WO2014154785A1 - Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella - Google Patents

Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella Download PDF

Info

Publication number
WO2014154785A1
WO2014154785A1 PCT/EP2014/056122 EP2014056122W WO2014154785A1 WO 2014154785 A1 WO2014154785 A1 WO 2014154785A1 EP 2014056122 W EP2014056122 W EP 2014056122W WO 2014154785 A1 WO2014154785 A1 WO 2014154785A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
biomass
lutein
oxidation
chlorella
Prior art date
Application number
PCT/EP2014/056122
Other languages
English (en)
Inventor
Gabriel MACQUART
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to CN201480019200.XA priority Critical patent/CN105102608B/zh
Priority to US14/779,359 priority patent/US20160040208A1/en
Priority to MX2015013820A priority patent/MX360130B/es
Priority to EP14713106.4A priority patent/EP2978836B1/fr
Priority to KR1020157026301A priority patent/KR102301033B1/ko
Priority to JP2016504668A priority patent/JP2016514470A/ja
Priority to BR112015024979-5A priority patent/BR112015024979B1/pt
Priority to ES14713106T priority patent/ES2703116T3/es
Publication of WO2014154785A1 publication Critical patent/WO2014154785A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/16Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing two or more hetero rings
    • C12P17/165Heterorings having nitrogen atoms as the only ring heteroatoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/42Cobalamins, i.e. vitamin B12, LLD factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6431Linoleic acids [18:2[n-6]]

Definitions

  • the present invention relates to a method for stabilizing oxidation-sensitive metabolites produced by microalgae, more particularly of the genus Chlorella.
  • oxidation-sensitive metabolites are, for example, carotenoids.
  • Carotenoids are mostly orange and yellow pigments found in many living organisms. Liposoluble, they are generally easily assimilated by the organisms.
  • Carotenoids have been studied for the prevention of cancer and other human diseases because they have remarkable antioxidant properties.
  • carotenoids include ⁇ -carotene, ⁇ -carotene and lycopene.
  • ⁇ -carotene and lycopene are generally present in a free uncombined form, which is trapped within the chloroplasts of plant cells.
  • Xanthophylls are yellow molecules derived from carotenes by addition of oxygen atoms (alcohol, ketone, epoxy, etc. functions). They are part of the carotenoid family.
  • Xanthophylls are abundant in a number of yellow or orange fruits and vegetables such as peaches, mangos, papaya, prunes, squash and oranges.
  • chloroplasts or chromoplasts of plant cells especially in the petals of certain yellow, orange or red flowers, and in algae, for example brown algae (Pheophyceae), where they mask chlorophyll.
  • Xanthophylls are antioxidants that contribute to the health of the eyes.
  • xanthophylls examples include lutein, astaxanthin, canthaxanthin, zeaxanthin, cryptoxanthin ...
  • the free form of carotenoids allows better absorption when consumed in food or as a dietary supplement.
  • Lutein is a xanthophyll pigment of formula 4 [18- (4-hydroxy-2,6,6-trimethylcyclohex-1-en-yl) -3,7,12,16-tetramethyloctadeca-1, 3,5, 7,9,1 1,13,15,17-nona-1-yl] -3,5,5-trimethylcyclohex-2-en-1-ol found in high concentrations in the macula of the eye and in the central retina.
  • Lutein also has antioxidant properties that also protect the macula, which is rich in polyunsaturated fatty acids, free radicals induced by light.
  • Lutein can not be produced by the body and, therefore, must be brought by the diet.
  • lutein has become increasingly used in nutritional supplements for the prevention and / or treatment of vision loss due to age-related macular degeneration (or AMD), cataracts, and retinitis pigmentosa.
  • AMD age-related macular degeneration
  • cataracts cataracts
  • retinitis pigmentosa retinitis pigmentosa
  • microalgae of the type Muriellopsis sp., Scenedesmus almeriensis, Chlorella zofingiensis, Chlorella sorokiniana and Chlorella protothecoides have already been proposed as potential sources of lutein.
  • lutein is obtained by solvent extraction of edible fruit and vegetable strains as well as herbs, alfalfa and Tagetes erecta.
  • carotenes may also be present.
  • Lutein may contain fats and waxes naturally present in the original plant material.
  • lutein Some commercial preparations of lutein are sold as having "5% or 10% lutein". These preparations are in fact purified lutein (esterified or free) added to an inert stabilizing agent in a proportion of 5 to 15% to ensure its stabilization. Sensitive to light and oxidation, it must be stored in a tightly closed container, resistant to light and oxygen, in a cool, dry place. And despite these precautions, the stability of these compounds is not fully assured.
  • lutein is found in high concentrations in certain microalgae like Chlorella, it is therefore preferable to choose this microbial source in order to develop production processes that make it possible to obtain larger quantities of lutein profitably and to compensate for the loss inherent in brittleness. such molecules.
  • Chlorella microalgae contain a unique range of components that include, in addition to the aforementioned carotenoids, all the essential amino acids, saturated and unsaturated fatty acids, a large amount of vitamins, minerals and trace elements, as well as valuable components, including chlorophyll, in high concentration.
  • Microalgae are also an attractive potential food source rich in protein and other essential nutrients; when dry, they typically represent a contribution of about 45% protein, 20% fat, 20% carbohydrates, 5% fiber and 10% minerals and vitamins.
  • unsaturated fatty acids have a higher sensitivity to oxidation as their degree of unsaturation is high; polyunsaturated linoleic acid is thus more sensitive to oxidation than mono-unsaturated acids of oleic and palmitoleic type.
  • chlorophyllian pigments whose sensitivity to photo-oxidation is well known to those skilled in the art.
  • the soluble salts of chlorophyll have an antioxidant activity more than 1000 times greater than that of xanthines, and 20 times greater than that of resveratrol (polyphenol of the class of stilbenes present in certain fruits such as grapes, blackberries ).
  • Chlorophyll supplements are thus commercially available in liquid form, in tablets or capsules. Chlorophyll is often included in green powdered food formulas.
  • vitamin B vitamin B9 or vitamin B12, for example
  • water-soluble they are naturally fragile (sensitivity to light, heat and oxidation).
  • Antioxidant additives and storage conditions under an inert atmosphere are therefore recommended. But besides the fact that these technologies are complex and costly to implement, they are not very effective or completely satisfactory from a nutritional and health point of view.
  • 2005/0186298 consisting of stabilizing carotenoids in the biomass of microalgae that produce them.
  • the underlying problem of the present invention is to provide an alternative method for stabilizing oxidation-sensitive metabolites, and more particularly those produced by microalgae, especially those of the genus Chlorella, by a simple method, without which it is useful to add chemicals of the antioxidant or stabilizer type.
  • the cultivation of chlorophytes, and more particularly Chlorella, heterotrophically is generally known for the preparation of biomasses rich in metabolites of interest, including lutein.
  • the present invention therefore relates to a process for stabilizing or storing oxidation-sensitive metabolites selected from the group consisting of carotenoids such as lutein, monounsaturated and polyunsaturated fatty acids such as palmitoleic acid, oleic acid or lactic acid.
  • carotenoids such as lutein, monounsaturated and polyunsaturated fatty acids such as palmitoleic acid, oleic acid or lactic acid.
  • linoleic acid chlorophyllian pigments such as chlorophyll A and B
  • vitamins such as vitamins B9 and B12
  • the term "metabolite stabilization" is intended to guarantee the quality of the metabolites of interest after storage for a period of more than one year, which in particular results in a protection of the metabolites against their oxidative degradation.
  • the storage can be carried out at room temperature under a non-inert atmosphere.
  • the storage step lasts at least 12, 18 or 24 months, preferably at room temperature.
  • culture phase “deficient in a nutrient factor” is meant a culture phase in which at least one of the nutritional factors of the microalgae is provided in insufficient quantity to allow its normal growth. It should be noted that by quantity insufficient is not meant a zero intake in this nutrient factor. This phase of nutrient deficiency then leads to slow down (limit) cellular metabolism, without totally inhibiting it.
  • the cultivation is for example carried out under conditions such that one of the nutritive factors is provided in the medium at a speed below the rate of consumption that the microalgae could achieve without limitation.
  • the nutrient factor is the carbon source, and more particularly the glucose.
  • the present invention is thus particularly suitable for the stabilization of metabolites such as carotenoids, whose extreme sensitivity to oxidation is well known to those skilled in the art.
  • the stabilization of carotenoids thus also guarantees that of the other metabolites produced by microalgae, metabolites liable to be degraded by oxidation.
  • the oxidation-sensitive metabolites are stored in the cells of the microalgae contained in the biomass.
  • the method according to the present invention makes it unnecessary to add antioxidant or exogenous stabilizer to preserve oxidation-sensitive metabolites.
  • the process does not include the addition of antioxidant or exogenous stabilizer to said dry biomass.
  • the invention thus makes it possible to provide a natural biomass with a guaranteed content of metabolites of interest, such as pigments.
  • the microalgae biomass is understood here as microalgae, more particularly of the genus Chlorella, such as Chlorella sorokiniana.
  • the strain of Chlorella sorokiniana is the strain UTEX 1663 - The Culture Collection of Algae at the University of Texas at Austin - USA.
  • the metabolites of interest to be stabilized will be more particularly understood here, as will be exemplified here, total carotenoids, including lutein, chlorophylls and vitamins.
  • the metabolite of interest to be stabilized is lutein.
  • vitamin B12 not naturally produced by the microalgae when grown in heterotrophy, it is added to the culture medium and assimilated by it.
  • the fermentation is carried out under particular conditions of heterotrophic culture, which guarantee an optimal efficiency as for the stabilization of the metabolites of interest sensitive to the oxidative degradation produced by the microalgae.
  • the method comprises the fermentation of a biomass of microalgae under heterotrophic conditions with a first stage of growth of the biomass and with a second stage of culture deficient in a nutritive factor.
  • Biomass production includes:
  • the Applicant Company recommends that, in the preamble of the production phase of the biomass proper, a preculture phase (by batch fermentation) be carried out, which then allows the production of a quantity of microalgae biomass necessary for seeding. production fermenters themselves.
  • Chlorella sorokiniana For example, if one chooses to cultivate a Chlorella strain such as Chlorella sorokiniana, one obtains at the end of this first preculture phase a cell density (conventionally measured by optical density at 600 nm) of a value between 50 and 60. as will be exemplified below.
  • microalgae biomass As for the production of microalgae biomass, it therefore comprises a first batch fermentation step, with a culture medium for example identical to that implemented at the preculture stage.
  • the deficient nutrient is glucose.
  • the applicant company has overcome a technical bias, since it is commonly accepted that to optimize lutein production by Chlorella (article Wu et al cited above), if the high glucose concentration inhibits the growth and production of lutein, it is recommended to favor a minimum glucose concentration of between 5 and 24 g / l in the case of lutein production by C. pyrenoidosa.
  • the applicant company recommends adding glucose at a rate greater than 1 g / l / h while maintaining the residual glucose. at 0 g / 1.
  • the rate of glucose supply may be between 1 and 5 g / l / h, more particularly between 2 and 4 g / l / h. This rate is chosen so that the residual glucose in the culture medium is at 0 g / l. This speed can be defined with respect to the speed of consumption of glucose in the absence of limitation.
  • the rate of glucose supply can be 90, 80, 70, 60 or 50% of this rate of glucose consumption in the absence of limitation.
  • This speed is thus about 2 g / l / h at the beginning of "fed batch", and it can increase up to 4 g / l / h at the end of cultivation.
  • the rate of nutrient delivery deficient is preferably selected to decrease or slow the rate of cell growth, while maintaining growth at a non-zero speed.
  • it is proposed to reduce the growth rate by 10 to 60% relative to the growth rate without limitation in glucose, in particular by 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55%. relative to the rate of growth without limitation in glucose.
  • the growth rate is decreased from 15 to 55%.
  • the Applicant recommends choosing a glucose supply rate allowing ⁇ growth of at least 0.04 h -1 , for example between 0.06 h -1 and 0, 09:00 "1 .
  • the rate of nutrient supply is such that it allows a ⁇ cell growth of at least 0.04 h -1 , for example between 0.06 h -1 and 0.09 h -1 .
  • the duration of the culture phase deficient in a nutrient factor, in particular glucose, is at least 1 h, preferably at least 10 h, more preferably at least 20 h, especially between 30 and 60 h.
  • the fermentation is stopped (supply of glucose stopped) when the desired amount of biomass is reached (for example between 30 and 80 g / l).
  • a stability study (over 14 months and 23 months) was conducted to study the evolution of the carotenoid (lutein), vitamin (B9 and more particularly B12) and total fatty acid content of the fermentation biomass. in heterotrophic conditions, in comparison with a biomass produced under phototrophic conditions.
  • the biomass obtained as a photobioreactor has lost nearly 80% of its lutein concentration after 14 months of storage, whereas that of the biomass prepared under heterotrophic conditions is unchanged.
  • the present invention also relates to the use of a biomass of microalgae produced in heterotrophic conditions comprising a culture phase deficient in a nutrient to stabilize their metabolites sensitive to oxidation.
  • the microalgae are chosen from the group of microalgae of the genus Chlorella, more particularly Chlorella sorokiniana.
  • the limiting nutritive factor is the carbon source, in particular glucose.
  • the present invention also relates to a biomass of microalgae of the genus Chlorella, more particularly Chlorella sorokiniana, obtained by the method according to the present invention, characterized in that it contains at least 1 g of lutein per kg of biomass after storage of at least 12, 18 or 24 months at room temperature without addition of antioxidant or exogenous stabilizer to said dry biomass.
  • Preculture allows the reactivation of the strains and the inoculation of the production fermenter.
  • the pH is adjusted to 7 before sterilization by addition of 8N NaOH.
  • Incubation was carried out at 28 ° C +/- 1 ° C under stirring at 1 rpm (INFORS Multitron shaker) for 72 hours.
  • the final biomass concentration obtained at the end of incubation of each Erlenmeyer flask, by measuring the OD at 600 nm, is approximately 50-60.
  • Step 1 fermentation in Batch mode
  • the medium of the batch is identical to that of the preculture (Table 1), the yeast extract and the urea is replaced by NH 4 CI (Table 3 below). Table 3.
  • Step 2 fermentation in "Fed-batch" mode
  • Vitamin B12 is also added in the batch phase, at a rate of 0.47 ⁇ 9 / ⁇ of medium, so that it is stored in the biomass at a value of about 400 ⁇ g / 100 g of biomass. dried.
  • the growth ⁇ during this step is between 0.07 and 0.08 h -1 .
  • the glucose concentration in the feed solution can range from 400 to 800 g / L.
  • the salts are supplied continuously, separately or in admixture with glucose.
  • the first addition should be done at the end of the "batch", but the salts should not be made at one time to avoid inhibiting the growth of the strain.
  • the glucose supply is stopped when the cell density reaches 80 g / l. It stops the culture.
  • the biomass is atomized to a dry matter> 95%.
  • Example 2 Ambient stability studies of oxidation-sensitive metabolites produced by Chlorella sorokiniana A stability study was carried out over a period of 14 and 23 months at room temperature, aimed at studying the evolution of the carotenoids, lutein, vitamin B9 and more particularly vitamin B12, extracted from biomasses obtained by heterotrophy (by fermentation) or by autotrophy (photobioreactors).
  • the stability of total carotenoids is higher in the heterotrophic biomass.
  • vitamin B12 has been assimilated by the biomass of Chlorella sorokiniana; here its content is of the order of 363 ⁇ g per 100 g of dry biomass.
  • Vitamin B12 Stability of Vitamin B12 is observed throughout the study in both cases. The values varied around 300 ⁇ g / 100g for the biomass produced in heterotrophy and around 105 ⁇ g / 1400g for the biomass produced by autotrophy. Evolution of chlorophyll content (spectrophotometric assays)
  • chlorophyll B content remains stable under both operating conditions, this is not the case for Chlorophyll A, which is much better stabilized in the biomass produced by fermentation.
  • the metabolites produced by microalgae are more stable in the biomass produced by fermentation (which reflects their better protection against the oxidative degradation to which they are sensitive).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

L'invention est relative à un procédé de stabilisation d'une biomasse de microalgues contenant des métabolites sensibles à l'oxydation choisis dans le groupe constitué des caroténoïdes (lutéine...), des acides gras monoinsaturés et polyinsaturés (acide palmitoléique, acide oléique, acide linoléique...), des pigments chlorophylliens (chlorophylle A et B...) et des vitamines (vitamine B9 et B12...) pris seuls ou en combinaison, plus particulièrement des caroténoïdes, le dit procédé comprenant la fermentation de ladite biomasse en conditions hétérotrophiques.

Description

PROCEDE DE STABILISATION DES METABOLITES SENSIBLES A L'OXYDATION PRODUITS PAR LES MICROALGUES DU GENRE CHLORELLA
La présente invention est relative à un procédé de stabilisation des métabolites sensibles à l'oxydation produits par des microalgues, plus particulièrement du genre Chlorella.
Parmi les métabolites sensibles à l'oxydation les plus connus, on trouve par exemple les caroténoïdes.
Les caroténoïdes sont des pigments plutôt orange et jaunes répandus chez de très nombreux organismes vivants. Liposolubles, ils sont en général facilement assimilables par les organismes.
Ils appartiennent à la famille chimique des terpénoïdes, formés à partir de la polymérisation d'unités isoprènes à structure aliphatique ou alicyclique. Il est généralement admis qu'ils suivent des voies métaboliques similaires à celles des lipides.
Ils sont synthétisés par toutes les plantes vertes et par de nombreux champignons, bactéries (dont les cyanobactéries) et par toutes les microalgues.
Ils sont absorbés par les animaux dans leur nourriture.
Les caroténoïdes ont été étudiés pour la prévention du cancer et d'autres maladies humaines, car ils présentent des propriétés antioxydantes remarquables.
Ce sont d'ailleurs leurs propriétés antioxydantes qui rendent les caroténoïdes particulièrement sensibles à l'oxydation, car il est bien connu de l'homme du métier qu'une substance antioxydante doit être elle-même facilement oxydable pour jouer ce rôle.
Des exemples représentatifs de caroténoïdes comprennent Γα-carotène, le β- carotène et le lycopène.
Le β-carotène et le lycopène sont généralement présents sous une forme non combinée libre, qui est emprisonnée au sein des chloroplastes des cellules végétales.
Les xanthophylles sont des molécules de couleur jaune dérivées des carotènes par ajout d'atomes d'oxygène (fonctions alcool, cétone, époxy, ...). Elles font partie de la famille de caroténoïdes.
Les xanthophylles sont abondantes dans un certain nombre de fruits jaunes ou oranges et légumes tels que les pêches, les mangues, la papaye, les pruneaux, les courges et les oranges.
On les rencontre également dans les chloroplastes ou les chromoplastes des cellules végétales, notamment dans les pétales de certaines fleurs de couleur jaune, orange ou rouge, et chez les algues, par exemple les algues brunes (Phéophycées), où elles masquent la chlorophylle. Les xanthophylles sont des antioxydants qui contribuent entre autres à la santé des yeux.
Des exemples de xanthophylles comprennent la lutéine, l'astaxanthine, la canthaxanthine, la zéaxanthine, la cryptoxanthine...
La forme libre des caroténoïdes permet une meilleure absorption lorsqu'ils sont consommés dans les aliments ou comme complément alimentaire.
La lutéine est un pigment xanthophylle de formule 4[18-(4-hydroxy-2,6,6- triméthylcyclohex- 1 -én-l-yl)-3,7, 12,16-tetraméthyloctadéca-1 ,3,5,7,9,1 1 ,13,15,17-nonaén- l-yl]-3,5,5-triméthylcyclohex-2-én-l-ol trouvé en concentrations élevées dans la macula de l'œil et dans la partie centrale de la rétine.
Elle y joue un rôle important dans la filtration des longueurs d'onde ultraviolettes de la lumière afin d'éviter d'endommager la lentille de l'œil et la macula.
La lutéine a par ailleurs des propriétés antioxydantes qui permettent également de protéger la macula, qui est riche en acides gras polyinsaturés, des radicaux libres induits par la lumière.
La lutéine ne peut pas être produite par le corps et, par conséquent, doit être apportée par l'alimentation.
Ainsi, la lutéine est devenue de plus en plus utilisée dans les compléments nutritionnels pour la prévention et / ou le traitement des pertes de vision dues à la dégénérescence maculaire liée à l'âge (ou DMLA), les cataractes, et la rétinite pigmentaire.
Les microalgues de type Muriellopsis sp., Scenedesmus almeriensis, Chlorella zofingiensis, Chlorella sorokiniana et Chlorella protothecoides ont déjà été proposées comme des sources potentielles de lutéine.
Du point de vue réglementaire, la lutéine est obtenue par extraction au solvant de souches de fruits et de végétaux comestibles ainsi que des herbes, de la luzerne et de Tagetes erecta.
Différentes quantités de carotènes peuvent également être présentes.
La lutéine peut contenir des matières grasses et cires naturellement présentes dans le matériel végétal d'origine.
Seuls les solvants suivants sont autorisés pour leur extraction: méthanol, éthanol, propanol-2, hexane, acétone, méthyléthylcétone et anhydride carbonique.
Certaines préparations commerciales de lutéine sont vendues comme ayant « 5 % ou 10 % de lutéine ». Ces préparations sont en fait de la lutéine purifiée (estérifiée ou libre) ajoutée à un agent stabilisant inerte dans une proportion de 5 à 15% pour assurer sa stabilisation. Sensible à la lumière et à l'oxydation, elle doit donc être stockée dans un contenant hermétiquement fermé, résistant à la lumière et à l'oxygène, dans un endroit frais et sec. Et malgré ces précautions, la stabilité de ces composés n'est pas totalement assurée.
Ces conditions de stockage et de manipulation ne sont en outre guère aisées.
La lutéine se rencontrant en forte proportion dans certaines microalgues comme Chlorella, il est donc préféré de choisir cette source microbienne afin de développer des procédés de production permettant d'obtenir de plus grandes quantités de lutéine de façon rentable et compenser la perte inhérente à la fragilité de telles molécules.
Par ailleurs, les microalgues du genre Chlorella renferment une gamme unique de composants qui comprend, outre les caroténoïdes précités, tous les acides aminés essentiels, des acides gras saturés et insaturés, une grande quantité de vitamines, minéraux et oligo-éléments, ainsi que des composants précieux, dont la chlorophylle, en forte concentration.
Les microalgues sont également une source de nourriture potentielle attrayante riche en protéines et autres nutriments essentiels ; une fois sèches, elles représentent classiquement un apport d'environ 45 % de protéines, 20 % de matières grasses, 20 % de glucides, 5 % de fibres et 10 % de minéraux et vitamines.
Cependant, au même titre que les caroténoïdes, les acides gras insaturés présentent une sensibilité d'autant plus élevée à l'oxydation que leur degré d'insaturation est élevé ; l'acide linoléique polyinsaturé est ainsi plus sensible à l'oxydation que les acides monoinsaturés de type oléique et palmitoléique.
Il en est de même pour les pigments chlorophylliens, dont la sensibilité à la photo-oxydation est bien connue de l'Homme du métier.
II est ainsi connu que les sels solubles de la chlorophylle ont une activité antioxydante plus de 1000 fois supérieure à celle des xanthines, et 20 fois supérieure à celle du resvératrol (polyphénol de la classe des stilbènes présent dans certains fruits comme les raisins, les mûres...).
Les suppléments de chlorophylle se retrouvent ainsi dans le commerce sous forme liquide, en comprimés ou en capsules. La chlorophylle est souvent incluse dans les formules d'aliments verts en poudre.
Quant aux vitamines, les vitamines B (vitamine B9 ou vitamine B12, par exemple), hydrosolubles, elles sont naturellement fragiles (sensibilité à la lumière, à la chaleur et à l'oxydation).
L'importance des vitamines A, C et E comme antioxydants dans la biochimie des organismes vivants est également bien documentée. Pour augmenter la résistance de tous ces éléments nutritifs, il est donc nécessaire de les protéger des « agressions extérieures », i.e. lumière et oxygène.
Or les voies classiques de préparation de ces composés passent par leur extraction / purification de leur milieu biologique de base, puis leur cloisonnement dans des récipients hermétiques.
Des additifs antioxydants et des conditions de stockage sous atmosphère inerte sont donc préconisés. Mais, outre le fait que ces technologies sont complexes et coûteuses à mettre en œuvre, elles ne sont pas très efficaces ni totalement satisfaisante au point de vue nutritionnel et santé.
Une solution technique alternative a été présentée, notamment dans le brevet US
2005/0186298, consistant à stabiliser des caroténoïdes dans la biomasse des microalgues qui les produisent.
Il s'agit plus particulièrement ici de stabiliser la biomasse de Haemotococcus pluvialis productrice d'astaxanthine.
Cependant, cette solution technique recommande :
de produire la biomasse sèche (classiquement réalisée en conditions phototrophiques - croissance en présence de lumière et de C02 - mais pouvant être produite également en hétérotrophie - fermentation à l'obscurité en présence d'une source carbonée assimilable), et ensuite - de combiner cette biomasse avec un mélange d'au minimum deux antioxydants de type tocophérols.
Par conséquent, le problème sous-jacent de la présente invention est de proposer un procédé alternatif de stabilisation des métabolites sensibles à l'oxydation, et plus particulièrement ceux produits par des microalgues, notamment celles du genre Chlorella, par un procédé simple, sans qu'il ne soit utile d'ajouter des substances chimiques de type antioxydants ou stabilisants.
Soucieuse de mettre au point un procédé plus efficace que ceux connus de l'état de l'art, la société Demanderesse a développé ses propres recherches et a réussi à adapter les technologies de production des microalgues en hétérotrophie pour parvenir à cette fin.
La culture des chlorophytes, et plus particulièrement de Chlorella, par voie hétérotrophique est connue de manière générale pour la préparation de biomasses riches en métabolites d'intérêt, dont la lutéine.
Il est ainsi admis depuis les années 1960 qu'il est même possible d'obtenir des rendements en pigments beaucoup plus importants qu'avec les mêmes microalgues cultivées plus classiquement en conditions auxotrophiques éclairées. Le choix de cette voie de production hétérotrophique, comme énoncé ci-avant, a surtout pour objectif de produire les teneurs en lutéine les plus hautes possibles, permettant ainsi de compenser leur perte par dégradation oxydative.
Wu et al, dans leur article de 2007 publié dans la revue World J. Microbiol. Biotechnol., volume 23, pp 1233 - 1238, ont ainsi modélisé la production de lutéine par culture fermentaire hétérotrophique en mode discontinu (type « batch ») et semi continu (type « fed-batch ») afin d'optimiser la production de lutéine.
Cependant, aucun des documents de l'état de l'art, à la connaissance de la société Demanderesse, ne décrit ni ne suggère d'utiliser la biomasse elle-même, produite en conditions hétérotrophiques, comme vecteur de stabilisation des métabolites d'intérêt.
Bien au contraire, il est recommandé d'ajouter des antioxydants pour parvenir à ce résultat.
La présente invention est donc relative à un procédé de stabilisation ou de stockage de métabolites sensibles à l'oxydation choisis dans le groupe constitué des caroténoïdes comme la lutéine, des acides gras monoinsaturés et polyinsaturés comme l'acide palmitoléique, l'acide oléique ou l'acide linoléique, des pigments chlorophylliens comme la chlorophylle A et B, et des vitamines comme les vitamines B9 et B12, pris seuls ou en combinaison, plus particulièrement des caroténoïdes, le dit procédé comprenant :
- la fermentation d'une biomasse de microalgues en conditions hétérotrophiques comprenant une phase de culture carencée en un facteur nutritif ; et
- le stockage de la biomasse sèche au sein de laquelle les métabolites sensibles à l'oxydation sont stabilisés.
Par « stabilisation des métabolites », on entend garantir la qualité des métabolites d'intérêt après stockage pendant une période de plus d'un an, ce qui se traduit notamment par une protection des métabolites contre leur dégradation oxydative. Notamment, le stockage peut être réalisé à température ambiante sous atmosphère non inerte. L'étape de stockage dure au moins 12, 18 ou 24 mois, de préférence à température ambiante.
Par « métabolites d'intérêt sensibles à l'oxydation » produits par les microalgues du genre Chlorella, on entend des composés choisis dans le groupe constitué des caroténoïdes incluant la lutéine, des acides gras monoinsaturés et polyinsaturés incluant l'acide palmitoléique, l'acide oléique et l'acide linoléique, des pigments chlorophylliens tels que la chlorophylle A et B, et des vitamines, incluant la vitamine B9 et notamment la vitamine B12, plus particulièrement des caroténoïdes.
Par phase de culture « carencée en un facteur nutritif » on entend une phase de culture dans laquelle au moins un des facteurs nutritifs de la microalgue est apportée en quantité insuffisante pour permettre sa croissance normale. Il est à noter que par quantité insuffisante n'est pas entendu un apport nul en ce facteur nutritif. Cette phase de carence nutritive conduit alors à ralentir (limiter) le métabolisme cellulaire, sans l'inhiber totalement.
La culture est par exemple réalisée dans des conditions telles que l'un des facteurs nutritifs est apporté dans le milieu à une vitesse inférieure à la vitesse de consommation que la microalgue pourrait réaliser sans limitation.
Cela se traduit également par une absence de facteur nutritif résiduel dans le milieu de culture, la microalgue consommant ce facteur nutritif au fur et à mesure de son apport.
De préférence, le facteur nutritif est la source carbonée, et plus particulièrement le glucose.
La présente invention est ainsi particulièrement adaptée à la stabilisation des métabolites tels les caroténoïdes, dont l'extrême sensibilité à l'oxydation est bien connue de l'homme du métier.
Dans le cadre plus particulier de l'invention, la stabilisation des caroténoïdes garantit ainsi également celle des autres métabolites produits par les microalgues, métabolites susceptibles d'être dégradés par oxydation.
Plus particulièrement, les métabolites sensibles à l'oxydation sont stockés dans les cellules des microalgues contenues dans la biomasse.
Le procédé selon la présente invention rend inutile l'ajout d'antioxydant ou de stabilisant exogène pour préserver les métabolites sensibles à l'oxydation. Ainsi, de préférence, le procédé ne comprend pas l'ajout d'antioxydant ou de stabilisant exogène à la dite biomasse sèche.
L'invention permet ainsi de mettre à disposition une biomasse naturelle à teneur garantie en métabolites d'intérêt, comme les pigments.
La biomasse de microalgues s'entend ici de microalgues, plus particulièrement du genre Chlorella, tel que Chlorella sorokiniana. Dans un mode très particulier, la souche de Chlorella sorokiniana est la souche UTEX 1663 - The Culture Collection of Algae at the University of Texas at Austin - USA.
Les métabolites d'intérêt à stabiliser s'entendront plus particulièrement ici, comme il sera exemplifié ici, des caroténoïdes totaux, dont la lutéine, les Chlorophylles et les vitamines. Dans un mode préféré, le métabolite d'intérêt à stabiliser est la lutéine.
Pour la vitamine B12, non naturellement produite par la microalgue lorsque cultivée en hétérotrophie, elle est ajoutée au milieu de culture et assimilée par celle-ci.
Dans un mode préférentiel de réalisation du procédé conforme à l'invention, la fermentation est réalisée dans des conditions particulières de culture hétérotrophique, qui garantissent une efficacité optimale quant à la stabilisation des métabolites d'intérêt sensibles à la dégradation oxydative produits par les microalgues. Ainsi, le procédé comprend la fermentation d'une biomasse de microalgues en conditions hétérotrophiques avec une première étape de croissance de la biomasse et avec une deuxième étape de culture carencée en un facteur nutritif.
La production de biomasse comprend ainsi :
o une première étape de fermentation en mode « batch », o une deuxième étape de fermentation en mode « fed-batch » qui se traduit, lorsque la source carbonée est entièrement consommée par la microalgue, par l'apport en continu de ladite source carbonée à une vitesse inférieure à la vitesse de consommation que la microalgue pourrait réaliser sans limitation.
La société Demanderesse recommande de réaliser, en préambule de la phase de production de la biomasse proprement dite, une première phase de préculture (par fermentation en mode discontinu) qui permet alors la production d'une quantité de biomasse de microalgues nécessaire à l'ensemencement des fermenteurs de production proprement dits.
Par exemple, si l'on choisit de cultiver une souche de Chlorella telle Chlorella sorokiniana, on obtient au terme de cette première phase de préculture une densité cellulaire (classiquement mesurée par densité optique à 600 nm) d'une valeur comprise entre 50 et 60, comme il sera exemplifié ci-après.
Quant à la production de biomasse de microalgues, elle comprend donc une première étape de fermentation en mode « batch », avec un milieu de culture par exemple identique à celui mis en œuvre à l'étape de préculture.
Lorsque la consommation de la source carbonée par la microalgue est totale (ici : glucose résiduel dans le milieu de culture = 0 g/l), on ajoute en continue ladite source carbonée à une vitesse inférieure à sa vitesse de consommation par la microalgue. Dans un mode préféré, le facteur nutritif carencé est le glucose.
La société Demanderesse a ainsi vaincu un préjugé technique, puisqu'il est communément admis que pour optimiser la production de lutéine par Chlorella (article de Wu et al cité supra), si la concentration élevée en glucose inhibe la croissance et la production de lutéine, il est recommandé de privilégier une concentration en glucose minimum, comprise entre 5 et 24 g/l dans le cas de la production de lutéine par C. pyrenoidosa.
Les conditions de culture préconisées selon l'invention ne sont donc pas compatibles avec celles communément admises dans l'état de l'art pour optimiser la production de lutéine.
Dans le cas de Chlorella sorokiniana, la société Demanderesse recommande d'ajouter du glucose à une vitesse supérieure à 1 g/l/h en maintenant le glucose résiduel à 0 g/1. Par exemple, la vitesse d'apport en glucose peut être comprise entre 1 et 5 g/l/h, plus particulièrement entre 2 et 4 g/l/h. Cette vitesse est choisie de sorte à ce que le glucose résiduel dans le milieu de culture soit à 0 g/l. Cette vitesse peut être définie au regard de la vitesse de consommation du glucose en absence de limitation. Ainsi, la vitesse d'apport en glucose peut être 90, 80, 70, 60 ou 50 % de cette vitesse de consommation du glucose en absence de limitation.
Cette vitesse se situe ainsi à environ 2 g/l/h en début de « fed batch », et elle peut augmenter jusqu'à 4 g/l/h en fin de culture.
La vitesse d'apport en facteur nutritif carencée est de préférence choisie de sorte à diminuer ou ralentir la vitesse de croissance cellulaire, tout en maintenant la croissance à une vitesse non-nulle. Notamment, il est proposé de diminuer la vitesse de croissance de 10 à 60 % par rapport à la vitesse de croissance sans limitation en glucose, notamment de 10, 15, 20, 25, 30, 35, 40, 45, 50 ou 55 % par rapport à la vitesse de croissance sans limitation en glucose. De préférence, la vitesse de croissance est diminuée de 15 à 55 %.
Par exemple, pour la souche de Chlorella sorokiniana, la Demanderesse recommande de choisir une vitesse d'apport en glucose permettant une croissance μ d'au moins 0,04 h"1 , par exemple comprise entre 0,06 h"1 et 0,09 h"1.
Ainsi, la vitesse d'apport en facteur nutritif est telle qu'elle permet une croissance cellulaire μ d'au moins 0,04 h"1 , par exemple comprise entre 0,06 h"1 et 0,09 h"1.
La durée de la phase de culture carencée en un facteur nutritif, notamment le glucose, est au moins 1 h, de préférence d'au moins 10 h, plus préférentiellement d'au moins 20 h, notamment entre 30 et 60 h.
La fermentation est arrêtée (apport de glucose stoppé) lorsque la quantité de biomasse souhaitée est atteinte (par exemple entre 30 et 80 g/l).
Une étude de stabilité (sur 14 mois et 23 mois) a été réalisée visant à étudier l'évolution de la teneur en caroténoïdes (lutéine), en vitamines (B9 et plus particulièrement B12) et en acides gras totaux de la biomasse obtenue par fermentation en conditions hétérotrophiques, en comparaison avec une biomasse produite en conditions phototrophiques.
Comme il sera exemplifié ci-après, on constate une bien meilleure stabilité des métabolites produits par la Chlorelle, lorsque la biomasse est préparée en conditions hétérotrophiques selon le procédé préféré de l'invention.
C'est ainsi que, par exemple, la biomasse obtenue en photobioréacteur a perdu pratiquement 80 % de sa concentration en lutéine après 14 mois de stockage, alors que celle de la biomasse préparée en conditions hétérotrophiques est inchangée. La présente invention concerne également l'utilisation d'une biomasse de microalgues produite en conditions hétérotrophiques comprenant une phase de culture carencée en un facteur nutritif pour stabiliser leurs métabolites sensibles à l'oxydation. De préférence, les microalgues sont choisies dans le groupe des microalgues du genre Chlorella, plus particulièrement Chlorella sorokiniana. De préférence, le facteur nutritif limitant est la source carbonée, en particulier le glucose.
La présente invention est également relative à une biomasse de microalgues du genre Chlorella, plus particulièrement Chlorella sorokiniana, obtenue par le procédé selon la présente invention, caractérisée en ce qu'elle contient au moins 1 g de lutéine par kg de biomasse après un stockage d'au moins 12, 18 ou 24 mois à température ambiante sans ajout d'antioxydant ou stabilisant exogène à la dite biomasse sèche.
L'invention sera mieux comprise à l'aide des exemples qui suivent, lesquels se veulent illustratifs et non limitatifs. EXEMPLES
Exemple 1. Préparation de la biomasse de C. sorokiniana cultivées en conditions hétérotrophiques selon le mode préféré de l'invention
Phase 1. Préculture
La préculture permet la réactivation des souches et l'inoculation du fermenteur de production.
Elle est réalisée en Erlenmeyers à partir d'un tube congelé de souche de Chlorella sorokiniana (souche UTEX 1663 - The Culture Collection of Algae at the University of Texas at Austin - USA) et avec 600 ml de milieu de composition tel que présenté dans le tableau I ci-dessous :
Tableau 1 .
Figure imgf000011_0001
Le pH est ajusté à 7 avant stérilisation par ajout de NaOH 8N.
L'incubation se déroule à 28°C +/- 1 °C sous agitatbn à 1 10 rpm (agitateur INFORS Multitron) pendant 72 heures.
La concentration finale en biomasse obtenue en fin d'incubation de chaque Erlenmeyer, par mesure de la DO à 600nm, se situe à environ 50-60.
Phase 2. Production
Les paramètres de conduite de la fermentation sont présentés dans le tableau 2 suivant.
Tableau 2.
Figure imgf000011_0002
Etape 1 : fermentation en mode « Batch »
Le milieu du batch est identique à celui de la préculture (tableau 1 ), l'extrait de levure et l'urée est remplacée par du NH4CI (tableau 3 ci-dessous). Tableau 3.
Figure imgf000012_0001
Etape 2 : fermentation en mode « Fed-batch »
On ajoute également de la vitamine B12 en phase batch, à raison de 0,47 μ9/Ι de milieu, de manière à ce qu'elle soit stockée dans la biomasse à une valeur de l'ordre de 400 μg / 100 g de biomasse sèche.
En phase de « Fed-batch », un apport de milieu complet est réalisé avec une alimentation en glucose en continu à une vitesse inférieure à la vitesse de consommation permise par la souche de sorte que la teneur résiduelle dans le milieu est nulle.
Cette vitesse d'apport en glucose se situe à environ 2 g/LAi/h (Al = après inoculation) en début de « Fed-Batch » et elle peut augmenter jusque 4 g/LAi/h en fin de culture. La croissance μ pendant cette étape est comprise entre 0,07 et 0,08 h"1.
La concentration en glucose dans la solution d'alimentation peut aller de 400 à 800 g/L.
Les sels sont apportés en continu, séparément ou en mélange avec le glucose. Le premier ajout doit être fait dès la fin du « batch », mais les sels ne doivent pas être apportés en une seule fois pour éviter d'inhiber la croissance de la souche.
Le tableau 4 ci-dessous donne les besoins en sels pour 100 g de glucose : Tableau 4.
Figure imgf000013_0001
L'alimentation en glucose est stoppée lorsque la densité cellulaire atteint 80 g/l. Cela stoppe la culture.
La biomasse est atomisée à une matière sèche > 95 %.
Exemple 2. Etudes de stabilité à température ambiante des métabolites sensibles à l'oxydation produits par Chlorella sorokiniana Une étude de stabilité a été réalisée sur une période de 14 et de 23 mois à température ambiante, visant à étudier l'évolution de la teneur en caroténoïdes, en lutéine, en vitamine B9 et plus particulièrement la vitamine B12, extraits des biomasses obtenues en hétérotrophie (par fermentation) ou en autotrophie (photobioréacteurs).
Cette étude permet de démontrer l'impact du procédé de culture des chlorelles sur la stabilité de ces métabolites sensibles à l'oxydation.
Deux biomasses sont comparées :
la première produite selon les conditions de l'exemple 1 ,
la seconde produite en photobioréacteur (tel le PBR 4000), dans des conditions classiques (Pulz et al., 2000, in Rehm H.-J . , Reed G. (Eds), Biotechnology, vol 10, Second édition, Weinheiom, 105-136).
Les mesures sont réalisées sur 100 g de biomasse à plus de 95 % MS (matière sèche), produites par ces deux conditions opératoires. Evolution de la teneur en caroténoïdes totaux et en lutéine (dosages réalisés par HPLC)
Figure imgf000014_0001
La stabilité des caroténoïdes totaux est plus élevée dans la biomasse obtenue en hétérotrophie.
Cette tendance est la même pour la lutéine ; la biomasse fermentée protège mieux la lutéine de la dégradation.
Evolution de la teneur en vitamines (dosages réalisés selon méthodes AOAC 952.20 - Vitamine B12)
Apportée par le milieu de culture en hétérotrophie, la vitamine B12 a bien été assimilée par la biomasse de Chlorella sorokiniana ; ici son contenu est de l'ordre de 363 μg pour 100 g de biomasse sèche.
Figure imgf000014_0002
Nd signifiant non-déterminé.
On observe une stabilité de la Vitamine B12 tout au long de l'étude dans les deux cas de figure. Les valeurs ont varié autour de 300μg/100g pour la biomasse produite en hétérotrophie et autour de 105μg/1400g pour la biomasse produite en autotrophie. Evolution de la teneur en Chlorophylles (dosages réalisés par spectrophotométrie)
Figure imgf000015_0001
Si la teneur en Chlorophylle B reste stable dans les deux conditions opératoires, ce n'est pas le cas pour celle en Chlorophylle A, bien mieux stabilisée dans la biomasse produite par fermentation.
En conclusion, les métabolites produits par les microalgues sont plus stables dans la biomasse produite par fermentation (ce qui traduit leur meilleure protection contre la dégradation oxydative à laquelle ils sont sensibles).
Ce phénomène est d'autant plus marqué pour la teneur en lutéine, remarquablement plus stable dans la biomasse fermentée (alors que dégradées à plus de 80 % dans la biomasse produite en autotrophie).

Claims

REVENDICATIONS
1 . Procédé de stabilisation ou de stockage de métabolites sensibles à l'oxydation choisis dans le groupe constitué des caroténoïdes comme la lutéine, des acides gras monoinsaturés et polyinsaturés comme l'acide palmitoléique, l'acide oléique ou l'acide linoléique, des pigments chlorophylliens comme la chlorophylle A et B, et des vitamines comme les vitamines B9 et B12, pris seuls ou en combinaison, plus particulièrement des caroténoïdes, le dit procédé comprenant :
- la fermentation d'une biomasse de microalgues en conditions hétérotrophiques comprenant une phase de culture carencée en un facteur nutritif ; et
- le stockage de la biomasse sèche au sein de laquelle les métabolites sensibles à l'oxydation sont stabilisés.
2. Procédé selon la revendication 1 , caractérisé en ce que les microalgues sont choisies dans le groupe des microalgues du genre Chlorella, plus particulièrement
Chlorella sorokiniana.
3. Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que le procédé ne comprend pas l'ajout d'antioxydant ou stabilisant exogène à la dite biomasse sèche.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le facteur nutritif carencé est la source carbonée.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le procédé de production de la biomasse de microalgues en conditions hétérotrophiques comprend:
o une première étape de fermentation en mode « batch », o une deuxième étape de fermentation en mode « fed-batch » qui se traduit, lorsque la source carbonée est entièrement consommée par la microalgue, par l'apport en continu de ladite source carbonée à une vitesse inférieure à sa vitesse de consommation par la microalgue.
6. Procédé selon l'une quelconque des revendications 1 -5, caractérisé en ce que le facteur nutritif carencé est le glucose et qu'il est apporté à la culture à vitesse supérieure à 1 g/l/h, de préférence à une vitesse comprise entre 1 et 5 g/l/h, plus particulièrement entre 2 et 4 g/l/h.
7. Procédé selon l'une quelconque des revendications 1 -6, caractérisé en ce que la durée de la phase de culture carencée est d'au moins 1 h, de préférence d'au moins 10 h, plus préférentiellement d'au moins 20 h, notamment entre 30 et 60 h.
8. Procédé selon l'une quelconque des revendications 1 -7, caractérisé en ce que l'étape de stockage dure au moins 12, 18 ou 24 mois à température ambiante.
9. Procédé selon l'une quelconque des revendications 1 -8, caractérisé en ce que le métabolite sensible à l'oxydation est la lutéine.
10. Utilisation d'une biomasse de microalgues produite en conditions hétérotrophiques comprenant une phase de culture carencée en un facteur nutritif pour stabiliser leurs métabolites sensibles à l'oxydation.
1 1 . Utilisation selon la revendication 10, caractérisée en ce que les microalgues sont choisies dans le groupe des microalgues du genre Chlorella, plus particulièrement Chlorella sorokiniana.
12. Utilisation selon la revendication 10 ou 1 1 , dans laquelle le facteur nutritif carencé est la source carbonée.
13. Biomasse de microalgues du genre Chlorella, plus particulièrement Chlorella sorokiniana, obtenue par le procédé selon l'une quelconque des revendications 1 -9, caractérisée en ce qu'elle contient au moins 1 g de lutéine par kg de biomasse après un stockage d'au moins 12, 18 ou 24 mois à température ambiante sans ajout d'antioxydant ou stabilisant exogène à la dite biomasse sèche.
PCT/EP2014/056122 2013-03-29 2014-03-27 Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella WO2014154785A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480019200.XA CN105102608B (zh) 2013-03-29 2014-03-27 稳定由小球藻属的微藻产生的氧化敏感性代谢物的方法
US14/779,359 US20160040208A1 (en) 2013-03-29 2014-03-27 Method for stabilising oxidation-sensitive metabolites produced by microalgae of the chlorella genus
MX2015013820A MX360130B (es) 2013-03-29 2014-03-27 Metodo para estabilizar los metabolitos sensibles a la oxidacion producidos por las microalgas del genero chlorella.
EP14713106.4A EP2978836B1 (fr) 2013-03-29 2014-03-27 Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella
KR1020157026301A KR102301033B1 (ko) 2013-03-29 2014-03-27 클로렐라 속의 미세조류에 의해 생성된 산화 민감성 대사물질을 안정화시키기 위한 방법
JP2016504668A JP2016514470A (ja) 2013-03-29 2014-03-27 クロレラ(Chlorella)属の微細藻類により産生される酸化感受性代謝物を安定化する方法
BR112015024979-5A BR112015024979B1 (pt) 2013-03-29 2014-03-27 Método para estabilizar ou para armazenar metabólitos sensíveis à oxidação
ES14713106T ES2703116T3 (es) 2013-03-29 2014-03-27 Procedimiento de estabilización de los metabolitos sensibles a la oxidación producidos por las microalgas del género Chlorella

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352856A FR3003872B1 (fr) 2013-03-29 2013-03-29 Procede de stabilisation des metabolites sensibles a l'oxydation produits par les microalgues du genre chlorella
FR1352856 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014154785A1 true WO2014154785A1 (fr) 2014-10-02

Family

ID=48521328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/056122 WO2014154785A1 (fr) 2013-03-29 2014-03-27 Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella

Country Status (10)

Country Link
US (1) US20160040208A1 (fr)
EP (1) EP2978836B1 (fr)
JP (1) JP2016514470A (fr)
KR (1) KR102301033B1 (fr)
CN (1) CN105102608B (fr)
BR (1) BR112015024979B1 (fr)
ES (1) ES2703116T3 (fr)
FR (1) FR3003872B1 (fr)
MX (1) MX360130B (fr)
WO (1) WO2014154785A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513247A (zh) * 2018-06-29 2021-03-16 Cj第一制糖株式会社 新型破囊壶菌属菌株及使用其生产多不饱和脂肪酸的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800006555A1 (it) * 2018-06-21 2019-12-21 Procedimento per la coltivazione di alghe, preferibilmente di microalghe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186298A1 (en) 2004-01-31 2005-08-25 Wilhelm Johannisbauer Methods of stabilizing carotinoid-containing biomasses

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078221A (ja) * 1993-06-29 1995-01-13 Kawasaki Steel Corp ドコサヘキサエン酸含有海産物製品およびその製造方法
JP2002114703A (ja) * 2000-10-06 2002-04-16 Yamaki:Kk 抗酸化剤
RU2321582C2 (ru) * 2004-01-16 2008-04-10 Индэс Байотек Прайвет Лимитед Способ получения стабильной лютеиновой пасты из эфирного масла
JP4512464B2 (ja) * 2004-10-07 2010-07-28 株式会社ヤクルト本社 高クロロフィル及び高カロテノイド含有性のクロレラ及びその製造方法
JP2006348270A (ja) * 2005-05-17 2006-12-28 Yamaha Motor Co Ltd 藻体中でのキサントフィルの保存方法
CN101173215A (zh) * 2007-11-01 2008-05-07 上海交通大学 用于小球藻异养培养的低磷培养基
MX2010011065A (es) * 2008-04-09 2010-12-06 Solazyme Inc Modificacion química directa de biomasa microbiana y aceites microbianos.
US20100303989A1 (en) * 2008-10-14 2010-12-02 Solazyme, Inc. Microalgal Flour
WO2010120923A1 (fr) * 2009-04-14 2010-10-21 Solazyme, Inc. Nouvelles compositions alimentaires à base d'algues
US8735140B2 (en) * 2008-11-07 2014-05-27 Kuehnle Agrosystems, Inc. Preservation and composition of bioprocess algae for production of lipids, seedstock, and feed

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186298A1 (en) 2004-01-31 2005-08-25 Wilhelm Johannisbauer Methods of stabilizing carotinoid-containing biomasses

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN F ET AL: "EFFECT OF CARBON TO NITROGEN RATIO AND AERATION ON THE FATTY ACID COMPOSITION OF HETEROTROPHIC CHLORELLA-SOROKINIANA", JOURNAL OF APPLIED PHYCOLOGY, KLUWER, DORDRECHT, NL, vol. 3, no. 3, 1 September 1991 (1991-09-01), pages 203 - 210, XP008166059, ISSN: 0921-8971, DOI: 10.1007/BF00003578 *
DOUCHA JIRI ET AL: "Production of high-density Chlorella culture grown in fermenters", JOURNAL OF APPLIED PHYCOLOGY, vol. 24, no. 1, January 2012 (2012-01-01), pages 35 - 43, XP002717867, ISSN: 0921-8971 *
PULZ ET AL.: "Biotechnology", vol. 10, 2000, pages: 105 - 136
SANSAWA H ET AL: "Production of intracellular phytochemicals in Chlorella under heterotrophic conditions", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, ELSEVIER, AMSTERDAM, NL, vol. 98, no. 6, 1 January 2004 (2004-01-01), pages 437 - 444, XP004727088, ISSN: 1389-1723 *
WANG Y ET AL: "Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta)", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 24, no. 9, 22 February 2008 (2008-02-22), pages 1915 - 1922, XP019617114, ISSN: 1573-0972 *
WU ET AL., WORID J. MICROBIOL. BIOTECHNOL., vol. 23, 2007, pages 1233 - 1238
ZHENG-YUN WU ET AL: "Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures", WORLD JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 23, no. 9, 6 February 2007 (2007-02-06), pages 1233 - 1238, XP019535141, ISSN: 1573-0972, DOI: 10.1007/S11274-007-9354-2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513247A (zh) * 2018-06-29 2021-03-16 Cj第一制糖株式会社 新型破囊壶菌属菌株及使用其生产多不饱和脂肪酸的方法
CN112513247B (zh) * 2018-06-29 2023-11-14 Cj第一制糖株式会社 破囊壶菌属的新型微藻菌株及使用其生产多不饱和脂肪酸的方法

Also Published As

Publication number Publication date
US20160040208A1 (en) 2016-02-11
EP2978836B1 (fr) 2018-09-26
FR3003872B1 (fr) 2017-02-10
ES2703116T3 (es) 2019-03-07
CN105102608A (zh) 2015-11-25
BR112015024979A2 (pt) 2017-07-18
KR102301033B1 (ko) 2021-09-13
BR112015024979B1 (pt) 2022-07-26
EP2978836A1 (fr) 2016-02-03
FR3003872A1 (fr) 2014-10-03
MX360130B (es) 2018-10-23
KR20150134348A (ko) 2015-12-01
MX2015013820A (es) 2016-03-01
CN105102608B (zh) 2018-06-29
JP2016514470A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
Dufossé et al. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality?
Cysewski et al. Industrial Production of Microalgal Cell‐Mass and Secondary Products‐Species of High Potential: Haematococcus
EP3353283A1 (fr) Nouveau procede de culture d'algues rouges unicellulaires
EP3185694B1 (fr) Nouveau procede de culture d'algues, particulierement de microalgues
EP3019593B1 (fr) Procede de culture cellulaire decouple
De Carvalho et al. Microbial pigments
Ritu et al. Utilization of astaxanthin from microalgae and carotenoid rich algal biomass as a feed supplement in aquaculture and poultry industry: An overview
KR20160019424A (ko) 조류 세포 배양물 및 바이오매스, 지질 화합물 및 조성물, 그리고 관련 산물을 생산하는 방법
de Boer Biotechnological production of colorants
Cerón-García et al. Stability of carotenoids in Scenedesmus almeriensis biomass and extracts under various storage conditions
AU2011312987A1 (en) Heterotrophic microbial production of xanthophyll pigments
Gao et al. Evaluation of a novel oleaginous filamentous green alga, Barranca yajiagengensis (Chlorophyta, Chaetophorales) for biomass, lipids and pigments production
Mousavi Nadushan et al. Optimization of production and antioxidant activity of fucoxanthin from marine haptophyte algae, Isochrysis galbana
Farahin et al. Phenolic content and antioxidant activity of Tetraselmis tetrathele (West) Butcher 1959 cultured in annular photobioreactor
EP1874137A1 (fr) Composition de spirulines riche en principes actifs, son procédé d'obtention et son utilisation.
EP2978836B1 (fr) Procédé de stabilisation des métabolites sensibles à l'oxydation produits par les microalgues du genre chlorella
MARTIN Optimization Of Photobioreactor For Astaxanthin Production In Chlorella Zofingiensis.
US20230136215A1 (en) Production of dunaliella
Dominguez et al. Delivery of astaxanthin from Haematocuccus pluvialis to the aquaculture food chain
Razz Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries
Dufossé Natural colorants from cyanobacteria and algae
Corrêa et al. Antioxidant potential of extracts of Chromochloris zofingiensis cultivated in pilot-scale outdoor tubular photobioreactors under nitrogen limitation
KR20210119600A (ko) 루테인 및 제아잔틴의 함량이 증대된 계란 생산방법, 이로부터 생산된 계란, 및 상기 계란으로부터 난황유 또는 난황 분말을 제조하는 방법
Jung et al. Enhancing production-extraction and antioxidant activity of astaxanthin from Haematococcus pluvialis
Yacoub Optimal Conditions of Astaxanthin Production by Phaffia rhodozyma Yeast using Sesame Meal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019200.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14713106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014713106

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157026301

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779359

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016504668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013820

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015024979

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015024979

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150929