WO2014155656A1 - Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility - Google Patents

Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility Download PDF

Info

Publication number
WO2014155656A1
WO2014155656A1 PCT/JP2013/059478 JP2013059478W WO2014155656A1 WO 2014155656 A1 WO2014155656 A1 WO 2014155656A1 JP 2013059478 W JP2013059478 W JP 2013059478W WO 2014155656 A1 WO2014155656 A1 WO 2014155656A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
flow rate
water level
turbine
pump
Prior art date
Application number
PCT/JP2013/059478
Other languages
French (fr)
Japanese (ja)
Inventor
正憲 平岡
中村 聡
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2013/059478 priority Critical patent/WO2014155656A1/en
Priority to JP2015507862A priority patent/JP5872734B2/en
Publication of WO2014155656A1 publication Critical patent/WO2014155656A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/08Regulating, i.e. acting automatically by speed, e.g. by measuring electric frequency or liquid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • F03B15/06Regulating, i.e. acting automatically
    • F03B15/14Regulating, i.e. acting automatically by or of water level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a maintenance flow rate power generation control system, a maintenance flow rate power generation control method, a maintenance flow rate power generation control program, and a maintenance flow rate power generation facility. Specifically, the present invention relates to a maintenance flow rate power generation control program. The present invention relates to a maintenance flow power generation technology that enables operation and secures efficient power generation and a maintenance flow rate.
  • ⁇ ⁇ ⁇ Pump reverse turbine type generator is used as a generator that can be introduced and operated at low cost.
  • This reverse pump turbine generator is used as a generator by guiding water flow to a commonly used pump (swirl pump or axial flow pump) and rotating the pump in the opposite direction to normal operation. is there.
  • a commonly used pump switching pump or axial flow pump
  • the same parts as the pump can be used, so the introduction cost is low, and because the number of parts is small, maintenance and inspection are easy and maintenance costs are low.
  • a pump reverse turbine type generator for example, a pump reverse turbine connected to a pipe connecting a water supply unit and a water supply unit, and a rotating shaft connected to the main shaft of the pump reverse turbine.
  • a generator a flow rate detection means provided in the pipeline on the water supply side of the pump reverse rotation turbine, and a flow rate downstream of the pump reverse rotation turbine based on the flow rate detected by the flow rate detection means.
  • a pump reverse turbine type power generation facility see Patent Document 1 including a control means for controlling the rotation speed of the pump reverse turbine so that the flow rate of the pipe is constant.
  • the pump reverse turbine type generator described above generally does not have a guide vane for controlling the inflow amount like a turbine in a normal hydroelectric generator, and is generally operated at a constant output.
  • a pump-reversed turbine generator When such a pump-reversed turbine generator is installed in the discharge path of the dam (path for returning the water used in the power generation facility to the river) and the maintenance flow power generation is performed, the inflow will change greatly due to fluctuations in the dam water level, The power generation efficiency is likely to decrease, and the amount of water used may fluctuate due to the fluctuation characteristics of the generator, resulting in intermittent shortage of the maintenance flow rate.
  • the main object of the present invention is to provide a maintenance flow power generation technique that enables operation at a constant flow rate in response to fluctuations in the water level in the dam, and enables efficient power generation and maintenance of the maintenance flow rate.
  • the water level of a dam where water for power generation in the maintenance flow power generation facility is taken in, and the discharge flow rate in the maintenance flow generation facility operating at the relevant water level become a predetermined reference value.
  • the storage device for storing the control data that defines the relationship with the rotational speed of the pump reverse rotation turbine in this case, and the measured value of the water level gauge of the dam is collated with the control data, and the discharge flow rate at the relevant water level is predetermined.
  • a calculation device that specifies the rotation speed to be a reference value and instructs the control device of the pump reverse rotation turbine to operate at the specified rotation speed.
  • a maintenance flow power generation facility equipped with a pump reversing turbine by controlling the rotational speed of the pump reversing turbine according to a wide range of heads ranging from low to high depending on the dam water level, that is, the amount of supplied water It is possible to maintain the discharge flow rate from a predetermined value (above the specified value of the maintenance flow rate).
  • This effect is achieved without the need to install a flow adjustment valve (same function as a guide vane in a typical water turbine) on the pump reverse rotation turbine.
  • the pump reverse rotation turbine rotates at a low speed with a low head and rotates at a high speed with a high head. Efficient driving becomes possible by driving with. Therefore, efficient power generation and maintenance flow rate can be ensured by operating at a constant flow rate in response to fluctuations in the water level at the dam.
  • the predetermined reference value of the discharge flow rate in the control data of the above-described maintenance flow power generation control system may be a value obtained by adding the time fluctuation range of the amount of water used in the pump reverse rotation turbine to the specified maintenance flow rate value. Good. According to this, even if the amount of water used fluctuates due to the so-called fluctuation characteristics of the generator, the amount of water used in the pump reverse rotation turbine falls within the maintenance flow rate and the above-mentioned reference value, and intermittently as in the past. Occurrence of a situation where the maintenance flow rate is insufficient can be avoided.
  • the arithmetic unit in the maintenance flow power generation control system described above determines whether the data obtained from the predetermined device corresponds to a predetermined value outside the operation range of the pump reverse rotation turbine, and the data is the value of the pump reverse rotation turbine.
  • the normally closed on-off valve mechanism provided at the branching point of the bypass discharge passage among the hydraulic pipes supplying water to the pump reverse rotation turbine is instructed to open in a predetermined time, and the on-off valve mechanism
  • the normally open on-off valve mechanism provided in the water supply port to the pump reverse rotation turbine in the hydraulic line may be instructed to close in a predetermined time.
  • the water flow in the hydraulic line is gradually changed by operating the on-off valve mechanism. It is possible to stop the pump reversing turbine after moving to the bypass discharge channel, and keep the pump reversing turbine running and maintained as originally while the water flow in the hydraulic line gradually moves to the bypass discharge channel.
  • the flow rate can be secured.
  • the maintenance flow power generation control system can handle the case where the power generation load on the maintenance flow power generation facility suddenly decreases due to disconnection of the overhead line, that is, the rotation load of the pump reverse rotation turbine of the maintenance flow generation facility suddenly decreases. is there.
  • a maintenance flow power generation control system that obtains such a suddenly decreased load value from a predetermined measuring device is the same as described above when the load value corresponds to a predetermined value that indicates a predetermined operation range of the pump reverse turbine. After the water flow of the hydraulic line is gradually moved to the bypass discharge channel by operating the on-off valve mechanism, it is possible to stop the pump reverse rotation turbine, and the water flow of the hydraulic line is gradually transferred to the bypass discharge channel A maintenance flow rate can be secured in between.
  • the maintenance flow power generation control method of the present invention is a pump in which the water level of the dam where water for power generation in the maintenance flow power generation facility is taken and the discharge flow rate in the maintenance flow generation facility operating at the relevant water level becomes a predetermined reference value.
  • An information processing device having a storage device for storing control data that defines the relationship with the rotational speed of the reverse rotation turbine collates the measured value of the dam water level gauge with the control data, and releases it at the relevant water level.
  • the rotation speed at which the flow rate becomes a predetermined reference value is specified, and a process for instructing the control device for the pump reverse rotation turbine to operate at the specified rotation speed is executed.
  • the maintenance flow power generation control program of the present invention is a pump in which the water level of the dam where water for power generation in the maintenance flow power generation facility is taken and the discharge flow rate in the maintenance flow generation facility operating at the relevant water level become a predetermined reference value.
  • the measured value of the dam water level gauge is compared with the control data in an information processing device having a storage device for storing control data that defines the relationship with the rotational speed of the reverse rotation turbine, and released at the relevant water level.
  • the rotational speed at which the flow rate becomes a predetermined reference value is specified, and processing for instructing the control device for the pump reverse rotation turbine to execute operation at the specified rotational speed is executed.
  • the maintenance flow power generation facility of the present invention includes a pump reverse rotation turbine that rotates upon receiving water supply for the maintenance flow rate from the dam, a generator connected to a rotation shaft of the pump reverse rotation turbine, and rotation of the pump reverse rotation turbine.
  • Control that defines the relationship between the control device that adjusts the speed, the water level of the dam, and the rotational speed of the pump reverse turbine when the discharge flow rate at the maintenance flow power generation facility operating at the water level reaches a predetermined reference value
  • the storage device for storing the data for use and the measured value at the water level gauge of the dam are compared with the control data, the rotational speed at which the discharge flow rate becomes the predetermined reference value at the relevant water level, and the identified rotation
  • a maintenance flow rate power generation control system including an arithmetic unit that instructs the control device of the pump reverse rotation turbine to operate at a speed.
  • the maintenance flow rate power generation control system of the present invention it is possible to operate efficiently at a constant flow rate in response to fluctuations in the water level in the dam, thereby ensuring efficient power generation and maintenance flow rate.
  • FIG. 1 is a diagram illustrating the concept of the maintenance flow rate power generation control system 100 of the present embodiment.
  • the maintenance flow rate power generation facility 1 to be controlled by the maintenance flow rate power generation control system 100 is a facility that generates power using water for the maintenance flow rate discharged from the dam 2 to the river 20.
  • the specified maintenance flow is the river 20 as the minimum flow required to maintain the ecosystem such as animals and plants and human activities such as fishing, water transportation and tourism. It is necessary to return to. Therefore, the maintenance flow rate power generation control system 100 according to the present embodiment controls the above-described maintenance flow rate power generation facility 1 to ensure a prescribed maintenance flow rate and discharge it to the river 20 while performing efficient power generation. .
  • the maintenance flow power generation facility 1 includes a pump reversing turbine 3 and a generator 4 connected to the rotating shaft of the pump reversing turbine 3.
  • the pump reversing water turbine 3 is connected via a water pressure line 7 extending from the reservoir area of the dam 2 and a water inlet 8 and receives water supplied from the water pressure line 7.
  • the water supplied from the water pressure line 7 to the pump reversing turbine 3 is filled in the casing, presses the runner vanes, and rotates them.
  • the rotating shaft is rotated by the rotating operation of the runner vane, and power is generated by the generator 4 connected to the rotating shaft.
  • the electricity generated by the generator 4 is transmitted to the power system 16 via the converter 14 and the inverter 15.
  • the grid interconnection by the converter 14 and the inverter 15 can reduce the influence on the power system 16.
  • the rotation speed of the pump reverse rotation turbine 3 is controlled by the control device 6.
  • the control device 6 controls the frequency of the current supplied to the output generating winding provided in the stator or the magnetic field generating winding provided in the rotor to the generator 4 connected to the pump reversing turbine 3. As a result, the rotational speed of the generator 4 and thus the rotational speed of the pump reverse rotation turbine 3 are controlled.
  • the water used in the pump reversing turbine 3 flows into the water discharge channel 12 and is discharged to the river 20 through the water discharge channel 12.
  • the water inlet 8 is provided with a normally open on / off valve mechanism 11, which is changed from a fully open state to a closed state by opening / closing the on / off valve according to an instruction from the maintenance flow rate power generation control system 100 to the on / off valve mechanism 11. It is possible to transition to any state between.
  • the water pressure line 7 is provided with a branch point upstream from the water inlet 8, that is, between the pump reverse rotation turbine 3 and the dam 2, and finally joins the water discharge channel 12 from the branch point.
  • a bypass discharge channel 9 reaching the river 20 is provided at the end.
  • the above-mentioned branch point is provided with a normally-closed on-off valve mechanism 10, which can be arbitrarily set between a closed state and a fully-open state by opening / closing the on-off valve according to an instruction from the maintenance flow rate power generation control system 100 to the on-off valve mechanism 10. It is possible to transition to the state.
  • the bypass discharge channel 9 is a hydraulic pipe, for example, when the dam water level drops to a level outside the operating range of the pump reversing turbine 3 or when the power generation load on the maintenance flow rate power generation facility 1 suddenly decreases due to disconnection of the overhead wire, etc.
  • the water flow in the path 7 becomes a bypass path that bypasses the pump reverse turbine 3 and directly flows into the water discharge path 12.
  • the on-off valve mechanisms 10 and 11 include, for example, a plurality of combined valve bodies that move in the inside of the pipe body such as the hydraulic pipe line 7 and valves that move the valve bodies to close or fully open the inside of the pipe body. An existing technology in which the body drive mechanism is integrated may be adopted.
  • the on-off valve mechanisms 10 and 11 are connected to the maintenance flow rate power generation control system 100 by appropriate wiring or network, and can receive an instruction of opening / closing operation from the maintenance flow rate power generation control system 100.
  • a water level meter 5 is installed in the water storage area of the dam 2 and is connected to the maintenance flow rate power generation control system 100 through an appropriate network.
  • a flow meter 13 is installed at least in the water discharge channel 12 downstream of the pump reverse turbine 3 and is connected to the maintenance flow rate power generation control system 100 through an appropriate network.
  • FIG. 2 is a diagram illustrating a hardware configuration example of the maintenance flow rate power generation control system 100 of the present embodiment.
  • the maintenance flow power generation control system 100 includes a storage device 101 configured by a suitable non-volatile storage device such as a hard disk drive, a memory 103 configured by a volatile storage device such as a RAM, and a program 102 held in the storage device 101.
  • a storage device 101 configured by a suitable non-volatile storage device such as a hard disk drive
  • a memory 103 configured by a volatile storage device such as a RAM
  • a program 102 held in the storage device 101.
  • the communication device 105 is responsible for communication processing with other devices such as 13.
  • the storage device 101 stores at least control data 125 in addition to the program 102 for implementing functions necessary for the maintenance flow rate power generation control system 100 of the present embodiment.
  • This control data 125 is a pump reverse turbine in the case where the water level of the dam 2 where water for power generation in the maintenance flow power generation facility 1 is taken and the discharge flow rate in the maintenance flow generation facility 1 operating at the relevant water level becomes a predetermined reference value.
  • 3 is a table that defines the relationship with the rotational speed of 3. A specific example of the control data 125 will be described later.
  • the storage device 101 further stores operation range data 126 indicating the operation range of the pump reverse rotation turbine 3.
  • the operation range data 126 is, for example, data indicating a dam water level value range in which the pump reverse rotation turbine 3 can be operated or a rotational speed range in which the pump reverse rotation turbine 3 can be operated.
  • the maintenance flow power generation control system 100 of the present embodiment collates the measured value of the water level gauge 5 of the dam 2 with the control data 125, specifies the rotational speed at which the discharge flow rate becomes the predetermined reference value at the relevant water level, A function of instructing the control device 6 of the pump reverse rotation turbine 3 to operate at the specified rotational speed is provided.
  • the maintenance flow rate power generation control system 100 uses the predetermined maintenance flow value as a predetermined reference value of the discharge flow rate in the above-described control data 125 held in the storage device 101, and the time fluctuation range of the used water amount in the pump reverse rotation turbine 3. It is preferable to store a value obtained by adding.
  • the maintenance flow power generation control system 100 determines whether the data obtained from the predetermined devices such as the water level meter 5 and the flow meter 13 described above corresponds to a value outside the operation range of the pump reverse rotation turbine 3 set in advance.
  • the normally closed on-off valve mechanism 10 provided at the branch discharge passage 9 of the hydraulic conduit 7 for supplying water to the pump reverse rotation turbine 3
  • a predetermined time is given to the normally-open on-off valve mechanism 11 provided in the water supply port 8 to the pump reverse rotation turbine 3 in the hydraulic line 7. It is preferable to have a function of instructing a closing operation at.
  • control data 125 includes the water level of the dam where water for power generation in the maintenance flow power generation facility is taken, and the rotational speed of the pump reverse rotation turbine when the discharge flow rate in the maintenance flow generation facility operating at the relevant water level becomes a predetermined reference value. This data defines the relationship.
  • the control data 125 includes the water level of the dam 2 and the pump reversing turbine 3 for each flow rate value that is a predetermined reference value of the discharge flow rate from the maintenance flow power generation facility 1 to the river 20.
  • the table defines the correspondence with the rotation speed.
  • FIG. 3A shows the rotational speed of the pump reverse turbine 3 at each dam water level when the discharge flow rate is constant at 0.8 m 3 / s.
  • FIG. 3B shows that the discharge flow rate is constant at 0.6 m 3 / s.
  • FIG. 3C shows a case where the discharge flow rate is constant at 0.9 m 3 / s.
  • FIG. 3D shows a graph of each control data 125 shown in FIGS.
  • the discharge flow rate in the control data 125 is a value obtained by adding the time fluctuation width (so-called fluctuation characteristics of the generator) of the amount of water used in the pump reverse rotation turbine 3 to the specified maintenance flow rate value. .
  • FIG. 4 is a flowchart showing a procedure example of the maintenance flow rate power generation control method of the present embodiment.
  • the arithmetic unit 101 of the maintenance flow power generation control system 100 acquires the measured value of the dam water level from the water level meter 5 installed in the water storage area of the dam 2 via the communication means 105 (s100).
  • the arithmetic unit 104 of the maintenance flow rate power generation control system 100 converts this measured value into a predetermined water level value indicating the outside of the operation range of the pump reverse rotation turbine 3 (operation range data 126 of the pump reverse rotation turbine 3 that is stored in the storage device 101 in advance). It collates (s101), and it is determined whether the dam water level is outside the operation range of the pump reverse rotation turbine 3 (s102).
  • the arithmetic unit 104 of the maintenance flow power generation control system 100 collates the measured value of the dam water level with the control data 125 (s103). Note that the control data 125 stored in the storage device 101 exists for each discharge flow to be maintained, but the control data 125 that is a target for collation of the measured value of the dam water level is specified in advance by the user. To do.
  • the calculation device 104 of the maintenance flow rate power generation control system 100 uses the measured value of the dam water level illustrated in FIG. 3A.
  • the data 125 is collated. For example, when the measured value of the dam water level is “9.0”, it can be specified from the control data 125 that the rotational speed of the pump reverse rotation turbine 3 should be “380”.
  • the calculation device 104 of the maintenance flow rate power generation control system 100 sets the rotational speed at which the discharge flow rate becomes the predetermined reference value 0.8 m 3 / s at the relevant water level “9.0” to “380” by the matching process in the above-described step s101.
  • the operation at the identified rotational speed is specified (s104), and the control device 6 of the pump reverse turbine 3 is instructed (s105).
  • control device 6 of the pump reversing turbine 3 receives the operation instruction at the rotational speed “380” from the maintenance flow rate power generation control system 100 and fixes the generator 4 connected to the pump reversing turbine 3 to the fixing device 4.
  • the frequency of the current supplied to the output generating winding provided in the child or the magnetic field generating winding provided in the rotor is controlled, and the rotational speed of the generator 4 and thus the rotational speed of the pump reverse turbine 3 is controlled (s106). ).
  • Such a control method may be an existing one.
  • the arithmetic unit 104 of the maintenance flow rate power generation control system 100 uses the flow meter 13 installed in the discharge channel 12 downstream of the pump reverse rotation turbine 3 to A measurement value relating to the flow rate may be acquired, and it may be determined whether the measurement value satisfies the predetermined reference value 0.8 m 3 / s of the discharge flow rate described above. If it is determined that the flow rate of the discharge channel 12 satisfies a predetermined reference value of the discharge rate, the arithmetic unit 104 of the maintenance flow rate power generation control system 100 stands by as it is.
  • the arithmetic unit 104 of the maintenance flow rate power generation control system 100 determines the pump reverse turbine 3 specified from the control data 125. The rotational speed is decreased by a predetermined rate, and the flow rate of the water discharge channel 12 is increased appropriately. The arithmetic unit 104 of the maintenance flow rate power generation control system 100 repeatedly executes such processing until the flow rate of the discharge channel 12 satisfies a predetermined reference value of the discharge rate.
  • step s104 the pump reverse turbine 3 in the maintenance flow rate power generation facility 1 maintains the operation state at a constant rotational speed, but the measurement value of the dam water level from the water level gauge 4 is acquired,
  • the process of determining whether the water level is outside the operating range of the pump reverse rotation turbine 3 (s101, s102) is executed at regular intervals.
  • FIG. 5 shows a timing chart corresponding to the operation status of the on-off valve mechanisms 10 and 11.
  • the arithmetic unit 104 of the maintenance flow rate power generation control system 100 receives the notification that the on-off valve mechanism 10 is fully opened from the above-described on-off valve mechanism 10 and supplies it to the water supply port 8 in the hydraulic line 7.
  • the normally open on-off valve mechanism 11 is instructed to close in a predetermined time (s109).
  • the on-off valve mechanism 11 that has received this instruction shifts the valve to the fully closed state over a predetermined time (s110).
  • the water that has been branched from the hydraulic line 7 to the pump reverse turbine 3 and the bypass discharge channel 9 completely bypasses the pump reverse turbine 3 by the bypass discharge channel 9 and flows directly into the discharge channel 12. Will do.
  • the pump reverse turbine is operated as it is while the water flow in the hydraulic line 7 is gradually transferred to the bypass discharge flow path 8, and a maintenance flow rate can be secured even during such processing. It becomes.
  • the maintenance flow rate power generation control system 100 can cope.
  • the arithmetic unit 104 of the maintenance flow rate power generation control system that obtains such a suddenly decreased load value from a predetermined measuring device, the load value is outside the predetermined operating range of the pump reverse turbine 3 as in step s102 described above. It is determined whether it corresponds to the specified value.
  • the water flow in the hydraulic line 7 is gradually bypassed by operating the on-off valve mechanisms 10 and 11 as in steps s107 to s110 described above. After moving to the discharge channel 9, the pump reverse rotation turbine 3 is stopped. Also in this case, a prescribed maintenance flow rate can be secured as the flow rate of the water discharge channel 12 while the water flow of the hydraulic pressure line 7 is gradually transferred to the bypass discharge channel 9.
  • the maintenance flow rate power generation control system of the present embodiment it is possible to operate at a constant flow rate in response to fluctuations in the water level in the dam, and to ensure efficient power generation and maintenance flow rate. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Abstract

[Problem] To allow operation in sustained-flow-rate power generation to be carried out at a constant flow rate in response to water level fluctuations on a dam, and to make it possible to guarantee efficient power generation and a sustained flow rate. [Solution] This sustained-flow-rate power generation control system (100) comprises: a storage device (101) for storing control data (125) in which a relationship is established between the water level of a dam (2) where water for power generation is taken into a sustained-flow-rate power generation facility (1), and the rotating speed of a reverse-running pump turbine (3) when the discharge amount in the sustained-flow-rate power generation facility (1) during operation at the water level reaches a predetermined standard value; and a calculation device (104) for referencing the measured value at the water level gauge (5) of the dam (2) against the control data (125), specifying the rotating speed at which the discharge amount reaches the predetermined standard value at the water level, and instructing the controller (6) of the reverse-running pump turbine (3) to implement operation at the specified rotating speed.

Description

維持流量発電制御システム、維持流量発電制御方法、維持流量発電制御プログラム、および維持流量発電設備Sustain flow power generation control system, maintenance flow power generation control method, maintenance flow power generation control program, and maintenance flow power generation facility
 本発明は、維持流量発電制御システム、維持流量発電制御方法、維持流量発電制御プログラム、および維持流量発電設備に関するものであり、具体的には、ダムでの水位変動に対応して一定流量での運転を行い、効率的な発電と維持流量の確保を可能とする維持流量発電技術に関する。 The present invention relates to a maintenance flow rate power generation control system, a maintenance flow rate power generation control method, a maintenance flow rate power generation control program, and a maintenance flow rate power generation facility. Specifically, the present invention relates to a maintenance flow rate power generation control program. The present invention relates to a maintenance flow power generation technology that enables operation and secures efficient power generation and a maintenance flow rate.
 低コストでの導入、運用が可能な発電機としてポンプ逆転水車型発電機が利用されている。このポンプ逆転水車型発電機は、一般的に使用されるポンプ(渦巻ポンプまたは軸流ポンプ)に水流を導き、ポンプを通常運転時とは逆方向に回転させることで発電機として使用するものである。ランナの羽根形状以外はポンプと同じ部品を使用できるため導入コストが低く、また、部品点数が少ないために保守点検が容易で、維持管理費用も安く抑えられる特徴がある。 ポ ン プ Pump reverse turbine type generator is used as a generator that can be introduced and operated at low cost. This reverse pump turbine generator is used as a generator by guiding water flow to a commonly used pump (swirl pump or axial flow pump) and rotating the pump in the opposite direction to normal operation. is there. Other than the shape of the runner blades, the same parts as the pump can be used, so the introduction cost is low, and because the number of parts is small, maintenance and inspection are easy and maintenance costs are low.
 こうしたポンプ逆転水車型発電機に関する従来技術としては、例えば、給水部と被給水部とを接続する管路に介設されたポンプ逆転水車と、前記ポンプ逆転水車の主軸にその回転軸が連結された発電機と、前記ポンプ逆転水車よりも前記被給水部側の前記管路に設けられた流量検出手段と、前記流量検出手段により検出された流量に基づいて、前記ポンプ逆転水車より下流側の前記管路の流量が一定となるように、前記ポンプ逆転水車の回転数を制御する、制御手段とを備えるポンプ逆転水車型発電設備(特許文献1参照)などが提案されている。 As a conventional technique related to such a pump reverse turbine type generator, for example, a pump reverse turbine connected to a pipe connecting a water supply unit and a water supply unit, and a rotating shaft connected to the main shaft of the pump reverse turbine. A generator, a flow rate detection means provided in the pipeline on the water supply side of the pump reverse rotation turbine, and a flow rate downstream of the pump reverse rotation turbine based on the flow rate detected by the flow rate detection means. There has been proposed a pump reverse turbine type power generation facility (see Patent Document 1) including a control means for controlling the rotation speed of the pump reverse turbine so that the flow rate of the pipe is constant.
特開2004-360482号公報JP 2004-360482 A
 上述したポンプ逆転水車型発電機は、通常の水力発電機における水車のように流入量を制御するガイドベーンを持たず、一定出力で運転されるのが一般的である。こうしたポンプ逆転水車型発電機を、ダムの放流経路(発電設備で用いた水を取水河川に戻す経路)に設置して維持流量発電を行う場合、ダム水位の変動によって流入量が大きく変化し、発電効率が低下しやすい上、発電機のゆらぎ特性のために使用水量が変動し間欠的に維持流量が不足する事態も生じうる。 The pump reverse turbine type generator described above generally does not have a guide vane for controlling the inflow amount like a turbine in a normal hydroelectric generator, and is generally operated at a constant output. When such a pump-reversed turbine generator is installed in the discharge path of the dam (path for returning the water used in the power generation facility to the river) and the maintenance flow power generation is performed, the inflow will change greatly due to fluctuations in the dam water level, The power generation efficiency is likely to decrease, and the amount of water used may fluctuate due to the fluctuation characteristics of the generator, resulting in intermittent shortage of the maintenance flow rate.
 そこで本発明は、ダムでの水位変動に対応して一定流量での運転を行い、効率的な発電と維持流量の確保を可能とする維持流量発電技術の提供を主たる目的とする。 Therefore, the main object of the present invention is to provide a maintenance flow power generation technique that enables operation at a constant flow rate in response to fluctuations in the water level in the dam, and enables efficient power generation and maintenance of the maintenance flow rate.
 上記課題を解決する本発明の維持流量発電制御システムは、維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置と、前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する演算装置と、を備えることを特徴とする。 In the maintenance flow power generation control system of the present invention that solves the above problems, the water level of a dam where water for power generation in the maintenance flow power generation facility is taken in, and the discharge flow rate in the maintenance flow generation facility operating at the relevant water level become a predetermined reference value. The storage device for storing the control data that defines the relationship with the rotational speed of the pump reverse rotation turbine in this case, and the measured value of the water level gauge of the dam is collated with the control data, and the discharge flow rate at the relevant water level is predetermined. And a calculation device that specifies the rotation speed to be a reference value and instructs the control device of the pump reverse rotation turbine to operate at the specified rotation speed.
 これによれば、ダム水位に応じた低落差から高落差に至る広範囲な落差、すなわち供給水量に対応して、ポンプ逆転水車の回転速度を制御することで、ポンプ逆転水車を備える維持流量発電設備からの放流量を所定値(維持流量の規定値以上)に維持することが可能となる。こうした効果は、ポンプ逆転水車への流量調整弁(一般的な水車におけるガイドベーン等と同機能)の設置を要することなく実現され、ポンプ逆転水車を低落差では低速回転で、高落差では高速回転で運転することで効率的な運転が可能となる。したがって、ダムでの水位変動に対応して一定流量での運転を行って、効率的な発電と維持流量の確保が可能となる。 According to this, a maintenance flow power generation facility equipped with a pump reversing turbine by controlling the rotational speed of the pump reversing turbine according to a wide range of heads ranging from low to high depending on the dam water level, that is, the amount of supplied water It is possible to maintain the discharge flow rate from a predetermined value (above the specified value of the maintenance flow rate). This effect is achieved without the need to install a flow adjustment valve (same function as a guide vane in a typical water turbine) on the pump reverse rotation turbine. The pump reverse rotation turbine rotates at a low speed with a low head and rotates at a high speed with a high head. Efficient driving becomes possible by driving with. Therefore, efficient power generation and maintenance flow rate can be ensured by operating at a constant flow rate in response to fluctuations in the water level at the dam.
 なお、上述の維持流量発電制御システムの前記制御用データにおける、放流量の所定基準値は、規定の維持流量値に、前記ポンプ逆転水車における使用水量の時間変動幅を上乗せした値であるとしてもよい。これによれば、いわゆる発電機のゆらぎ特性のために使用水量が変動しても、ポンプ逆転水車における使用水量は維持流量と上述の基準値との間に収まることなり、従来の如く間欠的に維持流量が不足する事態の発生を回避出来ることになる。 Note that the predetermined reference value of the discharge flow rate in the control data of the above-described maintenance flow power generation control system may be a value obtained by adding the time fluctuation range of the amount of water used in the pump reverse rotation turbine to the specified maintenance flow rate value. Good. According to this, even if the amount of water used fluctuates due to the so-called fluctuation characteristics of the generator, the amount of water used in the pump reverse rotation turbine falls within the maintenance flow rate and the above-mentioned reference value, and intermittently as in the past. Occurrence of a situation where the maintenance flow rate is insufficient can be avoided.
 また、上述の維持流量発電制御システムにおける演算装置は、所定装置から得たデータが、予め定めた前記ポンプ逆転水車の運転範囲外の値に該当するか判定し、前記データが前記ポンプ逆転水車の運転範囲外にあった場合、前記ポンプ逆転水車に給水する水圧管路のうちバイパス放流路の分岐箇所に備わる常閉の開閉弁機構に対し、所定時間での開放動作を指示し、開閉弁機構が全開となった際に、前記水圧管路における前記ポンプ逆転水車への給水口に備わる常開の開閉弁機構に対し、所定時間での閉鎖動作を指示するものである、としてもよい。 Further, the arithmetic unit in the maintenance flow power generation control system described above determines whether the data obtained from the predetermined device corresponds to a predetermined value outside the operation range of the pump reverse rotation turbine, and the data is the value of the pump reverse rotation turbine. When it is out of the operating range, the normally closed on-off valve mechanism provided at the branching point of the bypass discharge passage among the hydraulic pipes supplying water to the pump reverse rotation turbine is instructed to open in a predetermined time, and the on-off valve mechanism When is fully opened, the normally open on-off valve mechanism provided in the water supply port to the pump reverse rotation turbine in the hydraulic line may be instructed to close in a predetermined time.
 これによれば、例えば、ダムの水位計から得た計測値が、予め定めた前記ポンプ逆転水車の運転範囲外の水位値に該当した場合、開閉弁機構の操作によって水圧管路の水流を徐々にバイパス放流路へと移した後、ポンプ逆転水車を停止させることが可能であり、水圧管路の水流を徐々にバイパス放流路へと移す間にはポンプ逆転水車を当初の通り運転させ、維持流量を確保できることとなる。また、例えば、架線の断線などにより維持流量発電設備への発電負荷が急減した場合、すなわち、維持流量発電設備のポンプ逆転水車の回転負荷が急減した場合にも維持流量発電制御システムは対応可能である。そのような急減した負荷値を所定の計測装置から得た維持流量発電制御システムは、その負荷値が、予め定めたポンプ逆転水車の運転範囲外を示す規定値に該当した場合、上述と同様に、開閉弁機構の操作によって水圧管路の水流を徐々にバイパス放流路へと移した後、ポンプ逆転水車を停止させることが可能であり、水圧管路の水流を徐々にバイパス放流路へと移す間にも維持流量を確保できることとなる。 According to this, for example, when the measured value obtained from the water level gauge of the dam corresponds to a predetermined water level value outside the operation range of the pump reverse rotation turbine, the water flow in the hydraulic line is gradually changed by operating the on-off valve mechanism. It is possible to stop the pump reversing turbine after moving to the bypass discharge channel, and keep the pump reversing turbine running and maintained as originally while the water flow in the hydraulic line gradually moves to the bypass discharge channel. The flow rate can be secured. In addition, for example, the maintenance flow power generation control system can handle the case where the power generation load on the maintenance flow power generation facility suddenly decreases due to disconnection of the overhead line, that is, the rotation load of the pump reverse rotation turbine of the maintenance flow generation facility suddenly decreases. is there. A maintenance flow power generation control system that obtains such a suddenly decreased load value from a predetermined measuring device is the same as described above when the load value corresponds to a predetermined value that indicates a predetermined operation range of the pump reverse turbine. After the water flow of the hydraulic line is gradually moved to the bypass discharge channel by operating the on-off valve mechanism, it is possible to stop the pump reverse rotation turbine, and the water flow of the hydraulic line is gradually transferred to the bypass discharge channel A maintenance flow rate can be secured in between.
 また、本発明の維持流量発電制御方法は、維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置を備えた情報処理装置が、前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する処理を実行する、ことを特徴とする。 Further, the maintenance flow power generation control method of the present invention is a pump in which the water level of the dam where water for power generation in the maintenance flow power generation facility is taken and the discharge flow rate in the maintenance flow generation facility operating at the relevant water level becomes a predetermined reference value. An information processing device having a storage device for storing control data that defines the relationship with the rotational speed of the reverse rotation turbine collates the measured value of the dam water level gauge with the control data, and releases it at the relevant water level. The rotation speed at which the flow rate becomes a predetermined reference value is specified, and a process for instructing the control device for the pump reverse rotation turbine to operate at the specified rotation speed is executed.
 また、本発明の維持流量発電制御プログラムは、維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置を備えた情報処理装置に、前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する処理を実行させる、ことを特徴とする。 Further, the maintenance flow power generation control program of the present invention is a pump in which the water level of the dam where water for power generation in the maintenance flow power generation facility is taken and the discharge flow rate in the maintenance flow generation facility operating at the relevant water level become a predetermined reference value. The measured value of the dam water level gauge is compared with the control data in an information processing device having a storage device for storing control data that defines the relationship with the rotational speed of the reverse rotation turbine, and released at the relevant water level. The rotational speed at which the flow rate becomes a predetermined reference value is specified, and processing for instructing the control device for the pump reverse rotation turbine to execute operation at the specified rotational speed is executed.
 また、本発明の維持流量発電設備は、ダムからの維持流量分の給水を受けて回転するポンプ逆転水車、前記ポンプ逆転水車の回転軸に連結された発電機、および、前記ポンプ逆転水車の回転速度を調節する制御装置と、前記ダムの水位と、該当水位で運転中の当該維持流量発電設備における放流量が所定基準値になる場合の前記ポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置と、前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する演算装置とを備える維持流量発電制御システムと、を含むことを特徴とする。 In addition, the maintenance flow power generation facility of the present invention includes a pump reverse rotation turbine that rotates upon receiving water supply for the maintenance flow rate from the dam, a generator connected to a rotation shaft of the pump reverse rotation turbine, and rotation of the pump reverse rotation turbine. Control that defines the relationship between the control device that adjusts the speed, the water level of the dam, and the rotational speed of the pump reverse turbine when the discharge flow rate at the maintenance flow power generation facility operating at the water level reaches a predetermined reference value The storage device for storing the data for use and the measured value at the water level gauge of the dam are compared with the control data, the rotational speed at which the discharge flow rate becomes the predetermined reference value at the relevant water level, and the identified rotation And a maintenance flow rate power generation control system including an arithmetic unit that instructs the control device of the pump reverse rotation turbine to operate at a speed.
 本発明の維持流量発電制御システムによれば、ダムでの水位変動に対応して一定流量での運転を行って、効率的な発電と維持流量の確保が可能となる。 According to the maintenance flow rate power generation control system of the present invention, it is possible to operate efficiently at a constant flow rate in response to fluctuations in the water level in the dam, thereby ensuring efficient power generation and maintenance flow rate.
本実施形態の維持流量発電制御システムの概念を示す図である。It is a figure which shows the concept of the maintenance flow power generation control system of this embodiment. 本実施形態の維持流量発電制御システムのハードウェア構成例を示す図である。It is a figure which shows the hardware structural example of the maintenance flow power generation control system of this embodiment. 本実施形態の制御用データの構成例1を示す図である。It is a figure which shows the structural example 1 of the data for control of this embodiment. 本実施形態の制御用データの構成例2を示す図である。It is a figure which shows the structural example 2 of the data for control of this embodiment. 本実施形態の制御用データの構成例3を示す図である。It is a figure which shows the structural example 3 of the data for control of this embodiment. 本実施形態の制御用データの構成例4を示す図である。It is a figure which shows the structural example 4 of the data for control of this embodiment. 本実施形態の維持流量発電制御方法の手順例を示すフロー図である。It is a flowchart which shows the example of a procedure of the maintenance flow power generation control method of this embodiment. 本実施形態の維持流量発電制御方法における運用手順例1を示すタイミングチャートである。It is a timing chart which shows the operation procedure example 1 in the maintenance flow power generation control method of this embodiment. 本実施形態の維持流量発電制御方法における運用手順例2を示すタイミングチャートである。It is a timing chart which shows the operation procedure example 2 in the maintenance flow power generation control method of this embodiment.
---維持流量発電制御システム---
 以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の維持流量発電制御システム100の概念を示す図である。維持流量発電制御システム100が制御対象とする維持流量発電設備1は、ダム2から河川20に放流する維持流量分の水を利用して発電を行う設備となる。ダム2において河川20等から得た水のうち、規定された維持流量分については、動植物等の生態系や、漁労、水運、観光など人間活動を維持するために最小限必要な流量として河川20に戻す必要がある。そこで本実施形態における維持流量発電制御システム100は、上述の維持流量発電設備1を制御して、効率的な発電を行いつつも、規定の維持流量を確保して河川20に放流することとなる。
---- Maintenance flow generation control system ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating the concept of the maintenance flow rate power generation control system 100 of the present embodiment. The maintenance flow rate power generation facility 1 to be controlled by the maintenance flow rate power generation control system 100 is a facility that generates power using water for the maintenance flow rate discharged from the dam 2 to the river 20. Of the water obtained from the river 20 and the like in the dam 2, the specified maintenance flow is the river 20 as the minimum flow required to maintain the ecosystem such as animals and plants and human activities such as fishing, water transportation and tourism. It is necessary to return to. Therefore, the maintenance flow rate power generation control system 100 according to the present embodiment controls the above-described maintenance flow rate power generation facility 1 to ensure a prescribed maintenance flow rate and discharge it to the river 20 while performing efficient power generation. .
 なお、維持流量発電設備1は、ポンプ逆転水車3と、このポンプ逆転水車3の回転軸に連結された発電機4とが含まれている。ポンプ逆転水車3は、ダム2の貯水域から伸びる水圧管路7と吸水口8を介して連結され、水圧管路7からの給水を受ける。水圧管路7からポンプ逆転水車3に給水された水は、ケーシング内に充満してランナベーンを押圧し、これを回転させる。ランナベーンの回転動作により回転軸は回転し、この回転軸に連結された発電機4での発電が行われることになる。発電機4で発電された電気は、コンバーター14およびインバーター15を介して電力系統16へ送電される。コンバーター14およびインバーター15による系統連系で、電力系統16への影響を軽減することが可能となる。 The maintenance flow power generation facility 1 includes a pump reversing turbine 3 and a generator 4 connected to the rotating shaft of the pump reversing turbine 3. The pump reversing water turbine 3 is connected via a water pressure line 7 extending from the reservoir area of the dam 2 and a water inlet 8 and receives water supplied from the water pressure line 7. The water supplied from the water pressure line 7 to the pump reversing turbine 3 is filled in the casing, presses the runner vanes, and rotates them. The rotating shaft is rotated by the rotating operation of the runner vane, and power is generated by the generator 4 connected to the rotating shaft. The electricity generated by the generator 4 is transmitted to the power system 16 via the converter 14 and the inverter 15. The grid interconnection by the converter 14 and the inverter 15 can reduce the influence on the power system 16.
 また、ポンプ逆転水車3は、制御装置6によってその回転速度が制御される。制御装置6は、ポンプ逆転水車3に連結された発電機4に対し、その固定子が備える出力発生用の巻線、ないし回転子が備える磁界発生用の巻線に供給する電流の周波数をコントロールすることで、発電機4の回転速度ひいてはポンプ逆転水車3の回転速度を制御する。 Further, the rotation speed of the pump reverse rotation turbine 3 is controlled by the control device 6. The control device 6 controls the frequency of the current supplied to the output generating winding provided in the stator or the magnetic field generating winding provided in the rotor to the generator 4 connected to the pump reversing turbine 3. As a result, the rotational speed of the generator 4 and thus the rotational speed of the pump reverse rotation turbine 3 are controlled.
 上述のようにポンプ逆転水車3で使用された水は、放水路12に流入し、この放水路12を介して河川20に放流される。また、前述の吸水口8には、常開の開閉弁機構11が備わっており、維持流量発電制御システム100から開閉弁機構11への指示による、開閉弁の開閉により、全開状態から閉塞状態の間の任意の状態に遷移可能である。 As described above, the water used in the pump reversing turbine 3 flows into the water discharge channel 12 and is discharged to the river 20 through the water discharge channel 12. Further, the water inlet 8 is provided with a normally open on / off valve mechanism 11, which is changed from a fully open state to a closed state by opening / closing the on / off valve according to an instruction from the maintenance flow rate power generation control system 100 to the on / off valve mechanism 11. It is possible to transition to any state between.
 また、水圧管路7は、上述の吸水口8より上流、すなわちポンプ逆転水車3とダム2との間において分岐箇所を備えており、この分岐箇所から、上述の放水路12に合流し最終的に河川20に至るバイパス放流路9が設けられている。上述した分岐箇所には、常閉の開閉弁機構10が備わっており、維持流量発電制御システム100から開閉弁機構10への指示による、開閉弁の開閉により、閉塞状態から全開状態の間の任意の状態に遷移可能である。バイパス放流路9は、例えば、ダム水位がポンプ逆転水車3の運転範囲外の水位まで低下した場合や、架線の断線などにより維持流量発電設備1への発電負荷が急減した場合等において、水圧管路7の水流が、ポンプ逆転水車3を迂回して放水路12に直接流入するよう図るバイパス経路となる。 The water pressure line 7 is provided with a branch point upstream from the water inlet 8, that is, between the pump reverse rotation turbine 3 and the dam 2, and finally joins the water discharge channel 12 from the branch point. A bypass discharge channel 9 reaching the river 20 is provided at the end. The above-mentioned branch point is provided with a normally-closed on-off valve mechanism 10, which can be arbitrarily set between a closed state and a fully-open state by opening / closing the on-off valve according to an instruction from the maintenance flow rate power generation control system 100 to the on-off valve mechanism 10. It is possible to transition to the state. The bypass discharge channel 9 is a hydraulic pipe, for example, when the dam water level drops to a level outside the operating range of the pump reversing turbine 3 or when the power generation load on the maintenance flow rate power generation facility 1 suddenly decreases due to disconnection of the overhead wire, etc. The water flow in the path 7 becomes a bypass path that bypasses the pump reverse turbine 3 and directly flows into the water discharge path 12.
 なお、開閉弁機構10、11は、例えば、水圧管路7などの管体内空で可動する組み合わさった複数の弁体と、各弁体を可動させて管体内空を閉塞ないし全開とする弁体の駆動機構とが一体となった既存技術を採用すればよい。この開閉弁機構10、11は、維持流量発電制御システム100と適宜な配線ないしネットワークで結ばれ、開閉動作の指示を維持流量発電制御システム100から受けることが可能である。 The on-off valve mechanisms 10 and 11 include, for example, a plurality of combined valve bodies that move in the inside of the pipe body such as the hydraulic pipe line 7 and valves that move the valve bodies to close or fully open the inside of the pipe body. An existing technology in which the body drive mechanism is integrated may be adopted. The on-off valve mechanisms 10 and 11 are connected to the maintenance flow rate power generation control system 100 by appropriate wiring or network, and can receive an instruction of opening / closing operation from the maintenance flow rate power generation control system 100.
 一方、ダム2の貯水域には水位計5が設置されており、適宜なネットワークを介して、維持流量発電制御システム100と通信可能に結ばれている。また、少なくとも、ポンプ逆転水車3下流の放水路12には流量計13が設置されており、適宜なネットワークを介して、維持流量発電制御システム100と通信可能に結ばれている。 On the other hand, a water level meter 5 is installed in the water storage area of the dam 2 and is connected to the maintenance flow rate power generation control system 100 through an appropriate network. In addition, a flow meter 13 is installed at least in the water discharge channel 12 downstream of the pump reverse turbine 3 and is connected to the maintenance flow rate power generation control system 100 through an appropriate network.
 続いて、上述の維持流量発電制御システム100のハードウェア構成について説明する。図2は本実施形態の維持流量発電制御システム100のハードウェア構成例を示す図である。維持流量発電制御システム100は、ハードディスクドライブなど適宜な不揮発性記憶装置で構成される記憶装置101、RAMなど揮発性記憶装置で構成されるメモリ103、記憶装置101に保持されるプログラム102をメモリ103に読み出すなどして実行し装置自体の統括制御を行なうとともに各種判定、演算及び制御処理を行なうCPUなどの演算装置104、適宜なネットワークを介してダム2の水位計4や放水路12の流量計13といった他装置との通信処理を担う通信装置105を備える。 Subsequently, a hardware configuration of the above-described maintenance flow power generation control system 100 will be described. FIG. 2 is a diagram illustrating a hardware configuration example of the maintenance flow rate power generation control system 100 of the present embodiment. The maintenance flow power generation control system 100 includes a storage device 101 configured by a suitable non-volatile storage device such as a hard disk drive, a memory 103 configured by a volatile storage device such as a RAM, and a program 102 held in the storage device 101. Are read and executed to perform overall control of the device itself and perform various determinations, computations and control processes, an arithmetic unit 104 such as a CPU, and a water level meter 4 of the dam 2 and a flow meter of the discharge channel 12 via an appropriate network. The communication device 105 is responsible for communication processing with other devices such as 13.
 なお、記憶装置101内には、本実施形態の維持流量発電制御システム100として必要な機能を実装する為のプログラム102の他に、制御用データ125が少なくとも記憶されている。この制御用データ125は、維持流量発電設備1における発電用水が取水されるダム2の水位と、該当水位で運転中の維持流量発電設備1における放流量が所定基準値になる場合のポンプ逆転水車3の回転速度との関係を定めたテーブルとなる。この制御用データ125の具体例については後述する。また、記憶装置101には、ポンプ逆転水車3の運転範囲を示す運転範囲データ126が更に格納されている。この運転範囲データ126は、例えば、ポンプ逆転水車3を運転可能なダム水位値の範囲、或いは、ポンプ逆転水車3を運転可能な回転速度の範囲、を示すデータとなる。 The storage device 101 stores at least control data 125 in addition to the program 102 for implementing functions necessary for the maintenance flow rate power generation control system 100 of the present embodiment. This control data 125 is a pump reverse turbine in the case where the water level of the dam 2 where water for power generation in the maintenance flow power generation facility 1 is taken and the discharge flow rate in the maintenance flow generation facility 1 operating at the relevant water level becomes a predetermined reference value. 3 is a table that defines the relationship with the rotational speed of 3. A specific example of the control data 125 will be described later. The storage device 101 further stores operation range data 126 indicating the operation range of the pump reverse rotation turbine 3. The operation range data 126 is, for example, data indicating a dam water level value range in which the pump reverse rotation turbine 3 can be operated or a rotational speed range in which the pump reverse rotation turbine 3 can be operated.
 続いて、本実施形態の維持流量発電制御システム100が備える機能について説明する。上述したように、以下に説明する機能は、維持流量発電制御システム100が備えるプログラム102を実行することで実装される機能と言えるが、同機能を適宜な電子回路で実現し用いるとしてもよい。本実施形態の維持流量発電制御システム100は、ダム2の水位計5での計測値を制御用データ125に照合して、該当水位において放流量が所定基準値となる回転速度を特定し、当該特定した回転速度での運転をポンプ逆転水車3の制御装置6に指示する機能を備えている。 Subsequently, functions provided in the maintenance flow power generation control system 100 of the present embodiment will be described. As described above, the function described below can be said to be a function implemented by executing the program 102 included in the maintenance flow power generation control system 100, but the function may be realized and used by an appropriate electronic circuit. The maintenance flow power generation control system 100 of the present embodiment collates the measured value of the water level gauge 5 of the dam 2 with the control data 125, specifies the rotational speed at which the discharge flow rate becomes the predetermined reference value at the relevant water level, A function of instructing the control device 6 of the pump reverse rotation turbine 3 to operate at the specified rotational speed is provided.
 なお、維持流量発電制御システム100は、記憶装置101に保持する、上述の制御用データ125における放流量の所定基準値として、規定の維持流量値に、ポンプ逆転水車3における使用水量の時間変動幅を上乗せした値を格納しているとすれば好適である。 The maintenance flow rate power generation control system 100 uses the predetermined maintenance flow value as a predetermined reference value of the discharge flow rate in the above-described control data 125 held in the storage device 101, and the time fluctuation range of the used water amount in the pump reverse rotation turbine 3. It is preferable to store a value obtained by adding.
 また、維持流量発電制御システム100は、上述した水位計5や流量計13といった所定装置から得たデータが、予め定めたポンプ逆転水車3の運転範囲外の値に該当するか判定し、所定装置から得たデータがポンプ逆転水車3の運転範囲外にあった場合、ポンプ逆転水車3に給水する水圧管路7のうちバイパス放流路9の分岐箇所に備わる常閉の開閉弁機構10に対し、所定時間での開放動作を指示し、開閉弁機構10が全開となった際に、水圧管路7におけるポンプ逆転水車3への給水口8に備わる常開の開閉弁機構11に対し、所定時間での閉鎖動作を指示する機能を備えているとすれば好適である。 In addition, the maintenance flow power generation control system 100 determines whether the data obtained from the predetermined devices such as the water level meter 5 and the flow meter 13 described above corresponds to a value outside the operation range of the pump reverse rotation turbine 3 set in advance. When the data obtained from the above is outside the operation range of the pump reverse rotation turbine 3, the normally closed on-off valve mechanism 10 provided at the branch discharge passage 9 of the hydraulic conduit 7 for supplying water to the pump reverse rotation turbine 3 When an opening operation at a predetermined time is instructed and the on-off valve mechanism 10 is fully opened, a predetermined time is given to the normally-open on-off valve mechanism 11 provided in the water supply port 8 to the pump reverse rotation turbine 3 in the hydraulic line 7. It is preferable to have a function of instructing a closing operation at.
---データ構造例---
 次に、本実施形態の維持流量発電制御システム100が用いる制御用データ125のデータ構造例について説明する。図3A~図3Dは本実施形態の制御用データ125の構成例1~4を示す図である。制御用データ125は、維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めたデータとなる。
---- Data structure example ---
Next, an example of the data structure of the control data 125 used by the maintenance flow rate power generation control system 100 of the present embodiment will be described. 3A to 3D are diagrams showing configuration examples 1 to 4 of the control data 125 of this embodiment. The control data 125 includes the water level of the dam where water for power generation in the maintenance flow power generation facility is taken, and the rotational speed of the pump reverse rotation turbine when the discharge flow rate in the maintenance flow generation facility operating at the relevant water level becomes a predetermined reference value. This data defines the relationship.
 制御用データ125は、図3A~図3Cに例示するように、維持流量発電設備1から河川20への放流量の所定基準値である流量値毎に、ダム2の水位とポンプ逆転水車3の回転速度との対応関係を定めたテーブルとなる。図3Aは、放流量を0.8m/s一定とする場合の、各ダム水位におけるポンプ逆転水車3の回転速度を示し、同様に図3Bは、放流量を0.6m/s一定とした場合、また図3Cは、放流量を0.9m/s一定とした場合のものとなる。また、図3Dには、図3A~図3Dが示す各制御用データ125を、グラフ化した形態を示している。なお、こうした制御用データ125における放流量は、規定の維持流量値に、ポンプ逆転水車3における使用水量の時間変動幅(いわゆる発電機のゆらぎ特性)を上乗せした値であるとすれば好適である。 As illustrated in FIGS. 3A to 3C, the control data 125 includes the water level of the dam 2 and the pump reversing turbine 3 for each flow rate value that is a predetermined reference value of the discharge flow rate from the maintenance flow power generation facility 1 to the river 20. The table defines the correspondence with the rotation speed. FIG. 3A shows the rotational speed of the pump reverse turbine 3 at each dam water level when the discharge flow rate is constant at 0.8 m 3 / s. Similarly, FIG. 3B shows that the discharge flow rate is constant at 0.6 m 3 / s. In this case, FIG. 3C shows a case where the discharge flow rate is constant at 0.9 m 3 / s. FIG. 3D shows a graph of each control data 125 shown in FIGS. 3A to 3D. It is preferable that the discharge flow rate in the control data 125 is a value obtained by adding the time fluctuation width (so-called fluctuation characteristics of the generator) of the amount of water used in the pump reverse rotation turbine 3 to the specified maintenance flow rate value. .
---維持流量発電制御方法の手順例---
 続いて、本実施形態における維持流量発電制御システムの具体的な運用手順について説明する。以下で説明する維持流量発電制御方法に対応する各種動作は、維持流量発電制御システム100がメモリ等に読み出して実行するプログラムによって実現される。そして、このプログラムは、以下に説明される各種の動作を行うためのコードから構成されている。 図4は本実施形態の維持流量発電制御方法の手順例を示すフロー図である。維持流量発電制御システム100の演算装置101は、通信手段105を介して、ダム2の貯水域に設置された水位計5から、ダム水位の計測値を取得する(s100)。維持流量発電制御システム100の演算装置104は、この計測値を、ポンプ逆転水車3の運転範囲外を示す所定水位値(記憶装置101に予め保持する、ポンプ逆転水車3の運転範囲データ126)に照合し(s101)、ダム水位がポンプ逆転水車3の運転範囲外であるか判定する(s102)。
---- Procedure example of maintenance flow power generation control method ---
Subsequently, a specific operation procedure of the maintenance flow rate power generation control system in the present embodiment will be described. Various operations corresponding to the maintenance flow rate power generation control method described below are realized by a program that the maintenance flow rate power generation control system 100 reads into the memory or the like and executes. And this program is comprised from the code | cord | chord for performing the various operation | movement demonstrated below. FIG. 4 is a flowchart showing a procedure example of the maintenance flow rate power generation control method of the present embodiment. The arithmetic unit 101 of the maintenance flow power generation control system 100 acquires the measured value of the dam water level from the water level meter 5 installed in the water storage area of the dam 2 via the communication means 105 (s100). The arithmetic unit 104 of the maintenance flow rate power generation control system 100 converts this measured value into a predetermined water level value indicating the outside of the operation range of the pump reverse rotation turbine 3 (operation range data 126 of the pump reverse rotation turbine 3 that is stored in the storage device 101 in advance). It collates (s101), and it is determined whether the dam water level is outside the operation range of the pump reverse rotation turbine 3 (s102).
 ダム水位がポンプ逆転水車3の運転範囲内であった場合(s102:OK)、維持流量発電制御システム100の演算装置104は、ダム水位の計測値を制御用データ125に照合する(s103)。なお、記憶装置101に保持されている制御用データ125は、保つべき放流量別に存在するが、ダム水位の計測値の照合対象となる制御用データ125は、ユーザにより予め指定されているものとする。 When the dam water level is within the operation range of the pump reverse turbine 3 (s102: OK), the arithmetic unit 104 of the maintenance flow power generation control system 100 collates the measured value of the dam water level with the control data 125 (s103). Note that the control data 125 stored in the storage device 101 exists for each discharge flow to be maintained, but the control data 125 that is a target for collation of the measured value of the dam water level is specified in advance by the user. To do.
 ユーザにより、放流量0.8m/sに対応する制御用データ125が指定されている場合、維持流量発電制御システム100の演算装置104は、ダム水位の計測値を図3Aに例示した制御用データ125に照合することとなる。例えば、ダム水位の計測値が“9.0”であった場合、制御用データ125から、ポンプ逆転水車3の回転速度は“380”とすべきであると特定できる。 When the control data 125 corresponding to the discharge flow rate of 0.8 m 3 / s is designated by the user, the calculation device 104 of the maintenance flow rate power generation control system 100 uses the measured value of the dam water level illustrated in FIG. 3A. The data 125 is collated. For example, when the measured value of the dam water level is “9.0”, it can be specified from the control data 125 that the rotational speed of the pump reverse rotation turbine 3 should be “380”.
 維持流量発電制御システム100の演算装置104は、上述のステップs101における照合処理により、該当水位“9.0”において放流量が所定基準値0.8m/sとなる回転速度を“380”と特定し(s104)、当該特定した回転速度での運転をポンプ逆転水車3の制御装置6に指示する(s105)。 The calculation device 104 of the maintenance flow rate power generation control system 100 sets the rotational speed at which the discharge flow rate becomes the predetermined reference value 0.8 m 3 / s at the relevant water level “9.0” to “380” by the matching process in the above-described step s101. The operation at the identified rotational speed is specified (s104), and the control device 6 of the pump reverse turbine 3 is instructed (s105).
 他方、ポンプ逆転水車3の制御装置6は、上述の回転速度“380”での運転指示を維持流量発電制御システム100から受けて、ポンプ逆転水車3に連結された発電機4に対し、その固定子が備える出力発生用の巻線、ないし回転子が備える磁界発生用の巻線に供給する電流の周波数をコントロールし、発電機4の回転速度ひいてはポンプ逆転水車3の回転速度を制御する(s106)。こうした制御手法は既存のものを採用すればよい。 On the other hand, the control device 6 of the pump reversing turbine 3 receives the operation instruction at the rotational speed “380” from the maintenance flow rate power generation control system 100 and fixes the generator 4 connected to the pump reversing turbine 3 to the fixing device 4. The frequency of the current supplied to the output generating winding provided in the child or the magnetic field generating winding provided in the rotor is controlled, and the rotational speed of the generator 4 and thus the rotational speed of the pump reverse turbine 3 is controlled (s106). ). Such a control method may be an existing one.
 なお、こうしてポンプ逆転水車3の回転速度を制御した後、維持流量発電制御システム100の演算装置104は、ポンプ逆転水車3下流の放水路12に設置されている流量計13より、放水路12の流量に関する計測値を取得し、この計測値が、上述した放流量の所定基準値0.8m/sを満たしているか判定するとしてもよい。この判定により、放水路12の流量が、放流量の所定基準値を満たしていれば、維持流量発電制御システム100の演算装置104は、そのまま待機する。一方、上述の判定により、放水路12の流量が、放流量の所定基準値を満たしていなければ、維持流量発電制御システム100の演算装置104は、制御用データ125から特定したポンプ逆転水車3の回転速度を所定割合だけ低下させ、放水路12の流量を適宜増加させる。維持流量発電制御システム100の演算装置104は、こうした処理を、放水路12の流量が放流量の所定基準値を満たすようになるまで繰り返し実行する。 In addition, after controlling the rotational speed of the pump reverse rotation turbine 3 in this way, the arithmetic unit 104 of the maintenance flow rate power generation control system 100 uses the flow meter 13 installed in the discharge channel 12 downstream of the pump reverse rotation turbine 3 to A measurement value relating to the flow rate may be acquired, and it may be determined whether the measurement value satisfies the predetermined reference value 0.8 m 3 / s of the discharge flow rate described above. If it is determined that the flow rate of the discharge channel 12 satisfies a predetermined reference value of the discharge rate, the arithmetic unit 104 of the maintenance flow rate power generation control system 100 stands by as it is. On the other hand, if the flow rate of the discharge channel 12 does not satisfy the predetermined reference value of the discharge rate according to the above determination, the arithmetic unit 104 of the maintenance flow rate power generation control system 100 determines the pump reverse turbine 3 specified from the control data 125. The rotational speed is decreased by a predetermined rate, and the flow rate of the water discharge channel 12 is increased appropriately. The arithmetic unit 104 of the maintenance flow rate power generation control system 100 repeatedly executes such processing until the flow rate of the discharge channel 12 satisfies a predetermined reference value of the discharge rate.
 一方、ステップs104の処理以降、維持流量発電設備1におけるポンプ逆転水車3は、一定の回転速度での運転状態を維持することになるが、水位計4からのダム水位の計測値取得と、ダム水位がポンプ逆転水車3の運転範囲外であるかの判定(s101、s102)の処理は一定時間毎に実行している。 On the other hand, after the processing of step s104, the pump reverse turbine 3 in the maintenance flow rate power generation facility 1 maintains the operation state at a constant rotational speed, but the measurement value of the dam water level from the water level gauge 4 is acquired, The process of determining whether the water level is outside the operating range of the pump reverse rotation turbine 3 (s101, s102) is executed at regular intervals.
 ここで、ダム水位がポンプ逆転水車3の運転範囲外であった場合(s102:NG)、維持流量発電制御システム100の演算装置104は、ポンプ逆転水車3に給水する水圧管路7のうちバイパス放流路9の分岐箇所に備わる常閉の開閉弁機構10に対し、所定時間での開放動作を指示する(s107)。この指示を受けた開閉弁機構10は、所定時間をかけて弁を全開状態に移行させる(s108)。これにより、それまで水圧管路7からポンプ逆転水車3に全て導かれていた水が、分岐箇所で分岐しバイパス放流路9にも流れるようになる。図5において、こうした開閉弁機構10、11の運用状況に対応したタイミングチャートを示す。 Here, when the dam water level is outside the operation range of the pump reverse rotation turbine 3 (s102: NG), the arithmetic unit 104 of the maintenance flow rate power generation control system 100 bypasses the hydraulic line 7 that supplies water to the pump reverse rotation turbine 3. An opening operation for a predetermined time is instructed to the normally closed on-off valve mechanism 10 provided at the branch point of the discharge channel 9 (s107). Upon receiving this instruction, the on-off valve mechanism 10 shifts the valve to the fully open state over a predetermined time (s108). As a result, all of the water that has been led from the hydraulic line 7 to the pump reversing water turbine 3 is branched at the branching point and flows to the bypass discharge channel 9. FIG. 5 shows a timing chart corresponding to the operation status of the on-off valve mechanisms 10 and 11.
 一方、維持流量発電制御システム100の演算装置104は、上述の開閉弁機構10から、当該開閉弁機構10が全開となった旨の通知を受けたタイミングで、水圧管路7における給水口8に備わる常開の開閉弁機構11に対し、所定時間での閉鎖動作を指示する(s109)。他方、この指示を受けた開閉弁機構11は、所定時間をかけて弁を全閉状態に移行させる(s110)。これにより、それまで水圧管路7からポンプ逆転水車3とバイパス放流路9に分岐して流れていた水が、バイパス放流路9によってポンプ逆転水車3を完全に迂回して放水路12に直接流入することになる。このような運用を行うことにより、水圧管路7の水流を徐々にバイパス放流路8へと移す間にはポンプ逆転水車を当初の通り運転させ、こうした処理中にあっても維持流量を確保できることとなる。 On the other hand, the arithmetic unit 104 of the maintenance flow rate power generation control system 100 receives the notification that the on-off valve mechanism 10 is fully opened from the above-described on-off valve mechanism 10 and supplies it to the water supply port 8 in the hydraulic line 7. The normally open on-off valve mechanism 11 is instructed to close in a predetermined time (s109). On the other hand, the on-off valve mechanism 11 that has received this instruction shifts the valve to the fully closed state over a predetermined time (s110). As a result, the water that has been branched from the hydraulic line 7 to the pump reverse turbine 3 and the bypass discharge channel 9 completely bypasses the pump reverse turbine 3 by the bypass discharge channel 9 and flows directly into the discharge channel 12. Will do. By performing such operation, the pump reverse turbine is operated as it is while the water flow in the hydraulic line 7 is gradually transferred to the bypass discharge flow path 8, and a maintenance flow rate can be secured even during such processing. It becomes.
 なお、図6のタイミングチャートに示すように、架線の断線などにより維持流量発電設備1への発電負荷が急減した場合、すなわち、維持流量発電設備1のポンプ逆転水車3の回転負荷が急減した場合にも維持流量発電制御システム100は対応可能である。そのような急減した負荷値を所定の計測装置から得た維持流量発電制御システムの演算装置104は、上述のステップs102と同様に、その負荷値が、予め定めたポンプ逆転水車3の運転範囲外を示す規定値に該当するか判定する。この判定によって、負荷値がポンプ逆転水車3の運転範囲外に該当した場合、やはり上述のステップs107~s110と同様に、開閉弁機構10、11の操作によって水圧管路7の水流を徐々にバイパス放流路9へと移した後、ポンプ逆転水車3を停止させる。この場合も、水圧管路7の水流を徐々にバイパス放流路9へと移す間にも、放水路12の流量として、規定の維持流量を確保できることとなる。 In addition, as shown in the timing chart of FIG. 6, when the power generation load on the maintenance flow power generation facility 1 is suddenly reduced due to disconnection of the overhead wire, that is, when the rotation load of the pump reverse turbine 3 of the maintenance flow generation facility 1 is suddenly reduced In addition, the maintenance flow rate power generation control system 100 can cope. The arithmetic unit 104 of the maintenance flow rate power generation control system that obtains such a suddenly decreased load value from a predetermined measuring device, the load value is outside the predetermined operating range of the pump reverse turbine 3 as in step s102 described above. It is determined whether it corresponds to the specified value. If the load value falls outside the operation range of the pump reverse turbine 3 by this determination, the water flow in the hydraulic line 7 is gradually bypassed by operating the on-off valve mechanisms 10 and 11 as in steps s107 to s110 described above. After moving to the discharge channel 9, the pump reverse rotation turbine 3 is stopped. Also in this case, a prescribed maintenance flow rate can be secured as the flow rate of the water discharge channel 12 while the water flow of the hydraulic pressure line 7 is gradually transferred to the bypass discharge channel 9.
 以上に説明したように、本実施形態の維持流量発電制御システムによれば、ダムでの水位変動に対応して一定流量での運転を行い、効率的な発電と維持流量の確保が可能となる。 As described above, according to the maintenance flow rate power generation control system of the present embodiment, it is possible to operate at a constant flow rate in response to fluctuations in the water level in the dam, and to ensure efficient power generation and maintenance flow rate. .
 ところで、以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。 By the way, the description of the above embodiment is for facilitating understanding of the present invention, and does not limit the present invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.
1 維持流量発電設備
2 ダム
3 ポンプ逆転水車
4 発電機
5 水位計
6 ポンプ逆転水車の制御装置
7 水圧管路
8 給水口
9 バイパス放流路
10 開閉弁機構(常閉)
11 開閉弁機構(常開)
12 放水路
13 流量計
14 コンバーター
15 インバーター
16 電力系統
20 河川
100 維持流量発電制御システム
101 記憶装置
102 プログラム
103 メモリ
104 演算装置
105 通信装置
125 制御用データ
126 ポンプ逆転水車の運転範囲データ
DESCRIPTION OF SYMBOLS 1 Maintenance flow power generation equipment 2 Dam 3 Pump reverse rotation turbine 4 Generator 5 Water level meter 6 Pump reverse rotation turbine control device 7 Water pressure line 8 Water supply port 9 Bypass discharge channel 10 On-off valve mechanism (normally closed)
11 On-off valve mechanism (normally open)
12 Discharge channel 13 Flow meter 14 Converter 15 Inverter 16 Power system 20 River 100 Maintenance flow rate power generation control system 101 Storage device 102 Program 103 Memory 104 Operation device 105 Communication device 125 Data for control 126 Operation range data of pump reverse turbine

Claims (6)

  1.  維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置と、
     前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する演算装置と、
     を備えることを特徴とする維持流量発電制御システム。
    Control that establishes the relationship between the water level of the dam where water for power generation at the maintenance flow power generation facility is taken and the rotational speed of the pump reversing turbine when the discharge flow rate at the maintenance flow generation facility operating at the relevant water level reaches the specified reference value A storage device for storing data,
    The measured value at the water level gauge of the dam is collated with the control data, the rotational speed at which the discharge flow rate becomes a predetermined reference value at the relevant water level is specified, and the pump reverse rotation turbine is operated at the specified rotational speed. An arithmetic device for instructing the control device of
    A maintenance flow rate power generation control system comprising:
  2.  前記制御用データにおける、放流量の所定基準値は、規定の維持流量値に、前記ポンプ逆転水車における使用水量の時間変動幅を上乗せした値であることを特徴とする請求項1に記載の維持流量発電制御システム。 2. The maintenance according to claim 1, wherein the predetermined reference value of the discharge flow rate in the control data is a value obtained by adding a time fluctuation range of the amount of water used in the pump reverse rotation turbine to a specified maintenance flow rate value. Flow rate power generation control system.
  3.  前記演算装置は、
     所定装置から得たデータが、予め定めた前記ポンプ逆転水車の運転範囲外の値に該当するか判定し、前記データが前記ポンプ逆転水車の運転範囲外にあった場合、前記ポンプ逆転水車に給水する水圧管路のうちバイパス放流路の分岐箇所に備わる常閉の開閉弁機構に対し、所定時間での開放動作を指示し、開閉弁機構が全開となった際に、前記水圧管路における前記ポンプ逆転水車への給水口に備わる常開の開閉弁機構に対し、所定時間での閉鎖動作を指示するものである、
     ことを特徴とする請求項2に記載の維持流量発電制御システム。
    The arithmetic unit is:
    It is determined whether the data obtained from the predetermined device corresponds to a predetermined value outside the operation range of the pump reversing turbine. If the data is outside the operation range of the pump reversing turbine, water is supplied to the pump reversing turbine. Instructing the opening operation in a predetermined time to the normally closed on-off valve mechanism provided at the branching point of the bypass discharge passage among the hydraulic pipes to be operated, and when the on-off valve mechanism is fully opened, Instructs the normally open on-off valve mechanism provided at the water supply port to the pump reversing turbine to close in a predetermined time.
    The maintenance flow generation control system according to claim 2 characterized by things.
  4.  維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置を備えた情報処理装置が、
     前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する処理を実行する、ことを特徴とする維持流量発電制御方法。
    Control that establishes the relationship between the water level of the dam where water for power generation at the maintenance flow power generation facility is taken and the rotational speed of the pump reversing turbine when the discharge flow rate at the maintenance flow generation facility operating at the relevant water level reaches the specified reference value An information processing apparatus having a storage device for storing data for
    The measured value at the water level gauge of the dam is collated with the control data, the rotational speed at which the discharge flow rate becomes a predetermined reference value at the relevant water level is specified, and the pump reverse turbine is operated at the specified rotational speed. The maintenance flow power generation control method characterized by performing the process which instruct | indicates to the control apparatus.
  5.  維持流量発電設備における発電用水が取水されるダムの水位と、該当水位で運転中の維持流量発電設備における放流量が所定基準値になる場合のポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置を備えた情報処理装置に、
     前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する処理を実行させる、ことを特徴とする維持流量発電制御プログラム。
    Control that establishes the relationship between the water level of the dam where water for power generation at the maintenance flow power generation facility is taken and the rotational speed of the pump reversing turbine when the discharge flow rate at the maintenance flow generation facility operating at the relevant water level reaches the specified reference value In an information processing apparatus equipped with a storage device for storing data,
    The measured value at the water level gauge of the dam is collated with the control data, the rotational speed at which the discharge flow rate becomes a predetermined reference value at the relevant water level is specified, and the pump reverse rotation turbine is operated at the specified rotational speed. A maintenance flow rate power generation control program characterized by causing the control device to execute processing instructed.
  6.  ダムからの維持流量分の給水を受けて回転するポンプ逆転水車、前記ポンプ逆転水車の回転軸に連結された発電機、および、前記ポンプ逆転水車の回転速度を調節する制御装置と、
     前記ダムの水位と、該当水位で運転中の当該維持流量発電設備における放流量が所定基準値になる場合の前記ポンプ逆転水車の回転速度との関係を定めた制御用データを記憶する記憶装置と、前記ダムの水位計での計測値を前記制御用データに照合して、該当水位において放流量が所定基準値となる前記回転速度を特定し、当該特定した回転速度での運転を前記ポンプ逆転水車の制御装置に指示する演算装置とを備える維持流量発電制御システムと、
     を含むことを特徴とする維持流量発電設備。
    A pump reverse rotation turbine that rotates by receiving water supply for the maintenance flow rate from the dam, a generator connected to the rotation shaft of the pump reverse rotation turbine, and a control device that adjusts the rotational speed of the pump reverse rotation turbine;
    A storage device for storing control data defining the relationship between the water level of the dam and the rotational speed of the pump reverse turbine when the discharge flow rate at the maintenance flow power generation facility operating at the water level reaches a predetermined reference value; The measured value at the water level meter of the dam is collated with the control data, the rotational speed at which the discharge flow rate becomes a predetermined reference value at the relevant water level is specified, and the operation at the specified rotational speed is reversed by the pump. A maintenance flow rate power generation control system comprising an arithmetic unit for instructing the control device of the water turbine;
    A maintenance flow power generation facility characterized by including.
PCT/JP2013/059478 2013-03-29 2013-03-29 Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility WO2014155656A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/059478 WO2014155656A1 (en) 2013-03-29 2013-03-29 Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility
JP2015507862A JP5872734B2 (en) 2013-03-29 2013-03-29 Sustain flow power generation control system, maintenance flow power generation control method, maintenance flow power generation control program, and maintenance flow power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059478 WO2014155656A1 (en) 2013-03-29 2013-03-29 Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility

Publications (1)

Publication Number Publication Date
WO2014155656A1 true WO2014155656A1 (en) 2014-10-02

Family

ID=51622721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059478 WO2014155656A1 (en) 2013-03-29 2013-03-29 Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility

Country Status (2)

Country Link
JP (1) JP5872734B2 (en)
WO (1) WO2014155656A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098782A (en) * 2014-11-26 2016-05-30 東北小水力発電株式会社 Small scale hydroelectric power generation system
CN106609237A (en) * 2015-10-27 2017-05-03 盛司潼 Reagent work station provided with platform structure
JP2018119545A (en) * 2017-01-23 2018-08-02 ダイキン工業株式会社 Water power generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763745B2 (en) * 2016-10-26 2020-09-30 株式会社中山鉄工所 Hydropower systems, hydropower methods and hydropower programs
CN113236470A (en) * 2021-06-11 2021-08-10 佛山市炫鲸科技有限公司 Constant-rotation-speed power generation method for calculating variable-angle blade based on flow velocity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182278A (en) * 1997-09-10 1999-03-26 Fuji Electric Co Ltd Backup system of flow rate adjusting device for hydro-electric power station
JP2004360482A (en) * 2003-06-02 2004-12-24 Torishima Pump Mfg Co Ltd Pump reverse turbine type power generating apparatus
JP2010077971A (en) * 2009-11-30 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd Water turbine generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561718B1 (en) * 1984-02-24 1987-12-04 Neyrpic LOW FALL HYDROELECTRIC INSTALLATION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182278A (en) * 1997-09-10 1999-03-26 Fuji Electric Co Ltd Backup system of flow rate adjusting device for hydro-electric power station
JP2004360482A (en) * 2003-06-02 2004-12-24 Torishima Pump Mfg Co Ltd Pump reverse turbine type power generating apparatus
JP2010077971A (en) * 2009-11-30 2010-04-08 Hitachi Industrial Equipment Systems Co Ltd Water turbine generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098782A (en) * 2014-11-26 2016-05-30 東北小水力発電株式会社 Small scale hydroelectric power generation system
CN106609237A (en) * 2015-10-27 2017-05-03 盛司潼 Reagent work station provided with platform structure
JP2018119545A (en) * 2017-01-23 2018-08-02 ダイキン工業株式会社 Water power generation system
JP7022275B2 (en) 2017-01-23 2022-02-18 ダイキン工業株式会社 Hydropower system

Also Published As

Publication number Publication date
JP5872734B2 (en) 2016-03-01
JPWO2014155656A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2014155656A1 (en) Sustained-flow-rate power generation control system, sustained-flow-rate power generation control method, sustained-flow-rate power generation control program, and sustained-flow-rate power generation facility
DK2725444T3 (en) HYDRAULIC TURBINE CONTROL DEVICE
EP4020790A1 (en) Hydropower generation system and power generator control method
CA2686366A1 (en) A method and system of controlling a hydroelectric plant
CN109716643B (en) Hydroelectric power generation system
US11035337B2 (en) Hydroelectric system
JP2004360482A (en) Pump reverse turbine type power generating apparatus
JP6763745B2 (en) Hydropower systems, hydropower methods and hydropower programs
JP2018050357A (en) Hydraulic power generating system
JP2004360479A (en) Pump reverse rotation turbine type power generating apparatus
JP2008248761A (en) Hydraulic turbine power generating equipment
JP5356973B2 (en) Water pressure reducing device
JP2007085263A (en) Power generating circuit
CN111720253A (en) Method and system for treating slurry
JP2020502411A (en) Flow controller
RU153810U1 (en) DEVICE FOR REGULATING VEHICLE PUMP PERFORMANCE
JP2018050356A (en) Hydraulic power generating system
van Tonder et al. Practical considerations in energy efficient compressor set-point control strategies
JP2005143475A (en) Control of amount of water branched for irrigation by waterwheel dynamo
JP2006029199A (en) Operation control device and operation control method for pump water turbine
JP2019094835A (en) Thrust control system of hydraulic machine, and hydraulic machine
JPS62279278A (en) Operation of pumping-up electric power station having branched water passages
JP2008248787A (en) Method for operating hydraulic turbine
JP2018119545A (en) Water power generation system
JP2004263681A (en) Power generating facility using pump reversal hydraulic turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880399

Country of ref document: EP

Kind code of ref document: A1