap distance LA in the non-energized state becomes shorter as the reference part position PX approaches the maximum suction position PXD from the minimum suction position PXU. For this reason, the suction displacement amount W increases as the reference part position PX approaches the maximum suction position PXD from the minimum suction position PXU.
  • the internal gap distance LA in the non-energized state is the shortest within the change range corresponding to the reference part position PX. For this reason, when the reference part position PX is at the maximum suction position PXD, the suction displacement amount W is the largest within the change range corresponding to the reference part position PX.
  • the suction displacement amount W varies as follows according to the outer cutter position C.
  • the suction displacement amount W does not react to a change in the outer blade position C when the outer blade position C is included in a range closer to the maximum separation position CU than the component contact position CM.
  • the suction displacement amount W increases as the outer cutter position C approaches the maximum approach position CD.
  • the vibration component 121 transmits vibration to the vibration input unit 130 as follows.
  • the vibration component 121 is in contact with the vibration input unit 130 when the driving state of the vibration generating unit 100 is a non-energized state. Yes.
  • the vibrating component 121 When the driving state of the vibration generating unit 100 changes from the non-energized state to the energized state, the vibrating component 121 is displaced in the pull-in direction DD.
  • the contact part 123 is separated from the vibration input part 130 according to the displacement of the vibration part 121.
  • the internal gap distance LA is shortened according to the displacement of the vibration component 121.
  • the external gap distance LB becomes longer according to the displacement of the vibration component 121.
  • the vibrating component 121 is displaced in the pressing direction DU.
  • the internal gap distance LA becomes longer according to the displacement of the vibration component 121.
  • the external gap distance LB is shortened according to the displacement of the vibration component 121.
  • the contact part 123 collides with the vibration input part 130 according to the displacement of the vibration part 121.
  • the vibration component 121 transmits an impact load as the vibration force FV to the vibration input unit 130.
  • the outer blade block 30 transmits the impact load transmitted to the vibration input unit 130 to the skin 200. That is, the outer blade block 30 transmits the resultant force of the pressing force FF and the vibration force FV to the skin 200.
  • the electric razor 1 has the following actions.
  • the outer cutter position C changes according to the skin reaction force FR.
  • the outer cutter position C approaches the maximum approach position CD as the skin reaction force FR increases.
  • the outer blade position C reaches the component contact position CM when the skin reaction force FR is the reference skin reaction force FRX.
  • the pressing force FF is the reference pressing force FFX.
  • the outer blade position C is the component contact position CM.
  • the outer blade block 30 brings the vibration input unit 130 into contact with the vibration component 121.
  • the vibration component 121 starts to transmit vibration to the vibration input unit 130 and the outer blade block 30.
  • the skin introduction amount S is included in the appropriate range and has a certain margin with respect to the upper limit of the appropriate range.
  • the skin introduction amount S has a small margin with respect to the upper limit of the appropriate range.
  • the timing at which the vibration component 121 begins to transmit vibration to the vibration input unit 130 and the outer blade block 30 is such that the skin introduction amount S exceeds the appropriate range from the state where the risk that the skin introduction amount S exceeds the appropriate range is low. This corresponds to the timing when the state changes to a high state. For this reason, the user can recognize that the skin introduction amount S is likely to exceed the appropriate range based on the fact that the outer blade block 30 starts to vibrate in the driving direction D. That is, the electric razor 1 can notify the user of the level of the skin introduction amount S by vibrating the outer blade block 30 in the driving direction D.
  • the inventor of the present application conducted a test for confirming a change in the relationship between the outer blade block 30 and the skin 200 with changes in the pressing force FF and the vibration force FV.
  • the inventor of the present application has obtained the following knowledge from the results of this test.
  • the pressing force FF has a magnitude less than the reference pressing force FFX
  • the vibration force FV increases
  • the adhesion between the outer blade block 30 and the skin 200 is enhanced. For this reason, the amount of hair shaved by the hair removal unit 20 is likely to increase.
  • the vibration force FV of the vibration generating unit 100 is not supplied to the outer blade block 30 or a relatively small vibration force FV is supplied,
  • the blade block 30 is highly likely to introduce skin 200 in an amount exceeding the appropriate range.
  • the outer blade block 30 is intermittent from the skin 200. Therefore, it becomes easy to displace in the separation direction. For this reason, the skin introduction amount S tends to decrease.
  • the displacement of the outer blade block 30 in the separation direction based on the vibration force FV indicates a displacement having a vector in a direction opposite to the direction in which the outer blade block 30 is pressed against the skin 200 or a vector in a direction close to the opposite direction.
  • the outer blade block 30 When a space is formed between the outer blade block 30 and the skin 200 by the displacement of the outer blade block 30 in the separation direction based on the vibration force FV, and a space is formed between the outer blade block 30 and the skin 200. May not. Due to the displacement of the outer blade block 30 in the separation direction based on the vibration force FV, the outer blade block 30 does not introduce the skin 200, or the skin introduction amount S is less than before the displacement in the separation direction. Form. Regardless of whether or not a space is formed between the outer blade block 30 and the skin 200, the outer blade block 30 based on the vibration force FV is displaced by the displacement of the outer blade block 30 in the separation direction based on the vibration force FV. Compared to the case where no displacement in the separating direction is formed, the skin introduction amount S of the outer blade block 30 is reduced.
  • the outer blade block 30 has a skin displacement due to displacement in the separation direction even if a larger amount of skin 200 than the appropriate range is introduced.
  • the introduction amount S is decreased.
  • skin 200 becomes difficult to be damaged. That is, the vibration force FV of the vibration generating unit 100 is intermittently separated from the skin 200 when the pressing force FF having a magnitude greater than or equal to the reference pressing force FFX is acting on the skin 200.
  • the skin introduction amount S is decreased by displacing the skin.
  • the reason why the outer blade block 30 is displaced in the separation direction based on the vibration force FV is considered as follows. As the force applied to the skin 200 from the outside increases, the dent deformation amount of the skin 200 increases. In the skin 200, the deformation based on the pressing force FF is less likely to occur as the dent deformation amount increases. When the pressing force FF has a magnitude equal to or larger than the reference pressing force FFX, the skin 200 forms a state where there is no deformed portion or a state where the deformed portion is sufficiently small.
  • the outer blade block 30 when receiving the vibration force FV from the outer blade block 30, the skin 200 does not cause dent deformation based on the vibration force FV, or The dent deformation amount based on the vibration force FV forms a minute state. For this reason, the outer blade block 30 receives a shocking and large reaction force from the skin 200 as the vibration force FV is transmitted to the skin 200. For this reason, it is considered that the outer blade block 30 is intermittently displaced in the separation direction based on the vibration force FV.
  • the vibration generating unit 100 has a structure in which the vibration of the outer blade block 30 increases as the pressing force FF increases in consideration of the above matters. For this reason, the vibration generating unit 100 easily displaces the outer blade block 30 in the separating direction with respect to the skin 200 as the pressing force FF increases. For this reason, the skin introduction amount S tends to decrease. The vibration of the outer blade block 30 increases as the pressing force FF increases for the following reason.
  • the skin reaction force FR increases as the pressing force FF increases.
  • the outer cutter position C changes in the retracting direction DD as the skin reaction force FR increases.
  • the reference part position PX approaches the maximum suction position PXD as the skin reaction force FR increases.
  • the internal gap distance LA becomes shorter as the reference part position PX approaches the maximum suction position PXD.
  • the suction force of the input side iron core 113 increases as the internal gap distance LA decreases.
  • the amount of compressive deformation V of the load input component 126 increases as the suction force of the input side iron core 113 increases.
  • the vibration force FV of the vibration generating unit 100 increases as the compression deformation amount V increases. For this reason, the vibration force FV of the vibration generating unit 100 increases as the skin reaction force FR increases. For this reason, the vibration of the outer blade block 30 increases as the skin reaction force FR increases. For this reason, the vibration of the outer blade block 30 increases as the skin reaction force FR increases. For this reason, the vibration of the outer blade block 30
  • the electric razor 1 has the following effects.
  • the electric razor 1 has a vibration generating unit 100.
  • the vibration generating unit 100 transmits the vibration force FV to the outer blade block 30 via the vibration input unit 130. For this reason, the outer blade block 30 is displaced in the separation direction intermittently with respect to the skin 200 when the pressing force FF is large. For this reason, damage to the skin 200 is less likely to occur. That is, the electric razor 1 contributes to making the skin 200 less likely to be damaged.
  • the vibration generating unit 100 displaces the outer blade block 30 in the separating direction with respect to the skin 200. For this reason, the frictional force between the outer blade block 30 and the skin 200 is reduced. For this reason, the force of the outer blade block 30 that moves relative to the skin 200 for hair removal is reduced. For this reason, the user can make small the force which moves the electric razor 1 with respect to the skin 200 for hair removal.
  • the vibration generating unit 100 starts to transmit vibration to the vibration input unit 130. For this reason, the outer blade block 30 can notify the user that the skin introduction amount S is likely to exceed the appropriate range by vibration.
  • the electric razor 1 has an advantage over the comparative electric razor.
  • the comparative electric razor is different from the electric razor 1 in the following points, and indicates a virtual electric razor having the same configuration as the electric razor 1 in other points.
  • the vibration component and the vibration input portion are in contact with each other.
  • the output side iron core is disposed on the side opposite to the outer blade block with respect to the input side iron core.
  • the output side iron core of the comparative electric razor is separated from the input side iron core as the outer blade block changes in the retracting direction DD.
  • the internal clearance distance LA of the comparative electric razor becomes longer as the skin reaction force FR increases.
  • the suction force of the input side iron core of the comparative electric razor decreases as the skin reaction force FR increases.
  • the vibration force FV of the comparative electric razor decreases as the skin reaction force FR increases.
  • the vibration of the outer cutter block of the comparative electric razor decreases as the pressing force FF increases. That is, the vibration generating portion of the comparative electric razor approaches a state where it does not substantially function as the pressing force FF increases.
  • the vibration generating unit 100 of the electric razor 1 the internal gap distance LA becomes shorter as the pressing force FF becomes larger. Therefore, the ability of the vibration generating unit 100 to vibrate the outer blade block 30 increases as the pressing force FF increases. For this reason, the vibration generating unit 100 contributes to enhancing the effect of making the skin 200 less likely to be damaged.
  • FIG. 4 shows one form of the electric shaver 1 of the second embodiment.
  • the electric shaver 1 of the second embodiment has a plurality of components.
  • the plurality of components of the second embodiment have the same or similar structure and function as the components of the electric shaver 1 of the first embodiment.
  • the description of the electric shaver 1 of the second embodiment is the configuration of the first embodiment with respect to at least a part of the components of the second embodiment having the same or similar structure and function as the components of the first embodiment.
  • the same reference numerals are used for the elements.
  • the electric shaver 1 of the second embodiment is mainly different from the electric shaver 1 of the first embodiment in the following points.
  • the electric razor 1 of the first embodiment does not have a mechanism for adjusting the external gap distance LB when the outer blade block 30 is not pressed against the skin 200.
  • the electric razor 1 according to the second embodiment includes a gap adjusting unit 140 for adjusting the external gap distance LB when the outer blade block 30 is not pressed against the skin 200.
  • the gap adjustment unit 140 is configured by a set of a plurality of components.
  • the plurality of components of the gap adjustment unit 140 include a position restriction mechanism 141, an operation component 142, and two springs 143.
  • the two springs 143 are disposed between the main body 10 and the outer blade case 31.
  • the two springs 143 are disposed at symmetrical positions with respect to the center line of the electric razor 1 in the width direction.
  • the spring 143 is compressed and deformed when the outer blade block 30 is displaced in the retracting direction DD.
  • the operation component 142 is formed on the case of the main body 10. When the external force is supplied to the operation component 142, the operation component 142 is displaced with respect to the main body 10.
  • the operation component 142 is connected to the position restriction mechanism 141 via a link mechanism (not shown).
  • the operation component 142 operates the position restriction mechanism 141 in accordance with a change in the operation position of the operation component 142.
  • the operation position of the operation component 142 changes continuously or stepwise in the range from the maximum separation setting position to the maximum approach setting position.
  • the operation position of the operation component 142 has a reference setting position between the maximum separation setting position and the maximum approach setting position.
  • the position regulating mechanism 141 changes the limit position (hereinafter, “separation limit position CX”) at which the outer blade block 30 can be displaced in the pressing direction DU with respect to the main body 10 to change the operation position of the operation component 142. Change accordingly.
  • the position restricting mechanism 141 does not restrict the displacement of the outer blade block 30 in the retracting direction DD.
  • the outer blade block 30 is located at the separation limit position CX in a state where the skin reaction force FR is not acting.
  • the position regulation mechanism 141 sets the separation limit position CX to the maximum separation position CU.
  • the position restriction mechanism 141 sets the separation limit position CX to the component contact position CM.
  • the position restriction mechanism 141 sets the separation limit position CX to the maximum approach position CD.
  • the external gap distance LB in the non-energized state is the longest in the change range based on the operation position of the operation component 142.
  • the separation limit position CX is included in the range between the maximum separation position CU and the component contact position CM
  • the external gap distance LB in the non-energized state becomes shorter as the separation limit position CX approaches the component contact position CM.
  • the separation limit position CX is at the component contact position CM
  • the external gap distance LB in the non-energized state is “0”.
  • the external gap distance LB in the non-energized state is “0”.
  • the external gap distance LB in the non-energized state is “0”.
  • the vibration generating unit 100 transmits vibration to the vibration input unit 130 when the pressing force FF changes from less than the reference pressing force FFX to a magnitude equal to or larger than the reference pressing force FFX. Start to do. That is, the vibration generating unit 100 forms the same operation as the vibration generating unit 100 of the first embodiment.
  • the vibration generating unit 100 When the separation limit position CX is between the maximum separation position CU and the component contact position CM, when the pressing force FF changes from less than the predetermined pressing force FFW to a magnitude equal to or larger than the predetermined pressing force FFW, the vibration generating unit 100 The vibration starts to be transmitted to the vibration input unit 130.
  • the predetermined pressing force FFW is larger than “0” and smaller than the reference pressing force FFX.
  • the predetermined pressing force FFW decreases as the separation limit position CX approaches the component contact position CM.
  • the vibration generating unit 100 causes the vibration input unit 130 to vibrate when the pressing force FF changes to a value larger than “0”. Begin to communicate.
  • the electric razor 1 of the second embodiment has the effect (1) produced by the electric razor 1 of the first embodiment, that is, the effect of contributing to making the skin 200 difficult to damage, and (2) to (5) ).
  • the electric shaver 1 of the second embodiment further has the following effects.
  • the electric razor 1 has a gap adjustment unit 140.
  • the gap adjustment unit 140 adjusts the size of the external gap distance LB according to the operation position of the operation component 142. For this reason, the user can adjust the magnitude of the pressing force FF when the vibration generating unit 100 starts to transmit vibration to the outer blade block 30.
  • FIG. 1 shows an embodiment of an electric shaver 1 according to the third embodiment.
  • the electric shaver 1 of the third embodiment has a plurality of components.
  • the plurality of components of the third embodiment have the same or similar structures and functions as the components of the electric shaver 1 of the third embodiment.
  • Description of the electric shaver 1 of 3rd Embodiment abbreviate
  • the description of the electric shaver 1 of the third embodiment is the same as the configuration of the third embodiment with respect to at least a part of the components of the third embodiment having the same or similar structure and function as the components of the first embodiment.
  • the same reference numerals are used for the elements.
  • the electric razor 1 of the third embodiment is mainly different from the electric razor 1 of the first embodiment in the following points.
  • the electric shaver 1 according to the first embodiment drives the vibration generating unit 100 when the power switch 60 is turned on.
  • the electric razor 1 of 3rd Embodiment detects the skin reaction force FR, and drives the vibration generation part 100 based on a detection result.
  • the electric shaver 1 of the third embodiment has the following detailed configuration.
  • the electric razor 1 has a load detection unit (not shown).
  • the load detection unit generates a detection signal that changes according to the displacement of the outer blade block 30, the pressure of the outer blade block 30, or the strain of the outer blade block 30.
  • the control unit 70 compares the detection signal of the load detection unit with the reference signal, and controls the vibration generation unit 100 based on the comparison result.
  • the control unit 70 starts energization of the coil 112 when the relationship between the detection signal of the load detection unit and the reference signal indicates that the skin reaction force FR is greater than or equal to the reference skin reaction force FRX.
  • the control unit 70 causes a constant current to flow through the coil 112.
  • the control unit 70 stops energization of the coil 112 when the relationship between the detection signal of the load detection unit and the reference signal indicates that the skin reaction force FR has a magnitude less than the reference skin reaction force FRX.
  • the electric razor 1 of the third embodiment has the effect (1) produced by the electric razor 1 of the first embodiment, that is, the effect that it contributes to making the skin 200 difficult to be damaged, and (2) to ( The effect 5) is produced.
  • the electric razor includes other embodiments different from the first to third embodiments.
  • Other embodiments have, as an example, forms of modifications of the first to third embodiments shown below. Note that the following modifications can be combined with each other within a technically consistent range.
  • the input side iron core 113 is fixed to the case 101.
  • the configuration of the vibration generating unit 100 is not limited to the content exemplified in the first embodiment.
  • the vibration generating unit 100 according to the modified example has a structure in which the input side iron core 113 can be displaced with respect to the case 101. Note that the same deformation is also established in the vibration generating unit 100 of the second embodiment and the third embodiment.
  • the vibration generating unit 100 according to the first embodiment has a vibration component 121 formed of a resin material.
  • the material of the vibration component 121 is not limited to the content exemplified in the first embodiment.
  • the vibration generating unit 100 according to the modification includes a vibration component 121 formed of a metal material. Note that the same deformation is also established in the vibration generating unit 100 of the second embodiment and the third embodiment.
  • the vibration component 121 has a structure in which the coupling portion 122 and the contact portion 123 are integrally formed of the same material.
  • the structure of the vibration component 121 is not limited to the content exemplified in the first embodiment.
  • the deformable vibration component 121 has a structure in which a coupling portion 122 and a contact portion 123 formed as individual components are coupled to each other.
  • the material of the coupling portion 122 and the contact portion 123 can be made different from each other. Note that the same deformation is also established in the vibration component 121 of the second embodiment and the third embodiment.
  • the vibration input unit 130 of the first embodiment is integrally formed of the same material as the outer blade case 31.
  • the configuration of the vibration input unit 130 is not limited to the content exemplified in the first embodiment.
  • the vibration input unit 130 of the modified example is formed as a part different from the outer cutter case 31 and is coupled to the outer cutter case 31. Note that the same deformation is also established in the vibration input unit 130 of the second embodiment and the third embodiment.
  • the electric razor 1 of the first embodiment forms the external gap 103 between the vibration component 121 and the vibration input unit 130 in a state where the skin reaction force FR is not acting.
  • the vibration input unit 130 contacts the vibration component 121 when the skin reaction force FR is greater than or equal to the reference skin reaction force FRX.
  • the relationship between the vibration component 121 and the vibration input unit 130 is not limited to the content exemplified in the first embodiment.
  • the electric shaver 1 according to the modification has a structure in which the vibration component 121 and the vibration input unit 130 are in contact with each other in a state where the skin reaction force FR is not acting. Note that the same modification is established in the electric shaver 1 of the third embodiment.
  • the electric razor 1 transmits the vibration force FV of the vibration generating unit 100 to the outer blade block 30 by the contact between the vibration input unit 130 and the vibration component 121.
  • the configuration for transmitting the vibration force FV to the outer blade block 30 is not limited to the configuration illustrated in the first embodiment.
  • the vibration input unit 130 is omitted.
  • the vibration generating unit 100 transmits the vibration force FV to the outer blade block 30 by bringing the vibration component 121 into contact with the outer blade case 31.
  • the electric shaver 1 of 1st Embodiment has the outer blade block 30 illustrated by FIG.
  • the configuration of the outer cutter block 30 is not limited to the content exemplified in the first embodiment.
  • the modified electric razor 1 has a modified outer blade block in place of the outer blade block 30.
  • the deformed outer blade block has a function according to the function of the outer blade block 30 and has a configuration different from that of the outer blade block 30. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
  • the electric shaver 1 of 1st Embodiment has the inner blade block 40 illustrated by FIG.
  • the configuration of the inner blade block 40 is not limited to the content exemplified in the first embodiment.
  • the modified electric razor 1 has a modified inner blade block instead of the inner blade block 40.
  • the modified inner blade block has a function according to the function of the inner blade block 40 and has a configuration different from that of the inner blade block 40. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
  • the electric razor 1 of the first embodiment has a magnetic force generator 110 illustrated in FIG.
  • the configuration of the magnetic force generation unit 110 is not limited to the content exemplified in the first embodiment.
  • the electric shaver 1 according to the modified example has a deformed magnetic force generator instead of the magnetic force generator 110.
  • the deformed magnetic force generation unit has a function according to the function of the magnetic force generation unit 110 and has a configuration different from that of the magnetic force generation unit 110. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
  • the electric razor 1 according to the first embodiment has an output movable unit 120 illustrated in FIG.
  • the configuration of the output movable unit 120 is not limited to the content exemplified in the first embodiment.
  • the electric shaver 1 according to the modified example has a modified output movable portion instead of the output movable portion 120.
  • the deformable output movable unit has a function according to the function of the output movable unit 120 and has a configuration different from that of the output movable unit 120. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
  • the electric shaver 1 of 1st Embodiment has the vibration input part 130 illustrated by FIG.
  • the configuration of the vibration input unit 130 is not limited to the content exemplified in the first embodiment.
  • the electric shaver 1 according to the modified example has a modified vibration input unit instead of the vibration input unit 130.
  • the deformation vibration input unit has a function according to the function of the vibration input unit 130 and has a configuration different from that of the vibration input unit 130. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
  • the electric shaver 1 of 2nd Embodiment has the clearance gap adjustment part 140 illustrated by FIG.
  • the configuration of the gap adjustment unit 140 is not limited to the content exemplified in the second embodiment.
  • the electric shaver 1 according to the modified example has a modified gap adjusting unit instead of the gap adjusting unit 140.
  • the deformation gap adjustment unit has a function according to the function of the gap adjustment unit 140 and has a configuration different from that of the gap adjustment unit 140.
  • the control unit 70 of the third embodiment has a constant current when the skin reaction force FR is greater than the reference skin reaction force FRX, which is suggested by the relationship between the detection signal of the load detection unit and the reference signal. Is passed through the coil 112.
  • the control content of the control unit 70 is not limited to the content exemplified in the third embodiment.
  • the control unit 70 according to the modification changes the magnitude of the current flowing through the coil 112 according to the skin reaction force FR.
  • the control unit 70 has the following configuration.
  • the control unit 70 determines that the reaction force FR Compare with force judgment signal.
  • the control unit 70 determines the relationship between the high reaction force larger than the reference skin reaction force FRX and the skin reaction force FR based on the comparison result between the detection signal of the load detection unit and the high reaction force determination signal.
  • the control unit 70 applies a high load current to the coil 112. Shed. When it is suggested by the relationship between the detection signal of the load detection unit and the high reaction force determination signal that the skin reaction force FR is less than the high reaction force, the control unit 70 is smaller than the current at high load. A load current is passed through the coil 112. For this reason, the vibration force FV of the vibration generating unit 100 is greater when the skin reaction force FR is greater than or equal to the high reaction force than when the skin reaction force FR is less than the high reaction force. For this reason, when the skin reaction force FR takes a magnitude greater than or equal to the high reaction force, the outer blade block 30 is easily displaced from the skin 200 in the separation direction.
  • Means for solving the problems include the following [Appendix 1] to [Appendix 4].
  • the items included in [Appendix 1] to [Appendix 4] correspond to the items disclosed in the embodiment.
  • the load detection unit generates a detection signal that changes according to a load supplied to the hair removal unit.
  • the control unit increases the current supplied to the magnetic force generation unit when the detection signal indicates that the load on the hair removal unit is increasing.
  • the electric razor has a main body part, a hair removal part, and a vibration generating part.
  • the body portion supports the hair removal portion.
  • the vibration generating unit includes a magnetic force generating unit and an output movable unit.
  • the magnetic force generator has a coil and an input side iron core, forms a magnetic field with the coil, and causes the attraction force of the input side iron core to act on the output movable part.
  • the output movable part has a vibration component and an output side iron core.
  • the output side iron core is coupled to the vibration component and moves relative to the magnetic force generation unit based on the attractive force of the input side iron core.
  • the vibration component transmits vibration to the hair removal unit based on the movement of the output side iron core.
  • the electric razor has a gap formed between the hair removal part and the vibration component.
  • the gap decreases as the load on the hair removal unit increases.
  • the vibration component does not transmit vibration to the hair removal part when the gap exists, and transmits vibration to the hair removal part when the gap does not exist.

Abstract

An electric razor (1) is provided with a hair removal portion (20), a main unit portion (10) supporting the hair removal portion (20), and a vibration generation unit (100), including a magnetic force generating unit (110) and an output movable portion (120). The magnetic force generating unit (110) includes a coil (112) and an input-side core (113). The magnetic force generating unit (110) forms a magnetic field by way of the coil, and causes suction force of the input-side core (113) to be exerted on the output movable portion (120). The output movable portion (120) includes: an output-side core (125) which moves relative to the magnetic force generating unit (110) on the basis of the suction force of the input-side core (113); and a vibration component (121) which is coupled to the output-side core (125), and which conveys vibration to the hair removal portion (20) on the basis of the relative movement of the output-side core (125). The vibration generation unit (100) is configured so as to cause the output-side core (125) to approach the input-side core (113) as the load of the hair removal portion (20) increases.

Description

電気かみそりElectric razor
 本発明は、電気かみそりに関する。 The present invention relates to an electric razor.
 特許文献1は、従来の電気かみそりの一例を開示している。図5は、特許文献1の電気かみそり900を示している。電気かみそり900は、グリップ部910、刃ヘッド920、ソレノイド930、およびロッド940を有する。刃ヘッド920は、ヘッドハウジング921、外刃922、およびヘッドベース923を有する。ソレノイド930は、グリップ部910の内部に配置されている。 Patent Document 1 discloses an example of a conventional electric razor. FIG. 5 shows an electric razor 900 of Patent Document 1. The electric razor 900 has a grip portion 910, a blade head 920, a solenoid 930, and a rod 940. The blade head 920 includes a head housing 921, an outer blade 922, and a head base 923. The solenoid 930 is disposed inside the grip portion 910.
 ソレノイド930は、フレーム931、ボビン932、コイル933、固定鉄心934、および可動鉄心935を有する。固定鉄心934および可動鉄心935は、ギャップ936を介して対向している。コイル933は、ボビン932に巻き付けられている。ロッド940は、可動鉄心935と結合されている。ロッド940の先端部は、ヘッドベース923と結合されている。 The solenoid 930 has a frame 931, a bobbin 932, a coil 933, a fixed iron core 934, and a movable iron core 935. The fixed iron core 934 and the movable iron core 935 are opposed to each other with a gap 936 interposed therebetween. The coil 933 is wound around the bobbin 932. The rod 940 is coupled to the movable iron core 935. The tip of the rod 940 is coupled to the head base 923.
 ソレノイド930は、コイル933の通電および非通電が繰り返されることにより、可動鉄心935およびロッド940を往復運動させる。ソレノイド930は、ロッド940を往復運動させることにより、刃ヘッド920を振動させる。このため、刃ヘッド920を肌に押し付ける力が大きくなる。 The solenoid 930 reciprocates the movable iron core 935 and the rod 940 by repeatedly energizing and de-energizing the coil 933. The solenoid 930 vibrates the blade head 920 by reciprocating the rod 940. For this reason, the force which presses the blade head 920 against skin becomes large.
 可動鉄心935は、刃ヘッド920の負荷が大きくなるにつれて、固定鉄心934から離間する。このため、ギャップ936が大きくなる。このため、可動鉄心935は、固定鉄心934から受ける吸引力が小さくなる。このため、刃ヘッド920を肌に押し付ける力が小さくなる。 The movable iron core 935 is separated from the fixed iron core 934 as the load on the blade head 920 increases. For this reason, the gap 936 becomes large. For this reason, the movable iron core 935 receives a small suction force from the fixed iron core 934. For this reason, the force which presses the blade head 920 against skin becomes small.
 電気かみそり900は、以上のとおり、刃ヘッド920の負荷が大きくなるにつれて刃ヘッド920の振動力を低下させる構造を有する。この構造は、使用者が刃ヘッド920を肌に押し付ける押付力、および、ソレノイド930が刃ヘッド920に伝達する振動力の合力を一定の大きさに維持することを意図している。 As described above, the electric razor 900 has a structure that reduces the vibration force of the blade head 920 as the load of the blade head 920 increases. This structure is intended to maintain the pressing force by which the user presses the blade head 920 against the skin and the resultant force of the vibration force transmitted from the solenoid 930 to the blade head 920 at a constant magnitude.
特開2009-232890号公報JP 2009-232890 A
 本願発明者は、電気かみそり900が以下の課題を有することを見出した。 The inventors of the present application have found that the electric razor 900 has the following problems.
 電気かみそり900では、使用者によって生成される押付力が一定値を超えた場合、ソレノイド930の振動力が発生しなくなるか、または、ソレノイド930の振動力が微小な大きさを有すると考えられる。ソレノイド930の振動力は、使用者による押付力が一定値以上の大きさを有する場合、使用者による押付力が増加しても変化しない。すなわち、使用者による押付力およびソレノイド930の振動力の合力は、使用者による押付力が一定値以上の大きさを有する場合、実質的に押付力のみに依存して大きくなる。 In the electric razor 900, it is considered that when the pressing force generated by the user exceeds a certain value, the vibration force of the solenoid 930 is not generated or the vibration force of the solenoid 930 has a minute magnitude. The vibration force of the solenoid 930 does not change even if the pressing force by the user increases when the pressing force by the user has a magnitude greater than a certain value. That is, the resultant force of the pressing force by the user and the vibration force of the solenoid 930 increases substantially depending only on the pressing force when the pressing force by the user has a magnitude greater than a certain value.
 一方、刃ヘッド920は、使用者による押付力が大きくなるにつれて肌を導入する量を増加させる。このため、電気かみそり900では、使用者による押付力が一定値以上に増加するとき、刃ヘッド920の内部に肌を過剰に導入するおそれがある。肌は、刃ヘッド920の内部に過剰に導入されたとき、刃ヘッド920の内刃の往復運動により損傷することがある。 On the other hand, the blade head 920 increases the amount of skin to be introduced as the pressing force by the user increases. For this reason, in the electric shaver 900, when the pressing force by the user increases to a certain value or more, there is a possibility that the skin is excessively introduced into the blade head 920. When the skin is excessively introduced into the blade head 920, the skin may be damaged by the reciprocating motion of the inner blade of the blade head 920.
 本発明は、肌を損傷させにくくすることに貢献する電気かみそりを提供することを目的とする。 An object of the present invention is to provide an electric razor that contributes to making it difficult to damage the skin.
 本発明の一側面は、電気かみそりである。電気かみそりは、除毛部と、前記除毛部を支持する本体部と、磁力発生部および出力可動部を含む振動発生部とを備え、前記磁力発生部は、コイルおよび入力側鉄心を含み、前記磁力発生部は、前記コイルにより磁界を形成し、前記入力側鉄心の吸引力を前記出力可動部に作用させ、前記出力可動部は、前記入力側鉄心の吸引力に基づいて前記磁力発生部に対して相対移動する出力側鉄心と、前記出力側鉄心に結合され、前記出力側鉄心の相対移動に基づいて前記除毛部に振動を伝達する振動部品とを含み、前記振動発生部は、前記除毛部の負荷が大きくなるにつれて前記出力側鉄心を前記入力側鉄心に接近させるように構成される。 One aspect of the present invention is an electric razor. The electric razor includes a hair removal part, a main body part that supports the hair removal part, and a vibration generation part including a magnetic force generation part and an output movable part, and the magnetic force generation part includes a coil and an input side iron core, The magnetic force generating unit forms a magnetic field by the coil, and causes the attractive force of the input side iron core to act on the output movable unit, and the output movable unit is configured to generate the magnetic force generating unit based on the attractive force of the input side iron core. An output-side iron core that moves relative to the output-side iron core, and a vibration component that is coupled to the output-side iron core and transmits vibration to the hair removal unit based on the relative movement of the output-side iron core. The output side iron core is configured to approach the input side iron core as the load on the hair removal portion increases.
 上記構成において、振動発生部は、前記除毛部の負荷が大きくなるにつれて除毛部と振動部品との間に形成された前記隙間を小さくするように構成され、前記振動部品は、前記隙間が存在しているとき、前記除毛部に振動を伝達せず、前記隙間が存在していないとき、前記除毛部に振動を伝達することが好ましい。 In the above configuration, the vibration generating unit is configured to reduce the gap formed between the hair removal unit and the vibration component as the load on the hair removal unit increases, and the vibration component includes the gap. It is preferable that vibration is not transmitted to the hair removal part when it exists, and vibration is transmitted to the hair removal part when the gap is not present.
 上記構成において、前記電気かみそりは、位置調整部を備え、前記位置調整部は、前記振動部品に対する前記除毛部の初期位置を変化させるように構成されることが好ましい。 In the above configuration, it is preferable that the electric razor includes a position adjusting unit, and the position adjusting unit is configured to change an initial position of the hair removal unit with respect to the vibrating component.
 本電気かみそりは、肌を損傷させにくくすることに貢献する。 This electric razor contributes to making it hard to damage the skin.
は、第1実施形態の電気かみそりのブロック構成を示す。These show the block configuration of the electric shaver of 1st Embodiment. は、第1実施形態の振動発生部のモデル構成を示す。These show the model structure of the vibration generation part of 1st Embodiment. は、第1実施形態の振動発生部のモデル構成を示す。These show the model structure of the vibration generation part of 1st Embodiment. は、第2実施形態の振動発生部のモデル構成を示す。These show the model structure of the vibration generation part of 2nd Embodiment. は、従来の電気かみそりのモデル構成を示す。These show the model structure of the conventional electric shaver.
 〔a〕独立した一形態に従属する一形態の電気かみそりは、次の事項を有する。電気かみそりは、除毛部の負荷が大きくなるにつれて除毛部と振動部品との間に形成された隙間を小さくするように構成される。振動部品は、隙間が存在しているとき、除毛部に振動を伝達せず、隙間が存在していないとき、除毛部に振動を伝達する。 [A] A form of electric shaver subordinate to an independent form has the following matters. The electric razor is configured to reduce a gap formed between the hair removal portion and the vibration component as the load on the hair removal portion increases. The vibration component does not transmit vibration to the hair removal part when a gap exists, and transmits vibration to the hair removal part when no gap exists.
 〔b〕独立した一形態に従属する一形態の電気かみそりは、次の事項を有する。電気かみそりは、位置調整部を有し、位置調整部は、振動部品に対する除毛部の初期位置を変化させるように構成される。 [B] A form of electric shaver subordinate to an independent form has the following matters. The electric razor has a position adjustment unit, and the position adjustment unit is configured to change the initial position of the hair removal unit with respect to the vibration component.
 (第1実施形態)
 図1は、電気かみそり1の一形態を示している。
(First embodiment)
FIG. 1 shows an embodiment of an electric razor 1.
 電気かみそり1は、本体部10、除毛部20、内刃駆動部50、電源スイッチ60、制御部70、電源部80、振動発生部100、および振動入力部130を含む。電気かみそり1の長手方向は、電気かみそり1の正面視における長手方向の双方向を示す。電気かみそり1の幅方向は、電気かみそり1の正面視において長手方向に直交する双方向を示す。電気かみそり1の奥行方向は、電気かみそり1の正面視において長手方向および幅方向に直交する双方向を示す。 The electric razor 1 includes a main body unit 10, a hair removal unit 20, an inner blade drive unit 50, a power switch 60, a control unit 70, a power supply unit 80, a vibration generation unit 100, and a vibration input unit 130. The longitudinal direction of the electric razor 1 indicates both directions in the longitudinal direction when the electric razor 1 is viewed from the front. The width direction of the electric razor 1 indicates a bidirectional direction orthogonal to the longitudinal direction when the electric razor 1 is viewed from the front. The depth direction of the electric razor 1 indicates both directions orthogonal to the longitudinal direction and the width direction in the front view of the electric razor 1.
 本体部10は、使用者がグリップすることが可能な形状を有する。本体部10は、除毛部20を支持している。本体部10は、内刃駆動部50、制御部70、電源部80、および振動発生部100の一部を本体部10の内部に収容している。 The main body 10 has a shape that can be gripped by the user. The main body 10 supports the hair removal unit 20. The main body unit 10 accommodates a part of the inner blade driving unit 50, the control unit 70, the power supply unit 80, and the vibration generating unit 100 inside the main body unit 10.
 除毛部20は、外刃ブロック30および内刃ブロック40を含む。除毛部20は、電気かみそり1の幅方向において、内刃ブロック40を外刃ブロック30に対して往復運動させる。除毛部20は、内刃ブロック40の往復運動により、外刃ブロック30の内部に導入された毛を剃る。 The hair removal unit 20 includes an outer blade block 30 and an inner blade block 40. The hair removal unit 20 reciprocates the inner blade block 40 relative to the outer blade block 30 in the width direction of the electric razor 1. The hair removal unit 20 shave the hair introduced into the outer blade block 30 by the reciprocating motion of the inner blade block 40.
 外刃ブロック30は、外刃ケース31、外刃32、および外刃内部空間33を含む。外刃ブロック30は、個別の部品として形成された外刃ケース31および外刃32が互いに結合された構造を有する。外刃ブロック30は、外刃内部空間33(図2参照)において内刃ブロック40を収容している。 The outer blade block 30 includes an outer blade case 31, an outer blade 32, and an outer blade inner space 33. The outer blade block 30 has a structure in which an outer blade case 31 and an outer blade 32 formed as individual parts are coupled to each other. The outer blade block 30 accommodates the inner blade block 40 in the outer blade inner space 33 (see FIG. 2).
 外刃ブロック30は、電気かみそり1が除毛に用いられるとき、使用者の押付力FFにより肌200に押し付けられる。押付力FFは、外刃ブロック30が肌200に押し付けられているとき、使用者が外刃ブロック30を介して肌200に作用させている力を示す。外刃ブロック30は、肌200に押し付けられているとき、肌200から反力を受ける。外刃ブロック30が肌200から受ける反力(以下、「肌反力FR」)は、押付力FFに応じて変化する。 The outer blade block 30 is pressed against the skin 200 by the pressing force FF of the user when the electric razor 1 is used for hair removal. The pressing force FF indicates a force applied by the user to the skin 200 via the outer blade block 30 when the outer blade block 30 is pressed against the skin 200. The outer blade block 30 receives a reaction force from the skin 200 when pressed against the skin 200. The reaction force that the outer blade block 30 receives from the skin 200 (hereinafter, “skin reaction force FR”) changes according to the pressing force FF.
 外刃ケース31は、フローティング構造を介して本体部10と結合されている。フローティング構造は、本体部10に対する外刃ケース31の姿勢を変化させる。外刃ケース31は、本体部10に対して幅方向、高さ方向、および奥行方向に変位することができる。外刃ケース31は、幅方向に平行な軸まわり、および、奥行方向に平行な軸まわりにおいて、本体部10に対して回転方向に変位することができる。 The outer blade case 31 is coupled to the main body 10 via a floating structure. The floating structure changes the posture of the outer cutter case 31 with respect to the main body 10. The outer cutter case 31 can be displaced in the width direction, the height direction, and the depth direction with respect to the main body 10. The outer cutter case 31 can be displaced in the rotational direction with respect to the main body 10 around an axis parallel to the width direction and an axis parallel to the depth direction.
 外刃32は、複数の外刃孔を有する(図示略)。外刃32は、外刃孔を介して外刃内部空間33に毛を導入する。外刃32は、押付力FFが大きいとき、外刃孔を介して外刃内部空間33に肌200を導入する。外刃内部空間33に導入される肌200の量(以下、「肌導入量S」)は、一例として、外刃孔よりも外刃内部空間33側に存在する肌200の体積として規定することができる。 The outer blade 32 has a plurality of outer blade holes (not shown). The outer blade 32 introduces bristles into the outer blade inner space 33 through the outer blade hole. When the pressing force FF is large, the outer blade 32 introduces the skin 200 into the outer blade inner space 33 through the outer blade hole. The amount of skin 200 introduced into the outer blade inner space 33 (hereinafter referred to as “skin introduction amount S”) is defined as the volume of the skin 200 existing on the outer blade inner space 33 side with respect to the outer blade hole as an example. Can do.
 内刃ブロック40は、継手部品41および内刃42を含む。内刃ブロック40は、個別の部品として形成された継手部品41および内刃42が互いに結合された構造を有する。内刃ブロック40は、外刃ブロック30と協働して毛を剃る。 The inner blade block 40 includes a joint component 41 and an inner blade 42. The inner blade block 40 has a structure in which a joint part 41 and an inner blade 42 formed as individual parts are coupled to each other. The inner blade block 40 shaves hair in cooperation with the outer blade block 30.
 継手部品41は、外刃ケース31に近い部分において、内刃42と結合している。継手部品41は、本体部10に近い部分において、内刃駆動部50と結合している。継手部品41は、本体部10および外刃ブロック30に対する幅方向への変位が可能な構造を有する。 The joint component 41 is coupled to the inner blade 42 at a portion close to the outer blade case 31. The joint component 41 is coupled to the inner blade drive unit 50 at a portion close to the main body 10. The joint component 41 has a structure capable of displacement in the width direction with respect to the main body 10 and the outer blade block 30.
 内刃駆動部50は、一例として、リニアアクチュエーターを含む。内刃駆動部50は、制御部70から供給されたる駆動信号に基づいて駆動する。内刃駆動部50は、継手部品41を電気かみそり1の幅方向において往復運動させる。 The inner blade drive unit 50 includes a linear actuator as an example. The inner blade drive unit 50 is driven based on a drive signal supplied from the control unit 70. The inner blade drive unit 50 reciprocates the joint component 41 in the width direction of the electric razor 1.
 振動発生部100は、振動入力部130を介して外刃ブロック30に振動力FVを伝達する。振動発生部100の振動力FVは、外刃ブロック30の高さ方向に作用する。振動発生部100は、外刃ブロック30に振動力FVを供給することにより、肌導入量Sが適正範囲よりも多くなることを抑制する。 The vibration generating unit 100 transmits the vibration force FV to the outer blade block 30 via the vibration input unit 130. The vibration force FV of the vibration generating unit 100 acts in the height direction of the outer blade block 30. The vibration generating unit 100 suppresses the skin introduction amount S from being larger than the appropriate range by supplying the vibration force FV to the outer blade block 30.
 電源スイッチ60は、本体部10のケース上に形成されている。電源スイッチ60は、ヒューマンマシンインターフェースの形態を有する。電源スイッチ60は、電気かみそり1の電源をオンおよびオフするために操作される。電源スイッチ60は、押し込み操作される毎に操作信号を制御部70に供給する。 The power switch 60 is formed on the case of the main body 10. The power switch 60 has the form of a human machine interface. The power switch 60 is operated to turn on and off the power of the electric shaver 1. The power switch 60 supplies an operation signal to the control unit 70 every time it is pushed.
 制御部70は、少なくとも内刃駆動部50および振動発生部100を制御する。制御部70は、電源スイッチ60がオンされたとき、内刃駆動部50および振動発生部100の駆動を開始する。制御部70は、本体部10の電源スイッチ60がオフされたとき、内刃駆動部50および振動発生部100の駆動を停止する。 The control unit 70 controls at least the inner blade driving unit 50 and the vibration generating unit 100. The control unit 70 starts driving the inner blade driving unit 50 and the vibration generating unit 100 when the power switch 60 is turned on. The control unit 70 stops driving the inner blade driving unit 50 and the vibration generating unit 100 when the power switch 60 of the main body unit 10 is turned off.
 電源部80は、本体部10の内部に配置されている。電源部80は、一例として、1次電池または2次電池の電力を電気かみそり1の電力ブロックに供給する。電気かみそり1の電力ブロックは、内刃駆動部50、振動発生部100、および制御部70を含む。 The power supply unit 80 is disposed inside the main body unit 10. For example, the power supply unit 80 supplies the power of the primary battery or the secondary battery to the power block of the electric shaver 1. The power block of the electric razor 1 includes an inner blade driving unit 50, a vibration generating unit 100, and a control unit 70.
 図2は、振動発生部100および振動入力部130のモデル構成を示している。 FIG. 2 shows a model configuration of the vibration generating unit 100 and the vibration input unit 130.
 振動入力部130は、振動発生部100によって生成された振動力FVを受け取る。振動入力部130は、外刃ケース31と同一の材料により一体的に形成されている。振動入力部130は、入力部空間131および入力部対向面132を有する。入力部空間131は、本体部10に向かって開口している。入力部対向面132は、振動発生部100の振動部品121と接触する。 The vibration input unit 130 receives the vibration force FV generated by the vibration generation unit 100. The vibration input unit 130 is integrally formed of the same material as that of the outer blade case 31. The vibration input unit 130 includes an input unit space 131 and an input unit facing surface 132. The input part space 131 is open toward the main body part 10. The input unit facing surface 132 is in contact with the vibration component 121 of the vibration generating unit 100.
 振動発生部100は、ケース101、磁力発生部110、および出力可動部120を含む。振動発生部100は、ソレノイドを形成している。振動発生部100は、振動入力部130および外刃ブロック30を振動させることにより、肌200に振動力FVを伝達する。振動力FVは、磁力発生部110の入力側鉄心113の吸引力に基づく出力可動部120の振動部品121の振動により、振動部品121が振動入力部130に伝達する力を示す。 The vibration generating unit 100 includes a case 101, a magnetic force generating unit 110, and an output movable unit 120. The vibration generating unit 100 forms a solenoid. The vibration generating unit 100 transmits the vibration force FV to the skin 200 by vibrating the vibration input unit 130 and the outer blade block 30. The vibration force FV indicates the force that the vibration component 121 transmits to the vibration input unit 130 due to the vibration of the vibration component 121 of the output movable unit 120 based on the suction force of the input side iron core 113 of the magnetic force generation unit 110.
 振動発生部100は、駆動方向Dを規定する。駆動方向Dは、振動部品121の変位方向の双方向を示す。駆動方向Dは、押付方向DUおよび引込方向DDを含む。押付方向DUは、本体部10から除毛部20に向かう方向を示す。引込方向DDは、除毛部20から本体部10に向かう方向を示す。 The vibration generating unit 100 defines the driving direction D. The driving direction D indicates the bidirectional direction of the displacement direction of the vibration component 121. The driving direction D includes a pressing direction DU and a pulling direction DD. The pressing direction DU indicates a direction from the main body unit 10 toward the hair removal unit 20. The pull-in direction DD indicates a direction from the hair removal unit 20 toward the main body unit 10.
 磁力発生部110は、ケース101の内部に配置されている。磁力発生部110は、ボビン111、コイル112、および入力側鉄心113を有する。磁力発生部110は、入力側鉄心113の吸引力を出力可動部120に作用させる。 The magnetic force generator 110 is disposed inside the case 101. The magnetic force generation unit 110 includes a bobbin 111, a coil 112, and an input side iron core 113. The magnetic force generation unit 110 causes the attractive force of the input side iron core 113 to act on the output movable unit 120.
 ボビン111は、樹脂材料により形成されている。ボビン111は、ケース101に結合されている。コイル112は、ボビン111に巻き付けられている。コイル112には、制御部70の制御に基づいて電流が流される。入力側鉄心113は、磁性材料により形成されている。入力側鉄心113は、ケース101に結合されている。 The bobbin 111 is made of a resin material. The bobbin 111 is coupled to the case 101. The coil 112 is wound around the bobbin 111. A current flows through the coil 112 based on the control of the control unit 70. The input side iron core 113 is made of a magnetic material. The input side iron core 113 is coupled to the case 101.
 出力可動部120は、ケース101の内部に配置されている。出力可動部120は、振動部品121、出力側鉄心125、および荷重入力部品126を有する。出力可動部120は、入力側鉄心113の吸引力に基づいて、駆動方向Dにおいて往復運動する。 The output movable unit 120 is disposed inside the case 101. The output movable unit 120 includes a vibration part 121, an output side iron core 125, and a load input part 126. The output movable unit 120 reciprocates in the driving direction D based on the suction force of the input side iron core 113.
 振動部品121は、樹脂材料により形成されている。振動部品121は、結合部122および接触部123を有する。振動部品121は、結合部122および接触部123が同一の材料により一体的に形成された構造を有する。結合部122の一部および接触部123は、振動入力部130の入力部空間131に配置されている。接触部123は、入力部対向面132に接触する接触部対向面124を有する。 The vibration component 121 is made of a resin material. The vibration component 121 includes a coupling part 122 and a contact part 123. The vibration component 121 has a structure in which the coupling portion 122 and the contact portion 123 are integrally formed of the same material. A part of the coupling part 122 and the contact part 123 are arranged in the input part space 131 of the vibration input part 130. The contact portion 123 has a contact portion facing surface 124 that contacts the input portion facing surface 132.
 出力側鉄心125は、磁性材料により形成されている。出力側鉄心125は、振動部品121の結合部122と結合されている。出力側鉄心125は、入力側鉄心113の吸引力により振動部品121と一体的に運動する。 The output iron core 125 is made of a magnetic material. The output side iron core 125 is coupled to the coupling portion 122 of the vibration component 121. The output side iron core 125 moves integrally with the vibration component 121 by the suction force of the input side iron core 113.
 荷重入力部品126は、一例として、コイルスプリングの形態を有する。荷重入力部品126は、押付方向DUに作用する力を振動部品121に供給する。荷重入力部品126は、振動部品121に引込方向DDの力が作用することにより、圧縮変形する。 The load input component 126 has a form of a coil spring as an example. The load input component 126 supplies a force acting in the pressing direction DU to the vibration component 121. The load input component 126 is compressed and deformed when a force in the pull-in direction DD acts on the vibration component 121.
 入力側鉄心113および出力側鉄心125は、駆動方向Dにおいて隙間(以下、「内部隙間102」)を介して対向している。内部隙間102の大きさ(以下、「内部隙間距離LA」)は、外刃ブロック30に作用する肌反力FR、および、コイル112の通電状態の少なくとも一方に応じて変化する。内部隙間距離LAは、一例として、入力側鉄心113の対向面および出力側鉄心125の対向面の距離として規定することができる。なお、外刃ブロック30に作用する肌反力FRは、除毛部20に作用する負荷の主要な成分の1つに相当する。 The input side iron core 113 and the output side iron core 125 are opposed to each other in the driving direction D via a gap (hereinafter, “internal gap 102”). The size of the internal gap 102 (hereinafter, “internal gap distance LA”) varies depending on at least one of the skin reaction force FR acting on the outer blade block 30 and the energized state of the coil 112. For example, the internal gap distance LA can be defined as the distance between the facing surface of the input-side iron core 113 and the facing surface of the output-side iron core 125. The skin reaction force FR acting on the outer blade block 30 corresponds to one of the main components of the load acting on the hair removal unit 20.
 接触部対向面124および入力部対向面132は、駆動方向Dにおいて隙間(以下、「外部隙間103」)を介して対向している。外部隙間103の大きさ(以下、「外部隙間距離LB」)は、外刃ブロック30に作用する肌反力FR、および、コイル112の通電状態の少なくとも一方に応じて変化する。 The contact portion facing surface 124 and the input portion facing surface 132 are opposed to each other in the driving direction D via a gap (hereinafter, “external gap 103”). The size of the external gap 103 (hereinafter, “external gap distance LB”) varies depending on at least one of the skin reaction force FR acting on the outer blade block 30 and the energized state of the coil 112.
 振動発生部100は、少なくとも2つの駆動状態を有する。2つの駆動状態は、「通電状態」および「非通電状態」を示す。通電状態は、制御部70の制御によりコイル112に電流が流れている状態を示す。非通電状態は、制御部70によるコイル112への通電が停止されている状態を示す。振動発生部100は、制御部70の制御により以下の動作を形成する。 The vibration generating unit 100 has at least two driving states. The two driving states indicate an “energized state” and a “non-energized state”. The energized state indicates a state in which a current is flowing through the coil 112 under the control of the control unit 70. The non-energized state indicates a state where energization of the coil 112 by the control unit 70 is stopped. The vibration generating unit 100 forms the following operation under the control of the control unit 70.
 制御部70は、一定周期毎にコイル112への通電を開始する。コイル112は、電流が流れることにより磁界を形成する。コイル112から発生した磁束は、入力側鉄心113を通過する。入力側鉄心113は、磁束が通過しているとき、出力側鉄心125に吸引力を作用させる。このため、出力側鉄心125および振動部品121は、入力側鉄心113の吸引力により、引込方向DDに変位する。振動部品121は、引込方向DDに変位することにより、荷重入力部品126の圧縮方向の変形量(以下、「圧縮変形量V」)を増加させる。通電状態の圧縮変形量Vは、非通電状態の圧縮変形量Vよりも大きい。 The control unit 70 starts energizing the coil 112 at regular intervals. The coil 112 forms a magnetic field when a current flows. The magnetic flux generated from the coil 112 passes through the input side iron core 113. The input-side iron core 113 applies an attractive force to the output-side iron core 125 when magnetic flux passes through. For this reason, the output side iron core 125 and the vibration component 121 are displaced in the drawing direction DD by the suction force of the input side iron core 113. The vibration component 121 increases the amount of deformation in the compression direction of the load input component 126 (hereinafter referred to as “compression deformation amount V”) by being displaced in the pull-in direction DD. The compression deformation amount V in the energized state is larger than the compression deformation amount V in the non-energized state.
 振動部品121および出力側鉄心125の吸引変位量Wは、非通電状態の内部隙間距離LAの長さに応じて変化する。吸引変位量Wは、入力側鉄心113の吸引力に基づいて、出力側鉄心125および振動部品121が引込方向DDに変位する量を示す。出力側鉄心125に作用する入力側鉄心113の吸引力は、非通電状態の内部隙間距離LAが短くなるにつれて大きくなる。このため、吸引変位量Wは、非通電状態の内部隙間距離LAが短くなるにつれて大きくなる。 The suction displacement amount W of the vibration component 121 and the output side iron core 125 changes according to the length of the internal gap distance LA in the non-energized state. The suction displacement amount W indicates an amount by which the output side iron core 125 and the vibration component 121 are displaced in the pull-in direction DD based on the suction force of the input side iron core 113. The attractive force of the input side iron core 113 acting on the output side iron core 125 increases as the internal gap distance LA in the non-energized state becomes shorter. For this reason, the suction displacement amount W increases as the internal gap distance LA in the non-energized state becomes shorter.
 内部隙間距離LAおよび外部隙間距離LBは、振動部品121が引込方向DDに変位することにより変化する。すなわち、内部隙間距離LAおよび外部隙間距離LBは、振動発生部100の駆動状態が非通電状態から通電状態に変化することにより変化する。内部隙間距離LAは、非通電状態から通電状態への変化にともなって短くなる。外部隙間距離LBは、非通電状態から通電状態への変化にともなって長くなる。 The internal gap distance LA and the external gap distance LB change when the vibration component 121 is displaced in the pull-in direction DD. That is, the internal gap distance LA and the external gap distance LB change when the driving state of the vibration generating unit 100 changes from the non-energized state to the energized state. The internal gap distance LA is shortened with a change from the non-energized state to the energized state. The external gap distance LB increases with a change from the non-energized state to the energized state.
 通電状態の内部隙間距離LAおよび非通電状態の内部隙間距離LAの差は、吸引変位量Wに相当する。通電状態の外部隙間距離LBおよび非通電状態の外部隙間距離LBの差は、吸引変位量Wに相当する。 The difference between the internal gap distance LA in the energized state and the internal gap distance LA in the non-energized state corresponds to the suction displacement amount W. The difference between the external gap distance LB in the energized state and the external gap distance LB in the non-energized state corresponds to the suction displacement amount W.
 制御部70は、コイル112への通電を開始してから一定時間が経過した後、コイル112への通電を停止する。コイル112は、電流が流れなくなることにより、磁界を形成しなくなる。入力側鉄心113は、コイル112が磁界を形成していないとき、出力側鉄心125に吸引力を作用させない。このため、出力側鉄心125および振動部品121は、振動発生部100の駆動状態が通電状態から非通電状態に変化したとき、荷重入力部品126の復元力により押付方向DUに変位する。荷重入力部品126の圧縮変形量Vは、出力側鉄心125および振動部品121が押付方向DUに変位することにより、通電状態の圧縮変形量Vよりも小さくなる。 The control unit 70 stops energization of the coil 112 after a predetermined time has elapsed after starting energization of the coil 112. The coil 112 does not form a magnetic field due to no current flowing. The input side iron core 113 does not apply an attractive force to the output side iron core 125 when the coil 112 does not form a magnetic field. For this reason, the output side iron core 125 and the vibration component 121 are displaced in the pressing direction DU by the restoring force of the load input component 126 when the drive state of the vibration generating unit 100 changes from the energized state to the non-energized state. The amount of compressive deformation V of the load input component 126 becomes smaller than the amount of compressive deformation V in the energized state when the output side iron core 125 and the vibration component 121 are displaced in the pressing direction DU.
 内部隙間距離LAおよび外部隙間距離LBは、振動部品121が押付方向DUに変位することにより変化する。すなわち、内部隙間距離LAおよび外部隙間距離LBは、振動発生部100の駆動状態が通電状態から非通電状態に変化することにより変化する。内部隙間距離LAは、通電状態から非通電状態への変化にともなって長くなる。外部隙間距離LBは、通電状態から非通電状態への変化にともなって短くなる。 The internal gap distance LA and the external gap distance LB change when the vibration component 121 is displaced in the pressing direction DU. That is, the internal gap distance LA and the external gap distance LB change when the driving state of the vibration generating unit 100 changes from the energized state to the non-energized state. The internal gap distance LA increases with a change from the energized state to the non-energized state. The external gap distance LB is shortened with a change from the energized state to the non-energized state.
 振動部品121および出力側鉄心125は、通電状態および非通電状態が交互に形成されることにより、磁力発生部110および振動入力部130に対して振動する。振動部品121は、非通電状態における振動入力部130との関係に応じて、振動入力部130に対する振動の伝達形態を変化させる。 The vibration component 121 and the output side iron core 125 vibrate with respect to the magnetic force generation unit 110 and the vibration input unit 130 by alternately forming an energized state and a non-energized state. The vibration component 121 changes the transmission form of vibration to the vibration input unit 130 according to the relationship with the vibration input unit 130 in a non-energized state.
 図3は、振動部品121および振動入力部130が互いに接触した状態を示している。 FIG. 3 shows a state in which the vibration component 121 and the vibration input unit 130 are in contact with each other.
 振動部品121は、非通電状態において振動入力部130と接触していないとき、振動入力部130に振動を伝達しない。すなわち、振動部品121は、非通電状態の外部隙間距離LBが「0」よりも大きいとき、振動入力部130に振動を伝達しない。このため、振動発生部100は、外刃ブロック30に振動力FVを供給しない。 The vibration component 121 does not transmit vibration to the vibration input unit 130 when not in contact with the vibration input unit 130 in a non-energized state. That is, the vibration component 121 does not transmit vibration to the vibration input unit 130 when the external gap distance LB in the non-energized state is greater than “0”. For this reason, the vibration generating unit 100 does not supply the vibration force FV to the outer blade block 30.
 振動部品121は、非通電状態において振動入力部130と接触しているとき、振動入力部130に振動を伝達する。すなわち、振動部品121は、非通電状態の外部隙間距離LBが「0」であるとき、振動入力部130に振動を伝達する。振動部品121は、振動入力部130に振動を伝達することにより、振動入力部130および外刃ブロック30に振動力FVを供給する。 The vibration component 121 transmits vibration to the vibration input unit 130 when in contact with the vibration input unit 130 in a non-energized state. That is, the vibration component 121 transmits vibration to the vibration input unit 130 when the external gap distance LB in the non-energized state is “0”. The vibration component 121 supplies vibration force FV to the vibration input unit 130 and the outer blade block 30 by transmitting vibration to the vibration input unit 130.
 非通電状態の外部隙間距離LBは、振動部品121に対する振動入力部130の駆動方向Dの位置に応じて変化する。振動入力部130は、外刃ブロック30と一体的に変位する。このため、非通電状態の外部隙間距離LBは、本体部10に対する外刃ブロック30の駆動方向Dの位置(以下、「外刃位置C」)に応じて変化する。 The external gap distance LB in the non-energized state changes according to the position of the vibration input unit 130 in the drive direction D with respect to the vibration component 121. The vibration input unit 130 is displaced integrally with the outer blade block 30. For this reason, the external gap distance LB in the non-energized state changes in accordance with the position in the driving direction D of the outer cutter block 30 relative to the main body 10 (hereinafter, “outer cutter position C”).
 外刃ブロック30は、肌反力FRに応じて引込方向DDに変位する。このため、外刃位置Cは、肌反力FRに応じて変化する。肌反力FRは、押付力FFに応じて変化する。このため、外刃位置Cは、押付力FFに応じて変化する。外刃位置Cは、最大離間位置CUから最大接近位置CDまでの範囲において変化する。外刃位置Cは、最大離間位置CUと最大接近位置CDとの間に部品接触位置CMを有する。 The outer blade block 30 is displaced in the pull-in direction DD according to the skin reaction force FR. For this reason, the outer blade position C changes according to the skin reaction force FR. The skin reaction force FR changes according to the pressing force FF. For this reason, the outer cutter position C changes according to the pressing force FF. The outer cutter position C changes in the range from the maximum separation position CU to the maximum approach position CD. The outer cutter position C has a component contact position CM between the maximum separation position CU and the maximum approach position CD.
 最大離間位置CUは、駆動方向Dにおいて、外刃ブロック30が本体部10から最も離間した位置を示す。最大接近位置CDは、駆動方向Dにおいて、外刃ブロック30が本体部10に最も接近した位置を示す。部品接触位置CMは、外刃ブロック30の引込方向DDへの変位にともなって、振動入力部130が振動部品121に接触しはじめる位置を示す。 The maximum separation position CU indicates a position where the outer blade block 30 is most separated from the main body 10 in the driving direction D. The maximum approach position CD indicates a position where the outer blade block 30 is closest to the main body 10 in the driving direction D. The component contact position CM indicates a position where the vibration input unit 130 starts to contact the vibration component 121 in accordance with the displacement of the outer blade block 30 in the retracting direction DD.
 外刃ブロック30に肌反力FRが作用していないとき、外刃ブロック30は最大離間位置CUに位置する。外刃ブロック30に肌反力FRが作用しているとき、外刃ブロック30は、本体部10に対して限界まで引込方向DDに変位して最大接近位置CDに位置する。外刃位置Cは、本体部10に対する外刃ブロック30の引込方向DDの変位量(以下、「外刃変位量XB」)に対応する。 When the skin reaction force FR is not acting on the outer blade block 30, the outer blade block 30 is located at the maximum separation position CU. When the skin reaction force FR is acting on the outer blade block 30, the outer blade block 30 is displaced to the limit with respect to the main body portion 10 in the retracting direction DD and is positioned at the maximum approach position CD. The outer blade position C corresponds to a displacement amount of the outer blade block 30 in the drawing direction DD with respect to the main body portion 10 (hereinafter, “outer blade displacement amount XB”).
 外刃位置Cが最大離間位置CUにあるとき、外刃変位量XBは最小変位量XBLである。外刃位置Cが最大離間位置CUから部品接触位置CMまでの範囲に含まれるとき、外刃変位量XBは外刃位置Cに応じて変化する。外刃位置Cが部品接触位置CMであるとき、外刃変位量XBは基準変位量XBMである。外刃位置Cが部品接触位置CMから最大接近位置CDまでの範囲に含まれるとき、外刃変位量XBは外刃位置Cに応じて変化する。外刃位置Cが最大接近位置CDであるとき、外刃変位量XBは最大変位量XBHである。 When the outer cutter position C is at the maximum separation position CU, the outer cutter displacement amount XB is the minimum displacement amount XBL. When the outer cutter position C is included in the range from the maximum separation position CU to the component contact position CM, the outer cutter displacement amount XB changes according to the outer cutter position C. When the outer cutter position C is the component contact position CM, the outer cutter displacement amount XB is the reference displacement amount XBM. When the outer cutter position C is included in the range from the component contact position CM to the maximum approach position CD, the outer cutter displacement amount XB changes according to the outer cutter position C. When the outer cutter position C is the maximum approach position CD, the outer cutter displacement amount XB is the maximum displacement amount XBH.
 外刃位置Cが最大離間位置CUにあるとき、非通電状態の外部隙間距離LBは、外部隙間距離LBの変化範囲において最も長くなる。すなわち、外刃変位量XBが最小変位量XBLであるとき、非通電状態の外部隙間距離LBは、外部隙間距離LBの変化範囲において最も長くなる。 When the outer blade position C is at the maximum separation position CU, the external gap distance LB in the non-energized state is the longest in the change range of the external gap distance LB. That is, when the outer blade displacement amount XB is the minimum displacement amount XBL, the external gap distance LB in the non-energized state is the longest in the change range of the external gap distance LB.
 外刃位置Cが最大離間位置CUと部品接触位置CMとの間の範囲に含まれるとき、非通電状態の外部隙間距離LBは、外刃位置Cが部品接触位置CMに近づくにつれて短くなる。すなわち、外刃変位量XBが最小変位量XBLと基準変位量XBMとの間の範囲に含まれるとき、非通電状態の外部隙間距離LBは、外刃変位量XBが大きくなるにつれて短くなる。 When the outer blade position C is included in the range between the maximum separation position CU and the component contact position CM, the external gap distance LB in the non-energized state becomes shorter as the outer blade position C approaches the component contact position CM. That is, when the outer blade displacement amount XB is included in the range between the minimum displacement amount XBL and the reference displacement amount XBM, the external gap distance LB in the non-energized state becomes shorter as the outer blade displacement amount XB increases.
 外刃位置Cが部品接触位置CMにあるとき、非通電状態の外部隙間距離LBは「0」である。すなわち、外刃変位量XBが基準変位量XBMであるとき、非通電状態の外部隙間距離LBは「0」である。 When the outer cutter position C is at the component contact position CM, the external gap distance LB in the non-energized state is “0”. That is, when the outer blade displacement amount XB is the reference displacement amount XBM, the external gap distance LB in the non-energized state is “0”.
 外刃位置Cが部品接触位置CMから最大接近位置CDまでの範囲に含まれるとき、非通電状態の外部隙間距離LBは「0」である。すなわち、外刃変位量XBが基準変位量XBMから最大変位量XBHまでの範囲に含まれるとき、非通電状態の外部隙間距離LBは「0」である。 When the outer blade position C is included in the range from the component contact position CM to the maximum approach position CD, the external gap distance LB in the non-energized state is “0”. That is, when the outer blade displacement amount XB is included in the range from the reference displacement amount XBM to the maximum displacement amount XBH, the external gap distance LB in the non-energized state is “0”.
 外刃位置Cが部品接触位置CMから最大接近位置CDまでの範囲に含まれるとき、外刃ブロック30は、外刃変位量XBが大きくなるにつれて、振動部品121を磁力発生部110に対して引込方向DDに変位させる。外刃ブロック30は、振動部品121を引込方向DDに変位させることにより、振動部品121の基準部品位置PXを変化させる。 When the outer cutter position C is included in the range from the component contact position CM to the maximum approach position CD, the outer cutter block 30 pulls the vibrating component 121 into the magnetic force generator 110 as the outer cutter displacement amount XB increases. Displace in the direction DD. The outer blade block 30 changes the reference part position PX of the vibration part 121 by displacing the vibration part 121 in the pull-in direction DD.
 基準部品位置PXは、非通電状態における磁力発生部110に対する振動部品121の位置を示す。基準部品位置PXは、外刃位置Cの変化に応じて、最小吸引位置PXUから最大吸引位置PXDまでの範囲において変化する。 The reference component position PX indicates the position of the vibration component 121 with respect to the magnetic force generation unit 110 in a non-energized state. The reference component position PX changes in the range from the minimum suction position PXU to the maximum suction position PXD according to the change in the outer blade position C.
 外刃位置Cが最大離間位置CUにあるとき、基準部品位置PXは最小吸引位置PXUにある。すなわち、外刃変位量XBが最小変位量XBLであるとき、基準部品位置PXは最小吸引位置PXUにある。 When the outer cutter position C is at the maximum separation position CU, the reference part position PX is at the minimum suction position PXU. That is, when the outer blade displacement amount XB is the minimum displacement amount XBL, the reference component position PX is at the minimum suction position PXU.
 外刃位置Cが最大離間位置CUと部品接触位置CMとの間の範囲に含まれるとき、基準部品位置PXは、外刃位置Cの変化に反応せずに最小吸引位置PXUにある。すなわち、外刃変位量XBが最小変位量XBLと基準変位量XBMとの間の範囲に含まれるとき、基準部品位置PXは、外刃変位量XBの変化に反応せずに最小吸引位置PXUにある。 When the outer blade position C is included in the range between the maximum separation position CU and the component contact position CM, the reference component position PX is at the minimum suction position PXU without reacting to the change in the outer blade position C. That is, when the outer blade displacement amount XB is included in the range between the minimum displacement amount XBL and the reference displacement amount XBM, the reference component position PX does not react to the change in the outer blade displacement amount XB and is set to the minimum suction position PXU. is there.
 外刃位置Cが部品接触位置CMから最大接近位置CDまでの範囲に含まれるとき、基準部品位置PXは、外刃位置Cが最大接近位置CDに近づくにつれて最大吸引位置PXDに近づく。すなわち、外刃変位量XBが基準変位量XBMから最大変位量XBHまでの範囲に含まれるとき、基準部品位置PXは、外刃変位量XBが最大変位量XBHに近づくにつれて最大吸引位置PXDに近づく。 When the outer cutter position C is included in the range from the component contact position CM to the maximum approach position CD, the reference component position PX approaches the maximum suction position PXD as the outer cutter position C approaches the maximum approach position CD. That is, when the outer blade displacement amount XB is included in the range from the reference displacement amount XBM to the maximum displacement amount XBH, the reference part position PX approaches the maximum suction position PXD as the outer blade displacement amount XB approaches the maximum displacement amount XBH. .
 外刃位置Cが最大接近位置CDにあるとき、基準部品位置PXは最大吸引位置PXDである。すなわち、外刃変位量XBが最大変位量XBHであるとき、基準部品位置PXは最大吸引位置PXDにある。 When the outer cutter position C is at the maximum approach position CD, the reference part position PX is the maximum suction position PXD. That is, when the outer blade displacement amount XB is the maximum displacement amount XBH, the reference component position PX is at the maximum suction position PXD.
 非通電状態の内部隙間距離LAは、基準部品位置PXに応じて変化する。吸引変位量Wは、非通電状態の内部隙間距離LAに応じて変化する。このため、吸引変位量Wは、基準部品位置PXに応じて変化する。 The internal gap distance LA in the non-energized state changes according to the reference part position PX. The suction displacement amount W changes according to the internal gap distance LA in the non-energized state. Therefore, the suction displacement amount W changes according to the reference part position PX.
 基準部品位置PXが最小吸引位置PXUであるとき、非通電状態の内部隙間距離LAは、基準部品位置PXに応じた変化範囲内において最も長くなる。このため、基準部品位置PXが最小吸引位置PXUにあるとき、吸引変位量Wは、基準部品位置PXに応じた変化範囲内において最も小さくなる。 When the reference part position PX is the minimum suction position PXU, the internal gap distance LA in the non-energized state is the longest within the change range corresponding to the reference part position PX. For this reason, when the reference part position PX is at the minimum suction position PXU, the suction displacement amount W is the smallest within the change range corresponding to the reference part position PX.
 非通電状態の内部隙間距離LAは、基準部品位置PXが最小吸引位置PXUから最大吸引位置PXDに近づくにつれて短くなる。このため、吸引変位量Wは、基準部品位置PXが最小吸引位置PXUから最大吸引位置PXDに近づくにつれて大きくなる。 The internal gap distance LA in the non-energized state becomes shorter as the reference part position PX approaches the maximum suction position PXD from the minimum suction position PXU. For this reason, the suction displacement amount W increases as the reference part position PX approaches the maximum suction position PXD from the minimum suction position PXU.
 基準部品位置PXが最大吸引位置PXDにあるとき、非通電状態の内部隙間距離LAは、基準部品位置PXに応じた変化範囲内において最も短くなる。このため、基準部品位置PXが最大吸引位置PXDにあるとき、吸引変位量Wは、基準部品位置PXに応じた変化範囲内において最も大きくなる。 When the reference part position PX is at the maximum suction position PXD, the internal gap distance LA in the non-energized state is the shortest within the change range corresponding to the reference part position PX. For this reason, when the reference part position PX is at the maximum suction position PXD, the suction displacement amount W is the largest within the change range corresponding to the reference part position PX.
 吸引変位量Wは、外刃位置Cに応じて次のとおり変化する。 The suction displacement amount W varies as follows according to the outer cutter position C.
 吸引変位量Wは、外刃位置Cが部品接触位置CMよりも最大離間位置CUに近い範囲に含まれるとき、外刃位置Cの変化に反応しない。外刃位置Cが部品接触位置CMから最大接近位置CDまでの範囲に含まれるとき、吸引変位量Wは、外刃位置Cが最大接近位置CDに近づくにつれて大きくなる。 The suction displacement amount W does not react to a change in the outer blade position C when the outer blade position C is included in a range closer to the maximum separation position CU than the component contact position CM. When the outer cutter position C is included in the range from the component contact position CM to the maximum approach position CD, the suction displacement amount W increases as the outer cutter position C approaches the maximum approach position CD.
 振動部品121は、次のとおり振動入力部130に振動を伝達する。 The vibration component 121 transmits vibration to the vibration input unit 130 as follows.
 外刃位置Cが部品接触位置CMから最大接近位置CDまでの範囲に含まれる場合、振動発生部100の駆動状態が非通電状態であるとき、振動部品121は、振動入力部130に接触している。 When the outer blade position C is included in the range from the component contact position CM to the maximum approach position CD, the vibration component 121 is in contact with the vibration input unit 130 when the driving state of the vibration generating unit 100 is a non-energized state. Yes.
 振動発生部100の駆動状態が非通電状態から通電状態に変化したとき、振動部品121は、引込方向DDに変位する。接触部123は、振動部品121の変位に応じて振動入力部130から離間する。内部隙間距離LAは、振動部品121の変位に応じて短くなる。外部隙間距離LBは、振動部品121の変位に応じて長くなる。 When the driving state of the vibration generating unit 100 changes from the non-energized state to the energized state, the vibrating component 121 is displaced in the pull-in direction DD. The contact part 123 is separated from the vibration input part 130 according to the displacement of the vibration part 121. The internal gap distance LA is shortened according to the displacement of the vibration component 121. The external gap distance LB becomes longer according to the displacement of the vibration component 121.
 振動発生部100の駆動状態が通電状態から非通電状態に変化したとき、振動部品121は、押付方向DUに変位する。内部隙間距離LAは、振動部品121の変位に応じて長くなる。外部隙間距離LBは、振動部品121の変位に応じて短くなる。接触部123は、振動部品121の変位に応じて振動入力部130に衝突する。 When the driving state of the vibration generating unit 100 changes from the energized state to the non-energized state, the vibrating component 121 is displaced in the pressing direction DU. The internal gap distance LA becomes longer according to the displacement of the vibration component 121. The external gap distance LB is shortened according to the displacement of the vibration component 121. The contact part 123 collides with the vibration input part 130 according to the displacement of the vibration part 121.
 このため、振動部品121は、振動力FVとしての衝撃荷重を振動入力部130に伝達する。このため、外刃ブロック30は、振動入力部130に伝達された衝撃荷重を肌200に伝達する。すなわち、外刃ブロック30は、押付力FFおよび振動力FVの合力を肌200に伝達する。 For this reason, the vibration component 121 transmits an impact load as the vibration force FV to the vibration input unit 130. For this reason, the outer blade block 30 transmits the impact load transmitted to the vibration input unit 130 to the skin 200. That is, the outer blade block 30 transmits the resultant force of the pressing force FF and the vibration force FV to the skin 200.
 電気かみそり1は、以下の作用を有する。 The electric razor 1 has the following actions.
 外刃位置Cは、肌反力FRに応じて変化する。外刃位置Cは、肌反力FRが大きくなるにつれて最大接近位置CDに近づく。外刃位置Cは、肌反力FRが基準肌反力FRXであるとき、部品接触位置CMに達する。肌反力FRが基準肌反力FRXであるとき、押付力FFは基準押付力FFXである。 The outer cutter position C changes according to the skin reaction force FR. The outer cutter position C approaches the maximum approach position CD as the skin reaction force FR increases. The outer blade position C reaches the component contact position CM when the skin reaction force FR is the reference skin reaction force FRX. When the skin reaction force FR is the reference skin reaction force FRX, the pressing force FF is the reference pressing force FFX.
 このため、押付力FFが基準押付力FFXであるとき、外刃位置Cは、部品接触位置CMである。このため、押付力FFが基準押付力FFX未満から基準押付力FFX以上の大きさに変化したとき、外刃ブロック30は、振動入力部130を振動部品121に接触させる。このため、押付力FFが基準押付力FFX未満から基準押付力FFX以上の大きさに変化したとき、振動部品121は、振動入力部130および外刃ブロック30に振動を伝達しはじめる。 For this reason, when the pressing force FF is the reference pressing force FFX, the outer blade position C is the component contact position CM. For this reason, when the pressing force FF changes from less than the reference pressing force FFX to a magnitude greater than or equal to the reference pressing force FFX, the outer blade block 30 brings the vibration input unit 130 into contact with the vibration component 121. For this reason, when the pressing force FF changes from less than the reference pressing force FFX to a magnitude equal to or larger than the reference pressing force FFX, the vibration component 121 starts to transmit vibration to the vibration input unit 130 and the outer blade block 30.
 押付力FFが基準押付力FFX未満の大きさを有するとき、肌導入量Sは、適正範囲に含まれ、かつ適正範囲の上限に対して一定の余裕を持つ。押付力FFが基準押付力FFX以上の大きさを有し、押付力FFと基準押付力FFXとの差が小さいとき、肌導入量Sは、適正範囲の上限に対する余裕が小さい。押付力FFが基準押付力FFX以上の大きさを有し、押付力FFと基準押付力FFXとの差が大きいとき、肌導入量Sは、適正範囲を超えるおそれが高くなる。 When the pressing force FF has a magnitude less than the reference pressing force FFX, the skin introduction amount S is included in the appropriate range and has a certain margin with respect to the upper limit of the appropriate range. When the pressing force FF is greater than the reference pressing force FFX and the difference between the pressing force FF and the reference pressing force FFX is small, the skin introduction amount S has a small margin with respect to the upper limit of the appropriate range. When the pressing force FF is greater than the reference pressing force FFX and the difference between the pressing force FF and the reference pressing force FFX is large, the skin introduction amount S is likely to exceed the appropriate range.
 このため、振動部品121が振動入力部130および外刃ブロック30に振動を伝達しはじめるタイミングは、肌導入量Sが適正範囲を超えるおそれが低い状態から、肌導入量Sが適正範囲を超えるおそれが高い状態に変化したタイミングに相当する。このため、使用者は、外刃ブロック30が駆動方向Dに振動しはじめたことに基づいて、肌導入量Sが適正範囲を超えるおそれが高いことを認識することができる。すなわち、電気かみそり1は、外刃ブロック30を駆動方向Dに振動させることにより、肌導入量Sのレベルを使用者に報知することができる。 For this reason, the timing at which the vibration component 121 begins to transmit vibration to the vibration input unit 130 and the outer blade block 30 is such that the skin introduction amount S exceeds the appropriate range from the state where the risk that the skin introduction amount S exceeds the appropriate range is low. This corresponds to the timing when the state changes to a high state. For this reason, the user can recognize that the skin introduction amount S is likely to exceed the appropriate range based on the fact that the outer blade block 30 starts to vibrate in the driving direction D. That is, the electric razor 1 can notify the user of the level of the skin introduction amount S by vibrating the outer blade block 30 in the driving direction D.
 本願発明者は、押付力FFおよび振動力FVの変化にともなう外刃ブロック30と肌200との間の関係の変化を確認する試験を実施した。本願発明者は、この試験の結果から以下の知見を得た。 The inventor of the present application conducted a test for confirming a change in the relationship between the outer blade block 30 and the skin 200 with changes in the pressing force FF and the vibration force FV. The inventor of the present application has obtained the following knowledge from the results of this test.
 押付力FFが基準押付力FFX未満の大きさを有する場合、押付力FFおよび振動力FVの少なくとも一方が増加するとき、外刃ブロック30と肌200との間の密着性が高められる。このため、除毛部20によって剃られる毛の量が増加しやすくなる。 When the pressing force FF has a magnitude less than the reference pressing force FFX, when at least one of the pressing force FF and the vibration force FV increases, the adhesion between the outer blade block 30 and the skin 200 is enhanced. For this reason, the amount of hair shaved by the hair removal unit 20 is likely to increase.
 押付力FFが基準押付力FFX以上の大きさを有する場合、外刃ブロック30に振動発生部100の振動力FVが供給されていないか、または比較的小さい振動力FVが供給されるとき、外刃ブロック30は、適正範囲を超える量の肌200を導入するおそれが高い。 When the pressing force FF is greater than the reference pressing force FFX, when the vibration force FV of the vibration generating unit 100 is not supplied to the outer blade block 30 or a relatively small vibration force FV is supplied, The blade block 30 is highly likely to introduce skin 200 in an amount exceeding the appropriate range.
 押付力FFが基準押付力FFX以上の大きさを有する場合、基準振動力FVX以上の大きさを有する振動力FVが振動発生部100から供給されるとき、外刃ブロック30は、肌200から間欠的に離間方向に変位しやすくなる。このため、肌導入量Sが減少しやすくなる。 When the pressing force FF has a magnitude greater than or equal to the reference pressing force FFX, when the vibration force FV having a magnitude greater than or equal to the reference vibration force FVX is supplied from the vibration generating unit 100, the outer blade block 30 is intermittent from the skin 200. Therefore, it becomes easy to displace in the separation direction. For this reason, the skin introduction amount S tends to decrease.
 振動力FVに基づく外刃ブロック30の離間方向への変位は、外刃ブロック30を肌200に押し付ける方向とは反対方向のベクトル、または、反対方向に近い方向のベクトルを持つ変位を示す。 The displacement of the outer blade block 30 in the separation direction based on the vibration force FV indicates a displacement having a vector in a direction opposite to the direction in which the outer blade block 30 is pressed against the skin 200 or a vector in a direction close to the opposite direction.
 振動力FVに基づく外刃ブロック30の離間方向への変位により、外刃ブロック30と肌200との間に空間を形成する場合、および、外刃ブロック30と肌200との間に空間を形成しない場合がある。振動力FVに基づく外刃ブロック30の離間方向への変位により、外刃ブロック30は、肌200を導入していない状態、または、離間方向への変位前よりも肌導入量Sが減少した状態を形成する。外刃ブロック30と肌200との間に空間を形成したか否かにかかわらず、振動力FVに基づいて外刃ブロック30の離間方向への変位により、振動力FVに基づく外刃ブロック30の離間方向への変位を形成しない場合と比較して、外刃ブロック30の肌導入量Sが減少する。 When a space is formed between the outer blade block 30 and the skin 200 by the displacement of the outer blade block 30 in the separation direction based on the vibration force FV, and a space is formed between the outer blade block 30 and the skin 200. May not. Due to the displacement of the outer blade block 30 in the separation direction based on the vibration force FV, the outer blade block 30 does not introduce the skin 200, or the skin introduction amount S is less than before the displacement in the separation direction. Form. Regardless of whether or not a space is formed between the outer blade block 30 and the skin 200, the outer blade block 30 based on the vibration force FV is displaced by the displacement of the outer blade block 30 in the separation direction based on the vibration force FV. Compared to the case where no displacement in the separating direction is formed, the skin introduction amount S of the outer blade block 30 is reduced.
 このため、押付力FFが基準押付力FFX以上の大きさを有することにより、外刃ブロック30は、適正範囲よりも多い量の肌200を導入していたとしても、離間方向への変位により肌導入量Sを減少させる。このため、肌200が損傷しにくくなる。すなわち、振動発生部100の振動力FVは、基準押付力FFX以上の大きさを有する押付力FFが肌200に作用している場合、外刃ブロック30を肌200に対して間欠的に離間方向に変位させることにより、肌導入量Sを減少させる。 For this reason, when the pressing force FF has a magnitude equal to or larger than the reference pressing force FFX, the outer blade block 30 has a skin displacement due to displacement in the separation direction even if a larger amount of skin 200 than the appropriate range is introduced. The introduction amount S is decreased. For this reason, skin 200 becomes difficult to be damaged. That is, the vibration force FV of the vibration generating unit 100 is intermittently separated from the skin 200 when the pressing force FF having a magnitude greater than or equal to the reference pressing force FFX is acting on the skin 200. The skin introduction amount S is decreased by displacing the skin.
 振動力FVに基づいて外刃ブロック30が離間方向に変位する理由は、次のように考えられる。肌200に対して外部から付与される力が大きくなるにつれて、肌200の凹み変形量が大きくなる。肌200では、凹み変形量が大きくなるにつれて、押付力FFに基づく変形が生じにくくなる。肌200は、押付力FFが基準押付力FFX以上の大きさを有するとき、変形部分が存在しない状態、または、変形部分が十分に小さい状態を形成する。 The reason why the outer blade block 30 is displaced in the separation direction based on the vibration force FV is considered as follows. As the force applied to the skin 200 from the outside increases, the dent deformation amount of the skin 200 increases. In the skin 200, the deformation based on the pressing force FF is less likely to occur as the dent deformation amount increases. When the pressing force FF has a magnitude equal to or larger than the reference pressing force FFX, the skin 200 forms a state where there is no deformed portion or a state where the deformed portion is sufficiently small.
 このため、押付力FFが基準押付力FFX以上の大きさを有する場合において、外刃ブロック30から振動力FVを受けたとき、肌200は、振動力FVに基づく凹み変形を生じないか、または振動力FVに基づく凹み変形量は、微小な状態を形成する。このため、外刃ブロック30は、肌200に振動力FVを伝達することにともなって、衝撃的かつ大きな反力を肌200から受け取る。このため、外刃ブロック30が振動力FVに基づいて間欠的に離間方向に変位すると考えられる。 For this reason, when the pressing force FF has a magnitude equal to or larger than the reference pressing force FFX, when receiving the vibration force FV from the outer blade block 30, the skin 200 does not cause dent deformation based on the vibration force FV, or The dent deformation amount based on the vibration force FV forms a minute state. For this reason, the outer blade block 30 receives a shocking and large reaction force from the skin 200 as the vibration force FV is transmitted to the skin 200. For this reason, it is considered that the outer blade block 30 is intermittently displaced in the separation direction based on the vibration force FV.
 振動発生部100は、以上の事項を踏まえて、押付力FFが大きくなるにつれて外刃ブロック30の振動が大きくなる構造を有する。このため、振動発生部100は、押付力FFが大きくなるにつれて、外刃ブロック30を肌200に対して離間方向に変位させやすくなる。このため、肌導入量Sが減少しやすくなる。外刃ブロック30の振動は、以下の理由により、押付力FFが大きくなるにつれて大きくなる。 The vibration generating unit 100 has a structure in which the vibration of the outer blade block 30 increases as the pressing force FF increases in consideration of the above matters. For this reason, the vibration generating unit 100 easily displaces the outer blade block 30 in the separating direction with respect to the skin 200 as the pressing force FF increases. For this reason, the skin introduction amount S tends to decrease. The vibration of the outer blade block 30 increases as the pressing force FF increases for the following reason.
 肌反力FRは、押付力FFが大きくなるにつれて大きくなる。外刃位置Cは、肌反力FRが大きくなるにつれて引込方向DDに変化する。基準部品位置PXは、肌反力FRが大きくなるにつれて最大吸引位置PXDに近づく。内部隙間距離LAは、基準部品位置PXが最大吸引位置PXDに近づくにつれて短くなる。入力側鉄心113の吸引力は、内部隙間距離LAが短くなるにつれて大きくなる。荷重入力部品126の圧縮変形量Vは、入力側鉄心113の吸引力が大きくなるにつれて大きくなる。振動発生部100の振動力FVは、圧縮変形量Vが大きくなるにつれて大きくなる。このため、振動発生部100の振動力FVは、肌反力FRが大きくなるにつれて大きくなる。このため、外刃ブロック30の振動は、肌反力FRが大きくなるにつれて大きくなる。このため、外刃ブロック30の振動は、押付力FFが大きくなるにつれて大きくなる。 The skin reaction force FR increases as the pressing force FF increases. The outer cutter position C changes in the retracting direction DD as the skin reaction force FR increases. The reference part position PX approaches the maximum suction position PXD as the skin reaction force FR increases. The internal gap distance LA becomes shorter as the reference part position PX approaches the maximum suction position PXD. The suction force of the input side iron core 113 increases as the internal gap distance LA decreases. The amount of compressive deformation V of the load input component 126 increases as the suction force of the input side iron core 113 increases. The vibration force FV of the vibration generating unit 100 increases as the compression deformation amount V increases. For this reason, the vibration force FV of the vibration generating unit 100 increases as the skin reaction force FR increases. For this reason, the vibration of the outer blade block 30 increases as the skin reaction force FR increases. For this reason, the vibration of the outer blade block 30 increases as the pressing force FF increases.
 電気かみそり1は、以下の効果を奏する。 The electric razor 1 has the following effects.
 (1)電気かみそり1は、振動発生部100を有する。振動発生部100は、振動入力部130を介して外刃ブロック30に振動力FVを伝達する。このため、外刃ブロック30は、押付力FFが大きいとき、肌200に対して間欠的に離間方向に変位する。このため、肌200の損傷が生じにくくなる。すなわち、電気かみそり1は、肌200の損傷を生じにくくすることに貢献する。 (1) The electric razor 1 has a vibration generating unit 100. The vibration generating unit 100 transmits the vibration force FV to the outer blade block 30 via the vibration input unit 130. For this reason, the outer blade block 30 is displaced in the separation direction intermittently with respect to the skin 200 when the pressing force FF is large. For this reason, damage to the skin 200 is less likely to occur. That is, the electric razor 1 contributes to making the skin 200 less likely to be damaged.
 (2)振動発生部100は、外刃ブロック30を肌200に対して離間方向に変位させる。このため、外刃ブロック30と肌200との間の摩擦力が小さくなる。このため、除毛のために肌200に対して移動する外刃ブロック30の力が小さくなる。このため、使用者は、除毛のために電気かみそり1を肌200に対して移動させる力を小さくすることができる。 (2) The vibration generating unit 100 displaces the outer blade block 30 in the separating direction with respect to the skin 200. For this reason, the frictional force between the outer blade block 30 and the skin 200 is reduced. For this reason, the force of the outer blade block 30 that moves relative to the skin 200 for hair removal is reduced. For this reason, the user can make small the force which moves the electric razor 1 with respect to the skin 200 for hair removal.
 (3)押付力FFが基準押付力FFX未満の大きさから基準押付力FFX以上の大きさに変化したとき、振動発生部100は、振動入力部130に振動を伝達しはじめる。このため、外刃ブロック30は、肌導入量Sが適正範囲を超えるおそれが高いことを、振動により使用者に報知することができる。 (3) When the pressing force FF changes from a magnitude less than the reference pressing force FFX to a magnitude greater than the reference pressing force FFX, the vibration generating unit 100 starts to transmit vibration to the vibration input unit 130. For this reason, the outer blade block 30 can notify the user that the skin introduction amount S is likely to exceed the appropriate range by vibration.
 (4)振動力FVに基づく外刃ブロック30の離間方向の変位が存在していない場合、肌導入量Sは、押付力FFが大きくなるにつれて多くなる。このため、比較的大きな押付力FFは、肌導入量Sを過度に多くするおそれを潜在的に有する。一方、振動発生部100は、押付力FFが大きくなるにつれて振動力FVを増加させる。このため、外刃ブロック30は、押付力FFが大きくなるにつれて肌200から離間しやすくなる。このため、比較的大きな押付力FFに起因して肌導入量Sが過度に多くなるおそれが低減される。 (4) When there is no displacement in the separating direction of the outer blade block 30 based on the vibration force FV, the skin introduction amount S increases as the pressing force FF increases. For this reason, the relatively large pressing force FF potentially has a risk of excessively increasing the skin introduction amount S. On the other hand, the vibration generating unit 100 increases the vibration force FV as the pressing force FF increases. For this reason, the outer blade block 30 is easily separated from the skin 200 as the pressing force FF increases. For this reason, the possibility that the skin introduction amount S is excessively increased due to the relatively large pressing force FF is reduced.
 (5)電気かみそり1は、比較電気かみそりに対して有利な点を有する。比較電気かみそりは、以下の点において電気かみそり1と相違し、その他の点において、電気かみそり1と同一の構成を有する仮想の電気かみそりを示す。 (5) The electric razor 1 has an advantage over the comparative electric razor. The comparative electric razor is different from the electric razor 1 in the following points, and indicates a virtual electric razor having the same configuration as the electric razor 1 in other points.
 比較電気かみそりでは、肌反力FRが作用していない場合、振動部品および振動入力部が互いに接触している。比較電気かみそりでは、駆動方向Dにおいて、出力側鉄心が入力側鉄心に対して外刃ブロックとは反対側に配置されている。 In the comparative electric razor, when the skin reaction force FR is not acting, the vibration component and the vibration input portion are in contact with each other. In the comparative electric razor, in the driving direction D, the output side iron core is disposed on the side opposite to the outer blade block with respect to the input side iron core.
 このため、比較電気かみそりの出力側鉄心は、外刃ブロックが引込方向DDに変化するにつれて、入力側鉄心から離間する。このため、比較電気かみそりの内部隙間距離LAは、肌反力FRが大きくなるにつれて長くなる。このため、比較電気かみそりの入力側鉄心の吸引力は、肌反力FRが大きくなるにつれて小さくなる。 For this reason, the output side iron core of the comparative electric razor is separated from the input side iron core as the outer blade block changes in the retracting direction DD. For this reason, the internal clearance distance LA of the comparative electric razor becomes longer as the skin reaction force FR increases. For this reason, the suction force of the input side iron core of the comparative electric razor decreases as the skin reaction force FR increases.
 このため、比較電気かみそりの振動力FVは、肌反力FRが大きくなるにつれて小さくなる。このため、比較電気かみそりの外刃ブロックの振動は、押付力FFが大きくなるにつれて小さくなる。すなわち、比較電気かみそりの振動発生部は、押付力FFが大きくなるにつれて、実質的に機能していない状態に近づく。 Therefore, the vibration force FV of the comparative electric razor decreases as the skin reaction force FR increases. For this reason, the vibration of the outer cutter block of the comparative electric razor decreases as the pressing force FF increases. That is, the vibration generating portion of the comparative electric razor approaches a state where it does not substantially function as the pressing force FF increases.
 一方、電気かみそり1の振動発生部100は、押付力FFが大きくなるにつれて内部隙間距離LAが短くなる。このため、振動発生部100による外刃ブロック30を振動させる能力は、押付力FFが大きくなるにつれて高くなる。このため、振動発生部100は、肌200の損傷を生じにくくする効果を高めることに貢献する。 On the other hand, in the vibration generating unit 100 of the electric razor 1, the internal gap distance LA becomes shorter as the pressing force FF becomes larger. Therefore, the ability of the vibration generating unit 100 to vibrate the outer blade block 30 increases as the pressing force FF increases. For this reason, the vibration generating unit 100 contributes to enhancing the effect of making the skin 200 less likely to be damaged.
 (第2実施形態)
 図4は、第2実施形態の電気かみそり1の一形態を示している。
(Second Embodiment)
FIG. 4 shows one form of the electric shaver 1 of the second embodiment.
 第2実施形態の電気かみそり1は、複数の構成要素を有する。第2実施形態の複数の構成要素は、第1実施形態の電気かみそり1が有する複数の構成要素と同様または類似の構造および機能を有する。第2実施形態の電気かみそり1の説明は、第1実施形態の構成要素と同様または類似の構造および機能を有する第2実施形態の構成要素の説明の一部または全部を省略する。第2実施形態の電気かみそり1の説明は、第1実施形態の構成要素と同様または類似の構造および機能を有する第2実施形態の構成要素の少なくとも一部に対して、第1実施形態の構成要素と同一の符号を付している。 The electric shaver 1 of the second embodiment has a plurality of components. The plurality of components of the second embodiment have the same or similar structure and function as the components of the electric shaver 1 of the first embodiment. Description of the electric shaver 1 of 2nd Embodiment abbreviate | omits a part or all of description of the component of 2nd Embodiment which has the same or similar structure and function as the component of 1st Embodiment. The description of the electric shaver 1 of the second embodiment is the configuration of the first embodiment with respect to at least a part of the components of the second embodiment having the same or similar structure and function as the components of the first embodiment. The same reference numerals are used for the elements.
 第2実施形態の電気かみそり1は、主として、次の点において第1実施形態の電気かみそり1と相違する。第1実施形態の電気かみそり1は、外刃ブロック30が肌200に押し付けられていない場合に外部隙間距離LBを調整するための機構を有していない。第2実施形態の電気かみそり1は、外刃ブロック30が肌200に押し付けられていない場合に外部隙間距離LBを調整するための隙間調整部140を有する。 The electric shaver 1 of the second embodiment is mainly different from the electric shaver 1 of the first embodiment in the following points. The electric razor 1 of the first embodiment does not have a mechanism for adjusting the external gap distance LB when the outer blade block 30 is not pressed against the skin 200. The electric razor 1 according to the second embodiment includes a gap adjusting unit 140 for adjusting the external gap distance LB when the outer blade block 30 is not pressed against the skin 200.
 隙間調整部140は、複数の構成要素の集合により構成されている。隙間調整部140の複数の構成要素は、位置規制機構141、操作部品142、および2つのばね143を含む。 The gap adjustment unit 140 is configured by a set of a plurality of components. The plurality of components of the gap adjustment unit 140 include a position restriction mechanism 141, an operation component 142, and two springs 143.
 2つのばね143は、本体部10と外刃ケース31との間に配置されている。2つのばね143は、電気かみそり1の幅方向の中心線に対して左右対称の位置に配置されている。ばね143は、外刃ブロック30が引込方向DDに変位することにより圧縮変形する。 The two springs 143 are disposed between the main body 10 and the outer blade case 31. The two springs 143 are disposed at symmetrical positions with respect to the center line of the electric razor 1 in the width direction. The spring 143 is compressed and deformed when the outer blade block 30 is displaced in the retracting direction DD.
 操作部品142は、本体部10のケース上に形成されている。操作部品142に外力が供給されることにより、操作部品142は本体部10に対して変位する。操作部品142は、リンク機構(図示略)を介して位置規制機構141と連結されている。操作部品142は、操作部品142の操作位置の変化に応じて位置規制機構141を動作させる。操作部品142の操作位置は、最大離間設定位置から最大接近設定位置までの範囲において連続的または段階的に変化する。操作部品142の操作位置は、最大離間設定位置と最大接近設定位置との間に基準設定位置を有する。 The operation component 142 is formed on the case of the main body 10. When the external force is supplied to the operation component 142, the operation component 142 is displaced with respect to the main body 10. The operation component 142 is connected to the position restriction mechanism 141 via a link mechanism (not shown). The operation component 142 operates the position restriction mechanism 141 in accordance with a change in the operation position of the operation component 142. The operation position of the operation component 142 changes continuously or stepwise in the range from the maximum separation setting position to the maximum approach setting position. The operation position of the operation component 142 has a reference setting position between the maximum separation setting position and the maximum approach setting position.
 位置規制機構141は、外刃ブロック30が本体部10に対して押付方向DUに変位することができる限界の位置(以下、「離間限界位置CX」)を、操作部品142の操作位置の変化に応じて変更する。位置規制機構141は、外刃ブロック30の引込方向DDの変位を規制しない。外刃ブロック30は、肌反力FRが作用していない状態において離間限界位置CXに位置する。 The position regulating mechanism 141 changes the limit position (hereinafter, “separation limit position CX”) at which the outer blade block 30 can be displaced in the pressing direction DU with respect to the main body 10 to change the operation position of the operation component 142. Change accordingly. The position restricting mechanism 141 does not restrict the displacement of the outer blade block 30 in the retracting direction DD. The outer blade block 30 is located at the separation limit position CX in a state where the skin reaction force FR is not acting.
 操作部品142の操作位置が最大離間設定位置にあるとき、位置規制機構141は、離間限界位置CXを最大離間位置CUに設定する。操作部品142の操作位置が基準設定位置にあるとき、位置規制機構141は、離間限界位置CXを部品接触位置CMに設定する。操作部品142の操作位置が最大接近設定位置にあるとき、位置規制機構141は、離間限界位置CXを最大接近位置CDに設定する。 When the operation position of the operation component 142 is at the maximum separation setting position, the position regulation mechanism 141 sets the separation limit position CX to the maximum separation position CU. When the operation position of the operation component 142 is at the reference setting position, the position restriction mechanism 141 sets the separation limit position CX to the component contact position CM. When the operation position of the operation component 142 is at the maximum approach setting position, the position restriction mechanism 141 sets the separation limit position CX to the maximum approach position CD.
 非通電状態の外部隙間距離LBは、離間限界位置CXが最大離間位置CUにあるとき、操作部品142の操作位置に基づく変化範囲において最も長くなる。離間限界位置CXが最大離間位置CUと部品接触位置CMとの間の範囲に含まれるとき、非通電状態の外部隙間距離LBは、離間限界位置CXが部品接触位置CMに近づくにつれて短くなる。離間限界位置CXが部品接触位置CMにあるとき、非通電状態の外部隙間距離LBは「0」である。離間限界位置CXが部品接触位置CMと最大接近位置CDと間の範囲に含まれるとき、非通電状態の外部隙間距離LBは「0」である。離間限界位置CXが最大接近位置CDにあるとき、非通電状態の外部隙間距離LBは「0」である。 When the separation limit position CX is at the maximum separation position CU, the external gap distance LB in the non-energized state is the longest in the change range based on the operation position of the operation component 142. When the separation limit position CX is included in the range between the maximum separation position CU and the component contact position CM, the external gap distance LB in the non-energized state becomes shorter as the separation limit position CX approaches the component contact position CM. When the separation limit position CX is at the component contact position CM, the external gap distance LB in the non-energized state is “0”. When the separation limit position CX is included in the range between the component contact position CM and the maximum approach position CD, the external gap distance LB in the non-energized state is “0”. When the separation limit position CX is at the maximum approach position CD, the external gap distance LB in the non-energized state is “0”.
 離間限界位置CXが最大離間位置CUにある場合、振動発生部100は、押付力FFが基準押付力FFX未満から基準押付力FFX以上の大きさに変化したとき、振動入力部130に振動を伝達しはじめる。すなわち、振動発生部100は、第1実施形態の振動発生部100と同じ動作を形成する。 When the separation limit position CX is at the maximum separation position CU, the vibration generating unit 100 transmits vibration to the vibration input unit 130 when the pressing force FF changes from less than the reference pressing force FFX to a magnitude equal to or larger than the reference pressing force FFX. Start to do. That is, the vibration generating unit 100 forms the same operation as the vibration generating unit 100 of the first embodiment.
 離間限界位置CXが最大離間位置CUと部品接触位置CMとの間にある場合、押付力FFが所定押付力FFW未満から所定押付力FFW以上の大きさに変化したとき、振動発生部100は、振動入力部130に振動を伝達しはじめる。所定押付力FFWは、「0」よりも大きく、基準押付力FFXよりも小さい。所定押付力FFWは、離間限界位置CXが部品接触位置CMに近づくにつれて小さくなる。 When the separation limit position CX is between the maximum separation position CU and the component contact position CM, when the pressing force FF changes from less than the predetermined pressing force FFW to a magnitude equal to or larger than the predetermined pressing force FFW, the vibration generating unit 100 The vibration starts to be transmitted to the vibration input unit 130. The predetermined pressing force FFW is larger than “0” and smaller than the reference pressing force FFX. The predetermined pressing force FFW decreases as the separation limit position CX approaches the component contact position CM.
 離間限界位置CXが部品接触位置CMから最大接近位置CDまでの範囲に含まれる場合、押付力FFが「0」よりも大きな値に変化したとき、振動発生部100は、振動入力部130に振動を伝達しはじめる。 When the separation limit position CX is included in the range from the component contact position CM to the maximum approach position CD, the vibration generating unit 100 causes the vibration input unit 130 to vibrate when the pressing force FF changes to a value larger than “0”. Begin to communicate.
 第2実施形態の電気かみそり1は、第1実施形態の電気かみそり1が奏する(1)の効果、すなわち、肌200を損傷させにくくすることに貢献する旨の効果、および(2)~(5)の効果を奏する。第2実施形態の電気かみそり1は、さらに以下の効果を奏する。 The electric razor 1 of the second embodiment has the effect (1) produced by the electric razor 1 of the first embodiment, that is, the effect of contributing to making the skin 200 difficult to damage, and (2) to (5) ). The electric shaver 1 of the second embodiment further has the following effects.
 (6)電気かみそり1は、隙間調整部140を有する。隙間調整部140は、操作部品142の操作位置に応じて外部隙間距離LBの大きさを調整する。このため、使用者は、振動発生部100が外刃ブロック30に振動を伝達しはじめるときの押付力FFの大きさを調整することができる。 (6) The electric razor 1 has a gap adjustment unit 140. The gap adjustment unit 140 adjusts the size of the external gap distance LB according to the operation position of the operation component 142. For this reason, the user can adjust the magnitude of the pressing force FF when the vibration generating unit 100 starts to transmit vibration to the outer blade block 30.
 (第3実施形態)
 図1は、第3実施形態の電気かみそり1の一形態を示している。
(Third embodiment)
FIG. 1 shows an embodiment of an electric shaver 1 according to the third embodiment.
 第3実施形態の電気かみそり1は、複数の構成要素を有する。第3実施形態の複数の構成要素は、第3実施形態の電気かみそり1が有する複数の構成要素と同様または類似の構造および機能を有する。第3実施形態の電気かみそり1の説明は、第1実施形態の構成要素と同様または類似の構造および機能を有する第3実施形態の構成要素の説明の一部または全部を省略する。第3実施形態の電気かみそり1の説明は、第1実施形態の構成要素と同様または類似の構造および機能を有する第3実施形態の構成要素の少なくとも一部に対して、第3実施形態の構成要素と同一の符号を付している。 The electric shaver 1 of the third embodiment has a plurality of components. The plurality of components of the third embodiment have the same or similar structures and functions as the components of the electric shaver 1 of the third embodiment. Description of the electric shaver 1 of 3rd Embodiment abbreviate | omits part or all of description of the component of 3rd Embodiment which has the same or similar structure and function as the component of 1st Embodiment. The description of the electric shaver 1 of the third embodiment is the same as the configuration of the third embodiment with respect to at least a part of the components of the third embodiment having the same or similar structure and function as the components of the first embodiment. The same reference numerals are used for the elements.
 第3実施形態の電気かみそり1は、主として、次の点において第1実施形態の電気かみそり1と相違する。第1実施形態の電気かみそり1は、電源スイッチ60のオン操作にともない振動発生部100を駆動する。第3実施形態の電気かみそり1は、肌反力FRを検知し、検知結果に基づいて振動発生部100を駆動する。 The electric razor 1 of the third embodiment is mainly different from the electric razor 1 of the first embodiment in the following points. The electric shaver 1 according to the first embodiment drives the vibration generating unit 100 when the power switch 60 is turned on. The electric razor 1 of 3rd Embodiment detects the skin reaction force FR, and drives the vibration generation part 100 based on a detection result.
 第3実施形態の電気かみそり1は、以下の詳細な構成を有する。 The electric shaver 1 of the third embodiment has the following detailed configuration.
 電気かみそり1は、負荷検知部(図示略)を有する。負荷検知部は、外刃ブロック30の変位、外刃ブロック30の圧力、または、外刃ブロック30のひずみに応じて変化する検知信号を生成する。制御部70は、負荷検知部の検知信号と基準信号とを比較し、比較結果に基づいて振動発生部100を制御する。制御部70は、肌反力FRが基準肌反力FRX以上の大きさを有することが、負荷検知部の検知信号および基準信号の関係により示唆されるとき、コイル112への通電を開始する。制御部70は、一定の大きさの電流をコイル112に流す。制御部70は、肌反力FRが基準肌反力FRX未満の大きさを有することが、負荷検知部の検知信号および基準信号の関係により示唆されるとき、コイル112への通電を停止する。 The electric razor 1 has a load detection unit (not shown). The load detection unit generates a detection signal that changes according to the displacement of the outer blade block 30, the pressure of the outer blade block 30, or the strain of the outer blade block 30. The control unit 70 compares the detection signal of the load detection unit with the reference signal, and controls the vibration generation unit 100 based on the comparison result. The control unit 70 starts energization of the coil 112 when the relationship between the detection signal of the load detection unit and the reference signal indicates that the skin reaction force FR is greater than or equal to the reference skin reaction force FRX. The control unit 70 causes a constant current to flow through the coil 112. The control unit 70 stops energization of the coil 112 when the relationship between the detection signal of the load detection unit and the reference signal indicates that the skin reaction force FR has a magnitude less than the reference skin reaction force FRX.
 第3実施形態の電気かみそり1は、第1実施形態の電気かみそり1が奏する(1)の効果、すなわち、肌200を損傷させにくくすることに貢献する旨の効果、および、(2)~(5)の効果を奏する。 The electric razor 1 of the third embodiment has the effect (1) produced by the electric razor 1 of the first embodiment, that is, the effect that it contributes to making the skin 200 difficult to be damaged, and (2) to ( The effect 5) is produced.
 (その他の実施形態)
 本電気かみそりは、第1実施形態~第3実施形態とは異なるその他の実施形態を含む。その他の実施形態は、一例として、以下に示される第1実施形態~第3実施形態の変形例の形態を有する。なお、以下の各変形例は、技術的に矛盾しない範囲において互いに組み合わせることができる。
(Other embodiments)
The electric razor includes other embodiments different from the first to third embodiments. Other embodiments have, as an example, forms of modifications of the first to third embodiments shown below. Note that the following modifications can be combined with each other within a technically consistent range.
 ・第1実施形態の振動発生部100は、入力側鉄心113をケース101に固定している。ただし、振動発生部100の構成は、第1実施形態に例示された内容に限られない。変形例の振動発生部100は、入力側鉄心113がケース101に対して変位することが可能な構造を有する。なお、第2実施形態および第3実施形態の振動発生部100においても同様の変形が成立する。 In the vibration generating unit 100 of the first embodiment, the input side iron core 113 is fixed to the case 101. However, the configuration of the vibration generating unit 100 is not limited to the content exemplified in the first embodiment. The vibration generating unit 100 according to the modified example has a structure in which the input side iron core 113 can be displaced with respect to the case 101. Note that the same deformation is also established in the vibration generating unit 100 of the second embodiment and the third embodiment.
 ・第1実施形態の振動発生部100は、樹脂材料により形成された振動部品121を有する。ただし、振動部品121の材質は、第1実施形態に例示された内容に限られない。変形例の振動発生部100は、一例として、金属材料により形成された振動部品121を有する。なお、第2実施形態および第3実施形態の振動発生部100においても同様の変形が成立する。 The vibration generating unit 100 according to the first embodiment has a vibration component 121 formed of a resin material. However, the material of the vibration component 121 is not limited to the content exemplified in the first embodiment. As an example, the vibration generating unit 100 according to the modification includes a vibration component 121 formed of a metal material. Note that the same deformation is also established in the vibration generating unit 100 of the second embodiment and the third embodiment.
 ・第1実施形態の振動部品121は、結合部122および接触部123が同一の材料により一体的に形成された構造を有する。ただし、振動部品121の構造は、第1実施形態に例示された内容に限られない。変形性の振動部品121は、個別の部品として形成された結合部122および接触部123が互いに結合された構造を有する。この振動部品121は、結合部122および接触部123の材質を互いに異ならせることができる。なお、第2実施形態および第3実施形態の振動部品121においても同様の変形が成立する。 The vibration component 121 according to the first embodiment has a structure in which the coupling portion 122 and the contact portion 123 are integrally formed of the same material. However, the structure of the vibration component 121 is not limited to the content exemplified in the first embodiment. The deformable vibration component 121 has a structure in which a coupling portion 122 and a contact portion 123 formed as individual components are coupled to each other. In the vibration component 121, the material of the coupling portion 122 and the contact portion 123 can be made different from each other. Note that the same deformation is also established in the vibration component 121 of the second embodiment and the third embodiment.
 ・第1実施形態の振動入力部130は、外刃ケース31と同一の材料により一体的に形成されている。ただし、振動入力部130の構成は、第1実施形態に例示された内容に限られない。変形例の振動入力部130は、外刃ケース31とは別の部品として形成され、外刃ケース31に結合されている。なお、第2実施形態および第3実施形態の振動入力部130においても同様の変形が成立する。 The vibration input unit 130 of the first embodiment is integrally formed of the same material as the outer blade case 31. However, the configuration of the vibration input unit 130 is not limited to the content exemplified in the first embodiment. The vibration input unit 130 of the modified example is formed as a part different from the outer cutter case 31 and is coupled to the outer cutter case 31. Note that the same deformation is also established in the vibration input unit 130 of the second embodiment and the third embodiment.
 ・第1実施形態の電気かみそり1は、肌反力FRが作用していない状態において、振動部品121と振動入力部130との間に外部隙間103を形成する。振動入力部130は、肌反力FRが基準肌反力FRX以上の大きさを取るとき、振動部品121と接触する。ただし、振動部品121および振動入力部130の関係は、第1実施形態に例示された内容に限られない。変形例の電気かみそり1は、肌反力FRが作用していない状態において、振動部品121および振動入力部130が互いに接触する構造を有する。なお、第3実施形態の電気かみそり1においても同様の変形が成立する。 The electric razor 1 of the first embodiment forms the external gap 103 between the vibration component 121 and the vibration input unit 130 in a state where the skin reaction force FR is not acting. The vibration input unit 130 contacts the vibration component 121 when the skin reaction force FR is greater than or equal to the reference skin reaction force FRX. However, the relationship between the vibration component 121 and the vibration input unit 130 is not limited to the content exemplified in the first embodiment. The electric shaver 1 according to the modification has a structure in which the vibration component 121 and the vibration input unit 130 are in contact with each other in a state where the skin reaction force FR is not acting. Note that the same modification is established in the electric shaver 1 of the third embodiment.
 ・第1実施形態の電気かみそり1は、振動入力部130および振動部品121の接触により、振動発生部100の振動力FVを外刃ブロック30に伝達する。ただし、振動力FVを外刃ブロック30に伝達するための構成は、第1実施形態に例示された構成に限られない。変形例の電気かみそり1は、振動入力部130を省略している。振動発生部100は、振動部品121を外刃ケース31に接触させることにより、振動力FVを外刃ブロック30に伝達する。 The electric razor 1 according to the first embodiment transmits the vibration force FV of the vibration generating unit 100 to the outer blade block 30 by the contact between the vibration input unit 130 and the vibration component 121. However, the configuration for transmitting the vibration force FV to the outer blade block 30 is not limited to the configuration illustrated in the first embodiment. In the electric shaver 1 according to the modification, the vibration input unit 130 is omitted. The vibration generating unit 100 transmits the vibration force FV to the outer blade block 30 by bringing the vibration component 121 into contact with the outer blade case 31.
 ・第1実施形態の電気かみそり1は、図2に例示される外刃ブロック30を有する。ただし、外刃ブロック30の構成は、第1実施形態に例示された内容に限られない。変形例の電気かみそり1は、外刃ブロック30に代えて変形外刃ブロックを有する。変形外刃ブロックは、外刃ブロック30の機能に準じた機能を有し、外刃ブロック30と異なる構成を有する。なお、第2実施形態および第3実施形態の電気かみそり1においても同様の変形が成立する。 -The electric shaver 1 of 1st Embodiment has the outer blade block 30 illustrated by FIG. However, the configuration of the outer cutter block 30 is not limited to the content exemplified in the first embodiment. The modified electric razor 1 has a modified outer blade block in place of the outer blade block 30. The deformed outer blade block has a function according to the function of the outer blade block 30 and has a configuration different from that of the outer blade block 30. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
 ・第1実施形態の電気かみそり1は、図2に例示される内刃ブロック40を有する。ただし、内刃ブロック40の構成は、第1実施形態に例示された内容に限られない。変形例の電気かみそり1は、内刃ブロック40に代えて変形内刃ブロックを有する。変形内刃ブロックは、内刃ブロック40の機能に準じた機能を有し、内刃ブロック40と異なる構成を有する。なお、第2実施形態および第3実施形態の電気かみそり1においても同様の変形が成立する。 -The electric shaver 1 of 1st Embodiment has the inner blade block 40 illustrated by FIG. However, the configuration of the inner blade block 40 is not limited to the content exemplified in the first embodiment. The modified electric razor 1 has a modified inner blade block instead of the inner blade block 40. The modified inner blade block has a function according to the function of the inner blade block 40 and has a configuration different from that of the inner blade block 40. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
 ・第1実施形態の電気かみそり1は、図2に例示される磁力発生部110を有する。ただし、磁力発生部110の構成は、第1実施形態に例示された内容に限られない。変形例の電気かみそり1は、磁力発生部110に代えて変形磁力発生部を有する。変形磁力発生部は、磁力発生部110の機能に準じた機能を有し、磁力発生部110と異なる構成を有する。なお、第2実施形態および第3実施形態の電気かみそり1においても同様の変形が成立する。 The electric razor 1 of the first embodiment has a magnetic force generator 110 illustrated in FIG. However, the configuration of the magnetic force generation unit 110 is not limited to the content exemplified in the first embodiment. The electric shaver 1 according to the modified example has a deformed magnetic force generator instead of the magnetic force generator 110. The deformed magnetic force generation unit has a function according to the function of the magnetic force generation unit 110 and has a configuration different from that of the magnetic force generation unit 110. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
 ・第1実施形態の電気かみそり1は、図2に例示される出力可動部120を有する。ただし、出力可動部120の構成は、第1実施形態に例示された内容に限られない。変形例の電気かみそり1は、出力可動部120に代えて変形出力可動部を有する。変形出力可動部は、出力可動部120の機能に準じた機能を有し、出力可動部120と異なる構成を有する。なお、第2実施形態および第3実施形態の電気かみそり1においても同様の変形が成立する。 The electric razor 1 according to the first embodiment has an output movable unit 120 illustrated in FIG. However, the configuration of the output movable unit 120 is not limited to the content exemplified in the first embodiment. The electric shaver 1 according to the modified example has a modified output movable portion instead of the output movable portion 120. The deformable output movable unit has a function according to the function of the output movable unit 120 and has a configuration different from that of the output movable unit 120. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
 ・第1実施形態の電気かみそり1は、図2に例示される振動入力部130を有する。ただし、振動入力部130の構成は、第1実施形態に例示された内容に限られない。変形例の電気かみそり1は、振動入力部130に代えて変形振動入力部を有する。変形振動入力部は、振動入力部130の機能に準じた機能を有し、振動入力部130と異なる構成を有する。なお、第2実施形態および第3実施形態の電気かみそり1においても同様の変形が成立する。 -The electric shaver 1 of 1st Embodiment has the vibration input part 130 illustrated by FIG. However, the configuration of the vibration input unit 130 is not limited to the content exemplified in the first embodiment. The electric shaver 1 according to the modified example has a modified vibration input unit instead of the vibration input unit 130. The deformation vibration input unit has a function according to the function of the vibration input unit 130 and has a configuration different from that of the vibration input unit 130. Note that the same modification is established in the electric shaver 1 of the second embodiment and the third embodiment.
 ・第2実施形態の電気かみそり1は、図4に例示される隙間調整部140を有する。ただし、隙間調整部140の構成は、第2実施形態に例示された内容に限られない。変形例の電気かみそり1は、隙間調整部140に代えて変形隙間調整部を有する。変形隙間調整部は、隙間調整部140の機能に準じた機能を有し、隙間調整部140と異なる構成を有する。 -The electric shaver 1 of 2nd Embodiment has the clearance gap adjustment part 140 illustrated by FIG. However, the configuration of the gap adjustment unit 140 is not limited to the content exemplified in the second embodiment. The electric shaver 1 according to the modified example has a modified gap adjusting unit instead of the gap adjusting unit 140. The deformation gap adjustment unit has a function according to the function of the gap adjustment unit 140 and has a configuration different from that of the gap adjustment unit 140.
 ・第3実施形態の制御部70は、肌反力FRが基準肌反力FRX以上の大きさを取ることが、負荷検知部の検知信号および基準信号の関係により示唆されるとき、一定の電流をコイル112に流す。ただし、制御部70の制御内容は、第3実施形態に例示された内容に限られない。変形例の制御部70は、コイル112に流す電流の大きさを肌反力FRに応じて変化させる。この制御部70は、一例として、以下の構成を有する。 The control unit 70 of the third embodiment has a constant current when the skin reaction force FR is greater than the reference skin reaction force FRX, which is suggested by the relationship between the detection signal of the load detection unit and the reference signal. Is passed through the coil 112. However, the control content of the control unit 70 is not limited to the content exemplified in the third embodiment. The control unit 70 according to the modification changes the magnitude of the current flowing through the coil 112 according to the skin reaction force FR. For example, the control unit 70 has the following configuration.
 制御部70は、肌反力FRが基準肌反力FRX以上の大きさを取ることが、負荷検知部の検知信号および基準信号の関係により示唆されるとき、負荷検知部の検知信号と高反力判定信号とを比較する。制御部70は、負荷検知部の検知信号および高反力判定信号の比較結果に基づいて、基準肌反力FRXよりも大きい高反力と肌反力FRとの関係を判定する。 When it is suggested by the relationship between the detection signal of the load detection unit and the reference signal that the skin reaction force FR is greater than or equal to the reference skin reaction force FRX, the control unit 70 determines that the reaction force FR Compare with force judgment signal. The control unit 70 determines the relationship between the high reaction force larger than the reference skin reaction force FRX and the skin reaction force FR based on the comparison result between the detection signal of the load detection unit and the high reaction force determination signal.
 制御部70は、肌反力FRが高反力以上の大きさを取ることが、負荷検知部の検知信号および高反力判定信号の関係により示唆されるとき、高負荷時電流をコイル112に流す。制御部70は、肌反力FRが高反力未満の大きさを取ることが、負荷検知部の検知信号および高反力判定信号の関係により示唆されるとき、高負荷時電流よりも小さい低負荷時電流をコイル112に流す。このため、振動発生部100の振動力FVは、肌反力FRが高反力以上の大きさを取るとき、肌反力FRが高反力未満の大きさを取るときよりも大きくなる。このため、外刃ブロック30は、肌反力FRが高反力以上の大きさを取るとき、肌200から離間方向により変位しやすくなる。 When it is suggested by the relationship between the detection signal of the load detection unit and the high reaction force determination signal that the skin reaction force FR has a magnitude greater than or equal to the high reaction force, the control unit 70 applies a high load current to the coil 112. Shed. When it is suggested by the relationship between the detection signal of the load detection unit and the high reaction force determination signal that the skin reaction force FR is less than the high reaction force, the control unit 70 is smaller than the current at high load. A load current is passed through the coil 112. For this reason, the vibration force FV of the vibration generating unit 100 is greater when the skin reaction force FR is greater than or equal to the high reaction force than when the skin reaction force FR is less than the high reaction force. For this reason, when the skin reaction force FR takes a magnitude greater than or equal to the high reaction force, the outer blade block 30 is easily displaced from the skin 200 in the separation direction.
 (課題を解決するための手段に関する付記)
 課題を解決するための手段は、下記の〔付記項1〕~〔付記項4〕を含む。なお、〔付記項1〕~〔付記項4〕が有する事項は、実施形態において開示された事項と対応している。
(Additional note regarding means for solving the problem)
Means for solving the problems include the following [Appendix 1] to [Appendix 4]. The items included in [Appendix 1] to [Appendix 4] correspond to the items disclosed in the embodiment.
 〔付記項1〕
 請求項1~3のいずれか一項に記載の電気かみそりにおいて、前記振動発生部は、前記除毛部の負荷が大きくなるにつれて前記除毛部に供給する振動力を増加させる。
[Additional Item 1]
The electric shaver according to any one of claims 1 to 3, wherein the vibration generating unit increases a vibration force supplied to the hair removal unit as a load on the hair removal unit increases.
 〔付記項2〕
 請求項1~3のいずれか一項、または、付記項1に記載の電気かみそりにおいて、前記振動発生部は、前記除毛部の高さ方向において前記除毛部を振動させる。
[Appendix 2]
The electric shaver according to any one of claims 1 to 3, or the supplementary claim 1, wherein the vibration generating section vibrates the hair removal section in a height direction of the hair removal section.
 〔付記項3〕
 請求項2もしくは3、または、付記項1もしくは2に記載の電気かみそりにおいて、前記電気かみそりは、制御部および負荷検知部を有する。前記負荷検知部は、前記除毛部に供給される負荷に応じて変化する検知信号を生成する。前記制御部は、前記除毛部の負荷が増加していることが前記検知信号により示唆されるとき、前記磁力発生部に供給する電流を大きくする。
[Additional Item 3]
The electric razor according to claim 2 or 3, or appendix 1 or 2, wherein the electric razor includes a control unit and a load detection unit. The load detection unit generates a detection signal that changes according to a load supplied to the hair removal unit. The control unit increases the current supplied to the magnetic force generation unit when the detection signal indicates that the load on the hair removal unit is increasing.
 〔付記項4〕
 前記電気かみそりは、本体部、除毛部、および振動発生部を有する。前記本体部は、前記除毛部を支持する。前記振動発生部は、磁力発生部および出力可動部を有する。前記磁力発生部は、コイルおよび入力側鉄心を有し、前記コイルにより磁界を形成し、前記入力側鉄心の吸引力を前記出力可動部に作用させる。前記出力可動部は、振動部品および出力側鉄心を有する。前記出力側鉄心は、前記振動部品と結合し、前記入力側鉄心の吸引力に基づいて前記磁力発生部に対して運動する。前記振動部品は、前記出力側鉄心の運動に基づいて前記除毛部に振動を伝達する。前記電気かみそりは、前記除毛部と前記振動部品との間に形成された隙間を有する。前記隙間は、前記除毛部の負荷が大きくなるにつれて小さくなる。前記振動部品は、前記隙間が存在しているとき、前記除毛部に振動を伝達せず、前記隙間が存在していないとき、前記除毛部に振動を伝達する。
[Additional Item 4]
The electric razor has a main body part, a hair removal part, and a vibration generating part. The body portion supports the hair removal portion. The vibration generating unit includes a magnetic force generating unit and an output movable unit. The magnetic force generator has a coil and an input side iron core, forms a magnetic field with the coil, and causes the attraction force of the input side iron core to act on the output movable part. The output movable part has a vibration component and an output side iron core. The output side iron core is coupled to the vibration component and moves relative to the magnetic force generation unit based on the attractive force of the input side iron core. The vibration component transmits vibration to the hair removal unit based on the movement of the output side iron core. The electric razor has a gap formed between the hair removal part and the vibration component. The gap decreases as the load on the hair removal unit increases. The vibration component does not transmit vibration to the hair removal part when the gap exists, and transmits vibration to the hair removal part when the gap does not exist.

Claims (3)

  1.  電気かみそりであって、
     除毛部と、
     前記除毛部を支持する本体部と、
     磁力発生部および出力可動部を含む振動発生部とを備え、
     前記磁力発生部は、コイルおよび入力側鉄心を含み、
     前記磁力発生部は、前記コイルにより磁界を形成し、前記入力側鉄心の吸引力を前記出力可動部に作用させ、
     前記出力可動部は、前記入力側鉄心の吸引力に基づいて前記磁力発生部に対して相対移動する出力側鉄心と、前記出力側鉄心に結合され、前記出力側鉄心の相対移動に基づいて前記除毛部に振動を伝達する振動部品とを含み、
     前記振動発生部は、前記除毛部の負荷が大きくなるにつれて前記出力側鉄心を前記入力側鉄心に接近させるように構成される、電気かみそり。
    An electric razor,
    Hair removal part,
    A body part for supporting the hair removal part;
    A vibration generating unit including a magnetic force generating unit and an output movable unit,
    The magnetic force generator includes a coil and an input side iron core,
    The magnetic force generation part forms a magnetic field by the coil, and causes the attraction force of the input side iron core to act on the output movable part,
    The output movable part is coupled to the output side iron core that moves relative to the magnetic force generation part based on the attractive force of the input side iron core, and the output side iron core, and based on the relative movement of the output side iron core Including vibration parts that transmit vibration to the hair removal part,
    The vibration generator is an electric razor configured to bring the output iron core closer to the input iron core as the load on the hair removal section increases.
  2.  前記振動発生部は、前記除毛部の負荷が大きくなるにつれて前記除毛部と前記振動部品との間に形成された隙間が小さくなるように構成され、
     前記振動部品は、前記隙間が存在しているとき、前記除毛部に振動を伝達せず、前記隙間が存在していないとき、前記除毛部に振動を伝達する、請求項1に記載の電気かみそり。
    The vibration generating unit is configured such that a gap formed between the hair removal unit and the vibration component decreases as a load on the hair removal unit increases.
    2. The vibration component according to claim 1, wherein the vibration component does not transmit vibration to the hair removal unit when the gap exists, and transmits vibration to the hair removal unit when the gap does not exist. Electric razor.
  3.  前記電気かみそりは、位置調整部を備え、
     前記位置調整部は、前記振動部品に対する前記除毛部の初期位置を変化させるように構成される、請求項1または2に記載の電気かみそり。
    The electric razor includes a position adjustment unit,
    The electric shaver according to claim 1 or 2, wherein the position adjustment unit is configured to change an initial position of the hair removal unit with respect to the vibration component.
PCT/JP2014/001058 2013-03-28 2014-02-27 Electric razor WO2014155970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-070604 2013-03-28
JP2013070604A JP6052550B2 (en) 2013-03-28 2013-03-28 Electric razor

Publications (1)

Publication Number Publication Date
WO2014155970A1 true WO2014155970A1 (en) 2014-10-02

Family

ID=51622992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001058 WO2014155970A1 (en) 2013-03-28 2014-02-27 Electric razor

Country Status (2)

Country Link
JP (1) JP6052550B2 (en)
WO (1) WO2014155970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111941470A (en) * 2019-05-17 2020-11-17 杭州乐秀电子科技有限公司 Electric shaver connected through magnetic attraction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103889A (en) * 1979-02-01 1980-08-08 Suwa Seikosha Kk Reciprocating vibration type electric razor
JP2007190312A (en) * 2006-01-23 2007-08-02 Matsushita Electric Works Ltd Hair cutter
JP2009232890A (en) * 2008-03-25 2009-10-15 Panasonic Electric Works Co Ltd Razor
JP2009254785A (en) * 2008-03-25 2009-11-05 Panasonic Electric Works Co Ltd Shaver
US20120151773A1 (en) * 2009-09-25 2012-06-21 Panasonic Corporation Electric shaver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103889A (en) * 1979-02-01 1980-08-08 Suwa Seikosha Kk Reciprocating vibration type electric razor
JP2007190312A (en) * 2006-01-23 2007-08-02 Matsushita Electric Works Ltd Hair cutter
JP2009232890A (en) * 2008-03-25 2009-10-15 Panasonic Electric Works Co Ltd Razor
JP2009254785A (en) * 2008-03-25 2009-11-05 Panasonic Electric Works Co Ltd Shaver
US20120151773A1 (en) * 2009-09-25 2012-06-21 Panasonic Corporation Electric shaver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111941470A (en) * 2019-05-17 2020-11-17 杭州乐秀电子科技有限公司 Electric shaver connected through magnetic attraction

Also Published As

Publication number Publication date
JP6052550B2 (en) 2016-12-27
JP2014193219A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
CN100455416C (en) Electric razor
US10528140B2 (en) Haptic feedback system for an electronic device
JP5088348B2 (en) Electromagnet device and electromagnetic contactor
WO2014155970A1 (en) Electric razor
JP6399397B2 (en) Small electric equipment and its electric unit
JP2012089493A (en) Electromagnetic switching device
US9527219B2 (en) Electric shaver
JP5930092B1 (en) relay
EP3324524B1 (en) Flux bridge for pivot motors
JP2009232890A (en) Razor
KR102189504B1 (en) Vibration welding apparatus by high frequency induction
US9385579B2 (en) Inertial drive actuator
WO2021107068A1 (en) Bodily vibration generation device and bodily vibration presentation apparatus
US3026430A (en) Vibratory electromagnetic motor
JP4251183B2 (en) Hair cutter
JP5838329B2 (en) Contact device
JP7068268B2 (en) Attachment head attachment / detachment detection method
KR101684476B1 (en) Magnetic contactor
KR20160000150U (en) Electromotive hair clipper
JP2021033078A (en) Horn
JP2008147128A (en) Electromagnetic contactor
WO2020009112A1 (en) Vibration generating device
JP2008296422A (en) Vibration welding machine and vibration generation device for vibration welding
WO2018151031A1 (en) Force-sensation generator and input device using same
CN117742517A (en) Control device and vibration presentation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774743

Country of ref document: EP

Kind code of ref document: A1