WO2014154147A1 - 阻止严重天气灾难的方法 - Google Patents

阻止严重天气灾难的方法 Download PDF

Info

Publication number
WO2014154147A1
WO2014154147A1 PCT/CN2014/074146 CN2014074146W WO2014154147A1 WO 2014154147 A1 WO2014154147 A1 WO 2014154147A1 CN 2014074146 W CN2014074146 W CN 2014074146W WO 2014154147 A1 WO2014154147 A1 WO 2014154147A1
Authority
WO
WIPO (PCT)
Prior art keywords
cloud
clouds
temperature
rain
air
Prior art date
Application number
PCT/CN2014/074146
Other languages
English (en)
French (fr)
Inventor
廖意民
Original Assignee
Liu Yee Man
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310105246.0A external-priority patent/CN103766180B/zh
Application filed by Liu Yee Man filed Critical Liu Yee Man
Priority to JP2016504469A priority Critical patent/JP6673543B2/ja
Priority to US14/781,025 priority patent/US20160106045A1/en
Publication of WO2014154147A1 publication Critical patent/WO2014154147A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G15/00Devices or methods for influencing weather conditions

Definitions

  • the present invention relates to the field of preventing natural disasters, and more particularly to methods for combating severe weather disasters.
  • Modern meteorological personnel have been able to make more accurate predictions of some of the above-mentioned natural disasters, and even effectively predict the rate of tornadoes in a large area, the short-distance movement direction and intensity of typhoons, etc., and then notify residents in the disaster areas to make advances. Good precautions or early evacuation, but it is impossible to prevent the above-mentioned natural disasters from being formed in advance. People are eagerly looking forward to changing the current situation of passive prevention and finding a way to prevent the formation of natural disasters in advance.
  • the cloud As the earth warms, it will evaporate more clouds, and the cloud is a substance that absorbs heat, stores heat, is warmer than air, and can move on its own.
  • the cloud layer is also a substance that forms an active low atmospheric pressure, and the low atmospheric pressure absorbs its surroundings. Clouds, so that the clouds are concentrated in the low atmospheric pressure zone, will inevitably result in strong active high atmospheric pressure in the cloudless or cloudless areas. Therefore, the increase in the amount of clouds and heat in the earth will cause the clouds to concentrate into larger and denser, thus forming more Low atmospheric pressure.
  • the dense cloud layer will block the polluted air from rising normally, which will result in a dense PM2.5 and extremely low visibility.
  • the air pressure is high and there is no cloud, the visibility is high and the air is fresh, which proves that severe air pollution is related to weather or atmospheric pressure.
  • heat island effect not only allows hot air (including hot exhaust gases) to stay in large cities or provinces without spreading, and hot air also draws in the surrounding exhaust gas.
  • the "heat island effect” will also suck in a large number of clouds and stay in the heat island, and long-term cloudy will cause the atmospheric pressure to drop, which will inevitably absorb the clouds and polluted air from the surrounding area. The exact reason for the drop in atmospheric pressure is detailed below.
  • the present invention proposes a method for preventing severe weather disasters in order to solve the disaster caused by severe weather.
  • the method sets the most effective long rain belt at the rain level, and artificial rain is carried out in the rain belt before the occurrence of the natural disaster.
  • Raining reduces the temperature, density, and measurement of the clouds, releases high-temperature air under the clouds, reduces the pressure difference between the clouds and the clouds, and lowers the temperature of the clouds and the air above the ground.
  • the small cloud is very close to the surface of the mountain, and the surface is reflecting the heat of the sun, the small cloud at the top of the mountain will absorb the heat rising from the top and absorb the heat of the sun, making the cloud
  • the temperature of the mass is higher than the temperature of the scattered clouds above the same height in the vicinity of the same height. Therefore, the small cloud of high temperature will attract 3 ⁇ 4 of the scattered clouds to form a larger cloud.
  • the present invention recognizes that it is a natural law for hot clouds or hot air to attract cold clouds or cold air. Clouds are also objects that absorb heat and store heat, and are thermostated by air. Therefore, the larger the cloud, the hotter and more constant the temperature.
  • the hot cloud will not flow out of the higher temperature mountain (unless there is strong wind), and the clouds in the cloud will not flow or spread out from the high temperature clouds (the cold clouds will spread), thus, The high temperature cloud will stay on the top of the higher temperature, and will continue to inhale the lower temperature clouds in the vicinity and accumulate into larger, denser and thicker clouds, so the mountain often has a separate and dense The clouds are concentrated on it until its density increases to allow local heavy rain to fall on the top of the mountain.
  • the present invention has been developed to detect extreme weather and severe air pollution related to geographical location and geographical environment.
  • Fujian province of China is currently the only province in China with no air pollution problem, and there is no theoretical explanation for this reason. .
  • the detailed explanation of the present invention is explained as follows: For military and political reasons, Fujian province, which is close to Taiwan, has been fully developed into a province capable of generating high heat, coupled with its offshore location and a large green area, The heat is small, but the heat in the surrounding provinces is very large. The hot air attracts cold air is the natural law. The small amount of polluted air generated by Fujian province will be sucked away by the surrounding provinces with higher temperatures, so there is no air pollution problem. Based on the above explanation, the city's severe air pollution is also related to "thermal pollution”.
  • the air is the least thermostated.
  • the ground air will cool rapidly, while the more constant surface temperature will remain high. This temperature difference will produce fog or fog. visibility.
  • the technical solution of the present invention is as follows - a method for preventing a severe weather disaster, comprising the following steps:
  • the above-mentioned rain belt is located at the position that can quickly cool the entire thermal cloud layer.
  • the rain shower location is located at the center or hottest position of the cloud layer.
  • a rain belt is set on both sides of the center of the cloud layer.
  • the above severe weather disaster is a typhoon, and the diameter of the center point of the cloud layer is 20 to 4 (meters).
  • the above severe weather disaster is a tornado or heavy rain, and the diameter of the hottest layer in the hot cloud layer is 10 to 30 kilometers. Further steps to carry out artificial rainfall include:
  • an artificial agent is sprayed for artificial rain.
  • the step of performing the artificial rainfall includes - spraying the raining agent around the wind eye wall about 600 to 1000 m, and spraying the raining agent around the wind eye until the wind eye is artificially enlarged by 0.5 to 4 km.
  • the most effective long rain belt is set at the rain shower position, and artificial rain is carried out in the rain belt before the natural disaster is formed. It will rain down.
  • the cloud that has been cooled will flow to the surrounding thermal cloud and cause it to cool down and rain, causing the rain-promoting area to expand itself. It can provide a method for preventing the formation of the natural disaster in advance, and can prevent the person and property from being harmed.
  • Figure i is a schematic view of an approximately circular typhoon cloud layer according to an embodiment of the present invention
  • Figure 2 is an enlarged schematic view of the center position of Figure 1;
  • Figure 3 is an enlarged schematic view of the non-center position of Figure 1;
  • FIG. 4 is a schematic view showing a long tornado or storm cloud layer according to Embodiment 2 of the present invention.
  • Figure 5 is an enlarged schematic view of the hottest position of Figure 4.
  • FIG. 6 is a schematic view showing a circular typhoon and an eye of a king according to an embodiment of the present invention
  • Fig. 7 is a partial enlarged view of Fig. 6.
  • the technical problem to be solved by the present invention is to provide a method for preventing severe weather disasters.
  • Natural disasters include tornadoes, typhoons, thunderstorms, hail, strong wind shear, localized high temperatures, drought and severe air pollution.
  • the technical solution adopted by the present invention is: Constructing a method for stopping a severe weather disaster, comprising the following steps:
  • the rain belt is located at a position which is capable of rapidly cooling the entire cloud layer.
  • the rain location is located at a positive center point or a hottest position of the cloud layer.
  • rain is set on both sides of the positive center point of the cloud layer
  • the severe weather disaster is a typhoon
  • the diameter of the center point of the cloud layer is set to 20 to 40 kilometers.
  • the severe weather disaster is a tornado or heavy rain
  • the diameter of the highest temperature position in the cloud layer is set to [) ⁇ 3 () kilometers.
  • the step of performing artificial rainfall comprises: dropping a raining agent on the upper or top portion of the cloud layer of the rain belt for artificial rain.
  • the steps of performing artificial rainfall include: spraying the raining agent around the eye of the eye at a distance of about 600 to i000 m next to the eye wall, until the eye is blown. Being artificially enlarged 0. 5 to 4 kilometers.
  • the most effective long rain belt is set at the rain-recovering position, and artificial rain is carried out in the rain belt before the natural disaster is formed.
  • Raining will reduce the temperature, density, and measurement of clouds, release high-temperature air under the clouds, reduce the pressure difference between the clouds and the clouds, and lower the temperature of the air beneath the clouds and the ground.
  • the cloud that has been cooled will flow to the surrounding thermal cloud and cause it to cool down and rain, causing the rain-promoting area to expand itself. It is possible to provide a method for preventing the formation of the natural disaster in advance, and to avoid personal and property damage.
  • the present invention contemplates that in addition to being caused by greenhouse gases, the increase in the amount of clouds on the earth, the expansion of arid regions and desert areas, etc., will also accelerate the warming of the earth.
  • the increase in the amount of clouds on the earth, the expansion of arid regions and desert areas, etc. will also accelerate the warming of the earth.
  • Greenhouse gases will warm the planet, which will evaporate more clouds.
  • the increase in the temperature of the earth will also make the clouds more difficult to be cold and rain, so it will further absorb the clouds around it and accumulate into larger, thicker, denser, more concentrated and then higher temperatures, which will inevitably lead to extreme weather.
  • the air including the city will be more polluted.
  • the hot cloud attracts the cold cloud is the law of nature. Large, high-temperature clouds will suck away the clouds around them, which in turn makes them less clouded. The more clouds, the more concentrated and the higher the temperature, which will eventually lead to a severe thunderstorm on the cloudy side, causing floods, while the one with less clouds will be hot and dry, which will make the rain zone uneven and lower. The number of rains is reduced, which will cause water shortage inside the mountain.
  • the mountain is a huge natural “short-term water storage device” higher than the flat land. It can provide mountain springs and moist land under the mountains and can make a large amount of river water flow, and a large amount of river water flow will reduce the degree of river water pollution.
  • decades ago in some areas, at the foot of the mountain about 100 meters high, there was a continuous flow of mountain spring water all the year round. Many lakes also have dry culverts and desertification or river water cutoffs. This proves that the average rainy area in recent times and the number of rains throughout the year have decreased.
  • the government is still using the average temperature of the Earth's four seasons to calculate the progress of global warming. This is because they do not understand that the amount of clouds will increase after global warming, and the increase of clouds will inevitably produce more snow and snow in winter. And the fact is that. For example, in recent years, record-breaking low temperatures have occurred in winter, and record-breaking high temperatures have occurred in summer. Since the calculation of the average temperature is equal to balancing the extremely low temperature with the extremely high temperature, it is considered that the progress and harmfulness of the global warming is quite slight.
  • the calculation of the degree of global warming should be based on the highest and lowest temperatures, because extremely high temperatures and extremely low temperatures have caused great damage to the earth's creatures, especially A drought caused by extremely high temperatures, uneven rain areas, and reduced number of rains.
  • the wind is generated by low-pressure air attracting high-pressure air or hot air to attract cold air. Blowing or sucking on the surface is the same, but the interpretation at the deep level is different and important. For example, when the general dense layer suddenly rains, it will quickly cool the air under it, and the cold air will be cooled by its vicinity. The air is quickly attracted to create strong gusts.
  • the coldness of winter will concentrate on and continuously enter the eaves from a very small doorway [brick neck] because the cold air is attracted by the airflow from the other side of the house or aspirated by the warmer air inside the house. If the cold wind is blown rather than sucked, it must have bounced and spread outside the door and will not continue to quickly enter the house from the door.
  • the general wind can be mainly divided into a more continuous directional monsoon and shore wind, high atmosphere.
  • Large-scale wind produced by the difference between the pressure difference between the nip and the low atmospheric pressure zone, the indeterminate local gust or breeze caused by the local temperature difference, the unstable strong or weak gusts generated by the crotch in the active low atmospheric pressure zone, and the thunderstorm Strong winds, strong wind shears, strong winds or tornadoes and typhoons.
  • the reason why the unstable wind can be generated in the active low atmospheric pressure zone is that the atmospheric pressure in the atmospheric pressure zone is lower than the atmospheric pressure around the periphery, and the inner cloud and air are also relatively warm (described below). The lower pressure and higher temperature air or clouds inside will strongly attract the surrounding air or clouds, which will produce undirected and unstable strong winds or breeze in and around the low atmospheric pressure zone.
  • the power of nature is active in a round way. It is easier or more flexible to move up in a rotating manner and to move laterally in a rotating manner.
  • the weight avoidance is lighter and more flexible, so the high-speed updraft generated by suction will rotate, for example, tornadoes and typhoons.
  • suction There is suction in the wind.
  • the typhoon's storm, wind, tornado or whirlwind are round and rotating. The soot that is quickly sucked up by the powerful range hood will rotate.
  • the temperature difference between the environment and the complex land is large, such as the central area of a modern big city, a large iron container yard, a large outdoor parking lot or a sandy land, etc., which will quickly generate high temperatures after being exposed to the sun.
  • the surface air in these hot spots will rise rapidly, and the lower ambient air will be inhaled and filled in immediately, which will produce sudden and short-lived strong gusts, and this horizontal strong array will rotate at high speed. It will become a strong wind or the "quirk wind" that the media calls.
  • the large container yards there are often containers that have been blown down by strange winds. When the high temperature air is quickly filled and reconciled by the low temperature air, the gust will stop.
  • the rise of hot air is a natural law, but the hot air naturally rises and is actually sucked up. People can't see the invisible thin air spinning up or moving in the lateral direction, but people can see tornadoes, rotating dust rolls on the desert, and some high-speed and high-speed fires or mountain fires (fire rolls), only It will rotate when it is sucked up at high speed.
  • the air contains moisture, especially in the rainy, early morning or early spring. Air over the sea, lakes, wetlands and green areas also contains more water, so it is easy to accumulate into clouds. Air The higher temperature and higher pressure ground will rise to a certain height at a higher speed. [The higher the temperature, the faster and higher the air will be.] It will slow down or stop rising due to the high temperature and pressure. After deceleration, the air is easily integrated into the denser, and denser to reflect the light, thus becoming a cloud that can be seen.
  • a cloud is an object that can move at will. It is a must-have object on the earth and will evaporate as the earth warms. Clouds that are warmer than air will absorb the sun and the heat rising from the ground, storing heat and almost condensing into a mass like water. The more clouds, the higher the temperature, and the higher the temperature, the more dense the group or layer. The increase in temperature of the earth will also make the clouds more difficult to be cold and rain, so it will accumulate into extremely large, extremely thick, extremely dense, extremely concentrated and extremely high temperature, which is easy to produce strong cloud convection and become larger and thicker. It is denser, hotter and more concentrated, and it will inevitably lead to the above-mentioned serious natural disasters.
  • the surface When the sun illuminates the surface of the earth, the surface absorbs heat and reflects heat.
  • the hot air rises in accordance with the laws of nature and is also sucked up. Therefore, the temperature of the air or clouds at high altitude will rise or fall due to the temperature of the ground rising. This is the closer the ground, the higher the temperature of the air or cloud, and the higher the temperature from the ground, the lower the temperature of the air or cloud.
  • the land air is hotter than the sea air, and the clouds on the land are hotter and therefore denser. It will heat up and densify faster, and the temperature and airflow on the land are unstable, which is easy to trigger strong thunderstorms or tornadoes.
  • the small clouds on the land will cool down more quickly and will spread out, while the larger clouds or clouds will be slower. Since the temperature of the air on the ocean is relatively constant and the airflow is relatively stable, the clouds on it are not easy to cool down and spread out day and night. Therefore, the constant temperature ocean can continue to build up clouds for a long time, for example, it can be assembled into a huge typhoon cloud.
  • the typhoon's clouds are huge.
  • the earth's deuteration will generally increase the temperature of the constant temperature seawater [the sea ice continues to crack and prove it], and the temperature rise of the sea water plus the increase in cloud volume and heat will easily form a typhoon.
  • the extremely large thermal clouds and extremely low pressure that can breed a typhoon will strongly attract a large number of clouds around it, including attracting a large number of clouds that would have flowed to the land. Therefore, it prevents the extremely large clouds from continuously sucking in a large number of clouds and thus increasing Born into a typhoon, this will avoid the high temperature and drought in a large area around the typhoon area.
  • the rainy season in the mainland has passed, there is less rain. This is because the clouds are sucked away by the warmer oceans and bred into more and stronger typhoons.
  • the so-called "hit” is not a three-day rain. If the typhoon cannot be formed because it is artificially blocked, its large clouds will be attracted by the land and only rain. However, the typhoon that has been formed is bound to focus only on a certain area, causing severe windstorms, floods, tidal surges and big waves.
  • Thunderstorms or tornado clouds and typhoons or strong tropical storm clouds form and accumulate in the center of the “active low atmospheric pressure zone”.
  • the reason for the highest temperature of the cloud in the center is that the hot cloud at this location is far from the low temperature air outside the clouds, and the cloud at the center has been surrounded by a large number of hot clouds around it, which is centered with a large circular city.
  • the theory of the highest temperature is the same.
  • the cloud in the entire cloud layer is also strongly sucked in by the cloud in the center of the cloud (this is called “internal convection within the cloud” or “compressed inside the cloud”).
  • the location of the cloud increases to a denser and higher temperature, which in the end will increase the density and temperature of the entire cloud to a very high level. This is why the tornado or strong thunderstorm clouds can turn black in an instant. If you don't know the fact of "convection inside the cloud", the process of compressing the cloud to extreme density and increasing the temperature of the cloud, it is difficult to study the methods to prevent the formation of the above-mentioned natural disasters.
  • the temperature in each area will be uneven, and the air flow will be more complicated. Therefore, the large hot clouds on the land are long and have many hottest positions, while the tornado will only Produced in the hottest position, therefore, a large onshore cloud layer can produce multiple tornadoes.
  • the airflow over the large ocean is relatively simple. Therefore, the large thermal clouds on the tropical ocean are mostly circular and have only one hottest central position. For example, a typhoon has only one eye in the center of the cloud.
  • the density of the general "greenhouse gas” is 100,000 meters above the ground, while the density of the heat and heat storage clouds is not only higher than that of greenhouse gases, but also only about a few hundred meters from the ground. Extremely dense and thus hot clouds are difficult to be cold and rainy. It is almost like a water curtain floating in the air, which can seriously block the hot air on the ground from rising at a normal speed, causing a temporary "strong greenhouse” in the cloud zone. Effects, for example, can make people feel extremely stuffy or even have difficulty breathing.
  • the temperature in a big city is higher than the temperature in its surrounding area, which is like a hot island.
  • the heat island is easy to suck into the clouds around it and will not stay above it (especially in some windy or cloudy months), and the clouds will absorb.
  • Higher temperature clouds will suck The more cloudy it becomes, the thicker the clouds, which creates a "strong greenhouse effect.”
  • the high temperature or low atmospheric pressure will inhale the lower temperature polluted air around the heat island to increase the concentration and humidity of PM2.5.
  • Clouds or clouds will only be attracted by the hottest zone or lower nip in the nearest distance, but will not be attracted to the farther hotter or lower pressure zone because of the stronger temperature difference and pressure difference. . The closer the distance, the stronger the suction. Therefore, the larger and hotter clouds will attract the adjacent thin clouds or the two clouds will attract each other to form cloud convection.
  • upper and lower average temperature is proposed by the present invention, and its purpose is to be easier to express. It is calculated by: the temperature of the air on the ground or on the sea plus the overall average temperature of the entire cloud of several kilometers thick divided by two [the specific calculation method is written below].
  • the hot cloud at the center and the hot air under it will eventually heat up to the limit and rush at high speed to release the rising pressure of the hot cloud layer and the hot air under it.
  • the occurrence of local strong winds under the center of the cloud is like when a large fire occurs somewhere, the hot air of the fire will rise rapidly and will strongly introduce the surrounding air to fill, thus generating strong winds.
  • Preventing the extreme concentration of clouds can also increase the number of rains and rains more frequently. This will not only avoid or reduce drought, high temperature and flood, but also enable rivers to flow long and reduce river pollution. In fact, most of the major floods in recent years have been localized and concentrated. For example, some large cities or mountainous areas can drop more than 100 millimeters of rainfall in a short period of time.
  • the cloud layer produces a "strong greenhouse effect.” Since snow falls from the air-high temperature clouds, it is not extremely cold during snowing (except for heavy snow with heavy wind), but the sky is cold and thick when the snow melts and the sky has no clouds. Therefore, when it is dissolved in snow, the ground will be cooler than when it is snowing.
  • Clouds containing moisture are heavier than air.
  • the clouds will rise higher due to the higher temperature due to the sun's rays, and will fall due to the lower temperature due to the evening or rain.
  • the more direct sun rises from the sea, lakes, rivers, wetlands and green areas, etc. which will first form a large number of small clouds that are lower from the ground.
  • the small cloud will be attracted by the lower atmospheric pressure zone or the upper and lower average temperature zones, and will continue to move while moving.
  • a large number of hot clouds will attract each other on the way of ascending and moving, and become large and dense clouds or small clouds. Since the clouds or clouds begin to rise from different times or regions and move to the low atmospheric pressure zone, the clouds can generally be divided into upper, middle and lower layers.
  • the cloud facing the sun When the sun is obliquely directed toward the cloud, the cloud facing the sun will be warmer, and the side facing the sun will be cooler. The low temperature cloud will be attracted by the high temperature side and pressed to the high temperature side. This is the rapid change of the shape of the cloud.
  • One of the reasons for this is that the cloud itself is compressed from the outside to the inside and the hot cloud at the center of the cloud is faster.
  • the more multi-layered clouds can block the sun from shining on the ground, which will cool the high-temperature ground air. Since the temperature of the upper air is provided by the temperature of the ground on the ground, the temperature of the ground air is reduced to be equal to the temperature of the cloud layer. At this time, the colder clouds in the upper layer will fall after the temperature is lowered, and the clouds will be pressed to the lower layer. At the same time, the heat rising from the ground The air will also support the lower clouds, which will cause the multi-layered clouds to be “up and down compressed” into a single layer of dense clouds, which will further cool the ground air. The single layer of Miyun will then "compress each other up and down” and will be pressed into a thick and dense cloud from the center to the center, and the cloud at the center will be hotter.
  • the cloud at the top of the hottest position of a large cloud layer with a thickness of several kilometers or more is not a columnar shape but a circular micro-bump.
  • the reason is that the large and thick cloud layer is generally located at a higher altitude and lower temperature zone.
  • the sun and the heat rising from the ground are not easy to make the thick clouds rise rapidly. Therefore, the temperature of the cloud at the center of the cloud and the temperature of the air under it depends on the internal convection effect of the cloud and the transfer of heat between the cloud and the cloud. It rises to the limit and does not rush into the sky like a cloud of small hot clouds.
  • the heat accumulated by the gradual warming of the huge cloud itself and the amount of hot air accumulated under it will be less than a thousand times as much as the heat accumulated by the cloud, when the cloud at its center and the air under it When the temperature finally rises to the limit in a gradual manner, It will be rushed to a greater extent and with greater force to release a huge amount of heat, which will form the above-mentioned natural disaster.
  • the satellite can observe that the cloud layer at the center is ridged, brighter or snow white and higher temperature.
  • the cloud at the hottest position in the center of the cloud viewed from the ground or the sea is darker, and the air temperature and humidity below this position will be higher, a bit like a thin cloud, and its shape will look like
  • the V-like situation can only be seen from a very long distance, for example, it is easy to see on the ocean and the mega-plain, which can only be seen from a distance like a rainbow.
  • the temperature of the clouds and the humidity and temperature of the air under the clouds can be measured with the naked eye.
  • the above explanation shows that before the tornado or the formation of the tornado, the large cloud layer (especially its central position) in the active low atmospheric pressure zone can be visually observed from the cloud layer, in addition to various meteorological instruments. Above and below are seen and measured in advance. In fact, the satellite image shows that the cloud layer around the typhoon eye that has formed is uplifted, which proves that the center of the typhoon cloud layer is bulging before the formation of the wind eye.
  • Active low atmospheric pressure is defined as the same atmospheric pressure in a certain area being “temporarily” lower than the atmospheric pressure in its vicinity. Since the lateral movement of the air is easier to rise, a slight atmospheric pressure difference produces a lateral wind. In order to more easily understand the causes of the natural disasters and the process of their formation, it is necessary to first study the complex causes of the active ⁇ ⁇ atmospheric pressure (hereinafter also referred to as the "low pressure circle”) and the process of its formation.
  • the active low atmospheric pressure formed by nature can only be formed in a wide space without forming in a small space.
  • the atmospheric pressure in a high temperature, unsealed room is the same as the atmospheric pressure of the low temperature air outside the room, but the sealed nacelle can artificially increase the air pressure.
  • the current theory holds that active low atmospheric pressure is formed after convection by clouds. There is no mention in the current theory that the atmospheric pressure is slowly formed by the expansion of high-temperature air. The reason why it is not mentioned is probably because the existing theory does not have the above-mentioned "upper and lower average temperature". If only the temperature of the ground is correct, it will be considered that the low atmospheric pressure is not caused by the high temperature, because the atmospheric pressure in the desert area where the ground is extremely hot is rather high.
  • the present invention considers that the temporary "active low atmospheric pressure" is formed by a wide range of upper and lower average warm or hot air, especially after the heat absorption, heat storage and constant temperature cloud layer are gradually expanded, that is, before the cloud convection Beginning to continue to form.
  • the recurrent atmospheric pressure in the tropics is lower than in the frigid zone; the higher temperature afternoon atmospheric pressure will be slightly lower than the lower temperature early, but this is only a regular or regular low atmospheric pressure difference.
  • the atmospheric pressure in a zone is often levied by the change of the "upper and lower average temperature" of the zone, and the upper and lower average temperature changes can be increased or decreased by the amount of clouds, the rise or fall of the sun, whether it rains and Whether there are low-temperature clouds and air inflows, etc., for example, atmospheric pressure generally rises after rain (after cooling and reduction of air and clouds).
  • the atmospheric pressure in a zone can also be raised or lowered by the influence of the moving low atmospheric pressure around it, for example, by the extremely low pressure typhoon.
  • high temperature clouds can increase the average temperature above and below the zone (except for the cold cloud that has just flowed into the cold zone), which means that the strong active low atmospheric pressure is formed by a large thermal cloud layer that can move freely. .
  • the active low atmospheric pressure (a huge cloud layer) will move laterally to produce strong winds. For example, the movement of "typhoon” or “tropical low pressure” will cause windstorms at its way. In fact, the above natural disasters are caused by active lows. In the atmosphere.
  • the cause of active low atmospheric pressure is very complicated. It is mainly caused by a large number of clouds gathering for a long time or staying in an area where the average temperature above and below is slightly higher. The warmer the earth is, the more clouds are concentrated and the higher the temperature. Therefore, the strong active low atmospheric pressure is easier to form, and it will strongly absorb the clouds in its far surrounding areas, making it relatively close to the surrounding areas. Formation of high atmospheric pressure produces extreme heat or drought.
  • the rapidly densified cloud layer not only absorbs heat and heat, but also blocks the high temperature air on the ground from rising normally, this will increase the average temperature of the upper and lower areas of the area more obviously, so the atmospheric pressure in the area will be Decreased more obviously. The above results may be the reason why some theories believe that active low atmospheric pressure is formed after convection in the clouds.
  • the low atmospheric pressure returns to normal atmospheric pressure, but it will gradually decrease, because the clouds in the low atmospheric pressure zone will rain and the clouds and air will cool rapidly.
  • the low atmospheric pressure that will move will strongly absorb the high-pressure air outside the zone to generate strong winds, which will lower the temperature in the low-pressure zone, so that the low atmospheric pressure will rise faster. This is the extremely low-pressure "typhoon" or "tropical".
  • the upper and lower average temperatures in the low atmospheric pressure zone must be the highest, that is, the lowest atmospheric pressure, the middle and the outer circumference are not very low, and the atmospheric pressure outside the periphery is normal. If the inner circumference of the extreme pressure and the normal atmospheric pressure are not separated by the above-mentioned progressive method but are contacted at a short distance, the earth's surface will also have a catastrophic sharp wind.
  • the low-pressure ring itself is huge, it looks thin compared to the surface of the whole earth. Therefore, the entire low-pressure ring moves along with the earth's atmospheric circulation or is attracted by the upper and lower average temperatures of its surroundings.
  • the clouds of typhoons, other types of storms or thunderstorms are all in the inner circumference of the low-pressure circle.
  • the typhoon which is itself a very high pressure, will also follow the entire large low-pressure circle to move laterally. This is the reason why the extremely low-pressure typhoon will also move laterally.
  • the low pressure ring passes through a certain area, it will immediately drop the atmospheric pressure of a certain area. Strong active low atmospheric pressure can raise sea level [tidal water], especially under the wind eye with extremely low air pressure, and strong winds and high tide water will produce huge waves, which is true.
  • the cloud will be attracted by the inner circumference and thicker, denser and higher temperature. Therefore, the large thermal cloud layer in the low pressure circle will not flow out of the low pressure circle, it will only Rise in the low pressure circle and accumulate thicker and denser The higher the temperature and the higher the temperature, the temperature rises to the limit, and the dense cloud layer can also severely block the hot exhaust gas on the ground from rising at a normal speed.
  • the hot and humid air accumulated under the hot clouds will continue to heat up to a very hot, and the hot air will suck in the lower temperature air from the periphery, including the polluted air, which will increase the concentration of PM2.5. Accelerated warming of the earth will make the above situation worse.
  • the active low atmospheric pressure is formed by the temporary expansion of high temperature air
  • the area with high temperature and strong ground is active high atmospheric pressure area
  • the low atmospheric pressure formed by high temperature is opposite to the ground with dense clouds.
  • Lower temperature areas The opposite reason is that the temperature at which the active low atmospheric pressure is formed is not calculated only from the temperature of the ground, but is calculated from the "upper and lower average temperatures" of the ground and the upper air.
  • a region with a higher average temperature above and below will inevitably introduce a large number of clouds.
  • a thick cloud of clouds for example, hundreds of kilometers in diameter
  • the upper troposphere in this area will be warmer.
  • the constant temperature of the thermal cloud will warm up the four-kilometer-thick space where the clouds are located, and this high-temperature space combined with a strong greenhouse effect will also make this area
  • the ground air is hot during the day and night. Under this circumstance, the average high temperature air in this area will slowly expand and gradually form an active low atmospheric pressure.
  • the above explanation shows that in the desert or arid regions with large temperature difference between day and night, although it is hot during the day, due to the low temperature in the evening and the small amount of clouds in the desert or arid areas, there are few clouds around it. It is difficult to collect enough clouds to maintain a long-term average high temperature, and there is no greenhouse effect, so it is difficult to form an active low atmospheric pressure and rain.
  • the above explanation also states that the conditions for forming an active low atmospheric pressure require sufficient cloud amount to maintain an average upper and lower temperature for a long time.
  • Active low atmospheric pressure is formed by the slow expansion of hot or sputum air in a large area of a local area.
  • the wide-area space includes the area of dense clouds with a diameter of hundreds of kilometers, the space from the ground to the clouds, and the height of four kilometers of a thick cloud (four kilometers thick) with a diameter of 100 kilometers. space.
  • the resulting sultry heat can force some insects to climb out of the ground, which proves that the "strong greenhouse effect" formed by the dense cloud layer can generate high temperature and high humidity in a large space on the surface of the earth.
  • the area with the blue sky and the sun is only high in the ground and the humidity is not high, but the sky is low.
  • the sky in the high atmospheric pressure zone will be dark blue because there is no “high-rise cloud”.
  • the bluer the sky the more the sun will shine unimpeded on the ground, the higher the temperature of the ground will be, but the wide range of air will be lower due to the absence of large thermal clouds, which explains the upper and lower average of the high and high pressure zones.
  • the temperature is below the low atmospheric pressure zone.
  • thermal cloud layer with a diameter of several kilometers from the ground, which is 1 km away from the ground.
  • the thickness of the thermal cloud itself is 4 km, which is equal to the top of the cloud layer five kilometers from the ground. Since the clouds can block the sun's heat from illuminating the ground, the ground in the cloud zone will be cooler, but the 4km thick cloud itself is hot.
  • the ground in a cloudless zone will be unimpeded by the sun, and its surface temperature will be higher than that of the cloud zone, but the temperature above it will be lower than that of the hot cloud zone. According to the results obtained by the calculation method below, the upper and lower average temperatures of the cloud zone are higher than those of the cloudless zone, and therefore, the atmospheric pressure of the cloud zone is lower.
  • Zone A is a high atmospheric pressure zone with no large clouds (but with small clouds), and its sky must be dark blue.
  • the cloudless layer allows the sun to shine unimpeded, increasing the surface air temperature in Zone A to, for example, 34 degrees dry.
  • Area B around Area A is an active low-pressure area with a 4 km thick thermal cloud layer, and the thermal cloud layer is 1 km from the ground, which is the top of the 4 km thick cloud layer 5 km off the ground.
  • the reclamation area is blocked by the direct sunlight of the 4 km thick cloud and the ground is relatively warm, the reclamation area has a "strong greenhouse effect" factor. Therefore, the surface temperature of the reclamation area will only be 34. The degree is slightly lower, for example, 30 degrees of sultry heat.
  • the temperature of each kilometer is about 6 degrees lower, there is a hot cloud layer and a "strong greenhouse effect" over the B area, so the temperature in the B area is necessarily higher than that in the A area. Therefore, in theory, the temperature at a kilometer above the B zone with a hot cloud layer will only decrease by about 4 degrees instead of 6 degrees, that is, 30 degrees minus 4 degrees, which is equal to "one kilometer" above the B zone.
  • the cloud temperature at "where" is "26" degrees.
  • the clouds absorb and store the heat of the sun.
  • the 26-degree heat cloud at a kilometer above the B zone will also upload heat to the clouds above it, which will greatly increase the temperature of the upper cloud.
  • the 26-degree cloud will cool down on the way to heat, the 4km-thick cloud itself is hot.
  • the dense clouds of water content are a bit like water, they are It is easy to transfer heat upwards. Therefore, the temperature of the four-kilometer thick cloud layer above the B area will be relatively average, and it will not be as low as six degrees every kilometer as high as the dry air.
  • the "total average temperature" of a 4 km thick cloud over Area B should be about 18 degrees. Therefore, the upper and lower average temperatures of the ground and upper air in Zone B will be 30 plus 18, except 2 is equal to "24" degrees, but the upper and lower average temperatures of the higher temperature A zone are only "19" degrees.
  • the high B zone is a low atmospheric zone.
  • the thickness of the cloud layer quoted in this description is small. If the cloud layer in Zone B is larger, thicker and denser, the upper and lower average temperatures will be higher, and the active atmospheric pressure will be lower. In fact, when a very low atmospheric typhoon or thunderstorm rain cloud layer approaches a certain area, there will be a large number of clouds over a certain area to flow at high speed to the typhoon or thunderstorm cloud layer.
  • the low-pressure B zone will eventually have heavy rain or extremely thunderstorms. Because of the rain, the clouds and the air under it will cool rapidly, which will generate strong winds, which will cool the hot clouds and the ground air. The amount of clouds will also decrease due to the rain, which will make the already low atmospheric pressure continue to rise. On the contrary, the ground in the cloudless (high atmospheric pressure) zone A was high temperature after being exposed to the sun for a long time, and the high temperature and the thermal cloud rising from the ground evaporation caused the lower average temperature of the lower zone A to rise slowly. The B zone where the sorghum has been raining.
  • the cloud is only a gas containing water rather than a liquid. If it is not dense enough, it will not stay in Zone B to form rainwater. Since the clouds and air in Area B have been cooled by the rain, the cold clouds left over from the area will be sucked away by the A area with a higher average temperature in the vicinity, which will turn the B area into a blue sky area and gradually become In the normal atmospheric zone, this is the so-called "rainy weather.”
  • Fine sand and arid areas are less thermostatic. Desert and arid regions will be hot during the day but will be colder at night. In the evening, the cold clouds in the arid zone will quickly dissipate or be sucked away by the adjacent areas of higher temperature and constant temperature.
  • the above explanation shows that the more dry a certain area is, the less likely it is to form an active low atmospheric pressure, while the cloudy offshore area or the hot sea with constant temperature day and night is easy to form. If the cloudy area A can keep its upper and lower average temperatures above its surrounding area at a lower temperature, the area A can remain low. Air pressure.
  • the rainy season is mostly in the warm season, while the provinces close to the ocean are more likely to form or are able to maintain low atmospheric pressure for a long time.
  • active low atmospheric pressure is mainly generated by clouds.
  • the southern part of China or some areas that are offshore and thus cloudy will have heavy rains for a long time.
  • the unique interpretation of the present invention is as follows; the large thermal cloud layer and hot air that cannot stay in the low pressure ring will strongly suck into the cloud and air around it, which is equivalent to the rapid cooling and cold air from all directions around the cloud layer. Inflow and strong impact on the clouds, this will make the cloud move. Since the hot cloud will not flow out of the low pressure ring but must move, it can only move in a large rotation mode at a slow speed inside the low pressure ring. In fact, as seen in the cluster satellite image, the huge clouds in the low-pressure circle are slowly rotating in a large circular pattern.
  • the highest temperature of the air in a zone is after one to two hours of direct sunlight, that is, after the afternoon or when the sun is already in the west of the area. Clouds or air have a strong ability to sense temperature and pressure, and they are sure to be attracted by the hottest air at the nearest distance.
  • a hail is a kind of solid precipitation that falls from a very thick and dense cloud. Its diameter is generally about 0. 2 ⁇ 0. 6 mm, and the large can reach 8 mm. The hail falling in the center of the cloud will be bigger. It can cause great damage to crops, livestock and humans. The denser and thicker the clouds, the more and stronger the hot air flow on the ground, and the larger the hail volume will be formed. Hail can quickly cool the air under the clouds and on the ground.
  • the basic principle of forming hail is similar to that of tornadoes, typhoons and thunderstorms.
  • the main reason is that after the dense cloud layer forms a strong greenhouse effect, the hot cloud at the center of the cloud and the hot air under it heat up to the limit and quickly rush. Produced.
  • the speed of the descent is slower, so the hail has a longer time to absorb the moisture in the dense cloud. And increase.
  • the extent of the hail is small because it is only generated in the center of the cloud.
  • the process of lowering the hail is not long because it is only produced during the hot air rush, and the process is generally not very long.
  • Tornadoes can be divided into tornadoes and waterspouts, which are produced over the ocean or inland large lakes. Tornadoes can be produced in any season.
  • the present invention divides a tornado into a tornado of longevity, shortevity, warm season and cold season, and separately writes its cause and formation process.
  • the smallest diameter of the tornado is only a few meters, usually about 100 meters to one kilometer.
  • the upper diameter of the funnel is generally one kilometer and the maximum is 10 kilometers.
  • the tornado's air pressure is very low, which can cause a very strong rotation j speed.
  • the strongest tornado wind speed can be as high as about speed
  • a tornado is a hollow cloud column that extends from the dense cloud layer to the ground, while the interior of the cloud column is oppositely high-speed and continuously draws air from the ground.
  • the tornado is not formed by the collision of two clouds after the collision of two clouds, which is caused by the "rotation of the airflow" in real time, or by the "hot airflow continues to rush” to maintain its mobility (life). If it is, the tornado in the northern hemisphere will not only rotate in a counterclockwise direction, but the tornado in the southern hemisphere will not only rotate in a clockwise direction. In theory, when two clouds collide, they do not only rotate in a certain direction.
  • the conditions for creating a tornado must also have a large, extremely thick, extremely dense and low thermal cloud layer from the ground, such as the rapid densification and warming of the clouds after convection of the two clouds.
  • the rapidly densified clouds will then “self-compress” to a denser, lower ground and higher temperature, which will turn the day into a dark night in a matter of moments.
  • the cloud layer is increased to a denser level, it can block the i3 ⁇ 4 and the air on the ground can be cooled rapidly. Therefore, the lower the higher temperature cloud layer, the closer it is to the air cooled by the ground, which will form a close distance with the ground air.
  • the temperature difference produces "temperature difference suction".
  • the hot cloud layer When the temperature of the cloud layer is further increased to a very high temperature due to self-compression, the hot cloud will rush to the top or the hottest position of the cloud layer to generate hail or thunderstorm, and the air on the ground will be hailed or rained again in a moment. When the temperature is greatly reduced, the hot cloud layer will form a larger temperature difference with the cooled air on the ground. In the case of sudden increase in temperature difference, the hot cloud in the center of the cloud or the hottest position will strongly absorb the low temperature and high pressure air on the ground in conjunction with the low-pressure air at high altitude, which will produce high-speed rotation under the clouds and on the ground. Updraft, strong winds, strong wind shears or subsequent tornadoes. If there is a downward flight from the runway that is descending, this strong downwind shear will suddenly slam.
  • a typical ocean cloud has only one hottest central location.
  • a typhoon has only one central wind ⁇ , while a land cloud has more than one hottest location.
  • the so-called tornado of the United States a huge cloud layer can produce multiple tornadoes at the same time.
  • the reason is that the utmost plains in the north and south of the United States have low altitudes and no mountains, so they are easy to form and are relatively flat. The whole is extremely dense. The lower the altitude, the denser and hotter the clouds.
  • the first tube must write the cause of the winter tornado.
  • the condition for a tornado in winter is that there is a large thick cloud layer that is very close to the ground. When the cloud layer is densified, it will block the sun and cause the temperature of the ground to drop further. This will also produce strong cold wind on the ground where the temperature is low.
  • the temperature in the cloud is higher than the temperature of the air under the cloud and the cloud is relatively low from the ground, and the temperature difference between the two is close contact and strong cold wind.
  • the lower pressure air at high altitude and the higher temperature cloud layer will strongly absorb the higher pressure and low temperature air on the ground, which will cause the tornado j.
  • the high-pressure air on the ground will rise at a higher speed. For example, during the period of dense clouds and winds, people can often see some waste paper rising to a very high altitude.
  • Dust rolls are mostly formed on high heat or dry deserts. As mentioned above, the surface temperature of the desert is much higher than the temperature of the air above it. Once a sudden strong gust is generated, the strong gust will rotate, so dust will form. If there is a large cloud above the ground with high heat on the dust roll, the dust roll will be sucked by the hot cloud to form a dust column like a water dragon roll.
  • a tornado is a high-speed rotating hollow cloud column that is rotged down to the ground from the center or hottest position of a very dense cloud. Since the activity in nature is slow acceleration, its speed will continue to increase to a very fast speed.
  • the US's low-altitude mega-plains can produce the most, longest and strongest tornadoes because of the sea, or the Great Lakes in the east, south, west, and north of the region, so they can be introduced from all sides, especially from the South and the North.
  • the terrain of the mega-plain is less complex, such as no sorghum (the airflow in the high mountains is unstable, and the clouds unconditionally accumulate to level and produce tornadoes).
  • the clouds flowing in from north to south will not be forced to run until they are high, so the United States is able to accumulate dense clouds that are much lower, hotter and flatter than the ground, and these flows from north to south.
  • the clouds will form a convection of clouds, and the tornado will be generated after the convection of the clouds.
  • a low elevation in a certain area is equal to the altitude at which the clouds above it are located.
  • This cloud layer can be as low as about 200 meters or less from the ground after self-compression. According to the explanation of the self-compression of the cloud layer above, the density of the cloud layer will be almost doubled after the convection of the two thermal clouds, and the “convection inside the cloud layer” will be further densified, and the center of the cloud will be denser and higher. Therefore, it can turn day into night in the moment. In fact, the clouds before the tornado was formed were black.
  • Short-lived tornadoes are formed on non-extra large and low-altitude plains, and their clouds are higher than the ground. Such tornadoes are often produced after heavy thunderstorms or hail. Before the formation of a short-lived tornado, the heat-to-limit cloud will first rise from the hottest position of the cloud, and the high-pressure hot air accumulated under the clouds will immediately follow the hot cloud to release the high pressure under the cloud. The rising pressure of hot air.
  • Convective clouds have enabled the clouds to double densely and warm up; the dense clouds will double the occlusion of i3 ⁇ 4 to cool the ground air; suddenly thunderstorms or 3 ⁇ 4 ⁇ will cool the ground air and generate strong winds. All three factors will cause a sudden large temperature difference between the clouds and the air on the ground. Therefore, the high-pressure cold air on the ground will be strongly sucked by the high-altitude hot cloud to generate strong wind shear, cyclone or tornado. In fact, short-lived tornadoes are often produced after a hail or a thunderstorm.
  • the velocity of the high-pressure air on the ground will continue to increase, which will first form a high-speed rotating hollow cloud column connecting the upper part of the cloud layer and the lower part of the cloud layer inside the cloud layer.
  • the cloud column is dense, and it is like a hollow straw formed by a very dense cloud. Because there is a great difference in height between the upper and lower ends of the extremely dense column of the column (generally several kilometers or more), the extremely low pressure at high altitude will only strongly absorb the high-pressure air under the cloud through the cloud column (hollow suction pipe). . The stronger the suction, the faster the cloud column rotates. The faster the cloud column, the higher the density of the column, which is directly proportional.
  • the cloud column Since the cloud column is only formed by high-speed cloud high-speed rotation, it can be stretched or contracted a little at will. Also, due to the strong inductive force, the natural environment can strongly induce the air pressure difference, and the rotation effect and the suction effect can easily make the cloud column elongate a little, so the extremely low-pressure air at high altitude must be sucked by the easily elongated cloud column. The highest pressure air on the surface.
  • the upper end of the hollow cloud column is connected to the extremely low-pressure air in the upper part of the cloud layer, and the lower end is connected to the high-pressure air on the surface. Therefore, the air pressure in the lower end of the cloud column can be assimilated by the extremely low-pressure air at the upper end of the cloud column and thus is low.
  • a group of scientific instruments that like to chase a tornado have tested the tornado and found the fact that the air pressure at the lower end of the cloud column is very low, which is consistent with the theory of the present invention.
  • the high temperature clouds will first make the humidity under the clouds and the surface air high and sultry, but at the moment of the tornado formation or during the tornado activity, the ground air is lower (generally about 26 degrees Celsius or The following], which proves that the tornado is mainly absorbed by low-pressure air instead of hot air to maintain its life. In fact, the hot air flow does not always exist, and the suction generated by the high and low air pressure difference is always present.
  • the tornado's destructive power is a high-speed rotating airflow with a powerful suction force. Its suction can suck a medium-sized truck from the ground for more than ten meters. Its high-speed rotating airflow can break the big tree bar and it will be made on the ground. Serious damage. Since the cloud column is formed by gas rather than liquid or solid, some of the slightly heavy objects that are sucked up are thrown out of the cloud column by the centrifugal force of rotation, but the waterspout is a liquid, so the fish that are sucked up will not be Throw a water column.
  • Waterspout is more common between summer and autumn, because the constant temperature water will be warmer during this period. After the summer, there will be less tornadoes but more typhoons, because the clouds will be more concentrated in the tropical ocean during this period.
  • the cause of the "water tornado" is that the hollow cloud column descends to the surface of the water. After the cloud column absorbs water and turns into a hollow water column, the cloud column It will then rise back to the clouds. Since the water column has a higher density than the cloud column, it can form a straw with a higher density than the cloud column and a stronger suction force, so that the fish can be sucked up to a very high altitude and then blown by the wind to a distant land. In fact, the news tube of the sky is often there.
  • the water column must have sufficient height (length), density and suction to suck the fish at very high altitudes. This proves that most of the water column is inside the cloud like the cloud column, otherwise it is not enough to suck the fish. Extremely high altitude.
  • the composition of the water column is water, which is sucked up and not stretched up like a cloud column. Therefore, the water column is strip-shaped rather than funnel-shaped. The water column is also easily broken or pulled to break or disappear.
  • the diameter of the entire cloud column is equal (like a straw) because it produces a powerful suction.
  • the reason why the cloud column outside is like a funnel is that the upper end is at a higher altitude, so that the cloud is attached to the outer periphery, and the upper end is more cloudy, and its shape is like a funnel.
  • the high-speed rotation effect will also keep the top of the cloud column extremely round and smooth.
  • the pole is round and smooth because the effect of high-speed rotation is more able to pull the cloud to rotate, and the centrifugal force or centripetal force generated by the rotation will make the cloud in the whole cloud column beside the edge, thus making the whole cloud column hollow.
  • the formation theory of the hollow cloud column is the same as the formation theory of the typhoon eye formed by the high-speed rotation of the hot air.
  • the wind eye When there is a very high speed airflow rotation, the wind eye will be extremely round, hollow or open.
  • the updraft is not very high speed, the eye will not circle or close.
  • the low-pressure air suction in nature must be slowly accelerated. If it is accelerating as fast as an aspirator, there will be a catastrophic sudden strong wind on the earth.
  • the thin rotating dust roll on the hot desert starts to rotate, its rotation speed will be slower and its diameter will be larger, but as it turns faster, its diameter will become slender, which is slow acceleration. And an example of centripetal force.
  • the present invention has made the above detailed explanation for the dust roll, the main formation principle and formation process of the dust roll and the tornado j are different.
  • Cloud convection occurs at any time, so tornadoes can also occur late at night, especially at higher temperatures and lower altitudes.
  • the dense clouds in these areas are difficult to be cold and rainy during the day, so the high temperature of the dense clouds can accumulate in the middle of the night. Since the clouds in the upper part of the cloud are not illuminated by the sun, they will cool down and descend to the clouds in the lower part of the cloud, and then combine into a single layer of extremely dense thermal clouds, making the single layer of dense clouds closer to the ground and thus more heat.
  • cloud convection plus "cloud The effect of convection inside the layer, which will further warm the high temperature cloud layer, which is easy to produce a tornado.
  • the atmospheric pressure at the eye of the typhoon is very low, which not only produces the strongest wind, but the low atmospheric pressure can also make the tide rise.
  • the huge waves generated by typhoons can overturn ships, endanger traffic safety and damage coastal facilities.
  • the rainstorms generated by it can also cause floods, mountain torrents and mudslides, etc., which can damage crops, destroy houses and endanger life, and give people to a wide range of areas.
  • the economy and property bring huge losses.
  • the typhoon has a larger destruction area than the tornado, but the strong wind it produces is not concentrated and violently rotated in a small area like the tornado.
  • the reason for the low air pressure at the wind eye is the same as the basic reason for the extremely low air pressure at the lower end of the tornado cloud column.
  • the tornado is much smaller than the typhoon, its cloud layer is denser and the temperature is higher (the clouds on the land are warmer and denser), and its rotating wind speed is bound to be more intense, and the cloud column is small and concentrated, and its destructive power. It is extremely strong.
  • the present invention considers that typhoons and tornadoes can be considered the same family, because the rotating storms generated by nature are almost the same model. Since the process of forming a huge typhoon has the same features as a small tornado, both of which are generated by the cloud heat in the center of the cloud to the limit, so this chapter no longer writes about the process of hot clouds.
  • the main purpose and technology of the present invention is to prevent the formation of typhoons or hurricanes, tornadoes, severe floods, and severe urban air pollution, but methods for weakening typhoons or hurricanes that have been formed have also been developed. Therefore, this chapter is not only detailed. Write the process of cloud assembly and formation of typhoons or hurricanes, and write the process of its operation.
  • the extremely large typhoon clouds in the active low atmospheric pressure zone have been rotating slowly.
  • the cloud at its center must be higher temperature, so it can produce a faster “internal convection in the cloud”, which will make the cloud speed in the center position. Faster than the non-central position.
  • the cloud in the most central position reaches the limit, it will rush upwards, and the hot cloud will immediately drive the high-pressure hot air under the cloud to be strongly sucked by the extremely low-pressure air on the cloud at a faster rotation speed.
  • the speed of being strongly sucked up will continue to increase, which will generate centrifugal force, and the centrifugal force will force a huge circular passage (eye) in the interior of the cloud.
  • the hottest period of the sea on the tropical ocean is the period of exposure to direct sunlight for about thirty days.
  • this two-way return is equivalent to a longer time for the sun to stay near the return line (more than a long time i3 ⁇ 4 one way through the equator).
  • the day and night are short and the sea water is a constant temperature factor, the ocean between the tenth and twenty-five degrees north latitude of the adjacent regression line is the highest during the mid-summer to mid-autumn period, and the typhoon or hurricane formed during this period is the strongest.
  • the equator is the closest to the Sun, there is no such two-way factor to the anti-regression line, and the equatorial region has a unique strong hot airflow rise factor, so the equatorial region is not suitable for breeding a huge typhoon or hurricane cloud.
  • the seawater communicates with the colder waters of the Arctic Ocean, so the temperature of the seawater and the air above it is not high.
  • the North Atlantic is also close to the two sides of the continent and is at the same latitude.
  • the sea and the land are too close to form a large temperature difference at close range, which will make the air and cloud flow flow higher, so the North Atlantic is often high and windy.
  • the wind speed High is difficult to breed the wind and cloud.
  • the large temperature difference will cause strong winds and hurricanes on both sides (non-hurricane). In fact, strong winds of more than 100 kilometers per hour often occur on both sides of the North Atlantic.
  • the Mid-Atlantic and Pacific Oceans are relatively wide, and the two are not at the same latitude as the high-temperature continents, and thus do not form large temperature differences in close proximity. In fact, the air currents on these two oceans are calmer than the North Atlantic. There are more archipelago in the Pacific Northwest, which makes it easy to breed huge typhoon clouds.
  • Fast moving clouds are harder to breed strong typhoons.
  • the temperature difference between the two is larger, so the higher temperature air in the mainland will attract the ocean faster.
  • Low-temperature clouds such fast-moving non-circular clouds, can only bring a lot of rain to the land or only form a "tropical low pressure" and rarely form a strong typhoon.
  • the constant temperature seawater has been sun-heated, which is close to the temperature difference between the continents. Therefore, the clouds on the ocean will not be attracted to the mainland quickly.
  • the temperature difference between day and night is not constant in the mainland, but not in the ocean.
  • the tropical maritime zone which is not so close to the mainland, has a relatively quiet airflow. Therefore, it is easy to breed into a very large, thick, dense and high temperature typhoon cloud layer in the above-mentioned marine area.
  • This cloud layer can be continuously and smoothly produced and stored underneath. Huge amount of hot air.
  • the “convection inside the clouds” will be stronger, so it will be more round, and the central position of the circular clouds must be hotter, so a typhoon with a central eye will be formed.
  • the extremely large clouds formed on the ocean were mostly round.
  • the constant temperature tropical ocean can evaporate a large number of clouds during the day and night to form a very large cloud.
  • the high temperature of the sea and the night will also keep the temperature of the cloud itself and the air temperature under it constant and high temperature for a long time.
  • the temperature of the sea in the tropical Pacific and the Mid-Atlantic has reached about 27 degrees Celsius or above.
  • the temperature of the sea can be as deep as 60 meters and is constant temperature, so it can be stable during the day and night.
  • the water that generates high temperature rises into a cloud.
  • the clouds above the ocean are very close to the sea (low altitude), which is equal to the relatively high temperature, high pressure and high density of the clouds and the huge amount of air beneath them. Because the clouds at low altitudes and high temperature clouds transfer heat to high-altitude cold clouds at a relatively stable and average speed, it is not easy to trigger rain, so the marine environment will have a longer time for the clouds to accumulate larger and thicker. The amplitude can reach thousands of kilometers and its thickness can reach 20 kilometers or more. Of course, this huge cloud layer will also compress itself to a denser and higher temperature, which will reduce the atmospheric pressure to more. In fact, the pressure of a strong typhoon is extremely low.
  • the typhoon [low pressure ring] that has been formed is attracted by the forward and downward average temperature of the nearest distance or the lower atmospheric pressure, and moves in an indefinite direction step by step. Therefore, the typhoon is uncertain.
  • the entire low pressure circle will be attracted and moved by the mainland, while the platform in the low pressure circle is only passively following the whole. The huge low pressure circle moves. The above explanation explains why the typhoon with very low atmospheric pressure will move laterally without staying in the extremely low pressure gestation area.
  • the general typhoon or hurricane will almost move to the west of the ocean or island country, northwest or north of the higher temperature continent and will not move to the east coast of the ocean.
  • the two (two huge low-pressure circles) are close, one of the typhoons may temporarily move east due to the effect of low pressure attracting each other.
  • the typhoon encounters a sudden cold current on the mainland At high atmospheric pressure, it will turn to a relatively constant temperature and thus a warmer sea area or move to a higher temperature island country in the adjacent east.
  • the typhoon cloud can provide high temperature and a large amount of hot water to supplement the heat and cloud volume of the typhoon at night.
  • the airflow rises through the wind eye to maintain the circular shape of the wind eye, so the typhoon that continues to rain can survive on the ocean for a long time.
  • the rotating force generated by the hot air being sucked by the wind eye will force the cloud around the wind eye to rotate rapidly.
  • the rotating force can continue to draw a large cloud of 100 kilometers or thousands of kilometers into a rotating circular cloud circle (hereinafter referred to as the storm circle).
  • the storm circle Because the clouds in the center of the storm circle are denser and hotter, coupled with the extremely low pressure of the wind K and the centrifugal force generated by the high-speed rotation, etc., the cohesion and suction of the cloud are stronger, so the cloud of the storm circle is not It will spread out and will suck in a lot of clouds. Therefore, the cloud in the center of the storm circle can often maintain a strong state. In the modern era where the earth is warming and the sea temperature is high and the amount of clouds is high, the clouds at the center of the storm circle will be thicker, stronger and hotter, and the typhoon will be stronger or easier to enhance.
  • the wind eye Since the hot air under the typhoon clouds is concentrated on the clouds by the extremely low pressure of the high-altitude through the wind, the wind eye is equal to a channel or neck that drains the hot air under the clouds.
  • the endless suction at high altitude is extremely powerful, and the airflow that is strongly sucked must be faster and more concentrated when it passes through the neck, and the airflow that is rapidly sucked up must be quickly filled, so the wind eye passes through There will be a continuous and strong wind.
  • the above explanation shows that the vast extremely low-pressure sky is the source of the huge amount of hot air accumulated under the typhoon clouds.
  • the hot air flow under the typhoon cloud is another proof that the eye is sucked up as follows: When the j eye that is still in the east of a certain area has not reached a certain area, the strong wind of a certain area is blown to the east. Once the wind has crossed a certain area and immediately becomes the West in a certain area, the strong wind in a certain area will immediately turn to the west, which proves that the wind is sucked through the wind.
  • the intensity rating of the typhoon is mainly determined by the distance between the wind eye and a certain area.
  • the air When the air is sucked up at a high speed, it will rotate at a high speed, which will produce centripetal force, and the centripetal force will make the wind eye smaller and extremely round.
  • the diameter of the eye can be as wide as 40 kilometers and height can reach 20 kilometers.
  • the wind eye is thinned by the "central force"
  • the airflow that is sucked up will have to pass faster because the brick neck is thinner.
  • the flow rate must be increased to keep the original.
  • the principle of large traffic is somewhat the same.
  • Tropical low pressure does not have a circular storm ring and wind eye that rotates at high speed. Although the wind generated by it is not sucked up quickly and intensively through obvious and small wind eyes like a typhoon, but because various storms are a horizontal The low atmospheric pressure of the movement will also make it strong winds.
  • the strength or weakness of a typhoon depends on the temperature or speed of the rising hot air flow or the speed. Due to the natural rainfall of the typhoon, it is not easy to reduce the temperature of the massive constant temperature seawater and the upper hot water under the typhoon cloud. Therefore, it is not easy to reduce the temperature, density and cloud volume of the typhoon cloud layer (but the artificially increased rainfall) The amount is easier], so part of it runs at sea The typhoon can maintain enough energy until landing, but some typhoons will weaken or disappear during the operation. In the modern era where the earth has warmed, most typhoons have enough energy to land.
  • the typhoon Once the typhoon has landed, it will have a large temperature difference between day and night, less cloud cover and a large change in the terrestrial environment, so it will suddenly weaken or become a tropical low pressure, but the tropical low pressure will also bring a lot of rain to the land.
  • the rapid rotation of the typhoon does not depend on the power of the low-pressure ring itself, which has been slowly rotated. If it is, the wind eye will not be extremely round, and only the airflow that continues to rotate rapidly can maintain the extremely round shape of the eye through the eye.
  • the above theory proves that the rapidly rotating typhoon is rotated by the hot airflow rising rapidly from the wind eye.
  • the typhoon After the typhoon is formed, it needs to maintain and depend on its existing rotation speed for a long time to operate stably at sea, so the typhoon needs to maintain its naturally formed wind K width or circle.
  • High-density clouds provide more traction or power, and the material on which traction depends is only a non-solid cloud. Therefore, the wind wall and the clouds around it must have sufficient density to keep and keep the eye circular. .
  • the energy of the typhoon is insufficient, the speed of the rotating updraft will be weakened, so that the "centrifugal force" or "central force” will be lost, that is, the wind eye will be lost. Therefore, the typhoon will weaken and become "tropical low pressure. j, this is a certain The reason why these typhoons will weaken or disappear on their own.
  • Some typhoons or other types of storms may reinforce after a slight weakening, and the conditions for re-enhancement are that they must encounter an environment conducive to their enhancement during the operation, such as passing a hot and cloudy sea surface for a long time on the way, or a typhoon. Stay in one of the hottest areas and then reinforce where it accumulates energy, such as the Gulf of Mexico with high-temperature seawater in North America or the South China Sea.
  • the clouds that can form the above-mentioned natural disasters are all very hot and extremely dense. Artificial rain can first turn clouds into raindrops, due to raindrops Falling from a cold cloud at high altitude, the thicker or higher the clouds, the colder the raindrops. The cold raindrops will absorb the clouds in the middle and low altitudes into larger raindrops on the way down. Large, cold raindrops cool the hot cloud of the rain zone (the center or the hottest point of the cloud).
  • the rain will cause the hot ground to generate humid hot air, and the hot air will cause the dense clouds to condense and cause rain.
  • the rapid rushing of hot and humid air will cause lightning, and the thunder and shaking of the clouds will also cause heavy rain in the rain-promoting area.
  • the object of the present invention is to provide a method for preventing the formation of tornadoes, typhoons, heavy thunderstorms, strong wind shears, and severe urban air pollution. This method is a simple artificial rain method.
  • the causes and formation processes of the above-mentioned natural disasters, the characteristics of the clouds and their aggregation rules, the formation of active low atmospheric pressure and the processes of their formation, the process of cloud densification and self-compression of the clouds, the cloud center or the most The method of confirming the thermal position, the characteristics of the cloud layer that may form a tornado or typhoon, the geographical location and environment, the characteristics of the eye and its function, and the process of the typhoon operating at sea. Therefore, in order to prevent the above-mentioned natural disasters from being formed, in addition to the measurement by satellite and instrument, artificial analysis is also needed.
  • Meteorologists can measure the atmospheric pressure of a certain area, the rise or fall of the temperature and humidity of the air under the ground and clouds, the amplitude, thickness, density, temperature and flow direction of the clouds. The location where the accumulation stays, the thickest and densest position of the clouds, whether there is strong convection in the clouds, etc., are recorded.
  • the speed of the cloud assembly process is fast or slow, and the temperature of the cloud layer is high or low, etc. depending on the season, geographical environment, temperature, time period, high or low atmospheric pressure, and the amount of cloud is more or less, so it is difficult to establish consistency. data.
  • the definition of the central location or the hottest location of the cloud does not need to be large. According to the various theories above, the present invention defines the diameter of the central portion of the cloud layer which is large and mostly circular) to be twenty to forty kilometers, preferably twenty-five kilometers.
  • the diameter of the hottest position of the long-form land tornado or storm clouds is set to ten to thirty kilometers, preferably fifteen kilometers, so that only a short artificial rain can be blocked at the central or hottest position. The formation of the aforementioned natural disasters.
  • the main method to prevent the above-mentioned natural disasters is to gradually develop or nurture a cloud layer that will cause the above-mentioned natural disasters, including "internal convection in the clouds" to reach a considerable density, thickness and temperature, or the cloud layer will attract another adjacent one.
  • the ffi artificial rain method reduces the cloud volume of the cloud layer, reduces the temperature and density of the cloud layer, and the like, which is easy and safe.
  • the above technical solution can achieve the above objectives.
  • the method of the technical solution includes the following steps:
  • the present invention has studied the geographical location, the cause and the formation process of the various natural disasters described above, and the like.
  • experienced meteorologists fully understand the theory, interpretation, methods, diagrams, etc. of the present invention, they can use existing equipment and techniques for on-site measurements to know the actual situation of a cloud layer and analyze the development of the cloud layer. Speed, so you know if the cloud will cause the above-mentioned natural disasters, and can determine if it needs to be rained or when it needs to be rained.
  • a cloud layer will conditionally form the above-mentioned natural disasters.
  • a large dense cloud layer that is low from the ground or the sea surface is prone to the above-mentioned natural disasters.
  • Gradually developing in the cloud including convection in the clouds and convection inside the clouds) to a larger, denser, thicker and hotter, and will generate the above-mentioned natural disasters, that is, the cloud at the center of the cloud and the air temperature and humidity under it Before rising quickly and rushing on itself, the rainwater is applied to the upper or top of the cloud layer in the entire range of the rain belt 3 for artificial rain.
  • the cloud at the top will drop or depress after rain and cooling, which will further thicken the cloud layer and continue to rain.
  • the typhoon clouds are mostly bred over the small islands of the tropical sea, so a rain-proof base can be set up on the island.
  • FIG. 1 is a schematic illustration of an approximately circular typhoon cloud layer 1 in accordance with a first embodiment of the present invention.
  • 2 and 3 are enlarged schematic views of the center position 11 and the non-center position 12 of Fig. 1, respectively.
  • Figure 4 is a schematic illustration of an elongated tornado or storm cloud layer 2 in accordance with a second embodiment of the present invention having two hottest locations 21.
  • Figure 5 is an enlarged schematic view of the hottest position 21 of Figure 4.
  • the center position 11, the non-central position 12, and the hottest position 21 shown in Figures 2, 3, and 5 are all rain-recovery areas, and there are different opposites in the rain-recovery area. Rainbands of different sizes and lengths 3.
  • the orientation, length or size of the rain belt 3 is set according to theory. The length or size required for the actual situation may be increased or decreased depending on the size of the cloud layer.
  • the ⁇ mouth rain belt 3 is close to the airport or aircraft channel, and the direction or position of the rain belt 3 can be changed to be at least five kilometers away from the airport or channel.
  • the reason for the typhoon cloud layer - the rain belt 3 needs north-south direction is that the large ocean currents or clouds that are generally far from the mainland are attracted by the hotter air in the west. Since the speed of advancement to the West is also relatively fast, the cloud of the rain belt 3 facing the north and the south will move or spread to the west in a large area after being cold, causing large-scale clouds to be cooled into rain. Of course, the cold clouds in the rain belt will also spread to the four sides.
  • the reason why the rain belt 3 is placed on both sides of the center point of the center position 11 is based on the above "the principle of internal convection of the cloud layer". Because the positive center point at the center position 11 is the hottest, the cloud that is cooled by the rain will be more quickly attracted by the heat at the center point, making the hot cloud at the center point colder and colder.
  • the length and size of the rain belt 3 can be determined according to the amplitude of the cloud layer. For example, two rain belts 25 kilometers long and 1.2 kilometers wide are provided at the center position 11 of the typhoon cloud layer 1 having a diameter of about 700 kilometers. If the diameter of the cloud layer is about one thousand kilometers, the length of the rain belt 3 can be increased to 30 kilometers and the width is 1.5 kilometers. If the clouds are larger, a rainband 3 of about 8 km and a width of about 0.5 km may be placed in each of the two smaller, non-central locations 12 about ten kilometers east of the boundary of the central location 11. In the rain belt 3, the rainwater agent is easily dropped. The amount of rain-fed agent and the length of time invested should be determined according to the actual situation.
  • the onshore tornado or storm cloud layer 2 can have multiple hottest locations 21 .
  • the clouds in each of the hottest locations 21 will each produce "internal convection in the clouds" and become denser and hotter until the temperature rises to the limit, resulting in a tornado or a thunderstorm.
  • the clouds that produce tornadoes will be lower than the ground.]
  • a huge cloud layer is likely to produce multiple tornadoes.
  • the hottest position 21 of 2 is a simple artificial rain, which cools the cloud 2 and is incapable of sucking another cloud. Pre-raining can also cool the air in the clouds, under the clouds and on the ground in advance, and cool the ground and cool the clouds. Two rain belts of length 15 km and width of 0.88 can be set in the hottest position 21 in the cloud, and then the rain can be easily dropped on it.
  • the opposite direction of the rain belt 3 is set according to the flow direction of the cloud layer. For example, if the cloud layer flows southward or northward, the rain belt 3 needs something to face, otherwise To be north-south or other opposite.
  • Rain-fighting methods can be carried out by ffi aircraft or sprayed with rain-fighting agents, or rockets can be used to fire rain bombs to the clouds or to be irradiated with lasers.
  • the purpose of producing a rainband at the central location 11, the non-central location 12, or the hottest location 21 of the cloud is to create an artificial 3 ⁇ 4 gas passage in the cloud to release a large amount of hot air under the cloud and reduce its temperature, and Will reduce cloud volume, cloud density and temperature, and more.
  • This behavior can eliminate the natural conditions of typhoon, tornado, thunderstorm or strong cloud convection, etc., and will also cause the cooled cloud to flow to the adjacent high temperature zone or arid zone.
  • the present invention primarily prevents the formation of typhoons or hurricanes. If there is no ffl above the easy artificial rain control method, you can use the following method to weaken the typhoon or hurricane. The true cause of the typhoon and the entire process of its operation have been studied in the present invention, so it is theoretically possible to weaken or destroy the formed typhoon, divert the typhoon or prevent its landing. However, this action has to pay a large price. Therefore, it is necessary to first determine that a typhoon will invade a particularly important area, such as an important city or a certain area, where important sports activities, political activities or military exercises are being carried out.
  • Fig. 6 is a schematic view showing a third embodiment of the present invention, a typhoon
  • Fig. 7 is a partially enlarged view of Fig. 6.
  • the typhoon 4 that has been formed the cloud layer has been rapidly rotated and is circular, and forms the wind eye 41.
  • the wind-eye wall is not a suitable and effective location for a large amount of silver iodide to be cast for a long time. It is said that after the large amount of silver iodide was dropped, the power of the hurricane did drop slightly. However, because the hurricane suddenly turned to an unprevented area and created more damage, the method of throwing silver iodide and any action to weaken the hurricane was stopped forever.
  • Some typhoons will naturally weaken.
  • the way to weaken or destroy the typhoon that has been formed is to use space satellites to track and monitor the whereabouts of the typhoon, and to analyze whether the environment on the way to where it goes will naturally weaken it. If the typhoon does not naturally weaken and moves towards an important area, this method can be used to weaken or eliminate the typhoon.
  • the size of the naturally formed eye 41 is important to the typhoon.
  • a large amount of high-pressure hot air is rapidly rotated from the wind eye.
  • the rotation effect, centrifugal force or centripetal force will oppress the wind wall and the cloud next to it to maintain the roundness of the eye.
  • This powerful and natural pressure is a typhoon. It is necessary, because if there is no high-speed rotation of the rising airflow, there is no strong pressure-recovery force to maintain the natural shape of the eye 41 and the shape of the pole.
  • the naturally formed thrust and traction are necessary and important for typhoon. If the density, temperature and measurement of the cloud are quickly or suddenly reduced by the artificial rain method, the external vertebra pressure It is easy to push the cloud that has been reduced to the outside and the wind to expand, and the rapid expansion or deformation of the eye is extremely detrimental to the survival of the typhoon. For example, when the wind of a typhoon suddenly hits the highest ⁇ of Taiwan, the intensity of the typhoon will be reduced.
  • the thickness and density of the typhoon cloud layer is high, and the diameter of the eye 41 is also large.
  • the typhoon itself is raining. If it is necessary to increase the amount of rain and reduce the temperature at sea, it is necessary to use the most suitable raining position. And use a long time to cast a powerful raining agent.
  • the method of raining is to try to surround the wind eye 41 in the whole space within 400 meters between the 600-1000 meters outside the wind eye wall during the lower temperature period of the typhoon cloud, as shown in Figure 6 and Figure 7. Continuously and intensively deposit a large amount of rain-repellent agent to enhance its rainfall until the cloud on the side of the wind wall is pushed outward by the above-mentioned pushing pressure, so that the total diameter of the eye is enlarged ( ⁇ 5 ⁇ 4) Up to 2 km, preferably 2 km.
  • the reason for designating the rain at a position of 400 meters between 600 and 1000 meters away from the edge of the eye wall is that it must be maintained while the cloud on the side of the wind wall is pushed and the wind is gradually expanding. Continue to rain at a distance of 600 meters from the eye wall until the total diameter of the eye is enlarged by 2 kilometers. If necessary, it can be expanded by more than 2 kilometers.
  • the reason for the expansion of 2 kilometers is: For example, the diameter of the eye 41 is 40 kilometers, if it is artificially enlarged from the wind eye wall Pressing 1 km, that is, 1 km by bilateral, this is equivalent to expanding the total diameter of the eye to 42 km.
  • a 2 km increase in the surrounding area does not mean that it only increases by 1/20 because the space around 2 km is larger.
  • the rain-removing method and the rain-recovering position include the following important functions.
  • the denser and colder raindrops will cause the extremely dense cloud layer at this location to rapidly cool down and shrink, which can reduce the density and cloudiness of the cloud layer at that location, so the cloud layer is quite Part of the hot air will rise (release) in this position one step at a time, which will prevent the hot air from being concentrated in the wind eye, which is equivalent to reducing the amount of air rising through the wind eye and reducing the air flow by the wind eye.
  • Speed thus destroying the natural structure of the eye.
  • the rain location set by a certain country mentioned above does not have this important role.
  • the cloud is a soft substance and a large amount, it is not some solid substance that can be destroyed immediately.
  • the typhoon is also a factor of slow increase and slow decrease, so it takes a long rain time to get the eye 4 _ Expand (for example, one to two hours or more).
  • the above actions are effective, safe and easy to operate. It is also possible to remove clouds at these locations more quickly with a powerful large laser.
  • the widened width of the eye is not required to be extremely accurate, and its width can be measured using modern and advanced laser measurement techniques.
  • the width of the eye 41 or the length of the rain time can be increased or decreased depending on the actual situation of the typhoon.
  • This rain location and method will more directly, centrally and thoroughly reduce the temperature and density of the cloud next to the wind wall, reduce the amount of cloud next to the wind wall and the amount of air rising through the wind, and reduce the speed of the airflow. Therefore, the eye can be artificially enlarged.
  • the wind eye loses its natural centrifugal force, it will deform or disappear, which will make the typhoon a windless storm, which is equivalent to weakening or destroying the formed typhoon.
  • the above-mentioned rain-recovering method and the rain-recovering position are sufficient to weaken the general strong typhoon.
  • the super typhoon's clouds are extremely large and extremely thick, and the hot air under them is also more and higher. (In fact, some super-station j will occasionally appear in the double-eye to speed up the larger and higher temperatures under the clouds. air).
  • To weaken the super typhoon set a rain belt (deflation channel) with a length of 10 to 15 kilometers and a width of about 500 meters about 5 kilometers east of the wind eye wall.
  • Figure 7 On top of it, continuous and densely injecting an enhanced raining agent to allow a large amount of hot air to escape. It is also possible to use a strong laser to eliminate the cloud of the "deflation channel" so that some of the hot air under and under the cloud rises first through the "deflation channel”.
  • a typhoon is just a cloud or gas that moves forward. It is only attracted by a close-up upper and lower average temperature or a lower atmospheric pressure, and moves step by step in a non-directional manner. It is not like a car. Feel free to turn 90 degrees, pause or turn back. The typhoon is rarely turned back because the air in the typhoon has been cooled slightly by the typhoon's rain. However, very few typhoons will turn or turn after a short stay because of the sea area in which they were located (eg Mexico) The Bay and the South China Sea are at a higher temperature, while the continent in front of it is cooler or higher than the sea in which it is located. Another reason for the typhoon corner or turning back is when it is attracted by another strong low-voltage ring at a close distance, such as a double station.
  • the typhoon will turn and cannot land. In fact, when some of the typhoons in front of the mainland suddenly appear cold air, the typhoon can not land.
  • the hourly speed is calculated as 12 kilometers.
  • the pre-raining time is about ten hours before the low pressure circle where the typhoon is located. Since the moving speed of the typhoon will change at any time, the time interval depends on the moving speed of the typhoon at that time.
  • the dense cloud layer will form a "strong greenhouse effect” and will form an active low atmospheric pressure, which is likely to produce strong cloud convection and strong internal convection.
  • High temperatures and low atmospheric pressure will absorb clouds and pollute the air from the periphery, making the clouds thicker and denser, thus forming a raindrop and a highly concentrated localized thunderstorm. Miyun will also block the polluted air from rising normally.
  • the area south of the tropic line will be warmer from May to June and will accumulate a large number of clouds, thus causing heavy thunderstorms.
  • Most of the rainstorm areas from July to September will be concentrated in the tropics and higher latitudes north of the area. It is easy to accumulate clouds in the mountains and high-heat cities, and it is easy to become the center or the hottest position of the clouds. The clouds will be thicker, denser and hotter, so it is easy to produce thunderstorms.
  • the hot location is used for artificial rain, so that the thick clouds are divided into successive, sub-regional and sub-time periods of rain, avoiding the accumulation of huge clouds to a denser and self-formed heavy thunderstorm, and falling at the same time.
  • the so-called "rainy weather” is caused by the fact that in addition to rain, the heat cloud can be dispersed or disappeared, and the air can be cooled.
  • the atmospheric pressure can also be raised and the polluted air can be eliminated. Since the temperature of the clouds in the evening will fall and it is easy to be cold and rain, artificial rain can also be selected at night, which can avoid affecting people's normal life.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请公开了一种阻止严重天气灾难的方法,包含以下步骤:(一)利用现有气象技术发现积聚有厚密云层的区域;(二)在所述云层中设定出最密、最厚或者最高温的催雨位置;(三)在所述催雨位置设定一条或多条长形的催雨带,并进行人工降雨,使被催雨的云降温而下雨,降低云层的温度、密度、量度、释放云层下的热空气,被降了温的云流向其周边的热云并使其相继降温而下雨,从而使形成所述天灾的自然条件消失。

Description

技术领域
本发明涉及防止自然灾难领域, 尤其涉及阻 严重天气灾难的方法。
背景技术
在近年, 地球经常出现百年一遇或甚至史无前例的严重天气灾难, 例如特强的台风、 龙 卷风、 水灾、 雷电、 冰雹、 高温、 干旱、 低温、 雪灾、 浓雾和严重的城市空气污染等等, 而 上述天灾将会因地球加速暖化而越来越严重。 例如, 二零一三年亚洲的台风共计三十个, 竟 然较一二年增加了六个, 而超强台风 〈海燕〉 竟是一个史无前例的十一月份超强台风。
有些理论认为龙卷风和台风是由月亮或地球的引力而产生的,但一年增加了六个台风就 可证明这理论不正确。 亦有些理论误认为沙漠上的尘卷与龙卷风同类(下文会详述尘卷的成 因)。 由于人Π未发现上述天灾的形成与下文所述的 「自然界的强感应能力」 有关, 所以就 无法解释它们的成因。
现代的气象人员己能对上述部份天灾进行较为准确的预报,甚至能有效地预测某大范围 地区内产生龙卷风的 率、 台风的短距离移动方向和强度等等, 然后通知灾区的居民预先作 好防备措施或及早疏散, 但却无法预先阻止上述的天灾形成。人们急切地盼望能够改变目前 被动预防的局面, 而找到一种能预先主动阻止上述天灾形成的方法。
下述的两件事能证明现时还未有理论能解释云层集结成极密的过程和一些气象专家还 未知极端天气与云量增多和与地理位置有关。
(一)在多年前的春夏之间, 当本发明者在 〈海南岛〉 旅游时, 导游讲解途经的一座较 独立、较斜、型似金字塔及较高大的山的顶上经常单独地集结一幅云层〔像载着一顶白帽子〕 的原因, 以利用这奇怪的现象使游客惊奇。 在地球上的某些地区, 有上述情况的山会被当地 人称为神山。 导游引用了某些专家的解释, 说是因为该山含有大量可吸引云的矿物, 这解释 当然不合逻辑。
(二)在二零零七年, 香港先后有两位高级的气象官员公开说香港将续渐没有冬天, 但 在零八年至今, 香港的每一个冬季都经常出现极低温的天气, 这证明上述官员或现有的气象 理论未理解地球暧化使云量增多之后亦会产生低温的事实,并认为地球暖化只会使地球的温 度升高, 亦未有考虑到特殊地理位置、太阳的位置和特别是云量增加等等都与天气有关的事 实。
亚洲的冬季出现强烈季候风 〔强寒流或沙尘暴〕 的原因是亚洲大陆的北或西北方某区先 有密云层遮挡了太阳而使地面寒冷,而这突发的地面冷空气必会被东或南方海洋较暖的空气 强力吸引而成强寒流或强季候风。 地球的云量增多必会使强寒流或沙尘暴增多。
由于地球暖化必会蒸发更多云,而云是会吸热、储热、较空气恒温和可自行移动的物质, 云层亦是形成活跃低大气压的物质,而低大气压会吸走其周边的云,使云集中在低大气压区, 这必会使少云或无云区形成强活跃高大气压, 所以, 地球的云量和热量增加必会使云层集中 成更大幅、 更密, 因而形成更低的大气压。
例如, 在二零一四年的一月份, 距离北极圈近千公里的美国某区出现零下五十度的冰雪 灾, 较其北方并较接近北极圈的邻国当时的气温低二十多度, 这情况可证实该区的偶发性低 温是由可移动的厚密云层遮挡了太阳所形成。在同一期间, 南半球某国却出现五十度的突发 性高温, 这亦是由地球暖化加上其处于无云层的强活跃高大气压区所致。 在冬季, 冷云下降 亦会形成浓雾。
在近代, 空气污染和浓雾亦是全球性的大难题, 特别是在人为的热量己较数十年前大增 的中国。 本发明者对严重空气污染的成因亦有深入研究, 认为这与地球暖化加上云量、 人为 的热量(热污染)和废气大增有关, 例如, 大量燃烧石化然料所产生的大量热气上升会使大 气和云层升温, 而高温的云层必会较难受冷成雨而越积越密, 这会形成强活跃低大气压并吸 进污染空气。
密云层必会阻挡污染空气正常地上升, 这就会产生较浓的 PM2. 5和极低的能见度。事实 上, 在经常有严重空气污染的地区, 当气压较高因而无云层时, 其能见度会很高和空气是清 新的, 这证明严重空气污染与天气或大气压有关。
大城市或工业密度高的省份, 特别是海拔较低因而较高温的大城市或省份会较高温, 这 就会形成所谓的 「热岛效应」。 热岛效应不但能使热空气 (包括热废气) 停留在大城市或省 份而不扩散, 热空气还会吸进周边的废气。 「热岛效应」 亦会吸进大量云并停留在热岛, 而 长时间多云会使大气压 降, 这就必更会再从周边快速吸进云和污染空气。 大气压下降的确 实原因在下文详述。
发明内容
本发明为解决严重天气所带来的灾难而提出阻止严重天气灾难的方法, 该方法在催雨位 置设定最有效的长形催雨带, 并在天灾形成之前在催雨带进行人工降雨。 下雨会降低云层的 温度、 密度、 量度、 释放云层下的高温空气、 减低云层上与云层下的气压差和降低云层下及 地面空气的温度等。
本发明的理论如下:
较不恒温的陆地被烈日照射时会较恒温的海水更快热和更热,而陆地会吸热和会更强力 反射热上升, 因而, 在暖的季节, 陆上空气会较海上空气高温。 由亍该高山处于低海拔的热 带海岛, 所以热的湿气较多。 亦由于越高和斜度越大的山, 其有树和草的潮湿地表面积就越 大于平地的地表面积,所以会有越大量的热和潮湿空气集中从该山直线上升而先在该山顶成 为小云团。
由于该小云团距离山顶的地表极近, 而地表是会反射阳光的热上升的, 所以处于该山顶 的小云团会吸收从山顶上升的热和亦会吸收阳光的热,使该小云团的温度高于其附近同一高 度的非高山上空的散云的温度, 因而, 该高温的小云团必会吸引其 ¾近的散云而成更大的云 团。 本发明认为, 热云或热空气吸引冷云或冷空气是自然的定律, 云亦是会吸热和储热的物 体, 并较空气恒温, 因而, 云团越大就越热和越恒温。
该热云团必不会流出较高温的山顶 〔除非有强风〕, 而处于云团内的云亦必不会从高温 的云团流出或散开 (冷的云才会散开), 因而, 该高温的云团必会停留在较高温的山顶, 并 必会继续吸入其附近较低温的云而积聚成更大幅、 更密和更厚的云层, 所以该山顶就经常有 一幅单独而极密的云层集结于其上, 直至其密度增大至能在该山顶降下局部性的大雨。
上述解释证明, 高 ώ顶、 山区、 高温的大城市或温度高于恒温海水的海岛等等的上空是 容易积聚云层的。 高山区较多下雨和雨量特大就是上述原因。 事实上, 在海水冷而陆地热的 季节, 当乘飞机飞近台湾岛、 任何小岛或高山时, 其上空亦多是经常集结有云层的, 而其四 周的海面却较少云层。 巨大的台风云层多先孕育在大海洋上有群岛的上空就是上述原因。
上述情况亦说明若人为使某地区的温度增加, 例如, ·ί氏海拔的繁†t大城市或省份会形成 「热岛效应」, 这容易集结更多云而形成特强的雷暴雨。 近年较多水浸城市的情况就是上述 原因。
本发明已研宄出极端天气和严重空气污染是与地理位置和地理环境有关的, 例如, 中国 福建省现时是中国大多省份中惟一没有空气污染问题的省份, 这原因还未有确实的理论解 释。 本发明的细徵解释如下: 由于军事和政治的原因, 接近台湾的福建省较迟被充份开发成 为能产生高热量的省份, 加上其近海的地理位置和有较大的绿化区, 所以其热量较小, 但其 周边的各省份的热量却很大。热空气吸引冷空气是自然定律, 福建省所产生的较小量污染空 气必会被周边较高温的各省份吸走, 因而没有空气污染的问题。 基亍上述的解释, 城市的严 重空气污染亦与 「热污染」 有关。
空气是最不恒温的。当快速集结的密云层遮挡了太阳或在没有太阳的早上或黄昏时就会 使地面空气快速降温, 而较恒温的地表温度则还会保持较高, 这种温差就会产生雾或 ·ί氏能见 度。
在冷季, 当一些较少废气排放的低海拔郊区, 甚至完全无污染的大海洋快速被密云层遮 挡而使空气快速降温时多会出现浓雾,这证明地球的雾越来越浓亦是由地球暖化所产生的更 多云有关。
本发明的技术方案如下- 一种阻止严重天气灾难的方法, 包含以下步骤:
(一) 利用现有气象技术发现积聚有厚密云层的区域;
(二) 在所述云层中设定出最密、 最厚或者最高温的催雨位置;
(≡) 在所述催雨位置设定一条或多条长形的催雨带, 并进行人工降雨, 使被催雨的云 降温而下雨, 降低云层的温度、 密度、 量度、 释放云层下的热空气, 被降了温的云流向其周 边的热云并使其相继降温而下雨, 而使形成所述天灾的自然条件消失。
上述催雨带位亍最能使整幅热云层快速降温的位置。
上述催雨位置位于所述云层的正中心或最热位置。
在上述云层的正中心的两侧设定催雨带。
上述严重天气灾难是台风, 所述云层中心点的直径为 20〜4(〕公里。
上述严重天气灾难是龙卷风或暴雨, 所述热云层中最高温处的直径为 10〜30公里。 进一歩的, 进行人工降雨的步骤包括:
在上述催雨带位置的云层中上部或顶部投下催雨剂进行人工催雨。
进一步的, 进行人工降雨的步骤包括- 在距离风眼墙旁边约 600〜1000m的云层上空, 以环绕风眼的方式喷下催雨剂, 直至风 眼被人为扩大 0. 5〜4公里为止。
本发明的有益效果; 实施本发明的阻止严重天气灾难的方法, 具有以下有益效果-
( 1 ) 利 ffi现有的气象技术发现积聚有大幅厚密云层的区域;
( 2) 利 ffi本发明的新理论确实云层积聚成极大幅、 极厚、 云层压缩成极密及极高温的 复杂过程;
( 3) 在所述云层中设定出最有效的催雨位置;
(4) 在所述催雨位置设定最有效的长形催雨带, 并在所述天灾形成之前在催雨带进行 人工降雨。 下雨会降 ·ί氏云层的温度、 密度、 量度、 释放云层下的高温空气、 减低云层上与云 层下的气压差和降低云层下及地面空气的温度等。被降了温的云会流向其周边的热云并使其 相继降温而下雨, 使催雨区自行扩大。 可为人们提供一种预先防止所述天灾形成的方法, 并 i可以避免人身和财产遭受其害。
附图说明
图 i为本发明实施例一近似圆形台风云层示意图; 图 2为图 1的中心位置放大示意图;
图 3为图 1的非中心位置放大示意图;
图 4为本发明实施例二长形龙卷风或者暴雨云层示意图;
图 5为图 4的最热位置放大示意图;
图 6为本发明实施例王已形成圆形台风及) 眼示意图;
图 7为图 6的局部放大图。
具体实施方式
为了更好的说明本发明, 现结合對图作进一步的说明。
本发明要解决的技术问题在于提供一种能阻止严重天气灾难的方法。 天灾包括龙卷风、 台风、 特强雷暴雨、 冰雹、 强风切变、 局部性高温、 干旱和严重空气污染等等。
本发明所采用的技术方案是: 构造一种能隠止严重天气灾难的方法, 包含以下步骤:
( 1 ) 利∞现有气象技术发现积聚有大幅厚密云层的区域;
( 2 ) 在所述云层中设定出最密、 最厚或者最高温的催雨位置;
( 3 ) 在所述催雨位置设定一条或多条长形的催雨带, 并进行人工降雨, 使被催雨的云 降温而下雨, 并降低云层的温度、 密度、 量度、 释放云层下的热空气。 而被降了温的云会被 其周边的热云吸引, 这会使周边的热云相继降温而下雨, 从而使形成所述天灾的自然条件消 失。
根据本发明所述的阻止严重天气灾难的方法,所述催雨带位于最能使整幅云层快速降温 的位置。
根据本发明所述的阻止严重天气灾难的方法,所述催雨位置位于所述云层的正中心点或 最热位置。
根据本发明所述的阻止严重天气灾难的方法, 在所述云层的正中心点的两侧设定催雨
'Π7。
根据本发明所述的阻 严重天气灾难的方法, 所述严重天气灾难是台风, 所述云层中心 点的直径设定为 20〜40公里。
根据本发明所述的阻止:严重天气灾难的方法, 所述严重天气灾难是龙卷风或暴雨, 所述 云层中最高温位置的直径设定为 〔)〜3()公里。
根据本发明所述的阻止严重天气灾难的方法, 进行人工降雨的步骤包括: 在所述催雨带 的云层中上部或顶部投下催雨剂进行人工催雨。
根据本发明所述的阻 严重天气灾难的方法, 进行人工降雨的步骤包括: 在距离风眼墙 旁边约 600〜i000m的云层上空, 以环绕风眼的方式持续喷下催雨剂, 直至风眼被人为扩大 0。 5〜4公里为止。
实施本发明的阻止严重天气灾难的方法, 具有以下有益效果:
( 1 ) 利 ffl现有的气象技术发现积聚有大幅厚密云层的区域;
( 2) 利 ffi本发明的新理论确实云层积聚成极大幅、 极厚、 云层压缩成极密及极高温的 复杂过程;
( 3) 在所述云层中设定出最有效的催雨位置;
〔4〕 在所述催雨位置设定最有效的长形催雨带, 并在所述天灾形成之前在催雨带进行 人工降雨。 下雨会降低云层的温度、 密度、 量度、 释放云层下的高温空气、 减低云层上与云 层下的气压差和降 ·ί氏云层下及地面空气的温度等等。被降了温的云会流向其周边的热云并使 其相继降温而下雨, 使催雨区自行扩大。 可为人们提供一种预先防止所述天灾形成的方法, 并且可以避免人身和财产遭受其害。
地球加速暖化的原因和其危害性
本发明认为, 地球暖化除了是由温室气体所引致之外, 地球的云量增多、 干旱区及沙漠 区扩大等等亦会使地球加速暖化。 下文详释。
温室气体会使地球暖化, 这必会蒸发更多云。地球的温度增加亦必会使云层较难受冷成 雨, 因而会进一步吸进其周边的云并积聚成更大幅、 更厚、 更密、 更集中之后再而更高温, 这必会引发极端天气, 包括城市的空气会更污染。
热云吸引冷云是自然定律。 大幅而高温的云层必会吸走其周边的云, 这相对地使其周边 地区较少云。 云越多就会越集中和越高温, 这最终会使多云集中的一方出现特强雷暴雨而引 发水灾, 而少云的一方会高温和干旱, 这情况必会使下雨区不平均和下雨的次数减少, 这并 会使山体内部缺水。
山是一个高于平地的巨大天然 「短暂储水器」, 它能提供山泉而湿润山下的土地及能使 大量河水长流, 而大量河水长流必会减低河水污染的程度。 事实上, 在数十年前, 某些地区 约百米高的山脚下终年有山泉水不断地流 m的情景现已不复见。不少湖泊亦 m现干涵及沙化 或河水断流的现象, 这就能证明近代下雨区不平均和全年下雨的次数己减少了。
某区长时间积聚密云层亦会使某区的大气压降低,低大气压并会 周边吸进云和污染空 气, 这会使能见度降低。 事实上, 在近年, 上述情况已使地球的某些地区的能见度大大降低
(特别是人为热量大的低海拔地区和大城市), 这就会引致 PM2. 5的浓度增加或水浸城市。 只要用本发明的简单人工催雨方法就能解决上述的问题。
人类把原本是藏在地底以亿年计的石油、煤灰和天然气等等, 在短短的二百多年间快速 消耗而产生大量温室气体、 废气和热气, 亦把藏在地底的金属和水泥原料搬到地面, 而较能 吸热、 储热和反射热的水泥及金属建设物增多都会使城市更高温。 现时, 气象专家们还未重 视大量热气上升 (热污染) 的伤害性。
现时, 官方还在用地球的四季平均温度计算地球暖化的进度, 这原因是他们或还未理解 地球暖化之后云量会增多, 而云增多必会在冬季产生更多风雪而极严寒, 而事实确是这样。 例如在近年, 冬季已出现破纪录的低温, 而夏季亦出现破纪录的高温。 由于用平均温度作计 算等于把极低温与极高温平衡, 所以会认为地球暖化的进度和危害性是颇轻微的。
本发明认为, 计算地球暖化程度除了以全年及全球的平均温度作准之外, 主要应以最高 和最低温作准, 因为极高温和极低温己对地球的生物造成极大的伤害, 特别是由极高温、 下 雨区不平均和下雨的次数减少而形成的干旱。
由于地球暖化的基数己高, 当太阳照射己暖化了的地球表面时, 其温度和云量增加的速 度就越快, 这就等亍在一个巳暖的房间内再强行开着暖炉, 所以地球的温度必然更快上升, 这就是地球暖化的进度 (天气恶化的进度) 较专家们所预期更快的原因。
自然界的强感应能力
人们还未能研究出上述天灾的成因, 其中原因是他们未有把自然界的高感应能力、 高灵 敏度和 「微动力学」 等等考虑在内, 因而就必无法确实知道龙卷风、 台风和突然出现的局部 性强疾风等等的成因及其形成的过程。
自然界尽力去获取更好的物质或生存条件是必然的本能和天性。例如, 某些细小的动物 或昆虫能预知地震; 动物会在身体不适时进食某些食物以自治; 树木的枝叶懂得伸延到最容 易吸收阳光的位置; 被人称为有灵性的 〈榕树〉 的气根能在最适合位置自然地生长并形成树 干以承托或拉祉自身重量等等。
空气或云感应高低气压差和温差的能力大大高于人类,它 Π能感应远距离的轻微温差或 气压差, 因而会随时在最热的位置停留、 以不同的速度流动、 突然反方向流动或形成云层对 流等等 〔这就是不定向而短暂的微风或疾风的产生原因〕, 但人类却较难准确预测天气。 风或旋夙的成因和风是被吸引而流动的
风是由低压空气吸引高压空气或热空气吸引冷空气而产生的。 吹或吸在表面上像是相 同, 但在深层次的解释则不相同和重要, 例如, 当一般的密层突然下雨时会快速冷却其下的 空气, 冷空气会被其附近未被冷却的空气快速吸引而产生强阵风。
冬天的冷) 会集中而持续地从一条极极细小的门缝 〔砖颈〕 快速进入屋 ή , 这是因为冷 风是被屋另一方的气流吸引或被屋内的较暖空气吸入的结果。 如果冷风是吹 〔推〕 而不是被 吸, 它必已在门缝之外反弹和散开而不会持续地快速从门缝进入屋内。
自然界产生风的原因很多。一般的风主要可分为较持续的定向季候风及岸边风、 高大气 压区与低大气压区的气压差所生产的大范围风、 因局部温差所产生的不定^局部阵风或微 风、 在活跃低大气压区 ή部所产生的不稳定强或弱阵风、 雷暴雨所产生的强风、 强风切变、 强疾风或龙卷风和台风等等。
在活跃低大气压区内部能产生不稳定的风的原因是 ·ί氐大气压区内围的大气压低于其外 围的大气压, 而内围的云和空气亦是较高温的 (下文详释), 因而, 内围较低压及较高温的 空气或云会强力吸引外围的空气或云,这会在低大气压区内和其周边产生不定向及不稳定的 强风或微风。
自然界的动力是以圆的方式活动的。由于以旋转方式上升会较轻和以旋转方式横向移动 亦较容易或较灵活, 而自然界当然会懂得避重就轻和较灵活的, 所以由吸力所产生的高速上 升气流会旋转, 例如, 龙卷风和台风的风眼都存在吸力。 台风的暴风圈、 风眼、 龙卷风或旋 风都是圆形和以旋转的方式活动。 被强力抽油烟机所快速吸上的油烟会旋转。
一些突发性的快速横向移动气流 〔阵风) 亦会旋转。 事实上, 「旗」 或 「风向跎」 等经 常会突然转向, 这就是强阵风以旋转方式前进的结果。 ώ于旋转的气流必会更高速, 所以能 产生突然出现并能把大树吹倒的局部性强疾风。 由于现有的理论还未能确定这种风的成因, 所以还被传媒称为怪风。
环境和地势复杂的陆地的温差较大, 例如现代化大城市的中心区、 大型的铁货柜场、 大 型的室外停车场或千旱的沙地等等被烈日照射后会快速产生高温, 因而, 该些热地点的地面 空气会快速上升, 周边的较低温空气会即时快速被吸入以填补, 这就会产生突发性而短暂的 强阵风, 而这种横向的强阵 ) 多会高速旋转, 这就会变为强疾风或传媒所说的 「怪风」。 事 实上, 大型货柜场内是简常有货柜被怪风吹倒的。 当高温空气被低温空气快速填补而调和之 后, 阵风就会停止。
热空气上升是自然定律, 但热空气自然上升的同时其实亦是被吸上的。人们不能看见无 形的稀薄空气快速上升或橫向移动时旋转, 但人们能看见龙卷风、 沙漠上的旋转尘卷和一些 因极高温而较高速上丹的烟火或山火旋转 〔火龙卷〕, 而只有被高速吸上时才会旋转。
由于低海拔的高压、 高温及高密度重空气需要爬升才能到达高海拔的低压区, 所以在正 常的天气情况下, 低海拔的重空气只会慢慢上升。 例如, 风筝上升时要靠橫^的风力及空气 的^力, 而它能长时间几乎垂直地停留在空中是靠升力。人们是不容易感觉到一般的上升气 流的, 但龙卷 j 却会强力吸引地面的重空气上升。
由于沙是能快速吸热和反射热的物质, 所以当沙漠的地表被烈日照射时, 其温度会大大 高于地表之上的空气温度, 因而会出现大温差, 若在这情况下突然出现一阵稍强的阵风(例 如热空气快速上升所引致的强风)就容易使热空气快速旋转上升, 这就会产生横向移动的高 速旋转尘卷。 由于自然界的动力是慢加速的, 所以尘卷在开始旋转时会较慢, 但随后就会越 转越快。
由于高空的空气温度、 密度和气压度较低, 因而, 较空气重的尘卷不能升至太高, 所以 它只能在低空旋转。 上述的解释证明, 风除了 大气压差所产生之外, 亦可由上升的热气流 产生, 即是 高空与地面的气压差所产生。
云的特性和云量太多的不良后果
上述天灾多产生于温热季节。由于产生上述天灾的主要条件是必需先有大量热云在活跃 低大气压区内积聚, 再而经过云层对流和云层内部对流而增至极密和高温。 当确实知道云的 特性和其极复杂的集结过程之后就容易阻止上述天灾形成,所以本文必需非常洋尽地解说云 的特性和云的集结过程。
空气中含有水分, 特别是在下过雨、 晨早或初春的时段含水分较多。 在海面、 湖面、 湿 地和绿化区上空的空气含水分亦较多, 因而容易积聚成云。 空气 较高温及较高压的地面以 较高速上升至某一高度之后 〔空气越高温会^得越快和越高〕, 会因高空的温度和气压度较 ί氐而减速或停止上升。 在减速之后, 空气才容易互相聚集成较密, 而较密才能反射光, 因而 就变成能被看见的云。
云是可随意移动的物体, 它是地球上必有之物体, 并会因地球已暖化而蒸发越多。 较空 气恒温的云会吸收太阳和从地面上升的热、储热和几乎会像水的性质一样互相凝聚成团。 云 越多就会越高温, 而越高温就越会结成越密的团或层。地球的温度增加亦必使云层较难受冷 成雨, 因而会进一步积聚成极大幅、 极厚、 极密、 极集中和极高温, 这并容易产生强云层对 流而变成更大幅、 更厚、 更密、 更热和更集中, 因而必会产生上述的严重天灾。
在炎热的蓝天烈日时段, 处于低海拔因而较热的小云团会强力吸进其 ¾近的散云, 这会 在短时间内积聚成更密及更热的大云团, 凝聚成大团的云更能吸热和储热, 而云团越热和越 密就越容易增温和越恒温。含水分的云较空气更容易互相传送热量, 特别是向云团或云层上 部较冷的云上传热量。
太阳照射地球表面, 地表会吸热和反射热, 热空气便会按自然定律向上升和同时亦是被 吸上升的。 因此, 高空的空气或云的温度会被地面上升的温度影响而升或降。 这等于, 离地 面越近, 空气或云的温度就越高, 离地面越高, 空气或云的温度就越低。
在夏季的蓝天烈日之下, 当一团处于低空的密云被无阻的烈日直射时, 基于云层越热就 会越密、 热云团中心位置的云必会更高温因而就更快速上升的理论, 这会使该云团似柱状或 椰菜花状, 而其轮廓或边界亦会极明确。 明确的原因是热云团己强力把其周边的散云全部吸 进而紧密聚集。事实上,在美国的特大平原上,一些巨大的超级风暴云层的轮廓亦是明确的。 在冬季, 较冷的云团或云层会呈松散的片状。
由于海水较陆地恒温, 所以陆地较海水更快热或更快冷, 因此, 在夏季有太阳的日间, 陆上空气较海上空气高温, 陆上的云层亦会较热因而会较密, 并会较快增热及增密, 加上陆 地的温度和气流不稳定, 因而容易激发强雷暴雨或龙卷风。 在夜间, 陆上的小云团会较快速 降温因而会散开, 而大的云团或云层则较慢。 由于海洋上的空气温度较恒温和气流较稳定, 其上的云层在日夜都不容易降温而散开, 所以恒温的海洋较能持续长时间集结云层, 例如能 集结成极巨大的台风云层。
在过往的年代, 地球暧化程度不大因而云量较少。 当面积不大的移动小云团遮挡了猛烈 的阳光照射到地面时, 其局部的移动明影能使被遮挡部份的地面空气快速降温。 因为空气是 不恒温和感应温度的能力是极强的,所以移动的阴影所引致的局部温差能产生局部性和不定 向的微风, 这会形成所谓 「蓝天白云, 风和日丽」 的美好情景。
但在近年代, 由于地球已暖化而产生更多云和高温, 因而, 大量的小热云团较容易互相 吸引而凝聚成一大幅, 所以近代的云层多是大面积的。 事实上, 在现代, 某些国家的蓝天白 云美景已因地球暖化而大大减少, 而局部性高温及干旱的情况却已增多。 由于密云层可阻挡 污染空气正常地上升和可导致低大气压, 所以空气污染问题会更严重。
大幅云层能大范围地遮盖蓝天, 使昔日的蓝天白云情景越来越少, 天空若不是经常白色 或灰色一片, 形成使人难受的闷热情况, 不然就是因为云己被邻近的多云区 (低大气压区) 强力地吸走而长期出现大范圍的蓝天烈日, 产生能热死人的高温或千旱。 事实上, 在二零一 三年的七至八月份, 当西太平洋接连形成多个台风和中国的华北地区接连下暴雨的期间, 在 中国华南的多个省却罕有地出现四十多天的持续极高温和千旱,这证明华南的云是被上述的 台风和暴雨云层吸走的。
台风的云是巨量的。地球暧化在总体上会使恒温海水的温度升高 〔海冰续渐崩裂就是证 明〕, 而海水的温度升高再加上云量和热量增加就容易形成台风。 能孕育成台风的极巨大热 云层及极低压会强力吸引其周边的大量云, 包括会吸引原本会流向陆地的大量云, 因此, 阻 止极大幅的云层持续吸进大量云而增大并因此而孕育成台风,这就可避免台风区周边的大范 围陆地高温及千旱。 事实上, 在近年, 当大陆的雨季过后就较少雨水, 这是因为云都被较高 温的海洋吸走并孕育成更多和更强的台风。
所谓 「打 ) 不成三日雨」, 若台风因被人为阻止而不能形成, 其大幅云层亦会被陆地吸 引而只会下大雨。 但己形成了的台风是必会只集中吹袭某区而引致严重的风灾、 水灾、 潮水 高涨和大浪的。
越大幅、 越厚密和离地面越低的云团或云层就越高温, 其温度可升至高于云团或云层下 的空气的温度, 这种热云会容易吸上云层下的空气而产生龙卷风。 例如, 美国大平原上的云 层是离地面颇低的, 因而特别多龙卷^。
雷暴雨或龙卷风云层和台风或强热带风暴云层形成和集结于「活跃低大气压区」 的中心 位置。 上述的云层越大幅和越厚, 其中心位置的云必会更密、 更厚和更高温。 处于中心位置 的云最高温的原因是这位置的热云与云层之外的低温空气距离远,而中心位置的云并已被其 周边大量的热云围绕, 这与圆形的大城市的中心位置最高温的理论有相同之处。
由于云层的中心位置最高温,所以整幅云层内的云亦会被其中心位置更热的云强力吸进 (本发明称这情况为 「云层内部对流」 或 「云层内部压缩」), 使中心位置的云增至更密和更 高温, 这过程最终会使整幅云层的密度和温度增至极高, 这就是龙卷风或强雷暴云层能在瞬 间变黑的原因。 如果不知道 「云层内部对流」 的事实、 云层压缩至极密和云层增温的过程, 就难于研究出阻止上述天灾形成的方法。
在夏季, 由于陆地较高温和其环境多样性,各个地区的温度会不平均,气流因而较复杂, 所以陆上的大幅热云层多是长形和会有多个最热位置, 而龙卷风只会产生于最热的位置, 因 此, 一大幅陆上云层能产生多个龙卷风。 大海洋上的气流较单一, 因而, 热带海洋上的大幅 热云层多呈园形和只有一个最热的中心位置, 例如台风只有一个处于云层中心位置的风眼。
密度不大的一般 「温室气体」距离地面以十万米计的高空, 而会吸热和储热的云层的密 度不但较温室气体更高, 它还距离地面只有约数百米。 极密因而较热的云层难于受冷成雨, 它就几乎像一幅浮于空中的水幕一样能严重阻挡地面的热空气以正常的速度上升,使有云层 区产生临时性的 「强烈温室效应」, 例如, 它会使人感到极闷热或甚至呼吸困难。
在温热的季节, 由于当一大幅厚密的热云层在短时间内严重阻挡地面或海面的较高压热 空气正常地上升时, 云层下的空气温度和湿度必会因此而^高, 所以密云层所产生的温室效 应较一般的温室气体所产生的温室效应强烈无数信, 这情况并会使城市的能见度降低, 特别 是低海拔的大城巿或有大量水气上升的绿化区。
在任何季节, 特别是夏季, 某区有大幅的热云层长时间停留就能形成强活跃低大气压。 强活跃低大气压会吸引其周边地区的云而成极度集中的更大幅热云层,而云被吸走的地区相 对地会因云量较少而处于高大气压, 因而会产生局部性高温和干旱, 例 】一方出现高温干旱 而另一方出现严重水灾。 事实上, 近年的天气情况确是这样。 下文会详细解释高或低大气压 的成因。
无论在冬季或夏季, 大城市的温度都会高于其周边地区的温度, 即是像一个热岛。 热岛 容易吸进其周边的云并会在其上空停留不去 〔特别是在某些少风或较多云的月份〕, 而云会 吸收.从热岛上升的热和阻挡热及污染空气正常地上升, 因而会更高温。 更高温的云层更会吸 进越多云而成为厚密的云层, 这会形成 「强烈的温室效应」。 高温或低大气压必会把热岛周 边较低温的污染空气吸进而使 PM2. 5的浓度和湿度升高。
上述情况亦等于高温的大城市容易成为云层的中心位置, 因而, 其空气会更污染和雨量 会更大。 事实上, 在近年, 高温的大城市、 大海岛或高山区确实是多出现百年一遇的特强雷 暴雨。
云或云层只会被最近距离的较热区或较低压区吸引,但不会被极远的更热区或更低压区 吸引, 其原因是较近距离能形成较强的温差和气压差。 距离越近, 吸力就越强, 因而, 较大 幅及较热的云层必会吸引其邻近较细幅的云层或两幅云层会互相吸引而形成云层对流。
大幅的热密云层能使陆地或海洋的 「上下平均温度」 升高。 「上下平均温度」 这一词是 本发明提出的, 其目的是较容易表述。 它的计算方法是: 地面上或海面上的空气温度加上整 幅数千米厚云层的总体平均温度再除二 〔下文写出了具体的计算方法〕。
基于上述的云层增密和增温过程, 中心位置的热云和其下热空气最终必会热至极限而自 行以高速冲上, 以释放热云层和其下热空气的上升压力,这就会产生强雷暴雨、冰雹、 旋风、 强风切变或甚至龙卷风。云层中心位置之下出现局部性强风的情况就像当某处出现特大火灾 时, 火场的热空气快速上升会强力引入周边的空气填补, 因而会产生强风。
阻止云层极度集中亦能使下雨区较平均和下雨的次数增多, 这不但能避免或减少干旱、 高温、 水灾, 还能使江河水长流而减轻河水污染问题等等。 事实上, 近年的特强水灾多是局 部性和集中性的, 例如某些大城市或山区可在短时间内降下超过一百毫米的雨量。
在地球暧化程度不大的过往年代, 云量必然较少因而较低温, 这就不会产生极强的云层 对流而使云极度集中, 这会使下雨的次数较多和下雨区较平均。 上述的解释表明, 当地球越 暖化, 天气就必会越极端、 下雨的平均次数较少和下雨区较不平均, 而事实确是这样。
由于地球越暖化, 云会越多、 高温及集中, 其吸力因而越强, 所以云被吸走的地区会被 烈日直接曝晒, 这会使陆地更千旱、 高温和甚至出现沙化的现象。 高山上的千年冰川续渐消 失就可证明地球已暖化。
在北半球的秋末至初春季节, 恒温的海洋空气温度会高于陆地空气温度, 云因而多会集 结在大海洋上或其部份会被南半球吸走, 在整体上, 这会使北半球的陆地较少下大雨。 由于 云会影响地球表面的温度, 所以云量增加亦会使冬季与夏季的温差扩大, 即是会出现极冷和 极热的情况, 而事实却是这样。
地球暖化必会使地表和海水升温, 而空气不恒温但地表和海水却是恒温的。 在冷季, 当 密云层遮挡某区的阳光时或在没有太阳的时段, 某区的地面空气就会快速降温, 但其地表还 未降温, 这就会出现温差, 而较高温的地表再而与地面的冷空气近距离接触和互相吸引就会 产生雾。某区突然产生的冷空气亦必会被邻近未降温的地区或被较暖的海洋空气强力吸引而 会突然出现强冷风并降温, 这表示, 地球的云量增多会产生更多严寒的天气或强风。
由于 雨的次数已减少, 这会使泥土, 特别是山体的泥土会因缺少水分而收缩或松散。 亦由于在近年所下的雨多是高度集中的特强雷暴雨,所以大量雨水会使已松散的山体泥土的 重量大大增加, 雨水亦更容易从松散的 LLi体泥土渗入山体或地底内, 使泥土几乎变成流体而 被水冲走, 这容易产生山泥倾泻、 泥石流或地层下陷。 下雨的次数减少并会使山上的植物难 于生存而石漠化。 事实上, 上述天灾在近年已较常发生。
人们对溶雪时较下雪时低温作出了不同的解释。 本发明的解释如下: 如上文所述, 云层 会产生 「强烈的温室效应」。 由于雪是从较空气高温的云形成而落下的, 因而, 在下雪期间 并不会极冷 (带有强寒风的暴雪除外), 但当地面冰冷而厚的积雪溶化时天空已无云层, 所 以在溶雪时, 地面会较下雪时更低温。
云层集结和云层自动压缩的过程
含水分的云较空气重。 在夏季的日间, 云会因有烈日照射而较高温因而升得较高, 因晚 间或下雨而较低温因而会下降。 在温热的季节, 较直射的太阳会从海、 湖、 河流、 湿地和绿 化地等等大量蒸发水分上升, 这会先形成大量离地面较低的小云团。小云团会被最近距离的 低大气压区或上下平均温度较高的区域吸引而移动, 并会在移动的同时续渐上^。
大量的热云团在上升和移动的途中会互相吸弓 i而变成较大及较密的大云团或小云层。由 于云团或云层从不同时间或地区开始形成上升并云行到低大气压区, 因而, 云层一般可分为 上中下王层。
当太阳斜射向云团时, 面向太阳一方的云会较高温, 背向太阳一方会较低温, 低温的云 因而会被高温的一方吸引而压向高温的一方, 这就是云团的形状快速改变的其中一个原因, 云团自行由外向内压缩和云团中心点的热云较快速上 亦是原因。
在温热的季节, 当一些云团到达了最热区或活跃低大气压区的中心位置之后会停留, 但 还会因高温而继续上丹。 由于更高空的空气较稀薄和风速较高, 所以密云团会在高空散开而 成为稀薄的散云。 当这些续渐上升的散云积聚至大量时就会成为当地的高层云, 并会续渐使 蓝色的天空变为蓝白色,继而是白色或灰白色等等。这幅云层只会在当地停留而越积越大幅、 越厚、 越密、 越高温和越恒温, 而其中心位置必是最密、 最厚和最高温的。 这种云层必不会 像冬季云层一样是薄片状的。
越多层的云越能遮挡太阳照射到地面, 这会使本是高温的地面空气降温。 由于高空的温 度由地面上丹的温度所提供, 所以地面空气的温度降低就等于云层的温度亦会同时下降。这 时, 上层较冷的云降了温之后必会下降而压向下层较热的云。 在同一时间, 从地面上升的热 空气亦会往上承托下层云, 这会使多层的云被 「上下压缩」 成单一层密的云层, 这密的云层 就更能使地面空气降温。 单一层的密云再而会自行 「上下互相压缩」, 并会从四周由夕卜向中 心位置压成颇厚和颇密的云层, 而其中心位置的云因而会更高温。
若这幅巨大而高温的密云层的周边有另一幅云层, 由于两幅热云层会互相吸引或较巨大 的一幅会吸引较小的一幅,这就会形成两幅云层对流。云层对流之后会使该云层更密和更热, 这会使云层的 "上下压縮"和 "从外向内压缩"过程更快, 这并会使该云层离地面更近、 更 厚、 极密和极热, 使其有点像大型的蒙 ¾包状。 上述就是暴雨、 龙卷风或巨大台风云层的集 结过程。 在特强雷暴雨或龙卷风产生之前片刻的云层会瞬间变黑就是上述原因。
由于每低一千米温度就高约六度 c, 空气的气压和密度亦会较高, 所以上述被压低的密 云层的温度和密度会相对地快速升高, 云层下或地面的空气温度和湿度亦会因此(强烈的温 室效应) 而升高, 因而会极闷热, 这情况就等亍建筑物的楼底越低就必会越热的原理相同。 这种几乎密 】一层水幕的云层,特别是其中心位置的云和其下的空气温度最终必会升至极限 而往上冲, 这就会在云层的中心位置或最热位置之下产生极强的雷暴雨、 强风切变、 冰雹或 随后会产生龙卷风。
自然界释放密云层下闷热而高压空气的方式多是由最普遍及较温和的雷暴雨释放,其次 是 ώ下冰雹释放, 而较剧烈的方式是由龙卷风或台风释放。如果预先在云层的最热位置用人 工催雨方法释放就可避免引发上述的天灾。
举出多个事实证明热至极限的云是会在云层中心位置快速往上冲的:在夏季的蓝天烈日 时段, 用肉眼就能经常看到一些被烈日曝晒、 移动缓慢而轮廓较鲜明的大云团中心位置之上 有云柱突然快速冲上的情况, 这种云柱可从地面看到。 在相同的时段, 若用望远镜耐心观看 热的大云团中心位置的顶部, 亦可看到这位置的热云的上 iFHI度是较快的, 这些云并会轻微 上下起伏。 轻微起伏的原因是有点像在煑水时, 下层较热的水往上升就会使上层的水起伏, 这证明云团中心位置的云是较高温的。若乘飞机从上往下看密云层的顶部时, 亦可看到一些 柱状云出现在云层最密的中心位置之上, 而柱状的云都必是较密因而较光亮的。
但厚达数千米以上的大幅云层最热位置顶部的云并不是柱状而是呈圆形微隆起状的,其 原因是巨大而厚的云层的总体多巳处亍较高海拔的低温区,太阳和由地面上升的热因而不容 易使厚云层急进式地增温, 因此, 云层中心位置的云和其下的空气的温度多依靠云层内部对 流效应和云与云之间互相传送热量而渐进式地升高至极限的,因而不会像小热云团的云一样 较急进地冲上。
以渐进式增温的巨大云层本身所积聚的热量和其下所积聚的热空气量会较小云团所积 聚的热量可多达千 H倍, 当其中心位置的云和其下的空气的温度最终以渐进式升至极限时, 必会以更大范围和更强的力度冲上以释放极巨大的热量, 这就会形成上述的天灾。
如果上述云层是在温度较平均的热带海洋上形成, 由于海面的空气是恒温、 日夜温差不 大和气流较平稳的, 因而, 云层增温的速度会较陆地更渐进, 云层因此亦不会受不稳定的强 气流冲激而先下雨。 热带海洋并有大量的热水气上升, 这会使云量快速而平稳地增加, 所以 一幅海上云层 (台风云层〕 会续渐积聚至直径可达数千公里, 厚度可达二十公里。
云层越大幅、 越厚和越热, 云层中心位置的云和其下的空气亦必会越热, 这两种热都会 从密云层的周边吸入大量云和空气。这种从云层外部流向云层中心位置的云和空气就会迫使 整幅云层,特别是中心位置的云只向上升而不能向周边扩散,因而能使整幅云层的厚度增大, 而其中心位置会更厚而呈圆形隆起状。
上述云层必是处于巨大的活跃低大气压区的中心位置。 低大气压和巨大云层(强烈温室 效应)所产生的闷热空气必会续渐扩散到其周边地区, 使大范围的地区闷热。 事实上, 在台 风到达某区之前, 某区是极闷热的。 这种热云, 特别是中心位置的热云和其下的巨量热空气 经过长时间持续进一步增温之后, 最终必会热至极限而必需自行在云层的中心位置释放, 这 就会形成有一个中心风眼的台风。
由于上述巨大云层中心位置的顶部会呈现大而圆形的微隆起状, 所以, 卫星可观察到中 心位置的云层是徵隆起、较光亮或雪白和较高温的。 从地面或海面观察到的云层中心最热位 置的云是较黑的, 而这位置之下的空气温度和湿度会较高, 有点像稀薄的云雾, 其形状会像
-个 V字, 但像 V字的情况只能从极远距离看到, 例如容易在海洋和特大平原上看到, 这就 像彩虹一样只能从远距离看到。若要找出云层的中心或最热位置, 除了可用卫星观察云层的 厚度及密度、 用仪器测量云层的温度及云层下空气的湿度及温度之外, 亦可用肉眼从远距离 观看。
上述的解释说明, 在龙卷风或台 j 形成之前, 处于活跃低大气压区内的大幅的云层(特 别是其中心位置), 除了可 ffl各种气象仪器观察和探测之外, 用肉眼亦可从云层之上及之下 预先看到和测量到。 事实上, 卫星图片显示已形成了的台风风眼周边的云层是隆起的, 这证 明在风眼形成之前, 台风云层的中心位置巳是隆起的。
活跃低大气压的成因
活跃低大气压的定义是某区的同高度大气压 "暂时"低于其邻近地区的大气压。 由于空 气橫向移动较上升容易, 所以轻微的大气压差都会产生横向的风。 为了更容易明白天灾的成 因和其形成的过程, 就需要先研究出活跃 ·ί氏大气压 〔下文亦称为 〈低压圈〉〕 的复杂成因和 其形成的过程。
自然界所形成的活跃低大气压只能在大范围空间内形成而不会在小范围空间内形成,例 如, 在一间高温的非密封房间内的大气压度与该房间外的低温空气的大气压度是相同的, 但 密封的机舱能人为地增加气压。
由于地心吸力的影响, 离地面越近, 空气的密度和气压度越高; 离地面越高, 空气的密 度和气压度越低, 所以高海拔与低海拔在短距离就存在强大而 「固定的高低气压差」, 在一 般情况下, 这种 「高低气压差」 不会产生快速的上升气流。
现有的理论认为活跃低大气压是由云层对流之后才形成的。现有的理论亦未有提及 ί氐大 气压是 ώ高温空气膨胀而慢慢形成,未有提及的原因极可能是因为现有的理论未有上文所述 「上下平均温度」 的记载。 若只以地面的温度作准就必会认为低大气压不是由高温产生, 因 为地面极高温的沙漠区的大气压反而是颇高的。
本发明认为暂时性的 「活跃低大气压」 是由大范围的上下平均暖或热空气, 特别是由会 吸热、 储热及较恒温的云层渐渐膨胀之后而形成, 即是在云层对流之前已开始续渐形成。 例 如, 热带地区的经常性大气压低于寒带地区; 较高温的午后的大气压会轻微低于较低温的早 上, 但这只是经常性或常规性的低大气压差别。
一区的大气压经常轻徵升或降可由该区的 「上下平均温度」 的变化所弓 i致, 而上下平均 温度变化可受云量的增或减、太阳的升或降、 是否下雨和是否有低温的云层及空气流入等等 因素的影响而变化, 例如, 大气压一般都会在下过雨之后(空气和云层降温及减少之后) 升 高。一区的大气压亦可被其周边的移动低大气压影响而升或降, 例如被极低压的台风影响而 急降。
如上文所述, 高温的大幅云层可使一区的上下平均温度升高 〔从冷区刚流入的冷云层除 外〕, 这表示, 强活跃低大气压是由可随意移动的大幅热云层所形成的。 形成了的活跃低大 气压 (一幅巨大的云层〕 会横向移动而产生强风, 例如 「台风」 或 「热带低压」 的移动会使 其途经之处出现风灾。 事实上, 上述天灾都产生于活跃低大气压区内。
活跃低大气压的成因很复杂,它主要是先由大量云长时间集结或停留在某个上下平均温 度己略高的地区。 地球越暖化, 云就越多和越集中因而越高温, 因此, 强的活跃低大气压就 越容易形成, 而它必会强力吸走其较远的周边地区的云, 使其周边地区相对地形成高大气压 而产生极高温或干旱。
在夏季, 在云量多而高温的区域, 一个直径约五千公里的范围内就能出现多个独立的低 压圈, 这证明低压圈是由多云和高温所形成的。 当一区的 「上下平均温度」 升高并积聚大量 云的初期, 由于空中的云层会续渐吸热和储热而升温, 再而使该区的空气慢慢膨胀而使大气 压慢慢降低, 所以大气压只会续渐下降而不会急剧下降。如果低大气压是快速形成或急剧下 降就必会使地球表面经常产生灾难性的急剧强风。 当某区出现云层对流之后确实会使热云层的云量及密度快速增加。由于快速增密的云层 不但更能吸热和储热, 还更能阻挡地面的高温空气正常地上升, 这就必会使该区的上下平均 温度更明显地升高, 所以该区的大气压会较明显地下降。 上述的结果可能就是某些理论认为 活跃低大气压是在云层对流之后才形成的原因。
低大气压回 至正常大气压亦是渐渐的, 但会较下降时快, 因为低大气压区內的云层会 下雨而使云和空气快速降温。 会移动的低大气压并会强力吸进区外的高压空气而产生强风, 这并会降低低大气压区内的温度, 因而能使低大气压较快回升, 这就是极低压的 「台风」 或 「热带低压」 能使其途经之处产生强) 的原因之一。
由于下雨会快速使上下平均温度降低而使 ·ί氐大气压回升,所以人工催雨是一种能快速使 大气压回升和减少云量的较和谐方法。
低大气压区内围的上下平均温度必是最高的,即是大气压最低的,中围和夕卜围则不甚低, 而外围之外的大气压则是正常的。如果内围的极 ·ί氏大气压与正常的大气压不是被上述的渐进 方式分隔开而是在短距离接触, 地球表面亦必会产生灾难性的急剧强风。
低压圈本身虽然巨大, 但当比起整个地球的表面时就会显得很细, 因而, 整个低压圈是 会跟随地球的大气环流移动或被其周边上下平均温度较高的地区吸引而移动的, 而台风、 其 它类风暴或雷暴雨的云层都处于低压圈的内围。
基于上述的理论, 本身是极 ί氏压的台风亦必会跟随整个巨大的低压圈横向移动, 这就是 极低压的台风亦会横向移动的原因。 当低压圈经过某区时是会即时降 ·ί氏某区的大气压的。 强 活跃低大气压可使海平面 〔潮水〕 升高, 特别是气压极低的风眼之下的潮水会更高, 而强风 加上高潮水必会产生巨浪, 而事实确是这样。
在夏季,一区的地面产生局部性高温或干旱的原因是由于该区的云被其周边地区的强活 跃低大气压强力吸走。 事实上, 近年较多出现局部性的极高温区 〔活跃高大气压区〕, 而其 周边地区却出现局部性或集中性的暴雨 (活跃低大气压区〕 就是上述的原因。 上述解释亦证 明, 地球的云量增多会更容易形成局部性的极高温或干旱, 例如, 云量多容易孕育台风和超 级台风, 而台风会吸走巨量的云。
如上所述, 在地球暖化之后, 较热云层就难于受冷成雨, 因此, 云层需要积聚至极大幅、 极厚和极密之后才会产生特强雷暴雨或其它天灾, 这等于, 若人为预先阻止云层积聚至极大 幅、 极厚和极密就能解决极端天气问题, 例如台风、 龙卷风、 局部性严重水灾、 极高温、 千 旱、 下雨区不平均和严重空气污染等等问题。
由于低压圈内围的大气压较低, 因而, 云必会被内围吸引而更厚、更密和更高温,所以, 处于低压圈内的大幅热云层是不会流出低压圈的,它只会在低压圈内上升而越积越厚、越密、 越高温和越恒温直至温度升至极限, 而密云层还能严重阻挡地面的热废气以正常的速度上 升。
在热云层之下积聚的湿热空气亦会因此而持续升温至极闷热,而热空气必会从周边吸进 较低温的空气, 包括污染空气, 这就会使 PM2. 5的浓度升高。 地球加速暖化必会使上述情况 恶化。
形成活跃低大气压的更详细说明
由于活跃低大气压的成因是极复杂的, 因而要进一步写出极详细的说明, 亦必需写出一 些显然的自然现象以证明本说明的理论。 亦 于本说明所述的云层的幅度、 厚度和密度各不 同, 而各季节、 时段和当时的气候亦各不同, 所以本说明不能写出统一的温度数字。 本说明 把下述的热云层的厚度设定为四千米以便作统一解释。
虽然, 活跃低大气压是由高温的空气暂时膨胀之后所形成, 但有蓝天烈日而地面较高温 的地区却是活跃高大气压区,而因高温才能形成的低大气压却相反地是在有密云而地面较低 温的地区。相反的原因是形成活跃低大气压的温度不是只以地面的温度作计算, 而是以地面 与高空的 「上下平均温度」 作计算的。
上下平均温度较高的地区必会引进大量云,当这区积聚了一幅例如直径以数百公里计的 厚热云层时, 这区的上空 〔对流层〕 就会较高温。 当这区积聚了一大幅停留或缓慢移动的热 云层时, 恒温的热云层会使云层所处的四千米厚的空间升温, 而这高温的空间加上强烈的温 室效应亦会使这区的地面空气在日间和晚间都高温, 在这情况下, 这区长时间的上下平均高 温空气就会慢慢地膨胀而渐渐形成活跃低大气压。
事实上,有密云层的晚间会较无密云层的晚间高温,这事实是由美国的气象人员公报的。 在当年,经他们查看纪录之后发现,当该国的纽约市因九 -- 一反恐问题而实施全面禁飞之后, 因而就没有了由飞机所产生的大量云。 于云层是能产生临时温室效应的, 所以就使该城市 晚间的地面温度较未有禁飞的期间低。
上述解释表明, 日夜温差较大的沙漠区或干旱区的日间虽然较热, 但由于晚间低温加上 丛沙漠区或千旱区上 的云量很少, 而其周边亦较少云, 因而难于集结足够的云量保持长时 间的上下平均高温, 亦没有温室效应, 所以较难形成活跃低大气压而下暴雨。 上述解释亦说 明形成活跃低大气压的条件是需要足够的云量以保持长时间的上下平均高温。
活跃低大气压是由局部地区大范围空间的热或暧空气慢慢膨服而形成的。大范围空间包 括直径以数百公里计的有密云的区域面积、从地面至云层之间的空间及一幅直径以百公里计 的厚密云层 〔四千米厚〕 所占的四千米高度空间。
上述大范围空间的上下平均高温, 加上低大气压的效应和高湿度 〔即是强烈温室效应所 产生的闷热〕 能迫使某些昆虫 地底爬出地面, 这证明由密云层所形成的 「强烈温室效应」 能使地球表面的大范围空间产生高温和高湿度。而有蓝天烈日的地区只是地面有高温而湿度 不高, 而其上空却是低温的。
在夏季, 高大气压区内的天空会因无 「高层云」 而是深蓝色的。 天空越蓝, 太阳越会无 阻挡地照射到地面, 地面的空气因而会越高温, 但其大范围的上空却会因无大幅热云层而会 较低温, 这解释说明高大气压区的 「上下平均温度」 是低于低大气压区的。
为了较容易理解活跃低大气压形成的过程和高低大气压区经常互相替换位置的原因,本 文需引 ffi以下的数字。 这些数字只用作分别温度的高或低。
举一例子: 某区有一幅直径以数百公里计, 离地面 1千米的热云层, 该热云层本身的厚 度是 4千米, 这等于该云层的顶部离地面五千米。 由于云层能阻挡太阳的热照射到地面, 所 以有云层区的地面会较低温, 但该 4千米厚的云层本身却是高温的。
某无云层区的地面会被太阳无阻地照射, 其地面温度会高于有云层区, 但其上空的温度 却低于有热云层区。 依据下文的计算方法所得出的结果, 有云层区的上下平均温度是高于无 云层区的, 因而, 有云层区的大气压会较低。
活跃高或低大气压区经常互换的原因如下:例如, A区是没有大幅云层的高大气压区〔但 有小云团〕, 其天空必是深蓝色的。 无云层可让阳光无阻地照射地面, 使 A区的地面空气温 度升高至例如干爽的 34度。
由于自然界的定律是每高 1千米气温就低约 6度 C, 所以 A区地面的热空气上升到 5千 米的高空之后, 其温度会降至 34减 (5乘 6), 等于是 4度, 这使 A区地面与高空的 「上下平 均温度」 是 34加 4之后除 2 , 等于 19度。
在 A区周边的 B区是一个已有一幅 4千米厚热云层的活跃低大气压区,而热云层离地面 1千米, 即是 4千米厚云层的顶部离开地面 5千米。 虽然, Β区被 4千米厚的云层阻挡了太 阳的直接照射而使地面较低温, 但 Β区却有 「强烈的温室效应」 因素, 因而, Β区的地面温 度只会较 Α区的 34度略低一点, 例如是闷热的 30度。
虽然每高一千米温度必会低约 6度, 但由于 B区上空有热云层和 「强烈的温室效应」 因 素, 所以 B区的上空温度必然高于 A区。 因此, 在理论上, 有热云层的 B区上空一千米处的 温度只会降低约 4度而非 6度, 即是 30度减去 4度, 这等于, B区上空的 "一千米处" 的 云层温度是 「26」 度。
云层会吸收和储存太阳的热。 处于 B区上空一千米处的 26度热云亦必会向其上的云上 传热量, 因而必会大大提^上部的云的温度。 虽然, 26度的云会在上传热量的途中必会降 温, 但 4千米厚的云层本身巳是高温的。 由于含水分的密云有点像水一样连在一起, 所以较 容易向上传送热量, 因此, B区上空四千米厚密云层的温度会较平均, 并不像千燥的空气一 样每高一千米就必会低六度。基于上述的理论, B区上空的 4千米厚云层的 "总体平均温度" 应该是约 18度。因此, B区的地面与高空的上下平均温度会是 30加 18之后除 2等于是「24」 度, 但地面较高温的 A区的上下平均温度只是 「19」 度, 因而, 上下平均温度较高的 B区是 低大气压区。
若 A区的上空有一些云团或小云层,它们必会被 B区上空较高温的热云层和较低的大气 压强力吸引, 这会使 B区的云层越积越厚而产生灾难性天气。而 B区地面的低温空气却相反 地会被 A区高温的地面空气吸弓 I , 特别是在 B区下雨而使地面空气快速降温时, 这情况就是 低压区的周边和低压区内的上下气流多以相反方向流动的原因。事实上, 低压区内的天气和 风向是颇不稳定的, 例如, 某些龙卷风不垂直的原因是云层的流向与地面空气的流向相反所 致。
本说明所引用的云层厚度是较小的, 如果 B区的云层更大幅、 更厚和更密, 其上下平均 温度就必会更高, 活跃大气压因而必会更低。 事实上, 当大气压极低的台风或雷暴雨云层接 近某区时, 某区的上空就会有大量云以高速流向台风或雷暴雨云层。
低大气压的 B区最终必会下大雨或特强雷暴雨等等, 由于下雨会使云层和其下的空气快 速降温, 因而会产生强风, 而这些风和雨都会使热云层和地面空气降温, 云量亦会因下了雨 而减少, 这会使原本是甚低的大气压续渐回升。 相反地, 当时是无云(高大气压) 的 A区的 地面被太阳长时间照射之后必会高温,而高温加上从地面蒸发上升的热云会使 A区较低的上 下平均温度慢慢升至高亍已下过雨的 B区。
云只是含水分的气体而不是液体,如果其密度不足是不会全部停留在 B区形成雨水降下 的。 由亍 B区的云和空气己被雨水降了温, 其上空留下的冷云必会被其附近上下平均温度较 高的 A区吸走, 这会使 B区转为蓝天区而逐渐成为正常的大气压区, 这就是所谓的 「雨过天 晴」。
较轻的热空气能上升至极高空后消失,但较重的云只会上升至某一高度停留而成为 A区 的高层云, 这会使 A区原先的深蓝色天空变为蓝白色、 白色或灰白色, 并会续渐成为低大气 压区。 事实上, 在近年, 当一区产生严重的局部性水灾时, 其邻近地区却是蓝天烈日因而极 高温的情况经常发生, 这情况与上述的解释符合。
细小的沙粒和千旱区是较不恒温的。沙漠区和干旱区在日间会较热但在晚间会较冷。在 晚间, 干旱区的冷云会快速散开或会被其邻近较高温及恒温的地区吸走。 上述解释表示, 某 区越干旱就越不容易形成活跃低大气压, 而多云的近海区或日夜恒温的热海洋就容易形成。 如果多云的 A区能在较低温的晚间保持其上下平均温度高于其周边地区, A区就能维持低大 气压。
在正常的情况下, 活跃高或低大气压区能在短期间互相变换的。但在地球暖化较?¾重而 云量颇多的温热雨季, 当有大量热云继续流入正在下雨并有大量湿热空气上升的低大气压区 时, 会使这区的云量快速获得补充, 因此, 其低大气压会持续并会长期下暴雨, 这就会出现 严重水灾。
事实上, 雨季多是在温热的季节, 而接近海洋的省份较容易形成或较能长期维持低大气 压。 上述解释证明活跃低大气压主要由云所产生。 在雨季, 中国的南方或一些近海因而多云 的地区会长期下暴雨而 m现严重水灾就是上述原因。
云是被「上下平均温度」较高的地区吸引的, 若气象人员只用地面的温度计算而不用上 下平均温度计算就不能准确预测天气。
北半球的 ) 暴几乎都以逆时针方向旋转的原因
现有的理论认为, 风暴只以逆时针或顺时针方向旋转是由地球的「偏向性」、地球的「磁 场」 或某某效应等等所引致, 但这解释并不太合逻辑、 不详尽和自认还未被确实的。 上述自 然界现象确实是很复杂, 若未理解本发明的各种发现, 特别是自然界的强感应力就难于解释 上述现象。
本发明的独特解释如下;在低压圈内停留不去的巨大热云层和热空气会强力吸进其周边 的云和空气, 这等于, 从该云层周边的各方向会有冷云和冷空气快速流入而强力冲击云层, 这必会使该云层移动。 由于热云必不会流出低压圈但又必需移动, 所以它只能在低压圈内部 以慢速度作大旋转方式移动。 事实上, 丛卫星图所见, 低压圈内的巨大云层都是会作大环形 方式慢旋转的。
一区的空气最高温的时段是曾经被太阳直射一至二小时之后, 即是午后或当时的太阳己 处于该区的西方之后。 云或空气感应温度和气压度的能力很强, 它们是必会被最近距离的最 高温空气吸引前进的。
在北半球, 当上述云层的云初开始作大环形方式慢旋转时, 必会先被正在受太阳直射的 热空气吸引而向西方移动。 由于该云层是以大环形旋转而非以直线方式慢移动的, 所以, 已 幵始被西方吸引而移动的云再而会先被基本大气压较低的赤道方向 〔南方〕 吸引而移动。 上 述的两个先移动或旋转方向就是逆时针方向。南半球的顺时针方向旋转的原理与上述解释相 同。
当巨大的云层一但开始了向某方向慢旋转之后, 它就不能改变而会维持同一方^旋转。 必然地, 产生于巨大密云层内的各种风暴都必会顺着上述的大旋转方向移动。上述解释就破 解了北半球的风暴几乎都以逆时针方向, 南半球的风暴几乎都以顺时针方向旋转的谜。 赤道区的基本大气压较低的原因是如上文所述,大气压是由长时间和持续的热空气澎涨 而形成的。 由于赤道的地面及海面有经常性的高温, 高温空气高速上升并会使其上空经常高 温, 因此, 赤道的经常性上下平均温度较高, 所以其经常性大气压会较低。
虽然, 赤道以北的某些高纬度内陆地区 〔包括大片的沙漠区) 在夏季某时期的日间地面 温度可高达五十度, 但其高空会因少云而使其上下平均温度不高, 加上其日夜温差较大, 而 这种环境较难积聚厚密的云层, 因而其大气压会较高, 所以在总体来说, 其经常性大气压是 高于赤道区的。
冰雹的成因和形成的过程
冰雹是从极厚而密的云层中降下的一种固态降水, 其直径一般约为 0. 2〜0. 6毫米, 大 的可达 8毫米, 在云层中心位置落下的冰雹会更大, 它可以给庄稼、 牲畜和人类造成很大的 损害。 云层越密越厚, 地面冲上的热气流就越多和越强, 形成的冰雹体积就会越大。 冰雹能 快速冷却云层下及地面的空气。
形成冰雹的基本原理与龙卷风、 台风和雷暴雨等等大致相同, 其成因主要是由密云层形 成了强烈温室效应之后, 云层中心位置的热云和其下的热空气热至极限而快速冲上所产生。
由于冰雹受到快速冲上的热气流及热密云的冲击和承托,再而在密云中作大旋转及上下 滚动, 其下降的速度因而较慢, 所以冰雹有较长的时间吸收密云中的水分而增大。 下冰雹的 范围不大是因为它只在云层中心位置产生。下冰雹的过程不长久是因为它只是在热气流冲上 期间产生, 而这过程一般是不太长久的。
由于冰雹的密度低亍透明的水和一般的人造冰, 其透明或透光度因而较弱, 但其反光度 则较强, 加上它们曾经在云层中滚动, 所以冰雹是白色和呈圆形的。 白色只是日光的颜色, 这与被日光照射的雪和云等等都是白色的是同一原理。 彩云、 彩虹、 海浪和瀑布的颜色其实 都是光的颜色。
龙卷风的成因和形成的过程
龙卷风可分为陆龙卷和水龙卷, 水龙卷产生于海洋或内陆的大湖上空。龙卷风可产生在 任何季节。 本发明把龙卷风分为长寿、 短寿、 温热季节和冷季节的龙卷风, 并分别写出其成 因和形成过程。
龙卷风的下部直径最小的只有几米, 一般的是约百米至一公里。 呈漏斗状的上部直径一 般是一公里, 最大可达 10公里。 龙卷风的气压很低, 因而会造成很剧烈的旋转 j 速。 云层 越厚、 越密及越高温, 其所产生的气压越 ·ί氏和风速越强。 最强龙卷风的风速可高达时速约
500公里, 它可以将人、 汽车或房屋等等卷走, 有极大的破坏力。 龙卷风的活动时间远不及 台风长, 一般都以分钟计, 但极少部份可长达约百分钟。 龙卷风是一条从密云层中伸下到地面的空心云柱,而云柱内部却相反地高速及持续吸上 地面的空气。到现时为止,专家还未能解释这个相反而神奇的现象,本发明己研究出这现象。 有些专家误把那些在沙漠上所形成的小型旋转尘卷的成因与龙卷风的成因相提并论。如果上 述专家认为尘卷与龙卷风的成因相同就必会使龙卷风的成因弄得更复杂。
龙卷风并非如一些现有的理论所说, 是由两幅云层对流而相撞之后实时使 "气流旋转" 而形成, 或由 "热气流持续冲上" 以维持其活动能力 (生命) 的。 如果是, 北半球的龙卷风 就必不会只以逆时针方向自转, 南半球的龙卷风亦必不会只以顺时针方向自转。 在理论上, 当两幅云层相撞之后并不会只固定向某一方向旋转。
人们依据上述现有的龙卷风形成理论,就会误认为龙卷风在片刻间消失的原因是热气流 消失。 事实上, 龙卷风的生命只是靠低压空气吸引高压空气作为能源, 而这种能源是永远存 在的。 虽然, 大部份云柱会被拉曲而断开或因云柱的密度不足而在数分锺之后消失, 但某些 未被拉曲的云柱 (龙卷风) 可持续运行长达约一百分锺, 这证明现有的理论不正确。
下述都是自然界的定律和是形成龙卷风的自然条件: 海拔越高气压越低; 海拔越低气压 越高; 低压空气吸引高压空气; 热空气或热云吸引冷空气或冷云; 较空气恒温的云会吸收和 储存太阳的热及 地面上升的热; 云层越大幅、 越厚和越密会越热, 其中心位置必会更热; 离地面低的密云层较高温, 其温度可高于云层下或地面的空气; 被高速吸引上升的空气会旋 转, 因为以旋转方式上升会较轻。
产生龙卷风的条件亦必需有一幅巨大、 极厚、 极密和离地面较低的热云层, 例如在两幅 云层对流之后会使云层快速增密和增温。 已快速增密的云层再而会 "自行压缩"至更密、 离 地面更低和更高温, 该云层因而能在片刻间使白天几乎变成黑夜。 云层增至更密就更能遮挡 太 i¾而使地面的空气快速降温, 因而, 更高温的云层越低就越与地面己降温的空气更近距离 接触, 这就会与地面空气形成近距离的温差而产生 「温差吸力」。
当云层的温度因自行压缩而进一步增至极高温之后,热云会在云层的中心位置或最热位 置往上冲而产生冰雹或雷暴雨, 而地面的空气就会在片刻间被冰雹或大雨再度大大降温, 这 时, 热云层就会与地面的己降温空气形成更大的温差。 在这温差突然增强的情况之下, 云层 中心位置或最热位置的热云会協同高空较低压的空气强力吸上地面的低温及高压空气,这就 会在云层下和地面产生高速旋转的上升气流、 强风、 强风切变或随后产生龙卷风。 若正在下 降而离跑道近的飞机遇上这种强的顺风切变是会突然堕地的。
一般的海洋云层只有一个最热的中心位置, 例如台风只有一个中心风 κ, 而陆上的云层 可有多于一个最热位置。在所谓龙卷风之乡的美国,一幅巨大的云层可同时产生多个龙卷风, 其原因是美国的南北相通的特大平原的海拔低和无高山,因而容易形成已离地面颇 ί氏并较平 整的极大幅密云层。 而海拔越低, 云层就越密和越高温。 美国的冬季亦会出现龙卷风, 特别 是在地球已暧化因而云量增多的近年代。
先筒要写出冬季龙卷风的成因。冬季产生龙卷风的条件是先有一幅离地面很近的大幅厚 密云层。 当该云层增密时, 必更会遮挡太阳而使地面的温度进一步下降, 这同时会在巳是低 温的地面产生强冷风。
基于低压和高温必会吸引高压和低温的自然界定律,在云层的温度高于云层下的空气温 度和云层离地面颇低, 并在两者的温差以近距离接触和同时带有强冷风的情况下, 高空的较 低压空气及较高温的云层必会强力吸上地面的较高压及低温空气, 这就会引发龙卷 j 。事实 上, 当一区有较厚密的云层时, 地面的高压空气上升的速度都会较大, 例如, 在有密云和风 的期间, 人们可简常看到一些废纸自行上升至极高空。
在蓝天烈日之下, 一些沙漠上的尘卷会被热云团吸上而形成状叙龙卷风或水龙卷一样, 例 】像经常在网上刊登的一幅照片中的奇怪尘卷,而这种尘卷的成因到现时还未有理论能解 释, 一些人并误认为它们是在蓝天烈日之下出现的龙卷风。 本发明的解释如下: 尘卷多形成 于高热或干燥的沙漠上。 如上文所述, 沙漠的地表温度大大高于其上的空气温度, 一但产生 突发性强阵风, 由于这种强阵风会旋转, 所以就会形成尘卷。 若该尘卷之上有高热而离地面 近的大云团, 尘卷多会被热云团吸进而形成一条状似水龙卷的尘柱。
由于龙卷风的成因和其形成的过程极复杂, 而冷季与暖季的龙卷风的形成过程略有不 同, 所以下文只详细解释较普遍和较强的暖季龙卷风的成因和其形成的过程。
龙卷风是一条高速旋转的空心云柱,它是从一幅极密云层的中心位置或最热位置以旋转 方式冲下到地面的。 由于自然界的活动是慢加速, 所以其转速会续渐增至极快。
美国低海拔的特大平原能产生最多、最长寿和最强的龙卷风,其原因是这地区的东、南、 西和北面都有海或大湖, 因而能从各方, 特别是从南方和北方引进巨量而离地面颇低的云。 特大平原的地形较不复杂, 例如无高 ώ (高山区的气流不稳定, 云层因而就无条件积聚至平 整而产生龙卷风)。 从南北流入的云会因无高山阻挡而不需被迫^至很高之后再运行, 所以 美国较能积聚极大幅离地面较低、 较热和较平整的密云层, 而这些从南北流入的云层必会形 成云层对流, 而龙卷风多在云层对流之后产生。
某区的海拔低就等于其上空的云层所处的海拔亦低,这种云层在自行压缩之后可低至只 离地面约二百米或更少。依据上文的云层自行压缩的解释, 在两幅热云层对流之后会使云层 的密度几乎倍增, 再加上 「云层内部对流」 之后会更进一步增密, 云层的中心位置会更密和 更高温, 因而能使白天在片刻间变成黑夜。 事实上, 在龙卷风形成之前的云层是黑色的。
由于太阳的热快速被更密的云层遮挡, 云层下, 特别是云层中心位置之下的地面空气温 度因而会急降, 这会产生旋风或乱流。 当己降温的地面空气与热云层形成强大的温差之后再 加上旋风或乱流, 地面的高压而低温空气就会被热云层的中心位置快速吸上, 这就可即时形 成龙卷风。由于这种离地面颇低的云层所弓 i发的龙卷风在形成之前不一定会先下 ¾雹或雷暴 雨, 因此, 云层的温度和量度不会快速降低, 所以其寿侖较长和较强。
较短寿的龙卷风多形成亍非特大而低海拔的平原上, 其云层会离地面较高, 这种龙卷风 多会在下强雷暴雨或冰雹之后产生。在短寿的龙卷风形成之前, 热至极限的云会先.从云层最 热位置往上冲, 而在云层下积聚的高压热空气亦必会即时跟随热云往上冲, 以释放云层下高 压热空气的上升压力。
当该位置的热云和其下的热空气快速往上冲时, 会在地面产生局部性强疾风、 风切变、 雷暴雨或冰雹。 由于极厚云层上部的云已处于极低温的高空, 所以这种雷暴雨的雨滴必是较 大而较冷的。这种大而冷的雨滴几乎会像冰雹一样使云层中心位置之下的空气突然降温而产 生强风或旋风。
云层对流已能使云层快速加倍增密及增温; 增密的云层会加倍遮挡太 i¾使地面空气降 温; 突然下雷暴雨或¾雹再能使地面空气降温并产生强风。 上述三种因素都会使云层与地面 的空气突然形成大温差,因此,地面的高压冷空气会被高空的热云强力吸上而产生强风切变、 旋风或龙卷风。 事实上, 短寿的龙卷风多在下冰雹或强雷暴雨之后的片刻产生。
感应力和灵活性强的自然界是会懂得避重就轻的。 由于气流以旋转方式上升会较轻, 所 以被高速吸上的气流必会高速旋转, 而冲上或喷上的气流则否。 例如, 高热的火山灰是喷上 的和爆炸烟尘是高速冲上的, 所以不会旋转。
在上述吸的过程刚开始时, 被吸上升的气流会以慢加速旋转, 这会产生 「离心力」, 而 离心力会形成空心的云柱, 但在转速续渐增加之后, 持续的高速旋转则会产生 「向心力. j , 这会使空心云柱变小但却会使云柱的柱身更密。离心力和向心力的解释是当浴缸放水时, 水 刚开始被吸下时会较慢旋转因而产生较大的旋涡, 但当旋涡的转速越快, 旋涡就越细小。 龙 卷风的直径细小是因为它只在云层最热的中心点形成并以极高速旋转所致。
在上述龙卷风形成的初阶段, 地面的高压空气被吸上的速度会续渐增加, 这就先会在云 层内部形成一条连通云层上部与云层下部的高速旋转空心云柱。 云柱的密度很高, 它就像一 条由极密的云形成的空心吸管。 由于柱身极密的云柱的上下端存在极大的高度差 〔一般是数 千米以上〕, 所以, 高空的极低压就会只经由云柱 〔空心吸管〕 强力吸上云层下的高压空气。 吸力越强, 云柱旋转的速度越快, 当越快时, 云柱柱身的密度就越高, 这是成正比的。
云柱的极大部份是藏在极密和厚的云层之内部的,被人们所见到的云柱只是整条云柱的 极小部份 (约二百米或更少〕。 距离地面越近, 气压越高, 因此, 地表的气压是最高的。 基 于低压空气必会吸引高压空气是自然的定律, 而低压空气尽可能吸引 「最高压空气」 亦是自 然的天性。
由于云柱只是由高密度的云高速旋转所形成, 因而能随意伸长或收縮少许。 亦由于感应 力极强的自然界能强力感应气压差, 加上旋转效应和抽吸效应都可容易使云柱伸长少许, 所 以高空的极低压空气必会利用可容易伸长的云柱抽吸地表的最高压空气。
当某些云层所产生的吸力和旋转力不甚强时,云层下只会伸下一条较慢旋转的悬空漏斗 云 〔事实上, 这种漏斗云经常出现在某些雷暴密云层之下〕。 当某些更热和更密的云层所产 生的吸力和旋转力极强时, 其旋转动作可使容易伸长的云柱快速冲向地表为止, 其目的只是 要抽吸地表的最高压空气。这行为就像有灵性的人、动物或甚至楦物一样自然和容易地把手、 头、 根或树枝尽量伸延去拿取较好的食物或获取较佳的生存条件是同一道理。 事实上, 没有 依赖先进教育、 没有视觉和听觉的自然界的徵感应力是必较人类强的。
上述情况说明了为甚幺内部带有往上吸力量的云柱会相反地从上向下伸, 同时却只会触 及地表就停止伸下的原因。 当云柱的密度减低因而抽吸力和旋转速度减弱时, 云柱就会缩回 云层中, 这现象可能就是现有理论最难解释的, 因而会认为龙卷风是神奇的。
由于吸的行为会使吸管向被吸的前方移动 〔而喷则相反〕, 因而, 云柱的最下端必会自 主地向被吸的前方移动。 由于龙卷风云层与地面空气的移动方向并不一定相同, 所以一些云 柱会被一些以相反方向流动的气流快速拉斜、 拉长或过度扭曲而断开或消失。
空心云柱的上端连接云层上部的极低压空气,下端连接地表的高压空气, 因此, 云柱下 端內的气压可被云柱上端的极低压空气同化因而会很低。在近年, 一群喜欢追逐龙卷风的科 学家用仪器测试龙卷风之后, 发现了云柱下端气压很低的事实, 这与本发明的理论符合。
在龙卷风形成之前, 高温的云层会先使云层下和地面空气的湿度高而闷热, 但在龙卷风 形成的一刻或在龙卷风活动的期间, 地面空气却较低温 〔一般是约摄氏二十六度或以下〕, 这证明龙卷风主要是由低压空气吸上高压空气而不是靠热气流冲上以维持其生命的。 事实 上, 热气流不会经常有, 而由高低气压差所产生的吸力却永远存在。
龙卷风的破坏力是高速旋转的气流加上强大的抽吸力,其吸力能将一部中型货车吸离地 面十数米, 其高速旋转气流能将大树栏塍折断, 因而会在地面做成严重的破坏。 由于云柱是 由气体而不是液体或固体所形成, 所以被吸上的一些稍重物体会被旋转的离心力抛出云柱 外, 但水龙卷是液体, 因而, 被吸上的鱼类不会被抛出水柱夕卜。
「水龙卷」 较常产生于夏秋之间, 其原因是恒温的水在这期间才会较高温。 中夏之后较 少出现龙卷风但会多强台风, 因为这期间的云会较多在热带海洋上集结。
「水龙卷」 的成因是先有空心云柱下降到水面, 云柱吸上水而转为空心水柱之后, 云柱 就会随即升回云层中。 由于水柱的密度较云柱高, 因而能形成一条密度较云柱更高和吸力更 强大的吸管, 所以能把鱼吸上极高空之后再被风吹到远距离的陆地落下。 事实上, 天空降鱼 的新闻筒常会有。
水柱必需有足够的高度 〔长度)、 密度和抽吸力才能把鱼吸上极高空, 这证明极大部份 的水柱与云柱一样是处于云层内部的, 否劑就不足以把鱼吸上极高空。 水柱的成份是水, 它 是 被吸上而非像云柱一样由上伸下, 因而, 水柱是条状而不是漏斗状。 水柱亦是容易被 拉长或拉弯而断开或消失的。
理论上, 整条云柱的直径是相等的 (像一条吸管), 因为这才能产生强大的抽吸力。 人 们所见到的云柱外部似漏斗的原因是其上端处亍较高空, 因而有云附于其外部的周边, 越上 端就 有越多云, 其形状因而似漏斗。 高速的旋转效应亦必会使云柱的最上端保持极圆形和 畅通。极圆形和畅通是因为高速旋转的效应是更能牵引云旋转的, 而旋转所产生的离心力或 向心力必会使整条云柱内的云靠边, 因而能使整条云柱空心。
空心云柱的形成理论与有热气流高速旋转上丹所形成的台风风眼的形成理论一样。当有 极高速气流旋转上升时, 风眼就会极圆、 空心或开眼, 当上升气流不甚高速时, 风眼就不圆 或闭 。
巨大台风的风眼亦有像龙卷风一样的被吸而旋转上升气流的, 但由于风眼巨大, 其旋转 速度当然不及细小而剧烈的龙卷风高速,所以从风眼旋转上升的气流较稀薄因而难于在近距 离被看见。 但在海洋上就能在数十公里之外看到风眼之下的巨型稀薄云柱。
自然界的低压空气吸力必是慢加速的, 如果是像抽气机一样快加速, 地球上就必会产生 灾难性的突发性强疾风。热沙漠上的稀薄旋转尘卷在刚开始旋转时, 其转速亦会较慢因而其 直径是较大的,但在越转越快时,其直径则会变为较细长,这是慢加速和向心力的一个例子。 虽然本发明对尘卷作出了上述的细徵解释,但尘卷与龙卷 j 的主要形成原理和形成的过程是 不相同的。
带有暴雨的龙卷风之寿命较短暂,其原因是当云层变成雨而减少之后,龙卷风就会消失。 由于那些在大雷暴雨开始落下片刻之后所形成的短暂及轻徵龙卷风的颜色,与下大雨期间的 天空一片灰白的颜色相同, 加上其气流转速不甚高因而不密集, 所以其较稀薄的旋转气流难 于被肉眼所见。
云层对流 在任何时间发生, 因此, 龙卷风也可能发生在深夜, 特别是较高温的低海拔 地区。 这些地区的热密云层难于在日间受冷成雨, 因而, 密云层的高温能积存到深夜。 由于 该云层上部的云没有了太阳的照射, 所以必会降温而下降并压向云层下部的云, 再而结合成 单一层极密的热云层,使这单一层的密云离地面越近因而更热。当出现云层对流,再加上「云 层内部对流」 的效应, 这会使高温的云层进一步增温, 这情况就容易产生龙卷风。
台风的成因和形成的过程
根据国际分类, 最大风力小于 8级时, 称为 「热带低压」。 8和 9级风力的称为 「热带 风暴」。 10和 1 1级风力的称为「强热带风暴」。 最大风力达到 12级的称为「热带气旋」、 「台 风」 或 「飓风」。 形成台风需要极大的云量, 这等于其大气压会极低, 这会吸弓 i其周边的大 量 zsr °
台风的风眼处的大气压很低, 这不但能产生最强的风, 低大气压还能使潮水高涨。 台风 所产生的巨浪能颠覆船、 危及交通安全和破坏海岸设施, 它所产生的暴雨亦能引致水灾、 山 洪和泥石流等等, 这会损害庄稼、 破坏房屋和危及生命, 给大范围地区人民的经济及财产带 来巨大损失。
台风的破坏面积较龙卷风更大,但它所产生的强风并非与龙卷 ) 一样是在小范围内集中 并剧烈旋转的。风眼处的气压低的原因与龙卷风云柱下端气压极低的基本原因相同。 虽然龙 卷风较台风更细小, 但它的云层较密及温度较高 (陆上的云层较高温因而较密), 其旋转风 速必会较剧烈, 加上云柱的体积小而集中, 其破坏力因而极强。
本发明认为台风与龙卷风可算是同一家族,因为自然界所产生的旋转风暴是几乎同一个 模式的。 由于巨大台风形成的过程与细小的龙卷风有相同之处, 两者都是由云层中心位置的 云热至极限之后冲上而产生, 所以本章不再写出热云冲上的过程。
本发明主要目的和技术是阻止台风或飓风、 龙卷风、 严重水灾和严重的城市空气污染等 等的形成, 但亦研究出了可削弱已形成了的台风或飚风的方法, 因此, 本章不但详细写出台 风或飓风的云层集结和形成过程, 还写出了其运行的过程。
到现时为止, 风眼中心气流平静的原因还未被确实解释, 这现象现时还被列为 「自然界 的神奇现象」。 本发明认为, 台风的风是 风眼处被强力吸上的, 风眼中心的气流平静是因 为气流是以旋转方式从风眼被吸上升的, 而旋转的气流必会紧靠风眼墙边上升, 这等于风眼 中心的气流会平静。
曾经有新闻报导说, 当风眼的前部刚越过某地区之后, 由于直径约四十公里的风眼中心 气流平静, 所以某区就有人出户外活动。 当风眼的后部在随后到达时, 有人就被极强的上升 气流吸上数米高, 同时亦被强风吹到十多米之外, 这证明上述的解释。
依据气象人员的观察而发现, 当台风开始形成的一刻, 台风云层的中心位置之下的海水 是会打转和带有大量旋转上升水气的, 而这情况正符合本发明所述: "台风的成因与龙卷风 的成因相似"的理论, 即是风眼之下带有强旋转风力和吸力。 由于上述旋转上升水气较龙卷 风的云柱稀薄, 加上风眼巨大, 所以只能从极远距离才能看到。 台风的能源是巨量的热云和在其下积聚的巨量热空气。巨大的 ·ί氏压圈内积聚着巨量的热 云和热空气, 特别云层最中心位置的云和其下的空气会更热, 而更热的云和空气会更快速从 各方向吸进云和空气, 这使云层中心位置和其 的温度更高和更密。 自然界产生台风的原因 是为了使巨大的台风云层降温及释放其下巨量热空气的上升压力。
如上文所述,在台风形成之前,处于活跃低大气压区内的极巨大台风云层就己在慢旋转。 由于云层越大幅、 越厚和越密就会越热, 因而, 其中心位置的云必是更高温的, 所以它能产 生更快速的 「云层内部对流」, 这会使中心位置的云的转速较快于非中心位置。 当处于最中 心位置的云热至极限时必会以旋转方式冲上,而热云冲上必会随即带动云层下的高压热空气 以较快的旋转速度被云层上的极低压空气强力吸上。被强力吸上的速度会续渐增加, 这会产 生离心力, 而离心力会在云层的内部迫开一条巨大的圆形通道 (风眼〕。
各类的风暴云层都是处亍一个巨大的活跃低压圈内。 「台风」、 「强热带风暴」 或 「热带 低压」 其实是同一类或同一幅云层, 其分别只是强与弱之分别。 当 「热带低压」 或 「强热带 风暴」 大大增强之后就有风眼出现而成为台风。 在台风减弱之后, 其风眼会消失, 这就再变 为 〈热带 ί氏压〉, 而热带低压亦能为陆地带来大量雨水。 基于上述的解释, 本发明把风眼视 作台风的 「心賍」。
由于海水较陆地恒温, 因而, 陆上空气很快 ^温和降温。 基于这理论, 从海面上^的空 气和云是较恒温的。 陆地上的环境较复杂, 各处的温差很因而大, 例如, 陆地上有高原、 高 山、 沙漠、 湖泊、 河流、 山谷和高热的大城市等等, 它们吸收和反射热的强度各异, 空气的 温度和上升的速度亦各异,这会使陆地上空的云的高度、温度、流向和流速不一致和不稳定。 亦由于较热的陆上云层较快速增至极密和极高温, 这容易先引发暴雨或剧烈的龙卷风, 所以 陆地上的低压圈内不能有稳定的环境孕育成极大幅而厚的台风或飚风云层。
热带海洋上的海水最热的期间是曾经被直射的阳光照射约三十天之后的期间。在北半球 的夏季, 由于当太阳抵达北回归线之后再返 0时, 这一往一返的双程就等于太阳停留在回归 线附近的时间较长 〔较太 i¾单程途经赤道的时间长〕。若加上日长夜短和海水是恒温的因素, 所以邻近回归线的北纬十度至二十五度之间的海洋在中夏至中秋期间最高温,而这期间所形 成的台风或飓风因而最强。
虽然 〈赤道〉 是距离太阳最近的地区, 但没有上述往反回归线的双程因素, 加上赤道区 有独特的较强热气流上升的因素, 所以赤道区不适宜孕育巨大的台风或飓风云层。
由于高纬度的北大西洋较狭窄, 其海水与北冰洋较冷的海水相通, 因而, 海水和其上的 空气温度不高。 北大西洋亦与两边的大陆距离较近和是同一纬度, 而海与陆地太近就会形成 近距离的大温差, 这会使空气和云层的流速较高, 所以北大西洋是经常风高浪急的, 而风速 高就难孕育飚风云层。 温差大并会使两岸产生强风灾 〔非飚风〕。 事实上, 北大西洋两岸经 常出现时速达百公里以上的强风。
基于上述的解释, 地球上能形成台风的海洋区并不多, 例如, 太狭窄、 太接近大陆地、 与大陆地同一纬度、 纬度太高或太低的海洋区都不容易孕育台风。 如上文所述, 小海岛上空 较容易集结云层, 因而, 在大海洋上的羣岛区较容易孕育巨大的台风云层。 事实上, 大部份 的台风或飓风都是在大海洋的小岛上空形成的。小岛上空容易孕育台风云层的事实符合本论 文前述 「山顶或热海岛容易集结云层的理论」。
中大西洋和太平洋较宽阔, 这两处与高温的大陆并不是处于同一纬度, 因而不会形成近 距离的大温差。 事实上, 这两处海洋上的气流平日是较北大西洋平静的。 西北太平洋的羣岛 较多, 该处因而容易孕育巨大的台风云层。
快速移动的云层较难孕育强台风。例如,在春末至中夏, 由于不恒温的大陆空气较快热, 而恒温冷海洋上的空气较慢热, 两者的温差因而较大, 所以大陆较高温的空气会较快速吸引 海洋较低温的云, 这种快速移动的非圆形云层只会为陆地带来大量雨水或只会形成〈热带低 压〉 而甚少会形成强台风。 在中夏至中秋期间, 恒温的海水已被晒热, 这就与大陆的温差较 接近, 因而, 海洋上的云就不会被大陆快速吸引。
不恒温大陆的日夜温差较大, 而海洋则否。 不太接近大陆的热带海洋区的气流较平静, 因此, 在上述海洋区就能容易孕育成极大幅、 厚、 密和高温的台风云层, 这种云层之下并能 持续和平稳地产生和储存巨量热空气。 极大幅云层的 「云层内部对流」 会较强烈, 因而会较 圆形, 而圆形云层的中心位置必是较热的, 所以会形成有中心风眼的台风。 事实上, 在上述 期间, 海洋上形成的极大幅云层多是较圆形的。
在日长夜短的夏季, 恒温的热带海洋能在日间和晚间蒸发大量云而形成极大幅的云层。 日夜都高温的海水亦会使云层本身和其下的空气温度长期保持恒温及高温。在中夏至中秋期 间, 处于热带太平洋和中大西洋的海水温度己高达摄氏约二十七度或以上, 该温度的海水可 深达六十米并是恒温的, 因而能在日间和晚间恒稳地产生高温的水气上升成云。
海洋上空的云层距离海面很近 (海拔低), 这等于云层和其下的巨量空气会相对地更高 温、 高压和高密度。 由于处于低海拔因而高温的云上传热量到高海拔的冷云的速度较稳定和 平均, 这不容易激发下雨, 因而海洋环境会有更长的时间让云层越积越大幅和越厚, 其幅度 直径可达千公里, 其厚度可达二十公里或以上。 当然, 这种巨大云层亦必会自行压缩至更密 和更高温, 这会使大气压降至更 ·ί氏。 事实上, 强台风的气压是极低的。
巨大的台风云层必是处于低压圈的内围, 其下亦必积存着巨量的热空气, 而这些热空气 和低大气压会续渐扩散到低压圈的外围。 由于 ί氐压圈是巨大的, 而其外围距离低压圈的内围 较远因而不会出现强风, 所以其外围多会因无风而闷热。 事实上, 在台风形成或来临之前, 低压圈的外围多是无风和闷热的。
夏秋期间所形成的台风多会被西北或北面较热的大陆吸引,而秋末之后的台风较多在海 洋上或向西方移动而较少登陆北方的大陆,其原因是不恒温的北方大陆在中秋之后会出现冷 雨或寒流, 大气压因而会较高, 这就不能吸引台风。 例如, 二零一王年十一月初的超强台风 〈海燕〉 是偏西方(菲律宾) 移动的。 该年的台风数量较前一年增加了六个和海燕的出现证 明本发明的理论: 地球暖化和云量增多必会产生更多和更严重的天气灾难。
已形成的台风 〔低压圈〕 是被最近距离的上下平均温度较高或大气压较低的前方吸引而 一步一歩地以不定方向移动的, 因而台风的去 ^不确定。 在台风季节, 由于大陆沿海地区的 上下平均温度一般还是高于海上的上下平均温度的, 所以整个低压圈会被大陆吸引而移动, 而处于低压圈内围的台) 只不过是被动地跟随整个巨大的低压圈移动。上述解释说明为甚幺 大气压极低的台风还会横向移动而不停留在极低压的孕育区。
基于上述因素, 一般台风或飓风几乎都会向西面的海洋或岛国、 西北方或北方的较高温 大陆移动而不会向大海洋的东岸移动。 但当出现双台风时, 若两者 (两个巨大的低压圈〕 距 离近时, 其中一个台风或会因 〈低压互相吸引的效应〉 而暂时 ^东移动。 当台风遇上大陆突 发的寒流或高大气压时,就会转向较恒温因而较高温的海域或向邻近的东面的较高温岛国移 动。
由于在大海洋形成的台风都被西北方吸弓 这等于大陆近海的东南部会较多雨水, 所以 大陆的东部不会形成沙漠。但大陆的西部和远离海岸的低海拔内陆就会因少雨及高温而形成 沙漠, 而事实确是这样。
台风云层除了能在白天吸收太阳和从海面上^的热之外, 在夜间, 恒温的热海水亦能提 供高温和大量热水气以补充台风的热量和云量, 这就能为台 ) 制造稳定而良好的生存环境。 由于海洋上的云量和热量稳定而充足, 这能长期补充台风的能源, 因此, 台风能长期保持低 大气压及高温, 因而能持续吸进周边的云和空气, 并能长时间有充足的热气流经由风眼旋转 上升以维持风眼的圆形, 所以持续下雨的台风还可在海洋上生存较长时间。
台风云层之下的气流越高温, 气流从风眼旋转上升的速度就越快, 这会使风 K越圆、 越 细小和开眼。 而龙卷风的寿命只是以分钟计, 因为龙卷风只是一条极密的旋转云柱, 一但云 柱的密度不足或被相反的气流拉曲而断裂, 龙卷风就会消失。
热气流被风眼吸上所产生的旋转力量会强力续渐带动风眼周围的云旋转至快速。旋转力 量能把该直径以百公里计或千公里的巨大云层续渐牵引成一个旋转的圆形云圈〔以下筒称暴 风圈〕。 由于暴风圈中心位置的云层较密和较热,加上风 K的极低压及其高速旋转所产生的离心 力等等因素, 使这处的云的凝聚力和吸力更强, 所以暴风圈的云不但不会散开, 还会强力吸 进大量云, 因此, 暴风圈中心位置的云能经常维持结实状态。 在地球己暖化而海水温度较高 和云量较多的近代, 暴风圈中心位置的云必会更厚、 更结实和更热, 台风因而会更强或会更 容易增强。
由于台风云层下的热空气都是集中经由风眼被高空的极低压强力吸上云层之上的,所以 风眼就等于是一个泄走云层下热空气的通道或蹲颈。事实上, 高空无穷无尽的吸力是极强大 的, 而被强力吸上 的气流经过蹲颈时必需更快和更集中, 而被快速吸上升的气流必需得到 快速填补, 因而, 风眼所途经之处会出现持续而极强的风。
上述的解释说明, 广阔的极低压天空就是台风云层下所积聚的巨量热空气的出处。 台风 云层下的热气流是经由 ) 眼被吸上 的另一证明如下: 当还处亍某区东方的 j 眼未到达某区 之前, 某区的强风是吹向东面的。 一但风眼越过了某区而即时变为处于某区的西方之后, 某 区的强风是会即时转吹向西方的, 这证明风是经由风眼被吸上的。 事实上, 台风的强度评级 主要是以风眼与某区的距离远或近而定。
台风的云层越大幅、越厚、越密和越热, 大气压会越低, 其下的热空气亦会越多和越热。 大气压越低风速就越高, 而被吸上的热气流就必需以更高速通过风眼。 空气被高速吸上就必 会高速旋转, 这会产生向心力, 而向心力会使风眼变小和极圆。 旋转上升的气流越高速, 风
K内的云被旋转力牵引的力度就越强,这会使风眼越畅通,而畅通等于风眼内是无散云的〔即 是开眼的〕。 事实上, 当风眼变小、 极圆和开眼的期间, 台风的风速会较强。
风眼的直径一般可宽约四十公里, 高度可达二十公里。 当风眼因 「向心力」 而变细时, 被吸上升的气流就会因砖颈较细而必需更快速通过, 这与河流需要经过较陕窄的山谷时, 其 流速必需加快以保持原本的大流量的原理有点相同。
「热带低压」没有高速自转的圆暴风圈和风眼, 虽然它所产生的风并不是像台风一样经 由明显而细小的风眼被快速而集中地吸上, 但因为各种风暴都是一股横向移动的低大气压, 因而亦会使其途经之处 m现强风。
无风眼的 「强热带风暴」、 「热带低压」和暴雨云层所产生的强风亦是由其下的热气流经 由云层的最热中心位置被高空吸上所产生。 在地球己暖化的近年代, 当一个 「强热带风暴」 或 [热带低压」 在热海洋上遇上较长时间的高温时, 亦可增强成为有风眼的台风。
台风的强或弱是要依据上升热气流的温度和速度的高或 ·ί氏而定的。由于台风自然落下的 雨量并不容易降低台风云层之下的巨量恒温海水和上^热水气的温度, 因而不容易降低台风 云层的温度、 密度和减少云量 〔但被人为加大的降雨量则较容易〕, 所以, 部份在海上运行 的台风都能维持足够的能源直至登陆, 但部份台风则会在运行的途中减弱或消失。在地球已 暖化的近代, 大部份台风都有足够的能量登陆。
台风一旦登陆后, 就会因陆地的日夜温差较大、 云量少和陆地环境变化大, 因而就会即 时减弱或变成为 〈热带低压〉, 但热带低压亦会为陆地带来大量雨水。
台风的快速自转并不是依靠低压圈本身原本已慢旋转的动力驱动, 如果是, 风眼就必不 会极圆形, 而只有持续快速旋转的气流通过风眼才能维持风眼的极圆形。 上述的理论证明快 速旋转的台风是被从风眼快速旋转上升的热气流带动而旋转的。
若长时间将凝聚力强的云层中间逼开一个巨大而圆形的风眼,就需要有一股快速而强力 的旋转气流持续通过和压迫风眼墙边的云, 这会产生离心力或向心力。 因而, 风眼墙边的云 需要承受很大的向外推压力和牵引力, 因此, 这处的云层必需经常保持极密状态。
在台风形成之后, 它需要长期保持和依赖其已存在的自转速度以稳定地在海上运行, 所 以台风需要经常维持其自然形成的风 K的宽度或圆形。密度高的云层才能提供更强大的牵引 力或带动力, 而牵引力所依靠的物质只是非固体的密云, 因此, 风眼墙和其周边的云必需有 足够的密度才能使和保持风眼极圆形。当台风的能源不足时,旋转上升气流的速度就会减弱, 因而会失去 「离心力」 或 「向心力」, 即是失去风眼, 因此, 台风就会减弱而成为 「热带低 压. j, 这就是某些台风会自行减弱或消失的原因。
由于当风眼消失后就没有了砖颈 〔通道〕 连通云层上的极低压空气, 这就没有了集中而 快速的高压热空气从风眼上升, 因而就没有超强的风速, 所以人为地使风眼扩大、 变形或消 失可减低台风的风速或甚至 消灭台 j 。 事实上, 某大国曾经试用一些方法削弱飓风。 下文 详述。
部分台风或其它类风暴在稍为减弱后或会再增强,而再增强的条件是必需在运行的途中 遇上有利于其增强的环境, 例如在途中长时间经过较热及多云的海面, 或台风停留在一个最 热的区域, 然后续渐在该处再积聚能量而增强, 例如在北美洲有高温海水的 〈墨西哥湾〉 或 亚溯的南海。
由于 〈墨西哥湾〉 是处于北美大陆高热的南部和它几乎被陆地包围, 较热的海水难于流 出及冷海水难于流进, 因而会较高温。 同一纬度的 〈南海〉 的地理环境近乎相同, 所以该两 处的海水较高温和云量较多。事实上, 曾经有不少台风或飓风在上述两处停留之后而再增强 或回头。 台风会回头是因为它的后方海面的上下平均温度高于或大气压低于其前进方的大 陆。
人工催雨的效果及作照
能形成上述天灾的云层都是颇高温因而极密的。人工催雨能先使云变成雨滴, 由于雨滴 从处于高空较冷的云落下, 所以云层越厚或越高, 雨滴就越冷。 冷雨滴会在下降途中吸纳中 低空的云变成更大的雨滴。 大而冷的雨滴会使催雨区 (云层的中心或最热位置) 的热密云降 温。
当上述位置的热云被人为降温后必会被其旁边未被降温的云吸引而向周边扩散,而冷云 与热云互相接触再而会受冷凝结成雨, 下雨区因而会自行扩大。 事实上, 每当一大幅 「雷暴 雨密云层」 的中心位置或最热位置一但开始下雨之后, 其旁边的云会随即相继下雨。 下雨会 使云的密度减低, 因此, 云层下的闷热空气必会经由密度己减低的位置正常地上升而泄走。
在夏季, 下雨先会使热的地面产生潮湿热空气往上冲, 冲上的热空气会使密云凝聚而自 行引发下雨。潮湿热空气快速冲上会引发雷电,而雷声震动密云亦能引发催雨区自行下大雨。
下大雨并可快速降低地面和地面空气的温度。 由于高空的温度由地面上升的空气提供, 所以地面降温等于会使高空的云层降温, 云层因而再会受冷成雨。 在高空的云层降温之后, 云层上部的冷云并会向下压缩云层下部的云, 使云层增密再而继续下雨。 在一般的雷暴云层 下雨之后, 暴雨区所剩下的冷云会快速流出较低温的暴雨区而使这区出现蓝天, 这就是所谓 的 「雨过天晴」, 而闷热的情况亦会消失。 上述效果就能使云层无条件产生上述的天灾。 阻止上述天灾形成的方法
本发明的目的是为人们提供一种能预先阻止龙卷风、 台风、 强降雷暴雨、 强风切变和严 重的城巿空气污染等等形成的方法。 本方法是简易的人工催雨方法。
上文已详细解释了上述各天灾的成因及形成的过程、 云的特性及其集结的规律、 活跃低 大气压的成因及其形成的过程、 云层增密及云层自行压缩的过程、 云层中心或最热位置的确 认方法、 可能形成龙卷风或台风的云层特征、 地理位置及环境、 风眼的特性及其作用和台风 在海上运行的过程等等。 因此, 阻止上述天灾形成除了必需用卫星和仪器测量之外, 人为的 分析亦是需要的。
现代的气象学和气象卫星等科技己先进, 气象人员都能测量出某区的大气压度、地面及 云层下空气的温度及湿度的升或降、 对云层的幅度、 厚度、 密度、 温度、 流向、 停留积聚的 位置、 云层最厚及最密的位置、 是否会出现云层强对流等等, 并都有了记录。
由于上述天灾都是从极密的高温云层中产生,所以只要设定适当的催雨位置和用适当的 人工催雨方法阻止云层对流或云层内部对流, 以防止云层增至极密、 极厚和极高温, 这就可 阻止上述天灾的形成。
云层集结过程的快或慢和云层的温度高或低等等需视乎当时的季节、 地理环境、 气温、 时段、 大气压的高或低和云量多或少等等, 因而难亍定立一致的数据。
在雨季或非雨季, 例如在无强季候风的月份, 一些处于低海拔的现代化大城市, 例如中 国的北京, 其温度都会较其周边地区高因而较容易局部集结密云层。 只要预先或适当地把云 层变成雨水就可冷却云层和其下的空气, 这不但可减低云层的密度, 还可使集结于城市上空 的云层流出城市。 此方法能解决 PM2. 5和水浸城的问題。
云层中心位置或最热位置的界定并不需要很大。 依据上文的各种理论, 本发明把巨大而 多呈圆形的台 ) 云层中心位置的直径定为二十至四十公里, 优选二十五公里。把多呈长形的 陆上龙卷风或暴雨云层的最热位置的直径定为十至三十公里, 优选十五公里, 因而只需在中 心位置或最热位置作短暂的人工催雨就能阻 上述天灾的形成。
阻止上述天灾形成的方法主要是在一幅将能引发上述天灾的云层渐渐发展或孕育,包括 「云层内部对流」 而达至相当的密度、 厚度和温度, 或该云层将会吸引邻近另一幅云层(即 是云层对流)之前, ffi人工催雨方法减少该云层的云量、 降低云层的温度及密度等等, 这方 法是筒易和安全的。
采 ffi以下技术方案就可以达到以上的目的, 本技术方案的方法包含以下歩骤: 本发明己研究出容易形成上述各种天灾的地理位置、成因及其形成的过程等等。 当有经 验的气象人员充份理解本发明的理论、 解释、 方法和图解等等之后, 可先用现有的设备和技 术作现场测量而会知道某云层的实际情况, 并分析该云层的发展速度, 因而会知道该云层是 否会产生上述天灾, 并能确定是否需要催雨或需在何时进行催雨。
在容易产生台风、 龙卷风和特强雷暴雨等等的季节和地区, 确定某云层将会有条件形成 上述的天灾,例如,离地面或海面低的大幅厚密云层容易产生上述天灾。在云层渐渐发展〔包 括云层对流和云层内部对流) 至更大幅、 更密、 更厚和更热而将会自行产生上述天灾之前, 即是云层中心位置的云和其下的空气温度和湿度快速上升而自行快速冲上之前, 于催雨带 3 全范围内的云层中上部或顶部投下催雨剂作人工催雨。
在密云层的顶部投下的效果较好, 例如, 顶部的云降雨及降温之后会下降或压下, 使云 层进一步增密而持续下雨。 如上文所述, 台风云层多孕育在热带海洋的小岛上空, 因而可在 小岛上设立催雨基地。
为了使本发明更加清晰和便亍理解, 下面通过 图对其作进一步详细说明。 附图是本发 明实施催雨带的位置示意图。
图 1是根据本发明的第一实施倒、 近似圆形台风云层 1的示意图。其中有一个较大的中 心位置 11和两个较小的非中心位置 12。 图 2和图 3分别是图 1的中心位置 11和非中心位 置 12的放大示意图。 图 4是根据本发明的第二实施例、 长形的龙卷风或者暴雨云层 2的示 意图, 其中有两个最热位置 21。 图 5是图 4的最热位置 21的放大示意图。 并且, 图 2、 3、 5所示出的中心位置 11、 非中心位置 12、 最热位置 21均为催雨区, 催雨区中有不同对向、 不同大小及长短的催雨带 3。
自然界是以圆形模式活动的。用长条形的催雨带 3的其中一个目的是防止热云和其下的 热空气以旋转的模式冲上, 以避免产生高速旋转上升的气流或乱流。 催雨带 3的对向、 长短 或大小是依据理论而设定的, 实际情况所需的长短或大小要依据云层的大小而可增可减。 δ口 果催雨带 3接近机场或飞机航道, 可把催雨带 3的对向或位置改变, 使其远离机场或航道至 少五公里。
台风云层 -的催雨带 3需南北对向的原因是一般远离大陆的大海洋气流或云层多是先被 西方较热的空气吸引前进的。 由于向西方前进的速度亦较快, 所以南北对向的催雨带 3的云 受冷之后会以大面积向西方移动或扩散, 使大面积的云受冷成雨。 当然, 催雨带中的冷云亦 会向四方扩散。
催雨带 3设置在中心位置 11的正中心点两旁的原因是依据上述的「云层内部对流原理」 而定的。 因为中心位置 11处的正中心点是最热的, 所以, 被催雨而降温的云会更快速被正 中心点的热吸引, 使正中心点的热云更快受冷成雨。
在强台风季节, 海洋上集结的云层较多。 当某幅最大因而最热的云层续渐发展成为 「热 带低压」 或 「台风」 的 「主云层」 之前, 它必会强力吸引其旁边的云层而成更大幅、 更密和 更热,并会在低压圈内由初始集结阶段的非圆形续渐被上文所述的「慢旋转」影响和会因「云 层内部对流」 的压缩而向圆形发展, 其己 「慢旋转」 的速度并会续渐轻微地加快。
上述台风云层并会续渐增大、 增厚、 增密和增温, 其下的空气亦会续渐增温, 其湿度亦 会增加。 虽然, 台风的产生过程较龙卷风的产生过程慢, 但人工催雨可在这阶段实施。 当上 述巨大的云层被催雨之后亦会被陆地吸引而为陆地带来大量雨水。
催雨带 3的长短和大小可根据云层的幅度而定, 例如, 在直径约七百公里的台风云层 1 的中心位置 11设置两条长 25公里, 宽 1. 2公里的催雨带 3。 若云层的直径约一千公里, 可 增加催雨带 3的长度至 30公里, 宽 1. 5公里。 如果云层更巨大, 可另在距离中心位置 11边 界的东方约 十公里处的两个较小非中心位置 12中各设置一条长约 8公里, 宽约 0. 5公里 的催雨带 3, 然后在催雨带 3上筒易地投下催雨剂。 投催雨剂的量和投的时间长度需依照实 际情况而定。
在夏季, 由于陆上云层的温度较海洋云层高和陆上的地理环境差异大, 因而, 陆地的气 候差异亦大, 其气流亦不稳定和会较快速, 并容易产生云层对流, 所以龙卷) 或暴雨云层的 集结过程较快或较急进。
陆上龙卷风或暴雨云层 2能有多个最热位置 21。 各个最热位置 21的云层都会各自产生 「云层内部对流」而越积越密和越高温,直至其温度升至极限而产生龙卷风或特强雷暴雨〔能 产生龙卷风的云层会离地面较低〕。 事实上, 在上述的特大平原上, 一幅巨大的云层是可能 会产生多个龙卷风的。
由于龙卷风或特强雷暴雨可在云层对流约十五至三十分钟之后快速形成,而云层对流可 随时发生, 所以, 最好在两幅云层对流之前, 亍其中最大和最热的一幅云层 2的最热位置 21作简单的人工催雨, 使这幅云层 2降温而无能力吸弓 i另一幅云层。 预先催雨亦可预先使 云层、 云层下和地面的空气降温, 地面降温并可使云层降温。 可在云层中的最热位置 21中 设定两条长 15公里, 宽 0. 8公里的催雨带 3, 然后简易地在其上投下催雨剂。
由于陆上云层的流向不固定, 所以催雨带 3的对向要依据云层的流向而设定, 例如, 如 果云层是向南或向北流动, 催雨带 3就需要东西对向, 否则就要南北对向或其它对向。 催雨 的方法可采 ffi飞机投下或喷洒催雨剂, 亦可用火箭发射催雨弹到云层或用镭射照射等等方 ¾。
在云层的中心位置 11、 非中心位置 12或最热位置 21制造催雨带的目的, 是等亍在云 层中制造人为的¾气通道, 以释放云层下的大量热空气和降低其温度, 并会降低云量、 云的 密度和温度等等。这行为能使形成台风、龙卷风、雷暴雨或强云层对流等等的自然条件消失, 亦会使已降温的云层流向邻近的高温区或千旱区。
采 ffl本发明来削弱或破坏已形成了的台 J¾的方法
本发明主要是阻止台风或颶风形成。 若未有 ffl上述较筒易的人工催雨方法阻止, 可采 ffl 下述的方法削弱台风或飓风。 于本发明已研究出了台风的确实成因和其运行的全过程, 所 以认为削弱或破坏已形成了的台风、使台风改道或阻止其登陆在理论上是 行的。 但这行动 要付出较大的代价, 因而先要确定台风会侵袭某特别重要的地区, 例如重要的城市或某区正 在有重要的体育活动、 政治活动或军事演习等等才可施行。
在过去, 某大国曾经有专家建议用核弹破坏飓风的风眼, 当然, 用核弹必会有严重的副 作^。 该国亦曾经用了只向风眼墙边投下大量碘化银 〔催雨剂〕 的方法, 但这与本发明的催 雨位置和方法不同。上述投碘化银的行动证明, 削弱己形成了的台风是有必要和有经济效益 的。
图 6是根据本发明的第:三实施例、 台风的示意图, 图 7是图 6的局部放大图。 如图 6和 图 7所示, 在这种情况下, 已经形成的台风 4, 其云层已在快速旋转和是圆形的, 并形成风 眼 41。
上文已解释, 由于风眼 41的墙边会有快速旋转上升气流, 风 Κ亦会有下沉的散云或重 气流, 再加上 «风是正在横向移动的因素等等, 这会影响催雨的效果和或会危及投催雨剂的 飞机的安全, 所以风眼墙边不是适当和有效作长时间投下大量碘化银的位置。 据说, 当时在投下大量碘化银之后, 飚风的威力确实是轻微下降了一点。 但由于该飓风 突然转吹向一个未有预防的地区并造形更大的损失,所以投碘化银的方法和任何削弱飓风的 行动因此而永久停止。
上文已详细说明了台风突然转向的真正原因, 上述飓风突然转向极可能只是巧合。在理 论和事实上, 台风本身是会随时自行转向的。 台) 只是跟随一个直径上千公里的低压圈移动 的, 因此, 突然转向的原因应该与只在直径约四十公里的风眼处投下大量磯化银无关。
某些台风是会自然减弱的。削弱或破坏己形成了的台风的方法是先利用太空卫星追踪和 监察台风的去向, 分析其去向的途中环境会否会使其自然减弱。 若台风不会自然减弱而又朝 着重要的地区移动, 就可用本方法削弱或消灭台风。
自然形成的风眼 41的大小对台风是重要的。 巨量的高压热空气从风眼快速旋转上^所 产生的旋转效应、 离心力或向心力会压迫风眼墙和其旁边的云以维持) 眼的圆形, 这种强大 和自然的压迫力是台风必须的, 因为若没有高速旋转上升的气流, 就没有强大的压追力以保 持风眼 41自然形成的宽度和极园的形状。
在高速旋转上升气流经过风眼产生了稳定的 [离心力」 或 「向心力」 的同时, 风眼墙旁 边的密云必然承受着强大的「 外推压力和牵引力」, 使围绕风眼 41的云层成为最密或最结 实的云层。
在理论上,自然形成的推压力和牵引力对台风是必需和重要的,如果当这处的云的密度、 温度和量度被人工催雨方法快速或突然减 ·ί氏之后, 向外的椎压力必会容易将已被减密了的云 向外边推压而使风眼扩大, 而人为把) 眼快速扩大或变形对台风的生存是极不利的。 例如, 当台风的风眼突撞上 〈台湾〉 最高的 ώ而变形之后, 台风的强度是会被降低的。
台风云层的厚度和密度高, 其风眼 41的直径亦大, 加上台风本身是下雨的, 如果要在 海上增加其下雨的量度和降低其温度,就需在最适当的催雨位置和用较长的时间投下强力的 催雨剂。
本催雨方法是尽量在台风云层较低温的期间, 在距离风眼墙边之外约 600至 1000米之 间的 400米內的整个空间, 以环绕风眼 41的方式, 如图 6和图 7, 以持续和密集地投下大 量催雨剂以加强其降雨量, 直至风眼墙边的云被上述的推压力续渐向外推压, 使风眼的总直 径被扩大 (λ 5〜4公里为止, 优选扩大 2公里。
指定在距离风眼墙边之外约 600至 1000米之间的 400米位置催雨的原因是当风眼墙边 的云被推压而已使风眼续渐慢慢扩大之期间,亦必需维持在距离风眼墙边 600米的位置继续 催雨, 直至风眼的总直径被扩大 2公里为止。 如有必要, 可扩大多于 2公里。
扩大 2公里的原因是: 例如风眼 41的直径是 40公里, 若人为地从风眼墙向外扩大 〔推 压〕 1公里, 即是 1公里乘双边, 这等于把风眼的总直径扩大至 42公里。 周边加大 2公里 不等于只加大了 20分之 1, 因为在周边 2公里的空间是较大的。
若风眼 (砖颈〕 被人为扩大, 旋转上升的风速便会被降 ί氏。 这原理是等于把一个吹发器 的细小出气口换上一个大出气口, 这会即时减低其出气的速度。 风速降低等于离心力或向心 力就会变弱, 这会使风眼不能维持细小或极圆形, ) 眼随后就会续渐变形或消失。
上述催雨方法及催雨位置除了能使风眼扩大之外, 还包含下述的重要作用。 当加强了上 述位置的降雨量时, 更密集而冰冷的大雨滴必会使该位置的极密云层急速降温而收缩, 这并 能减低该位置的云层的密度和云量, 因而, 云层下相当部份的热空气会先一步经 该位置上 升 〔释放〕, 这就能避免热空气全部集中在风眼上升, 这等于能减少经由风眼上升的空气量 和降低由风眼旋转上^气流的速度, 因而能破坏风眼的自然结构。 上述某国所设定的催雨位 置并没有这重要的作用。
由于云是软性的物质而且是大量的, 并不是某些能被即时破坏的结实物质, 加上台风亦 是慢增强和慢减弱的因素, 所以需要较长的催雨时间才能把风眼 4 _扩大 (例如需一至二小 时或以上)。 在理论上, 上述行动是有效、 安全和可简单操作的。 亦可用强力的大型镭射将 上述位置的云更快速除去。 风眼的扩大宽度并不需极度准确, 可用现代先进的镭射测量技术 测量其宽度。 风眼 41被扩大的宽度或催雨时间的长短可根据台风的实际情况而加或减。
本催雨位置和方法会更直接、 集中和彻底地降低风眼墙旁边的云层温度、 密度、 减少风 Κ墙旁边的云量和经由风眼上升的空气量, 并可降低气流旋转上升的速度, 因而能人为地使 风眼扩大。 当风眼失去其自然所产生的离心力就会变形或消失, 这会使台风变为一个无风眼 的风暴, 这等于能削弱或破坏已形成了的台风。
上述催雨方法及催雨位置足以削弱一般的强台风。超强台风的云层极巨大和极厚, 其下 的热空气亦更多和更高温(事实上, 某些超强台 j 会偶然出现双风眼以加快 it走云层下的更 大量和更高温空气)。 若要削弱超强的台风, 可另在距离风眼墙东面约 5公里处设定一条长 10至 15公里, 宽约 500米的催雨带 〔泄气通道〕 42, 如图 7, 并在其上持续和密集地投下 强化催雨剂, 以让巨量的热空气泄走。 亦可用强镭射消除 「泄气通道」 的云, 使云层下及其 附近的部份热空气先一步经由 「泄气通道」 上升。
用本发明使台风改道或阻止其登陆的方法
台风只是一幅巳在向前移动的云层或气体,它只会被近距离的上下平均温度较高或大气 压较低的前方吸引而一步一步以不定向地前进, 它并不似一辆汽车一样可隨意转九十度角、 停顿或回头。 由于台风已经过的海域的空气已被台风的雨水稍为降温, 所以台风是极少回头 的。 但极少数台风却会在稍作停留之后转角或 0头, 原因是当时其所处的海域 〔例如墨西哥 湾和南海〕 较高温, 而其前方的大陆却较其所处的海域低温或高压。 台风转角或回头的另一 原因是当它被另一个近距离的强低压圈吸引, 例如双台^。
如果台风的近距离前方大陆的大气压受到下大雨的影响而升高,或其前方的上 平均温 度因有冷风流入而急降, 台风是会转^和不能登陆的。 事实上, 当一些台风的前方大陆突然 出现冷空气, 台风是不能登陆的。
若台风正在吹向有重要体育、 政治或军事活动的区域而必需使台风改道或阻止台风登 陆, 基于上文的解释, 在理论和技术上, 若该重要地区已积聚有大幅的厚密云层, 可] ¾人工 催雨方法使该区下大雨, 预先降低该区大范围地区的上下平均温度以使台风改道。
基于台风移动的时速是十二公里计算, 在理论上, 预先催雨的时间是在台风所处的低压 圈到达该区之前约 十小时。 由于台风的移动速度会隨时变动, 所以时距要依据台风当时的 移动速度而定。
采用本发明阻止强降雨、 强雷电、 强风切变和严重空气污染形成的方法
密云层会形成 「强烈的温室效应」和会形成活跃低大气压, 这容易产生强云层对流和强 云层内部对流。 高温和低大气压会从周边吸进云及污染空气, 使云层更厚和更密, 因而能形 成雨滴特大和高度集中的局部性强降雷暴雨。 密云亦会阻挡污染空气正常地上升。
基于上文对太阳往反回归线的解释和其它解释, 在北半球, 回归线以南的地区在五至六 月份会较高温而会积聚大量云, 因而多强雷暴雨。七至九.月份的暴雨区多会集中在回归线及 以北的较高纬度地区。 高山和高热的大城市等等上空容易积聚云, 并容易成为云层的中心位 置或最热位置, 云层因而会更厚、 更密和更热, 因而容易产生特强雷暴雨。
若要阻止上述情况发生,需在云层将会形成云层对流或云层内部对流而自行产生大范围 特大强降雨之前找出该暴雨云层的最热位置,然后用人工催雨方法先在其中的一个最热位置 作人工催雨, 使该厚密云层分先后, 分区域和分时段下雨, 避免整幅巨大的云层积聚至更密 而自行形成特大的强降雷暴雨, 并在同一时间落下。
所谓 「雨过天晴」, 其原因除了下雨可使热云散开或消失、 空气降温之外, 还可使大气 压提升和使污染空气消失。 由于晚间云层的温度会下降因而容易受冷成雨, 所以人工催雨还 可选择在晚上, 这并可避免影响人民的正常生活。
地球上的一些地区每年都发生上述天气灾难,造成无数生侖的伤亡或数以百亿甚至千亿 元计的财产损失, 并能严重影响经济的发展。 人为预先释放由 「强烈温室效应」 所形成的热 空气上升压力当然胜于必会产生严重灾害的自然释放。 以现代的科技和生产能力, 大量和低 份地生产一些环保的催雨剂或其它化学剂, 以及改装一些飞机以用作喷射催雨剂并非困难和 昂贵的事。这比较天气灾难所造成的经济和人命伤亡的损失可以少几百甚至几千信, 而防止 人命的伤亡是至为重要的

Claims

WO 2014/154147 权 利 要 求 书 PCT/CN2014/074146
1、 一种阻止严重天气灾难的方法, 其特征在于, 包含以下歩骤:
(一) 利 ffi现有气象技术发现积聚有厚密云层的区域;
(二) 在所述云层中设定出最密、 最厚或者最高温的催雨位置;
(≡)在所述催雨位置设定一条或多条长形的催雨带, 并进行人工降雨, 使被催雨的云降温 而下雨, 降低云层的温度、 密度、 量度、 释放云层下的热空气, 被降了温的云流向其周边的 热云并使其相继降温而下雨, 从而使形成所述天灾的自然条件消失。
2、 根据权利要求 1所述的阻止严重天气灾难的方法, 其特征在于, 所述催雨带位亍最能使 整幅热云层快速降温的位置。
3、 根据权利要求 1所述的阻止严重天气灾难的方法, 其特征在于, 所述催雨位置位于所述 云层的正中心或最热位置。
4、 根据权利要求 1所述的阻止严重天气灾难的方法, 其特征在于, 在所述云层的正中心的 两侧设定催雨带。
5、 根据权利要求 3或 4所述的阻止严重天气灾难的方法, 其特征在于, 所述严重天气灾难 是台风, 所述云层中心点的直径为 20〜40公里。
6、 根据权利要求 3或 4所述的阻止严重天气灾难的方法, 其特征在于, 所述严重天气灾难 是龙卷风或暴雨, 所述热云层中最高温处的直径为 10〜30公里。
7、 根据权利要求 1所述的阻止严重天气灾难的方法, 其特征在于, 进行人工降雨的步骤包 括: 在所述催雨带位置的云层中上部或顶部投下催雨剂进行人工催雨。
8、 根据权利要求 1所述的阻止严重天气灾难的方法, 其特征在于, 进行人工降雨的步骤包 括: 在距离 j 眼墙旁边约 600〜 1000m的云层上空, 以环绕风眼的方式喷下催雨剂, 直至风 眼被人为扩大 0.5〜4公里为止。
PCT/CN2014/074146 2013-03-28 2014-03-26 阻止严重天气灾难的方法 WO2014154147A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016504469A JP6673543B2 (ja) 2013-03-28 2014-03-26 深刻な気象災害を阻止する方法
US14/781,025 US20160106045A1 (en) 2013-03-28 2014-03-26 Method of preventing serious weather disasters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310105246.0A CN103766180B (zh) 2012-10-19 2013-03-28 阻止严重天气灾难的方法
CN201310105246.0 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014154147A1 true WO2014154147A1 (zh) 2014-10-02

Family

ID=51625725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074146 WO2014154147A1 (zh) 2013-03-28 2014-03-26 阻止严重天气灾难的方法

Country Status (3)

Country Link
US (1) US20160106045A1 (zh)
JP (1) JP6673543B2 (zh)
WO (1) WO2014154147A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112036046A (zh) * 2020-09-08 2020-12-04 哈尔滨工业大学 基于地面自动气象站数据的台风有偏风眼半径计算方法
CN117872510A (zh) * 2024-03-11 2024-04-12 成都润联科技开发有限公司 一种气象数据分析方法、装置、设备及介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649915C1 (ru) * 2016-10-03 2018-04-05 Станислав Никифорович Даровских Способ воздействия на ураган (циклон, тайфун)
CN109597118B (zh) * 2018-10-17 2020-12-08 彭章义 一种预测地震位置和地震波波击范围的温度波圈板
CN110619109A (zh) * 2019-08-01 2019-12-27 中国林业科学研究院 一种高寒地区降水相态识别方法
US10914865B1 (en) 2020-04-20 2021-02-09 Northrop Grumman Systems Corporation UAVs for monitoring the intensification of tropical cyclones
CN111626595A (zh) * 2020-05-22 2020-09-04 安徽省人工影响天气办公室 人工影响天气作业效果评估方法
CN114419215B (zh) * 2021-12-29 2025-04-25 网易(杭州)网络有限公司 体积云的处理方法、装置和电子设备
US12234013B2 (en) * 2022-06-21 2025-02-25 Here Global B.V. Method and apparatus for determining navigation routes based on weather manipulation data
CN117475606B (zh) * 2023-12-27 2024-03-29 广东海洋大学 一种畸形波作用下半潜式平台波浪爬升的预警方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082311A (zh) * 1993-04-21 1994-02-23 黑龙江省人民政府人工降雨办公室 人工影响天气技术系统
CN1695431A (zh) * 2005-06-07 2005-11-16 廖意民 预防龙卷风、热带气旋、水灾和冰雹的方法
CN101530047A (zh) * 2008-03-10 2009-09-16 张国成 一种治疗“天气”的系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070158452A1 (en) * 2006-01-06 2007-07-12 Hofffmann Eugene J Tropical hurricane storm control system
US20100072297A1 (en) * 2008-09-24 2010-03-25 Savla Manilal J Method for controlling hurricanes
US20100264230A1 (en) * 2009-04-17 2010-10-21 Romanoff David B Severe storm / hurricane modification method and apparatus
US20110168797A1 (en) * 2009-07-20 2011-07-14 Neymeyer Calvin E Method of weakening a hurricane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082311A (zh) * 1993-04-21 1994-02-23 黑龙江省人民政府人工降雨办公室 人工影响天气技术系统
CN1695431A (zh) * 2005-06-07 2005-11-16 廖意民 预防龙卷风、热带气旋、水灾和冰雹的方法
CN101530047A (zh) * 2008-03-10 2009-09-16 张国成 一种治疗“天气”的系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112036046A (zh) * 2020-09-08 2020-12-04 哈尔滨工业大学 基于地面自动气象站数据的台风有偏风眼半径计算方法
CN112036046B (zh) * 2020-09-08 2022-09-06 哈尔滨工业大学 基于地面自动气象站数据的台风有偏风眼半径计算方法
CN117872510A (zh) * 2024-03-11 2024-04-12 成都润联科技开发有限公司 一种气象数据分析方法、装置、设备及介质
CN117872510B (zh) * 2024-03-11 2024-05-17 成都润联科技开发有限公司 一种气象数据分析方法、装置、设备及介质

Also Published As

Publication number Publication date
US20160106045A1 (en) 2016-04-21
JP6673543B2 (ja) 2020-03-25
JP2016522393A (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2014154147A1 (zh) 阻止严重天气灾难的方法
JP2016522393A5 (zh)
Gilliam Weather of the San Francisco Bay Region
Collins et al. Florida weather and climate: more than just sunshine
Allaby The facts on file weather and climate handbook
CN103766180B (zh) 阻止严重天气灾难的方法
Balasubramanian Extreme climatic (weather) events
Farndon et al. Weather
Allaby Tornadoes
Ralston et al. What's the Weather?: Clouds, Climate, and Global Warming
Grant Cloud and weather atlas
Eagleman Understanding severe and unusual weather
CN1695431A (zh) 预防龙卷风、热带气旋、水灾和冰雹的方法
Denny Making sense of weather and climate: the science behind the forecasts
Hussain Tropical and temperate cyclones-causes and distribution
Oard The new weather book
Dunlop How to Read the Weather
Henning Field Guide to the Weather: Learn to Identify Clouds and Storms, Forecast the Weather, and Stay Safe
Cosgrove DK Eyewitness Books: Weather: Discover the World's Weather—from Heat Waves and Droughts to Blizzards and Floods
Vogt The atmosphere: planetary heat engine
Arnold Fly Guy Presents: Weather (Scholastic Reader, Level 2)
Furgang et al. National Geographic Kids Everything Weather: Facts, Photos, and Fun that Will Blow You Away
Allaby DK Guide: Weather
Clegg Weather Science: How Meteorology Has Gone from Folklore to High-tech
Silverstein et al. Weather and climate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781025

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14774576

Country of ref document: EP

Kind code of ref document: A1