WO2014155813A1 - 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム - Google Patents

画像処理装置、撮像装置、画像処理方法及び画像処理プログラム Download PDF

Info

Publication number
WO2014155813A1
WO2014155813A1 PCT/JP2013/080323 JP2013080323W WO2014155813A1 WO 2014155813 A1 WO2014155813 A1 WO 2014155813A1 JP 2013080323 W JP2013080323 W JP 2013080323W WO 2014155813 A1 WO2014155813 A1 WO 2014155813A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
display
unit
pixels
Prior art date
Application number
PCT/JP2013/080323
Other languages
English (en)
French (fr)
Inventor
沖川 満
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015507945A priority Critical patent/JP6000446B2/ja
Priority to CN201380075066.0A priority patent/CN105051600B/zh
Publication of WO2014155813A1 publication Critical patent/WO2014155813A1/ja
Priority to US14/864,164 priority patent/US9538070B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Definitions

  • the present invention relates to an image processing device, an imaging device, an image processing method, and an image processing program.
  • a digital camera having a so-called manual focus mode in which a user can manually perform focus adjustment in addition to auto-focus using a phase difference detection method or a contrast detection method is widely known.
  • a method using a split micro prism screen that displays a phase difference visually by providing a reflex mirror so that focus adjustment can be performed while checking a subject is known.
  • a method employing a method for visually confirming contrast is also known.
  • a split image is displayed in a live view image (also referred to as a through image) in order to make it easier for a user (for example, a photographer) to focus on a subject in the manual focus mode.
  • a split image is, for example, a divided image in which a display area is divided into a plurality of parts (for example, images divided in the vertical direction).
  • the split image is shifted in the parallax generation direction (for example, the horizontal direction) according to the focus shift, and the focus is In the combined state, it indicates a divided image in which there is no deviation in the parallax generation direction.
  • the user adjusts the focus by operating a manual focus ring (hereinafter referred to as “focus ring”) so that the split image (for example, each image divided in the vertical direction) is not displaced.
  • focus ring a manual focus ring
  • a first image and a second image are generated by photoelectrically converting the first subject image and the second subject image formed by the light beam divided by the pupil dividing unit out of the light beam from the imaging optical system. Then, a split image is generated using these first and second images, and a third subject image formed by a light beam that is not split by the pupil splitting unit is photoelectrically converted to generate a third image. . Then, the third image is displayed on the display unit, and the generated split image is displayed in the third image, thereby configuring the image. In addition, color information extracted from the third image can be added to the split image. By adding the color information extracted from the third image to the split image in this way, the visibility of the split image can be improved.
  • focus peaking that highlights and displays an area having a contrast level equal to or greater than a predetermined value is known (for example, Japanese Patent Laid-Open No. 2001-309210). No. publication).
  • the focus determination method using the split image it is determined visually whether or not the image shift has disappeared. However, it is necessary to perform the process while visually confirming the image shift that moves continuously, and it takes time to focus.
  • the determination of whether or not the region is a high contrast region is compared to the focus determination method using a split image. It can be done in a short time. However, since all the high-contrast areas are highlighted, the user may erroneously determine that the high-contrast areas that are not in focus are in focus.
  • the present invention has been proposed in view of such a situation, and is an image processing device, an imaging device, an image processing method, and an image processing capable of easily recognizing whether or not it is in focus.
  • the purpose is to provide a program.
  • the image processing apparatus is configured such that the subject image that has passed through the first and second regions in the photographing lens is divided into pupils and formed respectively.
  • An image sensor having first and second pixel groups for outputting the first and second image signals, a first display image based on the image signal output from the image sensor, and the first and second image signals.
  • a generation unit that generates a second display image to be used for focus confirmation based on the first condition, a first condition that the magnitude of the contrast is equal to or greater than a first predetermined value, and a second condition of the second display image;
  • a specifying unit that specifies an image region that satisfies both conditions of the second condition that the degree of coincidence between the first image signal and the second image signal is equal to or greater than a second predetermined value; and a display unit that displays an image;
  • the display unit displays the first display image and the first display image is displayed. Control for displaying the second display image in the display area of the display image and displaying the image area specified by the specifying unit in the second display image so as to be distinguishable from other areas. And a display control unit for performing.
  • the subject image that has passed through the first and second regions in the photographic lens is divided into pupils to form the first and second image signals.
  • An image pickup device having first and second pixel groups to be output, a first display image based on an image signal output from the image pickup device, and a focus confirmation based on the first and second image signals.
  • a generation unit that generates the second display image, a first condition that the magnitude of the contrast is greater than or equal to the first predetermined value, and the first image signal and the second image of the second display image.
  • a specifying unit that specifies an image area that satisfies both conditions of the second condition that the degree of coincidence with the image signal is equal to or greater than a second predetermined value, a display unit that displays an image, and a display unit 2 display images are displayed, and among the second display images, Ri including the specific image area, and a display control unit that performs control to distinguishably display the other region.
  • the imaging element forms a third image signal by imaging a subject image that has passed through the photographing lens without being divided into pupils. It is good also as what has further the 3rd pixel group to output, and a production
  • the image quality of the first display image can be improved with a simple structure.
  • the magnitude of contrast may be determined based on the third image signal.
  • the first pixel group includes a plurality of first pixels arranged in a pupil division direction and a direction intersecting the pupil division direction.
  • the second pixel group includes a plurality of second pixels arranged alternately with each of the plurality of first pixels in at least the pupil division direction among the pupil division direction and the intersecting direction, and the third pixel group Has a third pixel arranged between the first pixel and the second pixel in at least the pupil division direction of the pupil division direction and the intersecting direction, and the magnitude of the contrast of the third pixel is It may be determined based on the signal level.
  • the magnitude of contrast may be determined based on an average signal level for a predetermined pixel in the crossing direction of the third pixel.
  • the first pixel group includes a plurality of first pixels arranged in a pupil division direction and a direction intersecting the pupil division direction.
  • the second pixel group includes a plurality of second pixels arranged alternately with each of the plurality of first pixels in at least the pupil division direction among the pupil division direction and the intersecting direction, and the third pixel group Has a plurality of third pixels arranged between the first pixel and the second pixel in at least the pupil division direction among the pupil division direction and the intersecting direction, and the magnitude of contrast is equal to the pupil division direction.
  • it may be determined based on the rate of change of the signal level of the plurality of third pixels arranged between the first pixel and the second pixel.
  • the magnitude of contrast is determined based on a rate of change in average signal level for a predetermined number of pixels in the intersecting direction in each of the plurality of third pixels. It may be a thing. As a result, it is possible to specify between pixels that satisfy the first condition between the first pixel and the second pixel with higher accuracy.
  • the magnitude of the contrast is a signal level in the third pixel group in the third image signal. May be determined based on the third image signal of the non-saturated pixel. Thereby, compared with the case where this configuration is not provided, it is possible to suppress erroneous specification of an image region that may occur when the third pixel group includes pixels whose signal level is saturated.
  • the first pixel group is arranged in a pupil division direction and a direction intersecting the pupil division direction.
  • a plurality of first pixels, and a plurality of second pixel groups arranged alternately adjacent to each of the plurality of first pixels at least in the pupil division direction among the pupil division direction and the intersecting direction. It may have a second pixel.
  • the light is incident through the first region of the pixels in the pupil division direction in the first pixel group.
  • a correction coefficient corresponding to the light attenuation characteristics based on the light and light incident through the second region of the pixel in the pupil division direction in the second pixel group is obtained, and the first and second correction coefficients are obtained based on the obtained correction coefficient.
  • the second condition is a condition that the degree of coincidence between the first image signal and the second image signal corrected by the correction unit is equal to or greater than a second predetermined value. It is good also as what is.
  • the specifying unit is a pupil division direction specified by each of the first and second image signals.
  • An image area that satisfies the second condition may be specified based on a distance between pixels having a maximum signal level.
  • the specifying unit estimates a distance based on each differential value of the first and second image signals, and based on the estimated distance, An image area that satisfies the second condition may be specified. As a result, an image area that satisfies the second condition can be identified with higher accuracy.
  • At least one of the first predetermined value and the second predetermined value is determined based on an aperture value. Also good. Thereby, compared with the case where this configuration is not provided, at least one of the first predetermined value and the second predetermined value can be obtained with high accuracy.
  • an imaging device includes an image processing device according to any one of the first to fourteenth aspects of the present invention, and first and second pixels.
  • An image sensor having a group, and a storage unit that stores an image generated based on an image signal output from the image sensor.
  • an image processing method includes a subject image that has passed through the first and second regions of the photographing lens and is divided into pupils to form images.
  • Focus confirmation based on the first display image and the first and second image signals based on the image signal output from the image sensor having the first and second pixel groups that output the first and second image signals
  • An image region that satisfies both conditions of the second condition that the degree of coincidence with the image signal is equal to or greater than the second predetermined value is specified, and the first display image is displayed on the display unit that displays the image. And displaying the second display image in the display area of the first display image. Is displayed, and, among the second display image comprises performing a control of the image area specified by the specifying unit, it is distinguishably displayed from other areas. Thereby, compared with the case where this structure is not provided, it can be made easy to recognize visually whether it is in an in-focus state.
  • an image processing method includes a subject image that has passed through the first and second regions of the photographing lens and is divided into pupils to form images. Focus confirmation based on the first display image and the first and second image signals based on the image signal output from the image sensor having the first and second pixel groups that output the first and second image signals A second display image to be used in the first display image, a first condition that the magnitude of the contrast is greater than or equal to a first predetermined value, and the first image signal and the second image of the second display image.
  • An image region that satisfies both conditions of the second condition that the degree of coincidence with the image signal is equal to or greater than the second predetermined value is specified, and the second display image is displayed on the display unit that displays the image. Displayed and specified by the specifying unit in the second display image Comprising performing control of the image area, it is distinguishably displayed from other areas. Thereby, compared with the case where this structure is not provided, it can be made easy to recognize visually whether it is in an in-focus state.
  • an image processing program provides a generation unit, a specifying unit, and a display in the image processing apparatus according to any one of the first to fourteenth aspects of the present invention. It is for making a computer function as a control part. Thereby, compared with the case where this structure is not provided, it can be made easy to recognize visually whether it is in an in-focus state.
  • FIG. 5 is a perspective view showing an example of an appearance of an imaging apparatus that is a lens interchangeable camera according to the first to third embodiments. It is a rear view which shows the back side of the imaging device shown in FIG. It is a block diagram which shows an example of a structure of the electric system of the imaging device shown in FIG.
  • FIG. 3 is a schematic arrangement diagram illustrating an example of an arrangement of color filters provided in an imaging element included in the imaging apparatus according to the first embodiment and an arrangement of phase difference pixels with respect to the color filters.
  • FIG. 3 is a schematic layout diagram illustrating an example of a layout of first pixels, second pixels, and normal pixels included in the image sensor according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a light path that has passed through a photographing lens included in the imaging apparatus illustrated in FIG. 1, a planar image formation image, and a light intensity distribution due to left region passage light and right region passage light in the image formation region.
  • It is a functional block diagram which shows an example of a principal part structure of the image process part contained in the imaging device shown in FIG.
  • It is a schematic diagram which shows an example of the positional relationship of the to-be-photographed object, photographing lens, and image pick-up element at the time of a focusing state (Jaspin).
  • FIG. 2 is a schematic diagram illustrating an example of a split image display area and a normal image display area in a display device included in the imaging apparatus illustrated in FIG. 1.
  • FIG. 2 is a screen diagram illustrating an example of a live view image (in a focused state) including a normal image and a split image displayed on a display device included in the imaging device illustrated in FIG. 1.
  • FIG. 2 is a screen diagram illustrating an example of a live view image (in an out-of-focus state) including a normal image and a split image displayed on a display device included in the imaging device illustrated in FIG. 1.
  • It is a flowchart which shows an example of the flow of the image output process which concerns on 1st Embodiment.
  • It is a flowchart which shows an example of the flow of the image area specific process which concerns on 1st Embodiment. It is a continuation of the flowchart shown in FIG.
  • positioning figure which shows an example of arrangement
  • It is a schematic diagram which shows an example of a structure of the attention pixel group set by the image area specific process which concerns on 1st Embodiment.
  • FIG. 10 is a schematic diagram showing an example of a split image according to the first to fourth embodiments, which is an example of a split image divided by oblique dividing lines inclined with respect to the row direction.
  • FIG. 10 is a schematic diagram showing an example of a split image according to the first to fourth embodiments, which is an example of a split image divided by a grid-like dividing line.
  • FIG. 10 is a schematic diagram showing an example of a split image formed in a checkered pattern, which is a modification of the split image according to the first to fourth embodiments.
  • FIG. 1 is a perspective view illustrating an example of an appearance of the imaging apparatus 100 according to the first embodiment
  • FIG. 2 is a rear view of the imaging apparatus 100 illustrated in FIG.
  • the imaging device 100 is an interchangeable lens camera.
  • the photographing apparatus 100 is a digital camera that includes a camera body 200 and an interchangeable lens 300 that is replaceably attached to the camera body 200, and the reflex mirror is omitted.
  • the interchangeable lens 300 includes a photographing lens 16 (see FIG. 3) having a focus lens 302 that can be moved in the optical axis direction by a manual operation.
  • the camera body 200 is provided with a hybrid finder (registered trademark) 220.
  • the hybrid viewfinder 220 here refers to a viewfinder in which, for example, an optical viewfinder (hereinafter referred to as “OVF”) and an electronic viewfinder (hereinafter referred to as “EVF”) are selectively used.
  • OPF optical viewfinder
  • EMF electronic viewfinder
  • the interchangeable lens 300 is replaceably attached to the camera body 200.
  • the lens barrel of the interchangeable lens 300 is provided with a focus ring 301 used in the manual focus mode. As the focus ring 301 is manually rotated, the focus lens 302 moves in the optical axis direction, and subject light is imaged on an imaging device 20 (see FIG. 3) described later at a focus position corresponding to the subject distance. .
  • a front view of the camera body 200 is provided with an OVF viewfinder window 241 included in the hybrid viewfinder 220.
  • a finder switching lever (finder switching unit) 214 is provided on the front surface of the camera body 200. When the viewfinder switching lever 214 is rotated in the direction of the arrow SW, it switches between an optical image that can be viewed with OVF and an electronic image (live view image) that can be viewed with EVF (described later).
  • the optical axis L2 of the OVF is an optical axis different from the optical axis L1 of the interchangeable lens 300.
  • a release button 211 and a dial 212 for setting a shooting mode, a playback mode, and the like are mainly provided.
  • the release button 211 serving as a photographing preparation instruction unit and a photographing instruction unit is configured to detect a two-stage pressing operation between a photographing preparation instruction state and a photographing instruction state.
  • the shooting preparation instruction state refers to, for example, a state where the image is pressed from the standby position to the intermediate position (half-pressed position). Point to.
  • “a state where the button is pressed from the standby position to the half-pressed position” is referred to as “half-pressed state”
  • “a state where the button is pressed from the standby position to the fully-pressed position” is referred to as “full-pressed state”.
  • the shooting mode and the playback mode are selectively set as the operation mode in accordance with a user instruction.
  • a manual focus mode and an autofocus mode are selectively set according to a user instruction.
  • the autofocus mode the shooting conditions are adjusted by pressing the release button 211 halfway, and then exposure (shooting) is performed when the release button 211 is fully pressed.
  • the AE Automatic Exposure
  • the AF Automatic-Focus
  • an OVF viewfinder eyepiece 242 a display unit 213, a cross key 222, a MENU / OK key 224, and a BACK / DISP button 225 are provided on the rear surface of the camera body 200 shown in FIG.
  • the cross key 222 functions as a multi-function key for outputting various command signals such as selection of one or a plurality of menus, zooming and frame advancement.
  • the MENU / OK key 224 has a function as a menu button for instructing to display one or a plurality of menus on the screen of the display unit 213 and a function as an OK button for instructing confirmation and execution of selection contents.
  • This is an operation key that combines
  • the BACK / DISP button 225 is used for deleting a desired object such as a selection item, canceling a designated content, or returning to the previous operation state.
  • the display unit 213 is realized by, for example, an LCD, and is used to display a live view image (through image) that is an example of a continuous frame image obtained by capturing a continuous frame in the shooting mode.
  • the display unit 213 is also used to display a still image that is an example of a single frame image obtained by capturing a single frame when a still image shooting instruction is given.
  • the display unit 213 is also used for displaying a playback image and a menu screen in the playback mode.
  • FIG. 3 is a block diagram showing an example of the electrical configuration (internal configuration) of the imaging apparatus 100 according to the first embodiment.
  • the imaging apparatus 100 includes a mount 256 provided in the camera body 200 and a mount 346 on the interchangeable lens 300 side corresponding to the mount 256.
  • the interchangeable lens 300 is attached to the camera body 200 in a replaceable manner by the mount 346 being coupled to the mount 256.
  • the interchangeable lens 300 includes a slide mechanism 303 and a motor 304.
  • the slide mechanism 303 moves the focus lens 302 in the direction of the optical axis L1 by operating the focus ring 301.
  • a focus lens 302 is attached to the slide mechanism 303 so as to be slidable in the direction of the optical axis L1.
  • a motor 304 is connected to the slide mechanism 303, and the slide mechanism 303 receives the power of the motor 304 and slides the focus lens 302 along the direction of the optical axis L1.
  • the motor 304 is connected to the camera body 200 via mounts 256 and 346, and driving is controlled according to a command from the camera body 200.
  • a stepping motor is applied as an example of the motor 304. Therefore, the motor 304 operates in synchronization with the pulse power according to a command from the camera body 200.
  • the imaging device 100 is a digital camera that records captured still images and moving images, and the operation of the entire camera is controlled by a CPU (central processing unit) 12.
  • the imaging apparatus 100 includes an operation unit 14, an interface unit 24, a memory 26, and an encoder 34.
  • the imaging unit 100 includes display control units 36A and 36B which are examples of the display control unit according to the present invention.
  • the imaging unit 100 includes an eyepiece detection unit 37.
  • the imaging apparatus 100 includes an image processing unit 28 that is an example of a correction unit, a generation unit, and a specification unit according to the present invention.
  • display control unit 36 when it is not necessary to distinguish between the display control units 36A and 36B, they are referred to as “display control unit 36”.
  • the display control unit 36 is provided with a hardware configuration different from that of the image processing unit 28.
  • the present invention is not limited to this, and the image processing unit 28 has the same function as the display control unit 36. In this case, the display control unit 36 is not necessary.
  • the CPU 12, the operation unit 14, the interface unit 24, the memory 26, which is an example of a storage unit, the image processing unit 28, the encoder 34, the display control units 36 ⁇ / b> A and 36 ⁇ / b> B, the eyepiece detection unit 37, and the external interface (I / F) 39 40 are connected to each other.
  • the memory 26 includes a non-volatile storage area (such as an EEPROM) that stores parameters, programs, and the like, and a volatile storage area (such as an SDRAM) that temporarily stores various information such as images.
  • the CPU 12 performs focusing control by driving and controlling the motor 304 so that the contrast value of the image obtained by imaging is maximized.
  • the CPU 12 calculates AE information that is a physical quantity indicating the brightness of an image obtained by imaging.
  • the CPU 12 derives the shutter speed and F value corresponding to the brightness of the image indicated by the AE information. Then, the exposure state is set by controlling each related part so that the derived shutter speed and F value are obtained.
  • the operation unit 14 is a user interface operated by the user when giving various instructions to the imaging apparatus 100. Various instructions received by the operation unit 14 are output as operation signals to the CPU 12, and the CPU 12 executes processing according to the operation signals input from the operation unit 14.
  • the operation unit 14 includes a release button 211, a focus mode switching unit 212 for selecting a shooting mode, a finder switching lever 214, a cross key 222, a MENU / OK key 224, and a BACK / DISP button 225.
  • the operation unit 14 also includes a touch panel that accepts various types of information. This touch panel is overlaid on the display screen of the display unit 213, for example.
  • the camera body 200 includes a position detection unit 23.
  • the position detection unit 23 is connected to the CPU 12.
  • the position detection unit 23 is connected to the focus ring 301 via mounts 256 and 346, detects the rotation angle of the focus ring 301, and outputs rotation angle information indicating the rotation angle as a detection result to the CPU 12.
  • the CPU 12 executes processing according to the rotation angle information input from the position detection unit 23.
  • the image light indicating the subject is incident on the light receiving surface of the color image sensor (for example, a CMOS sensor) 20 via the photographing lens 16 including the focus lens 302 that can be moved manually and the shutter 18.
  • the signal charge accumulated in the image sensor 20 is sequentially read out as a digital signal corresponding to the signal charge (voltage) by a read signal applied from the device control unit 22.
  • the imaging element 20 has a so-called electronic shutter function, and controls the charge accumulation time (shutter speed) of each photosensor according to the timing of the readout signal by using the electronic shutter function.
  • the image sensor 20 according to the first embodiment is a CMOS image sensor, but is not limited thereto, and may be a CCD image sensor.
  • the image sensor 20 includes a color filter 21 shown in FIG. 4 as an example.
  • the color filter 21 includes a G filter G corresponding to G (green) that contributes most to obtain a luminance signal, an R filter R corresponding to R (red), and a B filter corresponding to B (blue).
  • G filter G corresponding to G (green) that contributes most to obtain a luminance signal
  • R filter R corresponding to R (red)
  • B filter corresponding to B blue
  • “4896 ⁇ 3265” pixels are employed as an example of the number of pixels of the image sensor 20, and the G filter, R filter, and B filter are arranged in the row direction (horizontal direction) and these pixels. They are arranged with a predetermined periodicity in each of the column directions (vertical directions). Therefore, the imaging apparatus 100 can perform processing according to a repetitive pattern when performing synchronization (interpolation) processing of R, G, and B signals.
  • the synchronization process is a process for calculating all color information for each pixel from a mosaic image corresponding to a color filter array of a single-plate color image sensor.
  • the synchronization process means a process for calculating color information of all RGB for each pixel from a mosaic image made of RGB.
  • the image sensor 20 includes a first pixel L, a second pixel R, and a normal pixel N (an example of a third pixel) (described later).
  • the imaging apparatus 100 operates the phase difference AF function to reduce the phase shift amount based on the signal output value (hereinafter referred to as pixel value) from the pixel of the first pixel L and the pixel value of the second pixel R. To detect. Then, the focal position of the photographing lens is adjusted based on the detected phase shift amount.
  • the imaging element 20 includes a first pixel row 150, a second pixel row 152, and a third pixel row 154.
  • the first pixel row 150 includes a first pixel set in the same row, and the first pixel set includes a plurality of normal pixels N (four normal pixels N in the example shown in FIG. 5) in the row direction. Are arranged periodically.
  • the first pixel group is adjacent in the row direction in a first arrangement (an arrangement in which the first pixels L are located on the left side in the front view and the second pixels R are located on the right side in the figure). A pair of first pixel L and second pixel R is indicated.
  • the second pixel row 152 includes a second pixel set in the same row, and the second pixel set includes a plurality of normal pixels N (four normal pixels N in the example shown in FIG. 5) in the row direction. Are arranged periodically.
  • the second pixel group refers to a pair of first pixels L and second pixels R that are adjacent in the second direction in the row direction (an arrangement opposite to the first arrangement).
  • a plurality of normal pixels N are arranged adjacent to each other in the same row.
  • the first pixel row 150 and the second pixel row 152 include a plurality of third pixel rows 154 in the column direction (in the first embodiment, third pixel rows having different numbers of rows in a predetermined cycle in the column direction). 154) are arranged alternately.
  • the first pixel L has a left half in the row direction on the light receiving surface by the light blocking member 20 ⁇ / b> A (left side when the subject faces the light receiving surface (in other words, when the light receiving surface faces the subject).
  • the right side) is a light-shielded pixel.
  • the second pixel R has a right half in the row direction on the light receiving surface (right side when facing the subject from the light receiving surface (in other words, when facing the light receiving surface from the subject).
  • the left side) is a light-shielded pixel.
  • phase difference pixels when it is not necessary to distinguish between the first pixel L and the second pixel R, they are referred to as “phase difference pixels”.
  • the light flux passing through the exit pupil of the photographing lens 16 is roughly classified into left region passing light and right region passing light.
  • the left region passing light refers to the left half of the light beam passing through the exit pupil of the photographing lens 16
  • the right region passing light is the right half of the light beam passing through the exit pupil of the photographing lens 16.
  • the portions of the left region passing light and the right region passing light that are in focus (in a focused state) form an image at the same position on the image sensor 20.
  • the front pin or rear pin portions of the left region passing light and the right region passing light are incident on different positions on the image sensor 20 (phases are shifted).
  • the light intensity distribution due to the left region passing light and the light intensity distribution due to the right region passing light on the light receiving surface are separated in the row direction to blur the image.
  • the distribution positions of the light intensity distribution due to the left region passing light and the light intensity distribution due to the right region passing light on the light receiving surface are reversed between the front pin and the rear pin.
  • the microlens 19 and the light shielding members 20A and 20B function as a pupil division unit. That is, the light beam passing through the exit pupil of the photographic lens 16 is divided into left and right by the microlens 19 and the light shielding members 20A and 20B, the first pixel L receives the left region passing light, and the second pixel R is right. Receives light passing through the area.
  • the subject image corresponding to the left region passing light and the subject image corresponding to the right region passing light are acquired as parallax images (left eye image and right eye image described later) having different parallaxes.
  • the light shielding members 20A and 20B are referred to as “light shielding members” without reference numerals.
  • the image sensor 20 is classified into a first pixel group, a second pixel group, and a third pixel group.
  • the first pixel group refers to a plurality of first pixels L arranged in a matrix as shown in FIG. 5 as an example.
  • the second pixel group refers to a plurality of second pixels R arranged in a matrix as illustrated in FIG. 5 as an example.
  • the third pixel group indicates a plurality of normal pixels N shown in FIG. 5 as an example.
  • the normal pixel N refers to a pixel other than the phase difference pixel (for example, a pixel in which the light shielding members 20A and 20B are not provided).
  • the RAW image output from the first pixel group is referred to as a “first image”
  • the RAW image output from the second pixel group is referred to as a “second image”
  • the third image The RAW image output from the pixel group is referred to as a “third image”.
  • the image sensor 20 outputs the first image (digital signal indicating the pixel value of each first pixel L) from the first pixel group, and the second image from the second pixel group. (Digital signal indicating the pixel value of each second pixel R) is output. Further, the image sensor 20 outputs a third image (a digital signal indicating the pixel value of each normal pixel) from the third pixel group. Note that the third image output from the third pixel group is a chromatic image, for example, a color image having the same color arrangement as that of the normal pixels N.
  • the first image, the second image, and the third image output from the image sensor 20 are temporarily stored in a volatile storage area in the memory 26 via the interface unit 24.
  • the image processing unit 28 performs various kinds of image processing on the first to third images stored in the memory 26. As shown in FIG. 8 as an example, the image processing unit 28 includes a correction unit 28A, a generation unit 28B, and a specification unit 28C.
  • the image processing unit 28 is realized by an ASIC (Application Specific Integrated Circuit) which is an integrated circuit in which a plurality of functions related to image processing are integrated into one.
  • ASIC Application Specific Integrated Circuit
  • the hardware configuration is not limited to this, and may be, for example, a programmable logic device or another hardware configuration such as a computer including a CPU, a ROM, and a RAM.
  • the correction unit 28A obtains a correction coefficient corresponding to the dimming characteristic based on the left region passing light and the right region passing light, and corrects the first image and the second image based on the obtained correction coefficient.
  • the generation unit 28B generates a display image based on the image signal output from the image sensor 20.
  • the display image is based on, for example, the first display image generated based on the third image output from the imaging element 20, and the first image and the second image corrected by the correction unit 28A. And a second display image used for focusing confirmation generated in this manner.
  • the specifying unit 28C specifies an image region that satisfies both the first condition and the second condition among the second display images generated by the generating unit 28B.
  • the first condition refers to a condition that the magnitude of the contrast is equal to or greater than a first predetermined value
  • the second condition refers to the degree of coincidence between the first image and the second image being a second predetermined value. It refers to the condition of being greater than or equal to the value.
  • the “image region” corresponds to, for example, the first pixel L and the second pixel R that satisfy both the first condition and the second condition in the second display image.
  • Image area (for example, an image area existing at a position corresponding to the position of the first pixel L and the second pixel R).
  • the image shift amount (shift amount between the light intensity distribution due to the left region passing light and the light intensity distribution due to the right region passing light) corresponding to the blur amount of the image formed on the light receiving surface of the image sensor 20 is expressed by the following equation.
  • the mathematical expression (1) represents the positional relationship between the subject in focus (Jaspin) shown in FIG. 9A, the photographic lens 16 and the image sensor 20, and the subject in non-focus shown in FIG. 9B, the photographic lens 16 and the image sensor 20. It is derived from the positional relationship. That is, the image shift amount ⁇ is represented by the following mathematical formula (2), and “z” shown in the mathematical formula (2) is represented by the following mathematical formula (3). Note that “y” shown in Expression (3) is expressed by Expression (4) below.
  • the specification unit 28C derives a threshold value ⁇ 1 that is an example of the first predetermined value and a threshold value ⁇ 2 that is an example of the second predetermined value using the threshold value derivation table 260 illustrated in FIG. 10 as an example.
  • the threshold value derivation table 260 shown in FIG. 10 values determined in advance as the optimum values of the threshold values ⁇ 1 and ⁇ 2 are associated with each of the plurality of F values. Therefore, the specifying unit 28C can derive an accurate value from the threshold value derivation table 260 as the threshold values ⁇ 1 and ⁇ 2 corresponding to the currently set F value.
  • the image shift amount ⁇ shown in Equation (1) is a unit of length, and when this length is larger than the diameter of a single pixel of the image sensor 20, the image is out of focus (in an out-of-focus state). It is determined. Therefore, the threshold values ⁇ 1 and ⁇ 2 may be determined according to the size of a single pixel of the image sensor 20. Further, according to Equation (1), the image shift amount ⁇ also depends on the distance between the photographic lens 16 and the subject. Also good. The threshold values ⁇ 1 and ⁇ 2 may be determined according to a combination of at least two of the F value, the size of a single pixel of the image sensor 20, and the distance between the photographing lens 16 and the subject. The threshold values ⁇ 1 and ⁇ 2 may be derived by using them.
  • the generation unit 28B includes a normal processing unit 30 and a split image processing unit 32 as shown in FIG.
  • the normal processing unit 30 processes the R, G, and B signals corresponding to the third pixel group to generate a chromatic color normal image that is an example of the first display image.
  • the split image processing unit 32 generates an achromatic split image that is an example of a second display image by processing G signals corresponding to the first pixel group and the second pixel group.
  • the encoder 34 converts the input signal into a signal of another format and outputs it.
  • the hybrid viewfinder 220 has an LCD 247 that displays an electronic image.
  • the number of pixels in a predetermined direction on the LCD 247 (for example, the number of pixels in the row direction, which is the parallax generation direction) is smaller than the number of pixels in the same direction on the display unit 213.
  • the display control unit 36A is connected to the display unit 213, and the display control part 36B is connected to the LCD 247. By selectively controlling the LCD 247 and the display unit 213, an image is displayed on the LCD 247 or the display unit 213.
  • the display unit 213 and the LCD 247 are referred to as “display devices” when it is not necessary to distinguish between them.
  • the imaging apparatus 100 is configured to be able to switch between a manual focus mode and an autofocus mode by a dial 212 (focus mode switching unit).
  • the display control unit 36 causes the display device to display a live view image obtained by combining the split images.
  • the CPU 12 operates as a phase difference detection unit and an automatic focus adjustment unit.
  • the phase difference detection unit detects a phase difference between the first image output from the first pixel group and the second image output from the second pixel group.
  • the automatic focus adjustment unit controls the motor 304 from the device control unit 22 via the mounts 256 and 346 so that the defocus amount of the focus lens 302 is zero based on the detected phase difference, and controls the focus lens 302. Move to the in-focus position.
  • defocus amount refers to, for example, the amount of phase shift between the first image and the second image.
  • the eyepiece detection unit 37 detects that a user (for example, a photographer) has looked into the viewfinder eyepiece unit 242 and outputs the detection result to the CPU 12. Therefore, the CPU 12 can grasp whether or not the finder eyepiece unit 242 is used based on the detection result of the eyepiece detection unit 37.
  • the external I / F 39 is connected to a communication network such as a LAN (Local Area Network) or the Internet, and controls transmission / reception of various information between the external device (for example, a printer) and the CPU 12 via the communication network. Therefore, when a printer is connected as an external device, the imaging apparatus 100 can output a captured still image to the printer for printing. Further, when a display is connected as an external device, the imaging apparatus 100 can output and display a captured still image or live view image on the display.
  • a communication network such as a LAN (Local Area Network) or the Internet
  • FIG. 12 is a functional block diagram illustrating an example of main functions of the imaging apparatus 100 according to the first embodiment.
  • symbol is attached
  • the normal processing unit 30 and the split image processing unit 32 each have a WB gain unit, a gamma correction unit, and a synchronization processing unit (not shown), and with respect to the original digital signal (RAW image) temporarily stored in the memory 26.
  • Each processing unit sequentially performs signal processing. That is, the WB gain unit executes white balance (WB) by adjusting the gains of the R, G, and B signals.
  • the gamma correction unit performs gamma correction on each of the R, G, and B signals that have been subjected to WB by the WB gain unit.
  • the synchronization processing unit performs color interpolation processing corresponding to the color filter array of the image sensor 20, and generates synchronized R, G, B signals.
  • the normal processing unit 30 and the split image processing unit 32 perform image processing on the RAW image in parallel every time a RAW image for one screen is acquired by the image sensor 20.
  • the normal processing unit 30 receives R, G, and B raw images from the interface unit 24, and converts the R, G, and B pixels of the third pixel group into the first pixel group and the second pixel group.
  • a normal image for recording is generated by interpolating with peripheral pixels of the same color (for example, adjacent G pixels).
  • the normal processing unit 30 outputs the generated image data of the normal image for recording to the encoder 34.
  • the R, G, and B signals processed by the normal processing unit 30 are converted (encoded) into recording signals by the encoder 34 and recorded in the recording unit 40.
  • a normal image for display that is an image based on the third image processed by the normal processing unit 30 is output to the display control unit 36.
  • the term “for recording” and “for display” are used. Is referred to as a “normal image”.
  • the image sensor 20 can change the exposure conditions (shutter speed by an electronic shutter as an example) of each of the first pixel group and the second pixel group, and thereby can simultaneously acquire images having different exposure conditions. . Therefore, the image processing unit 28 can generate an image with a wide dynamic range based on images with different exposure conditions. In addition, a plurality of images can be simultaneously acquired under the same exposure condition, and by adding these images, a high-sensitivity image with little noise can be generated, or a high-resolution image can be generated.
  • the split image processing unit 32 extracts the G signal of the first pixel group and the second pixel group from the RAW image once stored in the memory 26, and the G of the first pixel group and the second pixel group. An achromatic split image is generated based on the signal.
  • the pixel group corresponding to each of the first pixel group and the second pixel group extracted from the RAW image is a pixel group including G filter pixels as described above. Therefore, the split image processing unit 32 converts the achromatic left parallax image and the achromatic right parallax image based on the G signal of the pixel group corresponding to each of the first pixel group and the second pixel group. Can be generated.
  • the above “achromatic left parallax image” is referred to as a “left eye image”
  • the above “achromatic right parallax image” is referred to as a “right eye image”.
  • the split image processing unit 32 generates a split image.
  • the split image includes a left eye image based on the first image output from the first pixel group and a right eye image based on the second image output from the second pixel group in a predetermined direction (for example, occurrence of parallax). In a direction intersecting the direction).
  • the generated split image image data is output to the display control unit 36.
  • the display control unit 36 includes normal image data for display input from the normal processing unit 30, split image image data corresponding to the first and second pixel groups input from the split image processing unit 32, and Display image data is generated based on the above.
  • the display control unit 36 indicates the image data input from the split image processing unit 32 in the display area of the normal image indicated by the image data corresponding to the third pixel group input from the normal processing unit 30. Composite split images.
  • the image data obtained by the synthesis is output to the display device. That is, the display control unit 36A outputs the image data to the display unit 213, and the display control unit 36B outputs the image data to the LCD 247. Accordingly, the display device continuously displays the normal image as a moving image, and continuously displays the split image as a moving image in the display area of the normal image.
  • the split image is displayed in a rectangular frame at the center of the screen of the display device, and a normal image is displayed in the outer peripheral area of the split image.
  • a normal image is displayed in the outer peripheral area of the split image.
  • the split image is combined with the normal image by fitting the split image in place of a part of the normal image.
  • the present invention is not limited to this. It is also possible to use a synthesis method in which a split image is superimposed on the image.
  • a combining method may be used in which the transmittance of a part of the normal image on which the split image is superimposed and the split image are appropriately adjusted and superimposed.
  • the hybrid finder 220 includes an OVF 240 and an EVF 248.
  • the OVF 240 is an inverse Galileo finder having an objective lens 244 and an eyepiece 246, and the EVF 248 has an LCD 247, a prism 245, and an eyepiece 246.
  • a liquid crystal shutter 243 is disposed in front of the objective lens 244, and the liquid crystal shutter 243 shields light so that an optical image does not enter the objective lens 244 when the EVF 248 is used.
  • the prism 245 reflects an electronic image or various information displayed on the LCD 247 and guides it to the eyepiece 246, and combines the optical image and information (electronic image and various information) displayed on the LCD 247.
  • an OVF mode in which an optical image can be visually recognized by the OVF 240 and an electronic image can be visually recognized by the EVF 248 each time it is rotated.
  • the EVF mode is switched alternately.
  • the display control unit 36B controls the liquid crystal shutter 243 to be in a non-light-shielding state so that an optical image can be visually recognized from the eyepiece unit. Further, only the split image is displayed on the LCD 247. Thereby, a finder image in which a split image is superimposed on a part of the optical image can be displayed.
  • the display control unit 36B controls the liquid crystal shutter 243 to be in a light shielding state so that only the electronic image displayed on the LCD 247 can be visually recognized from the eyepiece unit.
  • the image data equivalent to the image data obtained by combining the split image output to the display unit 213 is input to the LCD 247, whereby the split image is combined with a part of the normal image in the same manner as the display unit 213. Electronic images can be displayed.
  • a general split image is a direction in which the left eye image and the right eye image intersect with the parallax generation direction (in the example shown in FIGS. 14 and 15, the front in the figure). It is an image of a plurality of divisions (four divisions in the examples shown in FIGS. 14 and 15) that are combined alternately in the vertical direction of viewing.
  • the left eye image and the right eye image included in the split image are shifted in a predetermined direction (in the example shown in FIGS. 14 and 15, the parallax generation direction (the front view left-right direction in the figure)) according to the focused state. Note that the example shown in FIG.
  • FIG. 14 shows a state where the person is in focus and is not in focus with respect to the peripheral area (for example, a tree) of the person.
  • the peripheral area for example, a tree
  • FIG. 14 a state in which the subject is in focus and is not in focus with respect to the surrounding area of the tree (for example, a person) is shown.
  • the focus determination method using the split image it is determined visually whether or not the image shift has disappeared. However, it is necessary to perform the process while visually confirming the image shift that moves continuously, and it takes time to focus.
  • a focus determination method other than the focus determination method using the split image a focus determination method using focus peaking is known.
  • the determination of whether or not the region is a high-contrast region is performed in a shorter time than the focus determination method using a split image. be able to.
  • the user may erroneously determine that the high-contrast areas that are not in focus are in focus.
  • the image processing unit 28 performs the image output process illustrated in FIG. 16 as an example in the manual focus mode.
  • image output processing performed by the image processing unit 28 in the manual focus mode will be described with reference to FIG.
  • the CPU 12 executes the image output process program and the image capturing apparatus 100 executes the image. An output process may be performed.
  • step 400 the generation unit 28B determines whether or not the first to third images have been input. If the first to third images are not input in step 400, the determination is negative and the determination in step 400 is performed again. If the first to third images are input in step 400, the determination is affirmed and the routine proceeds to step 402.
  • step 402 the generation unit 28B generates a normal image based on the third image input in step 400.
  • step 402 the generation unit 28B generates a left eye image and a right eye image based on the first and second images input in step 400, and based on the generated left eye image and right eye image.
  • a split image is generated.
  • the correction unit 28A and the specifying unit 28C use the image region specifying process shown in FIGS. 17 and 18 as an example (image regions corresponding to pixels satisfying both the first condition and the second condition). The process moves to step 406.
  • the left region passing light that has passed through the photographing lens 16 passes through the micro lens 19 corresponding to the first pixel L, The light enters the first pixel L.
  • the left region passing light does not enter the second pixel R because it is shielded by the light shielding member 20B even after passing through the microlens 19 corresponding to the second pixel R.
  • the right region passing light that has passed through the photographing lens 16 passes through the microlens 19 corresponding to the second pixel R, and enters the second pixel R.
  • the light shielding member is arranged for half of the pixels, and the centers of the left region passing light and the right region passing light are deviated from the optical axis of the photographing lens 16, the first pixel In each of the group and the second pixel group, the dimming characteristics linearly change according to the pixel position in the pupil division direction. The change in the dimming characteristic appears as a change in output in the left eye image and the right eye image.
  • the output in the left and right direction depends on the pixel position. Will change approximately linearly. For example, as shown in FIG. 20, the output of the left eye image decreases as the pixel position in the right direction decreases, and the output of the right eye image decreases as the pixel position in the left direction.
  • the substantially linear changes in the left and right outputs of the left eye image and the right eye image have an influence on the image quality of the split image.
  • the light reduction characteristics are used as correction coefficients for correcting the output of the first image and the second image input in step 400 by the correction unit 28A.
  • a correction coefficient corresponding to is derived.
  • the correction coefficient is derived based on a correction straight line, for example.
  • the straight line for correction indicates a linear function that minimizes the sum of squares of the distance between the regression line and the target sensitivity ratio (for example, 1.0) for the outputs of a plurality of pixels included in a specific line, for example. Are used as correction factors.
  • the correction coefficient is not limited to this, and may be a default value (correction coefficient for canceling the dimming characteristic predicted in advance) obtained in advance by an experiment or simulation with an actual machine. Further, here, the case where the output of the first image and the second image is corrected is illustrated, but the present invention is not limited to this, and the sensitivity of the first pixel L and the second pixel R is corrected. May be.
  • the correction unit 28A corrects the output of the first image and the second image based on the correction coefficient derived in step 500. Accordingly, as shown in FIG. 21 as an example, the linearity of the first image and the second image due to the linear sensitivity change of the pixels in the pupil division direction of each of the first and second pixel groups. The output change is reduced as compared with the case where the output is not corrected based on the correction coefficient.
  • next step 504 among all the pixels included in the first to third images input in step 400 by the specifying unit 28C, as shown in FIG. Group) 262 is set.
  • the first to third images are collectively referred to as “processing target images”.
  • processing target images among the pixels included in the processing target image, a pixel at a position corresponding to the position of the first pixel L in the image sensor 20 is referred to as a first pixel L1.
  • a pixel at a position corresponding to the position of the second pixel R in the image sensor 20 is referred to as a second pixel R2.
  • the first to third images input in step 400 are the processing target images.
  • the partial image may be a processing target image.
  • an image at a position corresponding to the position of the split image display area among the first to third images input at step 400 may be set as the processing target image, or the first to third images input at step 400 may be used.
  • an image at a position corresponding to the position of a partial area of the split image display area may be set as the processing target image.
  • the time required for processing can be shortened compared to the case of processing the image for the entire screen.
  • the attention pixel group 262 indicates, for example, a pixel group that has not yet been processed in Steps 506 to 534, which will be described later, out of all pixels included in the processing target image.
  • the target pixel group 262 is defined by a target pixel group defining frame 263 shown in FIG. 22 as an example.
  • a target pixel group defining frame 263 shown in FIG. 22 is a rectangular frame divided by 4 ⁇ 6 divided regions (divided regions having a size corresponding to the size of a single pixel).
  • the first pixel L included in one of a pair of adjacent first pixels included in the first pixel row 150 is included in the divided region in the upper right corner when viewed from the front.
  • the first pixel L1 corresponding to the first pixel L) is located. Further, the second pixel R (the second pixel included in the other of the pair of adjacent first pixels) included in the first pixel row 150 in the divided region at the upper left corner when viewed from the front in the figure. A second pixel R1 corresponding to R) is located. Further, a normal pixel N1 corresponding to the normal pixel N included in the first pixel row 150 and the third pixel row 154 is located in each of the remaining divided regions of the target pixel group defining frame 263.
  • the specifying unit 28C causes the adjacent normal pixel N1 (hereinafter referred to as “target normal pixel set”) included in the target row of the target pixel group 262 set in step 504 to be displayed. Is set).
  • the target row of the target pixel group 262 indicates, for example, one row to which the phase difference pixels included in the target pixel group 262 set in step 504 belong.
  • the target normal pixel group includes the normal pixel N1 that has not yet been processed in Steps 508 to 518 described later, and the first pixel L1 and the second pixel R1 included in the target row. Two normal pixels N1 adjacent to each other are disposed between the two.
  • step 508 whether or not any output of the normal pixel N1 included in the target normal pixel set set in step 506 is saturated by the specifying unit 28C (for example, the output has reached the upper limit value). Is determined.
  • step 508 if any output of the normal pixel N ⁇ b> 1 included in the target normal pixel set set in step 506 is saturated, the determination is affirmed and the process proceeds to step 510.
  • step 508 if any output of the normal pixel N 1 included in the target normal pixel set set in step 506 is not saturated, the determination is negative and the process proceeds to step 512.
  • step 510 the specifying unit 28C determines whether or not all the normal pixels N1 included in the target row of the target pixel group 262 set in step 504 are set as the target normal pixel set. In step 510, if all the normal pixels N1 included in the target row of the target pixel group 262 set in step 504 are set as the target normal pixel set, the determination is affirmed and the process proceeds to step 536. In step 510, when all the normal pixels N1 included in the target row of the target pixel group 262 set in step 504 are not set as the target normal pixel set, the determination is negative and the process proceeds to step 506.
  • step 512 the specifying unit 28C calculates the average value of the pixel values in the column direction for each normal pixel N1 included in the target normal pixel set set in step 506 (hereinafter referred to as “average pixel value”).
  • average pixel value the average value of the pixel values in the column direction for each normal pixel N1 included in the target normal pixel set set in step 506.
  • the identification unit 28C makes a difference (for example, the absolute difference) between the average pixel values (average pixel values calculated in step 512) between the normal pixels N1 included in the target normal pixel set set in step 506. Value) d1 is calculated, and then the process proceeds to step 516.
  • a difference for example, the absolute difference
  • step 516 the specifying unit 28C uses the threshold value derivation table 260 shown in FIG. 10 as an example to derive the threshold value ⁇ 1 corresponding to the currently set F value, and then the process proceeds to step 518.
  • step 518 the identifying unit 28C determines whether or not the difference d1 calculated in step 514 is equal to or greater than the threshold value ⁇ 1 derived in step 516. In step 518, if the difference d1 calculated in step 514 is less than the threshold value ⁇ 1 derived in step 516, the determination is negative and the routine proceeds to step 510. In step 518, if the difference d1 calculated in step 514 is equal to or larger than the threshold value ⁇ 1 derived in step 516, the determination is affirmed and the process proceeds to step 520.
  • the identifying unit 28C sets a pair of target phase difference pixels included in the target row of the target pixel group 262 set in step 504.
  • the target phase difference pixel refers to each of the first pixel L1 and the second pixel R1 located at both ends included in the target row of the target pixel group 262.
  • the first pixel L1 and the second pixel R1 are referred to as “target phase difference pixels” when it is not necessary to distinguish between the first pixel L1 and the second pixel R1.
  • step 522 the pixel value between the pair of target phase difference pixels set in step 520 by the specifying unit 28C (pixel value between the phase difference pixels in the left eye image and the right eye image whose output is corrected in step 502). Difference D is calculated, and then the process proceeds to step 524.
  • the threshold value ⁇ 2 corresponding to the currently set F value is derived by the specifying unit 28C using the threshold value derivation table 260 shown in FIG. 10 as an example, and then the process proceeds to step 526.
  • step 526 the identifying unit 28C determines whether or not the difference D calculated in step 522 is equal to or less than the threshold value ⁇ 2 derived in step 524. In step 526, if the difference D calculated in step 522 exceeds the threshold value ⁇ 2 derived in step 524, the determination is negative and the process proceeds to step 536. In step 526, if the difference D calculated in step 522 is less than or equal to the threshold value ⁇ 2 derived in step 524, the determination is affirmed and the process proceeds to step 528.
  • the specifying unit 28C generates the first pixel value distribution and the second pixel value distribution shown in FIG. 24 as an example.
  • the first pixel value distribution refers to a distribution of pixel values by all the first pixels L1 included in one row to which the target row shown in FIG. 22 belongs (for example, one row corresponding to the first pixel row 150).
  • the second pixel value distribution refers to a distribution of pixel values by all the second pixels R1 included in one row to which the target row belongs.
  • the specifying unit 28C sets the distance between peaks (distance between peaks) ⁇ between the first pixel value distribution and the second pixel value distribution generated in step 528. After that, the process proceeds to step 532.
  • the inter-peak distance ⁇ refers to, for example, a distance between pixels having a maximum signal level in the pupil division direction (parallax generation direction) and means a so-called phase difference (or a physical quantity corresponding to the phase difference).
  • the identifying unit 28C determines whether or not the peak-to-peak distance ⁇ calculated in step 530 is equal to or less than the threshold value ⁇ 3.
  • the threshold value ⁇ 3 a value corresponding to the value of distance ⁇ 2 between phase difference pixels included in the target row of the target pixel group 262 shown in FIG. 23 is adopted, but other values are adopted. Needless to say, a value designated by the user may be adopted.
  • step 532 if the peak-to-peak distance ⁇ calculated in step 530 exceeds the threshold ⁇ 3 (for example, if the first pixel value distribution and the second pixel value distribution are in the state shown in FIG. 24), the determination is negative and step 536 is determined.
  • the threshold ⁇ 3 for example, if the first pixel value distribution and the second pixel value distribution are in the state shown in FIG. 24
  • the determination is negative and step 536 is determined.
  • step 532 when the peak-to-peak distance ⁇ calculated in step 530 is equal to or smaller than the threshold ⁇ 3 (for example, when the first pixel value distribution and the second pixel value distribution are in the state shown in FIG. 25), the determination is affirmed and step 534 is performed.
  • the specifying unit 28C stores position information indicating the position of the target pixel group 262 set in step 504 (for example, two-dimensional coordinates that can specify the position in the processing target image) in a predetermined storage area (for example, the memory 26). ).
  • step 536 the specifying unit 28C determines whether or not there is a pixel group that has not yet been set as the target pixel group 262 among all the pixels included in the processing target image. In step 536, if there is a pixel group that has not been set as the target pixel group 262 among all the pixels included in the processing target image, the determination is negative and the process proceeds to step 504. In step 536, when there is no pixel group that has not yet been set as the target pixel group 262 among all the pixels included in the processing target image, the determination is affirmed and the main image region specifying process is terminated.
  • step 406 the specifying unit 28C determines whether or not position information is stored in a predetermined storage area (whether or not position information is stored in the predetermined storage area in step 534). The If the position information is not stored in the predetermined storage area in step 406, the determination is negative and the routine proceeds to step 410. If the position information is stored in the predetermined storage area at step 406, the determination is affirmed and the routine proceeds to step 408.
  • step 408 the brightness and color (or brightness or color) of the specific image area (an example of the image area according to the present invention) of the split image generated in step 402 by the specifying unit 28C are changed to other values. It is adjusted to be distinguishable from the area.
  • the specific image area is, for example, an image area (an area corresponding to the target pixel group 262) indicated by position information stored in a predetermined storage area (position information stored in the predetermined storage area in Step 534). ) Indicates an area included in the split image.
  • the normal unit 28C In the next step 410, the normal unit 28C generates the normal image and the split image generated in step 402, or the split image in which the brightness and color of the specific image area are adjusted in step 408 and the normal image generated in step 402.
  • the image is output to the display control unit 36.
  • the display control unit 36 controls the display device to continuously display the normal image as a moving image and to continuously display the split image in the display area of the normal image as the moving image. In response to this, the display device displays a live view image.
  • the display control unit 36 inputs the specific image area to the display device. Is controlled so as to be distinguishable from other areas.
  • the display device displays (highlights (peaks)) the specific image area in the live view image so as to be distinguishable from other areas, as shown in FIG. 26 as an example.
  • the method for displaying the specific image region so as to be distinguishable from other regions include a method for raising the output of the specific image region to an upper limit value and a method for displaying the specific image region with a predetermined special color.
  • the thick line area in the split image corresponds to the specific image area.
  • a surface area within the frame defined by the outline of the specific image area in the example shown in FIG. 26, an area surrounded by the outline of the specific image area and the outer frame of the split image.
  • a patch pattern that can be distinguished from a region outside the frame may be displayed.
  • the specifying unit 28C causes the first condition that the difference d1 is equal to or larger than ⁇ 1 and the second condition that the difference D is equal to or smaller than the threshold ⁇ 2.
  • An image region (specific image region) that satisfies both of these conditions is specified.
  • the display device displays a normal image and a split image, and displays a specific image area in the split image so as to be distinguishable from other areas. Therefore, the imaging apparatus 100 according to the first embodiment can make it easier to visually recognize whether or not the imaging apparatus 100 is in an in-focus state as compared to the case where the present configuration is not provided.
  • the difference d1 is determined based on the pixel value of the normal pixel N1. Therefore, the imaging apparatus 100 according to the first embodiment has a higher accuracy in an image area that satisfies the first condition (difference d1 ⁇ threshold ⁇ 1) than when the difference d1 is determined without using the pixel value of the normal pixel N1. Can be specified.
  • the difference d1 is determined based on the pixel value of the normal pixel N1 arranged between the first pixel L1 and the second pixel R1. Therefore, the imaging apparatus 100 according to the first embodiment is different from the case where the difference d1 is determined without using the pixel value of the normal pixel N1 arranged between the first pixel L1 and the second pixel R1. An image region that satisfies the first condition can be specified with high accuracy.
  • the difference d1 is determined based on the average pixel value for the predetermined pixels (four pixels in the example shown in FIG. 22) in the column direction of the normal pixels N1. Therefore, the imaging apparatus 100 according to the first embodiment can specify an image region that satisfies the first condition with high accuracy, as compared with a case where the configuration that determines the difference d1 based on the average pixel value is not provided.
  • the magnitude of contrast is determined based on the normal pixel N1 in a non-saturated state. Therefore, the imaging apparatus 100 according to the first embodiment can suppress erroneous specification of an image region that may occur when a non-saturated pixel is included, as compared with the case where the configuration is not provided.
  • the imaging apparatus 100 can suppress the erroneous specification of the specific image region due to the dimming characteristics, compared with the case where the configuration is not provided.
  • the image region that satisfies the second condition (difference D ⁇ threshold ⁇ 2) based on the inter-peak distance ⁇ (for example, the first pixel L that satisfies the second condition and A region corresponding to the second pixel R) is specified. Therefore, the imaging apparatus 100 according to the first embodiment has a higher image area that satisfies the second condition than the case where the image area that satisfies the second condition is not specified based on the inter-peak distance ⁇ . The accuracy can be specified.
  • the present invention is not limited to this.
  • a split image is displayed on the entire screen of the display device as shown in FIG. 27 as an example. You may make it do. In this case, it is possible to easily recognize visually whether or not the in-focus state is achieved as compared with the configuration in which both the normal image and the split image are displayed.
  • the case where the peak-to-peak distance ⁇ between the first pixel value distribution and the second pixel value distribution is calculated in the image region specifying process shown in FIG. 18 is exemplified. It is not limited to. For example, as shown in FIG. 28, instead of steps 528, 530, and 532 of the image region specifying process shown in FIG. 18, steps 558, 560, and 562 may be performed by the specifying unit 28C.
  • step 558 the specifying unit 28C differentiates each pixel value of the first pixel L and the second pixel R included in one row to which the target row belongs by position.
  • the distance (differential peak distance) between the differential peak value for the first pixel L and the differential peak value for the second pixel R obtained by differentiation in step 558 by the specifying unit 28C. ⁇ is calculated.
  • the determination is negative and the routine proceeds to step 536.
  • step 562 if the differential peak-to-peak distance ⁇ is less than or equal to the threshold ⁇ 4, the determination is affirmed and the routine proceeds to step 534.
  • the differential peak-to-peak distance ⁇ corresponds to a value in which noise included in the peak-to-peak distance ⁇ is reduced
  • an image area that satisfies the second condition (for example, satisfies the second condition) by using the differential peak-to-peak distance ⁇ can be specified with high accuracy.
  • the image area specifying process in which steps 528, 530, and 532 are incorporated is exemplified.
  • the present invention is not limited to this, and the steps from the image area specifying process shown in FIG. 528, 530, and 532 may be excluded. In this case, speeding up of the image output process can be expected. Further, Steps 522, 524, and 526 may be excluded from the image region specifying process shown in FIG. Also in this case, it can be expected that the image output processing is speeded up.
  • the case where the average pixel value difference d1 between the normal pixels N is calculated is exemplified.
  • the present invention is not limited to this, and is included in the target normal pixel set, for example.
  • the difference between the pair of normal pixels N1 may be calculated. In this case, since it is not necessary to obtain the average of the pixel values, the image output process can be expected to be speeded up.
  • the pixel group of interest 262 is set by the image region specifying process shown in FIG. 17 is exemplified, but the present invention is not limited to this, and the pixel of interest group 262A shown in FIG. 29 and the attention shown in FIG.
  • the pixel group 262B or the target pixel group 262C illustrated in FIG. 31 may be set.
  • the target pixel group 262A shown in FIG. 29 is defined by the target pixel group defining frame 263A.
  • the target pixel group defining frame 263A is a rectangular frame divided by 4 ⁇ 8 divided areas, and the first pixel L1 corresponding to the first pixel set and the divided areas at the upper right corner and the upper left corner in the front view in the figure, The second pixel R1 is located, and the normal pixel N1 is located in the remaining divided areas.
  • the target pixel group 262A shown in FIG. 29 is set in the image region specifying process, as the target phase difference pixel, for example, the first pixel L1 in the upper left corner of the front view of the target pixel group 262A and the upper right corner of the front view in the figure are used.
  • the second pixel R1 is employed. Further, attention is focused on the second pixel R1 adjacent to the first pixel L1 at the upper left corner in the front view in the drawing and the first pixel L1 adjacent to the second pixel R1 at the upper left corner in the drawing in the drawing. You may employ
  • the target phase difference pixels are limited to the first pixel L1 at the upper left corner in the front view and the second pixel R1 at the upper right corner in the front view in the drawing of the target pixel group 262A. Instead, any combination is possible as long as it is a pair of the first pixel L1 and the second pixel R1.
  • the target pixel group 262B shown in FIG. 30 is defined by the target pixel group defining frame 263B.
  • the target pixel group defining frame 263B is a rectangular frame partitioned by a 5 ⁇ 5 divided region, and the first pixel L1 is located in the divided region at the lower left corner in the front view in the drawing, and the division at the upper left corner in the front view in the drawing.
  • the second pixel R1 is located in the region, and the normal pixel N1 is located in the remaining divided regions.
  • the target phase difference pixels for example, the second pixel R1 in the upper left corner of the front view of the target pixel group 262B and the lower left corner of the front view in the figure are used.
  • the first pixel L1 is employed.
  • the target normal pixel group is included in, for example, a pair of adjacent normal pixels N1 included in the row to which the second pixel R1 in the target pixel group 262B belongs or a row to which the first pixel L1 in the target pixel group 262B belongs.
  • a pair of adjacent normal pixels N1 is employed.
  • the target pixel group 262C shown in FIG. 31 is defined by the target pixel group defining frame 263C.
  • the target pixel group defining frame 263C is a rectangular frame divided by a 4 ⁇ 2 divided region, and the first pixel L1 is located in the divided region at the upper left corner in the front view in the drawing, and the division at the upper right corner in the front view in the drawing.
  • the second pixel R1 is located in the region, and the normal pixel N1 is located in the remaining divided regions.
  • the target phase difference pixel for example, the first pixel L1 in the upper left corner in the front view of the target pixel group 262C and the upper right corner in the front view in the figure.
  • the second pixel R1 is employed.
  • the target normal pixel group for example, a pair of normal pixels N1 adjacent to the first pixel L1 and the second pixel R1 in the target pixel group 262C are employed.
  • the image sensor 20 having the first to third pixel groups is exemplified.
  • the present invention is not limited to this, and the first pixel group and the second pixel group are not limited thereto. It may be an image sensor consisting only of the above.
  • the generation of the normal image is realized by performing an interpolation process between pixels of the same color in the first image and the second image.
  • the first image or the second image may be adopted as the normal image without performing the interpolation process.
  • the calculation of the difference d1 is realized by using, for example, a pixel value obtained by adding the pixel value of the first pixel L1 and the pixel value of the second pixel R1 instead of the pixel value of the normal pixel N1. .
  • a higher spatial frequency region can be detected than when the normal pixel N1 is used. Further, instead of the pixel value obtained by adding the pixel value of the first pixel L1 and the pixel value of the second pixel R1, the pixel value of the first pixel L1 or the pixel value of the second pixel R1 is used. Also good. In this case, a higher spatial frequency region can be detected.
  • the threshold values ⁇ 1 and ⁇ 2 are derived using the threshold value derivation table 260.
  • the present invention is not limited to this, and the threshold values ⁇ 1 and ⁇ 2 may be derived using arithmetic expressions.
  • the imaging apparatus 100A according to the second embodiment shown in FIGS. 1 to 3 is different from the imaging apparatus 100 described in the first embodiment in that the image processing unit 28 replaces the image area specifying process shown in FIG.
  • the image area specifying process shown in FIG. 32 differs from the image area specifying process shown in FIG. 17 in that steps 600 to 610 are provided instead of steps 506 to 518.
  • the specifying unit 28C sets the target normal pixel group included in the target row of the target pixel group 262 set in step 504, as shown in FIG. Is done.
  • the target normal pixel set according to the second embodiment includes the normal pixel N1 that has not yet been processed in steps 600 to 610 described later, and is included in the target row of the target pixel group 262 set in step 504. All the included normal pixels N1 are indicated.
  • the specifying unit 28C determines whether any output of the normal pixel N1 included in the target normal pixel set set in step 600 is saturated. In step 602, if any output of the normal pixel N1 included in the target normal pixel set set in step 600 is in a saturated state, the determination is affirmed and the process proceeds to step 536. In step 602, if any output of the normal pixel N1 included in the target normal pixel set set in step 600 is not saturated, the determination is negative and the process proceeds to step 604.
  • step 604 the specifying unit 28C calculates an average pixel value in the column direction for each normal pixel N1 included in the target normal pixel set set in step 600.
  • each of the four normal pixels N1 included in the target normal pixel set belongs to each column of the A column, the B column, the C column, and the D column.
  • a value is calculated. That is, in the target pixel group 262, the average pixel value of the normal pixel N1 belonging to the A column, the average pixel value of the normal pixel N1 belonging to the B column, the average pixel value of the normal pixel N1 belonging to the C column, and the normal pixel belonging to the D column An average pixel value of N1 is calculated.
  • step 606 a regression line of the average pixel value (average pixel value calculated in step 604) for each normal pixel N1 included in the target normal pixel set set in step 600 is generated by the specifying unit 28C. Thereafter, the process proceeds to step 608.
  • step 608 the threshold value ⁇ 5 corresponding to the currently set F value is derived by the specifying unit 28C, and then the process proceeds to step 610.
  • the threshold value ⁇ 5 is determined in advance for each F value in the same manner as the threshold value ⁇ 1 described in the first embodiment, and the correspondence relationship with the F value is tabulated.
  • step 610 the identifying unit 28C determines whether or not the slope s of the regression line generated in step 606 is equal to or greater than the threshold ⁇ 5 derived in step 608. In step 610, when the slope s is less than the threshold value ⁇ 5 derived in step 608, the determination is negative and the process proceeds to step 536. In step 610, when the slope s is equal to or larger than the threshold value ⁇ 1 derived in step 608, the determination is affirmed and the process proceeds to step 520.
  • the contrast value is the pixel value of the plurality of normal pixels N1 arranged between the first pixel L1 and the second pixel R1. It is determined based on the rate of change. Therefore, the imaging apparatus 100A according to the second embodiment can specify an image region that satisfies the first condition with higher accuracy than when the imaging apparatus 100A does not have this configuration.
  • the magnitude of the contrast changes in the average pixel value for a predetermined pixel (four pixels in the example shown in FIG. 33) in the column direction in each of the plurality of normal pixels N1. Determined based on rate. Therefore, the imaging apparatus 100A according to the second embodiment can specify an image region that satisfies the first condition with higher accuracy.
  • the imaging apparatus 100B according to the third embodiment shown in FIGS. 1 to 3 is different from the imaging apparatus 100 described in the first embodiment in that an imaging element 20A is provided instead of the imaging element 20.
  • the imaging element 20A includes a phase difference pixel row 270 and a normal pixel row 272 as illustrated in FIG.
  • the phase difference pixel row 270 includes the first pixel L and the second pixel R without including the normal pixel N
  • the normal pixel row 272 includes the normal pixel N without including the phase difference pixel.
  • the phase difference pixel rows 270 and the normal pixel rows 272 are alternately arranged in the column direction. In the phase difference pixel row 270, the first pixels L and the second pixels R are alternately arranged in the same row.
  • the imaging apparatus 100B according to the third embodiment shown in FIGS. 1 to 3 is different from the imaging apparatus 100 described in the first embodiment in that the image processing unit 28 replaces the image area specifying process shown in FIG. The difference is that the image region specifying process shown in 35 is performed.
  • the image area specifying process shown in FIG. 35 differs from the image area specifying process shown in FIG. 17 in that steps 700 to 710 are provided instead of steps 504 to 518.
  • the specifying unit 28C sets the target pixel group 262D shown in FIG. 34 as an example among all the pixels included in the processing target image, and then proceeds to step 702.
  • the target pixel group 262D refers to, for example, a pixel group that is not yet a target of subsequent processing among all the pixels included in the processing target image.
  • the target pixel group 262D is defined by a target pixel group defining frame 263D illustrated in FIG. 34 as an example.
  • the first pixel L1 is located in the divided region at the upper right corner in the front view in the drawing
  • the second pixel R1 is located in the divided region at the upper left corner in the front view in the drawing.
  • step 702 as shown in FIG. 34 as an example, the specifying unit 28C causes the target normal pixel group included in the target row of the target pixel group 262D set in step 700 (in the example shown in FIG. 34, the target pixel group 262D).
  • a pair of normal pixels N1) is set.
  • the noticeable normal pixel set refers to a pair of normal pixels N1 that have not yet been processed.
  • step 704 the specifying unit 28C determines whether any output of the normal pixel N1 included in the target normal pixel set set in step 702 is saturated. In step 704, when any output of the normal pixel N1 included in the target normal pixel set set in step 702 is saturated, the determination is affirmed and the process proceeds to step 536 shown in FIG. In step 704, if none of the outputs of the normal pixel N1 included in the target normal pixel set set in step 702 is in a saturated state, the determination is negative and the process proceeds to step 706.
  • step 706 the identifying unit 28C calculates a difference (for example, the absolute value of the difference) d2 between the pair of normal pixels N1 included in the target normal pixel set set in step 702, and then the process proceeds to step 708. To do.
  • a difference for example, the absolute value of the difference
  • step 708 the identifying unit 28C derives the threshold value ⁇ 1 corresponding to the currently set F value by using the threshold value derivation table 260 shown in FIG. 10 as an example, and then proceeds to step 710.
  • step 710 the identifying unit 28C determines whether or not the difference d2 calculated in step 706 is greater than or equal to the threshold ⁇ 1 derived in step 708. In step 710, if the difference d2 calculated in step 706 is less than the threshold value ⁇ 1 derived in step 708, the determination is negative and the routine proceeds to step 536 shown in FIG. In step 710, when the difference d2 calculated in step 706 is equal to or larger than the threshold value ⁇ 1 derived in step 708, the determination is affirmed and the process proceeds to step 520 shown in FIG.
  • the imaging device 100B according to the third embodiment can specify an image region having a higher spatial frequency as the specific image region than in the case where the configuration is not provided.
  • the image pickup device 20A including the phase difference pixel row 270 and the normal pixel row 272 is illustrated.
  • the present invention is not limited to this, and for example, the image pickup shown in FIGS. You may use the element 20B or the image pick-up element 20C shown in FIG.38 and FIG.39.
  • the image sensor 20B illustrated in FIGS. 36 and 37 includes a first pixel row 274, a second pixel row 276, and a third pixel row 278.
  • the first pixel row 274 and the second pixel row 276 are adjacent in the column direction, and a plurality of third pixel rows 278 are interposed in the column direction (two rows in the examples shown in FIGS. 36 and 37).
  • the first pixels L and the second pixels R are alternately arranged in the same row, and a plurality of normal pixels are interposed between the first pixels L and the second pixels R.
  • N two normal pixels N in the example shown in FIGS. 36 and 37
  • the first pixel L and the second pixel R are alternately arranged in the same row in the reverse arrangement of the first pixel row 274.
  • a plurality of normal pixels N are arranged between the two pixels R.
  • the first pixel L included in the first pixel row 274 and the second pixel R included in the second pixel row 276 are arranged in the same column and included in the first pixel row 274.
  • the first pixels L included in the second pixel R and the second pixel row 276 are arranged in the same column.
  • a plurality of normal pixels N are arranged adjacent to each other in the same row.
  • the target pixel group 262E illustrated in FIG. 36 as an example or the target pixel group 262F illustrated in FIG. 37 is set as an example.
  • a target pixel group 262E shown in FIG. 36 is defined by a target pixel group defining frame 263E.
  • the target pixel group defining frame 263E is a rectangular frame divided by 2 ⁇ 4 divided areas, and the first pixel L1 is located in each of the upper left corner and the lower right corner of the front view in the figure, and the front view in the figure.
  • the second pixel R1 is located in each of the upper right corner and the lower left corner, and the normal pixel N1 is located in the remaining divided regions.
  • the normal pixel group of interest for example, a pair of adjacent pixels between the first pixel L1 at the upper left corner in the front view of the target pixel group 262E and the second pixel R1 at the upper right corner in the front view in the drawing.
  • the normal pixel N1 may be adopted.
  • the target phase difference pixel for example, the first pixel L1 at the upper left corner in the front view of the target pixel group 262E and the second pixel R1 at the lower left corner in the front view in the drawing may be employed.
  • the present invention is not limited to this, and the second pixel R1 at the upper right corner in the front view in the drawing and the first pixel L1 at the lower right corner in the front view in the drawing may be adopted as the attention phase difference pixel.
  • the target pixel group 262F shown in FIG. 37 is defined by the target pixel group defining frame 263F.
  • the target pixel group defining frame 263F is a rectangular frame partitioned by a 2 ⁇ 3 divided region, and the first pixel L1 is located in the divided region at the upper left corner in the front view in the figure, and the division at the lower left corner in the front view in the figure.
  • the second pixel R1 is located in the region, and the normal pixel N1 is located in the remaining divided regions.
  • a pair of normal pixels N1 adjacent in the row direction to the first pixel L1 included in the target pixel group 262F may be employed as the target normal pixel set.
  • the attention phase difference pixel for example, the first pixel L1 and the second pixel R1 included in the attention pixel group 262F may be employed.
  • the spatial frequency of the first pixel L1 and the second pixel R1 arranged adjacent to each other in the row direction is higher than that in the case where the target phase difference pixel is adopted.
  • An image area can be specified.
  • the image sensor 20C illustrated in FIGS. 38 and 39 includes a first pixel row 280, a second pixel row 282, and a third pixel row 284.
  • the first pixel row 280 and the second pixel row 282 are adjacent in the column direction, and a plurality of third pixel rows 284 are interposed in the column direction (two rows in the example shown in FIGS. 38 and 39).
  • the first pixels L and the second pixels R are alternately arranged in the same row, and a plurality of normal pixels are provided between the first pixels L and the second pixels R.
  • N two normal pixels N in the example shown in FIGS. 38 and 39) are arranged.
  • the first pixel L and the second pixel R are alternately arranged in the same row in the reverse arrangement of the first pixel row 280.
  • a plurality of normal pixels N are arranged between the two pixels R.
  • the first pixel L included in the first pixel row 280 and the second pixel R included in the second pixel row 282 are arranged at a position shifted by one pixel in the row direction.
  • the second pixel R included in the first pixel row 280 and the first pixel L included in the second pixel row 282 are arranged at a position shifted by one pixel in the row direction.
  • a plurality of normal pixels N are arranged adjacent to each other in the same row.
  • the target pixel group 262G illustrated in FIG. 38 as an example or the target pixel group 262H illustrated in FIG. 39 is set as an example.
  • the target pixel group 262G shown in FIG. 38 is defined by the target pixel group defining frame 263G.
  • the target pixel group defining frame 263G is a rectangular frame divided by 2 ⁇ 5 divided regions, and the first pixel L1 of the first pixel row 280 is located in the divided region at the upper left corner in the front view in FIG.
  • the first pixel L1 of the second pixel row 280 is located in the divided region at the lower right corner in the middle front view.
  • the target normal pixel group for example, the first pixel L1 at the upper left corner of the target pixel group 262G in the drawing and the second pixel R1 present in the same row of the target pixel group 262G together with the first pixel L1.
  • a pair of normal pixels N1 adjacent to each other may be employed.
  • the target phase difference pixel for example, the first pixel L1 at the upper left corner of the target pixel group 262G in the drawing and the second pixel R1 (in the target pixel group 262G) adjacent to the first pixel L1 in the oblique direction.
  • the second pixel R1) of the included second pixel row 282 may be employed.
  • the present invention is not limited to this, and the first pixel L1 at the lower right corner in the front view in the drawing of the target pixel group 262G and the second pixel R1 (included in the target pixel group 262G) that is obliquely adjacent to the first pixel L1.
  • the second pixel R1) of the first pixel row 280 may be employed as the phase difference pixel.
  • the target pixel group 262H shown in FIG. 39 is defined by the target pixel group defining frame 263H.
  • the target pixel group defining frame 263H is a rectangular frame divided by 4 ⁇ 2 divided regions, and the first pixel L1 of the first pixel row 280 is located in the divided region at the upper left corner when viewed from the front in the drawing.
  • a pair of normal pixels N1 corresponding to a pair of normal pixels N included in one of the two third pixel rows 284 included in the target pixel group 262H is employed as the target normal pixel set. do it.
  • the target phase difference pixel for example, the first pixel L1 at the upper left corner in the front view in the drawing of the target pixel group 262G and the second pixel R1 (second included in the target pixel group 262H) diagonally adjacent to this pixel.
  • the second pixel R1) corresponding to the second pixel R in the pixel row 282 may be employed.
  • the spatial frequency is higher than in the case where the first pixel L1 and the second pixel R1 that are separated by a plurality of pixels in the row direction are employed as the phase difference pixel of interest.
  • the image area can be specified.
  • each of the target pixel group 262E illustrated in FIG. 36 and the target pixel group 262G illustrated in FIG. 38 includes a plurality of first pixels L1 and a plurality of second pixels R1.
  • the combination of the first pixel L1 and the second pixel R1 employed as the target phase difference pixel may be any combination.
  • the imaging device 100 (100A, 100B) is illustrated.
  • examples of the mobile terminal device that is a modification of the imaging device 100 (100A, 100B) include a mobile phone and a smartphone having a camera function. It is done.
  • PDA Personal Digital Assistants
  • a portable game machine etc. are mentioned.
  • a smartphone will be described as an example, and will be described in detail with reference to the drawings.
  • FIG. 40 is a perspective view showing an example of the appearance of the smartphone 500.
  • a smartphone 500 illustrated in FIG. 40 includes a flat housing 502, and a display input in which a display panel 521 as a display unit and an operation panel 522 as an input unit are integrated on one surface of the housing 502. Part 520.
  • the housing 502 includes a speaker 531, a microphone 532, an operation unit 540, and a camera unit 541.
  • the configuration of the housing 502 is not limited thereto, and for example, a configuration in which the display unit and the input unit are independent may be employed, or a configuration having a folding structure or a slide structure may be employed.
  • FIG. 41 is a block diagram showing an example of the configuration of the smartphone 500 shown in FIG.
  • the main components of the smartphone 500 include a wireless communication unit 510, a display input unit 520, a communication unit 530, an operation unit 540, a camera unit 541, a storage unit 550, and an external input / output. Part 560.
  • the smartphone 500 includes a GPS (Global Positioning System) receiving unit 570, a motion sensor unit 580, a power supply unit 590, and a main control unit 501.
  • GPS Global Positioning System
  • a wireless communication function for performing mobile wireless communication via the base station device BS and the mobile communication network NW is provided as a main function of the smartphone 500.
  • the wireless communication unit 510 performs wireless communication with the base station apparatus BS accommodated in the mobile communication network NW according to an instruction from the main control unit 501. Using this wireless communication, transmission and reception of various file data such as audio data and image data, e-mail data, and reception of Web data and streaming data are performed.
  • the display input unit 520 is a so-called touch panel, and includes a display panel 521 and an operation panel 522. For this reason, the display input unit 520 displays images (still images and moving images), character information, and the like visually by controlling the main control unit 501, and visually transmits information to the user. Is detected. Note that when viewing the generated 3D, the display panel 521 is preferably a 3D display panel.
  • the display panel 521 uses an LCD, OELD (Organic Electro-Luminescence Display), or the like as a display device.
  • the operation panel 522 is a device that is placed so that an image displayed on the display surface of the display panel 521 is visible and detects one or a plurality of coordinates operated by a user's finger or stylus. When such a device is operated by a user's finger or stylus, a detection signal generated due to the operation is output to the main control unit 501. Next, the main control unit 501 detects an operation position (coordinates) on the display panel 521 based on the received detection signal.
  • the display panel 521 and the operation panel 522 of the smartphone 500 integrally form the display input unit 520, but the operation panel 522 is disposed so as to completely cover the display panel 521. ing.
  • the operation panel 522 may have a function of detecting a user operation even in an area outside the display panel 521.
  • the operation panel 522 includes a detection area (hereinafter referred to as a display area) for an overlapping portion that overlaps the display panel 521 and a detection area (hereinafter, a non-display area) for an outer edge portion that does not overlap the other display panel 521. May be included).
  • the operation panel 522 may include two sensitive regions of the outer edge portion and the other inner portion. Further, the width of the outer edge portion is appropriately designed according to the size of the housing 502 and the like.
  • examples of the position detection method employed in the operation panel 522 include a matrix switch method, a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method. You can also
  • the communication unit 530 includes a speaker 531 and a microphone 532.
  • the communication unit 530 converts the user's voice input through the microphone 532 into voice data that can be processed by the main control unit 501, and outputs the voice data to the main control unit 501. Further, the communication unit 530 decodes the audio data received by the wireless communication unit 510 or the external input / output unit 560 and outputs it from the speaker 531.
  • the speaker 531 can be mounted on the same surface as the display input unit 520 and the microphone 532 can be mounted on the side surface of the housing 502.
  • the operation unit 540 is a hardware key using a key switch or the like, and receives an instruction from the user.
  • the operation unit 540 is mounted on the side surface of the housing 502 of the smartphone 500 and is turned on when pressed with a finger or the like, and is turned off by a restoring force such as a spring when the finger is released. It is a push button type switch.
  • the storage unit 550 stores the control program and control data of the main control unit 501, application software, address data that associates the name and telephone number of the communication partner, and transmitted / received e-mail data.
  • the storage unit 550 stores Web data downloaded by Web browsing and downloaded content data.
  • the storage unit 550 temporarily stores streaming data and the like.
  • the storage unit 550 includes an external storage unit 552 having an internal storage unit 551 built in the smartphone and a removable external memory slot.
  • Each of the internal storage unit 551 and the external storage unit 552 constituting the storage unit 550 is realized using a storage medium such as a flash memory type (hard memory type) or a hard disk type (hard disk type).
  • multimedia card micro type multimedia card micro type
  • card type memory for example, MicroSD (registered trademark) memory
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the external input / output unit 560 serves as an interface with all external devices connected to the smartphone 500, and is used to connect directly or indirectly to other external devices through communication or the like or a network. is there. Examples of communication with other external devices include universal serial bus (USB), IEEE 1394, and the like. Examples of the network include the Internet, wireless LAN, Bluetooth (Bluetooth (registered trademark)), RFID (Radio Frequency Identification), and infrared communication (Infrared Data Association: IrDA (registered trademark)). Other examples of the network include UWB (Ultra Wideband (registered trademark)) and ZigBee (registered trademark).
  • Examples of the external device connected to the smartphone 500 include a wired / wireless headset, wired / wireless external charger, wired / wireless data port, and a memory card connected via a card socket.
  • Other examples of external devices include SIM (Subscriber Identity Module Card) / UIM (User Identity Module Card) cards, and external audio / video devices connected via audio / video I / O (Input / Output) terminals. Can be mentioned.
  • an external audio / video device that is wirelessly connected can be used.
  • the external input / output unit may transmit data received from such an external device to each component inside the smartphone 500, or may allow data inside the smartphone 500 to be transmitted to the external device. it can.
  • the GPS receiving unit 570 receives GPS signals transmitted from the GPS satellites ST1 to STn in accordance with instructions from the main control unit 501, performs positioning calculation processing based on the received plurality of GPS signals, and calculates the latitude of the smartphone 500 Detect the position consisting of longitude and altitude.
  • the GPS reception unit 570 can acquire position information from the wireless communication unit 510 or the external input / output unit 560 (for example, a wireless LAN), the GPS reception unit 570 can also detect the position using the position information.
  • the motion sensor unit 580 includes a triaxial acceleration sensor, for example, and detects the physical movement of the smartphone 500 in accordance with an instruction from the main control unit 501. By detecting the physical movement of the smartphone 500, the moving direction and acceleration of the smartphone 500 are detected. This detection result is output to the main control unit 501.
  • the power supply unit 590 supplies power stored in a battery (not shown) to each unit of the smartphone 500 in accordance with an instruction from the main control unit 501.
  • the main control unit 501 includes a microprocessor, operates according to a control program and control data stored in the storage unit 550, and controls each unit of the smartphone 500 in an integrated manner. Further, the main control unit 501 includes a mobile communication control function for controlling each unit of the communication system and an application processing function in order to perform voice communication and data communication through the wireless communication unit 510.
  • the application processing function is realized by the main control unit 501 operating according to the application software stored in the storage unit 550.
  • Application processing functions include, for example, an infrared communication function that controls the external input / output unit 560 to perform data communication with the opposite device, an e-mail function that transmits and receives e-mails, and a web browsing function that browses web pages. .
  • the main control unit 501 has an image processing function such as displaying video on the display input unit 520 based on image data (still image data or moving image data) such as received data or downloaded streaming data.
  • the image processing function is a function in which the main control unit 501 decodes the image data, performs image processing on the decoding result, and displays an image on the display input unit 520.
  • the main control unit 501 executes display control for the display panel 521 and operation detection control for detecting a user operation through the operation unit 540 and the operation panel 522.
  • the main control unit 501 displays an icon for starting application software, a soft key such as a scroll bar, or a window for creating an e-mail.
  • a soft key such as a scroll bar
  • the scroll bar refers to a soft key for accepting an instruction to move a display portion of an image such as a large image that cannot be accommodated in the display area of the display panel 521.
  • the main control unit 501 detects a user operation through the operation unit 540, or accepts an operation on the icon or an input of a character string in the input field of the window through the operation panel 522. Or, by executing the operation detection control, the main control unit 501 accepts a display image scroll request through a scroll bar.
  • the main control unit 501 causes the operation position with respect to the operation panel 522 to overlap with the display panel 521 (display area) or other outer edge part (non-display area) that does not overlap with the display panel 21.
  • a touch panel control function for controlling the sensitive area of the operation panel 522 and the display position of the soft key is provided.
  • the main control unit 501 can also detect a gesture operation on the operation panel 522 and execute a preset function according to the detected gesture operation.
  • Gesture operation is not a conventional simple touch operation, but an operation that draws a trajectory with a finger or the like, designates a plurality of positions at the same time, or combines these to draw a trajectory for at least one of a plurality of positions. means.
  • the camera unit 541 is a digital camera that captures an image using an image sensor such as a CMOS or a CCD, and has the same function as the image capturing apparatus 100 shown in FIG.
  • the camera unit 541 can switch between a manual focus mode and an autofocus mode.
  • the photographing lens of the camera unit 541 can be focused by operating a focus icon button or the like displayed on the operation unit 540 or the display input unit 520.
  • a live view image obtained by combining the split images is displayed on the display panel 521 so that the in-focus state during manual focus can be confirmed.
  • the camera unit 541 converts the image data obtained by imaging into compressed image data such as JPEG (Joint Photographic coding Experts Group) under the control of the main control unit 501.
  • the converted image data can be recorded in the storage unit 550 or output through the input / output unit 560 or the wireless communication unit 510.
  • the camera unit 541 is mounted on the same surface as the display input unit 520, but the mounting position of the camera unit 541 is not limited to this, and the camera unit 541 may be mounted on the back surface of the display input unit 520.
  • a plurality of camera units 541 may be mounted. Note that when a plurality of camera units 541 are mounted, the camera unit 541 used for imaging may be switched and imaged alone, or a plurality of camera units 541 may be used simultaneously for imaging. it can.
  • the camera unit 541 can be used for various functions of the smartphone 500.
  • an image acquired by the camera unit 541 can be displayed on the display panel 521, or the image of the camera unit 541 can be used as one of operation inputs of the operation panel 522.
  • the GPS receiving unit 570 detects the position, the position can also be detected with reference to an image from the camera unit 541.
  • the optical axis direction of the camera unit 541 of the smartphone 500 is determined without using the triaxial acceleration sensor or in combination with the triaxial acceleration sensor. It is also possible to determine the current usage environment.
  • the image from the camera unit 541 can be used in the application software.
  • various information can be added to still image or moving image data and recorded in the storage unit 550 or output through the input / output unit 560 or the wireless communication unit 510.
  • the “various information” herein include, for example, position information acquired by the GPS receiving unit 570 and image information of the still image or moving image, audio information acquired by the microphone 532 (sound text conversion by the main control unit or the like). May be text information).
  • posture information acquired by the motion sensor unit 580 may be used.
  • the split image divided into two in the vertical direction is illustrated, but the present invention is not limited to this, and an image divided into a plurality of parts in the horizontal direction or the diagonal direction may be applied as the split image.
  • the split image 66a shown in FIG. 42 is divided into odd lines and even lines by a plurality of dividing lines 63a parallel to the row direction.
  • a line-like (eg, strip-like) phase difference image 66La generated based on the output signal outputted from the first pixel group is displayed on an odd line (even an even line is acceptable).
  • a line-shaped (eg, strip-shaped) phase difference image 66Ra generated based on the output signal output from the second pixel group is displayed on even lines.
  • the split image 66b shown in FIG. 43 is divided into two by a dividing line 63b (for example, a diagonal line of the split image 66b) having an inclination angle in the row direction.
  • the phase difference image 66Lb generated based on the output signal output from the first pixel group is displayed in one area.
  • the phase difference image 66Rb generated based on the output signal output from the second pixel group is displayed in the other region.
  • the split image 66c shown in FIGS. 44A and 44B is divided by grid-like dividing lines 63c parallel to the row direction and the column direction, respectively.
  • the phase difference image 66Lc generated based on the output signal output from the first pixel group is displayed in a checkered pattern (checker pattern).
  • the phase difference image 66Rc generated based on the output signal output from the second pixel group is displayed in a checkered pattern.
  • another in-focus confirmation image may be generated from the two phase difference images, and the in-focus confirmation image may be displayed.
  • two phase difference images may be superimposed and displayed as a composite image. If the image is out of focus, the image may be displayed as a double image, and the image may be clearly displayed when the image is in focus.
  • the image sensor 20 (20A) having the first to third pixel groups has been exemplified.
  • the present invention is not limited to this, and the first pixel group and the second pixel group are not limited thereto. It may be an image sensor consisting only of a pixel group.
  • a digital camera having this type of image sensor generates a three-dimensional image (3D image) based on the first image output from the first pixel group and the second image output from the second pixel group.
  • 2D images (2D images) can also be generated.
  • the generation of the two-dimensional image is realized, for example, by performing an interpolation process between pixels of the same color in the first image and the second image.
  • the display control unit 36 may be configured to suppress continuous display as a moving image of a normal image on the display device and to perform control for continuously displaying a split image as a moving image on the display device.
  • “suppressing the display of a normal image” refers to not displaying a normal image on a display device, for example.
  • split image refers to an image output from a phase difference image group (for example, a first image and a second image output from a first pixel group when a specific imaging device is used). A split image based on the second image output from the pixel group can be exemplified.
  • Examples of “when using a specific image sensor” include a case where an image sensor consisting of only a phase difference pixel group (for example, a first pixel group and a second pixel group) is used. In addition to this, a case where an image sensor in which phase difference pixels (for example, a first pixel group and a second pixel group) are arranged at a predetermined ratio with respect to a normal pixel can be exemplified.
  • various conditions are conceivable as conditions for suppressing the normal image display and displaying the split image.
  • the display control unit 36 performs control to display the split image without displaying the normal image on the display device. It may be. Further, for example, when the photographer looks into the hybrid viewfinder, the display control unit 36 may perform control to display the split image without displaying the normal image on the display device. Further, for example, when the release button 211 is pressed halfway, the display control unit 36 may perform control to display the split image without displaying the normal image on the display device.
  • the display control unit 36 may perform control to display the split image without displaying the normal image on the display device.
  • the display control unit 36 may perform control to display the split image without displaying the normal image on the display device.
  • the display control unit 36 suppresses the display of the normal image.
  • the present invention is not limited to this.
  • the display control unit 36 displays the split image of the full screen over the normal image. You may control.
  • the imaging device 100 (100A, 100B) described in each of the above embodiments may have a function of confirming the depth of field (depth of field confirmation function).
  • the imaging apparatus 100 has a depth-of-field confirmation key.
  • the depth-of-field confirmation key may be a hard key or a soft key.
  • a momentary operation type switch (non-holding type switch) is preferably applied.
  • the momentary operation type switch mentioned here refers to a switch that maintains a specific operation state in the imaging apparatus 100 only while being pushed into a predetermined position, for example.
  • the aperture value is changed.
  • the aperture value continues to change until reaching the limit value.
  • the aperture value changes, and thus there may be a case where the phase difference necessary for obtaining the split image cannot be obtained.
  • the split image may be changed to the normal live view display while the split image is being pressed.
  • the CPU 12 may switch the screen so that the split image is displayed again when the pressed state is released.
  • a momentary operation type switch is applied as an example of the depth of field confirmation key.
  • the present invention is not limited to this, and an alternative operation type switch (holding type switch) may be applied.
  • each process included in the image output process and the image area specifying process described in each of the above embodiments may be realized by a software configuration using a computer by executing a program, or other hardware The configuration may be realized. Further, it may be realized by a combination of a hardware configuration and a software configuration.
  • the program may be stored in a predetermined storage area (for example, the memory 26) in advance. It is not always necessary to store in the memory 26 from the beginning.
  • a program is first stored in an arbitrary “portable storage medium” such as an SSD (Solid State Drive), a CD-ROM, a DVD disk, a magneto-optical disk, or an IC card that is connected to a computer. May be. Then, the computer may acquire the program from these portable storage media and execute it.
  • each program may be stored in another computer or server device connected to the computer via the Internet, LAN (Local Area Network), etc., and the computer may acquire and execute the program from these. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Viewfinders (AREA)
  • Indication In Cameras, And Counting Of Exposures (AREA)

Abstract

 合焦状態にあるか否かを視覚的に認識し易くすることができる画像処理装置、撮像装置、画像処理方法及び画像処理プログラムを提供する。 生成部28Bは、撮像素子から出力された画像信号に基づく第1の表示用画像と第1及び第2の画像信号に基づく第2の表示用画像とを生成する。特定部28Cは、生成部28Bにより生成された第2の表示用画像のうち、第1条件及び第2条件の双方の条件を満足する画像領域を特定する。そして、第2の表示用画像のうち、特定部28Cにより特定された画像領域が、他の領域と区別可能に表示される。ここで、第1条件とは、コントラストの大きさが第1所定値の一例以上であるとの条件を指し、第2条件とは、第1の画像と第2の画像との一致度が第2所定値以上であるとの条件を指す。

Description

画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
 本発明は、画像処理装置、撮像装置、画像処理方法及び画像処理プログラムに関する。
 デジタルカメラとして、位相差検出方式やコントラスト検出方式を用いたオートフォーカスの他に、使用者が手動でフォーカス調整を行うことができる、いわゆるマニュアルフォーカスモードを備えるものが広く知られている。
 マニュアルフォーカスモードを有するデジタルカメラとしては、被写体を確認しながらフォーカス調整ができるようにレフレックスミラーを設けて、目視による位相差を表示するスプリットマイクロプリズムスクリーンを用いた方法を採用したものが知られている。また、目視によるコントラストの確認を行う方法を採用したものも知られている。
 ところで、近年普及しているレフレックスミラーを省略したデジタルカメラでは、レフレックスミラーがないため位相差を表示しながら被写体像を確認する方法がなく、コントラスト検出方式に頼らざるを得なかった。しかし、この場合には、LCD(liquid crystal display:液晶ディスプレイ)等の表示装置の解像度以上のコントラストの表示ができず、一部拡大するなどして表示する方法を採らざるを得なかった。
 そこで、近年では、マニュアルフォーカスモード時にユーザ(例えば撮影者)が被写体に対してピントを合わせる作業を容易にするために、スプリットイメージをライブビュー画像(スルー画像ともいう)内に表示している。スプリットイメージとは、例えば表示領域が複数に分割された分割画像(例えば上下方向に分割された各画像)であって、ピントのずれに応じて視差発生方向(例えば左右方向)にずれ、ピントが合った状態だと視差発生方向のずれがなくなる分割画像を指す。ユーザは、スプリットイメージ(例えば上下方向に分割された各画像)のずれがなくなるように、マニュアルフォーカスリング(以下、「フォーカスリング」という)を操作してピントを合わせる。
 ここで、特開2009-147665号公報に記載の撮像装置を用い、スプリットイメージの原理を説明する。撮像光学系からの光束のうち、瞳分割部によって分割された光束により形成された第1の被写体像及び第2の被写体像をそれぞれ光電変換した第1の画像及び第2の画像を生成する。そして、これらの第1及び第2の画像を用いてスプリットイメージを生成し、かつ、瞳分割部によって分割されない光束により形成された第3の被写体像を光電変換して第3の画像を生成する。そして、第3の画像を表示部に表示し、かつ、第3の画像内に、生成したスプリットイメージを表示することで、画像を構成している。また、第3の画像から抽出した色情報をスプリットイメージに付加することができる。このように第3の画像から抽出した色情報をスプリットイメージに付加することにより、スプリットイメージの視認性を良化することができる。
 加えて、合焦状態に達したことの判断を補助する技術としては、コントラストの大きさが所定値以上の領域を強調して表示するフォーカス・ピーキングが知られている(例えば特開2001-309210号公報参照)。
 しかし、スプリットイメージを利用した合焦判断方法では、像ずれがなくなったか否かを目視で判断するが、連続的に動く像ずれを視認しながら行う必要があり、ピント合わせに時間を要する。これに対し、フォーカス・ピーキングを利用した合焦判断方法では、高コントラスト領域か否か(所定コントラスト以上の領域であるか否か)の判断は、スプリットイメージを利用した合焦判断方法と比べ、短時間で行うことができる。しかし、高コントラスト領域がすべて強調表示されるため、ユーザは合焦状態にない高コントラスト領域を合焦状態にあると誤判断してしまう虞がある。
 本発明は、このような実情を鑑みて提案されたものであり、合焦状態にあるか否かを視覚的に認識し易くすることができる画像処理装置、撮像装置、画像処理方法及び画像処理プログラムを提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様に係る画像処理装置は、撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子と、撮像素子から出力された画像信号に基づく第1の表示用画像と第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成する生成部と、第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び第1の画像信号と第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定する特定部と、画像を表示する表示部と、表示部に対して、第1の表示用画像を表示させ、且つ、第1の表示用画像の表示領域内に第2の表示用画像を表示させ、且つ、第2の表示用画像のうち、特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行う表示制御部と、を含む。これにより、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 本発明の第2の態様に係る画像処理装置は、撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子と、撮像素子から出力された画像信号に基づく第1の表示用画像と第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成する生成部と、第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び第1の画像信号と第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定する特定部と、画像を表示する表示部と、表示部に対して、第2の表示用画像を表示させ、且つ、第2の表示用画像のうち、特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行う表示制御部と、を含む。これにより、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 本発明の第3の態様は、本発明の第1の態様又は第2の態様において、撮像素子が、撮影レンズを透過した被写体像が瞳分割されずに結像されて第3の画像信号を出力する第3の画素群を更に有し、生成部が、第3の画像信号に基づいて第1の表示用画像を生成するものとしてもよい。これにより、本構成を有しない場合と比べ、簡素な構成で、第1の表示用画像の画質を向上させることができる。
 本発明の第4の態様は、本発明の第3の態様において、コントラストの大きさが、第3の画像信号に基づいて定まるものとしてもよい。これにより、本構成を有しない場合と比べ、第1条件を満足する画素間を高精度に特定することができる。
 本発明の第5の態様は、本発明の第4の態様において、第1の画素群が、瞳分割方向と瞳分割方向に対する交差方向とに配置された複数の第1の画素を有し、第2の画素群が、瞳分割方向及び交差方向のうち少なくとも瞳分割方向で複数の第1の画素の各々と交互に各々配置された複数の第2の画素を有し、第3の画素群が、瞳分割方向及び交差方向のうち少なくとも瞳分割方向で第1の画素と第2の画素との間に配置された第3の画素を有し、コントラストの大きさが、第3の画素の信号レベルに基づいて定まるものとしてもよい。これにより、本構成を有しない場合と比べ、第1の画素と第2の画素との間における第1条件を満足する画素間を高精度に特定することができる。
 本発明の第6の態様は、本発明の第5の態様において、コントラストの大きさが、第3の画素の交差方向の所定画素分の平均信号レベルに基づいて定まるものとしてもよい。これにより、第1の画素と第2の画素との間における第1条件を満足する画素間をより一層高精度に特定することができる。
 本発明の第7の態様は、本発明の第4の態様において、第1の画素群が、瞳分割方向と瞳分割方向に対する交差方向とに配置された複数の第1の画素を有し、第2の画素群が、瞳分割方向及び交差方向のうち少なくとも瞳分割方向で複数の第1の画素の各々と交互に各々配置された複数の第2の画素を有し、第3の画素群が、瞳分割方向及び交差方向のうち少なくとも瞳分割方向で第1の画素と第2の画素との間に配置された複数の第3の画素を有し、コントラストの大きさが、瞳分割方向で第1の画素と第2の画素との間に配置された複数の第3の画素の信号レベルの変化率に基づいて定まるものとしてもよい。これにより、本構成を有しない場合と比べ、第1の画素と第2の画素との間における第1条件を満足する画素間を高精度に特定することができる。
 本発明の第8の態様は、本発明の第7の態様において、コントラストの大きさが、複数の第3の画素の各々における交差方向の所定画素分の平均信号レベルの変化率に基づいて定まるものとしてもよい。これにより、第1の画素と第2の画素との間における第1条件を満足する画素間をより一層高精度に特定することができる。
 本発明の第9の態様は、本発明の第4の態様から第8の態様の何れか1つにおいて、コントラストの大きさが、第3の画像信号のうち、第3の画素群における信号レベルが非飽和状態の画素による第3の画像信号に基づいて定まるものとしてもよい。これにより、本構成を有しない場合と比べ、第3の画素群に信号レベルが飽和状態の画素が含まれる場合に起こり得る画像領域の誤特定を抑制することができる。
 本発明の第10の態様は、本発明の第1の態様から第4の態様の何れか1つにおいて、第1の画素群が、瞳分割方向と瞳分割方向に対する交差方向とに配置された複数の第1の画素を有し、第2の画素群が、瞳分割方向及び交差方向のうち少なくとも瞳分割方向で複数の第1の画素の各々と交互に隣接して各々配置された複数の第2の画素を有するものとしてもよい。これにより、本構成を有しない場合と比べ、第1及び第2条件の双方の条件を満足する画素間に対応する画像領域として、より高い空間周波数の画像領域を特定することができる。
 本発明の第11の態様は、本発明の第1の態様から第10の態様の何れか1つにおいて、第1の画素群における瞳分割方向の画素の第1の領域を介して入射される光及び第2の画素群における瞳分割方向の画素の第2の領域を介して入射される光に基づく減光特性に応じた補正係数を求め、求めた補正係数に基づいて第1及び第2の画像信号を補正する補正部を更に含み、第2条件が、補正部により各々補正された第1の画像信号と第2の画像信号との一致度が第2所定値以上であるとの条件であるものとしてもよい。これにより、本構成を有しない場合と比べ、第1及び第2の画素群の各々における瞳分割方向の画素の第1及び第2の領域を介して入射される光に基づく減光特性に起因する画像領域の誤特定を抑制することができる。
 本発明の第12の態様は、本発明の第1の態様から第11の態様の何れか1つにおいて、特定部が、第1及び第2の画像信号の各々により特定される瞳分割方向で信号レベルが極大値を持つ画素間の距離に基づいて、第2条件を満足する画像領域を特定するものとしてもよい。これにより、本構成を有しない場合と比べ、第2条件を満足する画像領域を高精度に特定することができる。
 本発明の第13の態様は、本発明の第12の態様において、特定部が、第1及び第2の画像信号の各々の微分値に基づいて距離を推定し、推定した距離に基づいて、第2条件を満足する画像領域を特定するものとしてもよい。これにより、第2条件を満足する画像領域をより一層高精度に特定することができる。
 本発明の第14の態様は、本発明の第1の態様から第13の態様の何れか1つにおいて、第1所定値及び第2所定値の少なくとも一方が、絞り値に基づいて定まるものとしてもよい。これにより、本構成を有しない場合と比べ、第1所定値及び第2所定値の少なくとも一方を高精度に求めることができる。
 上記目的を達成するために、本発明の第15の態様に係る撮像装置は、本発明の第1の態様から第14の態様の何れか1つの画像処理装置と、第1及び第2の画素群を有する撮像素子と、撮像素子から出力された画像信号に基づいて生成された画像を記憶する記憶部と、を含む。これにより、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 上記目的を達成するために、本発明の第16の態様に係る画像処理方法は、撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子から出力された画像信号に基づく第1の表示用画像と第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成し、第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び第1の画像信号と第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定し、画像を表示する表示部に対して、第1の表示用画像を表示させ、且つ、第1の表示用画像の表示領域内に第2の表示用画像を表示させ、且つ、第2の表示用画像のうち、特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行うことを含む。これにより、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 上記目的を達成するために、本発明の第17の態様に係る画像処理方法は、撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子から出力された画像信号に基づく第1の表示用画像と第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成し、第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び第1の画像信号と第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定し、画像を表示する表示部に対して、第2の表示用画像を表示させ、且つ、第2の表示用画像のうち、特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行うことを含む。これにより、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 上記目的を達成するために、本発明の第18の態様に係る画像処理プログラムは、本発明の第1の態様から第14の態様の何れか1つの画像処理装置における生成部、特定部及び表示制御部としてコンピュータを機能させるためのものである。これにより、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 本発明によれば、合焦状態にあるか否かを視覚的に認識し易くすることができる、という効果が得られる。
第1~第3実施形態に係るレンズ交換式カメラである撮像装置の外観の一例を示す斜視図である。 図1に示す撮像装置の背面側を示す背面図である。 図1に示す撮像装置の電気系の構成の一例を示すブロック図である。 第1実施形態に係る撮像装置に含まれる撮像素子に設けられているカラーフィルタの配置及びカラーフィルタに対する位相差画素の配置の一例を示す概略配置図である。 第1実施形態に係る撮像素子に含まれる第1の画素、第2の画素及び通常画素の配置の一例を示す概略配置図である。 図5に示す撮像素子に含まれる第1の画素及び第2の画素の各々の構成の一例を示す模式図である。 図1に示す撮像装置に含まれる撮影レンズを通過した光の経路、平面視の結像イメージ及び結像領域における左領域通過光及び右領域通過光による光強度分布の一例を示す模式図である。 図1に示す撮像装置に含まれる画像処理部の要部構成の一例を示す機能ブロック図である。 合焦状態(ジャスピン)時の被写体と撮影レンズと撮像素子との位置関係の一例を示す模式図である。 非合焦状態時の被写体と撮影レンズと撮像素子との位置関係の一例を示す模式図である。 図8に示す画像処理部に含まれる特定部によって用いられる閾値導出テーブルの構成の一例を示す模式図である。 図8に示す画像処理部に含まれる生成部の要部構成の一例を示す機能ブロック図である。 図1に示す撮像装置の要部構成の一例を示す機能ブロック図である。 図1に示す撮像装置に含まれる表示装置におけるスプリットイメージの表示領域及び通常画像の表示領域の一例を示す模式図である。 図1に示す撮像装置に含まれる表示装置に表示された通常画像及びスプリットイメージを含むライブビュー画像(合焦状態時)の一例を示す画面図である。 図1に示す撮像装置に含まれる表示装置に表示された通常画像及びスプリットイメージを含むライブビュー画像(非合焦状態時)の一例を示す画面図である。 第1実施形態に係る画像出力処理の流れの一例を示すフローチャートである。 第1実施形態に係る画像領域特定処理の流れの一例を示すフローチャートである。 図17に示すフローチャートの続きである。 左領域通過光及び右領域通過光による減光特性の原理(第1及び第2の画素の各々に入射する光束の経路の一例)の説明に供する説明図である。 瞳分割方向の線形的な減光特性が左眼画像及び右眼画像の各々における瞳分割方向に相当する方向の各画素の出力に与える影響の一例を示すグラフである。 補正前後の左眼画像及び右眼画像が受ける減光特性の影響の一例を示す概念図である。 第1実施形態に係る画像出力処理によって生成された処理対象画像に含まれる画素(第1の画素、第2の画素及び通常画素)の配置の一例を示す概略配置図である。 第1実施形態に係る画像領域特定処理によって設定された注目画素群の構成の一例を示す模式図である。 第1実施形態に係る画像領域特定処理によって生成された第1及び第2画素値分布(非合焦状態時)の一例を示すグラフである。 第1実施形態に係る画像領域特定処理によって生成された第1及び第2画素値分布(合焦状態時)の一例を示すグラフである。 第1実施形態に係る画像出力処理によって出力された処理対象画像が表示装置により表示された場合の画面例を示す画面図である。 第1実施形態に係る画像出力処理によって出力された処理対象画像のうちのスプリットイメージが表示装置により表示された場合の画面例を示す画面図である。 第1実施形態に係る画像領域特定処理の流れの変形例を示すフローチャートである。 第1実施形態に係る画像領域特定処理によって設定される注目画素群の第1変形例を示す模式図である。 第1実施形態に係る画像領域特定処理によって設定される注目画素群の第2変形例を示す模式図である。 第1実施形態に係る画像領域特定処理によって設定される注目画素群の第3変形例を示す模式図である。 第2実施形態に係る画像領域特定処理の流れの一例を示すフローチャートである。 第2実施形態に係る画像領域特定処理によって設定される注目画素群の構成の一例を示す模式図である。 第3実施形態に係る撮像装置に含まれる撮像素子及び処理対象画像の画素配置の一例を示す模式図である。 第3実施形態に係る画像領域特定処理の流れの一例を示すフローチャートである。 第3実施形態に係る撮像素子及び画像領域特定処理によって設定される注目画素群の第1変形例を示す模式図である。 第3実施形態に係る撮像素子及び画像領域特定処理によって設定される注目画素群の第2変形例を示す模式図である。 第3実施形態に係る撮像素子及び画像領域特定処理によって設定される注目画素群の第3変形例を示す模式図である。 第3実施形態に係る撮像素子及び画像領域特定処理によって設定される注目画素群の第4変形例を示す模式図である。 第4実施形態に係るスマートフォンの外観の一例を示す斜視図である。 第4実施形態に係るスマートフォンの電気系の要部構成の一例を示すブロック図である。 第1~第4実施形態に係るスプリットイメージの変形例であって、第1の画像及び第2の画像を奇数ラインと偶数ラインとに分けて交互に並べられて形成されたスプリットイメージの一例を示す模式図である。 第1~第4実施形態に係るスプリットイメージの変形例であって、行方向に対して傾いた斜めの分割線により分割されているスプリットイメージの一例を示す模式図である 第1~第4実施形態に係るスプリットイメージの変形例であって、格子状の分割線で分割されたスプリットイメージの一例を示す模式図である。 第1~第4実施形態に係るスプリットイメージの変形例であって、市松模様に形成されたスプリットイメージの一例を示す模式図である。
 以下、添付図面に従って本発明に係る撮像装置の実施形態の一例について説明する。
 [第1実施形態]
 図1は、第1実施形態に係る撮像装置100の外観の一例を示す斜視図であり、図2は、図1に示す撮像装置100の背面図である。
 撮像装置100は、レンズ交換式カメラである。撮影装置100は、カメラ本体200と、カメラ本体200に交換可能に装着される交換レンズ300と、を含み、レフレックスミラーが省略されたデジタルカメラである。交換レンズ300は、手動操作により光軸方向に移動可能なフォーカスレンズ302を有する撮影レンズ16(図3参照)を含む。また、カメラ本体200には、ハイブリッドファインダー(登録商標)220が設けられている。ここで言うハイブリッドファインダー220とは、例えば光学ビューファインダー(以下、「OVF」という)及び電子ビューファインダー(以下、「EVF」という)が選択的に使用されるファインダーを指す。
 交換レンズ300は、カメラ本体200に対して交換可能に装着される。また、交換レンズ300の鏡筒には、マニュアルフォーカスモード時に使用されるフォーカスリング301が設けられている。フォーカスリング301の手動による回転操作に伴ってフォーカスレンズ302は、光軸方向に移動し、被写体距離に応じた合焦位置で後述の撮像素子20(図3参照)に被写体光が結像される。
 カメラ本体200の前面には、ハイブリッドファインダー220に含まれるOVFのファインダー窓241が設けられている。また、カメラ本体200の前面には、ファインダー切替えレバー(ファインダー切替え部)214が設けられている。ファインダー切替えレバー214を矢印SW方向に回動させると、OVFで視認可能な光学像とEVFで視認可能な電子像(ライブビュー画像)との間で切り換わるようになっている(後述)。なお、OVFの光軸L2は、交換レンズ300の光軸L1とは異なる光軸である。また、カメラ本体200の上面には、主としてレリーズボタン211及び撮影モードや再生モード等の設定用のダイヤル212が設けられている。
 撮影準備指示部及び撮影指示部としてのレリーズボタン211は、撮影準備指示状態と撮影指示状態との2段階の押圧操作が検出可能に構成されている。撮影準備指示状態とは、例えば待機位置から中間位置(半押し位置)まで押下される状態を指し、撮影指示状態とは、中間位置を超えた最終押下位置(全押し位置)まで押下される状態を指す。なお、以下では、「待機位置から半押し位置まで押下される状態」を「半押し状態」といい、「待機位置から全押し位置まで押下される状態」を「全押し状態」という。
 本第1実施形態に係る撮像装置100では、動作モードとして撮影モードと再生モードとがユーザの指示に応じて選択的に設定される。撮影モードでは、マニュアルフォーカスモードとオートフォーカスモードとがユーザの指示に応じて選択的に設定される。オートフォーカスモードでは、レリーズボタン211を半押し状態にすることにより撮影条件の調整が行われ、その後、引き続き全押し状態にすると露光(撮影)が行われる。つまり、レリーズボタン211を半押し状態にすることによりAE(Automatic Exposure)機能が働いて露出状態が設定された後、AF(Auto-Focus)機能が働いて合焦制御され、レリーズボタン211を全押し状態にすると撮影が行われる。
 図2に示すカメラ本体200の背面には、OVFのファインダー接眼部242、表示部213、十字キー222、MENU/OKキー224、BACK/DISPボタン225が設けられている。
 十字キー222は、1つ又は複数のメニューの選択、ズームやコマ送り等の各種の指令信号を出力するマルチファンクションのキーとして機能する。MENU/OKキー224は、表示部213の画面上に1つ又は複数のメニューを表示させる指令を行うためのメニューボタンとしての機能と、選択内容の確定及び実行などを指令するOKボタンとしての機能とを兼備した操作キーである。BACK/DISPボタン225は、選択項目など所望の対象の消去や指定内容の取消し、あるいは1つ前の操作状態に戻すときなどに使用される。
 表示部213は、例えばLCDにより実現され、撮影モード時に連続フレームで撮像されて得られた連続フレーム画像の一例であるライブビュー画像(スルー画像)の表示に用いられる。また、表示部213は、静止画撮影の指示が与えられた場合に単一フレームで撮像されて得られた単一フレーム画像の一例である静止画像の表示にも用いられる。更に、表示部213は、再生モード時の再生画像の表示やメニュー画面等の表示にも用いられる。
 図3は第1実施形態に係る撮像装置100の電気系の構成(内部構成)の一例を示すブロック図である。
 撮像装置100は、カメラ本体200に備えられたマウント256と、マウント256に対応する交換レンズ300側のマウント346と、を含む。交換レンズ300は、マウント256にマウント346が結合されることによりカメラ本体200に交換可能に装着される。
 交換レンズ300は、スライド機構303及びモータ304を含む。スライド機構303は、フォーカスリング301の操作が行われることでフォーカスレンズ302を光軸L1方向に移動させる。スライド機構303には光軸L1方向に対してスライド可能にフォーカスレンズ302が取り付けられている。また、スライド機構303にはモータ304が接続されており、スライド機構303は、モータ304の動力を受けてフォーカスレンズ302を光軸L1方向に沿ってスライドさせる。
 モータ304は、マウント256,346を介してカメラ本体200に接続されており、カメラ本体200からの命令に従って駆動が制御される。なお、本第1実施形態では、モータ304の一例として、ステッピングモータを適用している。従って、モータ304は、カメラ本体200からの命令によりパルス電力に同期して動作する。
 撮像装置100は、撮影した静止画像や動画像を記録するデジタルカメラであり、カメラ全体の動作は、CPU(central processing unit:中央処理装置)12によって制御されている。撮像装置100は、操作部14、インタフェース部24、メモリ26及びエンコーダ34を含む。また、撮像部100は、本発明に係る表示制御部の一例である表示制御部36A,36Bを含む。また、撮像部100は、接眼検出部37を含む。また、撮像装置100は、本発明に係る補正部、生成部及び特定部の一例である画像処理部28を含む。なお、以下では、表示制御部36A,36Bを区別して説明する必要がない場合は「表示制御部36」と称する。また、本第1実施形態では、画像処理部28とは別のハードウェア構成で表示制御部36を設けているが、これに限らず、画像処理部28が表示制御部36と同様の機能を有するものとしてもよく、この場合、表示制御部36は不要となる。
 CPU12、操作部14、インタフェース部24、記憶部の一例であるメモリ26、画像処理部28、エンコーダ34、表示制御部36A,36B、接眼検出部37及び外部インタフェース(I/F)39は、バス40を介して相互に接続されている。なお、メモリ26は、パラメータやプログラムなどが記憶された不揮発性の記憶領域(一例としてEEPROMなど)と画像などの各種情報が一時的に記憶される揮発性の記憶領域(一例としてSDRAMなど)とを有する。
 なお、本第1実施形態に係る撮像装置100では、オートフォーカスモード時に、CPU12が、撮像によって得られた画像のコントラスト値が最大となるようにモータ304を駆動制御することによって合焦制御を行う。また、オートフォーカスモード時に、CPU12は、撮像によって得られた画像の明るさを示す物理量であるAE情報を算出する。CPU12は、レリーズボタン211が半押し状態とされたときには、AE情報により示される画像の明るさに応じたシャッタースピード及びF値を導出する。そして、導出したシャッタースピード及びF値となるように関係各部を制御することによって露出状態の設定を行う。
 操作部14は、撮像装置100に対して各種指示を与える際にユーザによって操作されるユーザインタフェースである。操作部14によって受け付けられた各種指示は操作信号としてCPU12に出力され、CPU12は、操作部14から入力された操作信号に応じた処理を実行する。
 操作部14は、レリーズボタン211、撮影モード等を選択するフォーカスモード切替え部212、ファインダー切替えレバー214、十字キー222、MENU/OKキー224及びBACK/DISPボタン225を含む。また、操作部14は、各種情報を受け付けるタッチパネルも含む。このタッチパネルは、例えば表示部213の表示画面に重ねられている。
 カメラ本体200は、位置検出部23を含む。位置検出部23は、CPU12に接続されている。位置検出部23は、マウント256,346を介してフォーカスリング301に接続されており、フォーカスリング301の回転角度を検出し、検出結果である回転角度を示す回転角度情報をCPU12に出力する。CPU12は、位置検出部23から入力された回転角度情報に応じた処理を実行する。
 撮影モードが設定されると、被写体を示す画像光は、手動操作により移動可能なフォーカスレンズ302を含む撮影レンズ16及びシャッタ18を介してカラーの撮像素子(一例としてCMOSセンサ)20の受光面に結像される。撮像素子20に蓄積された信号電荷は、デバイス制御部22から加えられる読出し信号によって信号電荷(電圧)に応じたデジタル信号として順次読み出される。撮像素子20は、いわゆる電子シャッタ機能を有しており、電子シャッタ機能を働かせることで、読出し信号のタイミングによって各フォトセンサの電荷蓄積時間(シャッタスピード)を制御する。なお、本第1実施形態に係る撮像素子20は、CMOS型のイメージセンサであるが、これに限らず、CCDイメージセンサでもよい。
 撮像素子20は、一例として図4に示すカラーフィルタ21を備えている。カラーフィルタ21は、輝度信号を得るために最も寄与するG(緑)に対応するGフィルタG、R(赤)に対応するRフィルタR及びB(青)に対応するBフィルタを含む。図4に示す例では、撮像素子20の画素数の一例として“4896×3265”画素を採用しており、これらの画素に対してGフィルタ、Rフィルタ及びBフィルタが行方向(水平方向)及び列方向(垂直方向)の各々に所定の周期性で配置されている。そのため、撮像装置100は、R,G,B信号の同時化(補間)処理等を行う際に、繰り返しパターンに従って処理を行うことが可能となる。なお、同時化処理とは、単板式のカラー撮像素子のカラーフィルタ配列に対応したモザイク画像から画素毎に全ての色情報を算出する処理である。例えば、RGB3色のカラーフィルタからなる撮像素子の場合、同時化処理とは、RGBからなるモザイク画像から画素毎にRGB全ての色情報を算出する処理を意味する。
 撮像素子20は、第1の画素L、第2の画素R及び通常画素N(第3の画素の一例)(後述)を含む。撮像装置100は、位相差AF機能を働かせることにより、第1の画素Lの画素からの信号出力値(以下、画素値)と第2の画素Rの画素値とに基づいて位相のずれ量を検出する。そして、検出した位相のずれ量に基づいて撮影レンズの焦点位置を調整する。
 一例として図5に示すように、撮像素子20は、第1の画素行150、第2の画素行152及び第3の画素行154を含む。第1の画素行150は、同一行内に第1の画素組を含み、第1の画素組は、行方向に複数の通常画素N(図5に示す例では、4つの通常画素N)を介在させて周期的に配置されている。第1の画素組とは、行方向に第1の並び方(図中正面視左側に第1の画素Lが位置し、図中正面視右側に第2の画素Rが位置する並び方)で隣接する一対の第1の画素L及び第2の画素Rを指す。
 第2の画素行152は、同一行内に第2の画素組を含み、第2の画素組は、行方向に複数の通常画素N(図5に示す例では、4つの通常画素N)を介在させて周期的に配置されている。第2の画素組とは、行方向に第2の並び方(第1の並び方と逆の並び方)で隣接する一対の第1の画素L及び第2の画素Rを指す。第3の画素行154は、同一行内に複数の通常画素Nが隣接して配置されている。
 第1の画素行150及び第2の画素行152は、列方向に複数行の第3の画素行154(本第1実施形態では、列方向に所定周期で行数が異なる第3の画素行154)を介在させて交互に配置されている。
 第1の画素Lは、一例として図6に示すように、遮光部材20Aによって受光面における行方向の左半分(受光面から被写体を臨む場合の左側(換言すると、被写体から受光面を臨む場合の右側))が遮光された画素である。第2の画素Rは、一例として図6に示すように、遮光部材20Bによって受光面における行方向の右半分(受光面から被写体を臨む場合の右側(換言すると、被写体から受光面を臨む場合の左側))が遮光された画素である。なお、以下では、第1の画素L及び第2の画素Rを区別して説明する必要がない場合は「位相差画素」と称する。
 一例として図7に示すように、撮影レンズ16の射出瞳を通過する光束は、左領域通過光及び右領域通過光に大別される。左領域通過光とは、撮影レンズ16の射出瞳を通過する光束のうちの左半分の光束を指し、右領域通過光とは、撮影レンズ16の射出瞳を通過する光束のうちの右半分の光束を指す。左領域通過光及び右領域通過光のうちのピントが合っている(合焦状態である)部分は、撮像素子20上の同じ位置に結像する。これに対し、左領域通過光及び右領域通過光のうちの前ピン又は後ピンの部分は、それぞれ撮像素子20上の異なる位置に入射する(位相がずれる)。そのため、受光面における左領域通過光による光強度分布と右領域通過光による光強度分布とが行方向で分離して像がぼける。また、受光面における左領域通過光による光強度分布及び右領域通過光による光強度分布の各々の分布位置は、前ピンの場合と後ピンの場合とで逆転する。
 一例として図6に示すように、マイクロレンズ19及び遮光部材20A,20Bは瞳分割部として機能する。すなわち、撮影レンズ16の射出瞳を通過する光束は、マイクロレンズ19及び遮光部材20A,20Bにより左右に分割され、第1の画素Lが左領域通過光を受光し、第2の画素Rが右領域通過光を受光する。この結果、左領域通過光に対応する被写体像及び右領域通過光に対応する被写体像は、視差が異なる視差画像(後述する左眼画像及び右眼画像)として取得される。なお、以下では、遮光部材20A,20Bを区別して説明する必要がない場合は符号を付さずに「遮光部材」と称する。
 撮像素子20は、第1の画素群、第2の画素群及び第3の画素群に分類される。第1の画素群とは、一例として図5に示すように、行列状に配置された複数の第1の画素Lを指す。第2の画素群とは、一例として図5に示すように、行列状に配置された複数の第2の画素Rを指す。第3の画素群とは、一例として図5に示す複数の通常画素Nを指す。ここで、通常画素Nとは、位相差画素以外の画素(例えば遮光部材20A,20Bが設けられていない画素)を指す。なお、以下では、第1の画素群から出力されるRAW画像を「第1の画像」と称し、第2の画素群から出力されるRAW画像を「第2の画像」と称し、第3の画素群から出力されるRAW画像を「第3の画像」と称する。
 図3に戻って、撮像素子20は、第1の画素群から第1の画像(各第1の画素Lの画素値を示すデジタル信号)を出力し、第2の画素群から第2の画像(各第2の画素Rの画素値を示すデジタル信号)を出力する。また、撮像素子20は、第3の画素群から第3の画像(各通常画素の画素値を示すデジタル信号)を出力する。なお、第3の画素群から出力される第3の画像は有彩色の画像であり、例えば通常画素Nの配列と同じカラー配列のカラー画像である。撮像素子20から出力された第1の画像、第2の画像及び第3の画像は、インタフェース部24を介してメモリ26における揮発性の記憶領域に一時記憶される。
 画像処理部28は、メモリ26に記憶されている第1~第3の画像に対して各種の画像処理を施す。画像処理部28は、一例として図8に示すように、補正部28A、生成部28B及び特定部28Cを含む。画像処理部28は、画像処理に係る複数の機能の回路を1つにまとめた集積回路であるASIC(Application Specific Integrated Circuit)により実現される。但し、ハードウェア構成はこれに限定されるものではなく、例えばプログラマブルロジックデバイスであってもよいし、CPU、ROM及びRAMを含むコンピュータなどの他のハードウェア構成であってもよい。
 補正部28Aは、左領域通過光及び右領域通過光に基づく減光特性に応じた補正係数を求め、求めた補正係数に基づいて第1の画像及び第2の画像を補正する。
 生成部28Bは、撮像素子20から出力された画像信号に基づいて表示用画像を生成する。表示用画像は、例えば、撮像素子20から出力された第3の画像に基づいて生成される第1の表示用画像と、補正部28Aにより補正された第1の画像及び第2の画像に基づいて生成される合焦確認に使用する第2の表示用画像と、を有する。
 特定部28Cは、生成部28Bにより生成された第2の表示用画像のうち、第1条件及び第2条件の双方の条件を満足する画像領域を特定する。ここで、第1条件とは、コントラストの大きさが第1所定値以上であるとの条件を指し、第2条件とは、第1の画像と第2の画像との一致度が第2所定値以上であるとの条件を指す。また、ここで、「画像領域」とは、例えば、第2の表示用画像のうち、第1条件及び第2条件の双方の条件を満足する第1の画素L及び第2の画素Rに対応する画像領域(例えば第1の画素L及び第2の画素Rの位置に対応する位置に存在する画像領域)を指す。
 ところで、撮像素子20の受光面に形成される像のぼけ量に相当する像ずれ量(左領域通過光による光強度分布と右領域通過光による光強度分布とのずれ量)は、下記の数式(1)に示すように、撮影レンズ16のF値に依存することが知られている。数式(1)は、一例として図9Aに示す合焦(ジャスピン)時の被写体、撮影レンズ16及び撮像素子20の位置関係及び図9Bに示す非合焦時の被写体、撮影レンズ16及び撮像素子20の位置関係から導出される。すなわち、像ずれ量Δは、下記の数式(2)で表され、数式(2)に示す“z”は、下記の数式(3)で表される。なお、数式(3)に示す“y”は、下記の数式(4)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 数式(1)に示すように、像ずれ量ΔはF値の減少に従って大きくなる。従って、特定部28Cで用いる第1及び第2所定値の最適値もF値に従って変化する。そこで、特定部28Cは、一例として図10に示す閾値導出テーブル260を用いて第1所定値の一例である閾値ε1及び第2所定値の一例である閾値ε2を導出する。図10に示す閾値導出テーブル260は、複数のF値の各々に対して閾値ε1,ε2の最適値として予め定められた値が対応付けられている。従って、特定部28Cは、閾値導出テーブル260から、現在設定されているF値に対応する閾値ε1,ε2として的確な値を導出することができる。
 なお、数式(1)に示す像ずれ量Δは長さの単位であり、この長さが撮像素子20の単一画素の直径よりも大きくなるとピントがずれている(非合焦状態である)と判定される。従って、閾値ε1,ε2を撮像素子20の単一画素の大きさに応じて定めるようにしてもよい。また、数式(1)によれば、像ずれ量Δは、撮影レンズ16と被写体との距離にも依存するので、閾値ε1,ε2を撮影レンズ16と被写体との距離に応じて定めるようにしてもよい。また、F値、撮像素子20の単一画素の大きさ、及び撮影レンズ16と被写体との距離のうちの少なくとも2つの組み合わせに応じて閾値ε1,ε2を定めてもよく、この場合もテーブルを用いて閾値ε1,ε2を導出すればよい。
 生成部28Bは、一例として図11に示すように、通常処理部30及びスプリットイメージ処理部32を含む。通常処理部30は、第3の画素群に対応するR,G,B信号を処理することで第1の表示用画像の一例である有彩色の通常画像を生成する。また、スプリットイメージ処理部32は、第1の画素群及び第2の画素群に対応するG信号を処理することで第2の表示用画像の一例である無彩色のスプリットイメージを生成する。
 図3に戻って、エンコーダ34は、入力された信号を別の形式の信号に変換して出力する。ハイブリッドファインダー220は、電子像を表示するLCD247を有する。LCD247における所定方向の画素数(一例として視差発生方向である行方向の画素数)は、表示部213における同方向の画素数よりも少ない。表示制御部36Aは表示部213に、表示制御分36BはLCD247に各々接続されており、LCD247及び表示部213が選択的に制御されることによりLCD247又は表示部213により画像が表示される。なお、以下では、表示部213及びLCD247を区別して説明する必要がない場合は「表示装置」と称する。
 なお、本第1実施形態に係る撮像装置100は、ダイヤル212(フォーカスモード切替え部)によりマニュアルフォーカスモードとオートフォーカスモードとを切り替え可能に構成されている。何れかのフォーカスモードが選択されると、表示制御部36は、スプリットイメージが合成されたライブビュー画像を表示装置に表示させる。また、ダイヤル212によりオートフォーカスモードが選択されると、CPU12は、位相差検出部及び自動焦点調整部として動作する。位相差検出部は、第1の画素群から出力された第1の画像と第2の画素群から出力された第2の画像との位相差を検出する。自動焦点調整部は、検出された位相差に基づいてフォーカスレンズ302のデフォーカス量をゼロにするように、デバイス制御部22からマウント256,346を介してモータ304を制御し、フォーカスレンズ302を合焦位置に移動させる。なお、上記の「デフォーカス量」とは、例えば第1の画像及び第2の画像の位相ずれ量を指す。
 接眼検出部37は、ユーザ(例えば撮影者)がファインダー接眼部242を覗き込んだことを検出し、検出結果をCPU12に出力する。従って、CPU12は、接眼検出部37での検出結果に基づいてファインダー接眼部242が使用されているか否かを把握することができる。
 外部I/F39は、LAN(Local Area Network)やインターネットなどの通信網に接続され、通信網を介して、外部装置(例えばプリンタ)とCPU12との間の各種情報の送受信を司る。従って、撮像装置100は、外部装置としてプリンタが接続されている場合、撮影した静止画像をプリンタに出力して印刷させることができる。また、撮像装置100は、外部装置としてディスプレイが接続されている場合は、撮影した静止画像やライブビュー画像をディスプレイに出力して表示させることができる。
 図12は第1実施形態に係る撮像装置100の要部機能の一例を示す機能ブロック図である。なお、図3に示すブロック図と共通する部分には同一の符号が付されている。
 通常処理部30及びスプリットイメージ処理部32は、それぞれWBゲイン部、ガンマ補正部及び同時化処理部を有し(図示省略)、メモリ26に一時記憶された元のデジタル信号(RAW画像)に対して各処理部で順次信号処理を行う。すなわち、WBゲイン部は、R,G,B信号のゲインを調整することによりホワイトバランス(WB)を実行する。ガンマ補正部は、WBゲイン部でWBが実行された各R,G,B信号をガンマ補正する。同時化処理部は、撮像素子20のカラーフィルタの配列に対応した色補間処理を行い、同時化したR,G,B信号を生成する。なお、通常処理部30及びスプリットイメージ処理部32は、撮像素子20により1画面分のRAW画像が取得される毎に、そのRAW画像に対して並列に画像処理を行う。
 通常処理部30は、インタフェース部24からR,G,BのRAW画像が入力され、第3の画素群のR,G,B画素を、第1の画素群及び第2の画素群のうちの同色の周辺画素(例えば隣接するG画素)により補間することで、記録用の通常画像を生成する。
 また、通常処理部30は、生成した記録用の通常画像の画像データをエンコーダ34に出力する。通常処理部30により処理されたR,G,B信号は、エンコーダ34により記録用の信号に変換(エンコーディング)され、記録部40に記録される。また、通常処理部30により処理された第3の画像に基づく画像である表示用の通常画像は、表示制御部36に出力される。なお、以下では、説明の便宜上、上記の「記録用の通常画像」及び「表示用の通常画像」を区別して説明する必要がない場合は「記録用の」との文言及び「表示用の」との文言を省略して「通常画像」と称する。
 撮像素子20は、第1の画素群及び第2の画素群の各々の露出条件(一例として電子シャッタによるシャッタ速度)を変えることができ、これにより露出条件の異なる画像を同時に取得することができる。従って、画像処理部28は、露出条件の異なる画像に基づいて広ダイナミックレンジの画像を生成することができる。また、同じ露出条件で複数の画像を同時に取得することができ、これら画像を加算することによりノイズの少ない高感度の画像を生成し、あるいは高解像度の画像を生成することができる。
 一方、スプリットイメージ処理部32は、メモリ26に一旦記憶されたRAW画像から第1の画素群及び第2の画素群のG信号を抽出し、第1の画素群及び第2の画素群のG信号に基づいて無彩色のスプリットイメージを生成する。RAW画像から抽出される第1の画素群及び第2の画素群の各々に相当する画素群は、上述したようにGフィルタの画素による画素群である。そのため、スプリットイメージ処理部32は、第1の画素群及び第2の画素群の各々に相当する画素群のG信号に基づいて、無彩色の左の視差画像及び無彩色の右の視差画像を生成することができる。なお、以下では、説明の便宜上、上記の「無彩色の左の視差画像」を「左眼画像」と称し、上記の「無彩色の右の視差画像」を「右眼画像」と称する。
 スプリットイメージ処理部32は、スプリットイメージを生成する。スプリットイメージは、第1の画素群から出力された第1の画像に基づく左眼画像と、第2の画素群から出力された第2の画像に基づく右眼画像とを所定方向(例えば視差発生方向と交差する方向)に交互に組み合わせることによって生成される。生成されたスプリットイメージの画像データは表示制御部36に出力される。
 表示制御部36は、通常処理部30から入力された表示用の通常画像の画像データと、スプリットイメージ処理部32から入力された第1、第2の画素群に対応するスプリットイメージの画像データとに基づいて表示用の画像データを生成する。例えば、表示制御部36は、通常処理部30から入力された第3の画素群に対応する画像データにより示される通常画像の表示領域内に、スプリットイメージ処理部32から入力された画像データにより示されるスプリットイメージを合成する。そして、合成して得た画像データを表示装置に出力する。すなわち、表示制御部36Aは、画像データを表示部213に出力し、表示制御部36Bは画像データをLCD247に出力する。これにより、表示装置は、通常画像を動画像として連続して表示し、かつ、通常画像の表示領域内に、スプリットイメージを動画像として連続して表示する。
 スプリットイメージは、一例として図13に示すように、表示装置の画面中央部の矩形枠内に表示され、スプリットイメージの外周領域に通常画像が表示される。なお、図13に示す矩形枠を表す縁の線は実際には表示されないが、図13では説明の便宜上示されている。
 なお、本第1実施形態では、通常画像の一部の画像に代えて、スプリットイメージを嵌め込むことにより通常画像にスプリットイメージを合成するようにしているが、これに限らず、例えば、通常画像の上にスプリットイメージを重畳させる合成方法であってもよい。また、スプリットイメージを重畳する際に、スプリットイメージが重畳される通常画像の一部の画像とスプリットイメージとの透過率を適宜調整して重畳させる合成方法であってもよい。これにより、連続的に撮影している被写体像を示すライブビュー画像が表示装置の画面上に表示されるが、表示されるライブビュー画像は、通常画像の表示領域内にスプリットイメージが表示された画像となる。
 ハイブリッドファインダー220は、OVF240及びEVF248を含む。OVF240は、対物レンズ244と接眼レンズ246とを有する逆ガリレオ式ファインダーであり、EVF248は、LCD247、プリズム245及び接眼レンズ246を有する。
 また、対物レンズ244の前方には、液晶シャッタ243が配設されており、液晶シャッタ243は、EVF248を使用する際に、対物レンズ244に光学像が入射しないように遮光する。
 プリズム245は、LCD247に表示される電子像又は各種の情報を反射させて接眼レンズ246に導き、かつ、光学像とLCD247に表示される情報(電子像、各種の情報)とを合成する。
 ここで、ファインダー切替えレバー214を図1に示す矢印SW方向に回動させると、回動させる毎にOVF240により光学像を視認することができるOVFモードと、EVF248により電子像を視認することができるEVFモードとが交互に切り替えられる。
 表示制御部36Bは、OVFモードの場合、液晶シャッタ243が非遮光状態になるように制御し、接眼部から光学像が視認できるようにする。また、LCD247には、スプリットイメージのみを表示させる。これにより、光学像の一部にスプリットイメージが重畳されたファインダー像を表示させることができる。
 また、表示制御部36Bは、EVFモードの場合、液晶シャッタ243が遮光状態になるように制御し、接眼部からLCD247に表示される電子像のみが視認できるようにする。なお、LCD247には、表示部213に出力されるスプリットイメージが合成された画像データと同等の画像データが入力され、これにより、表示部213と同様に通常画像の一部にスプリットイメージが合成された電子像を表示させることができる。
 ところで、一般的なスプリットイメージは、一例として図14及び図15に示すように、左眼画像と右眼画像とを視差発生方向と交差する方向(図14及び図15に示す例では図中正面視上下方向)に交互に組み合わせた複数分割(図14及び図15に示す例では4分割)の画像である。スプリットイメージに含まれる左眼画像及び右眼画像は、合焦状態に応じて所定方向(図14及び図15に示す例では視差発生方向(図中正面視左右方向))にずれる。なお、図14に示す例では、人物に対してピントが合っていて人物の周辺領域(例えば木)に対してピントがあっていない状態が示されており、図15に示す例では、木に対してピントが合っていて木の周辺領域(例えば人物)に対してピントがあっていない状態が示されている。
 しかし、スプリットイメージを利用した合焦判断方法では、像ずれがなくなったか否かを目視で判断するが、連続的に動く像ずれを視認しながら行う必要があり、ピント合わせに時間を要する。スプリットイメージを利用した合焦判断方法以外の合焦判断方法としては、フォーカス・ピーキングを利用した合焦判断方法が知られている。フォーカス・ピーキングを利用した合焦判断方法では、高コントラスト領域か否か(所定コントラスト以上の領域であるか否か)の判断は、スプリットイメージを利用した合焦判断方法と比べ、短時間で行うことができる。しかし、高コントラスト領域がすべて強調表示されるため、ユーザは合焦状態にない高コントラスト領域を合焦状態にあると誤判断してしまう虞がある。
 そこで、本第1実施形態に係る撮像装置100では、マニュアルフォーカスモード時に、画像処理部28が、一例として図16に示す画像出力処理を行う。以下では、マニュアルフォーカスモードにおいて画像処理部28によって行われる画像出力処理について、図16を参照して説明する。なお、以下では、画像処理部28が画像出力処理を行う場合を例示するが、本発明はこれに限定されるものではなく、例えばCPU12が画像出力処理プログラムを実行することにより撮像装置100で画像出力処理が行われるようにしてもよい。
 図16に示す画像出力処理では、先ず、ステップ400において、生成部28Bにより、第1~第3の画像が入力されたか否かが判定される。ステップ400において、第1~第3の画像が入力されていない場合は、判定が否定されてステップ400の判定を再び行う。ステップ400において、第1~第3の画像が入力された場合は、判定が肯定されてステップ402へ移行する。
 ステップ402では、生成部28Bにより、ステップ400で入力された第3の画像に基づいて通常画像が生成される。また、ステップ402では、生成部28Bにより、ステップ400で入力された第1及び第2の画像に基づく左眼画像及び右眼画像が生成され、生成された左眼画像及び右眼画像に基づいてスプリットイメージが生成される。
 次のステップ404では、補正部28A及び特定部28Cにより、一例として図17及び図18に示す画像領域特定処理(第1条件及び第2条件の双方の条件を満足する画素間に対応する画像領域を特定する処理)が行われ、その後、ステップ406へ移行する。
 ところで、撮像装置100では、一例として図19に示すように、被写体が撮像される場合に撮影レンズ16を通過した左領域通過光は、第1の画素Lに対応するマイクロレンズ19を通過し、第1の画素Lに入射する。しかし、左領域通過光は、第2の画素Rに対応するマイクロレンズ19を通過しても遮光部材20Bによって遮光されるので、第2の画素Rに入射しない。一方、撮影レンズ16を通過した右領域通過光は、第2の画素Rに対応するマイクロレンズ19を通過し、第2の画素Rに入射する。しかし、右領域通過光は、第1の画素Lに対応するマイクロレンズ19を通過しても遮光部材20Aによって遮光されるので、第1の画素Lに入射しない。このように画素の半分に対して遮光部材が配置されている上、左領域通過光及び右領域通過光の各々の中心が、撮影レンズ16の光軸から偏倚しているため、第1の画素群及び第2の画素群の各々では、瞳分割方向の画素位置に応じて減光特性が線形的に変化する。減光特性の変化は、左眼画像及び右眼画像における出力の変化となって現れる。すなわち、仮に撮影レンズ16に対して正面から光量が均一な光が入射された場合に得られる左眼画像及び右眼画像の左右方向(瞳分割方向に相当する方向)の出力は画素位置に応じて略線形的に変化することとなる。例えば、図20に示すように、左眼画像は、右方向の画素位置ほど出力が小さくなり、右眼画像は、左方向の画素位置ほど出力が小さくなる。左眼画像及び右眼画像の各出力の左右の相反する方向への略線形的な変化は、スプリットイメージの画質に対しても影響を及ぼす。
 そこで、図17に示す画像領域特定処理では、先ず、ステップ500において、補正部28Aにより、ステップ400で入力された第1の画像及び第2の画像の出力を補正する補正係数として、減光特性に応じた補正係数が導出される。ここで、補正係数は、例えば補正用直線に基づいて導出される。補正用直線は、例えば特定の一行に含まれる複数の画素の出力についての回帰直線と目標感度比(例えば1.0)との距離の2乗和が最小になる一次関数を指し、補正用直線の従属変数が補正係数として用いられる。なお、補正係数は、これに限定されるものではなく、実機による実験やシミュレーション等によって予め得られたデフォルト値(事前に予想した減光特性をキャンセルする補正係数)であってもよい。また、ここでは、第1の画像及び第2の画像の出力を補正する場合を例示しているが、これに限らず、第1の画素L及び第2の画素Rの感度を補正するようにしてもよい。
 次のステップ502では、補正部28Aにより、ステップ500で導出された補正係数に基づいて第1の画像及び第2の画像の出力が補正される。これにより、一例として図21に示すように、第1及び第2の画素群の各々の瞳分割方向の画素の線形的な感度変化に起因する第1の画像及び第2の画像の線形的な出力変化は、補正係数に基づいて補正されない場合と比べ、軽減される。
 次のステップ504では、特定部28Cにより、ステップ400で入力された第1~第3の画像に含まれる全画素のうち、一例として図22に示すように、処理対象とする画素群(注目画素群)262が設定される。
 以下では、説明の便宜上、ステップ400で入力された第1~第3の画像を区別して説明する必要がない場合は、第1~第3の画像を「処理対象画像」と総称する。また、以下では、説明の便宜上、処理対象画像に含まれる画素のうち、撮像素子20における第1の画素Lの位置に対応する位置の画素を第1の画素L1と称する。また、処理対象画像に含まれる画素のうち、撮像素子20における第2の画素Rの位置に対応する位置の画素を第2の画素R2と称する。また、処理対象画像に含まれる画素のうち、撮像素子20における通常画素Nの位置に対応する位置の画素を通常画素N1と称する。なお、本第1実施形態では、ステップ400で入力された第1~第3の画像を処理対象画像としているが、これに限らず、ステップ400で入力された第1~第3の画像のうちの部分的な画像を処理対象画像としてもよい。例えば、ステップ400で入力された第1~第3の画像のうちのスプリットイメージの表示領域の位置に対応する位置の画像を処理対象画像としてもよいし、ステップ400で入力された第1~第3の画像のうちのスプリットイメージの表示領域の一部領域の位置に対応する位置の画像を処理対象画像としてもよい。この場合、全画面分の画像を処理する場合と比較して、処理に要する時間を短くすることができる。
 注目画素群262とは、例えば処理対象画像に含まれる全画素のうち、未だに後述するステップ506~ステップ534の処理対象とされていない画素群を指す。例えば、本第1実施形態では、注目画素群262が、一例として図22に示す注目画素群規定枠263によって定められる。図22に示す注目画素群規定枠263は、4×6の分割領域(単一の画素の大きさに対応する大きさの分割領域)で区切られた矩形枠である。図22に示す例では、図中正面視右上角の分割領域に、第1の画素行150に含まれる第1の画素L(隣接する一対の第1の画素組のうちの一方の組に含まれる第1の画素L)に対応する第1の画素L1が位置している。また、図中正面視左上角の分割領域に、第1の画素行150に含まれる第2の画素R(隣接する一対の第1の画素組のうちの他方の組に含まれる第2の画素R)に対応する第2の画素R1が位置している。また、注目画素群規定枠263の残りの分割領域の各々に、第1の画素行150及び第3の画素行154に含まれる通常画素Nに対応する通常画素N1が位置している。
 次のステップ506では、特定部28Cにより、一例として図23に示すように、ステップ504で設定された注目画素群262の注目行に含まれる隣接する通常画素N1(以下、「注目通常画素組」という)が設定される。ここで、注目画素群262の注目行とは、例えば、ステップ504で設定された注目画素群262に含まれる位相差画素が属する一行を指す。また、ここで、注目通常画素組とは、未だに後述するステップ508~518の処理対象とされていない通常画素N1を含み、且つ、注目行に含まれる第1の画素L1と第2の画素R1との間に配置された隣接する2つの通常画素N1を指す。
 次のステップ508では、特定部28Cにより、ステップ506で設定された注目通常画素組に含まれる通常画素N1の何れかの出力が飽和状態(例えば出力が上限値に到達している状態)か否かが判定される。ステップ508において、ステップ506で設定された注目通常画素組に含まれる通常画素N1の何れかの出力が飽和状態の場合は、判定が肯定されてステップ510へ移行する。ステップ508において、ステップ506で設定された注目通常画素組に含まれる通常画素N1の何れの出力も飽和状態にない場合は、判定が否定されてステップ512へ移行する。
 ステップ510では、特定部28Cにより、ステップ504で設定された注目画素群262の注目行に含まれる全ての通常画素N1が注目通常画素組として設定されたか否かが判定される。ステップ510において、ステップ504で設定された注目画素群262の注目行に含まれる全ての通常画素N1が注目通常画素組として設定された場合は、判定が肯定されてステップ536へ移行する。ステップ510において、ステップ504で設定された注目画素群262の注目行に含まれる全ての通常画素N1が注目通常画素組として設定されていない場合は、判定が否定されてステップ506へ移行する。
 ステップ512では、特定部28Cにより、ステップ506で設定された注目通常画素組に含まれる通常画素N1毎の列方向の画素値の平均値(以下、「平均画素値」という)が算出される。図23に示す例では、注目通常画素組に含まれる隣接する通常画素N1の一方はA列に属し、他方はB列に属しているので、注目画素群262におけるA列に属する通常画素N1の平均画素値とB列に属する通常画素N1の平均画素値とが算出される。
 次のステップ514では、特定部28Cにより、ステップ506で設定された注目通常画素組に含まれる通常画素N1間の平均画素値(ステップ512で算出された平均画素値)の差分(例えば差の絶対値)d1が算出され、その後、ステップ516へ移行する。
 ステップ516では、特定部28Cにより、一例として図10に示す閾値導出テーブル260を用いて、現在設定されているF値に対応する閾値ε1が導出され、その後、ステップ518へ移行する。
 ステップ518では、特定部28Cにより、ステップ514で算出された差分d1がステップ516で導出された閾値ε1以上であるか否かが判定される。ステップ518において、ステップ514で算出された差分d1がステップ516で導出された閾値ε1未満の場合は、判定が否定されてステップ510へ移行する。ステップ518において、ステップ514で算出された差分d1がステップ516で導出された閾値ε1以上の場合は、判定が肯定されてステップ520へ移行する。
 ステップ520では、特定部28Cにより、一例として図23に示すように、ステップ504で設定された注目画素群262の注目行に含まれる一対の注目位相差画素が設定される。ここで、注目位相差画素とは、注目画素群262の注目行に含まれる両端に位置する第1の画素L1及び第2の画素R1の各々を指す。なお、以下では、第1の画素L1と第2の画素R1とを区別して説明する必要がない場合は「注目位相差画素」と称する。
 ステップ522では、特定部28Cにより、ステップ520で設定された一対の注目位相差画素間の画素値(ステップ502で出力が補正された左眼画像及び右眼画像における位相差画素間の画素値)の差分Dが算出され、その後、ステップ524へ移行する。
 次のステップ524では、特定部28Cにより、一例として図10に示す閾値導出テーブル260を用いて、現在設定されているF値に対応する閾値ε2が導出され、その後、ステップ526へ移行する。
 ステップ526では、特定部28Cにより、ステップ522で算出された差分Dがステップ524で導出された閾値ε2以下であるか否かが判定される。ステップ526において、ステップ522で算出された差分Dがステップ524で導出された閾値ε2を超える場合は判定が否定されてステップ536へ移行する。ステップ526において、ステップ522で算出された差分Dがステップ524で導出された閾値ε2以下の場合は判定が肯定されてステップ528へ移行する。
 ステップ528では、特定部28Cにより、一例として図24に示す第1画素値分布及び第2画素値分布が生成される。第1画素値分布とは、一例として図22に示す注目行が属する一行(例えば第1の画素行150に対応する一行)に含まれる全ての第1の画素L1による画素値の分布を指す。第2画素値分布とは、注目行が属する一行に含まれる全ての第2の画素R1による画素値の分布を指す。
 次のステップ530では、特定部28Cにより、一例として図24に示すように、ステップ528で生成された第1画素値分布と第2画素値分布とのピーク間の距離(ピーク間距離)αが算出され、その後、ステップ532へ移行する。ピーク間距離αとは、例えば、瞳分割方向(視差発生方向)で信号レベルが極大値を持つ画素間の距離を指し、いわゆる位相差(又は位相差に相当する物理量)を意味する。
 ステップ532では、特定部28Cにより、ステップ530で算出されたピーク間距離αが閾値ε3以下であるか否かが判定される。ここでは、閾値ε3として、図23に示す注目画素群262の注目行に含まれる位相差画素間の距離×2の値に相当する値を採用しているが、これ以外の値を採用してもよいことは言うまでもなく、また、ユーザによって指定された値を採用してもよい。
 ステップ532において、ステップ530で算出されたピーク間距離αが閾値ε3を超える場合(例えば第1画素値分布及び第2画素値分布が図24に示す状態の場合)、判定が否定されてステップ536へ移行する。ステップ532において、ステップ530で算出されたピーク間距離αが閾値ε3以下の場合(例えば第1画素値分布及び第2画素値分布が図25に示す状態の場合)、判定が肯定されてステップ534へ移行する。
 ステップ534では、特定部28Cにより、ステップ504で設定された注目画素群262の位置を示す位置情報(例えば処理対象画像内の位置を特定可能な二次元座標)が所定の記憶領域(例えばメモリ26)に記憶される。
 次のステップ536では、特定部28Cにより、処理対象画像に含まれる全画素のうち、注目画素群262として未だに設定されていない画素群が存在していないか否かが判定される。ステップ536において、処理対象画像に含まれる全画素のうち、注目画素群262として未だに設定されていない画素群が存在している場合は、判定が否定されてステップ504へ移行する。ステップ536において、処理対象画像に含まれる全画素のうち、注目画素群262として未だに設定されていない画素群が存在していない場合は、判定が肯定されて本画像領域特定処理を終了する。
 図16に戻って、ステップ406では、特定部28Cにより、所定の記憶領域に位置情報が記憶されているか否か(ステップ534で所定の記憶領域に位置情報が記憶されたか否か)が判定される。ステップ406において、所定の記憶領域に位置情報が記憶されていない場合は、判定が否定されてステップ410へ移行する。ステップ406において、所定の記憶領域に位置情報が記憶されている場合は、判定が肯定されてステップ408へ移行する。
 ステップ408では、特定部28Cにより、ステップ402で生成されたスプリットイメージのうち、特定画像領域(本発明に係る画像領域の一例)の明るさ及び色(又は、明るさ若しくは色)が、他の領域と区別可能に調整される。ここで、特定画像領域とは、例えば所定の記憶領域に記憶されている位置情報(ステップ534で所定の記憶領域に記憶された位置情報)により示される画像領域(注目画素群262に相当する領域)のうち、スプリットイメージに含まれる領域を指す。
 次のステップ410では、特定部28Cにより、ステップ402で生成された通常画像及びスプリットイメージ、又は、ステップ408で特定画像領域の明るさ及び色が調整されたスプリットイメージとステップ402で生成された通常画像とが表示制御部36に出力される。これにより、表示制御部36は、表示装置に対して通常画像を動画像として連続して表示させ、且つ、通常画像の表示領域内のスプリットイメージを動画像として連続して表示させる制御を行う。これに応じて、表示装置は、ライブビュー画像を表示する。
 また、表示制御部36は、ステップ408で特定画像領域の明るさ及び色が調整されたスプリットイメージとステップ402で生成された通常画像とが入力されると、表示装置に対して、特定画像領域を他の領域と区別可能に表示させるように制御を行う。これにより、表示装置は、一例として図26に示すように、ライブビュー画像のうち、特定画像領域を他の領域と区別可能に表示(強調表示(ピーキング))する。特定画像領域を他の領域と区別可能に表示する方法としては、例えば、特定画像領域の出力を上限値まで引き上げる方法や、特定画像領域を予め定められた特殊色で表示する方法が挙げられる。なお、図26に示す例では、スプリットイメージにおける太線領域が特定画像領域に相当する。また、図26に示すように特定画像領域の輪郭によって規定された枠内の面領域(図26に示す例では特定画像領域の輪郭とスプリットイメージの外枠とで囲まれた領域)に対して、枠外の領域と区別可能なパッチパターンを表示するようにしてもよい。
 以上説明したように、本第1実施形態に係る撮像装置100では、特定部28Cにより、差分d1がε1以上であるとの第1条件、及び差分Dが閾値ε2以下であるとの第2条件の双方の条件を満足する画像領域(特定画像領域)が特定される。また、表示装置により、通常画像及びスプリットイメージが表示され、且つ、スプリットイメージ内における特定画像領域が他の領域と区別可能に表示される。従って、本第1実施形態に係る撮像装置100は、本構成を有しない場合と比べ、合焦状態にあるか否かを視覚的に認識し易くすることができる。
 また、本第1実施形態に係る撮像装置100では、差分d1が通常画素N1の画素値に基づいて定められる。従って、本第1実施形態に係る撮像装置100は、通常画素N1の画素値を用いずに差分d1を定める場合と比べ、第1条件(差分d1≧閾値ε1)を満足する画像領域を高精度に特定することができる。
 また、本第1実施形態に係る撮像装置100では、第1の画素L1と第2の画素R1との間に配置された通常画素N1の画素値に基づいて差分d1が定められる。従って、本第1実施形態に係る撮像装置100は、第1の画素L1と第2の画素R1との間に配置された通常画素N1の画素値を用いずに差分d1を定める場合と比べ、第1条件を満足する画像領域を高精度に特定することができる。
 また、本第1実施形態に係る撮像装置100では、通常画素N1の列方向の所定画素(図22に示す例では4画素)分の平均画素値に基づいて差分d1が定められる。従って、本第1実施形態に係る撮像装置100は、平均画素値に基づいて差分d1を定める構成を有しない場合と比べ、第1条件を満足する画像領域を高精度に特定することができる。
 また、本第1実施形態に係る撮像装置100では、コントラストの大きさが、非飽和状態の通常画素N1に基づいて定められる。従って、本第1実施形態に係る撮像装置100は、本構成を有しない場合と比べ、非飽和状態の画素が含まれる場合に起こり得る画像領域の誤特定を抑制することができる。
 また、本第1実施形態に係る撮像装置100では、減光特性に応じて補正係数が導出され、導出された補正係数で補正された左眼画像及び右眼画像に基づいて差分Dが算出される。従って、本第1実施形態に係る撮像装置100は、本構成を有しない場合と比べ、減光特性に起因する特定画像領域の誤特定を抑制することができる。
 また、本第1実施形態に係る撮像装置100では、ピーク間距離αに基づいて第2条件(差分D≦閾値ε2)を満足する画像領域(例えば第2条件を満足する第1の画素L及び第2の画素Rに対応する領域)が特定される。従って、本第1実施形態に係る撮像装置100は、ピーク間距離αに基づいて第2条件を満足する画像領域を特定する構成を有しない場合と比べ、第2条件を満足する画像領域を高精度に特定することができる。
 なお、上記第1実施形態では、撮像素子20の中央部に複数の位相差画素が予め定められた配置パターンで配置されているため、表示装置の画面中央部にスプリットイメージを表示する例を挙げて説明したが、本発明はこれに限定されるものではない。例えば、撮像素子20の全領域を対象にして複数の位相差画素を予め定められた配置パターンで配置した場合、一例として図27に示すように、表示装置の全画面に対してスプリットイメージを表示するようにしてもよい。この場合、通常画像及びスプリットイメージの双方を表示する構成と比べ、合焦状態にあるか否かを視覚的に容易に認識することを簡易な構成で実現することができる。
 また、上記第1実施形態では、図18に示す画像領域特定処理において、第1画素値分布と第2画素値分布とのピーク間距離αが算出される場合を例示したが、本発明はこれに限定されるものではない。例えば、図28に示すように、図18に示す画像領域特定処理のステップ528,530,532に代えて、ステップ558,560,562が特定部28Cによって行われるようにしてもよい。
 図28に示す画像領域特定処理では、ステップ558において、特定部28Cにより、注目行が属する一行に含まれる第1の画素L及び第2の画素Rの各々の画素値が位置で微分される。次のステップ560では、特定部28Cにより、ステップ558で微分されて得られた第1の画素Lについての微分ピーク値と第2の画素Rについての微分ピーク値との距離(微分ピーク間距離)βが算出される。次のステップ562では、特定部28Cにより、微分ピーク間距離βが閾値ε4(閾値ε2に相当する値)以下か否かが判定される。ステップ562において、微分ピーク間距離βが閾値ε4を超える場合は判定が否定されてステップ536へ移行する。ステップ562において、微分ピーク間距離βが閾値ε4以下の場合は判定が肯定されてステップ534へ移行する。
 微分ピーク間距離βは、ピーク間距離αに含まれるノイズが軽減された値に相当するので、微分ピーク間距離βを用いることで、第2条件を満足する画像領域(例えば第2条件を満足する第1の画素L及び第2の画素Rに対応する領域)を高精度に特定することができる。
 また、上記第1実施形態では、ステップ528,530,532が組み込まれた画像領域特定処理を例示したが、本発明はこれに限定されるものではなく、図18に示す画像領域特定処理からステップ528,530,532を除いてもよい。この場合、画像出力処理の高速化が期待できる。また、図18に示す画像領域特定処理からステップ522,524,526を除いてもよい。この場合も、画像出力処理の高速化が期待できる。
 また、上記第1実施形態では、通常画素N間の平均画素値の差分d1を算出する場合を例示したが、本発明はこれに限定されるものではなく、例えば、注目通常画素組に含まれる一対の通常画素N1間の差分を算出するようにしてもよい。この場合、画素値の平均を求める必要がなくなるので、画像出力処理の高速化が期待できる。
 また、上記第1実施形態では、図17に示す画像領域特定処理で注目画素群262を設定する場合を例示したが、これに限らず、図29に示す注目画素群262A、図30に示す注目画素群262B又は図31に示す注目画素群262Cを設定してもよい。
 図29に示す注目画素群262Aは、注目画素群規定枠263Aによって規定されている。注目画素群規定枠263Aは、4×8の分割領域で区切られた矩形枠であり、図中正面視右上角及び左上角の分割領域に第1の画素組に相当する第1の画素L1及び第2の画素R1が位置し、残りの分割領域に通常画素N1が位置する。画像領域特定処理において図29に示す注目画素群262Aを設定した場合、注目位相差画素として、例えば注目画素群262Aの図中正面視左上角の第1の画素L1と図中正面視右上角の第2の画素R1を採用する。また、注目画素群262Aの図中正面視左上角の第1の画素L1に隣接する第2の画素R1と図中正面視左上角の第2の画素R1に隣接する第1の画素L1を注目位相差画素として採用してもよい。
 なお、図29に示す例において、注目位相差画素は、注目画素群262Aの図中正面視左上角の第1の画素L1と図中正面視右上角の第2の画素R1に限定されるものではなく、一対の第1の画素L1及び第2の画素R1であれば、如何なる組み合わせでもよい。
 図30に示す注目画素群262Bは、注目画素群規定枠263Bによって規定されている。注目画素群規定枠263Bは、5×5の分割領域で区切られた矩形枠であり、図中正面視左下角の分割領域に第1の画素L1が位置し、図中正面視左上角の分割領域に第2の画素R1が位置し、残りの分割領域に通常画素N1が位置する。画像領域特定処理において図30に示す注目画素群262Bを設定した場合、注目位相差画素として、例えば注目画素群262Bの図中正面視左上角の第2の画素R1と図中正面視左下角の第1の画素L1を採用する。また、注目通常画素組として、例えば注目画素群262Bにおける第2の画素R1が属する行に含まれるに隣接する一対の通常画素N1又は注目画素群262Bにおける第1の画素L1が属する行に含まれる隣接する一対の通常画素N1を採用する。
 図31に示す注目画素群262Cは、注目画素群規定枠263Cによって規定されている。注目画素群規定枠263Cは、4×2の分割領域で区切られた矩形枠であり、図中正面視左上角の分割領域に第1の画素L1が位置し、図中正面視右上角の分割領域に第2の画素R1が位置し、残りの分割領域に通常画素N1が位置する。画像領域特定処理において図31に示す注目画素群262Cを設定した場合、注目位相差画素として、例えば注目画素群262Cの図中正面視左上角の第1の画素L1と図中正面視右上角の第2の画素R1を採用する。また、注目通常画素組として、例えば注目画素群262Cにおいて第1の画素L1及び第2の画素R1に各々隣接する一対の通常画素N1を採用する。
 また、上記第1実施形態では、第1~第3の画素群を有する撮像素子20を例示したが、本発明はこれに限定されるものではなく、第1の画素群及び第2の画素群のみからなる撮像素子であってもよい。この場合、通常画像の生成は、第1の画像及び第2の画像の相互における同色の画素間で補間処理を行うことで実現される。また、補間処理を行わずに、第1の画像又は第2の画像を通常画像として採用してもよい。また、差分d1の算出は、通常画素N1の画素値に代えて、例えば第1の画素L1の画素値と第2の画素R1の画素値とを足し合わせた画素値を用いることにより実現される。この場合、通常画素N1を用いる場合と比べ、高い空間周波数領域の検出が可能となる。また、第1の画素L1の画素値と第2の画素R1の画素値とを足し合わせた画素値に代えて、第1の画素L1の画素値又は第2の画素R1の画素値を用いてもよい。この場合、より高い空間周波数領域の検出が可能となる。
 また、上記第1実施形態では、閾値導出テーブル260を用いて閾値ε1,ε2を導出しているが、これに限らず、演算式を用いて閾値ε1,ε2を導出してもよい。
 また、上記第1実施形態では、差分d1,Dを算出する例を挙げて説明したが、差分に代えて、画素値の比を算出してもよい。
 [第2実施形態]
 上記第1実施形態では、通常画素N1間の平均画素値の差分d1を用いて画像領域を特定する例を挙げて説明したが、本第2実施形態では、複数の通常画素N1による画素値の変化率を用いて画像領域を特定する場合について説明する。なお、以下では、上記第1実施形態と同一の構成については、同一の符号を付し、説明を省略する。
 図1~図3に示す本第2実施形態に係る撮像装置100Aは、上記第1実施形態で説明した撮像装置100と比べ、画像処理部28が図17に示す画像領域特定処理に代えて図32に示す画像領域特定処理を行う点が異なる。図32に示す画像領域特定処理は、図17に示す画像領域特定処理と比べ、ステップ506~518に代えて、ステップ600~ステップ610を有する点が異なる。
 図32に示す画像領域特定処理では、ステップ600において、特定部28Cにより、一例として図33に示すように、ステップ504で設定された注目画素群262の注目行に含まれる注目通常画素組が設定される。本第2実施形態に係る注目通常画素組とは、未だに後述するステップ600~610の処理対象とされていない通常画素N1を含み、且つ、ステップ504で設定された注目画素群262の注目行に含まれる全ての通常画素N1を指す。
 次のステップ602では、特定部28Cにより、ステップ600で設定された注目通常画素組に含まれる通常画素N1の何れかの出力が飽和状態か否かが判定される。ステップ602において、ステップ600で設定された注目通常画素組に含まれる通常画素N1の何れかの出力が飽和状態の場合は、判定が肯定されてステップ536へ移行する。ステップ602において、ステップ600で設定された注目通常画素組に含まれる通常画素N1の何れの出力も飽和状態にない場合は、判定が否定されてステップ604へ移行する。
 ステップ604では、特定部28Cにより、ステップ600で設定された注目通常画素組に含まれる通常画素N1毎の列方向の平均画素値が算出される。図33に示す例では、注目通常画素組に含まれる4つの通常画素N1の各々は、A列、B列、C列及びD列の各列に属しているので、これらの各列について平均画素値が算出される。すなわち、注目画素群262におけるA列に属する通常画素N1の平均画素値、B列に属する通常画素N1の平均画素値、C列に属する通常画素N1の平均画素値、及びD列に属する通常画素N1の平均画素値が算出される。
 次のステップ606では、特定部28Cにより、ステップ600で設定された注目通常画素組に含まれる通常画素N1毎の平均画素値(ステップ604で算出された平均画素値)の回帰直線が生成され、その後、ステップ608へ移行する。
 ステップ608では、特定部28Cにより、現在設定されているF値に対応する閾値ε5が導出され、その後、ステップ610へ移行する。なお、閾値ε5は、上記第1実施形態で説明した閾値ε1と同様にF値毎に予め定められており、F値との対応関係がテーブル化されている。
 ステップ610では、特定部28Cにより、ステップ606で生成された回帰直線の傾きsがステップ608で導出された閾値ε5以上であるか否かが判定される。ステップ610において、傾きsがステップ608で導出された閾値ε5未満の場合は、判定が否定されてステップ536へ移行する。ステップ610において、傾きsがステップ608で導出された閾値ε1以上の場合は、判定が肯定されてステップ520へ移行する。
 以上説明したように、本第2実施形態に係る撮像装置100Aでは、コントラストの大きさが、第1の画素L1と第2の画素R1との間に配置された複数の通常画素N1の画素値の変化率に基づいて定められる。従って、本第2実施形態に係る撮像装置100Aは、本構成を有しない場合と比べ、第1条件を満足する画像領域を高精度に特定することができる。
 また、本第2実施形態に係る撮像装置100Aでは、コントラストの大きさが、複数の通常画素N1の各々における列方向の所定画素(図33に示す例では4画素)分の平均画素値の変化率に基づいて定められる。従って、本第2実施形態に係る撮像装置100Aは、第1条件を満足する画像領域をより一層高精度に特定することができる。
 [第3実施形態]
 上記第1及び第2実施形態では、図22及び図33に示す画素の配置パターンを用いた場合の画像領域特定処理の一例を説明したが、本第3実施形態では、一例として図34に示す画素の配置パターンを用いた場合の画像領域特定処理の一例について説明する。なお、以下では、上記第1及び第2実施形態と同一の構成については、同一の符号を付し、説明を省略する。
 図1~図3に示す本第3実施形態に係る撮像装置100Bは、上記第1実施形態で説明した撮像装置100と比べ、撮像素子20に代えて撮像素子20Aを有する点が異なる。撮像素子20Aは、一例として図34に示すように、位相差画素行270及び通常画素行272を有する。位相差画素行270は、通常画素Nを含まずに第1の画素L及び第2の画素Rを含み、通常画素行272は、位相差画素を含まずに通常画素Nを含む。位相差画素行270及び通常画素行272は、列方向に交互に配置されている。位相差画素行270は、同一行内に第1の画素L及び第2の画素Rが交互に配置されている。
 図1~図3に示す本第3実施形態に係る撮像装置100Bは、上記第1実施形態で説明した撮像装置100と比べ、画像処理部28が図17に示す画像領域特定処理に代えて図35に示す画像領域特定処理を行う点が異なる。図35に示す画像領域特定処理は、図17に示す画像領域特定処理と比べ、ステップ504~518に代えて、ステップ700~ステップ710を有する点が異なる。
 図35に示す画像領域特定処理では、ステップ700において、特定部28Cにより、処理対象画像に含まれる全画素のうち、一例として図34に示す注目画素群262Dが設定され、その後、ステップ702へ移行する。なお、注目画素群262Dとは、例えば処理対象画像に含まれる全画素のうち、未だに以降の処理の対象とされていない画素群を指す。例えば、本第3実施形態では、注目画素群262Dが、一例として図34に示す注目画素群規定枠263Dによって定められる。図34に示す注目画素群規定枠263Dは、2×2の分割領域で区切られた矩形枠であり、図中正面視右上角及び左上角の分割領域に異なる位相差画素が位置し、残りの分割領域に通常画素Nが位置する。図34に示す例では、図中正面視右上角の分割領域に第1の画素L1が位置し、図中正面視左上角の分割領域に第2の画素R1が位置している。
 ステップ702では、特定部28Cにより、一例として図34に示すように、ステップ700で設定された注目画素群262Dの注目行に含まれる注目通常画素組(図34に示す例では、注目画素群262Dに含まれる一対の通常画素N1)が設定される。ここで、注目通常画素組とは、未だに以降の処理の対象とされていない一対の通常画素N1を指す。
 次のステップ704では、特定部28Cにより、ステップ702で設定された注目通常画素組に含まれる通常画素N1の何れかの出力が飽和状態か否かが判定される。ステップ704において、ステップ702で設定された注目通常画素組に含まれる通常画素N1の何れかの出力が飽和状態の場合は、判定が肯定されて図18に示すステップ536へ移行する。ステップ704において、ステップ702で設定された注目通常画素組に含まれる通常画素N1の何れの出力も飽和状態にない場合は、判定が否定されてステップ706へ移行する。
 ステップ706では、特定部28Cにより、ステップ702で設定された注目通常画素組に含まれる一対の通常画素N1の画素値の差分(例えば差の絶対値)d2が算出され、その後、ステップ708へ移行する。
 ステップ708では、特定部28Cにより、一例として図10に示す閾値導出テーブル260を用いて、現在設定されているF値に対応する閾値ε1が導出され、その後、ステップ710へ移行する。
 ステップ710では、特定部28Cにより、ステップ706で算出された差分d2がステップ708で導出された閾値ε1以上であるか否かが判定される。ステップ710において、ステップ706で算出された差分d2がステップ708で導出された閾値ε1未満の場合は、判定が否定されて図18に示すステップ536へ移行する。ステップ710において、ステップ706で算出された差分d2がステップ708で導出された閾値ε1以上の場合は、判定が肯定されて図18に示すステップ520へ移行する。
 以上説明したように、本第3実施形態に係る撮像装置100Bでは、行方向で第1の画素L1と第2の画素R1とが交互に隣接して配置されている。従って、本第3実施形態に係る撮像装置100Bは、本構成を有しない場合と比べ、特定画像領域として、より一層高い空間周波数の画像領域を特定することができる。
 なお、上記第3実施形態では、位相差画素行270及び通常画素行272を含む撮像素子20Aを例示したが、本発明はこれに限定されるものではなく、例えば図36及び図37に示す撮像素子20B又は図38及び図39に示す撮像素子20Cを用いてもよい。
 一例として図36及び図37に示す撮像素子20Bは、第1の画素行274、第2の画素行276及び第3の画素行278を含む。第1の画素行274及び第2の画素行276は、列方向で隣接しており、列方向に複数行(図36及び図37に示す例では2行)の第3の画素行278を介在させて周期的に配置されている。第1の画素行274は、同一行内に第1の画素Lと第2の画素Rとが交互に配置されており、第1の画素Lと第2の画素Rとの間に複数の通常画素N(図36及び図37に示す例では2つの通常画素N)が配置されている。第2の画素行276は、同一行内に第1の画素Lと第2の画素Rとが第1の画素行274とは逆の並び方で交互に配置されており、第1の画素Lと第2の画素Rとの間に複数の通常画素N(図36及び図37に示す例では2つの通常画素N)が配置されている。また、第1の画素行274に含まれる第1の画素L及び第2の画素行276に含まれる第2の画素Rは同一列内に配置されており、第1の画素行274に含まれる第2の画素R及び第2の画素行276に含まれる第1の画素Lは同一列内に配置されている。第3の画素行278は、同一行内に複数の通常画素Nが隣接して配置されている。
 撮像素子20Bを用いる場合、上記第3実施形態に係る画像領域特定処理のステップ700において、一例として図36に示す注目画素群262E又は一例として図37に示す注目画素群262Fが設定される。図36に示す注目画素群262Eは、注目画素群規定枠263Eによって規定されている。注目画素群規定枠263Eは、2×4の分割領域で区切られた矩形枠であり、図中正面視左上角及び右下角の各分割領域に第1の画素L1が位置し、図中正面視右上角及び左下角の各分割領域に第2の画素R1が位置し、残りの分割領域に通常画素N1が位置する。この場合、注目通常画素組として、例えば注目画素群262Eの図中正面視左上角の第1の画素L1と図中正面視右上角の第2の画素R1との間で隣接している一対の通常画素N1を採用すればよい。また、注目位相差画素として、例えば注目画素群262Eの図中正面視左上角の第1の画素L1と図中正面視左下角の第2の画素R1を採用すればよい。また、これに限らず、注目画素群262Eの図中正面視右上角の第2の画素R1と図中正面視右下角の第1の画素L1を注目位相差画素として採用してもよい。
 図37に示す注目画素群262Fは、注目画素群規定枠263Fによって規定されている。注目画素群規定枠263Fは、2×3の分割領域で区切られた矩形枠であり、図中正面視左上角の分割領域に第1の画素L1が位置し、図中正面視左下角の分割領域に第2の画素R1が位置し、残りの分割領域に通常画素N1が位置する。この場合、注目通常画素組として、例えば注目画素群262Fに含まれる第1の画素L1と行方向で隣接する一対の通常画素N1を採用すればよい。また、注目位相差画素として、例えば注目画素群262Fに含まれる第1の画素L1及び第2の画素R1を採用すればよい。
 図36及び図37に示す構成によれば、行方向に隣接して配置された第1の画素L1及び第2の画素R1を注目位相差画素として採用する場合と比べ、より一層高い空間周波数の画像領域を特定することができる。
 一例として図38及び図39に示す撮像素子20Cは、第1の画素行280、第2の画素行282及び第3の画素行284を含む。第1の画素行280及び第2の画素行282は、列方向で隣接しており、列方向に複数行(図38及び図39に示す例では2行)の第3の画素行284を介在させて周期的に配置されている。第1の画素行280は、同一行内に第1の画素Lと第2の画素Rとが交互に配置されており、第1の画素Lと第2の画素Rとの間に複数の通常画素N(図38及び図39に示す例では2つの通常画素N)が配置されている。第2の画素行282は、同一行内に第1の画素Lと第2の画素Rとが第1の画素行280とは逆の並び方で交互に配置されており、第1の画素Lと第2の画素Rとの間に複数の通常画素N(図38及び図39に示す例では2つの通常画素N)が配置されている。また、第1の画素行280に含まれる第1の画素L及び第2の画素行282に含まれる第2の画素Rは行方向に1画素分ずれた位置に配置されている。また、第1の画素行280に含まれる第2の画素R及び第2の画素行282に含まれる第1の画素Lは行方向に1画素分ずれた位置に配置されている。第3の画素行284は、同一行内に複数の通常画素Nが隣接して配置されている。
 撮像素子20Cを用いる場合、上記第3実施形態に係る画像領域特定処理のステップ700において、一例として図38に示す注目画素群262G又は一例として図39に示す注目画素群262Hが設定される。図38に示す注目画素群262Gは、注目画素群規定枠263Gによって規定されている。注目画素群規定枠263Gは、2×5の分割領域で区切られた矩形枠であり、図中正面視左上角の分割領域に第1の画素行280の第1の画素L1が位置し、図中正面視右下角の分割領域に第2の画素行280の第1の画素L1が位置する。この場合、注目通常画素組として、例えば注目画素群262Gの図中正面視左上角の第1の画素L1とこの第1の画素L1と共に注目画素群262Gの同一行内に存在する第2の画素R1との間で隣接している一対の通常画素N1を採用すればよい。また、注目位相差画素として、例えば注目画素群262Gの図中正面視左上角の第1の画素L1とこの第1の画素L1に斜め方向で隣接する第2の画素R1(注目画素群262Gに含まれる第2の画素行282の第2の画素R1)を採用すればよい。また、これに限らず、注目画素群262Gの図中正面視右下角の第1の画素L1とこの第1の画素L1に斜め方向で隣接する第2の画素R1(注目画素群262Gに含まれる第1の画素行280の第2の画素R1)を位相差画素として採用してもよい。
 図39に示す注目画素群262Hは、注目画素群規定枠263Hによって規定されている。注目画素群規定枠263Hは、4×2の分割領域で区切られた矩形枠であり、図中正面視左上角の分割領域に第1の画素行280の第1の画素L1が位置する。この場合、注目通常画素組として、例えば注目画素群262Hに含まれる2行の第3の画素行284のうちの一方の行に含まれる一対の通常画素Nに対応する一対の通常画素N1を採用すればよい。また、注目位相差画素として、例えば注目画素群262Gの図中正面視左上角の第1の画素L1とこの画素に斜め方向で隣接する第2の画素R1(注目画素群262Hに含まれる第2の画素行282の第2の画素Rに対応する第2の画素R1)を採用すればよい。
 図38及び図39に示す構成によれば、行方向に複数画素分だけ離れて配置された第1の画素L1及び第2の画素R1を注目位相差画素として採用する場合と比べ、高い空間周波数の画像領域を特定することができる。
 なお、図36に示す注目画素群262E及び図38に示す注目画素群262Gの各々は、複数の第1の画素L1及び複数の第2の画素R1を有する。この場合、注目位相差画素として採用する第1の画素L1と第2の画素R1との組み合わせは如何なる組み合わせであってもよい。
 [第4実施形態]
 上記各実施形態では、撮像装置100(100A,100B)を例示したが、撮像装置100(100A,100B)の変形例である携帯端末装置としては、例えばカメラ機能を有する携帯電話機やスマートフォンなどが挙げられる。この他にも、PDA(Personal Digital Assistants)や携帯型ゲーム機などが挙げられる。本第3実施形態では、スマートフォンを例に挙げ、図面を参照しつつ、詳細に説明する。
 図40は、スマートフォン500の外観の一例を示す斜視図である。図40に示すスマートフォン500は、平板状の筐体502を有し、筐体502の一方の面に表示部としての表示パネル521と、入力部としての操作パネル522とが一体となった表示入力部520を備えている。また、筐体502は、スピーカ531と、マイクロホン532と、操作部540と、カメラ部541とを備えている。なお、筐体502の構成はこれに限定されず、例えば、表示部と入力部とが独立した構成を採用したり、折り畳み構造やスライド構造を有する構成を採用したりすることもできる。
 図41は、図40に示すスマートフォン500の構成の一例を示すブロック図である。図40に示すように、スマートフォン500の主たる構成要素として、無線通信部510と、表示入力部520と、通信部530と、操作部540と、カメラ部541と、記憶部550と、外部入出力部560と、を備える。また、スマートフォン500の主たる構成要素として、GPS(Global Positioning System)受信部570と、モーションセンサ部580と、電源部590と、主制御部501と、を備える。また、スマートフォン500の主たる機能として、基地局装置BSと移動通信網NWとを介した移動無線通信を行う無線通信機能を備える。
 無線通信部510は、主制御部501の指示に従って、移動通信網NWに収容された基地局装置BSに対して無線通信を行うものである。この無線通信を使用して、音声データ、画像データ等の各種ファイルデータ、電子メールデータなどの送受信や、Webデータやストリーミングデータなどの受信を行う。
 表示入力部520は、いわゆるタッチパネルであって、表示パネル521と、操作パネル522とを備える。そのため、表示入力部520は、主制御部501の制御により、画像(静止画像および動画像)や文字情報などを表示して視覚的にユーザに情報を伝達し、かつ、表示した情報に対するユーザ操作を検出する。なお、生成された3Dを鑑賞する場合には、表示パネル521は、3D表示パネルであることが好ましい。
 表示パネル521は、LCD、OELD(Organic Electro-Luminescence Display)などを表示デバイスとして用いたものである。操作パネル522は、表示パネル521の表示面上に表示される画像を視認可能に載置され、ユーザの指や尖筆によって操作される一又は複数の座標を検出するデバイスである。係るデバイスをユーザの指や尖筆によって操作すると、操作に起因して発生する検出信号を主制御部501に出力する。次いで、主制御部501は、受信した検出信号に基づいて、表示パネル521上の操作位置(座標)を検出する。
 図40に示すように、スマートフォン500の表示パネル521と操作パネル522とは一体となって表示入力部520を構成しているが、操作パネル522が表示パネル521を完全に覆うような配置となっている。この配置を採用した場合、操作パネル522は、表示パネル521外の領域についても、ユーザ操作を検出する機能を備えてもよい。換言すると、操作パネル522は、表示パネル521に重なる重畳部分についての検出領域(以下、表示領域と称する)と、それ以外の表示パネル521に重ならない外縁部分についての検出領域(以下、非表示領域と称する)とを備えていてもよい。
 なお、表示領域の大きさと表示パネル521の大きさとを完全に一致させても良いが、両者を必ずしも一致させる必要は無い。また、操作パネル522が、外縁部分と、それ以外の内側部分の2つの感応領域を備えていてもよい。更に、外縁部分の幅は、筐体502の大きさなどに応じて適宜設計されるものである。更にまた、操作パネル522で採用される位置検出方式としては、マトリクススイッチ方式、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式などが挙げられ、いずれの方式を採用することもできる。
 通信部530は、スピーカ531やマイクロホン532を備える。通信部530は、マイクロホン532を通じて入力されたユーザの音声を主制御部501にて処理可能な音声データに変換して主制御部501に出力する。また、通信部530は、無線通信部510あるいは外部入出力部560により受信された音声データを復号してスピーカ531から出力する。また、図41に示すように、例えば、スピーカ531を表示入力部520が設けられた面と同じ面に搭載し、マイクロホン532を筐体502の側面に搭載することができる。
 操作部540は、キースイッチなどを用いたハードウェアキーであって、ユーザからの指示を受け付けるものである。例えば、図40に示すように、操作部540は、スマートフォン500の筐体502の側面に搭載され、指などで押下されるとオンとなり、指を離すとバネなどの復元力によってオフ状態となる押しボタン式のスイッチである。
 記憶部550は、主制御部501の制御プログラムや制御データ、アプリケーションソフトウェア、通信相手の名称や電話番号などを対応づけたアドレスデータ、送受信した電子メールのデータを記憶する。また、記憶部550は、WebブラウジングによりダウンロードしたWebデータや、ダウンロードしたコンテンツデータを記憶する。また、記憶部550は、ストリーミングデータなどを一時的に記憶する。また、記憶部550は、スマートフォン内蔵の内部記憶部551と着脱自在な外部メモリスロットを有する外部記憶部552を有する。なお、記憶部550を構成するそれぞれの内部記憶部551と外部記憶部552は、フラッシュメモリタイプ(flash memory type)、ハードディスクタイプ(hard disk type)などの格納媒体を用いて実現される。格納媒体としては、この他にも、マルチメディアカードマイクロタイプ(multimedia card micro type)、カードタイプのメモリ(例えば、MicroSD(登録商標)メモリ等)、RAM(Random Access Memory)、ROM(Read Only Memory)が例示できる。
 外部入出力部560は、スマートフォン500に連結される全ての外部機器とのインタフェースの役割を果たすものであり、他の外部機器に通信等又はネットワークにより直接的又は間接的に接続するためのものである。他の外部機器に通信等としては、例えば、ユニバーサルシリアルバス(USB)、IEEE1394などが挙げられる。ネットワークとしては、例えば、インターネット、無線LAN、ブルートゥース(Bluetooth(登録商標))、RFID(Radio Frequency Identification)、赤外線通信(Infrared Data Association:IrDA(登録商標))が挙げられる。また、ネットワークの他の例としては、UWB(Ultra Wideband(登録商標))、ジグビー(ZigBee(登録商標))などが挙げられる。
 スマートフォン500に連結される外部機器としては、例えば、有/無線ヘッドセット、有/無線外部充電器、有/無線データポート、カードソケットを介して接続されるメモリカード(Memory card)が挙げられる。外部機器の他の例としては、SIM(Subscriber Identity Module Card)/UIM(User Identity Module Card)カード、オーディオ・ビデオI/O(Input/Output)端子を介して接続される外部オーディオ・ビデオ機器が挙げられる。外部オーディオ・ビデオ機器の他にも、無線接続される外部オーディオ・ビデオ機器が挙げられる。また、外部オーディオ・ビデオ機器に代えて、例えば有/無線接続されるスマートフォン、有/無線接続されるパーソナルコンピュータ、有/無線接続されるPDA、有/無線接続されるパーソナルコンピュータ、イヤホンなども適用可能である。
 外部入出力部は、このような外部機器から伝送を受けたデータをスマートフォン500の内部の各構成要素に伝達することや、スマートフォン500の内部のデータが外部機器に伝送されるようにすることができる。
 GPS受信部570は、主制御部501の指示にしたがって、GPS衛星ST1~STnから送信されるGPS信号を受信し、受信した複数のGPS信号に基づく測位演算処理を実行し、当該スマートフォン500の緯度、経度、高度からなる位置を検出する。GPS受信部570は、無線通信部510や外部入出力部560(例えば、無線LAN)から位置情報を取得できる時には、その位置情報を用いて位置を検出することもできる。
 モーションセンサ部580は、例えば、3軸の加速度センサなどを備え、主制御部501の指示にしたがって、スマートフォン500の物理的な動きを検出する。スマートフォン500の物理的な動きを検出することにより、スマートフォン500の動く方向や加速度が検出される。この検出結果は、主制御部501に出力されるものである。
 電源部590は、主制御部501の指示にしたがって、スマートフォン500の各部に、バッテリ(図示省略)に蓄えられる電力を供給するものである。
 主制御部501は、マイクロプロセッサを備え、記憶部550が記憶する制御プログラムや制御データにしたがって動作し、スマートフォン500の各部を統括して制御するものである。また、主制御部501は、無線通信部510を通じて、音声通信やデータ通信を行うために、通信系の各部を制御する移動通信制御機能と、アプリケーション処理機能を備える。
 アプリケーション処理機能は、記憶部550が記憶するアプリケーションソフトウェアにしたがって主制御部501が動作することにより実現するものである。アプリケーション処理機能としては、例えば、外部入出力部560を制御して対向機器とデータ通信を行う赤外線通信機能や、電子メールの送受信を行う電子メール機能、Webページを閲覧するWebブラウジング機能などがある。
 また、主制御部501は、受信データやダウンロードしたストリーミングデータなどの画像データ(静止画像や動画像のデータ)に基づいて、映像を表示入力部520に表示する等の画像処理機能を備える。画像処理機能とは、主制御部501が、上記画像データを復号し、この復号結果に画像処理を施して、画像を表示入力部520に表示する機能のことをいう。
 更に、主制御部501は、表示パネル521に対する表示制御と、操作部540、操作パネル522を通じたユーザ操作を検出する操作検出制御とを実行する。
 表示制御の実行により、主制御部501は、アプリケーションソフトウェアを起動するためのアイコンや、スクロールバーなどのソフトキーを表示したり、あるいは電子メールを作成したりするためのウィンドウを表示する。なお、スクロールバーとは、表示パネル521の表示領域に収まりきれない大きな画像などについて、画像の表示部分を移動する指示を受け付けるためのソフトキーのことをいう。
 また、操作検出制御の実行により、主制御部501は、操作部540を通じたユーザ操作を検出したり、操作パネル522を通じて、上記アイコンに対する操作や、上記ウィンドウの入力欄に対する文字列の入力を受け付けたりする。また、操作検出制御の実行により、主制御部501は、スクロールバーを通じた表示画像のスクロール要求を受け付ける。
 更に、操作検出制御の実行により主制御部501は、操作パネル522に対する操作位置が、表示パネル521に重なる重畳部分(表示領域)か、それ以外の表示パネル21に重ならない外縁部分(非表示領域)かを判定する。そして、この判定結果を受けて、操作パネル522の感応領域や、ソフトキーの表示位置を制御するタッチパネル制御機能を備える。
 また、主制御部501は、操作パネル522に対するジェスチャ操作を検出し、検出したジェスチャ操作に応じて、予め設定された機能を実行することもできる。ジェスチャ操作とは、従来の単純なタッチ操作ではなく、指などによって軌跡を描いたり、複数の位置を同時に指定したり、あるいはこれらを組み合わせて、複数の位置から少なくとも1つについて軌跡を描く操作を意味する。
 カメラ部541は、CMOSやCCDなどの撮像素子を用いて撮像するデジタルカメラであり、図1等に示す撮像装置100と同様の機能を備えている。
 また、カメラ部541は、マニュアルフォーカスモードとオートフォーカスモードとを切り替え可能である。マニュアルフォーカスモードが選択されると、操作部540又は表示入力部520に表示されるフォーカス用のアイコンボタン等を操作することにより、カメラ部541の撮影レンズのピント合わせを行うことができる。また、マニュアルフォーカスモード時には、スプリットイメージが合成されたライブビュー画像を表示パネル521に表示させ、これによりマニュアルフォーカス時の合焦状態を確認できるようにしている。なお、図12に示すハイブリッドファインダー220をスマートフォン500に設けるようにしてもよい。
 また、カメラ部541は、主制御部501の制御により、撮像によって得た画像データを例えばJPEG(Joint Photographic coding Experts Group)などの圧縮した画像データに変換する。そして、変換して得た画像データを記憶部550に記録したり、入出力部560や無線通信部510を通じて出力することができる。図40に示すにスマートフォン500において、カメラ部541は表示入力部520と同じ面に搭載されているが、カメラ部541の搭載位置はこれに限らず、表示入力部520の背面に搭載されてもよいし、あるいは、複数のカメラ部541が搭載されてもよい。なお、複数のカメラ部541が搭載されている場合には、撮像に供するカメラ部541を切り替えて単独にて撮像したり、あるいは、複数のカメラ部541を同時に使用して撮像したりすることもできる。
 また、カメラ部541はスマートフォン500の各種機能に利用することができる。例えば、表示パネル521にカメラ部541で取得した画像を表示することや、操作パネル522の操作入力のひとつとして、カメラ部541の画像を利用することができる。また、GPS受信部570が位置を検出する際に、カメラ部541からの画像を参照して位置を検出することもできる。更には、カメラ部541からの画像を参照して、3軸の加速度センサを用いずに、或いは、3軸の加速度センサと併用して、スマートフォン500のカメラ部541の光軸方向を判断することや、現在の使用環境を判断することもできる。勿論、カメラ部541からの画像をアプリケーションソフトウェア内で利用することもできる。
 その他、静止画又は動画の画像データに各種情報を付加して記憶部550に記録したり、入出力部560や無線通信部510を通じて出力したりすることもできる。ここで言う「各種情報」としては、例えば、静止画又は動画の画像データにGPS受信部570により取得した位置情報、マイクロホン532により取得した音声情報(主制御部等により、音声テキスト変換を行ってテキスト情報となっていてもよい)が挙げられる。この他にも、モーションセンサ部580により取得した姿勢情報等などであってもよい。
 また、上記各実施形態では、上下方向に2分割されたスプリットイメージを例示したが、これに限らず、左右方向又は斜め方向に複数分割された画像をスプリットイメージとして適用してもよい。
 例えば、図42に示すスプリットイメージ66aは、行方向に平行な複数の分割線63aにより奇数ラインと偶数ラインとに分割されている。このスプリットイメージ66aでは、第1の画素群から出力された出力信号に基づいて生成されたライン状(一例として短冊状)の位相差画像66Laが奇数ライン(偶数ラインでも可)に表示される。また、第2の画素群から出力された出力信号に基づき生成されたライン状(一例として短冊状)の位相差画像66Raが偶数ラインに表示される。
 また、図43に示すスプリットイメージ66bは、行方向に傾き角を有する分割線63b(例えば、スプリットイメージ66bの対角線)により2分割されている。このスプリットイメージ66bでは、第1の画素群から出力された出力信号に基づき生成された位相差画像66Lbが一方の領域に表示される。また、第2の画素群から出力された出力信号に基づき生成された位相差画像66Rbが他方の領域に表示される。
 また、図44A及び図44Bに示すスプリットイメージ66cは、行方向及び列方向にそれぞれ平行な格子状の分割線63cにより分割されている。スプリットイメージ66cでは、第1の画素群から出力された出力信号に基づき生成された位相差画像66Lcが市松模様(チェッカーパターン)状に並べられて表示される。また、第2の画素群から出力された出力信号に基づき生成された位相差画像66Rcが市松模様状に並べられて表示される。
 また、スプリットイメージに限らず、2つの位相差画像から他の合焦確認画像を生成し、合焦確認画像を表示するようにしてもよい。例えば、2つの位相差画像を重畳して合成表示し、ピントがずれている場合は2重像として表示され、ピントが合った状態ではクリアに画像が表示されるようにしてもよい。
 また、上記各実施形態では、第1~第3の画素群を有する撮像素子20(20A)を例示したが、本発明はこれに限定されるものではなく、第1の画素群及び第2の画素群のみからなる撮像素子であってもよい。この種の撮像素子を有するデジタルカメラは、第1の画素群から出力された第1の画像及び第2の画素群から出力された第2の画像に基づいて3次元画像(3D画像)を生成することができるし、2次元画像(2D画像)も生成することができる。この場合、2次元画像の生成は、例えば第1の画像及び第2の画像の相互における同色の画素間で補間処理を行うことで実現される。また、補間処理を行わずに、第1の画像又は第2の画像を2次元画像として採用してもよい。
 また、上記各実施形態では、第1~第3の画像が画像処理部28に入力された場合に通常画像とスプリットイメージとの双方を表示装置の同画面に同時に表示する態様を例示したが、本発明はこれに限定されるものではない。例えば、表示制御部36が、表示装置に対する通常画像の動画像としての連続した表示を抑止し、かつ、表示装置に対してスプリットイメージを動画像として連続して表示させる制御を行うようにしてもよい。ここで言う「通常画像の表示を抑止する」とは、例えば表示装置に対して通常画像を表示させないことを指す。具体的には、通常画像を生成するものの表示装置に通常画像を出力しないことで表示装置に対して通常画像を表示させないことや通常画像を生成しないことで表示装置に対して通常画像を表示させないことを指す。表示装置の画面全体を利用してスプリットイメージを表示させてもよいし、一例として図13に示すスプリットイメージの表示領域の全体を利用してスプリットイメージを表示させてもよい。なお、ここで言う「スプリットイメージ」としては、特定の撮像素子を使用する場合において、位相差画群から出力された画像(例えば第1の画素群から出力された第1の画像及び第2の画素群から出力された第2の画像)に基づくスプリットイメージが例示できる。「特定の撮像素子を使用する場合」としては、例えば位相差画素群(例えば第1の画素群及び第2の画素群)のみからなる撮像素子を使用する場合が挙げられる。この他にも、通常画素に対して所定の割合で位相差画素(例えば第1の画素群及び第2の画素群)が配置された撮像素子を使用する場合が例示できる。
 また、通常画像の表示を抑止してスプリットイメージを表示させるための条件としては、様々な条件が考えられる。例えば、スプリットイメージの表示が指示されている状態で通常画像の表示指示が解除された場合に表示制御部36が表示装置に対して通常画像を表示させずにスプリットイメージを表示させる制御を行うようにしてもよい。また、例えば、撮影者がハイブリッドファインダーを覗きこんだ場合に表示制御部36が表示装置に対して通常画像を表示させずにスプリットイメージを表示させる制御を行うようにしてもよい。また、例えば、レリーズボタン211が半押し状態にされた場合に表示制御部36が表示装置に対して通常画像を表示させずにスプリットイメージを表示させる制御を行うようにしてもよい。また、例えば、レリーズボタン211に対して押圧操作が行われていない場合に表示制御部36が表示装置に対して通常画像を表示させずにスプリットイメージを表示させる制御を行うようにしてもよい。また、例えば、被写体の顔を検出する顔検出機能を働かせた場合に表示制御部36が表示装置に対して通常画像を表示させずにスプリットイメージを表示させる制御を行うようにしてもよい。なお、ここでは、表示制御部36が通常画像の表示を抑止する変形例を挙げたが、これに限らず、例えば、表示制御部36は、通常画像に全画面のスプリットイメージを上書き表示するように制御を行ってもよい。
 また、上記各実施形態で説明した撮像装置100(100A,100B)は、被写界深度を確認する機能(被写界深度確認機能)を有していてもよい。この場合、例えば撮像装置100は被写界深度確認キーを有する。被写界深度確認キーは、ハードキーであってもよいし、ソフトキーであってもよい。ハードキーによる指示の場合は、例えばモーメンタリ動作型のスイッチ(非保持型スイッチ)を適用することが好ましい。ここで言うモーメンタリ動作型のスイッチとは、例えば所定位置に押し込まれている間だけ撮像装置100における特定の動作状態を維持するスイッチを指す。ここで、被写界深度確認キーは、押下されると絞り値が変更される。また、被写界深度確認キーに対する押下が継続して行われている間(所定位置に押し込まれている間)、絞り値は限界値に達するまで変化し続ける。このように、被写界深度確認キーの押下中は、絞り値が変化するため、スプリットイメージを得るために必要な位相差が得られない場合がある。そこで、スプリットイメージが表示されている状態で、被写界深度確認キーが押下された場合、押下中はスプリットイメージから通常のライブビュー表示に変更するようにしてもよい。また、押下状態が解除された際に再度スプリットイメージを表示させるように画面の切り替えをCPU12が行うようにしてもよい。なお、ここでは、被写界深度確認キーの一例としてモーメンタリ動作型のスイッチを適用した場合を例示したが、これに限らず、オルタネイト動作型のスイッチ(保持型スイッチ)を適用してもよい。
 また、上記各実施形態で説明した画像出力処理の流れ(図16参照)及び画像領域特定処理(図17、図18、図32及び図35参照)はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。また、上記各実施形態で説明した画像出力処理及び画像領域特定処理に含まれる各処理は、プログラムを実行することにより、コンピュータを利用してソフトウェア構成により実現されてもよいし、その他のハードウェア構成で実現されてもよい。また、ハードウェア構成とソフトウェア構成の組み合わせによって実現してもよい。
 上記各実施形態で説明した画像出力処理及び画像領域特定処理を、コンピュータによりプログラムを実行することにより実現する場合は、プログラムを所定の記憶領域(例えばメモリ26)に予め記憶しておけばよい。なお、必ずしも最初からメモリ26に記憶させておく必要はない。例えば、コンピュータに接続されて使用されるSSD(Solid State Drive)、CD-ROM、DVDディスク、光磁気ディスク、ICカードなどの任意の「可搬型の記憶媒体」に先ずはプログラムを記憶させておいてもよい。そして、コンピュータがこれらの可搬型の記憶媒体からプログラムを取得して実行するようにしてもよい。また、インターネットやLAN(Local Area Network)などを介してコンピュータに接続される他のコンピュータまたはサーバ装置などに各プログラムを記憶させておき、コンピュータがこれらからプログラムを取得して実行するようにしてもよい。
16 撮影レンズ
20,20A,20B,20C 撮像素子
26 メモリ
28A 補正部
28B 生成部
28C 特定部
36A,36B 表示制御部
100,100A,100B 撮像装置
213 表示部
247 LCD

Claims (18)

  1.  撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子と、
     前記撮像素子から出力された画像信号に基づく第1の表示用画像と前記第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成する生成部と、
     前記第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び前記第1の画像信号と前記第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定する特定部と、
     画像を表示する表示部と、
     前記表示部に対して、前記第1の表示用画像を表示させ、且つ、前記第1の表示用画像の表示領域内に前記第2の表示用画像を表示させ、且つ、前記第2の表示用画像のうち、前記特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行う表示制御部と、
     を含む画像処理装置。
  2.  撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子と、
     前記撮像素子から出力された画像信号に基づく第1の表示用画像と前記第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成する生成部と、
     前記第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び前記第1の画像信号と前記第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定する特定部と、
     画像を表示する表示部と、
     前記表示部に対して、前記第2の表示用画像を表示させ、且つ、前記第2の表示用画像のうち、前記特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行う表示制御部と、
     を含む画像処理装置。
  3.  前記撮像素子は、前記撮影レンズを透過した被写体像が瞳分割されずに結像されて第3の画像信号を出力する第3の画素群を更に有し、
     前記生成部は、前記第3の画像信号に基づいて前記第1の表示用画像を生成する請求項1又は請求項2に記載の画像処理装置。
  4.  前記コントラストの大きさは、前記第3の画像信号に基づいて定まる請求項3に記載の画像処理装置。
  5.  前記第1の画素群は、瞳分割方向と前記瞳分割方向に対する交差方向とに配置された複数の第1の画素を有し、
     前記第2の画素群は、前記瞳分割方向及び前記交差方向のうち少なくとも前記瞳分割方向で前記複数の第1の画素の各々と交互に各々配置された複数の第2の画素を有し、
     前記第3の画素群は、前記瞳分割方向及び前記交差方向のうち少なくとも前記瞳分割方向で前記第1の画素と前記第2の画素との間に配置された第3の画素を有し、
     前記コントラストの大きさは、前記第3の画素の信号レベルに基づいて定まる請求項4に記載の画像処理装置。
  6.  前記コントラストの大きさは、前記第3の画素の前記交差方向の所定画素分の平均信号レベルに基づいて定まる請求項5に記載の画像処理装置。
  7.  前記第1の画素群は、瞳分割方向と前記瞳分割方向に対する交差方向とに配置された複数の第1の画素を有し、
     前記第2の画素群は、前記瞳分割方向及び前記交差方向のうち少なくとも前記瞳分割方向で前記複数の第1の画素の各々と交互に各々配置された複数の第2の画素を有し、
     前記第3の画素群は、前記瞳分割方向及び前記交差方向のうち少なくとも前記瞳分割方向で前記第1の画素と前記第2の画素との間に配置された複数の第3の画素を有し、
     前記コントラストの大きさは、前記瞳分割方向で前記第1の画素と前記第2の画素との間に配置された前記複数の第3の画素の信号レベルの変化率に基づいて定まる請求項4に記載の画像処理装置。
  8.  前記コントラストの大きさは、前記複数の第3の画素の各々における前記交差方向の所定画素分の平均信号レベルの変化率に基づいて定まる請求項7に記載の画像処理装置。
  9.  前記コントラストの大きさは、前記第3の画像信号のうち、前記第3の画素群における信号レベルが非飽和状態の画素による第3の画像信号に基づいて定まる請求項4から請求項8の何れか1項に記載の画像処理装置。
  10.  前記第1の画素群は、瞳分割方向と前記瞳分割方向に対する交差方向とに配置された複数の第1の画素を有し、
     前記第2の画素群は、前記瞳分割方向及び前記交差方向のうち少なくとも前記瞳分割方向で前記複数の第1の画素の各々と交互に隣接して各々配置された複数の第2の画素を有する請求項1から請求項4の何れか1項に記載の画像処理装置。
  11.  前記第1の画素群における瞳分割方向の画素の前記第1の領域を介して入射される光及び前記第2の画素群における瞳分割方向の画素の前記第2の領域を介して入射される光に基づく減光特性に応じた補正係数を求め、求めた補正係数に基づいて前記第1及び前記第2の画像信号を補正する補正部を更に含み、
     前記第2条件は、前記補正部により各々補正された前記第1の画像信号と前記第2の画像信号との一致度が前記第2所定値以上であるとの条件である請求項1から請求項10の何れか1項に記載の画像処理装置。
  12.  前記特定部は、前記第1及び第2の画像信号の各々により特定される前記瞳分割方向で信号レベルが極大値を持つ画素間の距離に基づいて、前記第2条件を満足する前記画像領域を特定する請求項1から請求項11の何れか1項に記載の画像処理装置。
  13.  前記特定部は、前記第1及び第2の画像信号の各々の微分値に基づいて前記距離を推定し、推定した前記距離に基づいて、前記第2条件を満足する前記画像領域を特定する請求項12に記載の画像処理装置。
  14.  前記第1所定値及び前記第2所定値の少なくとも一方は、絞り値に基づいて定まる請求項1から請求項13の何れか1項に記載の画像処理装置。
  15.  請求項1から請求項14の何れか1項に記載の画像処理装置と、
     前記第1及び第2の画素群を有する撮像素子と、
     前記撮像素子から出力された画像信号に基づいて生成された画像を記憶する記憶部と、
     を含む撮像装置。
  16.  撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子から出力された画像信号に基づく第1の表示用画像と前記第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成し、
     前記第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び前記第1の画像信号と前記第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定し、
     画像を表示する表示部に対して、前記第1の表示用画像を表示させ、且つ、前記第1の表示用画像の表示領域内に前記第2の表示用画像を表示させ、且つ、前記第2の表示用画像のうち、前記特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行う
     ことを含む画像処理方法。
  17.  撮影レンズにおける第1及び第2の領域を通過した被写体像が瞳分割されてそれぞれ結像されることにより第1及び第2の画像信号を出力する第1及び第2の画素群を有する撮像素子から出力された画像信号に基づく第1の表示用画像と前記第1及び第2の画像信号に基づく合焦確認に使用する第2の表示用画像とを生成し、
     前記第2の表示用画像のうち、コントラストの大きさが第1所定値以上であるとの第1条件、及び前記第1の画像信号と前記第2の画像信号との一致度が第2所定値以上であるとの第2条件の双方の条件を満足する画像領域を特定し、
     画像を表示する表示部に対して、前記第2の表示用画像を表示させ、且つ、前記第2の表示用画像のうち、前記特定部により特定された画像領域を、他の領域と区別可能に表示させる制御を行う
     ことを含む画像処理方法。
  18.  コンピュータを、
     請求項1から請求項14の何れか1項に記載の画像処理装置における前記生成部、前記特定部及び前記表示制御部として機能させるための画像処理プログラム。
PCT/JP2013/080323 2013-03-29 2013-11-08 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム WO2014155813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015507945A JP6000446B2 (ja) 2013-03-29 2013-11-08 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
CN201380075066.0A CN105051600B (zh) 2013-03-29 2013-11-08 图像处理装置、摄像装置以及图像处理方法
US14/864,164 US9538070B2 (en) 2013-03-29 2015-09-24 Image processing device, imaging device, image processing method and computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-074386 2013-03-29
JP2013074386 2013-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/864,164 Continuation US9538070B2 (en) 2013-03-29 2015-09-24 Image processing device, imaging device, image processing method and computer readable medium

Publications (1)

Publication Number Publication Date
WO2014155813A1 true WO2014155813A1 (ja) 2014-10-02

Family

ID=51622850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080323 WO2014155813A1 (ja) 2013-03-29 2013-11-08 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム

Country Status (4)

Country Link
US (1) US9538070B2 (ja)
JP (1) JP6000446B2 (ja)
CN (1) CN105051600B (ja)
WO (1) WO2014155813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066542A (ja) * 2017-09-28 2019-04-25 キヤノン株式会社 撮像装置及びその制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046039A1 (ja) * 2012-09-19 2014-03-27 富士フイルム株式会社 撮像装置及び合焦確認表示方法
CN105026976B (zh) * 2013-03-29 2017-05-03 富士胶片株式会社 图像处理装置、摄像装置及图像处理方法
JP6606307B2 (ja) 2017-03-16 2019-11-20 富士フイルム株式会社 撮像素子及び撮像装置
WO2019064977A1 (ja) 2017-09-28 2019-04-04 富士フイルム株式会社 光学系、投影装置及び撮像装置
DE102019114286A1 (de) 2018-05-29 2019-12-05 Sony Semiconductor Solutions Corporation Einrichtung und verfahren
JP7262940B2 (ja) * 2018-07-30 2023-04-24 キヤノン株式会社 画像処理装置、撮像装置、画像処理装置の制御方法およびプログラム
US10755062B1 (en) 2019-03-19 2020-08-25 Cognex Corporation System and method for evaluating symbols

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009163220A (ja) * 2007-12-14 2009-07-23 Canon Inc 撮像装置
JP2009237214A (ja) * 2008-03-27 2009-10-15 Canon Inc 撮像装置
JP2009276426A (ja) * 2008-05-13 2009-11-26 Canon Inc 撮像装置
JP2011119930A (ja) * 2009-12-02 2011-06-16 Seiko Epson Corp 撮像装置、撮像方法および撮像プログラム
JP2012113064A (ja) * 2010-11-22 2012-06-14 Olympus Corp 撮像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309210A (ja) 2000-04-27 2001-11-02 Minolta Co Ltd デジタルカメラ
US7099575B2 (en) * 2002-07-08 2006-08-29 Fuji Photo Film Co., Ltd. Manual focus device and autofocus camera
JP5043626B2 (ja) 2007-12-13 2012-10-10 キヤノン株式会社 撮像装置
US8279318B2 (en) * 2007-12-14 2012-10-02 Canon Kabushiki Kaisha Image pickup apparatus and display control method for the same
JP2012173531A (ja) * 2011-02-22 2012-09-10 Sony Corp 撮像装置、およびフォーカス制御方法、並びにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009163220A (ja) * 2007-12-14 2009-07-23 Canon Inc 撮像装置
JP2009237214A (ja) * 2008-03-27 2009-10-15 Canon Inc 撮像装置
JP2009276426A (ja) * 2008-05-13 2009-11-26 Canon Inc 撮像装置
JP2011119930A (ja) * 2009-12-02 2011-06-16 Seiko Epson Corp 撮像装置、撮像方法および撮像プログラム
JP2012113064A (ja) * 2010-11-22 2012-06-14 Olympus Corp 撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066542A (ja) * 2017-09-28 2019-04-25 キヤノン株式会社 撮像装置及びその制御方法

Also Published As

Publication number Publication date
CN105051600A (zh) 2015-11-11
JP6000446B2 (ja) 2016-09-28
US20160014329A1 (en) 2016-01-14
JPWO2014155813A1 (ja) 2017-02-16
US9538070B2 (en) 2017-01-03
CN105051600B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
JP6033454B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5960286B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5931206B2 (ja) 画像処理装置、撮像装置、プログラム及び画像処理方法
JP5889441B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP6000446B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5681329B2 (ja) 撮像装置及び画像表示方法
JP6158340B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP6086975B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5901801B2 (ja) 画像処理装置、撮像装置、プログラム及び画像処理方法
JP5833254B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5901782B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5901781B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5753323B2 (ja) 撮像装置及び画像表示方法
JP5955417B2 (ja) 画像処理装置、撮像装置、プログラム及び画像処理方法
JP5972485B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5901780B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
JP5934844B2 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム
WO2014045741A1 (ja) 画像処理装置、撮像装置、画像処理方法及び画像処理プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075066.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880099

Country of ref document: EP

Kind code of ref document: A1