WO2014154920A1 - Carbones activados nanoporosos como aditivos en el tabaco para reducir la emisión de productos tóxicos - Google Patents

Carbones activados nanoporosos como aditivos en el tabaco para reducir la emisión de productos tóxicos Download PDF

Info

Publication number
WO2014154920A1
WO2014154920A1 PCT/ES2014/070204 ES2014070204W WO2014154920A1 WO 2014154920 A1 WO2014154920 A1 WO 2014154920A1 ES 2014070204 W ES2014070204 W ES 2014070204W WO 2014154920 A1 WO2014154920 A1 WO 2014154920A1
Authority
WO
WIPO (PCT)
Prior art keywords
tobacco
activated carbons
particle size
volume
mesoporous activated
Prior art date
Application number
PCT/ES2014/070204
Other languages
English (en)
French (fr)
Inventor
Antonio Marcilla Gomis
María Isabel BELTRÁN RICO
Amparo GÓMEZ SIURANA
Deseada BERENGUER MUÑOZ
Isabel MARTÍNEZ CASTELLANOS
Francisco Rodriguez Reinoso
Antonio SEPÚLVEDA ESCRIBANO
Manuel MARTÍNEZ ESCANDELL
Joaquín SILVESTRE ALBERO
Ana SILVESTRE ALBERO
Mateus C. MONTEIRO DE CASTRO
Original Assignee
Universidad De Alicante
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alicante filed Critical Universidad De Alicante
Priority to EP14773186.3A priority Critical patent/EP2979552A4/en
Publication of WO2014154920A1 publication Critical patent/WO2014154920A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/42Treatment of tobacco products or tobacco substitutes by chemical substances by organic and inorganic substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/285Treatment of tobacco products or tobacco substitutes by chemical substances characterised by structural features, e.g. particle shape or size
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/287Treatment of tobacco products or tobacco substitutes by chemical substances by inorganic substances only
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/163Carbon

Definitions

  • the present invention relates to the use of nanoporous activated carbons as additives for the reduction of toxic and carcinogenic compounds present in tobacco smoke.
  • the smoke that is generated in the combustion of tobacco contains a series of toxic and carcinogenic compounds that are inhaled by smokers, both active and passive, and that make tobacco one of the main causes of death worldwide.
  • the habit of smoking tobacco represents a global problem with very negative consequences on the health of human beings, with a very significant impact on public health departments or ceremonies.
  • the process of smoking a cigarette generates the appearance of two types of smoke currents, the so-called “mainstream”, consisting of the smoke that the smoker inhales and exhales directly from the cigarette, and the secondary current, consisting of the smoke that is eliminated through the lit cigarette, which is diluted in the surrounding air and inhaled by passive smokers. Being able to reduce the concentration of toxic compounds in both streams would be of utmost importance from all points of view.
  • US75552735 describes a filter formed by bundles of activated carbon fibers distributed in the conventional filter. It also describes the helical arrangement of said beams, as well as the addition of other adsorbent particles.
  • US7784471 describes the use of spherical particles of activated carbon to fill cavities in conventional filters and retain certain compounds.
  • US748451 1 describes the use of activated carbon in filters to release aromas when smoke passes through it.
  • US201 patent application 10088704 describes a concentric activated carbon filter in a conventional cellulose acetate filter.
  • Mesoporous activated carbons can be obtained by physical activation processes with CO2 using catalysts such as iron or calcium salts, or by chemical activation with different precursors, such as oil or coal, anthracite, certain types of petroleum coke or polymers, using high proportions of activating agent, typically phosphoric acid, sodium or potassium hydroxide, or potassium carbonate.
  • catalysts such as iron or calcium salts
  • precursors such as oil or coal, anthracite, certain types of petroleum coke or polymers
  • activating agent typically phosphoric acid, sodium or potassium hydroxide, or potassium carbonate.
  • this type of materials is described in the literature that can reach characteristics such as BET surface areas between 0-3500 m2 / g, total pore volume between 0 and 2.5 cm3 / g and micropore volume between 0 and 1.5 cm3 / g (Carbon, 47 (2009) 195-200; Chemistry and Physics of Carbon (2008), 30, 1-62; Energy & Fuels 2002, 16, 1321-1328; Journal of Porous Materials 5, 43-58 (1998); Carbon 48 (2010) 636-644; Fuel Processing Technology (2013), 106, 501-510.
  • the present invention relates to the use of mesoporous activated carbons with a particle size between 1-100 ⁇ , of high degree of activation, with an S B ET surface comprised between 1200-4200 m 2 / g, a volume V M ic between 0.4-1.2 cm 3 / g and a volume V M ESO between 0.6 - 2.8 cm 3 / g as an additive to reduce the toxic and carcinogenic substances present in tobacco smoke.
  • mesoporous activated carbons have a particle size between 2-20 ⁇ . More particularly the particle size of mesoporous activated carbons is between 5-15 ⁇ .
  • mesoporous activated carbons are impregnated with carbonates or hydroxides of metals such as Na, Ca, Fe, Ce or Zr, or mixed with zeolites or alumninosilicates, or mixed with acidic, sodium or exchanged forms with oxides of Fe, Ce, or Zr or mixtures thereof of zeolites or aluminosilicates.
  • metals such as Na, Ca, Fe, Ce or Zr
  • zeolites or alumninosilicates or mixed with acidic, sodium or exchanged forms with oxides of Fe, Ce, or Zr or mixtures thereof of zeolites or aluminosilicates.
  • the present invention relates to a mixture comprising dry tobacco and mesoporous activated carbons, with a particle size between 1-100 ⁇ , with an S B ET surface comprised between 1200-4200 m 2 / g, a volume V M ic between 0.4-1.2 cm 3 / g and a volume V M ESO between 0.6-2.8 cm 3 / g as an additive.
  • mesoporous activated carbons have a particle size between 2-20 ⁇ . More particularly the particle size of mesoporous activated carbons is between 5-15 ⁇ .
  • the mesoporous activated carbons of the mixture are in a concentration between 0.5-15% by weight with respect to dry tobacco. More particularly, the mesoporous activated carbons of the mixture are in a concentration comprised between 2-7% by weight with respect to dry tobacco.
  • the mesoporous activated carbons of the mixture have a particle size between 5 and 15 ⁇ , an area S B ET greater than 3000 m 2 / g, a volume V M ic greater than 1.1 cm 3 / g and a VMESO volume greater than 2.0 cm 3 / g.
  • FIG. 7 Detail, between the retention times of 21 and 25 min, of the chromatogram of the liquids generated by smoking the 3R4F and 3R4F tobacco mixed with the LMA-414 coal.
  • FIG. 8 Detail, between the retention times of 25 and 55 min, of the chromatogram of the liquids generated by smoking the 3R4F and 3R4F tobacco mixed with the LMA-414 coal.
  • the present invention relates to the use of activated carbons mixed with tobacco so that they are present in the tobacco combustion process.
  • the mechanism by which these materials are more or less active in reducing the emission of certain substances in the process of pyrolysis and combustion of tobacco can be of different nature.
  • the presence of this type of materials, due to its composition, essentially carbon can contribute to the rise in the temperature of the cigarette embers by its own combustion, substantially modifying the pyrolysis processes of the tobacco in the areas near the grill, as well as the combustion of tobacco.
  • their combustion primarily generates carbon dioxide and water, so they do not contribute to the generation of nicotine and tars.
  • they may not suffer combustion processes.
  • activated carbons are equally active in this process.
  • Cigarette smoking conditions and analysis of the products generated
  • Cigarettes are conditioned at 23 ° C and 60% relative humidity, keeping them in a desiccator provided with a saturated solution of sodium nitrite, at least for 48 hours before being smoked.
  • smoke including CO, C0 2 and other non-condensable products
  • a trap fiberglass filter located before the gas collection bag.
  • the non-condensable products are collected in a Tediar gas bag, which is reserved for further analysis by gas chromatography (GC) and the condensable products are collected in the cigarette filter and in the subsequent trap. In it are retained condensable products that would be directly inhaled by smokers.
  • GC gas chromatography
  • the suction pressure of the smoking machine is of the order of 150 cm of H 2 0.
  • the condensable products retained in the trap are extracted with 2-propanol, ensuring that all compounds retained in the trap are recovered.
  • the extract is then dried with sodium sulfate and reserved for further analysis by GC / MS.
  • the determination of the CO and C0 2 content in the non-condensable fraction is carried out by GC, using a thermal conductivity detector (GC-TCD) and a concentric CTRI column used for the analysis of 0 2 , N 2 , CH 4 , C0 2 and CO, in a SHIMADZU GC-14A device, using a calibration using external standards.
  • the quantification has been performed by calculating the response factor (grams of compound / peak area) of these compounds by injecting different volumes (between 0.5 and 2.5 mL) of the corresponding standard (Carbon monoxide, Carbon dioxide , Hydrogen, Methane and Oxygen).
  • the conditions of the analysis are:
  • GC-FID flame ionization detector
  • cigarettes were prepared in which the tobacco bite has been mixed by hand with the corresponding active carbon.
  • Cigarettes were prepared using the procedure described in "preparation conditions of cigarettes "and using the active coals whose textural characteristics are shown in table 1 (textural characteristics of the activated coals used).
  • Figure 1 shows the corresponding adsorption isotherms of N 2 to 77 K. It can be seen that they have been used coals of high degree of activation and different percentage of mesoporosity.
  • Table 2 shows the mixtures tested as an example of the effect of the different activated carbons on the 3R4F reference tobacco and two commercial tobacco (TOBACCO 1 and TOBACCO 2).
  • Tables 3, 4, 5 and 6 present the results obtained when smoking cigarettes using the conditions of preparation of cigarettes, smoking conditions and analysis of the products generated corresponding to different tobacco-additive mixtures. The values obtained for:
  • TPM total particulate matter
  • Table 3 shows the CO and C0 2 content in tobacco smoke generated under controlled conditions.
  • Table 3 shows the percentage of coal, number of puffs, tobacco per cigarette and TPM obtained by smoking tobacco under controlled conditions.
  • Table 5 shows the generation (mg compound / cigarette) of different toxic compounds present in the gases collected in the Tediar bag after smoking tobacco under controlled conditions.
  • Table 5 shows the generation (compound mg / cigarette) of different toxic compounds present in the condensable products retained in the post-filter trap when smoking tobacco under controlled conditions.
  • Tables 3 to 6 show that some of the active carbons considered in the examples, especially those of greater mesoporous nature, provide a significant reduction in the amount of toxic compounds that appear in tobacco smoke, being especially highly appreciable in the compounds analyzed in the condensed liquid fraction. Up to 33 compounds in the gases and 84 in the liquids retained in the traps corresponding to the peaks of greater area have been analyzed. As can be seen in the chromatograms presented, all peaks undergo a notable reduction, as shown for some compounds selected by way of example in the previous tables. Many of the compounds are practically eliminated in the presence of the catalyst.
  • Table 3 shows the results obtained for the production of CO and C0 2 , expressed as mg of compound / cigarette, for a reference cigarette and for mixtures with some of the active carbons, which can be considered representative of the rest.
  • the amount of CO obtained when some of the active carbons were used is reduced from 20 to 50%, also depending on the tobacco used, while that of C0 2 is reduced in the order of 10-30 %. In some cases the coals do not produce reductions in these compounds.
  • Figures 3 to 5 and 6 to 8 show two chromatograms corresponding to the liquids collected in the Cambridge filters (subjected to identical extraction processes and corresponding to the smoking of 10 cigarettes) when the tobacco 3R4F and TOBACCO 1 was smoked, and these mixed tobacco with coal LMA-414, respectively.
  • the chromatograms have been divided into three to clearly observe the different compounds, for this, the central area of them, corresponding to the retention times where nicotine appears (major component) are on a larger scale on the y axis.
  • all the described mixtures can also be prepared by using fast mixers, fluidized or entrained beds and any other type of equipment that favors the mixing between the tobacco fiber and the additive.
  • Sieves can also be used to separate and recirculate the additive that had not been fixed on the tobacco fibers.
  • a dispenser can be used that provides the adequate amount of catalyst for the preparation of blond, black tobacco, bite leaf, rolling tobacco, pipe tobacco and any other susceptible of being smoked.
  • This dispenser can consist of a blister pack, where each cavity contains the selected quantity (between 5 and 70 mg, so that it is obtained between 0.5 and 10% with respect to tobacco, which will usually be consumed in portions of about 1 g of tobacco ), individual capsules containing such quantities, a container that includes a calibrated or graduated teaspoon or any other calibrated dispenser or packaging format that allows adequate dosing.
  • the ready-to-smoke product MYO, RYO, pipe or other forms
  • the content of the calibrated dispenser or the selected container is poured onto the tobacco fiber and carefully mixed by hand. This procedure guarantees excellent results, as good as those presented in Tables 3 to 6.
  • activated carbons can also be used mixed with other additives or impregnated with non-toxic materials such as potassium, calcium, sodium, iron, which can modify their behavior and the evolution of compounds of the CO type.

Abstract

La presente invención se refiere al uso carbones activados nanoporosos como aditivos para la reducción de los compuestos tóxicos y cancerígenos presentes en el humo del tabaco y a la mezcla de tabaco con carbones activados nanoporosos.

Description

CARBONES ACTIVADOS NANOPOROSOS COMO ADITIVOS EN EL TABACO PARA REDUCIR LA EMISIÓN DE PRODUCTOS TÓXICOS
Campo de la invención
La presente invención se refiere al uso carbones activados nanoporosos como aditivos para la reducción de los compuestos tóxicos y cancerígenos presentes en el humo del tabaco.
Estado de la técnica
El humo que se genera en la combustión del tabaco contiene una serie de compuestos tóxicos y cancerígenos que son inhalados por los fumadores, tanto activos como pasivos, y que hacen que el tabaco suponga una de las principales causas de mortandad a escala mundial. El hábito de fumar tabaco representa un problema global con consecuencias muy negativas sobre la salud de los seres humanos, con un impacto muy significativo sobre los departamentos o ministerios de salud pública.
En el humo que se genera en la combustión del tabaco se han identificado más de 4000 compuestos diferentes [R.R. Baker and L.J. Bishop, J. Anal. Appl. Pyrol., 74 (2005), 145]. Al menos 60 de ellos se reconocen como tóxicos y cancerígenos. Los más abundantes son los alquitranes, monóxido y dióxido de carbono, acetaldehído, fenoles, acetona, formaldehído, benceno, tolueno y nicotina. La nicotina es el principal componente adictivo presente en el humo del tabaco.
El proceso de fumar un cigarrillo genera la aparición de dos tipos de corrientes de humo, la denominada "corriente principal", consistente en el humo que inhala y exhala el fumador directamente del cigarrillo, y la corriente secundaria, consistente en el humo que se elimina a través del cigarrillo encendido, que se diluye en el aire circundante y es inhalado por los fumadores pasivos. Poder reducir la concentración de compuestos tóxicos en ambas corrientes sería de suma importancia desde todos los puntos de vista.
Existen numerosas patentes sobre el uso de carbones activados de distintas características y en distintas formas, granulares en forma de tejido, en forma de fibras, mezclados con otros tipos de compuestos y con diversos fines, desde la adsorción de compuestos orgánicos pesados, incluyendo nicotina y alquitranes hasta la disminución del monóxido de carbono. De hecho, se han comercializado varias marcas incluyendo este tipo de filtros. Las siguientes patentes son ejemplos de estas aplicaciones.
La patente US75552735 describe un filtro formado por haces de fibras de carbón activado distribuidas en el filtro convencional. También describe la disposición helicoidal de dichos haces, así como la adición de otras partículas adsorbentes.
La patente US7784471 describe el uso de partículas esféricas de carbón activado para rellenar cavidades en los filtros convencionales y retener determinados compuestos.
La patente US748451 1 describe el uso de carbones activados en filtros para liberar aromas al pasar el humo a su través.
La solicitud de patente US201 10088704 describe un filtro concéntrico de carbón activado en un filtro convencional de acetato de celulosa.
Sin embargo, los documentos descritos anteriormente se refieren al uso de carbón activado en los filtros
Los carbones activados mesoporosos pueden obtenerse por procesos de activación física con C02 utilizando catalizadores como sales de hierro o calcio, o mediante activación química con distintos precursores, como pueden ser breas de petróleo o carbón, antracitas, determinados tipos de coque de petróleo o polímeros, utilizando elevadas proporciones de agente activante, típicamente ácido fosfórico, hidróxido sódico o potásico, o carbonato potásico. Así, por ejemplo, en la bibliografía se encuentran descritos este tipo de materiales que pueden alcanzar características como áreas superficiales de BET comprendidas entre 0-3500 m2/g, volumen total de poros entre 0 y 2.5 cm3/g y volumen de microporos entre 0 y 1.5 cm3/g (Carbón, 47 (2009) 195-200; Chemistry and Physics of Carbón (2008), 30, 1-62; Energy & Fuels 2002, 16, 1321-1328; Journal of Porous Materials 5, 43-58 (1998); Carbón 48 (2010) 636-644; Fuel Processing Technology (2013), 106, 501-510.
Existen patentes donde se describen procedimientos para su obtención (Preparation of super active carbón, SONGLIN ZUO; XUAN CAI, Application number: CN20081243618 20081210; Preparation of super active carbón material: WENDONG XU; HAIJUN BIAN, Application number: CN20071302283 20071224; Method for preparing pressed active carbón; KAIXI Ll; GUOHUA SUN; JIAN WANG; Application number:CN20101 166141 20100505; CN 101439857; Mesoporous activated carbón and preparation process thereof; SHITANG TONG: Application number:CN20081186027 20081211).
No se ha encontrado ningún documento que se refiera al uso del carbón directamente mezclado con el tabaco, de modo que se encuentre presente en el proceso de combustión.
En la presente invención se describe una nueva aplicación de estos materiales que consiste en el uso de este tipo de carbones activados y súper activados mesoporos mezclados directamente con el tabaco, de modo que se encuentren presentes en el proceso de combustión del tabaco y que poseen un tamaño de partícula y una morfología tal que no atraviesan el filtro convencional y con objeto de reducir las sustancias tóxicas y cancerígenas presentes en el humo del tabaco.
Descripción de la invención
Así pues, en un primer aspecto, la presente invención se refiere al uso de carbones activados mesoporosos con un tamaño de partícula comprendido entre 1-100 μηι, de elevado grado de activación, con una superficie SBET comprendida entre 1200-4200 m2/g, un volumen VMic comprendido entre 0.4-1.2 cm3/g y un volumen VMESO comprendido entre 0.6- 2.8 cm3/g como aditivo para reducir las sustancias tóxicas y cancerígenas presentes en el humo del tabaco.
En una realización más en particular, los carbones activados mesoporosos tienen un tamaño de partícula comprendido entre 2-20 μηι. Más en particular el tamaño de partícula de los carbones activados mesoporosos se encuentra entre 5-15μηι.
En una realización en particular, los carbones activados mesoporosos están impregnados con materiales de tipo carbonatos o hidróxidos de metales como el Na, Ca, Fe, Ce o Zr, o mezclados con zeolitas o alumninosilicatos, o mezclados con formas ácidas, sódicas o intercambiadas con óxidos de Fe, Ce, o Zr o mezclas de los mismos de las zeolitas o aluminosilicatos.
En un segundo aspecto la presente invención se refiere a una mezcla que comprende tabaco seco y carbones activados mesoporosos, con un tamaño de partícula comprendido entre 1-100 μηι, con una superficie SBET comprendida entre 1200-4200 m2/g, un volumen VMic comprendido entre 0.4-1.2 cm3/g y un volumen VMESO comprendido entre 0.6-2.8 cm3/g como aditivo. En una realización más en particular, los carbones activados mesoporosos tienen un tamaño de partícula comprendido entre 2-20 μηι. Más en particular el tamaño de partícula de los carbones activados mesoporosos se encuentra entre 5-15μηι.
En una realización más en particular, los carbones activados mesoporosos de la mezcla se encuentran en una concentración comprendida entre 0.5-15% en peso con respecto del tabaco seco. Más en particular los carbones activados mesoporosos de la mezcla se encuentran en una concentración comprendida entre 2-7% en peso con respecto del tabaco seco.
En una realización en particular de la presente invención, los carbones activados mesoporosos de la mezcla presentan un tamaño de partícula comprendido entre 5 y 15 μηι, una superficie SBET superior a 3000 m2/g, un volumen VMic superior a 1.1 cm3/g y un volumen VMESO superior a 2.0 cm3/g.
Descripción de las figuras.
Figura 1. Isotermas de adsorción de N2 a 77K de los carbones activados utilizados, donde Vads STP (cm3/g) representa el volumen de gas adsorbido en condiciones normales a la presión relativa P/P0.
Figura 2. Imagen SEM típica de los carbones utilizados.
Figura 3. Detalle, entre los tiempos de retención de 15 y 21 min, del cromatograma de los líquidos generados al fumar el tabaco 3R4F y 3R4F mezclado con el carbón LMA-414.
Figura 4. Detalle, entre los tiempos de retención de 21 y 25 min, del cromatograma de los líquidos generados al fumar el tabaco 3R4F y 3R4F mezclado con el carbón LMA-414.
Figura 5. Detalle, entre los tiempos de retención de 25 y 55 min, del cromatograma de los líquidos generados al fumar el tabaco 3R4F y 3R4F mezclado con el carbón LMA-414.
Figura 6. Detalle, entre los tiempos de retención de 15 y 21 min, del cromatograma de los líquidos generados al fumar el tabaco 3R4F y 3R4F mezclado con el carbón LMA-414.
Figura 7. Detalle, entre los tiempos de retención de 21 y 25 min, del cromatograma de los líquidos generados al fumar el tabaco 3R4F y 3R4F mezclado con el carbón LMA-414.
Figura 8. Detalle, entre los tiempos de retención de 25 y 55 min, del cromatograma de los líquidos generados al fumar el tabaco 3R4F y 3R4F mezclado con el carbón LMA-414.
Descripción detallada de la invención
La presente invención se refiere al uso de carbones activados mezclados con el tabaco de modo que se encuentren presentes en el proceso de combustión de tabaco. El mecanismo por el que estos materiales son más o menos activos en la reducción de la emisión de determinadas sustancias en el proceso de pirólisis y combustión del tabaco puede ser de diversa naturaleza. En primer lugar hay que tener en cuenta que la presencia de este tipo de materiales, debido a su composición, esencialmente carbono, pueden contribuir a la elevación de la temperatura de la brasa del cigarrillo por su propia combustión, modificando sustancialmente los procesos de pirólisis del tabaco en las zonas próximas a la brasa, así como la combustión del tabaco. Además, su combustión genera fundamentalmente dióxido de carbono y agua, por lo que no contribuyen a la generación de nicotina y alquitranes. Por otra parte, y dependiendo de su estructura y grado de ordenación, pueden no sufrir procesos de combustión. Además, pueden retener por adsorción los compuestos generados en la pirólisis y combustión en las zonas calientes de la brasa y próximas a ella, de modo que estos compuestos pueden sufrir reacciones de pirólisis u oxidación de forma sensiblemente diferente a la que tendría lugar si no se encontrasen confinados en la estructura porosa de estos materiales, o también pueden ser simplemente desorbidos sin sufrir mayor modificación. Sin embargo, no todos los carbones activados son igualmente activos en este proceso. El precursor del carbón activado, el grado de activación y la textura porosa desarrollada, así como la presencia de agente activante u otros compuestos, juegan un papel fundamental en los procesos de difusión del oxígeno y combustión del propio carbón, así como en la posible adsorción-desorción y reacción de los productos generados en la pirólisis y combustión del tabaco. Su granulometría y grado de ordenación, que puede modificar su propia combustión y la permeabilidad del lecho de tabaco y carbón, son aspectos que también pueden tener una notable influencia en los procesos que tienen lugar en el fumado, por ejemplo, de un cigarrillo. El tipo de tabaco y los aditivos que contiene son también variables a tener en cuenta. De este modo carbones muy activados pero esencialmente microporosos, son capaces de reducir la generación de alquitranes y nicotina, pero en mucha menor proporción que otros carbones activados de un grado de activación elevado y con una mesoporosidad muy desarrollada. Estos materiales son capaces de reducir drásticamente la generación de alquitranes, nicotina e incluso el monóxido de carbono. Resulta evidente, por tanto, que la textura porosa juega un importante papel en este proceso y hace de estos materiales unos excelentes candidatos para ser utilizados con el objeto de reducir la emisión de compuestos tóxicos del tabaco.
Con el fin de demostrar el papel de los aditivos propuestos en esta patente, se fumaron cigarrillos de referencia 3R4F de la Universidad de Kentucky y tabaco de cigarrillos de dos marcas comerciales a los que se incorporaron distintos carbones activados, utilizando una máquina de fumar que funcionaba de acuerdo con las siguientes variables de operación:
Condiciones de fumado de cigarrillos y de análisis de los productos generados
- Se fuman simultáneamente 10 cigarrillos, siguiendo las especificaciones de la norma ISO 3308 (caladas de 2 s de duración, volumen aspirado 35 ml_, frecuencia de caladas 60 s y pérdida de presión en la calada menor de 300 Pa).
- Los cigarrillos se acondicionan a 23°C y 60% de humedad relativa, manteniéndolos en un desecador provisto de una disolución saturada de nitrito sódico, al menos durante 48 h antes de ser fumados. Durante el proceso de fumar, el humo, incluyendo CO, C02 y otros productos no condensables, atraviesa el filtro del cigarrillo así como una trampa (filtro de fibra de vidrio) ubicada antes de la bolsa de recogida de gases. Los productos no condensables se recogen en una bolsa Tediar para gases, que se reserva para su posterior análisis por cromatografía de gases (GC) y los productos condensables se recogen en el filtro del cigarrillo y en la trampa posterior. En ésta quedan retenidos los productos condensables que serían directamente inhalados por los fumadores.
La presión de aspiración de la máquina de fumar es del orden de 150 cm de H20.
Los productos condensables retenidos en la trampa se extraen con 2-propanol, asegurándose que se recuperan todos los compuestos retenidos en la trampa. A continuación el extracto se seca con sulfato sódico y se reserva para su posterior análisis por GC/MS.
La determinación del contenido en CO y C02 en la fracción no condensable se lleva a cabo por GC, utilizando un detector de conductividad térmica (GC-TCD) y una columna concéntrica CTRI utilizada para el análisis de 02, N2, CH4, C02 y CO, en un equipo SHIMADZU GC-14A, utilizando un calibrado mediante patrones externos. La cuantificación ha sido realizada calculando el factor de respuesta (gramos de compuesto/área de pico) de estos compuestos mediante la inyección de diferentes volúmenes (entre 0,5 y 2,5 mL) del patrón correspondiente (Monóxido de carbono, Dióxido de carbono, Hidrógeno, Metano y Oxígeno). Las condiciones del análisis son:
- Gas portador: He
- Temperatura del inyector: 28 °C
- Temperatura del detector: 110 °C
- Volumen inyectado: 2.5 mL
- Flujo de columna constante: 40 mL/min
- Programa de temperatura del horno: isotermo a 110°C
- Tiempo análisis 20 min
El resto de componentes no condensables se analizan por GC con detector de ionización de llama (GC-FID), utilizando una columna a GAS-PRO y las siguientes condiciones:
- Temperatura del inyector: 150°C - Temperatura del detector: 210°C
- Gas portador: Helio
- Volumen de muestra inyectada: 150 μΙ_
- Flujo de columna constante: 2 mL/min
- Programa de temperatura del horno:
- Temperatura inicial de la columna 35°C durante 10 min
- Calentamiento hasta 100 °C con una rampa de 5°C/min
- Calentamiento hasta 200 °C con una rampa de 15°C/min
- Tiempo final: 10 min
- Los compuestos condensables (extraídos con 2-propanol) se analizan por GC con detector por espectrometría de masas (GC-MS), utilizando una columna HP-5MS y las siguientes condiciones:
- Temperatura del inyector: 250°C
- Gas portador: Helio
- Volumen de muestra inyectada: 1
- Flujo de columna constante: 2 mL/min
- Programa de temperatura del horno:
- Temperatura inicial de la columna 40°C durante 5 min
- Calentamiento hasta 320°C con una rampa de 12°C/min - Tiempo final: 25 min
- Para la determinación de las cantidades obtenidas de cada compuesto, se lleva a cabo la integración del área bajo los picos cromatográficos y se utilizan los factores de respuesta correspondientes.
Condiciones de preparación de los cigarrillos
Para llevar a cabo todos los ensayos se prepararon cigarrillos en los que la picadura de tabaco se ha mezclado a mano con el carbón activo correspondiente.
En todos los casos se utiliza un porcentaje nominal de un 5% en peso de aditivo. Los cigarrillos se prepararon utilizando el procedimiento descrito en "condiciones de preparación de los cigarrillos" y utilizando los carbones activos cuyas características texturales se muestran en la tabla 1 (características texturales de los carbones activados utilizados). La figura 1 muestra las isotermas de adsorción de N2 a 77 K correspondientes. Se puede observar que se han utilizado carbones de elevado grado de activación y distinto porcentaje de mesoporosidad.
Figure imgf000009_0001
Tabla 1
Todos los carbones, excepto el LMA-41 tienen un marcado carácter mesoporoso, especialmente acusado en los LMA-47 y LMA-414. Son precisamente estos carbones los que presentan mayor actividad, como se verá en los ejemplos presentados. El aspecto de los materiales utilizados puede observarse en la figura 2, donde se puede apreciar que la mayor parte de las partículas se encuentra por encima de 10 μηι, así como la presencia de partícuiles de tamaño próximo a las 200 μηι.
Ejemplos correspondientes a diferentes mezclas tabaco-carbón activo.
La tabla 2 muestra las mezclas ensayadas como ejemplo del efecto de los distintos carbones activados sobre los tabacos de referencia 3R4F y dos tabacos comerciales (TABACO 1 y TABACO 2).
Mezclas estudiadas
3R4F+LMA-414
3R4F+LMA-285
3R4F+LMA-285-Ca
TABACO 1 + LMA-41
TABACO 1 +LMA-414
TABACO 1 + LMA-47
TABACO 2+LMA-47 Tabla 2
En las tablas 3, 4, 5 y 6 se presentan los resultados obtenidos al fumar los cigarrillos utilizando las condiciones de preparación de los cigarrillos, las condiciones de fumado y de análisis de los productos generados correspondientes a diferentes mezclas tabaco-aditivo. Se muestran los valores obtenidos para:
- CO y C02, en mg de compuesto/cigarrillo
- cantidad de algunos productos tóxicos, en mg de compuesto/cigarrillo
- materia particulada total (TPM) en mg/cigarrillo, calculada como:
mi ~ mo
mTPM =
R
donde:
- m0 es la masa de la trampa posterior al filtro, en mg, antes de fumar
- ΓΤΗ es la masa de la trampa posterior al filtro, en mg, después de fumar q cigarrillos
- q es el número de cigarrillos fumados
La tabla 3 muestra el contenido en CO y C02 en el humo del tabaco generado bajo condiciones controladas.
Figure imgf000010_0001
Tabla 3 La tabla 4 muestra el porcentaje de carbón, número de caladas, tabaco por cigarrillo y TPM obtenidos al fumar tabaco bajo condiciones controladas.
Figure imgf000011_0001
Tabla 4
La tabla 5 muestra la generación (mg compuesto/cigarrillo) de diferentes compuestos tóxicos presentes en los gases recogidos en la bolsa Tediar tras fumar tabaco bajo condiciones controladas.
Figure imgf000011_0002
Tabla 5
Figure imgf000011_0003
Tabla 5 continuación. La Tabla 6 muestra la generación (mg compuesto/cigarrillo) de diferentes compuestos tóxicos presentes en los productos condensables retenidos en la trampa posterior al filtro al fumar tabaco bajo condiciones controladas.
Figure imgf000012_0001
Tabla 6
Las tablas 3 a 6 ponen de manifiesto que algunos de los carbones activos considerados en los ejemplos, especialmente los de mayor carácter mesoporoso, proporcionan una reducción significativa de la cantidad de compuestos tóxicos que aparecen en el humo del tabaco, siendo sobre todo muy apreciable en los compuestos analizados en la fracción líquida condensada. Se han analizado hasta 33 compuestos en los gases y 84 en los líquidos retenidos en las trampas correspondientes a los picos de mayor área. Como se puede observar en los cromatogramas presentados, todos los picos experimentan una notable reducción, como se ha mostrado para unos compuestos seleccionados a modo de ejemplo en las tablas anteriores. Muchos de los compuestos so prácticamente eliminados en presencia del catalizador. Esta reducción supone, a su vez, una disminución de los potenciales efectos negativos que causa el humo del tabaco en los fumadores activos y pasivos, sin provocar cambios apreciables en las propiedades organolépticas y en el sabor y en la consistencia del tabaco, y sin la generación aparente de otros compuestos no deseables. Por otro lado, no sólo se reducen los compuestos tóxicos, sino que, en general, también disminuye de manera apreciable la cantidad total de gases y de líquidos que se forman al fumar el cigarrillo (materia total particulada, TPM, más los líquidos retenidos en el filtro), mientras que aumenta el residuo sólido junto con las cenizas. Por otra parte no se ha detectado presencia del catalizador en los filtros.
Tal y como se ha puesto de manifiesto con anterioridad, el uso de algunos de estos aditivos provoca una reducción importante de las sustancias tóxicas presentes en el humo del tabaco, como por ejemplo CO, nicotina, etc., así como de la cantidad total de productos líquidos y gaseosos. Por ejemplo, en la Tabla 3 se muestran los resultados obtenidos para la producción de CO y C02, expresada como mg de compuesto/cigarrillo, para un cigarrillo de referencia y para mezclas con algunos de los carbones activos, que pueden considerarse representativos del resto. Como puede verse, la cantidad de CO obtenida cuando se utilizaron algunos de los carbones activos se ve reducida de entre un 20 a un 50%, dependiendo también del tabaco utilizado, mientras que la de C02 se ve reducida del orden del 10-30%. En algunos casos los carbones no producen reducciones en estos compuestos. Por otro lado, de acuerdo con los datos que se presentan en la tabla 4, y tal y como ya se ha puesto de manifiesto, los materiales estudiados también reducen la cantidad de productos líquidos condensados llegando a reducir la TPM entre un 20-80% del valor obtenido en el cigarrillo de referencia. En la tabla 5 se presentan, a título de ejemplo, los resultados obtenidos para la producción de algunos compuestos tóxicos y cancerígenos que aparecen en el humo del tabaco. Como puede verse, en la mayoría de los casos, el uso de los aditivos propuestos proporciona una reducción de más del 20% para gran cantidad de los compuestos, aunque como ya se ha comentado anteriormente, las reducciones conseguidas en la fracción gaseosa son inferiores a las conseguidas en la fracción líquida condensada. Por ejemplo, cuando se utiliza LMA-414 con el tabaco de referencia 3R4F como aditivo, se observaron las siguientes reducciones con respecto al cigarrillo de referencia (%reducción=100(1-m/r), donde m=cantidad obtenida al usar el aditivo y r=cantidad obtenida en el cigarrillo de referencia):
C02, 9.9%; CO, 19.9%; TPM, 82%; nicotina, 59.4%; cotinina, 72.6%, acetaldehído, 38.9%; tolueno, 46.0%, y benceno, 22.7%.
Las figuras 3 a 5 y 6 a 8 muestran dos cromatogramas correspondientes a los líquidos recogidos en los filtros Cambridge (sometidos a idénticos procesos de extracción y correspondientes al fumado de 10 cigarrillos) cuando se fumó el tabaco 3R4F y TABACO 1 , y estos tabacos mezclados con el carbón LMA-414, respectivamente. Los cromatogramas se han divido en tres para poder observar claramente los distintos compuestos, para ello, la zona central de los mismos, correspondientes a los tiempos de retención donde aparece la nicotina (componente mayoritario) están a mayor escala en el eje de la y.
Se puede observar que todos los picos detectados han reducido su área notablemente, incluso algunos de ellos han desaparecido totalmente.
Por otra parte, todas las mezclas descritas pueden prepararse también mediante el uso de mezcladores rápidos, lechos fluidizados o arrastrados y cualquier otro tipo de equipos que favorezcan la mezcla entre la fibra de tabaco y el aditivo. También pueden utilizarse tamices para separar y recircular el aditivo que no se hubiese fijado sobre las fibras del tabaco. Por otro lado, para otras preparaciones diferentes de los cigarrillos convencionales, donde la preparación de las mezclas tabaco-aditivo deba realizarse de manera manual por parte del propio fumador, puede utilizarse un dispensador que proporcione la cantidad adecuada de catalizador para la preparación de tabaco rubio, negro, hoja picadura, tabaco de liar, tabaco de pipa y cualquier otro susceptible de ser fumado. Este dispensador puede consistir en un blister, donde cada cavidad contenga la cantidad seleccionada (entre 5 y 70 mg, de forma que se obtenga entre 0.5 y 10 % con respecto al tabaco, que habitualmente se consumirá en porciones de alrededor de 1 g de tabaco), cápsulas individuales que contengan dichas cantidades, un recipiente que incluya una cucharilla calibrada o graduada o cualquier otro dispensador calibrado o formato de envase que permita la dosificación adecuada. Para preparar el producto listo para fumar (MYO, RYO, pipa u otras formas), el contenido del dispensador calibrado o del envase seleccionado se vierte sobre la fibra de tabaco y se mezcla cuidadosamente con la mano. Este procedimiento garantiza excelentes resultados, tan buenos como los que se presentan en las tablas 3 a 6.
Estos carbones activados pueden también utilizarse mezclados con otros aditivos o impregnados con materiales no tóxicos del tipo de compuestos de potasio, calcio, sodio, hierro, que puede modificar el comportamiento de los mismos y la evolución de compuestos del tipo CO.

Claims

REIVINDICACIONES
1. Uso de carbones activados mesoporosos con un tamaño de partícula comprendido entre 1 -100 μηι, con una superficie SBET comprendida entre 1200-4200 m2/g, un volumen VMic comprendido entre 0.4-1.2 cm3/g y un volumen VMESO comprendido entre 0.6-2.8 cm3/g como aditivo para reducir las sustancias tóxicas y cancerígenas presentes en el humo del tabaco.
2. Uso según la reivindicación 1 , donde el tamaño de partícula se encuentra comprendido entre 2-20μηι.
3. Uso según cualquiera de las reivindicaciones anteriores, donde el tamaño de partícula se encuentra comprendido entre 5-15μηι.
4. Uso según cualquiera de las reivindicaciones anteriores, donde los carbones activados mesoporosos están impregnados con materiales de tipo carbonatos o hidróxidos de metales como el Na, Ca, Fe, Ce o Zr, o mezclados con zeolitas o alumninosilicatos, o mezclados con formas ácidas, sódicas o intercambiadas con óxidos de Fe, Ce, o Zr o mezclas de los mismos de las zeolitas o aluminosilicatos.
5. Mezcla que comprende tabaco seco y carbones activados mesoporosos, con un tamaño de partícula comprendido entre 1-100 μηι, con una superficie SBET comprendida entre 1200- 4200 m2/g, un volumen VMic comprendido entre 0.4-1.2 cm3/g y un volumen VMESO comprendido entre 0.6-2.8 cm3/g como aditivo.
6. Mezcla según la reivindicación 5, donde el tamaño de partícula de los carbones activados mesoporosos se encuentra comprendido entre 2-20μηι.
7. Mezcla según la reivindicación 6, donde el tamaño de partícula de los carbones activados mesoporosos se encuentra comprendido entre 5-15μηι.
8. Mezcla según la reivindicación 5, caracterizada por que los carbones activados mesoporosos se encuentran en una concentración comprendida entre 0.5-15% en peso con respecto del tabaco seco.
9. Mezcla según la reivindicación 8, caracterizada por que los carbones activados mesoporosos se encuentran en una concentración comprendida entre 2-7% en peso con respecto del tabaco seco.
10. Mezcla según cualquiera de las reivindicaciones 5-9, caracterizada por que los carbones activados mesoporosos presenta un tamaño de partícula comprendido entre 5 y 15 μηι, con una superficie SBET superior a 3000 m2/g, un volumen VMic superior a 1.1 cm3/g y un volumen VMESO superior a 2.0 cm3/g.
PCT/ES2014/070204 2013-03-27 2014-03-20 Carbones activados nanoporosos como aditivos en el tabaco para reducir la emisión de productos tóxicos WO2014154920A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14773186.3A EP2979552A4 (en) 2013-03-27 2014-03-20 NANOPOROUS ACTIVE CARBON AS ADDITIVE IN TOBACCO FOR REDUCING THE EMISSION OF TOXICS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201300305 2013-03-27
ES201300305A ES2499990B1 (es) 2013-03-27 2013-03-27 Carbones activados nanoporosos como aditivos en el tabaco para reducir la emisión de productos tóxicos

Publications (1)

Publication Number Publication Date
WO2014154920A1 true WO2014154920A1 (es) 2014-10-02

Family

ID=51587136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070204 WO2014154920A1 (es) 2013-03-27 2014-03-20 Carbones activados nanoporosos como aditivos en el tabaco para reducir la emisión de productos tóxicos

Country Status (3)

Country Link
EP (1) EP2979552A4 (es)
ES (1) ES2499990B1 (es)
WO (1) WO2014154920A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2528338B1 (es) * 2014-10-31 2015-11-12 Universidad De Alicante Productos susceptibles de ser fumados con sistema de liberación controlada de nicotina y catalizador para la reducción de los compuestos tóxicos

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484511B2 (en) 2001-02-22 2009-02-03 Philip Morris Usa Inc. Cigarette and filter with downstream flavor addition
CN101439857A (zh) 2008-12-11 2009-05-27 武汉科技大学 一种介孔活性炭及其制备方法
US7552735B2 (en) 2002-04-12 2009-06-30 Philip Morris Usa Inc. Activated carbon fiber cigarette filter
US7784471B2 (en) 2003-01-09 2010-08-31 Philip Morris Usa Inc. Cigarette filter with beaded carbon
WO2010103323A1 (en) * 2009-03-11 2010-09-16 British American Tobacco (Investments) Ltd Methods for increasing mesopores into microporous carbon
US20110088704A1 (en) 2009-10-15 2011-04-21 Philip Morris Usa Inc. Enhanced subjective activated carbon cigarette
WO2012032349A1 (en) * 2010-09-10 2012-03-15 British American Tobacco (Investments) Limited Activated carbon material
ES2379639T3 (es) * 2005-03-29 2012-04-30 British American Tobacco (Investments) Limited Filtros de humo que comprenden materiales de carbono poroso y artículos de fumador que incorporan dichos filtros

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8439047B2 (en) * 2003-12-22 2013-05-14 Philip Morris Usa Inc. Composite mesoporous/microporous materials and their use in smoking articles for removing certain gas phase constituents from tobacco smoke
US8119555B2 (en) * 2008-11-20 2012-02-21 R. J. Reynolds Tobacco Company Carbonaceous material having modified pore structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484511B2 (en) 2001-02-22 2009-02-03 Philip Morris Usa Inc. Cigarette and filter with downstream flavor addition
US7552735B2 (en) 2002-04-12 2009-06-30 Philip Morris Usa Inc. Activated carbon fiber cigarette filter
US7784471B2 (en) 2003-01-09 2010-08-31 Philip Morris Usa Inc. Cigarette filter with beaded carbon
ES2379639T3 (es) * 2005-03-29 2012-04-30 British American Tobacco (Investments) Limited Filtros de humo que comprenden materiales de carbono poroso y artículos de fumador que incorporan dichos filtros
CN101439857A (zh) 2008-12-11 2009-05-27 武汉科技大学 一种介孔活性炭及其制备方法
WO2010103323A1 (en) * 2009-03-11 2010-09-16 British American Tobacco (Investments) Ltd Methods for increasing mesopores into microporous carbon
US20110088704A1 (en) 2009-10-15 2011-04-21 Philip Morris Usa Inc. Enhanced subjective activated carbon cigarette
WO2012032349A1 (en) * 2010-09-10 2012-03-15 British American Tobacco (Investments) Limited Activated carbon material

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CARBON, vol. 47, 2009, pages 195 - 200
CARBON, vol. 48, 2010, pages 636 - 644
CHEMISTRY AND PHYSICS OF CARBON, vol. 30, 2008, pages 1 - 62
ENERGY & FUELS, vol. 16, 2002, pages 1321 - 1328
FUEL PROCESSING TECHNOLOGY, vol. 106, 2013, pages 501 - 510
JOURNAL OF POROUS MATERIALS, vol. 5, 1998, pages 43 - 58
R.R. BAKER; L. J. BISHOP, J. ANAL. APPL. [PYROL., vol. 74, 2005, pages 145
See also references of EP2979552A4 *

Also Published As

Publication number Publication date
EP2979552A4 (en) 2016-12-14
ES2499990B1 (es) 2015-09-04
ES2499990A1 (es) 2014-09-29
EP2979552A1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
CA2920952C (en) Smoking article
US11717018B2 (en) Smoking article comprising aerogel
ES2391831T3 (es) Cigarrillo con filtro
RU2577838C2 (ru) Курительное изделие, включающее алканоилированный гликозид, и способ его получения
US9491971B2 (en) Specifically-defined smoking article with activated carbon sorbent and sodium bicarbonate-treated fibers and method of treating mainstream smoke
US20120247491A1 (en) Smoking articles comprising copper-exchanged molecular sieves
JP2022551674A (ja) 茶入りタバコスティック及び電子タバコ
US20070068542A1 (en) Seven different-flavored cigarette substitute
JP7150719B2 (ja) 非晶質炭酸マグネシウムを有する喫煙物品フィルター
JP2016535980A (ja) 添加剤放出材料
EP3324763B1 (en) Activated carbon beads for smoking articles
WO2014154920A1 (es) Carbones activados nanoporosos como aditivos en el tabaco para reducir la emisión de productos tóxicos
CN101141891A (zh) 卷烟抽吸时用的即时嘴棒添加溶液及制法和用途
WO2017130045A1 (en) Activated carbon spheroids for smoking articles
WO2014096486A1 (es) Aluminosilicato sab-15 como aditivo para la reducción de los compuestos tóxicos y cancerígenos presentes en el humo del tabaco
KR20160138952A (ko) 흡연 물품용 활성탄
ES2383359T3 (es) Mezclas tabaco-catalizador par la reducción de los compuestos tóxicos presentes en el humo del tabaco
BR112015029398B1 (pt) Artigo para fumar, processo para a preparação de um material de carvão ativado funcionalizado com óxido metálico para a redução seletiva de acetaldeído bem como filtro e método para a redução seletiva de acetaldeído em uma fumaça principal produzida durante o uso de um artigo para fumar
WO2019229280A1 (es) Mezcla de tabaco con una composición sinérgica de aditivos y sales de ácidos carboxílicos para reducir la generación de compuestos tóxicos en el humo del tabaco
ES1232659U (es) Mezcla de tabaco con una composicion sinergica de aditivos y sales de acidos carboxilicos para reducir la generacion de compuestos toxicos en el humo del tabaco
TWI732974B (zh) 香味吸嚐物品
CA3015463C (en) Smoking article comprising aerogel
WO2015097327A1 (es) Inclusión de catalizadores en formulaciones de tabaco reconstituido para la reducción de la emisión de productos tóxicos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014773186

Country of ref document: EP