WO2014150444A1 - Automatic plunger - Google Patents

Automatic plunger Download PDF

Info

Publication number
WO2014150444A1
WO2014150444A1 PCT/US2014/023281 US2014023281W WO2014150444A1 WO 2014150444 A1 WO2014150444 A1 WO 2014150444A1 US 2014023281 W US2014023281 W US 2014023281W WO 2014150444 A1 WO2014150444 A1 WO 2014150444A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
well
inner sleeve
ball valve
disposed
Prior art date
Application number
PCT/US2014/023281
Other languages
French (fr)
Other versions
WO2014150444A8 (en
Inventor
Alejandro Rodriguez
Original Assignee
1A&O Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 1A&O Technologies Llc filed Critical 1A&O Technologies Llc
Publication of WO2014150444A1 publication Critical patent/WO2014150444A1/en
Publication of WO2014150444A8 publication Critical patent/WO2014150444A8/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/12Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps having free plunger lifting the fluid to the surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • F04B53/146Piston-rod guiding arrangements

Definitions

  • a producing well extracts oil and/or natural gas from one or more subsurface reservoirs of hydrocarbons.
  • the development of a producing well includes drilling a borehole into the subsurface ground, casing the drilled borehole, and completing the cased borehole to enable production.
  • a variety of artificial lift systems may be used.
  • pumping systems used to increase the productivity of a well include, for example, pump jacks and positive cavity pumps.
  • Other equipment may also be used to increase the productivity of a well.
  • Differential gas pressure operated pistons, also known as plungers are also used in producing fluids from wells.
  • plunger applications a series of tubulars are placed within the well, extending from the producing reservoir to the surface. The cylindrical plunger travels within the tubulars between the bottom of the well and the top of the tubulars, where a well valve and a lubricator are disposed.
  • One or more springs are typically disposed in the lubricator to absorb the impact energy of the plunger when it reaches the surface.
  • the well may then be shut in for a selected period of time, thereby allowing downhole pressure to build up.
  • the plunger moves up in the tubulars pushing a volume of liquid to the surface.
  • the plunger travels down into the well to the bottom of the tubulars.
  • a downhole apparatus having an outer sleeve and an inner sleeve.
  • the outer sleeve has an inner diameter that includes a first plurality of teeth.
  • the inner sleeve has an outer diameter having an second plurality of teeth that correspond to the first plurality of teeth.
  • the downhole apparatus further includes a ball valve that is configured to rotate between an open position and a closed position as the first plurality of teeth engages the second plurality of teeth.
  • a downhole apparatus having an upper well stop disposed at the surface of a well and a lower well stop disposed in the well.
  • the apparatus further includes a plunger disposed within the well, wherein the plunger has a first sleeve having an outer diameter and a ball valve disposed on the first sleeve, wherein the ball valve is configured to rotate between an open and a closed position.
  • a method of producing a well includes moving a plunger having a ball valve axially downward within a wellbore.
  • the method further includes contacting the plunger with a bottom well stop disposed within the wellbore, wherein the contract between the plunger and the bottom well stop rotates the ball valve into a closed position.
  • the method also includes moving the plunger axially upward within the wellbore and contracting the plunger with a top well stop that is disposed within the wellbore. The contact between the plunger and the upper well stop rotates the ball valve into an open position.
  • Figure 1 is a cross-sectional view of an outer sleeve according to embodiments of the present disclosure.
  • Figure 2 is a cross-section view of an inner sleeve according to embodiments of the present disclosure.
  • Figure 3 is a side view of an inner sleeve according to embodiments of the present disclosure.
  • Figure 4 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 5 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 6 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 7 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 8 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 9 is a cross-sectional view of a well according to embodiments of the present disclosure.
  • Figure 10 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 11 is a bottom view of a plunger according to embodiments of the present disclosure.
  • Figure 12 is a cross-sectional view of a well according to embodiments of the present disclosure.
  • Figure 13 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 14 is a bottom view of a plunger according to embodiments of the present disclosure.
  • Figure 15 is a cross-sectional view of a well according to embodiments of the present disclosure.
  • Figure 16 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 17 is a bottom view of a plunger according to embodiments of the present disclosure.
  • Figure 18 is a cross-sectional view of a well according to embodiments of the present disclosure.
  • Figure 19 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
  • Figure 20 is a bottom view of a plunger according to embodiments of the present disclosure.
  • FIG. 1 shows a cross-sectional view of an outer sleeve of an automatic plunger according to embodiments of the present disclosure.
  • Outer sleeve 100 may be a generally cylindrical tubular formed from various metals, metal alloys, and/or composites, such as polymer and fiber glass.
  • outer sleeve 100 may be formed from steel, titanium, steel titanium alloys, or composites, such as polymer, carbon fiber or Kevlar®.
  • Outer sleeve 100 has an outer diameter 105 and an inner diameter 110. The thickness of outer sleeve 100 may vary according to the operational parameters in which outer sleeve 100 may be used.
  • the thickness of outer sleeve 100 may be, for example, less than 0.25 cm, between 0.25 cm and 1.0 cm, or greater than 1.0 cm. Those of ordinary skill in the art will appreciate that the thickness of outer sleeve may vary in accordance with one or more embodiments of the present disclosure.
  • Outer sleeve 100 includes a plurality of teeth 115 disposed on the inner diameter 110 of outer sleeve 100.
  • Plurality of teeth 115 may be formed from various metals, metal alloys, and/or composites, such as those described above. Additionally, plurality of teeth 115 may be coated with Teflon® (polymer coating), corrosion inhibitors, lubricants, hardfacing, or other surface treatments to further enhance the functionality and/or durability of plurality of teeth 115.
  • the number of teeth 115 may vary according to the requirements of the tool. In certain embodiments, there may be two teeth 115, one disposed on a top portion 120 of outer sleeve 100, and one disposed on a bottom portion 125 of outer sleeve 100.
  • outer sleeve 100 of Figure 1 has three teeth 1 15 on top portion 120 and three teeth 115 on bottom portion 125, however, top portion 120 and bottom portion 125 may have greater or fewer than three teeth 115 in alternative embodiments. Additionally, in certain embodiments, top portion 120 and bottom portion 125 may have numbers of teeth 115 that are not equal. For example, top portion 120 may have three teeth 115, while bottom portion 125 has four teeth. Those of ordinary skill in the art will appreciate that the number of teeth may vary according to design requirements of the tool.
  • Teeth 115 may also be spaced at selected intervals.
  • the space between teeth 115 may be less than 0.25 cm, between 0.25 cm and 0.5 cm, or greater than 0.5 cm.
  • the length of the projection of teeth 115 may also vary.
  • teeth 15 may project less than 0.25 cm, between 0.25 cm and 0.5 cm, or greater than 0.5 cm.
  • Teeth 115 may also be oriented around the inner diameter 110 of outer sleeve 100 in different configurations. For example, in one embodiment, teeth 115 may project around the entire inner diameter 110 of outer sleeve 100.
  • teeth 115 may be disposed on one a single side of outer sleeve 100, or on opposite sides (as illustrated) of outer sleeve 100.
  • teeth 115 may be a design consideration that may vary according to the operational requirements of the tool.
  • Outer sleeve 100 also includes one or more shoulders 130. As illustrated, outer sleeve 100 includes two shoulders 130, a top shoulder 133, and a bottom shoulder 135. As illustrated, the shoulders 130 extend around the inner diameter 110 of outer sleeve 100, however, in alternate embodiments, shoulder 130 may extend only a portion of the inner diameter 110 of outer sleeve 100.
  • the thickness and projection of shoulders 130 may vary according to the requirements of the tool. For example, in certain embodiments, the thickness and projections may be less than 0.25 cm, between 0.25 cm and 0.5 cm, or greater than 0.5 cm.
  • shoulders 130 should generally be capable of restricting longitudinal axial movement of an inner sleeve (not shown), which is discussed in detail below.
  • inner sleeve 140 is formed from metals, metal alloys, and/or composites, such as those described above with respect to outer sleeve (not shown) of Figure 1.
  • Inner sleeve 140 includes an outer profile configured to correspond to a ball valve (not shown).
  • inner sleeve 140 includes a generally cylindrical top portion 145, a generally cylindrical bottom portion 147, and a ball retention portion 150.
  • Inner sleeve 140 includes one or more shoulders 155 disposed on an outer diameter of inner sleeve 140. As illustrated, inner sleeve 140 may have two shoulders 155, a top shoulder 157 and a bottom shoulder 160, however, in other embodiments, inner sleeve 140 may have more or less than two shoulders 155.
  • Inner sleeve 140 also includes a gear 165 having a plurality of teeth 170.
  • Gear 165 having a plurality of teeth 170.
  • gear 165 is disposed proximate to ball retention portion 150 and is attached to a ball valve (not shown) disposed therein.
  • Gear 165 is configured to rotate, thereby opening and closing the ball valve (not shown).
  • gear 165 may have two teeth 170, while in other embodiments, gear 165 may have more than two teeth 170, such as three teeth 170, four teeth 170, five teeth 170, six teeth 170, or more than six teeth 170.
  • Gear may be configured to rotate in a single direction, such as clockwise or counter clockwise, or may be configured to rotate in both clockwise and counter clockwise directions.
  • the rotation required to actuate the ball valve (not shown) may vary according to parameters of the tool, such as, for example, the size, diameter, or configuration of the teeth 170 or outer sleeve teeth (not shown).
  • inner sleeve 140 includes a gear 165 attached to inner sleeve 140 by a rod 175.
  • Rod 175 may extend through inner sleeve 140 and connect gear 165 to the ball valve (not shown).
  • one or more seals 180 such as elastomeric, silicon, or other types of seals may be disposed around rod 175 and in contact with inner sleeve 140.
  • seals 180 may vary according to the operational requirements of the tool.
  • automatic plunger 90 has an inner sleeve 140, with all the components of the automatic plunger 90 disposed on the inner sleeve 140, thus not requiring an outer sleeve.
  • inner sleeve 140 includes a ball valve 180 having a two valve teeth 171.
  • valve teeth 171 may be disposed on substantially opposite sides of ball valve 180.
  • Valve teeth 171 are connected to inner sleeve 140 using valve rods 172.
  • Inner sleeve 140 includes one or more shoulders 155 disposed on an outer diameter of inner sleeve 140. As illustrated, inner sleeve 140 may have two shoulders 155, a top shoulder 157 and a bottom shoulder 160, however, in other embodiments, inner sleeve 140 may have more or less than two shoulders 155. Inner sleeve 140 also includes a top end cap 176 and a bottom end cap 177. End caps 176 and 177 hold inner sleeve 140, but allow inner sleeve 140 to axially translate. The axial translation of inner sleeve 140 causes the ball valve 180 to rotationally actuate, as shoulders 155 of inner sleeve 140 contact end caps 176 and 177.
  • single valve rod 172 may be attached to a single valve tooth 171 or a lever, such that axial translation of single valve rod 172 causes single valve tooth 171 or lever to move, thereby causing ball valve 180 to rotate between open and closed positions.
  • the actuation of automatic plunger 90 according to embodiments of the present disclosure is described in greater detail below with respect to Figures 9-20.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein.
  • Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110.
  • a plurality of teeth 115 are disposed on inner diameter 110 of outer sleeve 100.
  • Outer sleeve 100 also includes a top shoulder 133 and a bottom shoulder 135.
  • outer sleeve 140 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135.
  • springs 175 may be connected to outer sleeve 100 and one or more of shoulders 133 and 135. In other embodiments, springs may merely be placed between outer sleeve 100 and one or more of shoulders 133 and 135, or connected to one of outer sleeve 100 and shoulders 133 and 35.
  • the type of spring(s) 175 used may vary. For example, in certain embodiments, spring 175 may encircle inner sleeve 140, while in other embodiments, spring 175 may not encircle inner sleeve 140 and by disposed in one or more areas between inner sleeve 140 and outer sleeve 100.
  • the springs 175 may be held in compression with a spring lock (not shown).
  • spring locks may include mechanical retention devices, shoulders, clamps, etc., that are configured to hold a spring in compression and release the spring 175 when sufficient axial force is applied to automatic plunger 90.
  • the spring lock may hold a spring in compression until automatic plunger 90 contacts a well stop (not shown) disposed within a well (not shown).
  • Inner sleeve 140 includes a gear 165 having a plurality of inner sleeve teeth
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135.
  • a ball valve 180 is disposed within inner sleeve 140 and is configured to actuate upon rotation of gear 165. Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140.
  • automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90. In an open position, the arcuate surface 185 is located within the sides of ball retention portion 150 of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
  • inner sleeve 140 is allowed to move axially within outer sleeve 100.
  • the gear teeth 170 engage the teeth 115 of outer sleeve 100.
  • Engagement of gear teeth 170 and teeth 115 causes the axial movement of inner sleeve 140 to translate into rotational movement of gear 165.
  • the rotation of gear 165 causes arcuate surface 185 to move within ball valve 180, thereby actuating automatic plunger between an open position and a closed position.
  • gear 165 may occur in one direction or two directions.
  • gear 165 may only rotate clockwise or counter clockwise or in other embodiments, gear 165 may rotate both clockwise and counter clockwise.
  • upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown).
  • downward axial movement of inner sleeve 140 within outer sleeve may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown).
  • the actuation of automatic plunger 90 is described in greater detail below.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein.
  • Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110.
  • a plurality of teeth 115 are disposed on inner diameter 110 of outer sleeve 100.
  • Outer sleeve also includes a top shoulder 133 and a bottom shoulder 135.
  • outer sleeve 140 may include one or more springs 175.
  • springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135.
  • automatic plunger 90 includes a spring 175 disposed within inner sleeve between the plurality of teeth 115.
  • inner sleeve 140 includes a plurality of inner sleeve teeth
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135.
  • Automatic plunger 90 further includes a ball valve 180 disposed within inner sleeve 140.
  • ball valve 180 includes a ball seat 210, which holds arcuate surface 185 within inner sleeve 140.
  • Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140.
  • automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90.
  • the arcuate surface 185 In an open position, the arcuate surface 185 is located within the sides of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
  • inner sleeve 140 is allowed to move axially within outer sleeve 100.
  • the inner sleeve teeth 200 engage the teeth 115 of outer sleeve 100.
  • Engagement of inner sleeve teeth and teeth 115 causes the axial movement of inner sleeve 140 to translate into rotational movement of arcuate surface 185.
  • Arcuate surface 185 moves within ball valve 180, thereby actuating automatic plunger between an open position and a closed position.
  • upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown).
  • downward axial movement of inner sleeve 140 within outer sleeve may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown).
  • the actuation of automatic plunger 90 is described in greater detail below.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein.
  • Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110.
  • a plurality of apertures 215 are formed on inner diameter 110 of outer sleeve 100.
  • Outer sleeve 100 also includes a top shoulder 133 and a bottom shoulder 135. Additionally, in this embodiment, outer sleeve 100 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135.
  • Inner sleeve 140 includes a gear 165 having a plurality of inner sleeve teeth
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135.
  • a ball valve 180 is disposed within inner sleeve 140 and is configured to actuate upon rotation of gear 165.
  • Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140.
  • automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90.
  • the arcuate surface 185 is located within the sides of ball retention portion 150 of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
  • inner sleeve 140 is allowed to move axially within outer sleeve 100.
  • the gear teeth 170 engage the apertures 215 of outer sleeve 100.
  • Engagement of gear teeth 170 apertures 215 causes the axial movement of inner sleeve 140 to translate into rotational movement of gear 165.
  • the rotation of gear 165 causes arcuate surface 185 to move within ball valve 180, thereby actuating automatic plunger 90 between an open position and a closed position.
  • upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger 90 into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown).
  • downward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown).
  • the actuation of automatic plunger 90 is described in greater detail below.
  • an outer sleeve 100 is not required, as described above with respect to Figure 4.
  • gear 165 may be connected to one or more rods that terminate at an end cap (176 and 177 of Figure 4).
  • rods may be disposed between outer sleeve 140 and inner sleeve 100 and connect inner sleeve 140 to gear 165.
  • axial movement of inner sleeve 140 imparts rotational movement to ball valve 180 by causing gear 165 to rotate.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein.
  • Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110.
  • a plurality of electromagnets 220 are disposed on inner diameter 110 of outer sleeve 100.
  • the electromagnets 220 may be powered by a power source 225, for example a battery.
  • the power source 225 is disposed between outer sleeve 100 and inner sleeve 140, however, in other embodiments, the power source 225 may be disposed outside of automatic plunger 90 and connected to automatic plunger 90 through wiring (not shown). Power may also be communicated to automatic plunger 90 through external wiring (not shown), such as wiring disposed within a well (not shown) and provided from the surface of the well (not shown). Those of ordinary skill in the art will appreciate that power for electromagnets 220 may be provided according to any method known in the art. As illustrated, in this embodiment, power is provided from power source 225 to electromagnets 220 through internal wiring 230.
  • electromagnets 220 may vary. For example, a plurality of electromagnets 220 may be used, or in alternate embodiment, only a single electromagnet 220 may be used. In such a single electromagnet 220 embodiment, the single electromagnet 220 may be disposed in a central location 235 of outer sleeve 100. In still another embodiment, two electromagnets 220 may be used. In such an embodiment, one electromagnet 220 may be disposed above the gear 165 of inner sleeve 140, while a second electromagnet 220 may be disposed below the gear 165 of inner sleeve 140.
  • Outer sleeve 100 also includes a top shoulder 133 and a bottom shoulder 135.
  • outer sleeve 140 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135.
  • Inner sleeve 140 includes a gear 165 having a plurality gear magnets 240 disposed on gear 165.
  • Gear magnets 240 may be either electromagnets or rare earth magnets.
  • gear magnets may include neodymium magnets, neodymium-iron-boron magnets, and magnets formed from, for example, BaFei 2 0i 9 , MnBi, Ce(CuCo) 5 , SmCo 5 , Sm 2 Coi 7 , and Nd 2 Fei 4 B.
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135. In alternate embodiments, magnets may be disposed within a hollowed inner sleeve 140, such that an outer sleeve 100 is not required, as described above with respect to Figure 4.
  • a ball valve 180 is disposed within inner sleeve 140 and is configured to actuate upon rotation of gear 165.
  • Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140.
  • automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90.
  • the arcuate surface 185 is located within the sides of ball retention portion 150 of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
  • inner sleeve 140 is allowed to move axially within outer sleeve 100.
  • the gear magnets 240 interact with the electromagnets 220 of outer sleeve 100.
  • Interaction of gear magnets 240 with electromagnets 220 causes the axial movement of inner sleeve 140 to translate into rotational movement of gear 165.
  • the rotation of gear 165 causes arcuate surface 185 to move within ball valve 180, thereby actuating automatic plunger between an open position and a closed position.
  • the magnetic field of electromagnet(s) 220 may be manipulated by controlling the amount of electric current provided from the power source 225.
  • the magnetic field may be manipulated to rotate gear 165 in a particular direction, either clockwise or counter clockwise in order to either open or close ball valve 180.
  • electromagnet(s) 220 may be turned on an off in order to rotate gear 165 in a particular direction.
  • upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown).
  • downward axial movement of inner sleeve 140 within outer sleeve may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown).
  • the actuation of automatic plunger 90 is described in greater detail below.
  • automatic plunger 90 may vary according to the requirements of the well (not shown). The following discussion describes the process by which automatic plunger 90 may be used in a well (not shown).
  • FIG. 9 a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown.
  • automatic plunger 90 is shown at the top of a well 250 in the lubricator 255.
  • Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250.
  • Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed.
  • Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well.
  • lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator. While not explicitly shown, those of ordinary skill in the art will appreciate that one or springs may be disposed around bottom well stop rod 285 and/or top well stop rod 290. The springs (not shown) may be configured to absorb the impact from the plunger are it terminates at either bottom well stop rod 285 or top well stop rod 290.
  • Figure 9 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140.
  • Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135.
  • Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170.
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160.
  • Automatic plunger also includes a ball valve 180.
  • automatic plunger may move downwardly in the wellbore, as is explained further below with respect to Figures 12, 13, and 14.
  • FIG 12 a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown.
  • automatic plunger 90 is shown descending from the top of a well 250 in to the bottom of the well in direction C.
  • Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250.
  • Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed.
  • Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well.
  • lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator.
  • Figure 12 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140.
  • Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135.
  • Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170.
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160.
  • Automatic plunger also includes a ball valve 180.
  • automatic plunger 90 During operation, when automatic plunger 90 descends within the well 250, automatic plunger 90 is in an open position, whereby full flow is allowed through central flow bore 195. Because full flow is allowed, automatic plunger 90 may move through the fluid within the production tubing 265, assisted by gravity, in direction C. Depending on the type of fluids that are being produced, automatic plunger 90 may descend at, for example, about 700 ft/min. In certain embodiments, the speed at which automatic plunger 90 may be further increased by changing the geometry of outer sleeve 100 to include, for example, angled surfaces (not shown).
  • FIG. 15 a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown.
  • automatic plunger 90 is shown at the bottom of well 250.
  • Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250.
  • Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed.
  • Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well.
  • lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator.
  • Figure 15 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140.
  • Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135.
  • Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170.
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160.
  • Automatic plunger also includes a ball valve 180.
  • Figure 16 illustrates that ball valve is not fully in a closed position, as top shoulders of inner sleeve and outer sleeve 157 and 133, respectively, are not in contact. Full contact between inner sleeve top shoulder 157 and outer sleeve top shoulder 133 prevents further axial translation of inner sleeve 140 within outer sleeve 100.
  • FIG. 18 a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown.
  • automatic plunger 90 is shown ascending within well 250 in direction F.
  • Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250.
  • Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed.
  • Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well.
  • lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator.
  • Figure 18 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
  • Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140.
  • Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135.
  • Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170.
  • Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160.
  • Automatic plunger also includes a ball valve 180.
  • an automatic plunger 90 having teeth on inner sleeve 140, apertures on outer sleeve 100, or a combination of magnets on inner and outer sleeves 140, 100, may also be used.
  • axial translation of inner sleeve 140 within outer sleeve 100 may impart rotation to a ball valve 180, thereby actuating automatic plunger 90 between open and closed position.
  • embodiments of the present disclosure may allow for a single body plunger capable of increasing the production of hydrocarbons from wells as opposed to the multiple body plungers.
  • the automatic plunger described herein is a single body, the automatic plunger may move freely within a well without the risk of actuating between closed and open positions in the middle of a well. For example, because the ball valve is placed into either a closed or open position at the top or bottom of a well, the automatic plunger will stay in either the closed or open position until it reaches either the top of a well or the bottom of a well.
  • embodiments of the present disclosure may allow for a plunger that moves within a well at increased speeds.
  • production from the well may be increased, thereby increasing the profitability of the well and minimizing liquid loading issues and backpressure onto reservoir.
  • embodiments of the present disclosure may allow a plunger that does not require external manipulation to increase production from the well.
  • the automatic plunger described here automatically actuates between open and closed positions based on contact with surface disposed in the well, e.g., a bottom stop and a top stop. Because the actuation is automatic, the well does not need to be shut in, in order to cause the plunger to fall from the top of the well to the bottom of the well.
  • embodiments of the present disclosure may allow for a single actuation mechanism that does not require assistance of another separate object/body to act as the close mechanism that can disengage on the upward movement or engage early on the downward fall of the plunger cycle, thereby further increasing the reliability of plunger actuation and increasing production rates and efficiency of the well.

Abstract

A downhole apparatus having an upper well stop disposed at the surface of a well and a lower well stop disposed in the well. The apparatus further includes a plunger disposed within the well, wherein the plunger has a first sleeve having an outer diameter and a ball valve disposed on the first sleeve, wherein the ball valve is configured to rotate between an open and a closed position.

Description

AUTOMATIC PLUNGER
BACKGROUND OF THE INVENTION
[0001] A producing well extracts oil and/or natural gas from one or more subsurface reservoirs of hydrocarbons. The development of a producing well includes drilling a borehole into the subsurface ground, casing the drilled borehole, and completing the cased borehole to enable production.
[0002] In order to increase production from the well a variety of artificial lift systems may be used. Examples of pumping systems used to increase the productivity of a well include, for example, pump jacks and positive cavity pumps. Other equipment may also be used to increase the productivity of a well. Differential gas pressure operated pistons, also known as plungers, are also used in producing fluids from wells. In such plunger applications, a series of tubulars are placed within the well, extending from the producing reservoir to the surface. The cylindrical plunger travels within the tubulars between the bottom of the well and the top of the tubulars, where a well valve and a lubricator are disposed. One or more springs are typically disposed in the lubricator to absorb the impact energy of the plunger when it reaches the surface. The well may then be shut in for a selected period of time, thereby allowing downhole pressure to build up. When the well valve is opened, the plunger moves up in the tubulars pushing a volume of liquid to the surface. When the well valve is closed, the plunger travels down into the well to the bottom of the tubulars.
[0003] Generally, such systems are inefficient in the production of fluids because of the time it takes for the plunger to travel the thousands of feet within the tubulars from the surface to the bottom. Additionally, such plunger systems require shutting in the well for selected periods of time, thereby further decreasing the rate of production from the well.
BRIEF SUMMARY OF THE INVENTION
[0004] According to one aspect of one or more embodiments of the present invention, a downhole apparatus having an outer sleeve and an inner sleeve. The outer sleeve has an inner diameter that includes a first plurality of teeth. The inner sleeve has an outer diameter having an second plurality of teeth that correspond to the first plurality of teeth. The downhole apparatus further includes a ball valve that is configured to rotate between an open position and a closed position as the first plurality of teeth engages the second plurality of teeth.
[0005] According to one aspect of one or more embodiments of the present invention, a downhole apparatus having an upper well stop disposed at the surface of a well and a lower well stop disposed in the well. The apparatus further includes a plunger disposed within the well, wherein the plunger has a first sleeve having an outer diameter and a ball valve disposed on the first sleeve, wherein the ball valve is configured to rotate between an open and a closed position.
[0006] According to one aspect of one or more embodiments of the present invention, a method of producing a well. The method includes moving a plunger having a ball valve axially downward within a wellbore. The method further includes contacting the plunger with a bottom well stop disposed within the wellbore, wherein the contract between the plunger and the bottom well stop rotates the ball valve into a closed position. The method also includes moving the plunger axially upward within the wellbore and contracting the plunger with a top well stop that is disposed within the wellbore. The contact between the plunger and the upper well stop rotates the ball valve into an open position.
[0007] Other aspects of the present invention will be apparent from the following description and claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Figure 1 is a cross-sectional view of an outer sleeve according to embodiments of the present disclosure.
[0009] Figure 2 is a cross-section view of an inner sleeve according to embodiments of the present disclosure.
[0010] Figure 3 is a side view of an inner sleeve according to embodiments of the present disclosure.
[0011] Figure 4 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure. [0012] Figure 5 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
[0013] Figure 6 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
[0014] Figure 7 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
[0015] Figure 8 is a partial cross-sectional view of a plunger according to embodiments of the present disclosure.
[0016] Figure 9 is a cross-sectional view of a well according to embodiments of the present disclosure.
[0017] Figure 10 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
[0018] Figure 11 is a bottom view of a plunger according to embodiments of the present disclosure.
[0019] Figure 12 is a cross-sectional view of a well according to embodiments of the present disclosure.
[0020] Figure 13 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
[0021] Figure 14 is a bottom view of a plunger according to embodiments of the present disclosure.
[0022] Figure 15 is a cross-sectional view of a well according to embodiments of the present disclosure.
[0023] Figure 16 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
[0024] Figure 17 is a bottom view of a plunger according to embodiments of the present disclosure. [0025] Figure 18 is a cross-sectional view of a well according to embodiments of the present disclosure.
[0026] Figure 19 is a cross-sectional view of a plunger according to embodiments of the present disclosure.
[0027] Figure 20 is a bottom view of a plunger according to embodiments of the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
[0028] One or more embodiments of the present invention are described in detail with reference to the accompanying figures. For consistency, like elements in the various figures are denoted by like reference numerals. In the following detailed description of the present invention, specific details are set forth in order to provide a thorough understanding of the present invention. In other instances, well-known features to one of ordinary skill in the art are not described to avoid obscuring the description of the present invention.
[0029] Figure 1 shows a cross-sectional view of an outer sleeve of an automatic plunger according to embodiments of the present disclosure. Outer sleeve 100 may be a generally cylindrical tubular formed from various metals, metal alloys, and/or composites, such as polymer and fiber glass. For example, outer sleeve 100 may be formed from steel, titanium, steel titanium alloys, or composites, such as polymer, carbon fiber or Kevlar®. Outer sleeve 100 has an outer diameter 105 and an inner diameter 110. The thickness of outer sleeve 100 may vary according to the operational parameters in which outer sleeve 100 may be used. In certain embodiments, the thickness of outer sleeve 100 may be, for example, less than 0.25 cm, between 0.25 cm and 1.0 cm, or greater than 1.0 cm. Those of ordinary skill in the art will appreciate that the thickness of outer sleeve may vary in accordance with one or more embodiments of the present disclosure.
[0030] Outer sleeve 100 includes a plurality of teeth 115 disposed on the inner diameter 110 of outer sleeve 100. Plurality of teeth 115 may be formed from various metals, metal alloys, and/or composites, such as those described above. Additionally, plurality of teeth 115 may be coated with Teflon® (polymer coating), corrosion inhibitors, lubricants, hardfacing, or other surface treatments to further enhance the functionality and/or durability of plurality of teeth 115. The number of teeth 115 may vary according to the requirements of the tool. In certain embodiments, there may be two teeth 115, one disposed on a top portion 120 of outer sleeve 100, and one disposed on a bottom portion 125 of outer sleeve 100. In other embodiments, there may be more than two teeth 115 disposed on outer sleeve 100. As illustrated, outer sleeve 100 of Figure 1 has three teeth 1 15 on top portion 120 and three teeth 115 on bottom portion 125, however, top portion 120 and bottom portion 125 may have greater or fewer than three teeth 115 in alternative embodiments. Additionally, in certain embodiments, top portion 120 and bottom portion 125 may have numbers of teeth 115 that are not equal. For example, top portion 120 may have three teeth 115, while bottom portion 125 has four teeth. Those of ordinary skill in the art will appreciate that the number of teeth may vary according to design requirements of the tool.
[0031] Teeth 115 may also be spaced at selected intervals. For example, in certain embodiments, the space between teeth 115 may be less than 0.25 cm, between 0.25 cm and 0.5 cm, or greater than 0.5 cm. The length of the projection of teeth 115 may also vary. For example, teeth 15 may project less than 0.25 cm, between 0.25 cm and 0.5 cm, or greater than 0.5 cm. Teeth 115 may also be oriented around the inner diameter 110 of outer sleeve 100 in different configurations. For example, in one embodiment, teeth 115 may project around the entire inner diameter 110 of outer sleeve 100. However, in other embodiments, teeth 115 may be disposed on one a single side of outer sleeve 100, or on opposite sides (as illustrated) of outer sleeve 100. Those of ordinary skill in the art will appreciate that the orientation of teeth 115 may be a design consideration that may vary according to the operational requirements of the tool.
[0032] Outer sleeve 100 also includes one or more shoulders 130. As illustrated, outer sleeve 100 includes two shoulders 130, a top shoulder 133, and a bottom shoulder 135. As illustrated, the shoulders 130 extend around the inner diameter 110 of outer sleeve 100, however, in alternate embodiments, shoulder 130 may extend only a portion of the inner diameter 110 of outer sleeve 100. The thickness and projection of shoulders 130 may vary according to the requirements of the tool. For example, in certain embodiments, the thickness and projections may be less than 0.25 cm, between 0.25 cm and 0.5 cm, or greater than 0.5 cm. Those of ordinary skill in the art will appreciate that the geometry and placement of shoulders 130 may vary according to the requirements of the tool, however, shoulders 130 should generally be capable of restricting longitudinal axial movement of an inner sleeve (not shown), which is discussed in detail below.
[0033] Referring to Figure 2, a side view of inner sleeve 140 of an automatic plunger according to embodiments of the present disclosure is shown. In this embodiment, inner sleeve 140 is formed from metals, metal alloys, and/or composites, such as those described above with respect to outer sleeve (not shown) of Figure 1. Inner sleeve 140 includes an outer profile configured to correspond to a ball valve (not shown). Thus, inner sleeve 140 includes a generally cylindrical top portion 145, a generally cylindrical bottom portion 147, and a ball retention portion 150. Inner sleeve 140 includes one or more shoulders 155 disposed on an outer diameter of inner sleeve 140. As illustrated, inner sleeve 140 may have two shoulders 155, a top shoulder 157 and a bottom shoulder 160, however, in other embodiments, inner sleeve 140 may have more or less than two shoulders 155.
[0034] Inner sleeve 140 also includes a gear 165 having a plurality of teeth 170. Gear
165 is disposed proximate to ball retention portion 150 and is attached to a ball valve (not shown) disposed therein. Gear 165 is configured to rotate, thereby opening and closing the ball valve (not shown). Those of ordinary skill in the art will appreciate that the number of teeth 170 disposed on gear 165 may vary according to the requirements of the tool. For example, in certain embodiments, gear 165 may have two teeth 170, while in other embodiments, gear 165 may have more than two teeth 170, such as three teeth 170, four teeth 170, five teeth 170, six teeth 170, or more than six teeth 170. Gear may be configured to rotate in a single direction, such as clockwise or counter clockwise, or may be configured to rotate in both clockwise and counter clockwise directions. Additionally, the rotation required to actuate the ball valve (not shown) may vary according to parameters of the tool, such as, for example, the size, diameter, or configuration of the teeth 170 or outer sleeve teeth (not shown).
[0035] Referring briefly to Figure 3, a side profile view of inner sleeve 140 according to embodiments of the present disclosure is shown. As illustrated, inner sleeve 140 includes a gear 165 attached to inner sleeve 140 by a rod 175. Rod 175 may extend through inner sleeve 140 and connect gear 165 to the ball valve (not shown). In order to prevent fluid from escaping inner sleeve 140 during use of the tool, one or more seals 180, such as elastomeric, silicon, or other types of seals may be disposed around rod 175 and in contact with inner sleeve 140. Those of ordinary skill in the art will appreciate that the location, size, and configuration of seals 180 may vary according to the operational requirements of the tool.
[0036] Referring to Figure 4, a particle cross-sectional view of an automatic plunger
90 according to embodiments of the present disclosure is shown. In this embodiment, automatic plunger 90 has an inner sleeve 140, with all the components of the automatic plunger 90 disposed on the inner sleeve 140, thus not requiring an outer sleeve. As illustrated, inner sleeve 140 includes a ball valve 180 having a two valve teeth 171. In this embodiment, valve teeth 171 may be disposed on substantially opposite sides of ball valve 180. Valve teeth 171 are connected to inner sleeve 140 using valve rods 172.
[0037] Inner sleeve 140 includes one or more shoulders 155 disposed on an outer diameter of inner sleeve 140. As illustrated, inner sleeve 140 may have two shoulders 155, a top shoulder 157 and a bottom shoulder 160, however, in other embodiments, inner sleeve 140 may have more or less than two shoulders 155. Inner sleeve 140 also includes a top end cap 176 and a bottom end cap 177. End caps 176 and 177 hold inner sleeve 140, but allow inner sleeve 140 to axially translate. The axial translation of inner sleeve 140 causes the ball valve 180 to rotationally actuate, as shoulders 155 of inner sleeve 140 contact end caps 176 and 177. For example, as automatic plunger 90 descends in a well, contact with a distal end of the well may cause inner sleeve 140 to translate axially upward, thereby causing top shoulder 157 to contact top end cap 176. The axial movement will thus be translated to rotational movement of ball valve 180, thereby closing ball valve 180.
[0038] In other embodiments, rather than have two valve rods 172, automatic plunger
90 may have a single rod 172 disposed on one side of inner sleeve 140. In such an embodiment, single valve rod 172 may be attached to a single valve tooth 171 or a lever, such that axial translation of single valve rod 172 causes single valve tooth 171 or lever to move, thereby causing ball valve 180 to rotate between open and closed positions. The actuation of automatic plunger 90 according to embodiments of the present disclosure is described in greater detail below with respect to Figures 9-20.
[0039] Referring to Figure 5, a partial cross-sectional view of an automatic plunger 90 according to embodiments of the present disclosure is shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein. Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110. A plurality of teeth 115 are disposed on inner diameter 110 of outer sleeve 100. Outer sleeve 100 also includes a top shoulder 133 and a bottom shoulder 135. Additionally, in this embodiment, outer sleeve 140 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135.
[0040] In certain embodiments, springs 175 may be connected to outer sleeve 100 and one or more of shoulders 133 and 135. In other embodiments, springs may merely be placed between outer sleeve 100 and one or more of shoulders 133 and 135, or connected to one of outer sleeve 100 and shoulders 133 and 35. The type of spring(s) 175 used may vary. For example, in certain embodiments, spring 175 may encircle inner sleeve 140, while in other embodiments, spring 175 may not encircle inner sleeve 140 and by disposed in one or more areas between inner sleeve 140 and outer sleeve 100. Those of ordinary skill in the art will appreciate that depending on operational requirements, there may be one spring 175, two springs 175, or more than two springs 175. Additionally, in certain embodiments, the springs 175 may be held in compression with a spring lock (not shown). Examples of spring locks (not shown) may include mechanical retention devices, shoulders, clamps, etc., that are configured to hold a spring in compression and release the spring 175 when sufficient axial force is applied to automatic plunger 90. For example, the spring lock (not shown) may hold a spring in compression until automatic plunger 90 contacts a well stop (not shown) disposed within a well (not shown).
[0041] Inner sleeve 140 includes a gear 165 having a plurality of inner sleeve teeth
170 disposed on gear 165. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135. [0042] A ball valve 180 is disposed within inner sleeve 140 and is configured to actuate upon rotation of gear 165. Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140. As illustrated, automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90. In an open position, the arcuate surface 185 is located within the sides of ball retention portion 150 of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
[0043] During operation, inner sleeve 140 is allowed to move axially within outer sleeve 100. As inner sleeve 140 moves axially within outer sleeve 100, the gear teeth 170 engage the teeth 115 of outer sleeve 100. Engagement of gear teeth 170 and teeth 115 causes the axial movement of inner sleeve 140 to translate into rotational movement of gear 165. The rotation of gear 165 causes arcuate surface 185 to move within ball valve 180, thereby actuating automatic plunger between an open position and a closed position. Those of ordinary skill in the art will appreciate that the rotation of gear 165 may occur in one direction or two directions. For example, gear 165 may only rotate clockwise or counter clockwise or in other embodiments, gear 165 may rotate both clockwise and counter clockwise.
[0044] In certain embodiments, upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown). Similarly, downward axial movement of inner sleeve 140 within outer sleeve may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown). The actuation of automatic plunger 90 is described in greater detail below.
[0045] Referring to Figure 6, a partial cross-sectional view of an automatic plunger 90 according to embodiments of the present disclosure is shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein. Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110. A plurality of teeth 115 are disposed on inner diameter 110 of outer sleeve 100. Outer sleeve also includes a top shoulder 133 and a bottom shoulder 135. Additionally, in this embodiment, outer sleeve 140 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135. In this embodiment, automatic plunger 90 includes a spring 175 disposed within inner sleeve between the plurality of teeth 115.
[0046] In this embodiment, inner sleeve 140 includes a plurality of inner sleeve teeth
200 disposed on an outer diameter 205 of inner sleeve 140. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135.
[0047] Automatic plunger 90 further includes a ball valve 180 disposed within inner sleeve 140. In this embodiment, ball valve 180 includes a ball seat 210, which holds arcuate surface 185 within inner sleeve 140. Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140. As illustrated, automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90. In an open position, the arcuate surface 185 is located within the sides of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
[0048] During operation, inner sleeve 140 is allowed to move axially within outer sleeve 100. As inner sleeve 140 moves axially within outer sleeve 100, the inner sleeve teeth 200 engage the teeth 115 of outer sleeve 100. Engagement of inner sleeve teeth and teeth 115 causes the axial movement of inner sleeve 140 to translate into rotational movement of arcuate surface 185. Arcuate surface 185 moves within ball valve 180, thereby actuating automatic plunger between an open position and a closed position.
[0049] In certain embodiments, upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown). Similarly, downward axial movement of inner sleeve 140 within outer sleeve may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown). The actuation of automatic plunger 90 is described in greater detail below.
[0050] Referring to Figure 7, a partial cross-sectional view of an automatic plunger 90 according to embodiments of the present disclosure is shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein. Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110. A plurality of apertures 215 are formed on inner diameter 110 of outer sleeve 100. Outer sleeve 100 also includes a top shoulder 133 and a bottom shoulder 135. Additionally, in this embodiment, outer sleeve 100 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135.
[0051] Inner sleeve 140 includes a gear 165 having a plurality of inner sleeve teeth
170 disposed on gear 165. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135.
[0052] A ball valve 180 is disposed within inner sleeve 140 and is configured to actuate upon rotation of gear 165. Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140. As illustrated, automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90. In an open position, the arcuate surface 185 is located within the sides of ball retention portion 150 of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
[0053] During operation, inner sleeve 140 is allowed to move axially within outer sleeve 100. As inner sleeve 140 moves axially within outer sleeve 100, the gear teeth 170 engage the apertures 215 of outer sleeve 100. Engagement of gear teeth 170 apertures 215 causes the axial movement of inner sleeve 140 to translate into rotational movement of gear 165. The rotation of gear 165 causes arcuate surface 185 to move within ball valve 180, thereby actuating automatic plunger 90 between an open position and a closed position.
[0054] In certain embodiments, upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger 90 into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown). Similarly, downward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown). The actuation of automatic plunger 90 is described in greater detail below.
[0055] In certain embodiments, an outer sleeve 100 is not required, as described above with respect to Figure 4. In such an embodiment, gear 165 may be connected to one or more rods that terminate at an end cap (176 and 177 of Figure 4). Thus, the axial movement of inner sleeve 140 and the subsequent axial movement of the rods may cause rotation of gear 165 and thus rotational actuation of ball valve 180. Similarly, in other embodiments, rods may be disposed between outer sleeve 140 and inner sleeve 100 and connect inner sleeve 140 to gear 165. As described above, axial movement of inner sleeve 140 imparts rotational movement to ball valve 180 by causing gear 165 to rotate.
[0056] Referring to Figure 8, a partial cross-sectional view of an automatic plunger 90 according to embodiments of the present disclosure is shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140, with the entire body of inner sleeve 140 disposed therein. Outer sleeve 100 includes an outer diameter 105 and an inner diameter 110. A plurality of electromagnets 220 are disposed on inner diameter 110 of outer sleeve 100. The electromagnets 220 may be powered by a power source 225, for example a battery. As illustrated, the power source 225 is disposed between outer sleeve 100 and inner sleeve 140, however, in other embodiments, the power source 225 may be disposed outside of automatic plunger 90 and connected to automatic plunger 90 through wiring (not shown). Power may also be communicated to automatic plunger 90 through external wiring (not shown), such as wiring disposed within a well (not shown) and provided from the surface of the well (not shown). Those of ordinary skill in the art will appreciate that power for electromagnets 220 may be provided according to any method known in the art. As illustrated, in this embodiment, power is provided from power source 225 to electromagnets 220 through internal wiring 230. [0057] Depending on the operational requirements for automatic plunger 90, the number and disposition of electromagnets 220 may vary. For example, a plurality of electromagnets 220 may be used, or in alternate embodiment, only a single electromagnet 220 may be used. In such a single electromagnet 220 embodiment, the single electromagnet 220 may be disposed in a central location 235 of outer sleeve 100. In still another embodiment, two electromagnets 220 may be used. In such an embodiment, one electromagnet 220 may be disposed above the gear 165 of inner sleeve 140, while a second electromagnet 220 may be disposed below the gear 165 of inner sleeve 140.
[0058] Outer sleeve 100 also includes a top shoulder 133 and a bottom shoulder 135.
Additionally, in this embodiment, outer sleeve 140 may include one or more springs 175. As illustrated, springs 175 may be disposed within outer sleeve 100 proximate shoulders 133 and 135. Inner sleeve 140 includes a gear 165 having a plurality gear magnets 240 disposed on gear 165. Gear magnets 240 may be either electromagnets or rare earth magnets. For example, gear magnets may include neodymium magnets, neodymium-iron-boron magnets, and magnets formed from, for example, BaFei20i9, MnBi, Ce(CuCo)5, SmCo5, Sm2Coi7, and Nd2Fei4B. This list of rare earth magnets is exemplary in nature, however, other rare earth magnets may also be used in certain embodiments. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. The axial movement of inner sleeve 140 is restricted within outer sleeve 100 by outer sleeve shoulders 133 and 135. In alternate embodiments, magnets may be disposed within a hollowed inner sleeve 140, such that an outer sleeve 100 is not required, as described above with respect to Figure 4.
[0059] A ball valve 180 is disposed within inner sleeve 140 and is configured to actuate upon rotation of gear 165. Ball valve 180 includes a rotating arcuate surface 185 that corresponds with the inner diameter 190 of inner sleeve 140. As illustrated, automatic plunger 90 is in a closed position, as arcuate surface 185 is blocking the central flow bore 195 of automatic plunger 90. In an open position, the arcuate surface 185 is located within the sides of ball retention portion 150 of inner sleeve 140. In the open position, flow is allowed through central flow bore 195.
[0060] During operation, inner sleeve 140 is allowed to move axially within outer sleeve 100. As inner sleeve 140 moves axially within outer sleeve 100, the gear magnets 240 interact with the electromagnets 220 of outer sleeve 100. Interaction of gear magnets 240 with electromagnets 220 causes the axial movement of inner sleeve 140 to translate into rotational movement of gear 165. The rotation of gear 165 causes arcuate surface 185 to move within ball valve 180, thereby actuating automatic plunger between an open position and a closed position. Depending on the operational requirements of automatic plunger 90, the magnetic field of electromagnet(s) 220 may be manipulated by controlling the amount of electric current provided from the power source 225. For example, the magnetic field may be manipulated to rotate gear 165 in a particular direction, either clockwise or counter clockwise in order to either open or close ball valve 180. In other embodiments, electromagnet(s) 220 may be turned on an off in order to rotate gear 165 in a particular direction.
[0061] In certain embodiments, upward axial movement of inner sleeve 140 within outer sleeve 100 may cause actuation of automatic plunger into a closed position, such as when automatic plunger 90 contacts a bottom well stop (not shown) disposed within a well (not shown). Similarly, downward axial movement of inner sleeve 140 within outer sleeve may cause actuation of automatic plunger into an open position, such as when automatic plunger 90 contacts a top well stop (not shown) disposed within, for example, a lubricator (not shown) disposed at the top surface of a well (not shown). The actuation of automatic plunger 90 is described in greater detail below.
[0062] Those of ordinary skill in the art will appreciate that the above embodiments of automatic plunger 90 may vary according to the requirements of the well (not shown). The following discussion describes the process by which automatic plunger 90 may be used in a well (not shown).
[0063] Referring to Figure 9, a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown. In this embodiment, automatic plunger 90 is shown at the top of a well 250 in the lubricator 255. Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250. Disposed within well 250 is production tubing 265. Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed. Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well. Similarly, lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator. While not explicitly shown, those of ordinary skill in the art will appreciate that one or springs may be disposed around bottom well stop rod 285 and/or top well stop rod 290. The springs (not shown) may be configured to absorb the impact from the plunger are it terminates at either bottom well stop rod 285 or top well stop rod 290. Figure 9 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
[0064] Referring also to Figures 10 and 11, a partial cross-sectional view of an automatic plunger 90 and a bottom view of automatic plunger 90 according to embodiments of the present disclosure are shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140. Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135. Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. Automatic plunger also includes a ball valve 180.
[0065] During operation, when automatic plunger 90 contacts top well stop rod 290, the impact from outer sleeve 100 contacting the top well stop rod 290 causes inner sleeve 140 to translate axially downward in direction A relative to outer sleeve 100. The axial translation of inner sleeve 140 within outer sleeve 100 engages teeth 115 with gear teeth 170, thereby rotating gear 265 in direction B. Those of ordinary skill in the art will appreciate that gear 265 may rotate in either direction, depending on the orientation of ball valve 180. The movement of inner sleeve 140 within outer sleeve 110 is restricted by bottom shoulders 135 and 160. As gear 165 rotates, the ball valve 180 actuates, thereby rotating an arcuate surface (not shown) of the ball valve 180. Rotation of the arcuate surface (not shown) opens automatic plunger 90 into an open position. As illustrated in Figure 11 , in an open position, automatic plunger 90 allows full flow through central bore 195.
[0066] By providing full flow through central bore 195, automatic plunger may move downwardly in the wellbore, as is explained further below with respect to Figures 12, 13, and 14. [0067] Referring to Figure 12, a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown. In this embodiment, automatic plunger 90 is shown descending from the top of a well 250 in to the bottom of the well in direction C. Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250. Disposed within well 250 is production tubing 265. Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed. Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well. Similarly, lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator. Figure 12 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
[0068] Referring also to Figures 13 and 14, a partial cross-sectional view of an automatic plunger 90 and a bottom view of automatic plunger 90 according to embodiments of the present disclosure are shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140. Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135. Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. Automatic plunger also includes a ball valve 180.
[0069] During operation, when automatic plunger 90 descends within the well 250, automatic plunger 90 is in an open position, whereby full flow is allowed through central flow bore 195. Because full flow is allowed, automatic plunger 90 may move through the fluid within the production tubing 265, assisted by gravity, in direction C. Depending on the type of fluids that are being produced, automatic plunger 90 may descend at, for example, about 700 ft/min. In certain embodiments, the speed at which automatic plunger 90 may be further increased by changing the geometry of outer sleeve 100 to include, for example, angled surfaces (not shown).
[0070] Referring to Figure 15, a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown. In this embodiment, automatic plunger 90 is shown at the bottom of well 250. Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250. Disposed within well 250 is production tubing 265. Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed. Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well. Similarly, lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator. Figure 15 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
[0071] Referring also to Figures 16 and 17, a partial cross-sectional view of an automatic plunger 90 and a bottom view of automatic plunger 90 according to embodiments of the present disclosure are shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140. Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135. Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. Automatic plunger also includes a ball valve 180.
[0072] During operation, automatic plunger 90 descends in well 250 (as described in
Figures 12-14) until automatic plunger contacts bottom well stop rod 285. The impact from outer sleeve 100 contacting bottom well stop rod 285 causes inner sleeve 140 to translate axially upward within outer sleeve 100 in direction D. The axial translation of inner sleeve 140 causes gear 165 to rotate in direction E. Those of ordinary skill in the art will appreciate that 165 may rotate in either direction, clockwise or counter clockwise, depending on the orientation and operational parameters of ball valve 180. As gear 165 rotates in direction E, the arcuate surface 185 of ball valve 180 begins to close, thereby restricting the flow of fluids there through. Figure 17 shows arcuate surface 185 starting to close as rotational movement is imparted to gear 165. Figure 16 illustrates that ball valve is not fully in a closed position, as top shoulders of inner sleeve and outer sleeve 157 and 133, respectively, are not in contact. Full contact between inner sleeve top shoulder 157 and outer sleeve top shoulder 133 prevents further axial translation of inner sleeve 140 within outer sleeve 100.
[0073] Referring to Figure 18, a cross-sectional view of an automatic plunger 90 in a well 250 according to one embodiment of the present disclosure is shown. In this embodiment, automatic plunger 90 is shown ascending within well 250 in direction F. Well 250 may also include a plurality of valves 260 disposed at the surface of the well 250. Disposed within well 250 is production tubing 265. Production tubing 265 extends from the surface 270 of the well 250 and terminates at a distal end 275, wherein a bottom well stop 280 is disposed. Bottom well stop 280 may have a bottom well stop rod 285 that extend axially upward within the well. Similarly, lubricator 255 includes a top well stop rod 290 that extends axially downward within the lubricator. Figure 18 also illustrates the well 250 having a well axis 295 running longitudinally within well 250.
[0074] Referring also to Figures 19 and 20, a partial cross-sectional view of an automatic plunger 90 and a bottom view of automatic plunger 90 according to embodiments of the present disclosure are shown. Automatic plunger 90 includes an outer sleeve 100 and an inner sleeve 140. Outer sleeve 100 includes a plurality of teeth 115, top shoulder 133, and bottom shoulder 135. Inner sleeve 140 includes a gear 165 having a plurality of gear teeth 170. Inner sleeve 140 also includes a top shoulder 157 and a bottom shoulder 160. Automatic plunger also includes a ball valve 180.
[0075] When arcuate surface 185 of ball valve 180 closes and automatic plunger is in a closed position, fluid pressure below automatic plunger builds and forces plunger upwardly within the well in direction F. When in the closed position, inner sleeve top shoulder 157 and outer sleeve top shoulder 133 may be in contact, thereby preventing further axial translation upward of inner sleeve 140. Depending on the type of fluids being produced within well 150, the speed of upward movement of automatic plunger 90 may vary. In certain embodiments, automatic plunger 90 may move upwardly at a speed of, for example, about 700 ft/min. Automatic plunger 90 will continue to move upwardly within the well 250 until it reaches the top well stop rod 290.
[0076] Upon contact with top well stop rod 290, inner sleeve 140 will axially translate downwardly within outer sleeve 100, thereby causing rotation of gear 165, as described with respect to Figures 12-14. Rotation of gear 165 will begin to actuate ball valve 180, thereby opening arcuate surface (not shown) and setting automatic plunger into an open position, as described with respect to Figures 12-14. [0077] Those of ordinary skill in the art will appreciate that the method of using automatic plunger 90 described above is exemplary of one method for increasing the production of fluids from a well 250. In alternative embodiments, an automatic plunger 90 having teeth on inner sleeve 140, apertures on outer sleeve 100, or a combination of magnets on inner and outer sleeves 140, 100, may also be used. In the alternative embodiments, axial translation of inner sleeve 140 within outer sleeve 100 may impart rotation to a ball valve 180, thereby actuating automatic plunger 90 between open and closed position.
[0078] Advantageously, embodiments of the present disclosure may allow for a single body plunger capable of increasing the production of hydrocarbons from wells as opposed to the multiple body plungers. Because the automatic plunger described herein is a single body, the automatic plunger may move freely within a well without the risk of actuating between closed and open positions in the middle of a well. For example, because the ball valve is placed into either a closed or open position at the top or bottom of a well, the automatic plunger will stay in either the closed or open position until it reaches either the top of a well or the bottom of a well.
[0079] Advantageously, embodiments of the present disclosure may allow for a plunger that moves within a well at increased speeds. By increasing the speed at which the plunger moves within the well, production from the well may be increased, thereby increasing the profitability of the well and minimizing liquid loading issues and backpressure onto reservoir.
[0080] Advantageously, embodiments of the present disclosure may allow a plunger that does not require external manipulation to increase production from the well. For example, the automatic plunger described here automatically actuates between open and closed positions based on contact with surface disposed in the well, e.g., a bottom stop and a top stop. Because the actuation is automatic, the well does not need to be shut in, in order to cause the plunger to fall from the top of the well to the bottom of the well. Additionally, because the actuation is automatic and from a single bodied plunger, well production may be increased without substantial engineer oversight [0081] Advantageously, embodiments of the present disclosure may allow for a single actuation mechanism that does not require assistance of another separate object/body to act as the close mechanism that can disengage on the upward movement or engage early on the downward fall of the plunger cycle, thereby further increasing the reliability of plunger actuation and increasing production rates and efficiency of the well.
[0082] While the present invention has been described with respect to the above- noted embodiments, those skilled in the art, having the benefit of this disclosure, will recognize that other embodiments may be devised that are within the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the appended claims.

Claims

CLAIMS What is claimed is:
1. A downhole apparatus comprising: an outer sleeve comprising an inner diameter having a first plurality of teeth; and an inner sleeve comprising an outer diameter having a second plurality of teeth that correspond to the first plurality of teeth, and a ball valve configured to rotate between an open position and a closed position as the first plurality of teeth engages the second plurality of teeth.
2. The downhole apparatus of claim 1, wherein the inner sleeve moves longitudinally within the outer sleeve.
3. The downhole apparatus of claim 2, wherein longitudinal movement of the inner sleeve rotates the ball valve between the open and the closed positions.
4. The downhole apparatus of claim 1, further comprising at least one of a spring and a rod disposed between the outer sleeve and the inner sleeve.
5. The downhole apparatus of claim 4, wherein the spring is disposed substantially around the inner sleeve.
6. The downhole apparatus of claim 1, wherein the second plurality of teeth is disposed on a gear.
7. The downhole apparatus of claim 6, wherein rotation of the gear rotates the ball valve between the open and closed position.
8. A downhole apparatus comprising: an upper well stop disposed at the surface of a well; a lower well stop disposed in the well; and a plunger disposed within the well; the plunger comprising: a first sleeve comprising an outer diameter, and a ball valve disposed on the first sleeve, wherein the ball valve is configured to rotate between an open and a closed position.
9. The downhole apparatus of claim 8, further comprising a spring disposed around the upper well stop.
10. The downhole apparatus of claim 9, further comprising a second spring disposed around the lower well stop.
11. The downhole apparatus of claim 10, wherein contact between the plunger and the lower well stop rotates the ball valve into the closed position.
12. The downhole apparatus of claim 11, wherein contact between the plunger and the upper well stop rotates the ball valve into the open position.
13. The downhole apparatus of claim 8, wherein the plunger further comprises a spring in contact with the inner sleeve.
14. The downhole apparatus of claim 13, wherein the spring biases the ball valve in the open position.
15. A method of producing a well comprising: moving a plunger comprising a ball valve axially downward within a wellbore; contacting the plunger with a bottom well stop disposed within the wellbore, wherein the contact between the plunger and the bottom well stop rotates the ball valve into a closed position; moving the plunger axially upward within the wellbore; and contacting the plunger with a top well stop disposed within the wellbore, wherein the contact between the plunger and the upper well stop rotates the ball valve into an open position.
16. The method of claim 15, wherein rotating the ball valve into the closed position comprises sealing substantially the inside of the plunger.
17. The method of claim 15, wherein rotating the ball valve into the opened position comprises opening substantially the inside of the plunger allowing fluid flow there through.
18. The method of claim 15, wherein the plunger is a single body apparatus.
19. The method of claim 15, wherein contacting the plunger with the bottom well stop translates an inner sleeve of the plunger axially upward and the axial movement of the inner sleeve rotates the ball valve into the closed position.
20. The method of claim 15, wherein contacting the plunger with the bottom well stop electromagnetically rotates the ball valve into the closed position.
PCT/US2014/023281 2013-03-15 2014-03-11 Automatic plunger WO2014150444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/843,937 US20140262318A1 (en) 2013-03-15 2013-03-15 Automatic plunger
US13/843,937 2013-03-15

Publications (2)

Publication Number Publication Date
WO2014150444A1 true WO2014150444A1 (en) 2014-09-25
WO2014150444A8 WO2014150444A8 (en) 2014-11-20

Family

ID=51522325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/023281 WO2014150444A1 (en) 2013-03-15 2014-03-11 Automatic plunger

Country Status (2)

Country Link
US (1) US20140262318A1 (en)
WO (1) WO2014150444A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217752A (en) * 2022-06-22 2022-10-21 中国石油大学(北京) Plunger piston

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708163A (en) * 1987-01-28 1987-11-24 Otis Engineering Corporation Safety valve
US5810087A (en) * 1996-01-24 1998-09-22 Schlumberger Technology Corporation Formation isolation valve adapted for building a tool string of any desired length prior to lowering the tool string downhole for performing a wellbore operation
US20090159298A1 (en) * 2007-12-19 2009-06-25 Schlumberger Technology Corporation Methods and systems for completing a well with fluid tight lower completion
US20100212884A1 (en) * 2009-02-24 2010-08-26 Hall David R Ratchet Mechanism in a Fluid Actuated Device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3398762A (en) * 1965-10-21 1968-08-27 Otis Eng Co Valves
US3837403A (en) * 1972-01-03 1974-09-24 Hydril Co Alternating valve method and apparatus
US4331315A (en) * 1978-11-24 1982-05-25 Daniel Industries, Inc. Actuatable safety valve for wells and flowlines
US4340088A (en) * 1980-06-09 1982-07-20 Daniel Industries, Inc. Pressure balanced safety valve for wells and flow lines
US4807700A (en) * 1987-09-18 1989-02-28 Cameron Iron Works Usa, Inc. Wireline downhole annulus valve
GB2371988B (en) * 2001-02-08 2002-12-24 Tayside Flow Technologies Ltd Valve
US6729392B2 (en) * 2002-02-08 2004-05-04 Dril-Quip, Inc. Tubing hanger with ball valve in the annulus bore
CA2382637C (en) * 2002-04-19 2008-07-15 Dan Lee Improved wellbore pump
US7397388B2 (en) * 2003-03-26 2008-07-08 Schlumberger Technology Corporation Borehold telemetry system
CA2431280A1 (en) * 2003-06-05 2004-12-05 Thomas Hubert Vermeeren Bypass valve for a flow through gas lift plunger
CA2763511C (en) * 2009-07-02 2015-10-13 Exxonmobil Upstream Research Company Plunger lift systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708163A (en) * 1987-01-28 1987-11-24 Otis Engineering Corporation Safety valve
US5810087A (en) * 1996-01-24 1998-09-22 Schlumberger Technology Corporation Formation isolation valve adapted for building a tool string of any desired length prior to lowering the tool string downhole for performing a wellbore operation
US20090159298A1 (en) * 2007-12-19 2009-06-25 Schlumberger Technology Corporation Methods and systems for completing a well with fluid tight lower completion
US20100212884A1 (en) * 2009-02-24 2010-08-26 Hall David R Ratchet Mechanism in a Fluid Actuated Device

Also Published As

Publication number Publication date
WO2014150444A8 (en) 2014-11-20
US20140262318A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US10364658B2 (en) Downhole pump with controlled traveling valve
US8403067B2 (en) Repeatable, compression set downhole bypass valve
CA2565998C (en) Full bore injection valve
US9885353B2 (en) Pressure relief mechanism for linear actuator well pump
CA3060286A1 (en) Rotator apparatus and method therefor
CA2829884A1 (en) Hydraulically powered ball valve lift apparatus and method for downhole pump travelling valves
CN102364038B (en) Underwater oil pipe hanger embedded guiding and positioning device
CN108868732B (en) Tool of coiled tubing separate-layer fracturing system and separate-layer fracturing method thereof
US20140262318A1 (en) Automatic plunger
CA2934841C (en) Check valve with an inertial mass for progressive cavity pumps
US9890780B2 (en) Hydraulically powered ball valve lift apparatus and method for downhole pump travelling valves
RU2334866C1 (en) Device for simultaneous-separate operation of multypay well
RU2513896C1 (en) Method of dual operation of two strata with one well
RU2465438C1 (en) Borehole gate
CA2938934A1 (en) Magnetic anti-gas lock rod pump
CN104373108B (en) A kind of method and device for controlling downhole detection device to switch
WO2015022552A3 (en) Improved filling mechanism for a morphable sleeve
CN201250648Y (en) Water searching and blocking integral switch controlled by oil sucker rod
CN103867161B (en) A kind of steam injection plugging valve
US9920602B2 (en) Swing chamber pump (SCP)
CN204804753U (en) Blanking plug
CN204225846U (en) The hydraulic pressure flip flop equipment of checkout gear switch under a kind of control well
CA2950523A1 (en) Hydrocarbon extraction tool and pump assemblies
WO2013184432A1 (en) Tubing test system
RU76069U1 (en) DEVICE FOR SIMULTANEOUSLY SEPARATE OPERATION OF A MULTI-PLASTIC WELL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770410

Country of ref document: EP

Kind code of ref document: A1