WO2014155578A1 - Wind turbine generator - Google Patents

Wind turbine generator Download PDF

Info

Publication number
WO2014155578A1
WO2014155578A1 PCT/JP2013/059074 JP2013059074W WO2014155578A1 WO 2014155578 A1 WO2014155578 A1 WO 2014155578A1 JP 2013059074 W JP2013059074 W JP 2013059074W WO 2014155578 A1 WO2014155578 A1 WO 2014155578A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
power generation
power
generation system
wind
Prior art date
Application number
PCT/JP2013/059074
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 沼尻
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2013/059074 priority Critical patent/WO2014155578A1/en
Publication of WO2014155578A1 publication Critical patent/WO2014155578A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine generator that converts wind power into electric power, and more particularly to a technique for improving the redundancy of the wind turbine generator.
  • a wind turbine generator includes a generator drive system (a power generation system) configured to generate power by rotating a rotor head with wind force received by a wind turbine rotor blade and driving the generator with this rotational force.
  • the wind turbine generator includes an induction generator windmill using an induction generator and a synchronous generator windmill using a synchronous generator (direct connection type).
  • FIG. 5 is a diagram illustrating a conventional schematic configuration example of a generator drive system of an induction generator wind turbine that employs an induction generator.
  • a main shaft 12 is rotated integrally with a hub 11 of a rotor head to which three wind turbine rotor blades are attached, and the speed is increased via a speed increaser 13 connected to the main shaft 12.
  • the induction generator 14 is driven by the rotational speed.
  • the electric power generated by the induction generator 14 is transmitted through the power converter 15. Note that all of the components of the speed increaser 13, the induction generator 14, and the power conversion device 15 constituting the generator drive system 10 are a single system.
  • FIG. 6 is a diagram illustrating a conventional schematic configuration example of a generator drive system of a synchronous generator wind turbine that employs a synchronous generator.
  • the generator drive system 10A shown in the drawing has the same configuration as the induction generator windmill described above up to the main shaft 12 that rotates integrally with the hub 11 of the rotor head.
  • the generator drive system 10A of the synchronous generator wind turbine does not have the speed increaser 13 and drives the synchronous generator 14A directly connected to the main shaft 12 to generate power.
  • the electric power generated by the synchronous generator 14A is transmitted through the power converter 15A.
  • any component is a single system.
  • the generator drive system 10 ′ shown in FIG. 7 is a redundant configuration by making the electrical elements of the above-described power generation drive system 10 multi.
  • a multi-system induction generator 14 ′ and power conversion device 15 ′ in which a plurality of induction generators 14 and power conversion devices 15 of the power generation drive system 10 are used are used.
  • the induction generator 14 'used in the configuration shown in the figure has a structure including N induction generators Gn1 to GnN in which an electrical part is divided into N inside a single casing, and each induction generator Gn1.
  • a power conversion device 15 'composed of In1 to InN is provided.
  • a generator drive system 10 ′′ shown in FIG. 8 is obtained by making the speed-up gear 13 of the above-described power generation drive system 10 multi-redundant. More specifically, the generator drive system 10 ′′ employs a speed-up gear 13 ′′ that is multi-divided by dividing the high-speed side into N output shafts S1 to SN. Redundancy is achieved by connecting multiple induction generators Ge1 to GeN and electrical elements corresponding to each output shaft.
  • Patent Document 1 discloses a wind power generator that enables high-efficiency power generation by disposing a small-diameter synchronous generator in an excess space in the central portion of the synchronous generator.
  • the above-described conventional wind power generator is a device in which electrical elements of the generator drive system are made redundant, for example, by multiplying the induction generator 14 and the power conversion device 15.
  • the current situation is that no redundancy has been made in response to troubles in the speedometer.
  • the speed increaser 13 ′′ shown in FIG. 8 the output shaft is divided into multiple units, and the speed increaser itself is a single device, so there is a problem at one point of the speed increaser 13 ′′. If this happens, all functions of the generator drive system will be lost.
  • the conventional redundancy is limited to the electrical elements of the generator drive system, and the system configuration cannot cope with trouble even in the machine side element that is not made redundant such as a gearbox. Therefore, a large cost increase that is not commensurate with redundancy is expected.
  • the machine-side elements are also made redundant generator drive systems to further improve the redundancy of the generator drive system and to generate power accompanying an increase in size. It is desirable to solve various problems related to the procurement of component equipment for machine drive systems.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to further improve the redundancy of the generator drive system, and to generate the generator drive system element device as the size increases. The purpose is to provide a wind turbine generator that solves various problems related to procurement.
  • the present invention employs the following means in order to solve the above problems.
  • the wind turbine generator according to the present invention is a wind turbine generator including a generator drive system that converts wind power received by a plurality of wind turbine rotor blades attached to a hub into rotational force to drive the generator,
  • the generator drive system generates power by dividing the output of the low-speed shaft rotating together with the hub into a plurality of power generation systems.
  • the generator drive system that converts wind power into rotational force to drive the generator divides the output of the low-speed shaft that rotates with the hub into a plurality of power generation systems to generate power. Therefore, the electrical elements and machine-side elements that make up the power generation system after the hub that rotates at a low speed (from the hub to the generator side) can generate power independently even if trouble occurs in other systems. Form multiple possible power generation systems. Therefore, the power generation system components after the hub have been made redundant in order to maintain the power generation function of the power generation system that remains after the trouble, in case any trouble occurs in any power generation system. Furthermore, it is possible to reduce the size of the component devices of each power generation system. In this case, it is desirable to divide the power generation system of the generator drive system into two systems after the hub in view of excessive complexity in structure and cost.
  • the power generation system is divided into a gear type power generation system that generates power by increasing the rotational speed of the low speed shaft, and a gearless power generation system that generates power at the rotational speed of the low speed shaft,
  • a hydraulic power generation system that supplies hydraulic pressure of a hydraulic pump driven by the rotation of the low-speed shaft to the hydraulic motor and generates power by the driving force of the hydraulic motor driven by the hydraulic pressure, and the rotation speed of the low-speed shaft
  • a gearless power generation system that generates electric power at a speed
  • a gear-type power generation system that generates power by increasing the rotational speed of the low-speed shaft
  • a hydraulic power generation system that generates power using the driving force of the hydraulic motor driven by the hydraulic pressure.
  • the output of the low-speed shaft that rotates together with the hub is divided into a plurality of power generation systems to generate power. Therefore, the generator drive system in which both the electrical elements and the machine side elements are made redundant become. As a result, since the redundancy of the generator drive system is further improved, the remarkable effect of improving the reliability of the power generation continuation by the wind power generator can be obtained. Further, by dividing the generator drive system into a plurality of power generation systems, it becomes possible to reduce the size of the component devices of each power generation system, and accordingly, the component devices of the generator drive system accompanying the increase in the size of the wind power generator Problems related to procurement can also be solved.
  • FIG. 1 It is a figure which shows the structural example of an electric power generation drive system about the wind power generator which concerns on one Embodiment of this invention. It is a side view which shows the outline
  • the wind power generator 1 shown in FIG. 4 rotates around a substantially horizontal rotation axis, with a column (also referred to as a “tower”) 2 standing on a foundation 6, a nacelle 3 installed at the upper end of the column 2, and the like. And a rotor head 4 that is supported by the nacelle 3.
  • a plurality of (for example, three) wind turbine rotor blades 5 are attached to the rotor head 4 in a radial pattern around the rotation axis. As a result, the force of wind striking the wind turbine rotor blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.
  • the wind power generator 1 described above includes, for example, the generator drive system 20 of the embodiment shown in FIG.
  • the generator drive system 20 is divided into a gear type power generation system 20G that generates power by increasing the number of rotations of a low speed shaft that rotates at a low speed together with the rotor head 4, and a gearless power generation system 20L that generates power at the number of rotations of the low speed shaft. ing.
  • the main shaft 22 of the low-speed shaft rotates integrally with the hub 21 of the rotor head 4 to which the wind turbine rotor blades 5 are attached, and the speed is increased through a speed increaser 23 connected to the main shaft 22.
  • the induction generator 24 is driven at a high rotational speed.
  • the electric power generated by the induction generator 24 is adjusted to a desired frequency, phase, and the like by a power converter 25 such as an inverter / converter, and is transmitted as a stable output with small fluctuations in voltage and current.
  • the gearless power generation system 20 ⁇ / b> L includes a synchronous generator 30.
  • the synchronous generator 30 has a ring-shaped rotor 31 attached to the outer peripheral portion on the hub 21 side that rotates together with the rotor head 4, and supports the speed increaser 23, the induction generator 24, and the like.
  • a stator 32 having a ring shape slightly larger in diameter than the rotor 31 is fixedly installed on the nacelle base plate 3a. Therefore, when the rotor head 4 rotates, the rotor 31 connected to the hub 21 via a flange or the like rotates around the inside of the stator 32 to generate electric power. Similar to the induction motor 24, the electric power generated by the synchronous generator 30 is adjusted to a desired frequency, phase, and the like by the power conversion device 33, and is transmitted as a stable output with small fluctuations in voltage and current.
  • the generator drive system 20 that generates power by converting wind power into rotational force generates power at a high rotational speed obtained by increasing the rotational speed of the main shaft 22.
  • the system is divided into two systems, that is, a system 20G and a gearless power generation system 20L that generates power at a low speed of the main shaft 22. That is, in the generator drive system 20 of the present embodiment, the output of the main shaft 22 is divided and used for driving the speed increaser 23 and the periodic generator 30, so the output of the main shaft 22 that rotates together with the hub 21 is used as a gear. It is possible to generate power that is used by being divided into two systems of a power generation system 20G and a gearless power generation system 20L.
  • the generator drive system 20 includes the gear-type power generation system 20 ⁇ / b> G and the gearless power generation system 20 ⁇ / b> L on the induction generator 24 and the periodic generator 30 side after the low-speed rotating hub 21, that is, the low-speed rotating hub 21.
  • the mechanical element and the machine side element are made redundant, and two power generation systems capable of generating power independently are provided. Therefore, even if a trouble occurs in one of the gear type power generation system 20G or the gearless power generation system 20L, it is possible to continue the power generation by the other power generation system capable of generating power independently if the hub 21 is rotating. It becomes.
  • the gear-type power generation system 20G or the gearless power generation system 20L formed after the hub 21 is, for example, an induction generator 24, a periodic generator 30, or a power conversion device, which are main components constituting two power generation systems. 25 and 33, since each power generation system is formed immediately after Habu 21, even if any trouble occurs in one of the power generation systems, the other remaining safely after the trouble occurs. In this power generation system, redundancy has been achieved so that power generation can be continued while maintaining the power generation function.
  • the achievement of redundancy of the power generation system 20 described above is also effective in reducing the size of the component devices constituting the gear type power generation system 20G and the gearless power generation system 20L. More specifically, when the amount of power generation increases due to an increase in the size of the wind power generator 1, both the induction generator 24 and the periodic generator 30 provided in the two power generation systems share the power. . For this reason, for example, when the sharing ratio is set to 1: 1, the power generation amount of the induction generator 24 and the periodic generator 30 is about half that of the generator that generates electricity by one unit. Can be used.
  • the downsizing of elemental devices such as generators eliminates the need for new development and production of elemental devices that increase in size in response to the increase in power generation accompanying the increase in the size of the wind turbine generator 1. This makes it possible to use existing products with high reliability. Therefore, when the wind turbine generator 1 is increased in size, the response by the side that manufactures and provides the elemental devices has a great influence on the availability of the devices that can achieve the increase in size and the final product price. Can be prevented.
  • the power generation system 20 of the above-described embodiment employs a configuration that is divided into two parts, that is, a gear type power generation system 20G and a gearless power generation system 20L, it is not limited thereto.
  • symbol is attached
  • the hydraulic power generation system 20H supplies the hydraulic pressure generated by the hydraulic pump 40 driven by the rotation of the main shaft 22 that rotates at a low speed together with the hub 21 to a hydraulic motor (not shown), and the hydraulic motor driven by this hydraulic pressure.
  • a generator (not shown) is also driven by the driving force to generate power. Therefore, the output of the main shaft 22 is divided into driving of the hydraulic pump 40 and the speed increaser 23.
  • the hydraulic pump 40 has a configuration in which a plurality of pump units 41 are arranged at an equal pitch in the circumferential direction. Furthermore, although the illustrated hydraulic pump 40 has three rows of pump units 41 arranged in the axial direction of the main shaft 22, the configuration is not limited to the illustrated configuration.
  • the hydraulic pump 40 is connected to a hydraulic motor through a hydraulic pipe 42 that forms a hydraulic circulation circuit.
  • the hydraulic pressure generated by the hydraulic pump 40 is supplied to the hydraulic motor through the hydraulic pipe 42, and the hydraulic motor is driven by this hydraulic pressure.
  • the generator connected to the output shaft (not shown) of the hydraulic motor generates power using the hydraulic motor as a drive source.
  • the hydraulic pressure that has driven the hydraulic motor 40 is returned to the hydraulic pump 40 through the hydraulic pipe 42.
  • illustration of a power converter device is abbreviate
  • the power generation system constituent devices after the hub 21 are made redundant, and the element devices of the gear type power generation system 20G and the hydraulic power generation system 20H can be reduced in size.
  • a power generation system that is divided into two parts, that is, the hydraulic power generation system 20H and the gearless power generation system 20L configured as described above. In this case, the output of the main shaft 22 is divided into driving of the hydraulic pump 40 and the periodic generator 30.
  • generated energy is transmitted from the wind turbine rotor 5 to the generator via the hub 21 of the rotor head 4, and the generated energy is like the main shaft 22.
  • the generated energy is transmitted from the wind turbine rotor 5 to the generator via the hub 21 of the rotor head 4, and the generated energy is like the main shaft 22.
  • the output of the main shaft 22 that rotates at a low speed together with the hub 21 is used to generate two power generation systems, specifically, the gear power generation system 20G, the gearless power generation system 20L, and the gear type. Since the power generation system 20G and the hydraulic power generation system 20H, or the hydraulic power generation system 20H and the gearless power generation system 20L are divided into two to generate power, the generator drive system 20 in which both the electrical elements and the machine side elements are made redundant is provided. 20A. As a result, the redundancy of the generator drive systems 20 and 20A is further improved, and the reliability of continuation of power generation by the wind power generator 1 is further improved.
  • the wind turbine generator 1 of the present embodiment does not include a configuration in which the gearless power generation system 20L is simply arranged in two rows in tandem with respect to the main shaft 22 to divide and use the output.
  • the generator drive systems 20 and 20A are divided into two power generation systems that are independent from each other after the hub 21, the component devices of each power generation system can be reduced in size due to a corresponding decrease in power generation amount.
  • Various problems related to the procurement of elemental devices of the generator drive systems 20 and 20A accompanying the increase in the size of the wind turbine generator 1 can also be solved.
  • the power generation drive systems 20, 20 ⁇ / b> A can be increased in size to increase the amount of power generated by the wind power generator 1 by combining components that are relatively distributed in the market. Therefore, it is possible to improve the ease of development and the period, and improve the reliability and redundancy of the wind turbine generator 1.
  • the present invention is not limited to the above-described embodiment, and the generator drive system may be divided into two or more, and can be appropriately changed within a range not departing from the gist thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The present invention further improves the redundancy in a power generator drive system (20) and solves problems related to procuring element devices for the power generator drive system (20) that occur along with increasing size. A wind turbine generator (1) is equipped with the power generator drive system (20), which converts wind received by a plurality of wind-turbine rotor blades mounted on a hub (21) to rotational force to drive a power generator, and the power generator drive system (20) splits the output of a low rotational speed main shaft (22) that rotates with the hub (21) between two power generating systems (20G, 20L) to generate power.

Description

風力発電装置Wind power generator
 本発明は、風力を電力に変換する風力発電装置に係り、特に、風力発電装置の冗長性を向上させる技術に関する。 The present invention relates to a wind turbine generator that converts wind power into electric power, and more particularly to a technique for improving the redundancy of the wind turbine generator.
 従来、風力発電装置は、風車回転翼に受けた風力でロータヘッドを回転させ、この回転力で発電機を駆動して発電するように構成された発電機駆動系(発電システム)を備えている。
 なお、風力発電装置には、誘導発電機を用いた誘導発電機風車と、同期発電機を用いた同期発電機風車(直結式)とがある。
Conventionally, a wind turbine generator includes a generator drive system (a power generation system) configured to generate power by rotating a rotor head with wind force received by a wind turbine rotor blade and driving the generator with this rotational force. .
Note that the wind turbine generator includes an induction generator windmill using an induction generator and a synchronous generator windmill using a synchronous generator (direct connection type).
 図5は、誘導発電機を採用した誘導発電機風車の発電機駆動系について、従来の概略構成例を示す図である。
 図示の発電機駆動系10は、例えば3枚の風車回転翼を取り付けたロータヘッドのハブ11と一体に主軸12が回転し、主軸12と連結された増速機13を介して増速された回転数によって誘導発電機14を駆動する。こうして誘導発電機14で発電された電力は、電力変換装置15を介して送電される。なお、発電機駆動系10を構成する増速機13,誘導発電機14及び電力変換装置15は、いずれの構成要素も単体のシステムである。
FIG. 5 is a diagram illustrating a conventional schematic configuration example of a generator drive system of an induction generator wind turbine that employs an induction generator.
In the illustrated generator drive system 10, for example, a main shaft 12 is rotated integrally with a hub 11 of a rotor head to which three wind turbine rotor blades are attached, and the speed is increased via a speed increaser 13 connected to the main shaft 12. The induction generator 14 is driven by the rotational speed. The electric power generated by the induction generator 14 is transmitted through the power converter 15. Note that all of the components of the speed increaser 13, the induction generator 14, and the power conversion device 15 constituting the generator drive system 10 are a single system.
 図6は、同期発電機を採用した同期発電機風車の発電機駆動系について、従来の概略構成例を示す図である。図示の発電機駆動系10Aは、ロータヘッドのハブ11と一体に回転する主軸12までの構成は上述した誘導発電機風車と同じである。
 しかし、同期発電機風車の発電機駆動系10Aには増速機13がなく、主軸12と直結された同期発電機14Aを駆動して発電する。こうして同期発電機14Aで発電された電力は、電力変換装置15Aを介して送電される。なお、発電機駆動系10Aを構成する同期発電機14A及び電力変換装置15Aは、いずれの構成要素も単体のシステムである。
FIG. 6 is a diagram illustrating a conventional schematic configuration example of a generator drive system of a synchronous generator wind turbine that employs a synchronous generator. The generator drive system 10A shown in the drawing has the same configuration as the induction generator windmill described above up to the main shaft 12 that rotates integrally with the hub 11 of the rotor head.
However, the generator drive system 10A of the synchronous generator wind turbine does not have the speed increaser 13 and drives the synchronous generator 14A directly connected to the main shaft 12 to generate power. The electric power generated by the synchronous generator 14A is transmitted through the power converter 15A. In addition, as for the synchronous generator 14A and the power converter device 15A which comprise the generator drive system 10A, any component is a single system.
 このような従来の風力発電装置においては、発電システムの一部に何らかのトラブルが発生した場合に備え、トラブル発生後でも発電機能を維持し続けられるようにするため、換言すれば、発電機能が完全に損なわれてしまうことを防止するため、2以上の複数系統に分割(マルチ化)して運用する冗長化が行われている。 In such a conventional wind power generation device, in order to be able to maintain the power generation function even after a trouble occurs, in order to be prepared in the event that some trouble occurs in a part of the power generation system, in other words, the power generation function is completely In order to prevent this from being damaged, redundancy is performed by dividing (multiling) into two or more multiple systems.
 図7に示す発電機駆動系10′は、上述した発電駆動系10の電気的要素をマルチ化して冗長化を図ったものである。
 具体的には、発電駆動系10の誘導発電機14及び電力変換装置15を複数にしたマルチシステムの誘導発電機14′及び電力変換装置15′が使用されている。図示の構成で使用する誘導発電機14′は、1つの筐体内部で電気的部分がN分割されたN個の誘導発電機Gn1~GnNを備えた構造とされ、さらに、各誘導発電機Gn1~GnNに対応してIn1~InNで構成される電力変換装置15′が設けられている。なお、マルチシステムの誘導発電機14′には、筐体をタンデムに分割した構造のものもある。
The generator drive system 10 ′ shown in FIG. 7 is a redundant configuration by making the electrical elements of the above-described power generation drive system 10 multi.
Specifically, a multi-system induction generator 14 ′ and power conversion device 15 ′ in which a plurality of induction generators 14 and power conversion devices 15 of the power generation drive system 10 are used are used. The induction generator 14 'used in the configuration shown in the figure has a structure including N induction generators Gn1 to GnN in which an electrical part is divided into N inside a single casing, and each induction generator Gn1. Corresponding to .about.GnN, a power conversion device 15 'composed of In1 to InN is provided. Some multi-system induction generators 14 'have a structure in which a casing is divided into tandems.
 図8に示す発電機駆動系10″は、上述した発電駆動系10の増速機13をマルチ化して冗長化を図ったものである。
 具体的に説明すると、発電機駆動系10″は、高速側をN本の出力軸S1~SNに分割することでマルチ化した増速機13″を採用し、さらに、増速機13″の各出力軸に対応してマルチ化した誘導発電機Ge1~GeN及び電気的要素を連結することで冗長化を図ったものである。
A generator drive system 10 ″ shown in FIG. 8 is obtained by making the speed-up gear 13 of the above-described power generation drive system 10 multi-redundant.
More specifically, the generator drive system 10 ″ employs a speed-up gear 13 ″ that is multi-divided by dividing the high-speed side into N output shafts S1 to SN. Redundancy is achieved by connecting multiple induction generators Ge1 to GeN and electrical elements corresponding to each output shaft.
 また、下記の特許文献1には、同期発電機の中心部の余剰空間に小径の同期発電機を配置することで、高効率の発電を可能にした風力発電装置が開示されている。 Further, Patent Document 1 below discloses a wind power generator that enables high-efficiency power generation by disposing a small-diameter synchronous generator in an excess space in the central portion of the synchronous generator.
特許第4461078号公報Japanese Patent No. 4461078
 ところで、上述した従来の風力発電装置は、例えば誘導発電機14及び電力変換装置15をマルチ化するなど、発電機駆動系の電気的要素を冗長化したものであるが、機械側要素(特に増速器)のトラブル時に対応した冗長化は全くなされていないというのが現状である。
 なお、図8に示す増速機13″のように出力軸を分割してマルチ化したものは、増速機自体が1台の装置であるため、増速機13″の1ケ所に不具合が生じると、発電機駆動系は全ての機能が失われることとなる。
By the way, the above-described conventional wind power generator is a device in which electrical elements of the generator drive system are made redundant, for example, by multiplying the induction generator 14 and the power conversion device 15. The current situation is that no redundancy has been made in response to troubles in the speedometer.
In the case of the speed increaser 13 ″ shown in FIG. 8, the output shaft is divided into multiple units, and the speed increaser itself is a single device, so there is a problem at one point of the speed increaser 13 ″. If this happens, all functions of the generator drive system will be lost.
 このように、従来の冗長化は、発電機駆動系の電気的要素に限られたものであり、増速機など冗長化がなされていない機械側要素にトラブルが生じても対応できないシステム構成となっており、従って、冗長化に見合わない大きなコストアップが予想される。 As described above, the conventional redundancy is limited to the electrical elements of the generator drive system, and the system configuration cannot cope with trouble even in the machine side element that is not made redundant such as a gearbox. Therefore, a large cost increase that is not commensurate with redundancy is expected.
 また、近年の風力発電装置は大型化する傾向にあるが、発電機駆動系は1つである。このため、超大型化を狙う際に商用価格に見合う最大サイズは、構成要素のサプライヤ側に依存するという制約が生じてくる。すなわち、風力発電装置の大型化は、例えば増速機や発電機などのように、1系統の発電機駆動系を構成する要素機器類の大型化を伴うので、要素機器類を製造する側の対応が機器調達の可否や最終的な製品価格に大きな影響を及ぼすこととなる。 Moreover, although the wind power generators in recent years tend to be larger, there is only one generator drive system. For this reason, when aiming at ultra-large size, the maximum size commensurate with the commercial price is restricted depending on the component side of the component. That is, the increase in the size of the wind turbine generator is accompanied by an increase in the size of the component devices that constitute one generator drive system, such as a speed increaser and a generator. The response will have a major impact on the availability of equipment and the final product price.
 このような背景から、上述した従来の風力発電装置においては、機械側要素についても冗長化された発電機駆動系とし、発電機駆動系の冗長性をより一層向上させるとともに、大型化に伴う発電機駆動系の要素機器類調達に関する諸問題を解消することが望まれる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、発電機駆動系の冗長性をより一層向上させるとともに、大型化に伴って生じる発電機駆動系の要素機器類調達に関する諸問題を解消した風力発電装置を提供することにある。
Against this background, in the conventional wind power generator described above, the machine-side elements are also made redundant generator drive systems to further improve the redundancy of the generator drive system and to generate power accompanying an increase in size. It is desirable to solve various problems related to the procurement of component equipment for machine drive systems.
The present invention has been made in view of the above circumstances, and the object of the present invention is to further improve the redundancy of the generator drive system, and to generate the generator drive system element device as the size increases. The purpose is to provide a wind turbine generator that solves various problems related to procurement.
 本発明は、上記の課題を解消するため、下記の手段を採用した。
 本発明の風力発電装置は、ハブに取り付けられた複数の風車回転翼に受けた風力を回転力に変換して発電機を駆動する発電機駆動系を備えている風力発電装置であって、前記発電機駆動系が、前記ハブとともに回転する低速軸の出力を複数の発電系統に分割して発電することを特徴とするものである。
The present invention employs the following means in order to solve the above problems.
The wind turbine generator according to the present invention is a wind turbine generator including a generator drive system that converts wind power received by a plurality of wind turbine rotor blades attached to a hub into rotational force to drive the generator, The generator drive system generates power by dividing the output of the low-speed shaft rotating together with the hub into a plurality of power generation systems.
 このような本発明の風力発電装置によれば、風力を回転力に変換して発電機を駆動する発電機駆動系が、ハブとともに回転する低速軸の出力を複数の発電系統に分割して発電するように構成されているので、低速回転するハブ以降(ハブより発電機側)において発電系統を構成する電気的要素及び機械側要素は、他の系統にトラブルが生じても各々独立して発電可能な複数の発電系統を形成する。
 従って、ハブ以降の発電系統構成機器は、いずれかの発電系統で何らかのトラブルが発生した場合に備え、トラブル発生後でも残る発電系統の発電機能を維持して発電を継続できるように冗長化されたものとなり、さらに、各発電系統の要素機器類の小型化も可能となる。
 この場合、発電機駆動系の発電系統は、構造が過度に複雑化することやコスト面などを考慮すると、ハブ以降において2系統に分割されることが望ましい。
According to such a wind turbine generator of the present invention, the generator drive system that converts wind power into rotational force to drive the generator divides the output of the low-speed shaft that rotates with the hub into a plurality of power generation systems to generate power. Therefore, the electrical elements and machine-side elements that make up the power generation system after the hub that rotates at a low speed (from the hub to the generator side) can generate power independently even if trouble occurs in other systems. Form multiple possible power generation systems.
Therefore, the power generation system components after the hub have been made redundant in order to maintain the power generation function of the power generation system that remains after the trouble, in case any trouble occurs in any power generation system. Furthermore, it is possible to reduce the size of the component devices of each power generation system.
In this case, it is desirable to divide the power generation system of the generator drive system into two systems after the hub in view of excessive complexity in structure and cost.
 上記の風力発電装置において、前記発電系統は、前記低速軸の回転数を増速して発電するギア式発電系統と、前記低速軸の回転数で発電するギアレス発電系統とに分割されたもの、あるいは、前記低速軸の回転で駆動される油圧ポンプの油圧を油圧モータに供給するとともに、前記油圧により駆動される前記油圧モータの駆動力により発電する油圧式発電系統と、前記低速軸の回転数で発電するギアレス発電系統とに分割されたもの、あるいは、前記低速軸の回転数を増速して発電するギア式発電系統と、前記低速軸の回転で駆動される油圧ポンプの油圧を油圧モータに供給するとともに、前記油圧により駆動される前記油圧モータの駆動力により発電する油圧式発電系統とに分割されたものが好ましい。 In the wind power generator described above, the power generation system is divided into a gear type power generation system that generates power by increasing the rotational speed of the low speed shaft, and a gearless power generation system that generates power at the rotational speed of the low speed shaft, Alternatively, a hydraulic power generation system that supplies hydraulic pressure of a hydraulic pump driven by the rotation of the low-speed shaft to the hydraulic motor and generates power by the driving force of the hydraulic motor driven by the hydraulic pressure, and the rotation speed of the low-speed shaft Divided into a gearless power generation system that generates electric power at a speed, or a gear-type power generation system that generates power by increasing the rotational speed of the low-speed shaft, and the hydraulic pressure of a hydraulic pump driven by the rotation of the low-speed shaft And a hydraulic power generation system that generates power using the driving force of the hydraulic motor driven by the hydraulic pressure.
 本発明の風力発電装置によれば、ハブとともに回転する低速軸の出力を複数の発電系統に分割して発電するので、電気的要素及び機械側要素の両方が冗長化された発電機駆動系となる。この結果、発電機駆動系の冗長性がより一層向上するので、風力発電装置による発電継続の信頼性向上という顕著な効果が得られる。
 また、発電機駆動系を複数の発電系統に分割することにより、各発電系統の要素機器類を小型化できるようになり、従って、風力発電装置の大型化に伴う発電機駆動系の要素機器類調達に関する諸問題も解消できる。
According to the wind power generator of the present invention, the output of the low-speed shaft that rotates together with the hub is divided into a plurality of power generation systems to generate power. Therefore, the generator drive system in which both the electrical elements and the machine side elements are made redundant Become. As a result, since the redundancy of the generator drive system is further improved, the remarkable effect of improving the reliability of the power generation continuation by the wind power generator can be obtained.
Further, by dividing the generator drive system into a plurality of power generation systems, it becomes possible to reduce the size of the component devices of each power generation system, and accordingly, the component devices of the generator drive system accompanying the increase in the size of the wind power generator Problems related to procurement can also be solved.
本発明の一実施形態に係る風力発電装置について、発電駆動系の構成例を示す図である。It is a figure which shows the structural example of an electric power generation drive system about the wind power generator which concerns on one Embodiment of this invention. 図1に示した発電駆動系について、要部の概要を示す側面図である。It is a side view which shows the outline | summary of the principal part about the electric power generation drive system shown in FIG. 図1に示した発電駆動系に係る他の構成例を示す図である。It is a figure which shows the other structural example which concerns on the electric power generation drive system shown in FIG. 風力発電装置の概要を示す側面図である。It is a side view which shows the outline | summary of a wind power generator. 従来例として誘導発電機を採用した誘導発電機風車の発電機駆動系を示す概略構成図である。It is a schematic block diagram which shows the generator drive system of the induction generator windmill which employ | adopted the induction generator as a prior art example. 従来例として同期発電機を採用した同期発電機風車の発電機駆動系を示す概略構成図である。It is a schematic block diagram which shows the generator drive system of the synchronous generator windmill which employ | adopted the synchronous generator as a prior art example. 従来例として、図5に示した誘導発電機風車の発電駆動系を構成する電気的要素を冗長化した概略構成例を示す図である。It is a figure which shows the schematic structural example which made redundant the electrical element which comprises the electric power generation drive system of the induction generator windmill shown in FIG. 5 as a prior art example. 従来例として、図5に示した誘導発電機風車の発電駆動系を構成する増速機について、高速側の出力軸をN本に分割して冗長化した概略構成例を示す図である。It is a figure which shows the example of schematic structure which divided | segmented the high-speed side output shaft into N and made redundant about the speed up gear which comprises the electric power generation drive system of the induction generator windmill shown in FIG. 5 as a prior art example.
 以下、本発明に係る風力発電装置の一実施形態を図1~図4に基づいて説明する。
 図4に示す風力発電装置1は、基礎6上に立設される支柱(「タワー」ともいう。)2と、支柱2の上端に設置されるナセル3と、略水平な回転軸線周りに回転可能に支持されてナセル3に設けられるロータヘッド4とを有している。
 ロータヘッド4には、その回転軸線周りに放射状にして複数枚(たとえば3枚)の風車回転翼5が取り付けられている。これにより、ロータヘッド4の回転軸線方向から風車回転翼5に当たった風の力が、ロータヘッド4を回転軸線周りに回転させる動力に変換されるようになっている。
Hereinafter, an embodiment of a wind turbine generator according to the present invention will be described with reference to FIGS.
The wind power generator 1 shown in FIG. 4 rotates around a substantially horizontal rotation axis, with a column (also referred to as a “tower”) 2 standing on a foundation 6, a nacelle 3 installed at the upper end of the column 2, and the like. And a rotor head 4 that is supported by the nacelle 3.
A plurality of (for example, three) wind turbine rotor blades 5 are attached to the rotor head 4 in a radial pattern around the rotation axis. As a result, the force of wind striking the wind turbine rotor blade 5 from the direction of the rotation axis of the rotor head 4 is converted into power for rotating the rotor head 4 around the rotation axis.
 上述した風力発電装置1は、例えば図1に示す実施形態の発電機駆動系20を備えている。この発電機駆動系20は、ロータヘッド4とともに低速回転する低速軸の回転数を増速して発電するギア式発電系統20Gと、低速軸の回転数で発電するギアレス発電系統20Lとに分割されている。 The wind power generator 1 described above includes, for example, the generator drive system 20 of the embodiment shown in FIG. The generator drive system 20 is divided into a gear type power generation system 20G that generates power by increasing the number of rotations of a low speed shaft that rotates at a low speed together with the rotor head 4, and a gearless power generation system 20L that generates power at the number of rotations of the low speed shaft. ing.
 ギア式発電系統20Gは、風車回転翼5を取り付けたロータヘッド4のハブ21と一体に低速軸の主軸22が回転し、この主軸22と連結された増速機23を介して増速された高回転数によって誘導発電機24を駆動する。誘導発電機24で発電された電力は、インバータ・コンバータなどの電力変換装置25により所望の周波数や位相等に調整され、電圧や電流の変動が小さい安定した出力として送電される。 In the gear type power generation system 20G, the main shaft 22 of the low-speed shaft rotates integrally with the hub 21 of the rotor head 4 to which the wind turbine rotor blades 5 are attached, and the speed is increased through a speed increaser 23 connected to the main shaft 22. The induction generator 24 is driven at a high rotational speed. The electric power generated by the induction generator 24 is adjusted to a desired frequency, phase, and the like by a power converter 25 such as an inverter / converter, and is transmitted as a stable output with small fluctuations in voltage and current.
 ギアレス発電系統20Lは、同期発電機30を備えている。この同期発電機30は、例えば図2に示すように、ロータヘッド4とともに回転するハブ21側の外周部にリング状の回転子31が取り付けられ、増速機23や誘導発電機24などを支持するナセル台板3aに、回転子31よりやや大径のリング状とした固定子32が固定設置されている。従って、ロータヘッド4が回転すると、ハブ21にフランジなどを介して連結された回転子31が、固定子32の内側近傍を回転して発電することとなる。
 同期発電機30で発電された電力は、誘導電動機24と同様に、電力変換装置33により所望の周波数や位相等に調整され、電圧や電流の変動が小さい安定した出力として送電される。
The gearless power generation system 20 </ b> L includes a synchronous generator 30. For example, as shown in FIG. 2, the synchronous generator 30 has a ring-shaped rotor 31 attached to the outer peripheral portion on the hub 21 side that rotates together with the rotor head 4, and supports the speed increaser 23, the induction generator 24, and the like. A stator 32 having a ring shape slightly larger in diameter than the rotor 31 is fixedly installed on the nacelle base plate 3a. Therefore, when the rotor head 4 rotates, the rotor 31 connected to the hub 21 via a flange or the like rotates around the inside of the stator 32 to generate electric power.
Similar to the induction motor 24, the electric power generated by the synchronous generator 30 is adjusted to a desired frequency, phase, and the like by the power conversion device 33, and is transmitted as a stable output with small fluctuations in voltage and current.
 上述したように、本実施形態の風力発電装置1は、風力を回転力に変換して発電する発電機駆動系20が、主軸22の回転数を増速した高速回転数で発電するギア式発電系統20Gと、主軸22の低速回転数で発電するギアレス発電系統20Lとの2系統に分割されている。すなわち、本実施形態の発電機駆動系20は、主軸22の出力が増速機23及び周期発電機30の駆動に分割して使用されているので、ハブ21とともに回転する主軸22の出力をギア式発電系統20G及びギアレス発電系統20Lの二系統に分割して使用した発電が可能となる。 As described above, in the wind turbine generator 1 of the present embodiment, the generator drive system 20 that generates power by converting wind power into rotational force generates power at a high rotational speed obtained by increasing the rotational speed of the main shaft 22. The system is divided into two systems, that is, a system 20G and a gearless power generation system 20L that generates power at a low speed of the main shaft 22. That is, in the generator drive system 20 of the present embodiment, the output of the main shaft 22 is divided and used for driving the speed increaser 23 and the periodic generator 30, so the output of the main shaft 22 that rotates together with the hub 21 is used as a gear. It is possible to generate power that is used by being divided into two systems of a power generation system 20G and a gearless power generation system 20L.
 このため、発電機駆動系20は、低速回転するハブ21以降、すなわち低速回転するハブ21より誘導発電機24及び周期発電機30側となるギア式発電系統20G及びギアレス発電系統20Lを構成する電気的要素及び機械側要素が冗長化されたものとなり、各々独立して発電可能な二つの発電系統を備えたものとなる。
 従って、ギア式発電系統20Gまたはギアレス発電系統20Lのいずれか一方の系統にトラブルが生じても、ハブ21が回転していれば各々独立して発電可能な他方の発電系統による発電の継続が可能となる。
For this reason, the generator drive system 20 includes the gear-type power generation system 20 </ b> G and the gearless power generation system 20 </ b> L on the induction generator 24 and the periodic generator 30 side after the low-speed rotating hub 21, that is, the low-speed rotating hub 21. The mechanical element and the machine side element are made redundant, and two power generation systems capable of generating power independently are provided.
Therefore, even if a trouble occurs in one of the gear type power generation system 20G or the gearless power generation system 20L, it is possible to continue the power generation by the other power generation system capable of generating power independently if the hub 21 is rotating. It becomes.
 換言すれば、ハブ21以降に形成されたギア式発電系統20Gまたはギアレス発電系統20Lは、例えば二つの発電系統を構成する主な構成機器である誘導発電機24及び周期発電機30、電力変換装置25,33のように、はぶ21の直後から各々独立した発電系統を形成しているので、いずれか一方の発電系統で何らかのトラブルが発生した場合であっても、トラブル発生後に無事残った他方の発電系統で発電機能を維持して発電を継続できるという冗長化が達成されたものとなる。 In other words, the gear-type power generation system 20G or the gearless power generation system 20L formed after the hub 21 is, for example, an induction generator 24, a periodic generator 30, or a power conversion device, which are main components constituting two power generation systems. 25 and 33, since each power generation system is formed immediately after Habu 21, even if any trouble occurs in one of the power generation systems, the other remaining safely after the trouble occurs. In this power generation system, redundancy has been achieved so that power generation can be continued while maintaining the power generation function.
 また、上述した発電系統20の冗長化達成は、ギア式発電系統20G及びギアレス発電系統20Lを構成する要素機器類の小型化にも有効である。
 具体的に説明すると、風力発電装置1の大型化により発電量が増大した場合には、二つの発電系統に設けた誘導発電機24及び周期発電機30の両方が分担して発電することになる。このため、例えば分担率を1:1にした場合、誘導発電機24及び周期発電機30の発電量は1台で発電する発電機の半分程度となり、従って、発電容量の小さい小型の発電機を使用できる。
In addition, the achievement of redundancy of the power generation system 20 described above is also effective in reducing the size of the component devices constituting the gear type power generation system 20G and the gearless power generation system 20L.
More specifically, when the amount of power generation increases due to an increase in the size of the wind power generator 1, both the induction generator 24 and the periodic generator 30 provided in the two power generation systems share the power. . For this reason, for example, when the sharing ratio is set to 1: 1, the power generation amount of the induction generator 24 and the periodic generator 30 is about half that of the generator that generates electricity by one unit. Can be used.
 こうした発電機などの要素機器類を小型化することは、風力発電装置1の大型化に伴った発電量増大に対応して大型化する要素機器類の新たな開発・製造を不要とし、実績があって信頼性の高い既存製品の使用を可能にする。従って、風力発電装置1を大型化する場合、要素機器類を製造して提供する側の対応が、大型化達成を左右する機器調達の可否や最終的な製品価格などに大きな影響を及ぼすことを防止できる。 The downsizing of elemental devices such as generators eliminates the need for new development and production of elemental devices that increase in size in response to the increase in power generation accompanying the increase in the size of the wind turbine generator 1. This makes it possible to use existing products with high reliability. Therefore, when the wind turbine generator 1 is increased in size, the response by the side that manufactures and provides the elemental devices has a great influence on the availability of the devices that can achieve the increase in size and the final product price. Can be prevented.
 ところで、上述した実施形態の発電系統20は、ギア式発電系統20G及びギアレス発電系統20Lに二分割された構成を採用しているが、これに限定されることはない。
 他の構成例としては、例えば図3に示す発電系統20Aのように、上述したギア式発電系統20Gと後述する油圧式発電系統20Hとに二分割された構成のものがある。なお、上述した実施形態と同様の構成要素には同じ符号を付し、その詳細な説明は省略する。
By the way, although the power generation system 20 of the above-described embodiment employs a configuration that is divided into two parts, that is, a gear type power generation system 20G and a gearless power generation system 20L, it is not limited thereto.
As another configuration example, there is a configuration in which the gear-type power generation system 20G described above and a hydraulic power generation system 20H described later are divided into two, such as a power generation system 20A illustrated in FIG. In addition, the same code | symbol is attached | subjected to the component similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
 油圧式発電系統20Hは、ハブ21とともに低速回転する主軸22の回転に伴って駆動される油圧ポンプ40が発生させた油圧を図示しない油圧モータに供給するとともに、この油圧により駆動される油圧モータの駆動力により、同じく図示しない発電機を駆動して発電するものである。従って、主軸22の出力は、油圧ポンプ40及び増速機23の駆動に分割されている。
 油圧ポンプ40は、複数のポンプユニット41を周方向に等ピッチで配列した構成とされる。さらに、図示の油圧ポンプ40は、主軸22の軸方向に3列のポンプユニット41を配置しているが、図示の構成に限定されることはない。
The hydraulic power generation system 20H supplies the hydraulic pressure generated by the hydraulic pump 40 driven by the rotation of the main shaft 22 that rotates at a low speed together with the hub 21 to a hydraulic motor (not shown), and the hydraulic motor driven by this hydraulic pressure. A generator (not shown) is also driven by the driving force to generate power. Therefore, the output of the main shaft 22 is divided into driving of the hydraulic pump 40 and the speed increaser 23.
The hydraulic pump 40 has a configuration in which a plurality of pump units 41 are arranged at an equal pitch in the circumferential direction. Furthermore, although the illustrated hydraulic pump 40 has three rows of pump units 41 arranged in the axial direction of the main shaft 22, the configuration is not limited to the illustrated configuration.
 油圧ポンプ40は、油圧循環回路を形成する油圧配管42を介して油圧モータと連結されている。
 油圧ポンプ40で発生した油圧は、油圧配管42を通って油圧モータに供給され、この油圧によって油圧モータが駆動される。この結果、油圧モータの出力軸(不図示)と連結された発電機は、油圧モータを駆動源として発電する。また、油圧モータ40を駆動した油圧は、油圧配管42を通って油圧ポンプ40に戻される。なお、図3においては、電力変換装置の図示が省略されている。
The hydraulic pump 40 is connected to a hydraulic motor through a hydraulic pipe 42 that forms a hydraulic circulation circuit.
The hydraulic pressure generated by the hydraulic pump 40 is supplied to the hydraulic motor through the hydraulic pipe 42, and the hydraulic motor is driven by this hydraulic pressure. As a result, the generator connected to the output shaft (not shown) of the hydraulic motor generates power using the hydraulic motor as a drive source. The hydraulic pressure that has driven the hydraulic motor 40 is returned to the hydraulic pump 40 through the hydraulic pipe 42. In addition, in FIG. 3, illustration of a power converter device is abbreviate | omitted.
 このような構成の発電系統20Aとしても、ハブ21以降の発電系統構成機器は冗長化されたものとなり、さらに、ギア式発電系統20G及び油圧式発電系統20Hの要素機器類も小型化できる。
 また、図示は省略したものの、上述した構成の油圧式発電系統20H及びギアレス発電系統20Lに二分割された構成の発電系統を採用することも可能である。この場合、主軸22の出力は、油圧ポンプ40及び周期発電機30の駆動に分割されている。
Also in the power generation system 20A having such a configuration, the power generation system constituent devices after the hub 21 are made redundant, and the element devices of the gear type power generation system 20G and the hydraulic power generation system 20H can be reduced in size.
Although not shown, it is also possible to employ a power generation system that is divided into two parts, that is, the hydraulic power generation system 20H and the gearless power generation system 20L configured as described above. In this case, the output of the main shaft 22 is divided into driving of the hydraulic pump 40 and the periodic generator 30.
 すなわち、本実施形態の風力発電装置1は、風車回転翼5からロータヘッド4のハブ21を介して発電機に向けて発電エネルギーが伝達されるものであり、その発電エネルギーが、主軸22のような低速軸の機械的要素の段階で複数の発電エネルギー伝達経路に、理想的には2つの発電エネルギー伝達経路に分散されている。 That is, in the wind power generator 1 of this embodiment, generated energy is transmitted from the wind turbine rotor 5 to the generator via the hub 21 of the rotor head 4, and the generated energy is like the main shaft 22. Are distributed to a plurality of power generation energy transmission paths, ideally, to two power generation energy transmission paths at the stage of a mechanical element of a low-speed shaft.
 このように、本実施形態の風力発電装置1によれば、ハブ21とともに低速回転する主軸22の出力を2系統の発電系統、具体的にはギア式発電系統20G及びギアレス発電系統20L、ギア式発電系統20G及び油圧式発電系統20H、あるいは油圧式発電系統20H及びギアレス発電系統20Lに二分割して発電するので、電気的要素及び機械側要素の両方が冗長化された発電機駆動系20,20Aとなる。この結果、発電機駆動系20,20Aの冗長性がより一層向上し、風力発電装置1による発電継続の信頼性はさらに向上したものとなる。このような信頼性の向上は、陸上との比較においてアクセス性の低い洋上風力発電装置において特に有効となる。
 なお、本実施形態の風力発電装置1は、主軸22に対して単にギアレス発電系統20Lを2列タンデムに配置して出力の分割使用をするような構成を包含するものではない。
Thus, according to the wind power generator 1 of the present embodiment, the output of the main shaft 22 that rotates at a low speed together with the hub 21 is used to generate two power generation systems, specifically, the gear power generation system 20G, the gearless power generation system 20L, and the gear type. Since the power generation system 20G and the hydraulic power generation system 20H, or the hydraulic power generation system 20H and the gearless power generation system 20L are divided into two to generate power, the generator drive system 20 in which both the electrical elements and the machine side elements are made redundant is provided. 20A. As a result, the redundancy of the generator drive systems 20 and 20A is further improved, and the reliability of continuation of power generation by the wind power generator 1 is further improved. Such an improvement in reliability is particularly effective in offshore wind power generation devices that have low accessibility compared to land.
Note that the wind turbine generator 1 of the present embodiment does not include a configuration in which the gearless power generation system 20L is simply arranged in two rows in tandem with respect to the main shaft 22 to divide and use the output.
 また、発電機駆動系20,20Aをハブ21以降で互いに独立した二つの発電系統に分割したので、各発電系統の要素機器類は、対応する発電量の低下によって小型化が可能となり、従って、風力発電装置1の大型化に伴う発電機駆動系20,20Aの要素機器類調達に関する諸問題も解消できる。 In addition, since the generator drive systems 20 and 20A are divided into two power generation systems that are independent from each other after the hub 21, the component devices of each power generation system can be reduced in size due to a corresponding decrease in power generation amount. Various problems related to the procurement of elemental devices of the generator drive systems 20 and 20A accompanying the increase in the size of the wind turbine generator 1 can also be solved.
 この結果、発電駆動系20,20Aは、比較的市場に多く流通している構成要素を組合せた構成として風力発電装置1の発電量を増す超大型化が可能となり、風力発電装置1の大型化に伴う開発の容易さと期間短縮、風力発電装置1の信頼性向上及び冗長性の向上を図ることができる。
 なお、本発明は上述した実施形態に限定されることはなく、発電機駆動系が2以上に分割されてもよいなど、その要旨を逸脱しない範囲内において適宜変更することができる。
As a result, the power generation drive systems 20, 20 </ b> A can be increased in size to increase the amount of power generated by the wind power generator 1 by combining components that are relatively distributed in the market. Therefore, it is possible to improve the ease of development and the period, and improve the reliability and redundancy of the wind turbine generator 1.
Note that the present invention is not limited to the above-described embodiment, and the generator drive system may be divided into two or more, and can be appropriately changed within a range not departing from the gist thereof.
 1 風力発電装置
 2 支柱(タワー)
 3 ナセル
 4 ロータヘッド
 5風車回転翼
 6 基礎
20,20A 発電機駆動系
20G ギア式発電系統
20L ギアレス発電系統
20H 油圧式発電系統
21 ハブ
22 主軸(低速軸)
23 増速機
24 誘導発電機
25,33 電力変換装置
30 周期発電機
31 回転子
32 固定子
40 油圧ポンプ
41 ポンプユニット
42 油圧配管
1 Wind power generator 2 Strut (tower)
3 Nacelle 4 Rotor head 5 Wind turbine rotor blades 6 Base 20, 20A Generator drive system 20G Gear type power generation system 20L Gearless power generation system 20H Hydraulic type power generation system 21 Hub 22 Main shaft (low speed shaft)
23 Speed increaser 24 Induction generators 25 and 33 Power converter 30 Periodic generator 31 Rotor 32 Stator 40 Hydraulic pump 41 Pump unit 42 Hydraulic piping

Claims (4)

  1.  ハブに取り付けられた複数の風車回転翼に受けた風力を回転力に変換して発電機を駆動する発電機駆動系を備えている風力発電装置であって、
     前記発電機駆動系が、前記ハブとともに回転する低速軸の出力を複数の発電系統に分割して発電することを特徴とする風力発電装置。
    A wind turbine generator having a generator drive system that converts wind power received by a plurality of wind turbine rotor blades attached to a hub into rotational force to drive a generator,
    The wind turbine generator characterized in that the generator drive system generates power by dividing an output of a low-speed shaft rotating together with the hub into a plurality of power generation systems.
  2.  前記発電系統が、前記低速軸の回転数を増速して発電するギア式発電系統と、前記低速軸の回転数で発電するギアレス発電系統とに分割されていることを特徴とする請求項1に記載の風力発電装置。 2. The power generation system is divided into a gear type power generation system that generates power by increasing the rotational speed of the low speed shaft and a gearless power generation system that generates power at the rotational speed of the low speed shaft. The wind power generator described in 1.
  3.  前記発電系統が、前記低速軸の回転で駆動される油圧ポンプの油圧を油圧モータに供給するとともに、前記油圧により駆動される前記油圧モータの駆動力により発電する油圧式発電系統と、前記低速軸の回転数で発電するギアレス発電系統とに分割されていることを特徴とする請求項1に記載の風力発電装置。 The power generation system supplies hydraulic pressure of a hydraulic pump driven by the rotation of the low speed shaft to a hydraulic motor, and generates power by the driving force of the hydraulic motor driven by the hydraulic pressure, and the low speed shaft The wind power generator according to claim 1, wherein the wind power generator is divided into a gearless power generation system that generates electric power at a rotational speed of.
  4.  前記発電系統が、前記低速軸の回転数を増速して発電するギア式発電系統と、前記低速軸の回転で駆動される油圧ポンプの油圧を油圧モータに供給するとともに、前記油圧により駆動される前記油圧モータの駆動力により発電する油圧式発電系統とに分割されていることを特徴とする請求項1に記載の風力発電装置。
     
    The power generation system supplies hydraulic pressure of a gear-type power generation system that increases the rotational speed of the low-speed shaft to generate power and a hydraulic pump driven by the rotation of the low-speed shaft to the hydraulic motor, and is driven by the hydraulic pressure. The wind turbine generator according to claim 1, wherein the wind turbine generator is divided into a hydraulic power generation system that generates electric power by a driving force of the hydraulic motor.
PCT/JP2013/059074 2013-03-27 2013-03-27 Wind turbine generator WO2014155578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059074 WO2014155578A1 (en) 2013-03-27 2013-03-27 Wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059074 WO2014155578A1 (en) 2013-03-27 2013-03-27 Wind turbine generator

Publications (1)

Publication Number Publication Date
WO2014155578A1 true WO2014155578A1 (en) 2014-10-02

Family

ID=51622655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059074 WO2014155578A1 (en) 2013-03-27 2013-03-27 Wind turbine generator

Country Status (1)

Country Link
WO (1) WO2014155578A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287178A (en) * 1998-03-31 1999-10-19 Kayaba Ind Co Ltd Generating set
JP2001342942A (en) * 2000-06-05 2001-12-14 Kinden Corp Wind power plant
JP2003336571A (en) * 2002-05-18 2003-11-28 Siemens Ag Multistage wind power generator with clutch device
JP2007514887A (en) * 2003-12-09 2007-06-07 ニュー・ワールド・ジェネレーション・インコーポレイテッド Wind turbine generating electricity
JP2010516929A (en) * 2007-01-17 2010-05-20 ニュー・ワールド・ジェネレーション・インコーポレイテッド Composite wind generator and method of operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287178A (en) * 1998-03-31 1999-10-19 Kayaba Ind Co Ltd Generating set
JP2001342942A (en) * 2000-06-05 2001-12-14 Kinden Corp Wind power plant
JP2003336571A (en) * 2002-05-18 2003-11-28 Siemens Ag Multistage wind power generator with clutch device
JP2007514887A (en) * 2003-12-09 2007-06-07 ニュー・ワールド・ジェネレーション・インコーポレイテッド Wind turbine generating electricity
JP2010516929A (en) * 2007-01-17 2010-05-20 ニュー・ワールド・ジェネレーション・インコーポレイテッド Composite wind generator and method of operation

Similar Documents

Publication Publication Date Title
CA2531278C (en) Wind turbine generator
US8198749B2 (en) Wind turbine generator
US20110143880A1 (en) Drivetrain for generator in wind turbine
US20110175363A1 (en) Gearbox for a wind turbine
US8147183B2 (en) Drivetrain for generator in wind turbine
JP2005105917A (en) Wind power generating windmill
US20100129222A1 (en) Wind turbine drive shaft connection arrangement
CN106164509A (en) Two-way bearing, power train, planetary gear and wind-driven generator
KR20140108733A (en) Wind turbine rotor
US20140203561A1 (en) Variable input synchronous output drivetrain for wind turbine
CN103266988A (en) Wind generating set and variable pitch driving system thereof
CA2758467A1 (en) Wind energy plant and energy transmission device for a wind energy plant
US9447777B2 (en) Continuous-flow power installation
Friedrich et al. State-of-the-art and new technologies of direct drive wind turbines
JP4461078B2 (en) Wind power generator
KR20190033598A (en) Nacelles and rotors for wind turbines, and methods
WO2021086179A1 (en) Wind turbine
WO2014155578A1 (en) Wind turbine generator
EP2843229B1 (en) Wind power generation system
CN103437958A (en) Direct-drive lamination wind driven generator
GB2491488A (en) Electromechanical driveline with power splitting device
JP2006249982A (en) Wind power generator
KR20150045195A (en) rotor shaft for wind power generator
US11473561B2 (en) Generator for a wind turbine, and wind turbine having same
JP2013227866A (en) Wind power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP